Singh, Jai
2013-01-01
The objective of this study was a thorough reconsideration, within the framework of Newtonian mechanics and work-energy relationships, of the empirically interpreted relationships employed within the CRASH3 damage analysis algorithm in regards to linearity between barrier equivalent velocity (BEV) or peak collision force magnitude and residual damage depth. The CRASH3 damage analysis algorithm was considered, first in terms of the cases of collisions that produced no residual damage, in order to properly explain the damage onset speed and crush resistance terms. Under the modeling constraints of the collision partners representing a closed system and the a priori assumption of linearity between BEV or peak collision force magnitude and residual damage depth, the equations for the sole realistic model were derived. Evaluation of the work-energy relationships for collisions at or below the elastic limit revealed that the BEV or peak collision force magnitude relationships are bifurcated based upon the residual damage depth. Rather than being additive terms from the linear curve fits employed in the CRASH3 damage analysis algorithm, the Campbell b 0 and CRASH3 AL terms represent the maximum values that can be ascribed to the BEV or peak collision force magnitude, respectively, for collisions that produce zero residual damage. Collisions resulting in the production of non-zero residual damage depth already account for the surpassing of the elastic limit during closure and therefore the secondary addition of the elastic limit terms represents a double accounting of the same. This evaluation shows that the current energy absorbed formulation utilized in the CRASH3 damage analysis algorithm extraneously includes terms associated with the A and G stiffness coefficients. This sole realistic model, however, is limited, secondary to reducing the coefficient of restitution to a constant value for all cases in which the residual damage depth is nonzero. Linearity between BEV or peak collision force magnitude and residual damage depth may be applicable for particular ranges of residual damage depth for any given region of any given vehicle. Within the modeling construct employed by the CRASH3 damage algorithm, the case of uniform and ubiquitous linearity cannot be supported. Considerations regarding the inclusion of internal work recovered and restitution for modeling the separation phase change in velocity magnitude should account for not only the effects present during the evaluation of a vehicle-to-vehicle collision of interest but also to the approach taken for modeling the force-deflection response for each collision partner.
A hybrid clustering and classification approach for predicting crash injury severity on rural roads.
Hasheminejad, Seyed Hessam-Allah; Zahedi, Mohsen; Hasheminejad, Seyed Mohammad Hossein
2018-03-01
As a threat for transportation system, traffic crashes have a wide range of social consequences for governments. Traffic crashes are increasing in developing countries and Iran as a developing country is not immune from this risk. There are several researches in the literature to predict traffic crash severity based on artificial neural networks (ANNs), support vector machines and decision trees. This paper attempts to investigate the crash injury severity of rural roads by using a hybrid clustering and classification approach to compare the performance of classification algorithms before and after applying the clustering. In this paper, a novel rule-based genetic algorithm (GA) is proposed to predict crash injury severity, which is evaluated by performance criteria in comparison with classification algorithms like ANN. The results obtained from analysis of 13,673 crashes (5600 property damage, 778 fatal crashes, 4690 slight injuries and 2605 severe injuries) on rural roads in Tehran Province of Iran during 2011-2013 revealed that the proposed GA method outperforms other classification algorithms based on classification metrics like precision (86%), recall (88%) and accuracy (87%). Moreover, the proposed GA method has the highest level of interpretation, is easy to understand and provides feedback to analysts.
Kusano, Kristofer; Gabler, Hampton C
2014-01-01
The odds of death for a seriously injured crash victim are drastically reduced if he or she received care at a trauma center. Advanced automated crash notification (AACN) algorithms are postcrash safety systems that use data measured by the vehicles during the crash to predict the likelihood of occupants being seriously injured. The accuracy of these models are crucial to the success of an AACN. The objective of this study was to compare the predictive performance of competing injury risk models and algorithms: logistic regression, random forest, AdaBoost, naïve Bayes, support vector machine, and classification k-nearest neighbors. This study compared machine learning algorithms to the widely adopted logistic regression modeling approach. Machine learning algorithms have not been commonly studied in the motor vehicle injury literature. Machine learning algorithms may have higher predictive power than logistic regression, despite the drawback of lacking the ability to perform statistical inference. To evaluate the performance of these algorithms, data on 16,398 vehicles involved in non-rollover collisions were extracted from the NASS-CDS. Vehicles with any occupants having an Injury Severity Score (ISS) of 15 or greater were defined as those requiring victims to be treated at a trauma center. The performance of each model was evaluated using cross-validation. Cross-validation assesses how a model will perform in the future given new data not used for model training. The crash ΔV (change in velocity during the crash), damage side (struck side of the vehicle), seat belt use, vehicle body type, number of events, occupant age, and occupant sex were used as predictors in each model. Logistic regression slightly outperformed the machine learning algorithms based on sensitivity and specificity of the models. Previous studies on AACN risk curves used the same data to train and test the power of the models and as a result had higher sensitivity compared to the cross-validated results from this study. Future studies should account for future data; for example, by using cross-validation or risk presenting optimistic predictions of field performance. Past algorithms have been criticized for relying on age and sex, being difficult to measure by vehicle sensors, and inaccuracies in classifying damage side. The models with accurate damage side and including age/sex did outperform models with less accurate damage side and without age/sex, but the differences were small, suggesting that the success of AACN is not reliant on these predictors.
Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J
2017-12-01
To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine
Characteristics of the Injury Environment in Far-Side Crashes
Digges, K.; Gabler, H; Mohan, P.; Alonso, B.
2005-01-01
The population of occupants in far-side crashes that are documented in the US National database (NASS/CDS) was studied. The annual number of front seat occupants with serious or fatal injuries in far-side planar and rollover crashes was 17,194. The crash environment that produces serious and fatal injuries to belted front seat occupants in planar far-side crashes was investigated in detail. It was found that both the change in velocity and extent of damage were important factors that relate to crash severity. The median severity for crashes with serious or fatal injuries was a lateral delta-V of 28 kph and an extent of damage of CDC 3.6. Vehicle-to-vehicle impacts were simulated by finite element models to determine the intrusion characteristics associated with the median crash condition. These simulations indicated that the side damage caused by the IIHS barrier was representative of the damage in crashes that produce serious injuries in far-side crashes. Occupant simulations of the IIHS barrier crash at 28 kph showed that existing dummies lack biofidelity in upper body motion. The analysis suggested test conditions for studying far-side countermeasures and supported earlier studies that showed the need for an improved dummy to evaluate safety performance in the far-side crash environment. PMID:16179148
Stitzel, Joel D; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Schoell, Samantha L; Doud, Andrea N; Martin, R Shayn; Meredith, J Wayne
2016-06-01
Advanced Automatic Crash Notification algorithms use vehicle telemetry measurements to predict risk of serious motor vehicle crash injury. The objective of the study was to develop an Advanced Automatic Crash Notification algorithm to reduce response time, increase triage efficiency, and improve patient outcomes by minimizing undertriage (<5%) and overtriage (<50%), as recommended by the American College of Surgeons. A list of injuries associated with a patient's need for Level I/II trauma center treatment known as the Target Injury List was determined using an approach based on 3 facets of injury: severity, time sensitivity, and predictability. Multivariable logistic regression was used to predict an occupant's risk of sustaining an injury on the Target Injury List based on crash severity and restraint factors for occupants in the National Automotive Sampling System - Crashworthiness Data System 2000-2011. The Advanced Automatic Crash Notification algorithm was optimized and evaluated to minimize triage rates, per American College of Surgeons recommendations. The following rates were achieved: <50% overtriage and <5% undertriage in side impacts and 6% to 16% undertriage in other crash modes. Nationwide implementation of our algorithm is estimated to improve triage decisions for 44% of undertriaged and 38% of overtriaged occupants. Annually, this translates to more appropriate care for >2,700 seriously injured occupants and reduces unnecessary use of trauma center resources for >162,000 minimally injured occupants. The algorithm could be incorporated into vehicles to inform emergency personnel of recommended motor vehicle crash triage decisions. Lower under- and overtriage was achieved, and nationwide implementation of the algorithm would yield improved triage decision making for an estimated 165,000 occupants annually. Copyright © 2016. Published by Elsevier Inc.
2006 Louisiana traffic records data report
DOT National Transportation Integrated Search
2007-01-01
The 2006 LOUISIANA TRAFFIC RECORDS DATA REPORT indicates the following : occurrence rates for 2006: : 889 fatal crashes : 985 fatalities : 79.9 thousand injuries : 112.3 thousand property-damage-only crashes : These crashes resulted i...
Savino, Giovanni; Rizzi, Matteo; Brown, Julie; Piantini, Simone; Meredith, Lauren; Albanese, Bianca; Pierini, Marco; Fitzharris, Michael
2014-01-01
In 2006, Motorcycle Autonomous Emergency Braking (MAEB) was developed by a European Consortium (Powered Two Wheeler Integrated Safety, PISa) as a crash severity countermeasure for riders. This system can detect an obstacle through sensors in the front of the motorcycle and brakes automatically to achieve a 0.3 g deceleration if the collision is inevitable and the rider does not react. However, if the rider does brake, full braking force is applied automatically. Previous research into the potential benefits of MAEB has shown encouraging results. However, this was based on MAEB triggering algorithms designed for motorcycle crashes involving impacts with fixed objects and rear-end crashes. To estimate the full potential benefit of MAEB, there is a need to understand the full spectrum of motorcycle crashes and further develop triggering algorithms that apply to a wider spectrum of crash scenarios. In-depth crash data from 3 different countries were used: 80 hospital admittance cases collected during 2012-2013 within a 3-h driving range of Sydney, Australia, 40 crashes with Injury Severity Score (ISS)>15 collected in the metropolitan area of Florence, Italy, during 2009-2012, and 92 fatal crashes that occurred in Sweden during 2008-2009. In the first step, the potential applicability of MAEB among the crashes was assessed using a decision tree method. To achieve this, a new triggering algorithm for MAEB was developed to address crossing scenarios as well as crashes involving stationary objects. In the second step, the potential benefit of MAEB across the applicable crashes was examined by using numerical computer simulations. Each crash was reconstructed twice-once with and once without MAEB deployed. The principal finding is that using the new triggering algorithm, MAEB is seen to apply to a broad range of multivehicle motorcycle crashes. Crash mitigation was achieved through reductions in impact speed of up to approximately 10 percent, depending on the crash scenario and the initial vehicle pre-impact speeds. This research is the first attempt to evaluate MAEB with simulations on a broad range of crash scenarios using in-depth data. The results give further insights into the feasibility of MAEB in different speed ranges. It is clear then that MAEB is a promising technology that warrants further attention by researchers, manufacturers, and regulators.
Morgan, Richard M; Cui, Chongzhen; Digges, Kennerly H; Cao, Libo; Kan, Cing-Dao Steve
2012-01-01
This research investigated (1) what are the key attributes of the between-rail, frontal crash, (2) what are the types of object contacted, and (3) what is the type of resulting trauma. The method was to study with both weighted and in-depth case reviews of NASS-CDS crash data with direct damage between the longitudinal rails in frontal crashes. Individual case selection was limited to belted occupants in between-rail, frontal impacts of good-rated, late-model vehicles equipped with air bags.This paper evaluates the risk of trauma for drivers in cars and LTVs in between-rail, frontal crashes, and suggests the between-rail impact is more dangerous to car drivers. Using weighted data-representing 227,305 tow-away crashes-the resulting trauma to various body regions was analyzed to suggest greatest injury is to the chest, pelvis/thigh/knee/leg, and foot/ankle. This study analyzed the type of object that caused the direct damage between the rails, including small tree or post, large tree or pole, and another vehicle; and found that the struck object was most often another vehicle or a large tree/pole. Both the extent of damage and the occupant compartment intrusion were explored, and suggest that 64% of the serious injuries are associated with increasing intrusion. Individual NASS cases were reviewed to gain a deeper understanding of the mechanical particulars in the between-rail crash.
Crashworthiness simulations with DYNA3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauer, D.A.; Hoover, C.G.; Kay, G.J.
1996-04-01
Current progress in parallel algorithm research and applications in vehicle crash simulation is described for the explicit, finite element algorithms in DYNA3D. Problem partitioning methods and parallel algorithms for contact at material interfaces are the two challenging algorithm research problems that are addressed. Two prototype parallel contact algorithms have been developed for treating the cases of local and arbitrary contact. Demonstration problems for local contact are crashworthiness simulations with 222 locally defined contact surfaces and a vehicle/barrier collision modeled with arbitrary contact. A simulation of crash tests conducted for a vehicle impacting a U-channel small sign post embedded in soilmore » has been run on both the serial and parallel versions of DYNA3D. A significant reduction in computational time has been observed when running these problems on the parallel version. However, to achieve maximum efficiency, complex problems must be appropriately partitioned, especially when contact dominates the computation.« less
Morgan, Richard M.; Cui, Chongzhen; Digges, Kennerly H.; Cao, Libo; Kan, Cing-Dao (Steve)
2012-01-01
This research investigated (1) what are the key attributes of the between-rail, frontal crash, (2) what are the types of object contacted, and (3) what is the type of resulting trauma. The method was to study with both weighted and in-depth case reviews of NASS-CDS crash data with direct damage between the longitudinal rails in frontal crashes. Individual case selection was limited to belted occupants in between-rail, frontal impacts of good-rated, late-model vehicles equipped with air bags. This paper evaluates the risk of trauma for drivers in cars and LTVs in between-rail, frontal crashes, and suggests the between-rail impact is more dangerous to car drivers. Using weighted data—representing 227,305 tow-away crashes—the resulting trauma to various body regions was analyzed to suggest greatest injury is to the chest, pelvis/thigh/knee/leg, and foot/ankle. This study analyzed the type of object that caused the direct damage between the rails, including small tree or post, large tree or pole, and another vehicle; and found that the struck object was most often another vehicle or a large tree/pole. Both the extent of damage and the occupant compartment intrusion were explored, and suggest that 64% of the serious injuries are associated with increasing intrusion. Individual NASS cases were reviewed to gain a deeper understanding of the mechanical particulars in the between-rail crash. PMID:23169135
NASA Astrophysics Data System (ADS)
Dlugosch, M.; Spiegelhalter, B.; Soot, T.; Lukaszewicz, D.; Fritsch, J.; Hiermaier, S.
2017-05-01
With car manufacturers simultaneously facing increasing passive safety and efficiency requirements, FRP-metal hybrid material systems are one way to design lightweight and crashworthy vehicle structures. Generic automotive hybrid structural concepts have been tested under crash loading conditions. In order to assess the state of overall damage and structural integrity, and primarily to validate simulation data, several NDT techniques have been assessed regarding their potential to detect common damage mechanisms in such hybrid systems. Significant potentials were found particularly in combining 3D-topography laser scanning and X-Ray imaging results. Ultrasonic testing proved to be limited by the signal coupling quality on damaged or curved surfaces.
Simulation System of Car Crash Test in C-NCAP Analysis Based on an Improved Apriori Algorithm*
NASA Astrophysics Data System (ADS)
Xiang, LI
In order to analysis car crash test in C-NCAP, an improved algorithm is given based on Apriori algorithm in this paper. The new algorithm is implemented with vertical data layout, breadth first searching, and intersecting. It takes advantage of the efficiency of vertical data layout and intersecting, and prunes candidate frequent item sets like Apriori. Finally, the new algorithm is applied in simulation of car crash test analysis system. The result shows that the relations will affect the C-NCAP test results, and it can provide a reference for the automotive design.
Bahouth, George; Digges, Kennerly; Schulman, Carl
2012-01-01
This paper presents methods to estimate crash injury risk based on crash characteristics captured by some passenger vehicles equipped with Advanced Automatic Crash Notification technology. The resulting injury risk estimates could be used within an algorithm to optimize rescue care. Regression analysis was applied to the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) to determine how variations in a specific injury risk threshold would influence the accuracy of predicting crashes with serious injuries. The recommended thresholds for classifying crashes with severe injuries are 0.10 for frontal crashes and 0.05 for side crashes. The regression analysis of NASS/CDS indicates that these thresholds will provide sensitivity above 0.67 while maintaining a positive predictive value in the range of 0.20. PMID:23169132
DOT National Transportation Integrated Search
2007-02-01
This annual edition of Large Truck Crash Facts contains descriptive statistics about fatal, injury, and property damage only crashes involving large trucks in 2005. Selected crash statistics on passenger vehicles are also presented for comparison pur...
Sasidharan, Lekshmi; Donnell, Eric T
2014-10-01
Accurate estimation of the expected number of crashes at different severity levels for entities with and without countermeasures plays a vital role in selecting countermeasures in the framework of the safety management process. The current practice is to use the American Association of State Highway and Transportation Officials' Highway Safety Manual crash prediction algorithms, which combine safety performance functions and crash modification factors, to estimate the effects of safety countermeasures on different highway and street facility types. Many of these crash prediction algorithms are based solely on crash frequency, or assume that severity outcomes are unchanged when planning for, or implementing, safety countermeasures. Failing to account for the uncertainty associated with crash severity outcomes, and assuming crash severity distributions remain unchanged in safety performance evaluations, limits the utility of the Highway Safety Manual crash prediction algorithms in assessing the effect of safety countermeasures on crash severity. This study demonstrates the application of a propensity scores-potential outcomes framework to estimate the probability distribution for the occurrence of different crash severity levels by accounting for the uncertainties associated with them. The probability of fatal and severe injury crash occurrence at lighted and unlighted intersections is estimated in this paper using data from Minnesota. The results show that the expected probability of occurrence of fatal and severe injury crashes at a lighted intersection was 1 in 35 crashes and the estimated risk ratio indicates that the respective probabilities at an unlighted intersection was 1.14 times higher compared to lighted intersections. The results from the potential outcomes-propensity scores framework are compared to results obtained from traditional binary logit models, without application of propensity scores matching. Traditional binary logit analysis suggests that the probability of occurrence of severe injury crashes is higher at lighted intersections compared to unlighted intersections, which contradicts the findings obtained from the propensity scores-potential outcomes framework. This finding underscores the importance of having comparable treated and untreated entities in traffic safety countermeasure evaluations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Large truck and bus crash facts, 2010.
DOT National Transportation Integrated Search
2012-09-01
This annual edition of Large Truck and Bus Crash Facts contains descriptive statistics about fatal, injury, and : property damage only crashes involving large trucks and buses in 2010. Selected crash statistics on passenger : vehicles are also presen...
Large truck and bus crash facts, 2007.
DOT National Transportation Integrated Search
2009-03-01
This annual edition of Large Truck and Bus Crash Facts contains descriptive statistics about fatal, injury, and : property damage only crashes involving large trucks and buses in 2007. Selected crash statistics on passenger : vehicles are also presen...
Large truck and bus crash facts, 2008.
DOT National Transportation Integrated Search
2010-03-01
This annual edition of Large Truck and Bus Crash Facts contains descriptive statistics about fatal, injury, and : property damage only crashes involving large trucks and buses in 2008. Selected crash statistics on passenger : vehicles are also presen...
Large truck and bus crash facts, 2011.
DOT National Transportation Integrated Search
2013-10-01
This annual edition of Large Truck and Bus Crash Facts contains descriptive statistics about fatal, injury, and : property damage only crashes involving large trucks and buses in 2011. Selected crash statistics on passenger : vehicles are also presen...
Large truck and bus crash facts, 2013.
DOT National Transportation Integrated Search
2015-04-01
This annual edition of Large Truck and Bus Crash Facts contains descriptive statistics about fatal, injury, and property damage only crashes involving large trucks and buses in 2013. Selected crash statistics on passenger vehicles are also presented ...
Large truck and bus crash facts, 2009.
DOT National Transportation Integrated Search
2011-10-01
This annual edition of Large Truck and Bus Crash Facts contains descriptive statistics about fatal, injury, and : property damage only crashes involving large trucks and buses in 2009. Selected crash statistics on passenger : vehicles are also presen...
Large truck and bus crash facts, 2012.
DOT National Transportation Integrated Search
2014-06-01
This annual edition of Large Truck and Bus Crash Facts contains descriptive statistics about fatal, injury, and property damage only crashes involving large trucks and buses in 2012. Selected crash statistics on passenger vehicles are also presented ...
Li, Yunjie; Ma, Dongfang; Zhu, Mengtao; Zeng, Ziqiang; Wang, Yinhai
2018-02-01
Identification of the significant factors of traffic crashes has been a primary concern of the transportation safety research community for many years. A fatal-injury crash is a comprehensive result influenced by multiple variables involved at the moment of the crash scenario, the main idea of this paper is to explore the process of significant factors identification from a multi-objective optimization (MOP) standpoint. It proposes a data-driven model which combines the Non-dominated Sorting Genetic Algorithm (NSGA-II) with the Neural Network (NN) architecture to efficiently search for optimal solutions. This paper also defines the index of Factor Significance (F s ) for quantitative evaluation of the significance of each factor. Based on a set of three year data of crash records collected from three main interstate highways in the Washington State, the proposed method reveals that the top five significant factors for a better Fatal-injury crash identification are 1) Driver Conduct, 2) Vehicle Action, 3) Roadway Surface Condition, 4) Driver Restraint and 5) Driver Age. The most sensitive factors from a spatiotemporal perspective are the Hour of Day, Most Severe Sobriety, and Roadway Characteristics. The method and results in this paper provide new insights into the injury pattern of highway crashes and may be used to improve the understanding of, prevention of, and other enforcement efforts related to injury crashes in the future. Copyright © 2017. Published by Elsevier Ltd.
Intelligent geocoding system to locate traffic crashes.
Qin, Xiao; Parker, Steven; Liu, Yi; Graettinger, Andrew J; Forde, Susie
2013-01-01
State agencies continue to face many challenges associated with new federal crash safety and highway performance monitoring requirements that use data from multiple and disparate systems across different platforms and locations. On a national level, the federal government has a long-term vision for State Departments of Transportation (DOTs) to report state route and off-state route crash data in a single network. In general, crashes occurring on state-owned or state maintained highways are a priority at the Federal and State level; therefore, state-route crashes are being geocoded by state DOTs. On the other hand, crashes occurring on off-state highway system do not always get geocoded due to limited resources and techniques. Creating and maintaining a statewide crash geographic information systems (GIS) map with state route and non-state route crashes is a complicated and expensive task. This study introduces an automatic crash mapping process, Crash-Mapping Automation Tool (C-MAT), where an algorithm translates location information from a police report crash record to a geospatial map and creates a pinpoint map for all crashes. The algorithm has approximate 83 percent mapping rate. An important application of this work is the ability to associate the mapped crash records to underlying business data, such as roadway inventory and traffic volumes. The integrated crash map is the foundation for effective and efficient crash analyzes to prevent highway crashes. Published by Elsevier Ltd.
2007 Louisiana traffic records data report
DOT National Transportation Integrated Search
2008-01-01
The 2007 LOUISIANA TRAFFIC RECORDS DATA REPORT indicates the following : occurrence rates for 2007: : 895 fatal crashes : 987 fatalities : 78.9 thousand injuries : 110.6 thousand property-damage-only crashes : These crashes resulted i...
2008 Louisiana traffic records data report
DOT National Transportation Integrated Search
2009-01-01
The 2008 LOUISIANA TRAFFIC RECORDS DATA REPORT indicates the following : occurrence rates for 2008: : 818 fatal crashes : 913 fatalities : 75.9 thousand injuries : 110.6 thousand property-damage-only crashes : These crashes resulted i...
Developing inexpensive crash countermeasures for Louisiana local roads : project research capsule.
DOT National Transportation Integrated Search
2011-02-01
Local roads make up 73 percent of all road miles in Louisiana and have : 40 perfect of all crashes that occur yearly on Louisiana roads. Over the : past 5 years, 851 fatal crashes, over 81,000 injury crashes, and over 23,000 : property-damage-only cr...
The impact of Michigan's text messaging restriction on motor vehicle crashes.
Ehsani, Johnathon P; Bingham, C Raymond; Ionides, Edward; Childers, David
2014-05-01
The purpose of this study was to determine the effects of Michigan's universal text messaging restriction (effective July 2010) across different age groups of drivers and crash severities. Changes in monthly crash rates and crash trends per 10,000 licensed drivers aged 16, 17, 18, 19, 20-24, and 25-50 years were estimated using time series analysis for three levels of crash severity: (1) fatal/disabling injury; (2) nondisabling injury; and (3) possible injury/property damage only (PDO) crashes for the period 2005-2012. Analyses were adjusted for crash rates of drivers' aged 65-99 years, Michigan's unemployment rate, and gasoline prices. After the introduction of the texting restriction, significant increases were observed in crash rates and monthly trends in fatal/disabling injury crashes and nondisabling injury crashes, and significant decreases in possible injury/PDO crashes. The magnitude of the effects where significant changes were observed was small. The introduction of the texting restriction was not associated with a reduction in crash rates or trends in severe crash types. On the contrary, small increases in the most severe crash types (fatal/disabling and nondisabling injury) and small decreases in the least severe crash types (possible injury/PDO) were observed. These findings extend the literature on the effects of cell phone restrictions by examining the effects of the restriction on newly licensed adolescent drivers and adult drivers separately by crash severity. Published by Elsevier Inc.
Scanlon, John M; Sherony, Rini; Gabler, Hampton C
2016-09-01
Intersection crashes resulted in over 5,000 fatalities in the United States in 2014. Intersection Advanced Driver Assistance Systems (I-ADAS) are active safety systems that seek to help drivers safely traverse intersections. I-ADAS uses onboard sensors to detect oncoming vehicles and, in the event of an imminent crash, can either alert the driver or take autonomous evasive action. The objective of this study was to develop and evaluate a predictive model for detecting whether a stop sign violation was imminent. Passenger vehicle intersection approaches were extracted from a data set of typical driver behavior (100-Car Naturalistic Driving Study) and violations (event data recorders downloaded from real-world crashes) and were assigned weighting factors based on real-world frequency. A k-fold cross-validation procedure was then used to develop and evaluate 3 hypothetical stop sign warning algorithms (i.e., early, intermediate, and delayed) for detecting an impending violation during the intersection approach. Violation detection models were developed using logistic regression models that evaluate likelihood of a violation at various locations along the intersection approach. Two potential indicators of driver intent to stop-that is, required deceleration parameter (RDP) and brake application-were used to develop the predictive models. The earliest violation detection opportunity was then evaluated for each detection algorithm in order to (1) evaluate the violation detection accuracy and (2) compare braking demand versus maximum braking capabilities. A total of 38 violating and 658 nonviolating approaches were used in the analysis. All 3 algorithms were able to detect a violation at some point during the intersection approach. The early detection algorithm, as designed, was able to detect violations earlier than all other algorithms during the intersection approach but gave false alarms for 22.3% of approaches. In contrast, the delayed detection algorithm sacrificed some time for detecting violations but was able to substantially reduce false alarms to only 3.3% of all nonviolating approaches. Given good surface conditions (maximum braking capabilities = 0.8 g) and maximum effort, most drivers (55.3-71.1%) would be able to stop the vehicle regardless of the detection algorithm. However, given poor surface conditions (maximum braking capabilities = 0.4 g), few drivers (10.5-26.3%) would be able to stop the vehicle. Automatic emergency braking (AEB) would allow for early braking prior to driver reaction. If equipped with an AEB system, the results suggest that, even for the poor surface conditions scenario, over one half (55.3-65.8%) of the vehicles could have been stopped. This study demonstrates the potential of I-ADAS to incorporate a stop sign violation detection algorithm. Repeating the analysis on a larger, more extensive data set will allow for the development of a more comprehensive algorithm to further validate the findings.
Crash protectiveness to occupant injury and vehicle damage: An investigation on major car brands.
Huang, Helai; Li, Chunyang; Zeng, Qiang
2016-01-01
This study sets out to investigate vehicles' crash protectiveness on occupant injury and vehicle damage, which can be deemed as an extension of the traditional crash worthiness. A Bayesian bivariate hierarchical ordered logistic (BVHOL) model is developed to estimate the occupant protectiveness (OP) and vehicle protectiveness (VP) of 23 major car brands in Florida, with considering vehicles' crash aggressivity and controlling external factors. The proposed model not only takes over the strength of the existing hierarchical ordered logistic (HOL) model, i.e. specifying the order characteristics of crash outcomes and cross-crash heterogeneities, but also accounts for the correlation between the two crash responses, driver injury and vehicle damage. A total of 7335 two-vehicle-crash records with 14,670 cars involved in Florida are used for the investigation. From the estimation results, it's found that most of the luxury cars such as Cadillac, Volvo and Lexus possess excellent OP and VP while some brands such as KIA and Saturn perform very badly in both aspects. The ranks of the estimated safety performance indices are even compared to the counterparts in Huang et al. study [Huang, H., Hu, S., Abdel-Aty, M., 2014. Indexing crash worthiness and crash aggressivity by major car brands. Safety Science 62, 339-347]. The results show that the rank of occupant protectiveness index (OPI) is relatively coherent with that of crash worthiness index, but the ranks of crash aggressivity index in both studies is more different from each other. Meanwhile, a great discrepancy between the OPI rank and that of vehicle protectiveness index is found. What's more, the results of control variables and hyper-parameters estimation as well as comparison to HOL models with separate or identical threshold errors, demonstrate the validity and advancement of the proposed model and the robustness of the estimated OP and VP. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dummy Measurement of Chest Injuries Induced by Two-Point Shoulder Belts
Augenstein, J.; Perdeck, E.; Bowen, J.; Stratton, J.; Horton, T.; Singer, M.; Digges, K.; Malliaris, A.; Steps, J.
2000-01-01
The University of Miami’s William Lehman Injury Research Center at the Jackson Memorial Medical Center conducts interdisciplinary investigations to study seriously injured restrained occupants in frontal automobile collisions. Engineering analysis of these crashes is conducted in conjunction with the National Crash Analysis Center at the George Washington University. The multidisciplinary research team includes expertise in crash investigation, crash reconstruction, computer graphics, biomechanics of injuries, crash data analysis, trauma care, and all of the medical specialties associated with the Ryder Trauma Center at Jackson Memorial Hospital. More than 350 injured occupants and their crashes have been studied in depth. The purpose of this paper is to report on an observed pattern of liver lacerations suffered by drivers wearing shoulder belts, without the lap belt fastened and to assess the ability of existing crash test dummies to measure the potential for these injuries. During the initial years of the study, 48 cases of drivers protected by shoulder belts but without the lap belt fastened met the criteria for the study. Fifty percent of these drivers suffered liver lacerations. Further study showed that 22 of the crashes involved damage to the right front of the vehicle. Among the drivers in vehicles with right front damage, 92% sustained injuries to the liver. This observation indicated that 2-point belts were most likely to produce liver injuries in low severity frontal collisions when the crash direction is 1 to 2 o’clock. An analysis of the National Accident Sampling System for the years 1988-95 indicated that liver injuries constitute about 0.5% of the injuries suffered by drivers who are in tow-away crashes. NASS data showed that the risk of chest injury is more likely among drivers with automatic shoulder belts than drivers with 3-point manual belts. The crash test dummies showed no difference in chest injury measures. Finite element computer modeling demonstrated that the high deflection of the right lower rib on the Hybrid III dummy predicts the liver injuries in the 1 o’clock crashes. These higher deflections were less apparent at the location of the center chest deflection measurement device on the Hybrid III. PMID:11558077
Dummy measurement of chest injuries induced by two-point shoulder belts.
Augenstein, J; Perdeck, E; Bowen, J; Stratton, J; Horton, T; Singer, M; Digges, K; Malliaris, A; Steps, J
2000-01-01
The University of Miami's William Lehman Injury Research Center at the Jackson Memorial Medical Center conducts interdisciplinary investigations to study seriously injured restrained occupants in frontal automobile collisions. Engineering analysis of these crashes is conducted in conjunction with the National Crash Analysis Center at the George Washington University. The multidisciplinary research team includes expertise in crash investigation, crash reconstruction, computer graphics, biomechanics of injuries, crash data analysis, trauma care, and all of the medical specialties associated with the Ryder Trauma Center at Jackson Memorial Hospital. More than 350 injured occupants and their crashes have been studied in depth. The purpose of this paper is to report on an observed pattern of liver lacerations suffered by drivers wearing shoulder belts, without the lap belt fastened and to assess the ability of existing crash test dummies to measure the potential for these injuries. During the initial years of the study, 48 cases of drivers protected by shoulder belts but without the lap belt fastened met the criteria for the study. Fifty percent of these drivers suffered liver lacerations. Further study showed that 22 of the crashes involved damage to the right front of the vehicle. Among the drivers in vehicles with right front damage, 92% sustained injuries to the liver. This observation indicated that 2-point belts were most likely to produce liver injuries in low severity frontal collisions when the crash direction is 1 to 2 o'clock. An analysis of the National Accident Sampling System for the years 1988-95 indicated that liver injuries constitute about 0.5% of the injuries suffered by drivers who are in tow-away crashes. NASS data showed that the risk of chest injury is more likely among drivers with automatic shoulder belts than drivers with 3-point manual belts. The crash test dummies showed no difference in chest injury measures. Finite element computer modeling demonstrated that the high deflection of the right lower rib on the Hybrid III dummy predicts the liver injuries in the 1 o'clock crashes. These higher deflections were less apparent at the location of the center chest deflection measurement device on the Hybrid III.
Chen, Cong; Zhang, Guohui; Liu, Xiaoyue Cathy; Ci, Yusheng; Huang, Helai; Ma, Jianming; Chen, Yanyan; Guan, Hongzhi
2016-12-01
There is a high potential of severe injury outcomes in traffic crashes on rural interstate highways due to the significant amount of high speed traffic on these corridors. Hierarchical Bayesian models are capable of incorporating between-crash variance and within-crash correlations into traffic crash data analysis and are increasingly utilized in traffic crash severity analysis. This paper applies a hierarchical Bayesian logistic model to examine the significant factors at crash and vehicle/driver levels and their heterogeneous impacts on driver injury severity in rural interstate highway crashes. Analysis results indicate that the majority of the total variance is induced by the between-crash variance, showing the appropriateness of the utilized hierarchical modeling approach. Three crash-level variables and six vehicle/driver-level variables are found significant in predicting driver injury severities: road curve, maximum vehicle damage in a crash, number of vehicles in a crash, wet road surface, vehicle type, driver age, driver gender, driver seatbelt use and driver alcohol or drug involvement. Among these variables, road curve, functional and disabled vehicle damage in crash, single-vehicle crashes, female drivers, senior drivers, motorcycles and driver alcohol or drug involvement tend to increase the odds of drivers being incapably injured or killed in rural interstate crashes, while wet road surface, male drivers and driver seatbelt use are more likely to decrease the probability of severe driver injuries. The developed methodology and estimation results provide insightful understanding of the internal mechanism of rural interstate crashes and beneficial references for developing effective countermeasures for rural interstate crash prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Crash tests of three identical low-wing single-engine airplane
NASA Technical Reports Server (NTRS)
Castle, C. B.; Alfaro-Bou, E.
1983-01-01
Three identical four place, low wing single engine airplane specimens with nominal masses of 1043 kg were crash tested under controlled free flight conditions. The tests were conducted at the same nominal velocity of 25 m/sec along the flight path. Two airplanes were crashed on a concrete surface (at 10 and 30 deg pitch angles), and one was crashed on soil (at a -30 deg pitch angle). The three tests revealed that the specimen in the -30 deg test on soil sustained massive structural damage in the engine compartment and fire wall. Also, the highest longitudinal cabin floor accelerations occurred in this test. Severe damage, but of lesser magnitude, occurred in the -30 deg test on concrete. The highest normal cabin floor accelerations occurred in this test. The least structural damage and lowest accelerations occurred in the 10 deg test on concrete.
Large truck crash profile : the 1998 national picture
DOT National Transportation Integrated Search
2000-01-01
This annual edition of the Large Truck Crash Profile contains descriptive statistics about fatal and non-fatal (injury and property-damage-only) large truck crashes that occurred in 1998. The profile includes only some of the major aspects of truck c...
NASA Astrophysics Data System (ADS)
Sliseris, J.; Yan, L.; Kasal, B.
2017-09-01
Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load-displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.
Singleton, Michael; Qin, Huifang; Luan, Jingyu
2004-06-01
The majority of motor vehicle occupants who were killed or hospitalized in crashes in Kentucky in 2000-2001 occupied vehicles that were severely damaged in the crash. Even so, overall only a small percentage of all severely damaged vehicle occupants were killed or hospitalized. The purpose was to identify occupant, vehicle, crash, and roadway/environmental factors that were associated with increased risk of severe injury in crashes where the occupant's vehicle was severely damaged. This study probabilistically linked Kentucky's statewide motor vehicle crash and inpatient hospital discharge data files for 2000 and 2001, and selected cases representing occupants of vehicles that were reported by police as having either "severe" or "very severe" damage. For occupants who were identified through data linkage as having been hospitalized, the Injury Severity Score (ISS) was calculated using ICDMAP-90 software, and the scores were stratified into the following categories: critical (>24), severe (15-24), moderate (9-14), and mild (<9). We then created an outcome variable, injury severity level, with five levels: killed; hospitalized with at least moderate injuries (ISS = critical, severe, or moderate); hospitalized with mild injuries (ISS = mild); injured according to the police report but not hospitalized; and no apparent injury according to the police report. We performed a stepwise, ordinal logistic regression of injury severity, using independent variables identified from the existing crash literature. Occupant risk factors for higher levels of injury severity selected by the regression were age (risk increased with age, other factors being equal), female gender, restraint non-use, ejection from the vehicle, and driver impairment (by alcohol and/or drugs). Crash risk factors included head-on collision, collision with a fixed object, vehicle rollover, and vehicle fire. Roadway/environmental factors were federal- or state-maintained roadway and posted speed limit 89 kph (55 mph) or greater. Many of the identified risk factors are explicitly or implicitly mentioned in the strategic plans of key organizations involved in highway safety and injury prevention in Kentucky. Our analysis provides additional evidence of their importance, and confirms that their mitigation will reduce injury severity in crashes involving severe vehicle damage. Additionally, older occupants and female occupants showed increased risks of serious injury, but to our knowledge these factors are not currently addressed in any state plans. An opportunity exists to clarify the nature of these risks through further studies, which might lead to the identification of countermeasures specific to these populations.
Intelligent Transportation Systems, Building The ITI - Putting The National Architecture Into Action
DOT National Transportation Integrated Search
1998-09-01
This National Truck Crash Profile contains descriptive statistics about fatal and non-fatal (injury and property-damage-only) large truck crashes that occurred in 1997. The profile includes only some of the major aspects of truck crashes. Additional ...
Costs of Alcohol-Involved Crashes, United States, 2010
Zaloshnja, Eduard; Miller, Ted R.; Blincoe, Lawrence J.
2013-01-01
This paper estimates total and unit costs of alcohol-involved crashes in the U.S. in 2010. With methods from earlier studies, we estimated costs per crash survivor by MAIS, body part, and fracture/dislocation involvement. We multiplied them times 2010 crash incidence estimates from NHTSA data sets, with adjustments for underreporting of crashes and their alcohol involvement. The unit costs are lifetime costs discounted at 3%. To develop medical costs, we combined 2008 Health Care Utilization Program national data for hospitalizations and ED visits of crash survivors with prior estimates of post-discharge costs. Productivity losses drew on Current Population Survey and American Time Use Survey data. Quality of life losses came from a 2011 AAAM paper and property damage from insurance data. We built a hybrid incidence file comprised of 2008–2010 and 1984–86 NHTSA crash surveillance data, weighted with 2010 General Estimates System weights. Fatality data came from the 2010 FARS. An estimated 12% of 2010 crashes but only 0.9% of miles driven were alcohol-involved (BAC > .05). Alcohol-involved crashes cost an estimated $125 billion. That is 22.5% of the societal cost of all crashes. Alcohol-attributable crashes accounted for an estimated 22.5% of US auto liability insurance payments. Alcohol-involved crashes cost $0.86 per drink. Above the US BAC limit of .08, crash costs were $8.37 per mile driven; 1 in 788 trips resulted in a crash and 1 in 1,016 trips in an arrest. Unit costs for crash survivors by severity are higher for impaired driving than for other crashes. That suggests national aggregate impaired driving cost estimates in other countries are substantial underestimates if they are based on all-crash unit costs. PMID:24406941
DOT National Transportation Integrated Search
1999-09-01
A deterministic algorithm was developed which allowed data from Department of Transportation motor vehicle crash records, state mortality registry records, and hospital admission and emergency department records to be linked for analysis of the impac...
DOT National Transportation Integrated Search
2018-04-01
Crashes occur every day on Utahs highways. Curves can be particularly dangerous as they require driver focus due to potentially unseen hazards. Often, crashes occur on curves due to poor curve geometry, a lack of warning signs, or poor surface con...
Balloon crash damage and injuries: an analysis of 86 accidents, 2000-2004.
de Voogt, Alexander J; van Doorn, Robert R A
2006-05-01
General aviation accounts for the majority of aviation crashes and casualties in the United States. The role of ballooning in these statistics is not regularly studied. Since 2001, the National Transportation and Safety Board has made its accident reports more readily available, which presents opportunities for further study. This study analyzes and compares a 5-yr period of accident reports and includes an analysis of injuries and balloon damage in hot-air and gas balloon accidents. Balloon crash 2-page briefs and 5-page accident reports published by the National Transportation and Safety Board for the 5-yr time period 2000-2004 were examined. Data collected in the investigation of these crashes were analyzed and compared with the epidemiological data collected in earlier research. In 86 crashes during a 5-yr period, there were 4 fatalities and 75 people were seriously injured. Only one accident was reported involving a student pilot. Broken ankles and legs have been the most commonly recorded serious injury, but could not be linked to the severity of damage to the balloon. The absence of student pilot accidents may be explained by possible stricter supervision. Balloon basket and envelopes appear of sufficient quality to withstand crashes, but improving the protection of passengers during hard landings should help to decrease the number of serious injuries in ballooning.
Doud, Andrea N; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Petty, John; Stitzel, Joel D
2016-01-01
Appropriate treatment at designated trauma centers (TCs) improves outcomes among injured children after motor vehicle crashes (MVCs). Advanced Automatic Crash Notification (AACN) has shown promise in improving triage to appropriate TCs. Pediatric-specific AACN algorithms have not yet been created. To create such an algorithm, it will be necessary to include some metric of development (age, height, or weight) as a covariate in the injury risk algorithm. This study sought to determine which marker of development should serve as a covariate in such an algorithm and to quantify injury risk at different levels of this metric. A retrospective review of occupants age < 19 years within the MVC data set NASS-CDS 2000-2011 was performed. R(2) values of logistic regression models using age, height, or weight to predict 18 key injury types were compared to determine which metric should be used as a covariate in a pediatric AACN algorithm. Clinical judgment, literature review, and chi-square analysis were used to create groupings of the chosen metric that would discriminate injury patterns. Adjusted odds of particular injury types at the different levels of this metric were calculated from logistic regression while controlling for gender, vehicle velocity change (delta V), belted status (optimal, suboptimal, or unrestrained), and crash mode (rollover, rear, frontal, near-side, or far-side). NASS-CDS analysis produced 11,541 occupants age < 19 years with nonmissing data. Age, height, and weight were correlated with one another and with injury patterns. Age demonstrated the best predictive power in injury patterns and was categorized into bins of 0-4 years, 5-9 years, 10-14 years, and 15-18 years. Age was a significant predictor of all 18 injury types evaluated even when controlling for all other confounders and when controlling for age- and gender-specific body mass index (BMI) classifications. Adjusted odds of key injury types with respect to these age categorizations revealed that younger children were at increased odds of sustaining Abbreviated Injury Scale (AIS) 2+ and 3+ head injuries and AIS 3+ spinal injuries, whereas older children were at increased odds of sustaining thoracic fractures, AIS 3+ abdominal injuries, and AIS 2+ upper and lower extremity injuries. The injury patterns observed across developmental metrics in this study mirror those previously described among children with blunt trauma. This study identifies age as the metric best suited for use in a pediatric AACN algorithm and utilizes 12 years of data to provide quantifiable risks of particular injuries at different levels of this metric. This risk quantification will have important predictive purposes in a pediatric-specific AACN algorithm.
DOT National Transportation Integrated Search
1999-09-01
A deterministic algorithm was developed which allowed data from Department of Transportation motor vehicle crash records, state mortality registry records, and hospital admission and emergency department records to be linked for analysis of the finan...
Isaksson-Hellman, Irene; Lindman, Magdalena
2016-09-01
The aim of the present study was to evaluate the crash mitigation performance of low-speed automated emergency braking collision avoidance technologies by examining crash rates, car damage, and personal injuries. Insurance claims data were used to identify rear-end frontal collisions, the specific situations where the low-speed automated emergency braking system intervenes. We compared cars of the same model (Volvo V70) with and without the low-speed automated emergency braking system (AEB and no AEB, respectively). Distributions of spare parts required for car repair were analyzed to identify car damage, and crash severity was estimated by comparing the results with laboratory crash tests. Repair costs and occupant injuries were investigated for both the striking and the struck vehicle. Rear-end frontal collisions were reduced by 27% for cars with low-speed AEB compared to cars without the system. Those of low severity were reduced by 37%, though more severe crashes were not reduced. Accordingly, the number of injured occupants in vehicles struck by low-speed AEB cars was reduced in low-severity crashes. In offset crash configurations, the system was found to be less effective. This study adds important information about the safety performance of collision avoidance technologies, beyond the number of crashes avoided. By combining insurance claims data and information from spare parts used, the study demonstrates a mitigating effect of low-speed AEB in real-world traffic.
Injury risk functions for frontal oblique collisions.
Andricevic, Nino; Junge, Mirko; Krampe, Jonas
2018-03-09
The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set. Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes-a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured). IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18-64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes. The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.
Gasoline prices and their relationship to drunk-driving crashes.
Chi, Guangqing; Zhou, Xuan; McClure, Timothy E; Gilbert, Paul A; Cosby, Arthur G; Zhang, Li; Robertson, Angela A; Levinson, David
2011-01-01
This study investigates the relationship between changing gasoline prices and drunk-driving crashes. Specifically, we examine the effects of gasoline prices on drunk-driving crashes in Mississippi by several crash types and demographic groups at the monthly level from 2004 to 2008, a period experiencing great fluctuation in gasoline prices. An exploratory visualization by graphs shows that higher gasoline prices are generally associated with fewer drunk-driving crashes. Higher gasoline prices depress drunk-driving crashes among young and adult drivers, among male and female drivers, and among white and black drivers. Results from negative binomial regression models show that when gas prices are higher, there are fewer drunk-driving crashes, particularly among property-damage-only crashes. When alcohol consumption levels are higher, there are more drunk-driving crashes, particularly fatal and injury crashes. The effects of gasoline prices and alcohol consumption are stronger on drunk-driving crashes than on all crashes. The findings do not vary much across different demographic groups. Overall, gasoline prices have greater effects on less severe crashes and alcohol consumption has greater effects on more severe crashes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yang, Hongtai; Cherry, Christopher R; Su, Fan; Ling, Ziwen; Pannell, Zane; Li, Yanlai; Fu, Zhijian
2018-05-25
Unreported minor crashes have importance as a surrogate for more serious crashes that require infrastructure, education, and enforcement strategies; and they still inflict damages. To study factors that influence underreporting, cause, and severity of minor crashes; a survey was performed in Kunming and Beijing to collect self-reported personal characteristics and crash history data of the three major urban road users in China: automobile drivers, bicycle riders and electric bike (e-bike) riders. Underreporting rates of automobile to automobile, automobile to non-motorized vehicle, and non-motorized vehicle to non-motorized vehicle crashes are 56%, 77% and 94%, respectively. Minor crashes with higher reported injury severity levels are more likely to be reported. E-bike riders without a driver's license are more likely to cause crashes. Licensing and education could be an effective way to reduce their crashes. The party that is not at fault in a crash is more likely to sustain high level of injury.
DOT National Transportation Integrated Search
1999-09-01
A deterministic algorithm was developed which allowed data from Department of Transportation motor vehicle crash records, state mortality registry records, and hospital admission and emergency department records to be linked for analysis of the types...
Assessment of crash fire hazard of LH sub 2 fueled aircraft
NASA Technical Reports Server (NTRS)
Brewer, G. D.; Wittlin, G.; Versaw, E. F.; Parmley, R.; Cima, R.; Walther, E. G.
1981-01-01
The relative safety of passengers in LH2 - fueled aircraft, as well as the safety of people in areas surrounding a crash scene, has been evaluated in an analytical study. Four representative circumstances were postulated involving a transport aircraft in which varying degrees of severity of damage were sustained. Potential hazard to the passengers and to the surroundings posed by the spilled fuel was evaluated for each circumstance. Corresponding aircraft fueled with liquid methane, Jet A, and JP-4 were also studied in order to make comparisons of the relative safety. The four scenarios which were used to provide a basis for the evaluation included: (1) a small fuel leak internal to the aircraft, (2) a survivable crash in which a significant quantity of fuel is spilled in a radial pattern as a result of impact with a stationary object while taxiing at fairly low speed, (3) a survivable crash in which a significant quantity of fuel is spilled in an axial pattern as a result of impact during landing, and (4) a non-survivable crash in which a massive fuel spill occurs instantaneously.
Classification of rollovers according to crash severity.
Digges, K; Eigen, A
2006-01-01
NASS/CDS 1995-2004 was used to classify rollovers according to severity. The rollovers were partitioned into two classes - rollover as the first event and rollover preceded by an impact with a fixed or non-fixed object. The populations of belted and unbelted were examined separately and combined. The average injury rate for the unbelted was five times that for the belted. Approximately 21% of the severe injuries suffered by belted occupants were in crashes with harmful events prior to the rollover that produced severe damage to the vehicle. This group carried a much higher injury risk than the average. A planar damage measure in addition to the rollover measure was required to adequately capture the crash severity of this population. For rollovers as the first event, approximately 1% of the serious injuries to belted occupants occurred during the first quarter-turn. Rollovers that were arrested during the 1 ( st ) quarter-turn carried a higher injury rate than average. The number of quarter-turns were grouped in various ways including the number of times the vehicle roof faces the ground (number of vehicle inversions). The number of vehicle inversions was found to be a statistically significant injury predictor for 78% of the belted and unbelted populations with MAIS 3+F injuries in rollovers. The remaining 22% required crash severity metrics in addition to the number of vehicle inversions.
Classification of Rollovers According to Crash Severity
Digges, K.; Eigen, A.
2006-01-01
NASS/CDS 1995–2004 was used to classify rollovers according to severity. The rollovers were partitioned into two classes – rollover as the first event and rollover preceded by an impact with a fixed or non-fixed object. The populations of belted and unbelted were examined separately and combined. The average injury rate for the unbelted was five times that for the belted. Approximately 21% of the severe injuries suffered by belted occupants were in crashes with harmful events prior to the rollover that produced severe damage to the vehicle. This group carried a much higher injury risk than the average. A planar damage measure in addition to the rollover measure was required to adequately capture the crash severity of this population. For rollovers as the first event, approximately 1% of the serious injuries to belted occupants occurred during the first quarter-turn. Rollovers that were arrested during the 1st quarter-turn carried a higher injury rate than average. The number of quarter-turns were grouped in various ways including the number of times the vehicle roof faces the ground (number of vehicle inversions). The number of vehicle inversions was found to be a statistically significant injury predictor for 78% of the belted and unbelted populations with MAIS 3+F injuries in rollovers. The remaining 22% required crash severity metrics in addition to the number of vehicle inversions. PMID:16968634
DOT National Transportation Integrated Search
2010-01-01
Teen drivers have the highest crash risk of any age group. Per mile traveled, they have the highest involvement rates in all types of crashes, from those involving only property damage to those that are fatal. The problem is worst among 16 year-olds,...
DOT National Transportation Integrated Search
2000-04-15
Article reports on vehicle crash tests with child restraints to determine the extent of damage, if any, in high speed impacts. A California law requiring insurers to cover the cost of replacing a restraint used by a child in any crash, regardless of ...
Vehicular crash data used to rank intersections by injury crash frequency and severity.
Liu, Yi; Li, Zongzhi; Liu, Jingxian; Patel, Harshingar
2016-09-01
This article contains data on research conducted in "A double standard model for allocating limited emergency medical service vehicle resources ensuring service reliability" (Liu et al., 2016) [1]. The crash counts were sorted out from comprehensive crash records of over one thousand major signalized intersections in the city of Chicago from 2004 to 2010. For each intersection, vehicular crashes were counted by crash severity levels, including fatal, injury Types A, B, and C for major, moderate, and minor injury levels, property damage only (PDO), and unknown. The crash data was further used to rank intersections by equivalent injury crash frequency. The top 200 intersections with the highest number of crash occurrences identified based on crash frequency- and severity-based scenarios are shared in this brief. The provided data would be a valuable source for research in urban traffic safety analysis and could also be utilized to examine the effectiveness of traffic safety improvement planning and programming, intersection design enhancement, incident and emergency management, and law enforcement strategies.
NASA Technical Reports Server (NTRS)
Watters, D. M.
1986-01-01
The operation of a radio beacon position locator during and after the remotely controlled transport aircraft is discussed. The radio beacon transmission was actuated and was picked up by the Navy P-3A chase aircraft for a short time, after which reception was lost. The pilot reported that he received a signal on both 121.5 MHz and 243 MHz for a period of approximately 5 seconds. Five minutes after the crash a portable direction finding unit located on the roof of the NASA Dryden Flight Research Facility, 4 miles distant from the crash, was unable to pick up the beacon transmission. The fire crews started fighting the fires approximately 90 seconds after the time of impact. Navy personnel access to the crash site was allowed on the morning of December 2, 1984. Radio beacon locator was found resting top side up, 15 feet forward and 13 feet perpendicular from the tray location the starboard side of the aircraft. An immediate inspection indicated the airfoil suffered moderate fire damage with paint peeling but not intumescing. The visual marker strobe lamp housings were intact but extensively burned such that it was impossible to see if the lamps had survived. The airfoil suffered minor structural damage, with assorted dents, etc. The extended plunger on the ARU-21 release unit indicated that the pyrotechnic deployment system operated. The radio beacon base (tray) suffered some heat and fire damage, and was charred and blackened by smoke. The frangible switch in the nose survived and the switch in the belly was recovered and found to have actuated. It is assumed that this switch fired the ARU-21 squib. There were no other release switches installed in the normally open system in the aircraft.
App-based crowd sourcing of bicycle and pedestrian conflict data : final report.
DOT National Transportation Integrated Search
2017-01-15
Most agencies and decision-makers rely on crash and crash severity (property damage only, injury or fatality) data : to assess transportation safety; however, in the context of public health where perceptions of safety may influence : the willingness...
Recovering full repair costs of INDOT infrastructure damaged by motor vehicle crashes.
DOT National Transportation Integrated Search
2011-01-01
There are approximately 4,000 instances per year where state property located along Indiana Department of Transportation : (INDOT) maintained right-of-way needs to be replaced or repaired due to motor vehicle crashes. INDOT incurs significant financi...
Driver crash risk factors and prevalence evaluation using naturalistic driving data.
Dingus, Thomas A; Guo, Feng; Lee, Suzie; Antin, Jonathan F; Perez, Miguel; Buchanan-King, Mindy; Hankey, Jonathan
2016-03-08
The accurate evaluation of crash causal factors can provide fundamental information for effective transportation policy, vehicle design, and driver education. Naturalistic driving (ND) data collected with multiple onboard video cameras and sensors provide a unique opportunity to evaluate risk factors during the seconds leading up to a crash. This paper uses a National Academy of Sciences-sponsored ND dataset comprising 905 injurious and property damage crash events, the magnitude of which allows the first direct analysis (to our knowledge) of causal factors using crashes only. The results show that crash causation has shifted dramatically in recent years, with driver-related factors (i.e., error, impairment, fatigue, and distraction) present in almost 90% of crashes. The results also definitively show that distraction is detrimental to driver safety, with handheld electronic devices having high use rates and risk.
Driver crash risk factors and prevalence evaluation using naturalistic driving data
Dingus, Thomas A.; Guo, Feng; Lee, Suzie; Antin, Jonathan F.; Perez, Miguel; Buchanan-King, Mindy; Hankey, Jonathan
2016-01-01
The accurate evaluation of crash causal factors can provide fundamental information for effective transportation policy, vehicle design, and driver education. Naturalistic driving (ND) data collected with multiple onboard video cameras and sensors provide a unique opportunity to evaluate risk factors during the seconds leading up to a crash. This paper uses a National Academy of Sciences-sponsored ND dataset comprising 905 injurious and property damage crash events, the magnitude of which allows the first direct analysis (to our knowledge) of causal factors using crashes only. The results show that crash causation has shifted dramatically in recent years, with driver-related factors (i.e., error, impairment, fatigue, and distraction) present in almost 90% of crashes. The results also definitively show that distraction is detrimental to driver safety, with handheld electronic devices having high use rates and risk. PMID:26903657
Washington, Simon; Haque, Md Mazharul; Oh, Jutaek; Lee, Dongmin
2014-05-01
Hot spot identification (HSID) aims to identify potential sites-roadway segments, intersections, crosswalks, interchanges, ramps, etc.-with disproportionately high crash risk relative to similar sites. An inefficient HSID methodology might result in either identifying a safe site as high risk (false positive) or a high risk site as safe (false negative), and consequently lead to the misuse the available public funds, to poor investment decisions, and to inefficient risk management practice. Current HSID methods suffer from issues like underreporting of minor injury and property damage only (PDO) crashes, challenges of accounting for crash severity into the methodology, and selection of a proper safety performance function to model crash data that is often heavily skewed by a preponderance of zeros. Addressing these challenges, this paper proposes a combination of a PDO equivalency calculation and quantile regression technique to identify hot spots in a transportation network. In particular, issues related to underreporting and crash severity are tackled by incorporating equivalent PDO crashes, whilst the concerns related to the non-count nature of equivalent PDO crashes and the skewness of crash data are addressed by the non-parametric quantile regression technique. The proposed method identifies covariate effects on various quantiles of a population, rather than the population mean like most methods in practice, which more closely corresponds with how black spots are identified in practice. The proposed methodology is illustrated using rural road segment data from Korea and compared against the traditional EB method with negative binomial regression. Application of a quantile regression model on equivalent PDO crashes enables identification of a set of high-risk sites that reflect the true safety costs to the society, simultaneously reduces the influence of under-reported PDO and minor injury crashes, and overcomes the limitation of traditional NB model in dealing with preponderance of zeros problem or right skewed dataset. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2011-09-01
There are approximately 4,000 instances per year that require infrastructure located along right-of-way maintained by the Indiana Department of Transportation (INDOT) to be replaced or repaired due to motor vehicle crashes. This infrastructure includ...
Effects of geometric design features on truck crashes on limited-access highways.
DOT National Transportation Integrated Search
2012-06-01
Freight can be transported between most points in the country quite efficiently using trucks. However, involvement of large : trucks in crashes can cause much damage and serious injuries, due to their large sizes and heavy weights. Large truck : cras...
Coimbra, Raul; Conroy, Carol; Hoyt, David B; Pacyna, Sharon; May, MarSue; Erwin, Steve; Tominaga, Gail; Kennedy, Frank; Sise, Michael; Velky, Tom
2008-07-01
In spite of improvements in motor vehicle safety systems and crashworthiness, motor vehicle crashes remain one of the leading causes of brain injury. The purpose of this study was to determine if the damage distribution across the frontal plane affected brain injury severity of occupants in frontal impacts. Occupants in "head on" frontal impacts with a Principal Direction of Force (PDOF) equal to 11, 12, or 1o'clock who sustained serious brain injury were identified using the Crash Injury Research Engineering Network (CIREN) database. Impacts were further classified based on the damage distribution across the frontal plane as distributed, offset, and extreme offset (corner). Overall, there was no significant difference for brain injury severity (based on Glasgow Coma Scale<9, or brain injury AIS>2) comparing occupants in the different impact categories. For occupants in distributed frontal impacts, safety belt use was protective (odds ratio (OR)=0.61) and intrusion at the occupant's seat position was four times more likely to result in severe (Glasgow Coma Scale (GCS)<9) brain injury (OR=4.35). For occupants in offset frontal impacts, again safety belt use was protective against severe brain injury (OR=0.25). Possibly due to the small number of brain-injured occupants in corner impacts, safety belts did not significantly protect against increased brain injury severity during corner impacts. This study supports the importance of safety belt use to decrease brain injury severity for occupants in distributed and offset frontal crashes. It also illustrates how studying "real world" crashes may provide useful information on occupant injuries under impact circumstances not currently covered by crash testing.
DOT National Transportation Integrated Search
2013-08-01
Roadway safety continues to be a major national : concern, with federal, state, and other : authorities striving to reduce crashes and their : associated costs in terms of fatalities, severe : injuries, property damage, and traffic delays. : Accordin...
DOT National Transportation Integrated Search
2002-01-01
One of the primary objectives of the National Highway Traffic Safety Administration (NHTSA) is to reduce : the staggering human toll and property damage that motor vehicle traffic crashes impose on our society. : Crashes each year result in thousands...
DOT National Transportation Integrated Search
2001-07-01
One of the primary objectives of the National Highway Traffic Safety Administration (NHTSA) is to reduce the staggering human toll and property damage that motor vehicle traffic crashes impose on our society. Crashes each year result in thousands of ...
DOT National Transportation Integrated Search
2000-01-01
One of the primary objectives of the National Highway Traffic Safety Administration (NHTSA) is : to reduce the staggering human toll and property damage that motor vehicle traffic crashes impose : on our society. Crashes each year result in thousands...
Tang, Youming; Cao, Libo; Kan, Steven
2014-05-08
To examine the damage location distribution of five main body region injuries of maximum abbreviated injury score (MAIS) 3-6 injured occupants for nearside struck vehicle in front-to-side impact crashes. MAIS 3-6 injured occupants information was extracted from the US-National Automotive Sampling System/Crashworthiness Data System in the year 2007; it included the head/face/neck, chest, pelvis, upper extremity and lower extremity. Struck vehicle collision damage was classified in a three-dimensional system according to the J224 Collision Deformation Classification of SAE Surface Vehicle Standard. Nearside occupants seated directly adjacent to the struck side of the vehicle with MAIS 3-6 injured, in light truck vehicles-passenger cars (LTV-PC) side impact crashes. Distribution of MAIS 3-6 injured occupants by body regions and specific location of damage (lateral direction, horizontal direction and vertical direction) were examined. Injury risk ratio was also assessed. The lateral crush zone contributed to MAIS 3-6 injured occupants (n=705) and 50th centile injury risks when extended into zone 3. When the crush extended to zone 4, the injury risk ratio of MAIS 3-6 injured occupants approached 81%. The horizontal crush zones contributing to the highest injury risk ratio of MAIS 3-6 occupants were zones 'D' and 'Y', and the injury risk ratios were 25.4% and 36.9%, respectively. In contrast, the lowest injury risk ratio was 5.67% caused by zone 'B'. The vertical crush zone which contributed to the highest injury risk ratio of MAIS 3-6 occupants was zone 'E', whose injury risk ratio was 58%. In contrast, the lowest injury risk ratio was 0.14% caused by zone 'G+M'. The highest injury risk ratio of MAIS 3-6 injured occupants caused by crush intrusion between 40 and 60 cm in LTV-PC nearside impact collisions and the damage region of the struck vehicle was in the zones 'E' and 'Y'.
Lerner, E Brooke; Cushman, Jeremy T; Blatt, Alan; Lawrence, Richard D; Shah, Manish N; Swor, Robert A; Brasel, Karen; Jurkovich, Gregory J
2011-01-01
To determine the accuracy of emergency medical services (EMS) provider assessments of motor vehicle damage when compared with measurements made by a professional crash reconstructionist. EMS providers caring for adult patients injured during a motor vehicle crash and transported to the regional trauma center in a midsized community were interviewed upon emergency department arrival. The interview collected provider estimates of crash mechanism of injury. For crashes that met a preset severity threshold, the vehicle's owner was asked to consent to having a crash reconstructionist assess the vehicle. The assessment included measuring intrusion and external automobile deformity. Vehicle damage was used to calculate change in velocity. Paired t-test, correlation, and kappa were used to compare EMS estimates and investigator-derived values. Ninety-one vehicles were enrolled; of these, 58 were inspected and 33 were excluded because the vehicle was not accessible. Six vehicles had multiple patients. Therefore, a total of 68 EMS estimates were compared with the inspection findings. Patients were 46% male, 28% were admitted to hospital, and 1% died. The mean EMS-estimated deformity was 18 inches and the mean measured deformity was 14 inches. The mean EMS-estimated intrusion was 5 inches and the mean measured intrusion was 4 inches. The EMS providers and the reconstructionist had 68% agreement for determination of external automobile deformity (kappa 0.26) and 88% agreement for determination of intrusion (kappa 0.27) when the 1999 American College of Surgeons Field Triage Decision Scheme criteria were applied. The mean (± standard deviation) EMS-estimated speed prior to the crash was 48 ± 13 mph and the mean reconstructionist-estimated change in velocity was 18 ± 12 mph (correlation -0.45). The EMS providers determined that 19 vehicles had rolled over, whereas the investigator identified 18 (kappa 0.96). In 55 cases, EMS and the investigator agreed on seat belt use; for the remaining 13 cases, there was disagreement (five) or the investigator was unable to make a determination (eight) (kappa 0.40). This study found that EMS providers are good at estimating rollover. Vehicle intrusion, deformity, and seat belt use appear to be more difficult for EMS to estimate, with only fair agreement with the crash reconstructionist. As expected, the EMS provider -estimated speed prior to the crash does not appear to be a reasonable proxy for change in velocity.
EMS Provider Assessment of Vehicle Damage Compared to a Professional Crash Reconstructionist
Lerner, E. Brooke; Cushman, Jeremy T.; Blatt, Alan; Lawrence, Richard; Shah, Manish N.; Swor, Robert; Brasel, Karen; Jurkovich, Gregory J.
2011-01-01
Objective To determine the accuracy of EMS provider assessments of motor vehicle damage, when compared to measurements made by a professional crash reconstructionist. Methods EMS providers caring for adult patients injured during a motor vehicle crash and transported to the regional trauma center in a midsized community were interviewed upon ED arrival. The interview collected provider estimates of crash mechanism of injury. For crashes that met a preset severity threshold, the vehicle’s owner was asked to consent to having a crash reconstructionist assess their vehicle. The assessment included measuring intrusion and external auto deformity. Vehicle damage was used to calculate change in velocity. Paired t-test and correlation were used to compare EMS estimates and investigator derived values. Results 91 vehicles were enrolled; of these 58 were inspected and 33 were excluded because the vehicle was not accessible. 6 vehicles had multiple patients. Therefore, a total of 68 EMS estimates were compared to the inspection findings. Patients were 46% male, 28% admitted to hospital, and 1% died. Mean EMS estimated deformity was 18” and mean measured was 14”. Mean EMS estimated intrusion was 5” and mean measured was 4”. EMS providers and the reconstructionist had 67% agreement for determination of external auto deformity (kappa 0.26), and 88% agreement for determination of intrusion (kappa 0.27) when the 1999 Field Triage Decision Scheme Criteria were applied. Mean EMS estimated speed prior to the crash was 48 mph±13 and mean reconstructionist estimated change in velocity was 18 mph±12 (correlation -0.45). EMS determined that 19 vehicles had rolled over while the investigator identified 18 (kappa 0.96). In 55 cases EMS and the investigator agreed on seatbelt use, for the remaining 13 cases there was disagreement (5) or the investigator was unable to make a determination (8) (kappa 0.40). Conclusions This study found that EMS providers are good at estimating rollover. Vehicle intrusion, deformity, and seatbelt use appear to be more difficult to estimate with only fair agreement with the crash reconstructionist. As expected, the EMS provider estimated speed prior to the crash does not appear to be a reasonable proxy for change in velocity. PMID:21815732
Injury Outcome in Crashes with Guardrail End Terminals.
Johnson, Nicholas S; Gabler, Hampton C
2015-01-01
The goal of this study is to evaluate the crash performance of guardrail end terminals in real-world crashes. Guardrail end terminals are installed at the ends of guardrail systems to prevent the rail from spearing through the car in an end-on collision. Recently, there has been a great deal of controversy as to the safety of certain widely used end terminal designs, partly because there is surprisingly little real-world crash data for end terminals. Most existing studies of end terminal crashes used data from prior to the mid-1990s. Since then, there have been large improvements to vehicle crashworthiness and seat belt usage rates, as well as new roadside safety hardware compliant with National Cooperative Highway Research Program (NCHRP) Report 350, "Recommended Procedures for the Safety Performance Evaluation of Highway Features." Additionally, most existing studies of injury in end terminal crashes do not account for factors such as the occurrence of rollover. This analysis uses more recent crash data that represent post-1990s vehicle fleet changes and account for a number of factors that may affect driver injury outcome and rollover occurrence. Passenger vehicle crashes coded as involving guardrail end terminals were identified in the set of police-reported crashes in Michigan in 2011 and 2012. End terminal performance was expected to be a function of end terminal system design. State crash databases generally do not identify specific end terminal systems. In this study, the coded crash location was used to obtain photographs of the crash site prior to the crash from Google Street View. These site photographs were manually inspected to identify the particular end terminal system involved in the crash. Multiple logistic regression was used to test for significant differences in the odds of driver injury and rollover between different terminal types while accounting for other factors. A total of 1,001 end terminal crashes from the 2011-2012 Michigan State crash data were manually inspected to identify the terminal that had been struck. Four hundred fifty-one crashes were found to be suitable for analysis. Serious to fatal driver injury occurred in 3.8% of end terminal crashes, moderate to fatal driver injury occurred in 11.8%, and 72.3% involved property damage only. No significant difference in moderate to fatal driver injury odds was observed between NCHRP 350 compliant end terminals and noncompliant terminals. Car drivers showed odds of moderate to fatal injury 3.6 times greater than LTV drivers in end terminal crashes. Rollover occurrence was not significantly associated with end terminal type. Car drivers have greater potential for injury in end terminal crashes than light truck/van/sport utility vehicle drivers. End terminal designs compliant with NCHRP 350 did not appear to carry different odds of moderate driver injury than noncompliant end terminals. The findings account for driver seat belt use, rollover occurrence, terminal orientation (leading/trailing), control loss, and the number of impact events. Rollover and nonuse of seat belts carried much larger increases in injury potential than end terminal type. Rollover did not appear to be associated with NCHRP 350 compliance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom P.
2016-05-20
Previous analyses have indicated that mass reduction is associated with an increase in crash frequency (crashes per VMT), but a decrease in fatality or casualty risk once a crash has occurred, across all types of light-duty vehicles. These results are counter-intuitive: one would expect that lighter, and perhaps smaller, vehicles have better handling and shorter braking distances, and thus should be able to avoid crashes that heavier vehicles cannot. And one would expect that heavier vehicles would have lower risk once a crash has occurred than lighter vehicles. However, these trends occur under several alternative regression model specifications. This reportmore » tests whether these results continue to hold after accounting for crash severity, by excluding crashes that result in relatively minor damage to the vehicle(s) involved in the crash. Excluding non-severe crashes from the initial LBNL Phase 2 and simultaneous two-stage regression models for the most part has little effect on the unexpected relationships observed in the baseline regression models. This finding suggests that other subtle differences in vehicles and/or their drivers, or perhaps biases in the data reported in state crash databases, are causing the unexpected results from the regression models.« less
Dynamic all-red extension at signalized intersection : probabilistic modeling and algorithm.
DOT National Transportation Integrated Search
2011-01-01
Red light running has been a major cause of intersection injuries and fatalities in the United : States. In 2004 alone, there were 8,619 fatal crashes and 848,000 crashes with people injured, all : caused by RLR. Under the U.S. Department of Transpor...
Comprehensive target populations for current active safety systems using national crash databases.
Kusano, Kristofer D; Gabler, Hampton C
2014-01-01
The objective of active safety systems is to prevent or mitigate collisions. A critical component in the design of active safety systems is the identification of the target population for a proposed system. The target population for an active safety system is that set of crashes that a proposed system could prevent or mitigate. Target crashes have scenarios in which the sensors and algorithms would likely activate. For example, the rear-end crash scenario, where the front of one vehicle contacts another vehicle traveling in the same direction and in the same lane as the striking vehicle, is one scenario for which forward collision warning (FCW) would be most effective in mitigating or preventing. This article presents a novel set of precrash scenarios based on coded variables from NHTSA's nationally representative crash databases in the United States. Using 4 databases (National Automotive Sampling System-General Estimates System [NASS-GES], NASS Crashworthiness Data System [NASS-CDS], Fatality Analysis Reporting System [FARS], and National Motor Vehicle Crash Causation Survey [NMVCCS]) the scenarios developed in this study can be used to quantify the number of police-reported crashes, seriously injured occupants, and fatalities that are applicable to proposed active safety systems. In this article, we use the precrash scenarios to identify the target populations for FCW, pedestrian crash avoidance systems (PCAS), lane departure warning (LDW), and vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) systems. Crash scenarios were derived using precrash variables (critical event, accident type, precrash movement) present in all 4 data sources. This study found that these active safety systems could potentially mitigate approximately 1 in 5 of all severity and serious injury crashes in the United States and 26 percent of fatal crashes. Annually, this corresponds to 1.2 million all severity, 14,353 serious injury (MAIS 3+), and 7412 fatal crashes. In addition, we provide the source code for the crash scenarios as an appendix (see online supplement) to this article so that researchers can use the crash scenarios in future research.
Selection of comparison crash types for quasi-induced exposure risk estimation.
Keall, Michael; Newstead, Stuart
2009-03-01
The objective of this study was to find a comparison crash type that best represented exposure on the road and to identify situations where the induced exposure risk estimates were likely to be biased. Counts of crash involvements were compared with distance driven estimates derived from a register of licensed motor vehicles to identify the most appropriate comparison crash type for induced exposure estimation, which is the crash type whose counts are best correlated with vehicle distance driven. The best sets of comparison crashes for disaggregations by driver age and gender and vehicle type were found to be multi-vehicle crashes in which the vehicle was damaged in the rear or multi-vehicle crashes in which the driver was adjudged to be not at fault. Likely bias of induced exposure risk estimates was identified, even for these best sets of comparison crashes, according to vehicle size (with large vehicles underrepresented) and owner age and gender (with young owners and female owners overrepresented). This research identified some important features of crash occurrence useful for making choices of comparison crash types when controlling for exposure. None of the crash types considered as comparison crashes performed perfectly. Even the crash types that seemed to best reflect exposure on the road still appeared to over- or underestimate distance driven according to owner age group, gender, and vehicle size.
Under-reporting of road traffic crash data in Ghana.
Salifu, Mohammed; Ackaah, Williams
2012-01-01
Having reliable estimates of the shortfalls in road traffic crash data is an important prerequisite for setting more realistic targets for crash/casualty reduction programmes and for a better appreciation of the socio-economic significance of road traffic crashes. This study was carried out to establish realistic estimates of the overall shortfall (under-reporting) in the official crash statistics in Ghana over an eight-year period (1997-2004). Surveys were conducted at hospitals and among drivers to generate relevant alternative data which were then matched against records in police crash data files and the official database. Overall shortfalls came from two sources, namely, 'non-reporting' and 'under-recording'. The results show that the level of non-reporting varied significantly with the severity of the crash from about 57% for property damage crashes through 8% for serious injury crashes to 0% for fatal crashes. Crashes involving cyclists and motorcyclists were also substantially non-reported. Under-recording on the other hand declined significantly over the period from an average of 37% in 1997-1998 to 27% in 2003-2004. Thus, the official statistics of road traffic crashes in Ghana are subject to significant shortfalls that need to be accounted for. Correction factors have therefore been suggested for adjusting the official data.
1970-06-19
The M2-F3 Lifting Body is seen here on the lakebed at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California. After a three-year-long redesign and rebuilding effort, the M2-F3 was ready to fly. The May 1967 crash of the M2-F2 had damaged both the external skin and the internal structure of the lifting body. At first, it seemed that the vehicle had been irreparably damaged, but the original manufacturer, Northrop, did the repair work and returned the redesigned M2-F3 with a center fin for stability to the FRC.
DOT National Transportation Integrated Search
1997-12-01
This annual report presents descriptive statistics about traffic crashes of all severities, from those that result in property damage to those that result in the loss of human life. Information from two of the National Highway Traffic Safety Administ...
DOT National Transportation Integrated Search
2006-01-01
This annual report presents descriptive statistics about traffic crashes of all severities, from those that result in property damage to those that result in the loss of human life. Information from two of the National Highway Traffic Safety Administ...
DOT National Transportation Integrated Search
2007-01-01
This annual report presents descriptive statistics about traffic crashes of all severities, from those that result in property damage to those that result in the loss of human life. Information from two of the National Highway Traffic Safety Administ...
Light airplane crash tests at impact velocities of 13 and 27 m/sec
NASA Technical Reports Server (NTRS)
Alfaro-Bou, E.; Vaughan, V. L., Jr.
1977-01-01
Two similar general aviation airplanes were crash tested at the Langley impact dynamics research facility at velocities of 13 and 27 m/sec. Other flight parameters were held constant. The facility, instrumentation, tests specimens, and test method are briefly described. Structural damage and accelerometer data are discussed.
DOT National Transportation Integrated Search
2001-12-01
This annual report presents descriptive statistics about traffic crashes of all severities, from those that result in property damage to those that result in the loss of human life. Information from two of the National Highway Traffic Safety Administ...
DOT National Transportation Integrated Search
2002-12-01
This annual report presents descriptive statistics about traffic crashes of all severities, from those that result in property damage to those that result in the loss of human life. Information from two of the National Highway Traffic Safety Administ...
DOT National Transportation Integrated Search
1999-10-01
This annual report presents descriptive statistics about traffic crashes of all severities, from those that result in property damage to those that result in the loss of human life. Information from two of the National Highway Traffic Safety Administ...
DOT National Transportation Integrated Search
2004-01-01
This annual report presents descriptive statistics about traffic crashes of all severities, from those that result in property damage to those that result in the loss of human life. Information from two of the National Highway Traffic Safety Administ...
DOT National Transportation Integrated Search
2005-01-01
This annual report presents descriptive statistics about traffic crashes of all severities, from those that result in property damage to those that result in the loss of human life. Information from two of the National Highway Traffic Safety Administ...
DOT National Transportation Integrated Search
2000-12-01
This annual report presents descriptive statistics about traffic crashes of all severities, from those that result in property damage to those that result in the loss of human life. Information from two of the National Highway Traffic Safety Administ...
DOT National Transportation Integrated Search
1995-08-01
This annual report presents descriptive statistics about traffic crashes of all severities, from those that result in property damage to those that result in the loss of human life. Information from two of the National Highway Traffic Safety Administ...
Factors that influence chest injuries in rollovers.
Digges, Kennerly; Eigen, Ana; Tahan, Fadi; Grzebieta, Raphael
2014-01-01
The design of countermeasures to reduce serious chest injuries for belted occupants involved in rollover crashes requires an understanding of the cause of these injuries and of the test conditions to assure the effectiveness of the countermeasures. This study defines rollover environments and occupant-to-vehicle interactions that cause chest injuries for belted drivers. The NASS-CDS was examined to determine the frequency and crash severity for belted drivers with serious (Abbreviated Injury Scale [AIS] 3+) chest injuries in rollovers. Case studies of NASS crashes with serious chest injuries sustained by belted front occupants were undertaken and damage patterns were determined. Vehicle rollover tests with dummies were examined to determine occupant motion in crashes with damage similar to that observed in the NASS cases. Computer simulations were performed to further explore factors that could contribute to chest injury. Finite element model (FEM) vehicle models with both the FEM Hybrid III dummy and THUMS human model were used in the simulations. Simulation of rollovers with 6 quarter-turns or less indicated that increases in the vehicle pitch, either positive or negative, increased the severity of dummy chest loadings. This finding was consistent with vehicle damage observations from NASS cases. For the far-side occupant, the maximum chest loadings were caused by belt and side interactions during the third quarter-turn and by the center console loading during the fourth quarter-turn. The results showed that the THUMS dummy produced more realistic kinematics and improved insights into skeletal and chest organ loadings compared to the Hybrid III dummy. These results suggest that a dynamic rollover test to encourage chest injury reduction countermeasures should induce a roll of at least 4 quarter-turns and should also include initial vehicle pitch and/or yaw so that the vehicle's axis of rotation is not aligned with its inertial roll axis during the initial stage of the rollover.
Crash avoidance potential of four large truck technologies.
Jermakian, Jessica S
2012-11-01
The objective of this paper was to estimate the maximum potential large truck crash reductions in the United States associated with each of four crash avoidance technologies: side view assist, forward collision warning/mitigation, lane departure warning/prevention, and vehicle stability control. Estimates accounted for limitations of current systems. Crash records were extracted from the 2004-08 files of the National Automotive Sampling System General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). Crash descriptors such as location of damage on the vehicle, road characteristics, time of day, and precrash maneuvers were reviewed to determine whether the information or action provided by each technology potentially could have prevented the crash. Of the four technologies, side view assist had the greatest potential for preventing large truck crashes of any severity; the technology is potentially applicable to 39,000 crashes in the United States each year, including 2000 serious and moderate injury crashes and 79 fatal crashes. Vehicle stability control is another promising technology, with the potential to prevent or mitigate up to 31,000 crashes per year including more serious crashes--up to 7000 moderate-to-serious injury crashes and 439 fatal crashes per year. Vehicle stability control could prevent or mitigate up to 20 and 11 percent of moderate-to-serious injury and fatal large truck crashes, respectively. Forward collision warning has the potential to prevent as many as 31,000 crashes per year, including 3000 serious and moderate injury crashes and 115 fatal crashes. Finally, 10,000 large truck crashes annually were relevant to lane departure warning/prevention systems. Of these, 1000 involved serious and moderate injuries and 247 involved fatal injuries. There is great potential effectiveness for truck-based crash avoidance systems. However, it is yet to be determined how drivers will interact with the systems. Actual effectiveness of crash avoidance systems will not be known until sufficient real-world experience has been gained. Copyright © 2012 Elsevier Ltd. All rights reserved.
Composite skid landing gear design investigation
NASA Astrophysics Data System (ADS)
Shrotri, Kshitij
A Composite Skid Landing Gear Design investigation has been conducted. Limit Drop Test as per Federal Aviation Regulations (FAR) Part 27.725 and Crash test as per MIL STD 1290A (AV) were simulated using ABAQUS to evaluate performance of multiple composite fiber-matrix systems. Load factor developed during multiple landing scenarios and energy dissipated during crash were computed. Strength and stiffness based constraints were imposed. Tsai-Wu and LaRC04 physics based failure criteria were used for limit loads. Hashin's damage initiation criteria with Davila-Camanho's energy based damage evolution damage evolution law were used for crash. Initial results indicate that all single-composite skid landing gear may no be feasible due to strength concerns in the cross member bends. Hybridization of multiple composites with elasto-plastic aluminum 7075 showed proof of strength under limit loads. Laminate tailoring for load factor optimization under limit loads was done by parameterization of a single variable fiber orientation angle for multiple laminate families. Tsai-Wu failure criterion was used to impose strength contraints. A quasi-isotropic N = 4 (pi/4) 48 ply IM7/8552 laminate was shown to be the optimal solution with a load failure will be initiated as matrix cracking under compression and fiber kinking under in-plane shear and longitudinal compression. All failures under limit loads being reported in the metal-composite hybrid joint region, the joint was simulated by adhesive bonding and filament winding, separately. Simply adhesive bonding the metal and composite regions does not meet strength requirements. A filament wound metal-composite joint shows proof of strength. Filament wound bolted metal-composite joint shows proof of strength. Filament wound composite bolted to metal cross member radii is the final joining methodology. Finally, crash analysis was conducted as per requirements from MIL STD 1290A (AV). Crash at 42 ft/sec with 1 design gross weight (DGW) lift was simulated using ABAQUS. Plastic and friction energy dissipation in the reference aluminum skid landing gear was compared with plastic, friction and damage energy dissipation in the hybrid composite design. Damage in composites was modeled as progressive damage with Hashin's damage initiation criteria and an energy based damage evolution law. The latter meets requirements of aircraft kinetic energy dissipation up to 20 ft/sec (67.6 kJ) as per MIL STD 1290A (AV). Weight saving possibility of up to 49% over conventional metal skid landing gear is reported. The final design recommended includes Ke49/PEEK skids, 48 ply IM7/8552 (or IM7/PEEK) cross member tapered beams and Al 7075 cross member bend radii, the latter bolted to the filament wound composite-metal tapered beam. Concerns in composite skid landing gear designs, testing requirements and future opportunities are addressed.
Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.
Aguero-Valverde, Jonathan
2013-10-01
Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Crash avoidance potential of four passenger vehicle technologies.
Jermakian, Jessica S
2011-05-01
The objective was to update estimates of maximum potential crash reductions in the United States associated with each of four crash avoidance technologies: side view assist, forward collision warning/mitigation, lane departure warning/prevention, and adaptive headlights. Compared with previous estimates (Farmer, 2008), estimates in this study attempted to account for known limitations of current systems. Crash records were extracted from the 2004-08 files of the National Automotive Sampling System General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). Crash descriptors such as vehicle damage location, road characteristics, time of day, and precrash maneuvers were reviewed to determine whether the information or action provided by each technology potentially could have prevented or mitigated the crash. Of the four crash avoidance technologies, forward collision warning/mitigation had the greatest potential for preventing crashes of any severity; the technology is potentially applicable to 1.2 million crashes in the United States each year, including 66,000 serious and moderate injury crashes and 879 fatal crashes. Lane departure warning/prevention systems appeared relevant to 179,000 crashes per year. Side view assist and adaptive headlights could prevent 395,000 and 142,000 crashes per year, respectively. Lane departure warning/prevention was relevant to the most fatal crashes, up to 7500 fatal crashes per year. A combination of all four current technologies potentially could prevent or mitigate (without double counting) up to 1,866,000 crashes each year, including 149,000 serious and moderate injury crashes and 10,238 fatal crashes. If forward collision warning were extended to detect objects, pedestrians, and bicyclists, it would be relevant to an additional 3868 unique fatal crashes. There is great potential effectiveness for vehicle-based crash avoidance systems. However, it is yet to be determined how drivers will interact with the systems. The actual effectiveness of these systems will not be known until sufficient real-world experience has been gained. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tang, Youming; Cao, Libo; Kan, Steven
2014-01-01
Objectives To examine the damage location distribution of five main body region injuries of maximum abbreviated injury score (MAIS) 3–6 injured occupants for nearside struck vehicle in front-to-side impact crashes. Design and setting MAIS 3–6 injured occupants information was extracted from the US-National Automotive Sampling System/Crashworthiness Data System in the year 2007; it included the head/face/neck, chest, pelvis, upper extremity and lower extremity. Struck vehicle collision damage was classified in a three-dimensional system according to the J224 Collision Deformation Classification of SAE Surface Vehicle Standard. Participants Nearside occupants seated directly adjacent to the struck side of the vehicle with MAIS 3–6 injured, in light truck vehicles–passenger cars (LTV–PC) side impact crashes. Outcome measures Distribution of MAIS 3–6 injured occupants by body regions and specific location of damage (lateral direction, horizontal direction and vertical direction) were examined. Injury risk ratio was also assessed. Results The lateral crush zone contributed to MAIS 3–6 injured occupants (n=705) and 50th centile injury risks when extended into zone 3. When the crush extended to zone 4, the injury risk ratio of MAIS 3–6 injured occupants approached 81%. The horizontal crush zones contributing to the highest injury risk ratio of MAIS 3–6 occupants were zones ‘D’ and ‘Y’, and the injury risk ratios were 25.4% and 36.9%, respectively. In contrast, the lowest injury risk ratio was 5.67% caused by zone ‘B’. The vertical crush zone which contributed to the highest injury risk ratio of MAIS 3–6 occupants was zone ‘E’, whose injury risk ratio was 58%. In contrast, the lowest injury risk ratio was 0.14% caused by zone ‘G+M’. Conclusions The highest injury risk ratio of MAIS 3–6 injured occupants caused by crush intrusion between 40 and 60 cm in LTV–PC nearside impact collisions and the damage region of the struck vehicle was in the zones ‘E’ and ‘Y’. PMID:24812190
Hotspot Identification for Shanghai Expressways Using the Quantitative Risk Assessment Method
Chen, Can; Li, Tienan; Sun, Jian; Chen, Feng
2016-01-01
Hotspot identification (HSID) is the first and key step of the expressway safety management process. This study presents a new HSID method using the quantitative risk assessment (QRA) technique. Crashes that are likely to happen for a specific site are treated as the risk. The aggregation of the crash occurrence probability for all exposure vehicles is estimated based on the empirical Bayesian method. As for the consequences of crashes, crashes may not only cause direct losses (e.g., occupant injuries and property damages) but also result in indirect losses. The indirect losses are expressed by the extra delays calculated using the deterministic queuing diagram method. The direct losses and indirect losses are uniformly monetized to be considered as the consequences of this risk. The potential costs of crashes, as a criterion to rank high-risk sites, can be explicitly expressed as the sum of the crash probability for all passing vehicles and the corresponding consequences of crashes. A case study on the urban expressways of Shanghai is presented. The results show that the new QRA method for HSID enables the identification of a set of high-risk sites that truly reveal the potential crash costs to society. PMID:28036009
A TWO-STATE MIXED HIDDEN MARKOV MODEL FOR RISKY TEENAGE DRIVING BEHAVIOR
Jackson, John C.; Albert, Paul S.; Zhang, Zhiwei
2016-01-01
This paper proposes a joint model for longitudinal binary and count outcomes. We apply the model to a unique longitudinal study of teen driving where risky driving behavior and the occurrence of crashes or near crashes are measured prospectively over the first 18 months of licensure. Of scientific interest is relating the two processes and predicting crash and near crash outcomes. We propose a two-state mixed hidden Markov model whereby the hidden state characterizes the mean for the joint longitudinal crash/near crash outcomes and elevated g-force events which are a proxy for risky driving. Heterogeneity is introduced in both the conditional model for the count outcomes and the hidden process using a shared random effect. An estimation procedure is presented using the forward–backward algorithm along with adaptive Gaussian quadrature to perform numerical integration. The estimation procedure readily yields hidden state probabilities as well as providing for a broad class of predictors. PMID:27766124
Costs of Crashes to Government, United States, 2008
Miller, Ted R; Bhattacharya, Soma; Zaloshnja, Eduard; Taylor, Dexter; Bahar, Geni; David, Iuliana
2011-01-01
We estimated how much the Federal government and state/local government pay for different kinds of crashes in the United States. Government costs include reductions in an array of public services (emergency, incident management, vocational rehabilitation, coroner court processing of liability litigation), medical payments, social safety net assistance to the injured and their families, and taxes foregone because victims miss work. Government also pays when its employees crash while working and covers fringe benefits for crash-involved employees and their benefit-eligible dependents in non-work hours. We estimated government shares of crash costs by component. We applied those estimates to existing US Department of Transportation estimates of crash costs to society and employers. Government pays an estimated $35 billion annually because of crashes, an estimated 12.6% of the economic cost of crashes (Federal 7.1%, State/local 5.5%). Government bears a higher percentage of the monetary costs of injury crashes than fatal crashes or crashes involving property damage only. Government is increasingly recovering the medical cost of crashes from auto insurers. Nevertheless, medical costs and income and sales tax losses account for 75% of government's crash costs. For State/local government to break even on a 100%-State funded investment in road safety, the intervention would need to have an unrealistically high benefit-cost ratio of 34. Government invests in medical treatment of illness to save lives and improve quality of life. Curing a child's leukemia, for example, is not less costly than leaving that leukemia untreated. Safety should not be held to a different standard. PMID:22105409
Pre-crash scenarios at road junctions: A clustering method for car crash data.
Nitsche, Philippe; Thomas, Pete; Stuetz, Rainer; Welsh, Ruth
2017-10-01
Given the recent advancements in autonomous driving functions, one of the main challenges is safe and efficient operation in complex traffic situations such as road junctions. There is a need for comprehensive testing, either in virtual simulation environments or on real-world test tracks. This paper presents a novel data analysis method including the preparation, analysis and visualization of car crash data, to identify the critical pre-crash scenarios at T- and four-legged junctions as a basis for testing the safety of automated driving systems. The presented method employs k-medoids to cluster historical junction crash data into distinct partitions and then applies the association rules algorithm to each cluster to specify the driving scenarios in more detail. The dataset used consists of 1056 junction crashes in the UK, which were exported from the in-depth "On-the-Spot" database. The study resulted in thirteen crash clusters for T-junctions, and six crash clusters for crossroads. Association rules revealed common crash characteristics, which were the basis for the scenario descriptions. The results support existing findings on road junction accidents and provide benchmark situations for safety performance tests in order to reduce the possible number parameter combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Validation of the principles of injury risk zones for motorcycle protective clothing.
de Rome, Liz; Meredith, Lauren; Ivers, Rebecca; Brown, Julie
2014-09-01
The distributions of motorcycle crash impacts and injuries were compared to the four impact risk zones and protective performance specified in the European Standard for motorcycle clothing (EN 13595). Crashed motorcyclists' (n=117) injuries and clothing damage were categorized by body area into the four risk zones. Three levels of protection were defined: protective clothing with impact protection, protective clothing only and non-protective clothing. The distribution of impact/injury sites corresponded to the predictions of EN 13595, with the proportion of all injuries decreasing from 43.9% in Zone 1, to 18.0%, 16.7%, and 11.5% in Zones 2 to 4, respectively. Protective clothing modified the distribution of injuries with substantially more injuries (OR=2.69, 95% CL: 20.1-3.59) at unprotected impact sites. These findings support an appropriate framework for determining performance specifications for the manufacture of motorcycle clothing that will effectively reduce the risk of injury in crashes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Passenger vehicles sustain huge damage in 5 Mph tests
DOT National Transportation Integrated Search
2000-04-15
Seventeen new cars, all 1999 and 2000 models, turned in mostly disappointing results in 5 mph crash tests conducted to assess how well the bumpers resist costly damage in the kinds of impacts that frequently occur in commuter traffic and parking lots...
Econonatology: the physics of the economy in labour
NASA Astrophysics Data System (ADS)
Struzik, Zbigniew R.
2003-06-01
A fear of crashes preoccupies stock market observers, both investors and economic decision makers (governments, banks). This is reflected in major efforts to predict future stock values. However, an economic system under prolonged stress may have in its nature to plunge to lower performance levels but recover without suffering damage. To support this claim, we draw parallels between two complex systems: that of the heart, as observed through the rate of heartbeat, and the economy, measured by the stock index record. The ultimate stress situation of fetal heartbeat during labour provides a conceptual basis for accommodating heavy crashes. It also suggests a different perspective for evaluating crashes and post crash recovery in order to diagnose, and (ultimately) prognose, ‘economic health’, in addition to monitoring the stock index value.
Lai, Xinghua; Ma, Chunsheng; Hu, Jingwen; Zhou, Qing
2012-09-01
Occupant injury in real world vehicle accidents can be significantly affected by a set of crash characteristics, of which impact direction and impact location (or damage location) in general scale interval (e.g., frontal impact is frequently defined as general damage to vehicle frontal end with impact angle range of 11-1 o'clock) have been identified to associate with injury outcome. The effects of crash configuration in more specific scale of interval on the injury characteristics have not been adequately investigated. This paper presents a statistical analysis to investigate the combined effects of specific impact directions and impact locations on the serious-to-fatal injuries of driver occupants involved in near-side collisions using crash data from National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) for the calendar years of 1995-2005. The screened injury dataset is categorized by three impact locations (side front, side center and side distributed) and two impact directions (oblique impact at 10 o'clock and pure lateral impact at 9 o'clock), resulting in six crash configurations in total. The weighted counts and the risks of different types of injuries in each subgroup are calculated, with which the relative risks along with 95% confidence intervals under oblique impacts versus lateral impacts in each impact location category are computed. Accordingly, the most frequent injury patterns, the risks and the coded-sources of serious thoracic injuries in different crash configurations are identified. The approach adopted in the present study provides new perspectives into occupant injury outcomes and associated mechanism. Results of the analyses reveal the importance of consideration of the crash configurations beyond the scope of existing side-impact regulatory tests and stress the necessity of vehicle crashworthiness and restraint system design in omni-direction to better protect occupants in real-world crash scenarios. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hot-air balloon tours: crash epidemiology in the United States, 2000-2011.
Ballard, Sarah-Blythe; Beaty, Leland P; Baker, Susan P
2013-11-01
Hot-air balloon tours are FAR Part 91-governed balloon rides conducted for compensation or hire. Part 91, General Aviation, in general involves the least strict federal regulations and accounts for the majority of aviation crashes and fatalities. National Transportation Safety Board reports of hot-air balloon tour crashes in the United States from 2000 through 2011 were read and analyzed. During the 12-yr period, 78 hot-air balloon tours crashed, involving 518 occupants. There were 91 serious injuries and 5 fatalities; 83% of crashes resulted in one or more serious or fatal outcomes. Of the serious injuries characterized, 56% were lower extremity fractures. Most crashes (81%) occurred during landing; 65% involved hard landings. Fixed object collisions contributed to 50% of serious injuries and all 5 fatalities. During landing sequences, gondola dragging, tipping, bouncing, and occupant ejection were associated with poor outcomes. Of the crashes resulting in serious or fatal outcomes, 20% of balloons were significantly damaged or destroyed. The incidence of morbidity and mortality is high among hot-air balloon tour crashes, and the proportion of balloon crashes attributed to paid rides appears to have increased over time. In addition to examining the role of restraint systems, personal protective equipment, and power line emergency procedures in ballooning, injury prevention efforts should target factors such hard landings, object strikes, gondola instability, and occupant ejections, which are associated with balloon injuries and deaths. Crash outcomes may also improve with vehicle engineering that enables balloons themselves to absorb impact forces.
Evaluation of a policy to reduce youth tractor crashes on public roads.
Marlenga, B; Doty, B C; Berg, R L; Linneman, J G
2006-02-01
Evaluate the effectiveness of a United States state law, Wisconsin Act 455, in reducing highway tractor crashes involving youth operators. Policy outcome evaluation involving review of a retrospective case series. Youth highway tractor crashes from Wisconsin for the years 1994-2003 that resulted in a fatality, injury, and/or property damage. One hundred and forty six tractor crash cases involving operators younger than 16 years. Describe and model the tractor crash patterns before and after enactment of the law, and examine the relation between the contributing circumstances identified in the crash reports and the content covered in the mandated tractor certification course. There was neither a significant change in the number of youth tractor crashes after the law was passed, nor any reduction in the proportion of crashes where the youth operator was designated at fault. The tractor certification course did not cover the major factors contributing to youth tractor crashes on public roads. No significant effect of the law was detected and crash rates at the end of the study period were similar to those before Wisconsin Act 455. The authors'findings should not be construed to suggest that public policy, in general, is an ineffective strategy for the prevention of pediatric agricultural injuries. Negotiating a balance in public policy debates will be a challenge, but it is clear that future policy initiatives need to identify and implement the right policy for the right problem.
The economic cost of road traffic crashes in an urban setting
García‐Altés, A; Pérez, K
2007-01-01
The objective of this article is to assess the total economic costs of road traffic crashes in Barcelona, a metropolitan city located in Southern Europe. A cost‐of‐illness study was conducted using a prevalence approximation, a societal and healthcare system perspective, and a 1‐year time horizon. Results were measured in terms of Euros in 2003. Total costs of road traffic crashes in Barcelona in 2003 were €367 million. Direct costs equalled €329 million (89.8% of total costs), including property damage costs, insurance administration costs and hospital costs. Police, emergency costs and transportation costs had a minimum effect on total direct costs. Indirect costs were €37 million, including lost productivity due to hospitalization and mortality. The results of the sensitivity analysis showed the upper limit of total economic cost of road traffic crashes in Barcelona to be €782 million. This is the first study to estimate the costs of road traffic crashes for a city in a developed country. The importance of the problem calls for further interventions to reduce road traffic crashes. PMID:17296693
Delamination Modeling of Composites for Improved Crash Analysis
NASA Technical Reports Server (NTRS)
Fleming, David C.
1999-01-01
Finite element crash modeling of composite structures is limited by the inability of current commercial crash codes to accurately model delamination growth. Efforts are made to implement and assess delamination modeling techniques using a current finite element crash code, MSC/DYTRAN. Three methods are evaluated, including a straightforward method based on monitoring forces in elements or constraints representing an interface; a cohesive fracture model proposed in the literature; and the virtual crack closure technique commonly used in fracture mechanics. Results are compared with dynamic double cantilever beam test data from the literature. Examples show that it is possible to accurately model delamination propagation in this case. However, the computational demands required for accurate solution are great and reliable property data may not be available to support general crash modeling efforts. Additional examples are modeled including an impact-loaded beam, damage initiation in laminated crushing specimens, and a scaled aircraft subfloor structures in which composite sandwich structures are used as energy-absorbing elements. These examples illustrate some of the difficulties in modeling delamination as part of a finite element crash analysis.
Data-driven train set crash dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, Zhao; Zhu, Yunrui; Nie, Yinyu; Guo, Shihui; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2017-02-01
Traditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force-displacement curves and predicts a force-displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency.
Chen, Cong; Zhang, Guohui; Huang, Helai; Wang, Jiangfeng; Tarefder, Rafiqul A
2016-11-01
Rural non-interstate crashes induce a significant amount of severe injuries and fatalities. Examination of such injury patterns and the associated contributing factors is of practical importance. Taking into account the ordinal nature of injury severity levels and the hierarchical feature of crash data, this study employs a hierarchical ordered logit model to examine the significant factors in predicting driver injury severities in rural non-interstate crashes based on two-year New Mexico crash records. Bayesian inference is utilized in model estimation procedure and 95% Bayesian Credible Interval (BCI) is applied to testing variable significance. An ordinary ordered logit model omitting the between-crash variance effect is evaluated as well for model performance comparison. Results indicate that the model employed in this study outperforms ordinary ordered logit model in model fit and parameter estimation. Variables regarding crash features, environment conditions, and driver and vehicle characteristics are found to have significant influence on the predictions of driver injury severities in rural non-interstate crashes. Factors such as road segments far from intersection, wet road surface condition, collision with animals, heavy vehicle drivers, male drivers and driver seatbelt used tend to induce less severe driver injury outcomes than the factors such as multiple-vehicle crashes, severe vehicle damage in a crash, motorcyclists, females, senior drivers, driver with alcohol or drug impairment, and other major collision types. Research limitations regarding crash data and model assumptions are also discussed. Overall, this research provides reasonable results and insight in developing effective road safety measures for crash injury severity reduction and prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
28 CFR 104.22 - Filing for compensation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... require that the claimant certify that he or she has dismissed any pending lawsuit seeking damages as a result of the terrorist-related airplane crashes of September 11, 2001, or for damages arising from or... limited to, the spouse, former spouses, children, other dependents, and parents), to the executor...
28 CFR 104.22 - Filing for compensation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... require that the claimant certify that he or she has dismissed any pending lawsuit seeking damages as a result of the terrorist-related airplane crashes of September 11, 2001, or for damages arising from or... limited to, the spouse, former spouses, children, other dependents, and parents), to the executor...
28 CFR 104.22 - Filing for compensation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... require that the claimant certify that he or she has dismissed any pending lawsuit seeking damages as a result of the terrorist-related airplane crashes of September 11, 2001, or for damages arising from or... limited to, the spouse, former spouses, children, other dependents, and parents), to the executor...
5. DETAIL VIEW OF SOUTH SIDE WITH DAMAGE TO METAL ...
5. DETAIL VIEW OF SOUTH SIDE WITH DAMAGE TO METAL DOORS WHEN INCENDIARY CHUNKS OF SOLID FUEL CRASHED THROUGH AWNING AND BURNED MELTING PORTIONS OF THE BUILDING; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 36009, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Chimba, Deo; Kutela, Boniphace
2014-09-01
Extent of secondary crashes derived from primary incidents involving abandoned and disabled vehicles are presented in this paper. Using years 2004 to 2010 incident and crash data on selected Tennessee freeways, the study identified secondary crashes that resulted from disabled and abandoned vehicle primary incidents. The relationship between time and distance gaps before the secondary crash with respect to individual incident characteristics were evaluated through descriptive statistics and linear regression. The time and distance gap analysis indicated that a large portion of secondary crashes occurred within 20 min after the primary incidents and within a distance of 0.5 miles upstream. While 76% of incidents involved shoulder, most secondary crashes were related to the closing of right lanes. Overall, 58% of the secondary crashes occurred within 30 min after the occurrence of the primary incidents. Most of the vehicles in the incidents that involved towing and caused secondary crashes were towed or removed out of the travel way within 60 min from the time of occurrence. The study found that most (95%) secondary crashes were property damage only (PDO), while 49% were rear-end crashes. The negative binomial model was used to evaluate the impact of roadway geometry and traffic factors associated with frequency of these secondary crashes. It was found that the posted speed limit, congested segments, segments with high percentages of trucks, and peak hour volumes increased the likelihood of secondary crash occurrence. Roadway segments with wider medians, shoulders, and multilanes decrease the likelihood of secondary crashes caused by abandoned and disabled vehicles as the primary incidents. Practical applications The paper recommends that wider shoulders be provided on any section of freeway to accommodate abandoned or disabled vehicles to avoid blocking of travel lane(s). Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
Bahouth, George; Graygo, Jill; Digges, Kennerly; Schulman, Carl; Baur, Peter
2014-01-01
The objectives of this study are to (1) characterize the population of crashes meeting the Centers for Disease Control and Prevention (CDC)-recommended 20% risk of Injury Severity Score (ISS)>15 injury and (2) explore the positive and negative effects of an advanced automatic crash notification (AACN) system whose threshold for high-risk indications is 10% versus 20%. Binary logistic regression analysis was performed to predict the occurrence of motor vehicle crash injuries at both the ISS>15 and Maximum Abbreviated Injury Scale (MAIS) 3+ level. Models were trained using crash characteristics recommended by the CDC Committee on Advanced Automatic Collision Notification and Triage of the Injured Patient. Each model was used to assign the probability of severe injury (defined as MAIS 3+ or ISS>15 injury) to a subset of NASS-CDS cases based on crash attributes. Subsequently, actual AIS and ISS levels were compared with the predicted probability of injury to determine the extent to which the seriously injured had corresponding probabilities exceeding the 10% and 20% risk thresholds. Models were developed using an 80% sample of NASS-CDS data from 2002 to 2012 and evaluations were performed using the remaining 20% of cases from the same period. Within the population of seriously injured (i.e., those having one or more AIS 3 or higher injuries), the number of occupants whose injury risk did not exceed the 10% and 20% thresholds were estimated to be 11,700 and 18,600, respectively, each year using the MAIS 3+ injury model. For the ISS>15 model, 8,100 and 11,000 occupants sustained ISS>15 injuries yet their injury probability did not reach the 10% and 20% probability for severe injury respectively. Conversely, model predictions suggested that, at the 10% and 20% thresholds, 207,700 and 55,400 drivers respectively would be incorrectly flagged as injured when their injuries had not reached the AIS 3 level. For the ISS>15 model, 87,300 and 41,900 drivers would be incorrectly flagged as injured when injury severity had not reached the ISS>15 injury level. This article provides important information comparing the expected positive and negative effects of an AACN system with thresholds at the 10% and 20% levels using 2 outcome metrics. Overall, results suggest that the 20% risk threshold would not provide a useful notification to improve the quality of care for a large number of seriously injured crash victims. Alternately, a lower threshold may increase the over triage rate. Based on the vehicle damage observed for crashes reaching and exceeding the 10% risk threshold, we anticipate that rescue services would have been deployed based on current Public Safety Answering Point (PSAP) practices.
The effects of age on crash risk associated with driver distraction.
Guo, Feng; Klauer, Sheila G; Fang, Youjia; Hankey, Jonathan M; Antin, Jonathan F; Perez, Miguel A; Lee, Suzanne E; Dingus, Thomas A
2017-02-01
Driver distraction is a major contributing factor to crashes, which are the leading cause of death for the US population under 35 years of age. The prevalence of secondary-task engagement and its impacts on distraction and crashes may vary substantially by driver age. Driving performance and behaviour data were collected continuously using multiple cameras and sensors in situ for 3542 participant drivers recruited for up to 3 years for the Second Strategic Highway Research Program Naturalistic Driving Study. Secondary-task engagement at the onset of crashes and during normal driving segments was identified from videos. A case-cohort approach was used to estimate the crash odds ratios associated with, and the prevalence of, secondary tasks for four age groups: 16-20, 21-29, 30-64 and 65-98 years of age. Only severe crashes (property damage and higher severity) were included in the analysis. Secondary-task-induced distraction posed a consistently higher threat for drivers younger than 30 and above 65 when compared with middle-aged drivers, although senior drivers engaged in secondary tasks much less frequently than their younger counterparts. Secondary tasks with high visual-manual demand (e.g. visual-manual tasks performed on cell phones) affected drivers of all ages. Certain secondary tasks, such as operation of in-vehicle devices and talking/singing, increased the risk for only certain age groups. Teenaged, young adult drivers and senior drivers are more adversely impacted by secondary-task engagement than middle-aged drivers. Visual-manual distractions impact drivers of all ages, whereas cognitive distraction may have a larger impact on young drivers. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association
Effectiveness of an improved road safety policy in Ethiopia: an interrupted time series study.
Abegaz, Teferi; Berhane, Yemane; Worku, Alemayehu; Assrat, Abebe
2014-05-31
In recent years, there has been an increasing interest in implementing road safety policy by different low income countries. However; the evidence is scarce on its success in the reduction of crashes, injuries and deaths. This study was conducted to assess whether road crashes, injuries and fatalities was reduced following the road safety regulation introduced as of September 2007 by Oromia Regional State Transport Bureau. Routine road traffic accident data for the year 2002-2011were collected from sixteen traffic police offices. Data on average daily vehicle flow was obtained from the Ethiopian Road Authority. Interrupted time series design using segmented linear regression model was applied to estimate the effect of an improved road safety policy. A total of 4,053 crashes occurred on Addis Ababa - Adama/Hawassa main road. Of these crashes, almost half 46.4% (1,880) were property damage, 29.4% (1,193) were fatal and 24.2% (980) injury crashes, resulting 1,392 fatalities and 1,749 injuries. There were statistically significant reductions in non-injury crashes and deaths. Non-injury crash was reduced by 19% and fatality by 12.4% in the first year of implementing the revised transport safety regulation. Although revised road safety policy helped in reducing motor vehicle crashes and associated fatalities, the overall incidence rate is still very high. Further action is required to avoid unnecessary loss of lives.
Viano, David C; Parenteau, Chantal S
2016-04-01
This study investigated the change in the fatality and severe injury risks in rear impacts with vehicle model years (MY) grouped prior to, during the phase-in and after the revision to FMVSS 301. FARS and NASS-CDS data were used to determine the injury risks of non-ejected occupants in light vehicles involving non-rollover, rear impacts. The data were analyzed by MY groups: 1996-2001, 2002-2007 and 2008+ to represent the years prior to, during the phase-in and post-revision phase-in of FMVSS 301. The 1996-2013 FARS data were analyzed for rear crashes defined by the initial crash direction (IMPACT1) and direction with most damage (IMPACT2) to the rear. Fatality risk was determined by the number of fatally injured occupants per all occupants with known injury status. The 1994-2013 NASS-CDS was analyzed for rear crashes defined by the damage area variable. The risk of severe injury (MAIS 4+F) was determined as the number of occupants with MAIS 4+F injury per all occupants with known injury status. The distribution of rear crashes was determined by impact location and crash severity. NASS-CDS electronic cases with 2008+ MY vehicles were analyzed to evaluate the vehicle and occupant performance. The fatality risk was 20.6% in the 1996-2001, 17.3% in the 2002-2007 and 15.0% in the 2008+ MY vehicles using FARS with the initial crash direction variable (IMPACT1) to the rear. There was a 27.1% reduction in risk with post-FMVSS 301 vehicles 2008+ MY. The risk was 19.0%, 15.4% and 12.8% with the most damage variable (IMPACT2) to the rear. There was 32.8% reduction in risk with 2008+ MY vehicles. The NASS-CDS analysis showed that the risk of severe injury (MAIS 4+F) was 0.27±0.05% for 1996-2001, 0.30±0.13% for 2002-2007 and 0.08±0.04% for 2008+ MY year vehicles. There was a 70.2% reduction in the risk for severe injury with 2008+ MY vehicles. The NASS-CDS case review of MAIS 4+F injury in rear impacts of 2008+ MY vehicles that comply with the revised FMVSS 301 indicated that the crashes were very severe and generally involved significant 2nd row intrusion. The revision to FMVSS 301 has effectively reduced the risks for fatal and severe injury in vehicles compliant with the revision (2008+ MY). The reduction was 27.1-32.8% in fatality risk using FARS data and 70.2% in severe injury risk using the NASS-CDS when compared to vehicles prior to the phase-in of the revised FMVSS 301 (1996-2001 MY vehicles). It is not possible to parse the effects of other design changes in seats and restraint systems that also increased safety over the study years. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hot-Air Balloon Tours: Crash Epidemiology in the United States, 2000-2011
Ballard, Sarah-Blythe; Beaty, Leland P.; Baker, Susan P.
2016-01-01
Introduction Hot-air balloon tours are FAR Part 91-governed balloon rides conducted for compensation or hire. Part 91, General Aviation, in general involves the least strict federal regulations and accounts for the majority of aviation crashes and fatalities. Methods National Transportation Safety Board reports of hot-air balloon tour crashes in the United States from 2000 through 2011 were read and analyzed. Results During the 12-yr period, 78 hot-air balloon tours crashed, involving 518 occupants. There were 91 serious injuries and 5 fatalities; 83% of crashes resulted in one or more serious or fatal outcomes. Of the serious injuries characterized, 56% were lower extremity fractures. Most crashes (81%) occurred during landing; 65% involved hard landings. Fixed object collisions contributed to 50% of serious injuries and all 5 fatalities. During landing sequences, gondola dragging, tipping, bouncing, and occupant ejection were associated with poor outcomes. Of the crashes resulting in serious or fatal outcomes, 20% of balloons were significantly damaged or destroyed. Discussion The incidence of morbidity and mortality is high among hot-air balloon tour crashes, and the proportion of balloon crashes attributed to paid rides appears to have increased over time. In addition to examining the role of restraint systems, personal protective equipment, and power line emergency procedures in ballooning, injury prevention efforts should target factors such hard landings, object strikes, gondola instability, and occupant ejections, which are associated with balloon injuries and deaths. Crash outcomes may also improve with vehicle engineering that enables balloons themselves to absorb impact forces. PMID:24279231
NASA Astrophysics Data System (ADS)
Domino, Krzysztof
2017-02-01
The cumulant analysis plays an important role in non Gaussian distributed data analysis. The shares' prices returns are good example of such data. The purpose of this research is to develop the cumulant based algorithm and use it to determine eigenvectors that represent investment portfolios with low variability. Such algorithm is based on the Alternating Least Square method and involves the simultaneous minimisation 2'nd- 6'th cumulants of the multidimensional random variable (percentage shares' returns of many companies). Then the algorithm was tested during the recent crash on the Warsaw Stock Exchange. To determine incoming crash and provide enter and exit signal for the investment strategy the Hurst exponent was calculated using the local DFA. It was shown that introduced algorithm is on average better that benchmark and other portfolio determination methods, but only within examination window determined by low values of the Hurst exponent. Remark that the algorithm is based on cumulant tensors up to the 6'th order calculated for a multidimensional random variable, what is the novel idea. It can be expected that the algorithm would be useful in the financial data analysis on the world wide scale as well as in the analysis of other types of non Gaussian distributed data.
Vanlaar, Ward; Robertson, Robyn; Marcoux, Kyla
2014-01-01
The objective of this study was to evaluate the impact of Winnipeg's photo enforcement safety program on speeding, i.e., "speed on green", and red-light running behavior at intersections as well as on crashes resulting from these behaviors. ARIMA time series analyses regarding crashes related to red-light running (right-angle crashes and rear-end crashes) and crashes related to speeding (injury crashes and property damage only crashes) occurring at intersections were conducted using monthly crash counts from 1994 to 2008. A quasi-experimental intersection camera experiment was also conducted using roadside data on speeding and red-light running behavior at intersections. These data were analyzed using logistic regression analysis. The time series analyses showed that for crashes related to red-light running, there had been a 46% decrease in right-angle crashes at camera intersections, but that there had also been an initial 42% increase in rear-end crashes. For crashes related to speeding, analyses revealed that the installation of cameras was not associated with increases or decreases in crashes. Results of the intersection camera experiment show that there were significantly fewer red light running violations at intersections after installation of cameras and that photo enforcement had a protective effect on speeding behavior at intersections. However, the data also suggest photo enforcement may be less effective in preventing serious speeding violations at intersections. Overall, Winnipeg's photo enforcement safety program had a positive net effect on traffic safety. Results from both the ARIMA time series and the quasi-experimental design corroborate one another. However, the protective effect of photo enforcement is not equally pronounced across different conditions so further monitoring is required to improve the delivery of this measure. Results from this study as well as limitations are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Glass half-full: On-road glance metrics differentiate crashes from near-crashes in the 100-Car data.
Seppelt, Bobbie D; Seaman, Sean; Lee, Joonbum; Angell, Linda S; Mehler, Bruce; Reimer, Bryan
2017-10-01
Much of the driver distraction and inattention work to date has focused on concerns over drivers removing their eyes from the forward roadway to perform non-driving-related tasks, and its demonstrable link to safety consequences when these glances are timed at inopportune moments. This extensive literature has established, through the analyses of glance from naturalistic datasets, a clear relationship between eyes-off-road, lead vehicle closing kinematics, and near-crash/crash involvement. This paper looks at the role of driver expectation in influencing drivers' decisions about when and for how long to remove their eyes from the forward roadway in an analysis that consider the combined role of on- and off-road glances. Using glance data collected in the 100-Car Naturalistic Driving Study (NDS), near-crashes were examined separately from crashes to examine how momentary differences in glance allocation over the 25-s prior to a precipitating event can differentiate between these two distinct outcomes. Individual glance metrics of mean single glance duration (MSGD), total glance time (TGT), and glance count for off-road and on-road glance locations were analyzed. Output from the AttenD algorithm (Kircher and Ahlström, 2009) was also analyzed as a hybrid measure; in threading together on- and off-road glances over time, its output produces a pattern of glance behavior meaningful for examining attentional effects. Individual glance metrics calculated at the epoch-level and binned by 10-s units of time across the available epoch lengths revealed that drivers in near-crashes have significantly longer on-road glances, and look less frequently between on- and off- road locations in the moments preceding a precipitating event as compared to crashes. During on-road glances, drivers in near-crashes were found to more frequently sample peripheral regions of the roadway than drivers in crashes. Output from the AttenD algorithm affirmed the cumulative net benefit of longer on-road glances and of improved attention management between on- and off-road locations. The finding of longer on-road glances differentiating between safety-critical outcomes in the 100-Car NDS data underscores the importance of attention management in how drivers look both on and off the road. It is in the pattern of glances to and from the forward roadway that drivers obtained critical information necessary to inform their expectation of hazard potential to avoid a crash. This work may have important implications for attention management in the context of the increasing prevalence of in-vehicle demands as well as of vehicle automation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Trends in the crash involvement of older drivers in Australia.
Thompson, James P; Baldock, Matthew R J; Dutschke, Jeffrey K
2018-05-03
Research from the USA and Great Britain indicates that the number of fatal crashes (as well as the rates of crashes of all levels of injury and property damage) involving older drivers declined between approximately 1997 and 2010 despite increases in the number of older drivers on the road and in their driving exposure. Differing results have been found in Australian research with the number of older driver fatalities having been steady and even slightly increasing between 2004 and 2013. The present study further examined trends in the crash involvement of older drivers in Australia to determine whether their involvement has been increasing or decreasing, and how this compares to trends for younger aged drivers. Crash, injury, population and licensure data were examined by age group for the years 2003-2012. There were increases in the population and licensure of drivers aged 65 years and older, while the total crashes, serious injuries, and fatalities remained steady for drivers aged 65-84 and increased for the oldest group (85+) between 2003 and 2012. Increasing trends were also found for drivers 85 and older for rates of serious or fatal injuries per head of population and per licensed driver. Population and licensure among younger age groups also increased but their crash numbers and crash rates remained steady or declined. The stable or slightly increasing fatal crash involvement of older drivers in Australia contrasts with the declining trends in the USA and Great Britain. Therefore, greater attention should be given to the road safety of older drivers in Australia. Copyright © 2018 Elsevier Ltd. All rights reserved.
Contributing factors to vehicle to vehicle crash frequency and severity under rainfall.
Jung, Soyoung; Jang, Kitae; Yoon, Yoonjin; Kang, Sanghyeok
2014-09-01
This study combined vehicle to vehicle crash frequency and severity estimations to examine factor impacts on Wisconsin highway safety in rainy weather. Because of data deficiency, the real-time water film depth, the car-following distance, and the vertical curve grade were estimated with available data sources and a GIS analysis to capture rainy weather conditions at the crash location and time. Using a negative binomial regression for crash frequency estimation, the average annual daily traffic per lane, the interaction between the posted speed limit change and the existence of an off-ramp, and the interaction between the travel lane number change and the pavement surface material change were found to increase the likelihood of vehicle to vehicle crashes under rainfall. However, more average daily rainfall per month and a wider left shoulder were identified as factors that decrease the likelihood of vehicle to vehicle crashes. In the crash severity estimation using the multinomial logit model that outperformed the ordered logit model, the travel lane number, the interaction between the travel lane number and the slow grade, the deep water film, and the rear-end collision type were more likely to increase the likelihood of injury crashes under rainfall compared with crashes involving only property damage. As an exploratory data analysis, this study provides insight into potential strategies for rainy weather highway safety improvement, specifically, the following weather-sensitive strategies: road design and ITS implementation for drivers' safety awareness under rainfall. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
Bärgman, Jonas; Boda, Christian-Nils; Dozza, Marco
2017-05-01
As the development and deployment of in-vehicle intelligent safety systems (ISS) for crash avoidance and mitigation have rapidly increased in the last decades, the need to evaluate their prospective safety benefits before introduction has never been higher. Counterfactual simulations using relevant mathematical models (for vehicle dynamics, sensors, the environment, ISS algorithms, and models of driver behavior) have been identified as having high potential. However, although most of these models are relatively mature, models of driver behavior in the critical seconds before a crash are still relatively immature. There are also large conceptual differences between different driver models. The objective of this paper is, firstly, to demonstrate the importance of the choice of driver model when counterfactual simulations are used to evaluate two ISS: Forward collision warning (FCW), and autonomous emergency braking (AEB). Secondly, the paper demonstrates how counterfactual simulations can be used to perform sensitivity analyses on parameter settings, both for driver behavior and ISS algorithms. Finally, the paper evaluates the effect of the choice of glance distribution in the driver behavior model on the safety benefit estimation. The paper uses pre-crash kinematics and driver behavior from 34 rear-end crashes from the SHRP2 naturalistic driving study for the demonstrations. The results for FCW show a large difference in the percent of avoided crashes between conceptually different models of driver behavior, while differences were small for conceptually similar models. As expected, the choice of model of driver behavior did not affect AEB benefit much. Based on our results, researchers and others who aim to evaluate ISS with the driver in the loop through counterfactual simulations should be sure to make deliberate and well-grounded choices of driver models: the choice of model matters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Built environment effects on cyclist injury severity in automobile-involved bicycle crashes.
Chen, Peng; Shen, Qing
2016-01-01
This analysis uses a generalized ordered logit model and a generalized additive model to estimate the effects of built environment factors on cyclist injury severity in automobile-involved bicycle crashes, as well as to accommodate possible spatial dependence among crash locations. The sample is drawn from the Seattle Department of Transportation bicycle collision profiles. This study classifies the cyclist injury types as property damage only, possible injury, evident injury, and severe injury or fatality. Our modeling outcomes show that: (1) injury severity is negatively associated with employment density; (2) severe injury or fatality is negatively associated with land use mixture; (3) lower likelihood of injuries is observed for bicyclists wearing reflective clothing; (4) improving street lighting can decrease the likelihood of cyclist injuries; (5) posted speed limit is positively associated with the probability of evident injury and severe injury or fatality; (6) older cyclists appear to be more vulnerable to severe injury or fatality; and (7) cyclists are more likely to be severely injured when large vehicles are involved in crashes. One implication drawn from this study is that cities should increase land use mixture and development density, optimally lower posted speed limits on streets with both bikes and motor vehicles, and improve street lighting to promote bicycle safety. In addition, cyclists should be encouraged to wear reflective clothing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Teoh, Eric R
2018-07-04
The objective of this study was to identify and quantify the motorcycle crash population that would be potential beneficiaries of 3 crash avoidance technologies recently available on passenger vehicles. Two-vehicle crashes between a motorcycle and a passenger vehicle that occurred in the United States during 2011-2015 were classified by type, with consideration of the functionality of 3 classes of passenger vehicle crash avoidance technologies: frontal crash prevention, lane maintenance, and blind spot detection. Results were expressed as the percentage of crashes potentially preventable by each type of technology, based on all known types of 2-vehicle crashes and based on all crashes involving motorcycles. Frontal crash prevention had the largest potential to prevent 2-vehicle motorcycle crashes with passenger vehicles. The 3 technologies in sum had the potential to prevent 10% of fatal 2-vehicle crashes and 23% of police-reported crashes. However, because 2-vehicle crashes with a passenger vehicle represent fewer than half of all motorcycle crashes, these technologies represent a potential to avoid 4% of all fatal motorcycle crashes and 10% of all police-reported motorcycle crashes. Refining the ability of passenger vehicle crash avoidance systems to detect motorcycles represents an opportunity to improve motorcycle safety. Expanding the capabilities of these technologies represents an even greater opportunity. However, even fully realizing these opportunities can affect only a minority of motorcycle crashes and does not change the need for other motorcycle safety countermeasures such as helmets, universal helmet laws, and antilock braking systems.
CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Holst, B.; Toth, G.; Sokolov, I. V.
We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1)more » an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.« less
32 CFR 536.120 - Claims payable as maritime claims.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Damage to a wharf, pier, jetty, fishing net, farm facilities or other structures in, on, or adjacent to any body of water; (d) Damage or injury on land or on water arising under the AEA and allegedly due to... board an Army ship, boat, barge or other watercraft; and (f) Crash into water of an Army aircraft. ...
NASA Astrophysics Data System (ADS)
Ko, Bonggyun; Song, Jae Wook; Chang, Woojin
2018-02-01
The aim of this research is to propose an alarm index to forecast the crash of the Korean financial market in extension to the idea of Johansen-Ledoit-Sornette model, which uses the log-periodic functions and pattern recognition algorithm. We discover that the crashes of the Korean financial market can be classified into domestic and global crises where each category requires different window length of fitted datasets. Therefore, we add the window length as a new parameter to enhance the performance of alarm index. Distinguishing the domestic and global crises separately, our alarm index demonstrates more robust forecasting than previous model by showing the error diagram and the results of trading performance.
Social costs of road crashes: An international analysis.
Wijnen, Wim; Stipdonk, Henk
2016-09-01
This paper provides an international overview of the most recent estimates of the social costs of road crashes: total costs, value per casualty and breakdown in cost components. The analysis is based on publications about the national costs of road crashes of 17 countries, of which ten high income countries (HICs) and seven low and middle income countries (LMICs). Costs are expressed as a proportion of the gross domestic product (GDP). Differences between countries are described and explained. These are partly a consequence of differences in the road safety level, but there are also methodological explanations. Countries may or may not correct for underreporting of road crashes, they may or may not use the internationally recommended willingness to pay (WTP)-method for estimating human costs, and there are methodological differences regarding the calculation of some other cost components. The analysis shows that the social costs of road crashes in HICs range from 0.5% to 6.0% of the GDP with an average of 2.7%. Excluding countries that do not use a WTP- method for estimating human costs and countries that do not correct for underreporting, results in average costs of 3.3% of GDP. For LMICs that do correct for underreporting the share in GDP ranges from 1.1% to 2.9%. However, none of the LMICs included has performed a WTP study of the human costs. A major part of the costs is related to injuries: an average share of 50% for both HICs and LMICs. The average share of fatalities in the costs is 23% and 30% respectively. Prevention of injuries is thus important to bring down the socio-economic burden of road crashes. The paper shows that there are methodological differences between countries regarding cost components that are taken into account and regarding the methods used to estimate specific cost components. In order to be able to make sound comparisons of the costs of road crashes across countries, (further) harmonization of cost studies is recommended. This can be achieved by updating and improving international guidelines and applying them in future cost studies. The information regarding some cost components, particularly human costs and property damage, is poor and more research into these cost components is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exploring the risk factors associated with the size and severity of roadway crashes in Riyadh.
Hassan, Hany M; Al-Faleh, Hesham
2013-12-01
Recently, growing concern has been shifting toward the necessity of improving traffic safety in the Kingdom of Saudi Arabia (KSA). KSA has a unique traffic safety problem in that: (a) it can be classified as a developed country in terms of the magnitude and quality of the roadway networks available and its compatibility with international standards; however, (b) it can also be considered a developing country as the rate of increase in the number of road crashes is substantial compared with relevant figures of other developing countries and other countries of the Gulf region. Hence, more research efforts are still needed. This paper examines the nature and causes of fatal and serious traffic crashes in KSA so that solutions and/or future studies can be suggested. Data from 11,545 reported fatal and injury traffic crashes that occurred in Riyadh (the capital of KSA) during the period 2004-2011 were analyzed by alternative and complementary methods. A logistic regression model was estimated and the results revealed that crash reason (speeding), damages in public property, day of the week, crash location (non-intersection location), and point of collision (head-on) were the significant variables affecting the binary target variable (fatal and non-fatal crashes). Additionally, the structural equation modeling approach was developed to identify and quantify the impacts of significant variables influencing crash size (e.g., no. of injuries, no. of vehicles involved in the crash). Crash size is one of the important indices that measure the level of safety of transportation facilities. The results showed that road factor was the most significant factor affecting the size of the crash followed by the driver and environment factors. Considering the results of this study, practical suggestions on how to improve traffic safety in KSA are also presented and discussed. © 2013.
Venkataraman, Narayan; Ulfarsson, Gudmundur F; Shankar, Venky N
2013-10-01
A nine-year (1999-2007) continuous panel of crash histories on interstates in Washington State, USA, was used to estimate random parameter negative binomial (RPNB) models for various aggregations of crashes. A total of 21 different models were assessed in terms of four ways to aggregate crashes, by: (a) severity, (b) number of vehicles involved, (c) crash type, and by (d) location characteristics. The models within these aggregations include specifications for all severities (property damage only, possible injury, evident injury, disabling injury, and fatality), number of vehicles involved (one-vehicle to five-or-more-vehicle), crash type (sideswipe, same direction, overturn, head-on, fixed object, rear-end, and other), and location types (urban interchange, rural interchange, urban non-interchange, rural non-interchange). A total of 1153 directional road segments comprising of the seven Washington State interstates were analyzed, yielding statistical models of crash frequency based on 10,377 observations. These results suggest that in general there was a significant improvement in log-likelihood when using RPNB compared to a fixed parameter negative binomial baseline model. Heterogeneity effects are most noticeable for lighting type, road curvature, and traffic volume (ADT). Median lighting or right-side lighting are linked to increased crash frequencies in many models for more than half of the road segments compared to both-sides lighting. Both-sides lighting thereby appears to generally lead to a safety improvement. Traffic volume has a random parameter but the effect is always toward increasing crash frequencies as expected. However that the effect is random shows that the effect of traffic volume on crash frequency is complex and varies by road segment. The number of lanes has a random parameter effect only in the interchange type models. The results show that road segment-specific insights into crash frequency occurrence can lead to improved design policy and project prioritization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Assessing crash risk considering vehicle interactions with trucks using point detector data.
Hyun, Kyung Kate; Jeong, Kyungsoo; Tok, Andre; Ritchie, Stephen G
2018-03-12
Trucks have distinct driving characteristics in general traffic streams such as lower speeds and limitations in acceleration and deceleration. As a consequence, vehicles keep longer headways or frequently change lane when they follow a truck, which is expected to increase crash risk. This study introduces several traffic measures at the individual vehicle level to capture vehicle interactions between trucks and non-trucks and analyzed how the measures affect crash risk under different traffic conditions. The traffic measures were developed using headways obtained from Inductive Loop Detectors (ILDs). In addition, a truck detection algorithm using a Gaussian Mixture (GM) model was developed to identify trucks and to estimate truck exposure from ILD data. Using the identified vehicle types from the GM model, vehicle interaction metrics were categorized into three groups based on the combination of leading and following vehicle types. The effects of the proposed traffic measures on crash risk were modeled in two different cases of prior- and non-crash using a case-control approach utilizing a conditional logistic regression. Results showed that the vehicle interactions between the leading and following vehicle types were highly associated with crash risk, and further showed different impacts on crash risk by traffic conditions. Specifically, crashes were more likely to occur when a truck following a non-truck had shorter average headway but greater headway variance in heavy traffic while a non-truck following a truck had greater headway variance in light traffic. This study obtained meaningful conclusions that vehicle interactions involved with trucks were significantly related to the crash likelihood rather than the measures that estimate average traffic condition such as total volume or average headway of the traffic stream. Copyright © 2018 Elsevier Ltd. All rights reserved.
A generalized nonlinear model-based mixed multinomial logit approach for crash data analysis.
Zeng, Ziqiang; Zhu, Wenbo; Ke, Ruimin; Ash, John; Wang, Yinhai; Xu, Jiuping; Xu, Xinxin
2017-02-01
The mixed multinomial logit (MNL) approach, which can account for unobserved heterogeneity, is a promising unordered model that has been employed in analyzing the effect of factors contributing to crash severity. However, its basic assumption of using a linear function to explore the relationship between the probability of crash severity and its contributing factors can be violated in reality. This paper develops a generalized nonlinear model-based mixed MNL approach which is capable of capturing non-monotonic relationships by developing nonlinear predictors for the contributing factors in the context of unobserved heterogeneity. The crash data on seven Interstate freeways in Washington between January 2011 and December 2014 are collected to develop the nonlinear predictors in the model. Thirteen contributing factors in terms of traffic characteristics, roadway geometric characteristics, and weather conditions are identified to have significant mixed (fixed or random) effects on the crash density in three crash severity levels: fatal, injury, and property damage only. The proposed model is compared with the standard mixed MNL model. The comparison results suggest a slight superiority of the new approach in terms of model fit measured by the Akaike Information Criterion (12.06 percent decrease) and Bayesian Information Criterion (9.11 percent decrease). The predicted crash densities for all three levels of crash severities of the new approach are also closer (on average) to the observations than the ones predicted by the standard mixed MNL model. Finally, the significance and impacts of the contributing factors are analyzed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Do Hyun; Choi, Kyoung Ho; Kim, Kyeong Tae; Li, Ki Joune
In this letter, we propose a novel approach using wireless sensor networks (WSNs) to enhance the safety and efficiency of four-way stop-sign-controlled (FWSC) intersections. The proposed algorithm provides right of way (RoW) and crash avoidance information by means of an intelligent WSN system. The system is composed of magnetic sensors, embedded in the center of a lane, with relay nodes and a base station placed on the side of the road. The experimental results show that the vehicle detection accuracy is over 99% and the sensor node battery life expectancy is over 3 years for traffic of 5, 800 vehicles per day. For the traffic application we consider, a strong effect is observed as the projected conflict rate was reduced by 72% compared to an FWSC intersection operated with only driver perception.
NASA Astrophysics Data System (ADS)
Jones, N.; Wierzbicki, T.
The application of solid, structural, and experimental mechanics to predict the crumpling behavior and energy absorption of thin-walled structures under quasi-static compression and various dynamic crash loadings is examined in reviews of current research. Both fundamental aspects and specific problems in the design of crashworthy aircraft, automobiles, railroad cars, ships, and offshore installations are considered. Topics discussed include laterally compressed metal tubes as impact-energy absorbers, crushing behavior of plate intersections, axial crushing of fiber-reinforced composite tubes, finite-element analysis of structural crashworthiness in the automotive and aerospace industries, crash behavior of aircraft fuselage structures, aircraft crash analysis, ship collisions, and structural damage in airship and rolling-stock collisions. Photographs, graphs, drawings, and diagrams are provided.
Chen, Cong; Zhang, Guohui; Yang, Jinfu; Milton, John C; Alcántara, Adélamar Dely
2016-05-01
Rear-end crashes are a major type of traffic crashes in the U.S. Of practical necessity is a comprehensive examination of its mechanism that results in injuries and fatalities. Decision table (DT) and Naïve Bayes (NB) methods have both been used widely but separately for solving classification problems in multiple areas except for traffic safety research. Based on a two-year rear-end crash dataset, this paper applies a decision table/Naïve Bayes (DTNB) hybrid classifier to select the deterministic attributes and predict driver injury outcomes in rear-end crashes. The test results show that the hybrid classifier performs reasonably well, which was indicated by several performance evaluation measurements, such as accuracy, F-measure, ROC, and AUC. Fifteen significant attributes were found to be significant in predicting driver injury severities, including weather, lighting conditions, road geometry characteristics, driver behavior information, etc. The extracted decision rules demonstrate that heavy vehicle involvement, a comfortable traffic environment, inferior lighting conditions, two-lane rural roadways, vehicle disabled damage, and two-vehicle crashes would increase the likelihood of drivers sustaining fatal injuries. The research limitations on data size, data structure, and result presentation are also summarized. The applied methodology and estimation results provide insights for developing effective countermeasures to alleviate rear-end crash injury severities and improve traffic system safety performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Effati, Meysam; Thill, Jean-Claude; Shabani, Shahin
2015-04-01
The contention of this paper is that many social science research problems are too "wicked" to be suitably studied using conventional statistical and regression-based methods of data analysis. This paper argues that an integrated geospatial approach based on methods of machine learning is well suited to this purpose. Recognizing the intrinsic wickedness of traffic safety issues, such approach is used to unravel the complexity of traffic crash severity on highway corridors as an example of such problems. The support vector machine (SVM) and coactive neuro-fuzzy inference system (CANFIS) algorithms are tested as inferential engines to predict crash severity and uncover spatial and non-spatial factors that systematically relate to crash severity, while a sensitivity analysis is conducted to determine the relative influence of crash severity factors. Different specifications of the two methods are implemented, trained, and evaluated against crash events recorded over a 4-year period on a regional highway corridor in Northern Iran. Overall, the SVM model outperforms CANFIS by a notable margin. The combined use of spatial analysis and artificial intelligence is effective at identifying leading factors of crash severity, while explicitly accounting for spatial dependence and spatial heterogeneity effects. Thanks to the demonstrated effectiveness of a sensitivity analysis, this approach produces comprehensive results that are consistent with existing traffic safety theories and supports the prioritization of effective safety measures that are geographically targeted and behaviorally sound on regional highway corridors.
Yuan, Quan; Lu, Meng; Theofilatos, Athanasios; Li, Yi-Bing
2017-02-01
Rear-end crashes attribute to a large portion of total crashes in China, which lead to many casualties and property damage, especially when involving commercial vehicles. This paper aims to investigate the critical factors for occupant injury severity in the specific rear-end crash type involving trucks as the front vehicle (FV). This paper investigated crashes occurred from 2011 to 2013 in Beijing area, China and selected 100 qualified cases i.e., rear-end crashes involving trucks as the FV. The crash data were supplemented with interviews from police officers and vehicle inspection. A binary logistic regression model was used to build the relationship between occupant injury severity and corresponding affecting factors. Moreover, a multinomial logistic model was used to predict the likelihood of fatal or severe injury or no injury in a rear-end crash. The results provided insights on the characteristics of driver, vehicle and environment, and the corresponding influences on the likelihood of a rear-end crash. The binary logistic model showed that drivers' age, weight difference between vehicles, visibility condition and lane number of road significantly increased the likelihood for severe injury of rear-end crash. The multinomial logistic model and the average direct pseudo-elasticity of variables showed that night time, weekdays, drivers from other provinces and passenger vehicles as rear vehicles significantly increased the likelihood of rear drivers being fatal. All the abovementioned significant factors should be improved, such as the conditions of lighting and the layout of lanes on roads. Two of the most common driver factors are drivers' age and drivers' original residence. Young drivers and outsiders have a higher injury severity. Therefore it is imperative to enhance the safety education and management on the young drivers who steer heavy duty truck from other cities to Beijing on weekdays. Copyright © 2016 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.
McDonald, Catherine C; Curry, Allison E; Kandadai, Venk; Sommers, Marilyn S; Winston, Flaura K
2014-11-01
Motor vehicle crashes are the leading cause of death and acquired disability during the first four decades of life. While teen drivers have the highest crash risk, few studies examine the similarities and differences in teen and adult driver crashes. We aimed to: (1) identify and compare the most frequent crash scenarios-integrated information on a vehicle's movement prior to crash, immediate pre-crash event, and crash configuration-for teen and adult drivers involved in serious crashes, and (2) for the most frequent scenarios, explore whether the distribution of driver critical errors differed for teens and adult drivers. We analyzed data from the National Motor Vehicle Crash Causation Survey, a nationally representative study of serious crashes conducted by the U.S. National Highway Traffic Safety Administration from 2005 to 2007. Our sample included 642 16- to 19-year-old and 1167 35- to 54-year-old crash-involved drivers (weighted n=296,482 and 439,356, respectively) who made a critical error that led to their crash's critical pre-crash event (i.e., event that made the crash inevitable). We estimated prevalence ratios (PR) and 95% confidence intervals (CI) to compare the relative frequency of crash scenarios and driver critical errors. The top five crash scenarios among teen drivers, accounting for 37.3% of their crashes, included: (1) going straight, other vehicle stopped, rear end; (2) stopped in traffic lane, turning left at intersection, turn into path of other vehicle; (3) negotiating curve, off right edge of road, right roadside departure; (4) going straight, off right edge of road, right roadside departure; and (5) stopped in lane, turning left at intersection, turn across path of other vehicle. The top five crash scenarios among adult drivers, accounting for 33.9% of their crashes, included the same scenarios as the teen drivers with the exception of scenario (3) and the addition of going straight, crossing over an intersection, and continuing on a straight path. For two scenarios ((1) and (3) above), teens were more likely than adults to make a critical decision error (e.g., traveling too fast for conditions). Our findings indicate that among those who make a driver critical error in a serious crash, there are few differences in the scenarios or critical driver errors for teen and adult drivers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Financial responsibility requirements for commercial motor vehicles.
DOT National Transportation Integrated Search
2013-01-01
Minimum liability insurance levels and related requirements for motor carriers to demonstrate financial responsibility in case of damages from crashes were established in the 1980s by Congressional legislation. These levels have not been changed s...
DOT National Transportation Integrated Search
2010-01-01
Each September 1, the MeBHS must provide NHTSA a comprehensive plan to reduce : traffic crashes and resulting deaths, injuries and property damage. The Highway Safety : Plan (HSP) serves as Maines application for available federal funds for these ...
VECVEV : Vehicle Crash Virtual Environment Visualizer
DOT National Transportation Integrated Search
2001-03-01
Crashworthiness of automotive vehicles and impact response of highway structures represent very active research areas. The ultimate goal is to design vehicles and highway structures to minimize risk to passengers while also controlling damage to vehi...
Aduen, Paula A; Kofler, Michael J; Sarver, Dustin E; Wells, Erica L; Soto, Elia F; Cox, Daniel J
2018-06-01
ADHD is associated with automobile crashes, traffic fatalities, and serious road trauma, but it is unclear whether this risk is (a) driven by ADHD symptoms specifically, and (b) unique to ADHD or transdiagnostic across psychiatric disabilities, such as depression, that also have concentration problems as core symptoms. The current study provides the first prospective, continuously-monitored evaluation of crash risk related to ADHD symptoms, including the first on-road comparison of ADHD with another high-prevalence psychiatric disability (depression). A probability-based sample of 3226 drivers from six U.S. sites, including subsamples with self-reported ADHD (n = 274) and depression (n = 251), consented to have their vehicles outfitted with sophisticated data acquisition technologies to continuously monitor real-world, day-to-day driving from 'engine-on to engine-off' for 1-2 years (Mean = 440 consecutive days/driver, Mean = 9528 miles/driver). Crashes and near-crashes were objectively identified via software-based algorithms and double-coded manual validation (blinded to clinical status). Miles driven, days monitored, age, gender, education, and marital status were controlled. ADHD symptoms portended 5% increased crash risk per increase in symptom severity score (IRR = 1.05). This risk corresponded to approximately 1 biennial crash and 1 annual near-crash per driver with ADHD; crash risk doubled for drivers reporting ADHD symptom severity near the sample's maximum. Analyses based on self-reported clinical status indicated similarly elevated rates for ADHD (IRR = 1.46) and depression (IRR = 1.34) that may be related, in part, to both groups' inattention/concentration symptoms. Risk was not attenuated by ADHD usual treatment, but varied according to antidepressant medication status. Previous studies have significantly underestimated the risk for traffic crashes conveyed by ADHD and depression. Copyright © 2018 Elsevier Ltd. All rights reserved.
Inappropriate Alarm Rates and Driver Annoyance
DOT National Transportation Integrated Search
1996-02-01
Future in-vehicle crash avoidance warning systems will inevitably deliver : inappropriate alarms from time to time, caused for example, by situations where : algorithms have correctly identified an object but pose no threat or danger to : the driver....
Severe injury in multiple impacts: Analysis of 1997-2015 NASS-CDS.
Viano, David C; Parenteau, Chantal S
2018-07-04
This is a descriptive study of the incidence and risk for severe injury in single-impact and multi-impact crashes by belt use and crash type using NASS-CDS. 1997-2015 NASS-CDS data were used to determine the distribution of crashes by the number of impacts and severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to >15-year-old nonejected drivers by seat belt use in 1997+ MY vehicles. It compares the risk for severe injury in a single impact and in crashes involving 2, 3, or 4+ impacts in the collision with a focus on a frontal crash followed by other impacts. Most vehicle crashes involve a single impact (75.4% of 44,889,518 vehicles), followed by 2-impact crashes (19.6%), 3-impact crashes (5.0%) and 4+ impacts (2.6%). For lap-shoulder-belted drivers, the distribution of severe injury was 42.1% in a single impact, 29.3% in 2 impacts, 13.4% in 3 impacts, and 15.1% in 4+ impact crashes. The risk for a belted driver was 0.256 ± 0.031% in a single impact, 0.564 ± 0.079% in 2 impacts, 0.880 ± 0.125% in 3 impacts, and 2.121 ± 0.646% in 4+ impact. The increase in risk from a single crash to multi-impact collisions was statistically significant (P < .001). In a single impact, 53.8% of belted drivers were in a frontal crashes, 22.4% in side crashes, 20% in rear crashes, and 1.7% in rollover crashes. The risk for severe injury was highest in a rollover at 0.677 ± 0.250%, followed by near-side impact at 0.467 ± 0.084% and far-side impact at 0.237 ± 0.071%. Seat belt use was 82.4% effective in preventing severe injury (MAIS 4+F) in a rollover, 47.9% in a near-side impact, and 74.8% in a far-side impact. In 2-impact crashes with a belted driver, the most common sequence was a rear impact followed by a frontal crash at 1,843,506 (21.5%) with a risk for severe injury of 0.100 ± 0.058%. The second most common was a frontal impact followed by another frontal crash at 1,257,264 (14.7%) with a risk of 0.401 ± 0.057%. The risk was 0.658 ± 0.271% in a frontal impact followed by a rear impact. A near-side impact followed by a rear crash had the highest risk for severe injury at 2.073 ± 1.322%. Restraint systems are generally developed for a single crash or sled test. The risk for severe injury was significantly higher in 2-, 3-, and 4+-impact crashes than a single impact. The majority (57.9%) of severe injuries occurred in multi-impact crashes with belted drivers. The evaluation of restraint performance warrants additional study in multi-impact crashes.
Kononen, Douglas W; Flannagan, Carol A C; Wang, Stewart C
2011-01-01
A multivariate logistic regression model, based upon National Automotive Sampling System Crashworthiness Data System (NASS-CDS) data for calendar years 1999-2008, was developed to predict the probability that a crash-involved vehicle will contain one or more occupants with serious or incapacitating injuries. These vehicles were defined as containing at least one occupant coded with an Injury Severity Score (ISS) of greater than or equal to 15, in planar, non-rollover crash events involving Model Year 2000 and newer cars, light trucks, and vans. The target injury outcome measure was developed by the Centers for Disease Control and Prevention (CDC)-led National Expert Panel on Field Triage in their recent revision of the Field Triage Decision Scheme (American College of Surgeons, 2006). The parameters to be used for crash injury prediction were subsequently specified by the National Expert Panel. Model input parameters included: crash direction (front, left, right, and rear), change in velocity (delta-V), multiple vs. single impacts, belt use, presence of at least one older occupant (≥ 55 years old), presence of at least one female in the vehicle, and vehicle type (car, pickup truck, van, and sport utility). The model was developed using predictor variables that may be readily available, post-crash, from OnStar-like telematics systems. Model sensitivity and specificity were 40% and 98%, respectively, using a probability cutpoint of 0.20. The area under the receiver operator characteristic (ROC) curve for the final model was 0.84. Delta-V (mph), seat belt use and crash direction were the most important predictors of serious injury. Due to the complexity of factors associated with rollover-related injuries, a separate screening algorithm is needed to model injuries associated with this crash mode. Copyright © 2010 Elsevier Ltd. All rights reserved.
Risk and type of crash among young drivers by rurality of residence: findings from the DRIVE Study.
Chen, H Y; Ivers, R Q; Martiniuk, A L C; Boufous, S; Senserrick, T; Woodward, M; Stevenson, M; Williamson, A; Norton, R
2009-07-01
Most previous literature on urban/rural differences in road crashes has a primary focus on severe injuries or deaths, which may be largely explained by variations of medical resources. Little has been reported on police-reported crashes by geographical location, or crash type and severity, especially among young drivers. DRIVE is a prospective cohort study of 20,822 drivers aged 17-24 in NSW, Australia. Information on risk factors was collected via online questionnaire and subsequently linked to police-reported crashes. Poisson regression was used to analyse risk of various crash types by three levels of rurality of residence: urban, regional (country towns and surrounds) and rural. Compared to urban drivers, risk of crash decreased with increasing rurality (regional adjusted RR: 0.7, 95% CI 0.6-0.9; rural adjusted RR: 0.5, 95% CI 0.3-0.7). Among those who crashed, risk of injurious crash did not differ by geographic location; however, regional and rural drivers had significantly higher risk of a single versus multiple vehicle crash (regional adjusted RR 1.8, 95% CI 1.3-2.5; rural adjusted RR: 2.0, 95% CI 1.1-3.6), which was explained by speeding involvement and road alignment at the time or site of crash. Although young urban drivers have a higher crash risk overall, rural and regional residents have increased risk of a single vehicle crash. Interventions to reduce single vehicle crashes should aim to address key issues affecting such crashes, including speeding and specific aspects of road geometry.
Raising the legal drinking age in Maine: impact on traffic accidents among young drivers.
Wagenaar, A C
1983-04-01
The minimum legal age for purchase and consumption of alcoholic beverages continues to be a controversial issue in North America as numerous jurisdictions that lowered the legal age in the early 1970s are returning to higher drinking ages. Monthly frequencies of motor vehicle crashes among drivers aged 18-45 in the states of Maine and Pennsylvania from 1972 through 1979 were examined using a multiple time series design. Controlling for the effects of long-term trends, seasonal cycles, and other factors with Box-Jenkins time series models, a significant 17-21% reduction in alcohol-related property damage crash involvement among drivers aged 18-19 is attributable to Maine's increase in drinking age. No demonstrable effect of the raised drinking age on the incidence of injury and fatal crashes was found.
1970-06-20
The M2-F3 Lifting Body is seen here on the lakebed next to the NASA Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California. The May 1967 crash of the M2-F2 had torn off the left fin and landing gear. It had also damaged the external skin and internal structure. Flight Research Center engineers worked with Ames Research Center and the Air Force in redesigning the vehicle with a center fin to provide greater stability. Then Northrop Corporation cooperated with the FRC in rebuilding the vehicle. The entire process took three years.
X-ray microtomography study of the spallation response in Ta-W
NASA Astrophysics Data System (ADS)
McDonald, Samuel; Cotton, Matthew; Millett, Jeremy; Bourne, Neil; Withers, Philip
2013-06-01
The response of metallic materials to high strain-rate (impact) loading is of interest to a number of communities. Traditionally, the largest driver has been the military, in its need to understand armour and resistance to ballistic attack. More recently, industries such as aerospace (foreign object damage, bird strike, etc.), automotive (crash-worthiness) and satellite protection (orbital debris) have all appreciated the necessity of such information. It is therefore important to understand the dynamic tensile or spallation response, and in particular to be able to observe in three-dimensions, and in a non-invasive manner, the physical damage present in the spalled region post-impact. The current study presents plate impact experiments investigating the spallation damage response of recovered targets of the tantalum alloy Ta-2.5%W. Using X-ray microtomography the damage resulting from differing impact conditions (impact velocity/stress, pulse duration) is compared and characterised in 3-D. Combined with free surface velocity measurements, the tensile failure mechanisms during dynamic loading have been identified.
Direct medical costs of motorcycle crashes in Ontario
Pincus, Daniel; Wasserstein, David; Nathens, Avery B.; Bai, Yu Qing; Redelmeier, Donald A.; Wodchis, Walter P.
2017-01-01
BACKGROUND: There is no reliable estimate of costs incurred by motorcycle crashes. Our objective was to calculate the direct costs of all publicly funded medical care provided to individuals after motorcycle crashes compared with automobile crashes. METHODS: We conducted a population-based, matched cohort study of adults in Ontario who presented to hospital because of a motorcycle or automobile crash from 2007 through 2013. For each case, we identified 1 control absent a motor vehicle crash during the study period. Direct costs for each case and control were estimated in 2013 Canadian dollars from the payer perspective using methodology that links health care use to individuals over time. We calculated costs attributable to motorcycle and automobile crashes within 2 years using a difference-in-differences approach. RESULTS: We identified 26 831 patients injured in motorcycle crashes and 281 826 injured in automobile crashes. Mean costs attributable to motorcycle and automobile crashes were $5825 and $2995, respectively (p < 0.001). The rate of injury was triple for motorcycle crashes compared with automobile crashes (2194 injured annually/100 000 registered motorcycles v. 718 injured annually/100 000 registered automobiles; incidence rate ratio [IRR] 3.1, 95% confidence interval [CI] 2.8 to 3.3, p < 0.001). Severe injuries, defined as those with an Abbreviated Injury Scale ≥ 3, were 10 times greater (125 severe injuries annually/100 000 registered motorcycles v. 12 severe injuries annually/100 000 registered automobiles; IRR 10.4, 95% CI 8.3 to 13.1, p < 0.001). INTERPRETATION: Considering both the attributable cost and higher rate of injury, we found that each registered motorcycle in Ontario costs the public health care system 6 times the amount of each registered automobile. Medical costs may provide an additional incentive to improve motorcycle safety. PMID:29158454
Crash-resistant fuel system effectiveness in civil helicopter crashes.
Hayden, Mark S; Shanahan, Dennis F; Chen, Li-Hui; Baker, Susan P
2005-08-01
Crash-resistant fuel systems (CRFS) have demonstrated close to 100% effectiveness in survivable crashes of Army helicopters, but the technology has been slow to transfer into the civil helicopter arena. Federal standards for civil helicopter CRFS are less stringent than those for military helicopters. A reduction in standards for CRFS in military helicopters is being considered. The goal of this study was to determine whether crashes of civil helicopters with CRFS are less likely to result in post-crash fire than crashes of those without. Crashes of civil helicopters during 1982-2004 were analyzed, comparing Bell 206 helicopters manufactured with CRFS with Aerospatial 350 helicopters manufactured during the same period (post-1981), but lacking CRFS. Bell 206 helicopters with CRFS were also compared with earlier models without CRFS. The highest proportion of crashes with post-crash fires (11.3%) was in AS-350s manufactured after 1981 (non-CRFS), and the lowest (3.7%) was in Bell 206s (with CRFS) [unadjusted risk ratio (RR) = 3.3, 95% confidence interval (CI) = 1.04, 10.50; adjusted for light and weather, RR = 2.81, Cl = 0.82, 9.69]. Earlier models of Bell 206s without CRFS had higher risk of post-crash fire than post-1981 models with CRFS (7.4% vs. 3.7%; adjusted RR = 2.11, Cl = 0.82, 5.45). The results of this study suggest a better performance, in terms of post-crash fire prevention, of CRFS-equipped civil helicopters as compared with those without CRFS. It is possible that CRFS in civil helicopters have not achieved the same degree of effectiveness as CRFS in military helicopters. CRFS should be used more widely in civil helicopters. The more stringent CRFS requirements for military helicopters should not be reduced without further research.
Numerical analysis of nuclear power plant structure subjected to aircraft crash
NASA Astrophysics Data System (ADS)
Saberi, Reza; Alinejad, Majid; Mahdavi, Mir Omid; Sepanloo, Kamran
2017-12-01
An aircraft crashing into a nuclear containment may induce a series of disasters related to containment capacity, including local penetration and perforation of the containment, intensive vibrations, and fire ignited after jet fuel leakage. In this study, structural safety of a reinforced concrete containment vessel (RCCV) has been studied against the direct hit of Airbus A320, Boeing 707-320 and Phantom F4 aircrafts. ABAQUS/explicit finite element code has been used to carry out the three-dimensional numerical simulations. The impact locations identified on the nuclear containment structure are mid height of containment, center of the cylindrical portion, junction of dome and cylinder, and over the cylindrical portion close to the foundation level. The loading of the aircraft has been assigned through the corresponding reaction-time response curve. The concrete damaged plasticity model was predicted to simulate the behavior of concrete while the behavior of steel reinforcement was incorporated using elastoplastic material model. Dynamic loading conditions were considered using dynamic increase factor. The mid height of containment and center of cylindrical portion have been found to experience most severe deformation against each aircraft crash. It has also been found that compression damage in concrete is not critical at none of the impact locations.
NASA Astrophysics Data System (ADS)
Ciunel, St.; Tica, B.
2016-08-01
The paper presents the studies made on a similar biomechanical system composed by neck, head and thorax bones. The models were defined in a CAD environment which includes Adams algorithm for dynamic simulations. The virtual models and the entire morphology were obtained starting with CT images made on a living human subject. The main movements analyzed were: axial rotation (left-right), lateral bending (left-right) and flexion- extension movement. After simulation was obtained the entire biomechanical behavior based on data tables or diagrams. That virtual model composed by neck and head can be included in complex system (as a car system) and supposed to several impact simulations (virtual crash tests). Also, our research team built main components of a testing device for dummy car crash neck-head system using anatomical data.
Efficacies of roadway safety improvements across functional subclasses of rural two-lane highways.
Labi, Samuel
2011-08-01
Highway crash occurrence is a leading cause of unnatural deaths, and highway agencies continually seek to identify engineering measures to reduce crashes and to assess the efficacy of such measures. Most past studies on the effectiveness of roadway improvements in terms of crash reduction considered all rural two-lane sections as a single category of roads. However, it may be hypothesized that the differences in the mobility and accessibility characteristics that are reflected in (and due to) the different design standards between different functional subclasses in the rural two-lane highway system can lead to differences in efficacies of safety improvements at these subclasses. This paper investigates the efficacy of roadway improvements, in terms of crash reduction, at the various subclasses of rural two-lane highways. An empirical analysis of safety performance at each of the three subclasses of rural two-lane highways was carried out using the negative binomial modeling technique. For each subclass, crash prediction models were developed separately for the three levels of crash severity: property-damage only, injury, and fatal/injury. The crash factors that were considered include lane width, shoulder width, pavement surface friction, pavement condition, and horizontal and vertical alignments. After having developed the safety performance functions, the effectiveness (in terms of the extent of crash reduction, for different levels of crash severity) of highway safety enhancements at each highway subclass were determined using the theoretical concepts established in past literature. These enhancements include widening lanes, widening shoulders, enhancing pavement surface friction, and improving the vertical or horizontal alignment. The study found that there is empirical evidence to justify the decomposition of the family of rural two-lane roads into its constituent subclasses for purposes of analyzing the effectiveness of safety enhancement projects and thus to avoid underestimation or overestimation of benefits of safety improvements at this class of highways. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of BMI on the risk and frequency of AIS 3+ injuries in motor-vehicle crashes.
Rupp, Jonathan D; Flannagan, Carol A C; Leslie, Andrew J; Hoff, Carrie N; Reed, Matthew P; Cunningham, Rebecca M
2013-01-01
Determine the effects of BMI on the risk of serious-to-fatal injury (Abbreviated Injury Scale ≥ 3 or AIS 3+) to different body regions for adults in frontal, nearside, farside, and rollover crashes. Multivariate logistic regression analysis was applied to a probability sample of adult occupants involved in crashes generated by combining the National Automotive Sampling System (NASS-CDS) with a pseudoweighted version of the Crash Injury Research and Engineering Network database. Logistic regression models were applied to weighted data to estimate the change in the number of occupants with AIS 3+ injuries if no occupants were obese. Increasing BMI increased risk of lower-extremity injury in frontal crashes, decreased risk of lower-extremity injury in nearside impacts, increased risk of upper-extremity injury in frontal and nearside crashes, and increased risk of spine injury in frontal crashes. Several of these findings were affected by interactions with gender and vehicle type. If no occupants in frontal crashes were obese, 7% fewer occupants would sustain AIS 3+ upper-extremity injuries, 8% fewer occupants would sustain AIS 3+ lower-extremity injuries, and 28% fewer occupants would sustain AIS 3+ spine injuries. Results of this study have implications on the design and evaluation of vehicle safety systems. Copyright © 2013 The Obesity Society.
Mahmood, Abda; Roberts, Ian; Shakur, Haleema
2017-07-17
Tranexamic acid prevents blood clots from breaking down and reduces bleeding. However, it is uncertain whether tranexamic acid is effective in traumatic brain injury. The CRASH-3 trial is a randomised controlled trial that will examine the effect of tranexamic acid (versus placebo) on death and disability in 13,000 patients with traumatic brain injury. The CRASH-3 trial hypothesizes that tranexamic acid will reduce intracranial haemorrhage, which will reduce the risk of death. Although it is possible that tranexamic acid will reduce intracranial bleeding, there is also a potential for harm. In particular, tranexamic acid may increase the risk of cerebral thrombosis and ischaemia. The protocol detailed here is for a mechanistic sub-study nested within the CRASH-3 trial. This mechanistic sub-study aims to examine the effect of tranexamic acid (versus placebo) on intracranial bleeding and cerebral ischaemia. The CRASH-3 Intracranial Bleeding Mechanistic Sub-Study (CRASH-3 IBMS) is nested within a prospective, double-blind, multi-centre, parallel-arm randomised trial called the CRASH-3 trial. The CRASH-3 IBMS will be conducted in a cohort of approximately 1000 isolated traumatic brain injury patients enrolled in the CRASH-3 trial. In the CRASH-3 IBMS, brain scans acquired before and after randomisation are examined, using validated methods, for evidence of intracranial bleeding and cerebral ischaemia. The primary outcome is the total volume of intracranial bleeding measured on computed tomography after randomisation, adjusting for baseline bleeding volume. Secondary outcomes include progression of intracranial haemorrhage (from pre- to post-randomisation scans), new intracranial haemorrhage (seen on post- but not pre-randomisation scans), intracranial haemorrhage following neurosurgery, and new focal ischaemic lesions (seen on post-but not pre-randomisation scans). A linear regression model will examine whether receipt of the trial treatment can predict haemorrhage volume. Bleeding volumes and new ischaemic lesions will be compared across treatment groups using relative risks and 95% confidence intervals. The CRASH-3 IBMS will provide an insight into the mechanism of action of tranexamic acid in traumatic brain injury, as well as information about the risks and benefits. Evidence from this trial could inform the management of patients with traumatic brain injury. The CRASH-3 trial was prospectively registered and the CRASH-3 IBMS is an addition to the original protocol registered at the International Standard Randomised Controlled Trials registry ( ISRCTN15088122 ) 19 July 2011, and ClinicalTrials.gov on 25 July 2011 (NCT01402882).
Wound ballistics: recognizing wound potential. Part 1: Characteristics of missiles and weapons.
Dufresne, G W
1995-01-01
In the United States the number of firearm-related deaths in 1989 was almost equal to the number of motor vehicle-related deaths. Trauma nurses could not imagine themselves caring for motor vehicle crash victims without any understanding of speed, vehicle damage, or collision angles. Gunshot wounds are becoming nearly as frequent as motor vehicle crashes, but the mechanism of injury for a gunshot wound is not as widely understood. This article explains the basics of wound ballistics, emergent care of the gunshot wound victim, and medicolegal concerns for the trauma nurse.
Non-invasive examination of a skull fragment recovered from a World War Two aircraft crash site.
Gapert, René; Rieder, Kurt
2013-09-01
The discovery of human remains dating to the time of the Second World War is a common occurrence in Europe and the Pacific regions. This case report demonstrates the analysis of a bone fragment recovered from a Luftwaffe crash site in Austria during the summer of 2007. Eye-witness statements and official reports were used to reconstruct the historical background of the case. A recovered German military identity tag helped to identify the pilot. Aircraft parts, also discovered at the crash site in 2007, aided the identification of the aircraft type and corroborated the eye-witness reports of the final moments before and during the crash. The bone was analyzed chiefly to establish its human or non-human origin and to identify from which anatomic region the fragment could have arisen. It was identified as part of a human adult skull which exhibited peri-mortem fractures and heat damage as well as post-mortem vegetation staining. The historical background information in connection with the morphological analysis led to the presumptive identification of the cranial fragment as belonging to a downed German pilot.
Dissolver vessel bottom assembly
Kilian, Douglas C.
1976-01-01
An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.
Seacrist, Thomas; Belwadi, Aditya; Prabahar, Abhiti; Chamberlain, Samuel; Megariotis, James; Loeb, Helen
2016-09-01
Motor vehicle crashes are the leading cause of death for teens. Previous teen and adult crash rates have been based upon fatal crashes, police-reported crashes, and estimated miles driven. Large-scale naturalistic driving studies offer the opportunity to compute crash rates using a reliable methodology to capture crashes and driving exposure. The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study contains extensive real-world data on teen and adult driving. This article presents findings on the crash rates of novice teen and experienced adult drivers in naturalistic crashes. A subset from the SHRP2 database consisting of 539 crash events for novice teens (16-19 years, n = 549) and experienced adults (35-54 years, n = 591) was used. Onboard instrumentation such as scene cameras, accelerometers, and Global Positioning System logged time series data at 10 Hz. Scene videos were reviewed for all events to identify rear-end striking crashes. Dynamic variables such as acceleration and velocity were analyzed for rear-end striking events. Number of crashes, crash rates, rear-end striking crash severity, and rear-end striking impact velocity were compared between novice teens and experienced adults. Video review of the SHRP2 crashes identified significantly more crashes (P < 0.01) and rear-end striking crashes (P < 0.01) among the teen group than among the adult group. This yielded crash rates of 30.0 crashes per million miles driven for novice teens compared to 5.3 crashes per million miles driven for experienced adults. The crash rate ratio for teens vs. adults was 5.7. The rear-end striking crash rate was 13.5 and 1.8 per million miles driven for novice teens and experienced adults, respectively. The rear-end striking crash rate ratio for teens vs. adults was 7.5. The rear-end striking crash severity measured by the accelerometers was greater (P < 0.05) for the teen group (1.8 ± 0.9 g; median = 1.6 g) than for the adult group (1.1 ± 0.4 g; median = 1.0 g), suggesting that teen crashes tend to be more serious than adult crashes. Increased rear-end striking impact velocity (P < 0.01) was also observed for novice teens (18.8 ± 13.2 mph; median = 18.9 mph) compared to experienced adults (3.3 ± 1.2 mph; median = 2.8 mph). To our knowledge, this is the first study to compare crash rates between teens and adults using a large-scale naturalistic driving database. Unlike previous crash rates, the reported rates reliably control for crash type and driving exposure. These results conform to previous findings that novice teens exhibit increased crash rates compared to experienced adults.
Effect of electronic stability control on automobile crash risk.
Farmer, Charles
2004-12-01
Per vehicle crash involvement rates were compared for otherwise identical vehicle models with and without electronic stability control (ESC) systems. ESC was found to affect single-vehicle crashes to a greater extent than multiple-vehicle crashes, and crashes with fatal injuries to a greater extent than less severe crashes. Based on all police-reported crashes in 7 states over 2 years, ESC reduced single-vehicle crash involvement risk by approximately 41 percent (95 percent confidence limits 3348) and single-vehicle injury crash involvement risk by 41 percent (2752). This translates to an estimated 7 percent reduction in overall crash involvement risk (310) and a 9 percent reduction in overall injury crash involvement risk (314). Based on all fatal crashes in the United States over 3 years, ESC was found to have reduced single-vehicle fatal crash involvement risk by 56 percent (3968). This translates to an estimated 34 percent reduction in overall fatal crash involvement risk (2145).
Computational Modeling System for Deformation and Failure in Polycrystalline Metals
2009-03-29
FIB/EHSD 3.3 The Voronoi Cell FEM for Micromechanical Modeling 3.4 VCFEM for Microstructural Damage Modeling 3.5 Adaptive Multiscale Simulations...accurate and efficient image-based micromechanical finite element model, for crystal plasticity and damage , incorporating real morphological and...topology with evolving strain localization and damage . (v) Development of multi-scaling algorithms in the time domain for compression and localization in
Althoff, Seth; Overberger, Ryan; Sochor, Mark; Bose, Dipan; Werner, Joshua
2017-10-01
There are established and validated clinical decision tools for cervical spine clearance. Almost all the rules include spinal tenderness on exam as an indication for imaging. Our goal was to apply GLASS, a previously derived clinical decision tool for cervical spine clearance, to thoracolumbar injuries. GLass intact Assures Safe Spine (GLASS) is a simple, objective method to evaluate those patients involved in motor vehicle collisions and determine which are at low risk for thoracolumbar injuries. We performed a retrospective cohort study using the National Accident Sampling System-Crashworthiness Data System (NASS-CDS) over an 11-year period (1998-2008). Sampled occupant cases selected in this study included patients age 16-60 who were belt-restrained, front- seat occupants involved in a crash with no airbag deployment, and no glass damage prior to the crash. We evaluated 14,191 occupants involved in motor vehicle collisions in this analysis. GLASS had a sensitivity of 94.4% (95% CI [86.3-98.4%]), specificity of 54.1% (95% CI [53.2-54.9%]), and negative predictive value of 99.9% (95% CI [99.8-99.9%]) for thoracic injuries, and a sensitivity of 90.3% (95% CI [82.8-95.2%]), specificity of 54.2% (95% CI [53.3-54.9%]), and negative predictive value of 99.9% (95% CI [99.7-99.9%]) for lumbar injuries. The GLASS rule represents the possibility of a novel, more-objective thoracolumbar spine clearance tool. Prospective evaluation would be required to further evaluate the validity of this clinical decision rule.
Spinal injury in car crashes: crash factors and the effects of occupant age.
Bilston, Lynne E; Clarke, Elizabeth C; Brown, Julie
2011-08-01
Motor vehicle crashes are the leading cause of serious spinal injury in most developed nations. However, since these injuries are rare, systematic analyses of the crash factors that are predictive of spinal injury have rarely been performed. This study aimed to use a population-reference crash sample to identify crash factors associated with moderate to severe spinal injury, and how these vary with occupant age. The US National Automotive Sampling System Crashworthiness Data System (NASS) data for 1993-2007 were analysed using logistic regression to identify crash factors associated with Abbreviated Injury Scale (AIS)2+ spinal injury among restrained vehicle passengers. Risk of moderate or severe spinal injury (AIS2+) was associated with higher severity crashes (OR=3.5 (95% CI 2.6 to 4.6)), intrusion into an occupant's seating position (OR=2.7 (95% CI 1.9 to 3.7)), striking a fixed object rather than another car (OR=1.7 (95% CI 1.3 to 2.1)), and use of a shoulder-only belt (OR=2.7 (95% CI 1.5 to 4.8)). Older occupants (65 years or older) were at higher risk of spinal injury than younger adults in frontal, side and rollover crashes. Children under 16 were at a lower risk of spinal injury than adults in all crash types except frontal crashes. While the risk of serious spinal injury in motor vehicle crashes is low, these injuries are more common in crashes of higher severity or into fixed objects, and in the presence of intrusion. There are elevated risks of spinal injury for older occupants compared with younger adults, which may reflect changes in biomechanical tolerances with age. Children appear to be at lower risk of serious spinal injury than adults except in frontal crashes.
Repair of Budd Pioneer Coach car crush zones
DOT National Transportation Integrated Search
2007-05-01
The research team conducted a project to repair cars for use in a full-scale train-to-train collision test with crash energy management systems. The two cars had been damaged in previous dynamic tests. Several components required replacement, and som...
NASA Astrophysics Data System (ADS)
Yun, S.; Agram, P. S.; Fielding, E. J.; Simons, M.; Webb, F.; Tanaka, A.; Lundgren, P.; Owen, S. E.; Rosen, P. A.; Hensley, S.
2011-12-01
Under ARIA (Advanced Rapid Imaging and Analysis) project at JPL and Caltech, we developed a prototype algorithm to detect surface property change caused by natural or man-made damage using InSAR coherence change. The algorithm was tested on building demolition and construction sites in downtown Pasadena, California. The developed algorithm performed significantly better, producing 150 % higher signal-to-noise ratio, than a standard coherence change detection method. We applied the algorithm to February 2011 M6.3 Christchurch earthquake in New Zealand, 2011 M9.0 Tohoku-oki earthquake in Japan, and 2011 Kirishima volcano eruption in Kyushu, Japan, using ALOS PALSAR data. In Christchurch area we detected three different types of damage: liquefaction, building collapse, and landslide. The detected liquefaction damage is extensive in the eastern suburbs of Christchurch, showing Bexley as one of the most significantly affected areas as was reported in the media. Some places show sharp boundaries of liquefaction damage, indicating different type of ground materials that might have been formed by the meandering Avon River in the past. Well reported damaged buildings such as Christchurch Cathedral, Canterbury TV building, Pyne Gould building, and Cathedral of the Blessed Sacrament were detected by the algorithm. A landslide in Redcliffs was also clearly detected. These detected damage sites were confirmed with Google earth images provided by GeoEye. Larger-scale damage pattern also agrees well with the ground truth damage assessment map indicated with polygonal zones of 3 different damage levels, compiled by the government of New Zealand. The damage proxy map of Sendai area in Japan shows man-made structure damage due to the tsunami caused by the M9.0 Tohoku-oki earthquake. Long temporal baseline (~2.7 years) and volume scattering caused significant decorrelation in the farmlands and bush forest along the coastline. The 2011 Kirishima volcano eruption caused a lot of ash fall deposit in the southeast from the volcano. The detected ash fall damage area exactly matches the in-situ measurements implemented through fieldwork by Geological Survey of Japan. With 99-percentile threshold for damage detection, the periphery of the detected damage area aligns with a contour line of 100 kg/m2 ash deposit, equivalent to 10 cm of depth assuming a density of 1000 kg/m3 for the ash layer. With growing number of InSAR missions, rapidly produced accurate damage assessment maps will help save people, assisting effective prioritization of rescue operations at early stage of response, and significantly improve timely situational awareness for emergency management and national / international assessment and response for recovery planning. Results of this study will also inform the design of future InSAR missions including the proposed DESDynI.
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Guo, Quanli; Wang, Zhenchun; Yang, Degong
2018-03-01
This paper proposes a non-contact, non-destructive evaluation method for the surface damage of high-speed sliding electrical contact rails. The proposed method establishes a model of damage identification and calculation. A laser scanning system is built to obtain the 3D point cloud data of the rail surface. In order to extract the damage region of the rail surface, the 3D point cloud data are processed using iterative difference, nearest neighbours search and a data registration algorithm. The curvature of the point cloud data in the damage region is mapped to RGB color information, which can directly reflect the change trend of the curvature of the point cloud data in the damage region. The extracted damage region is divided into three prism elements by a method of triangulation. The volume and mass of a single element are calculated by the method of geometric segmentation. Finally, the total volume and mass of the damage region are obtained by the principle of superposition. The proposed method is applied to several typical injuries and the results are discussed. The experimental results show that the algorithm can identify damage shapes and calculate damage mass with milligram precision, which are useful for evaluating the damage in a further research stage.
Side Impact Regulatory Trends, Crash Environment and Injury Risk in the USA.
Prasad, Priya; Dalmotas, Dainius; Chouinard, Aline
2015-11-01
Light duty vehicles in the US are designed to meet and exceed regulatory standards, self-imposed industry agreements and safety rating tests conducted by NHTSA and IIHS. The evolution of side impact regulation in the US from 1973 to 2015 is discussed in the paper along with two key industry agreements in 2003 affecting design of restraint systems and structures for side impact protection. A combination of all the above influences shows that vehicles in the US are being designed to more demanding and comprehensive requirements than in any other region of the world. The crash environment in the US related to side impacts was defined based on data in the nationally representative crash database NASS. Crash environment factors, including the distribution of cars, light trucks and vans (LTV's), and medium-to-heavy vehicles (MHV's) in the fleet, and the frequency of their interactions with one another in side impacts, were considered. Other factors like, crash severity in terms of closing velocity between two vehicles involved in crash, gender and age of involved drivers in two-vehicle and single vehicle crashes, were also examined. Injury risks in side impacts to drivers and passengers were determined in various circumstances such as near-side, far-side, and single vehicle crashes as a function of crash severity, in terms of estimated closing speed or lateral delta-V. Also injury risks in different pairs of striking and struck cars and LTV's, were estimated. A logistic regression model for studying injury risks in two vehicle crashes was developed. The risk factors included in the model include case and striking vehicles, consisting of cars, SUV's, vans, and pickup trucks, delta-V, damage extent, occupant proximity to the impact side, age and gender of the occupant, and belt use. Results show that car occupants make up the vast majority of serious-to-fatally injured occupants. Injury rates of car occupants in two-vehicle collision are highest when the car is struck by a pickup and lowest when struck by a car. This was the case across all lateral delta-V ranges. Additionally, near-side injury rates are substantially higher than those in far-side impacts.
Flight dynamics and control modelling of damaged asymmetric aircraft
NASA Astrophysics Data System (ADS)
Ogunwa, T. T.; Abdullah, E. J.
2016-10-01
This research investigates the use of a Linear Quadratic Regulator (LQR) controller to assist commercial Boeing 747-200 aircraft regains its stability in the event of damage. Damages cause an aircraft to become asymmetric and in the case of damage to a fraction (33%) of its left wing or complete loss of its vertical stabilizer, the loss of stability may lead to a fatal crash. In this study, aircraft models for the two damage scenarios previously mentioned are constructed using stability derivatives. LQR controller is used as a direct adaptive control design technique for the observable and controllable system. Dynamic stability analysis is conducted in the time domain for all systems in this study.
Modelling the side impact of carbon fibre tubes
NASA Astrophysics Data System (ADS)
Sudharsan, Ms R.; Rolfe, B. F., Dr; Hodgson, P. D., Prof
2010-06-01
Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.
Kluger, Robert; Smith, Brian L; Park, Hyungjun; Dailey, Daniel J
2016-11-01
Recent technological advances have made it both feasible and practical to identify unsafe driving behaviors using second-by-second trajectory data. Presented in this paper is a unique approach to detecting safety-critical events using vehicles' longitudinal accelerations. A Discrete Fourier Transform is used in combination with K-means clustering to flag patterns in the vehicles' accelerations in time-series that are likely to be crashes or near-crashes. The algorithm was able to detect roughly 78% of crasjavascript:void(0)hes and near-crashes (71 out of 91 validated events in the Naturalistic Driving Study data used), while generating about 1 false positive every 2.7h. In addition to presenting the promising results, an implementation strategy is discussed and further research topics that can improve this method are suggested in the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.
Harland, Karisa K; Greenan, Mitchell; Ramirez, Marizen
2014-09-01
Although approximately one-third of agricultural equipment-related crashes occur near town, these crashes are thought to be a rural problem. This analysis examines differences between agricultural equipment-related crashes by their urban-rural distribution and distance from a town. Agricultural equipment crashes were collected from nine Midwest Departments of Transportation (2005-2008). Crash zip code was assigned as urban or rural (large, small and isolated) using Rural-Urban Commuting Areas. Crash proximity to a town was estimated with ArcGIS. Multivariable logistic regression was used to estimate the odds of crashing in an urban versus rural zip codes and across rural gradients. ANOVA analysis estimated mean distance (miles) from a crash site to a town. Over four years, 4444 crashes involved agricultural equipment. About 30% of crashes occurred in urban zip codes. Urban crashes were more likely to be non-collisions (aOR=1.69[1.24-2.30]), involve ≥2 vehicles (2 vehicles: aOR=1.58[1.14-2.20], 3+ vehicles: aOR=1.68[0.98-2.88]), occur in a town (aOR=2.06[1.73-2.45]) and within one mile of a town (aOR=1.65[1.40-1.95]) than rural crashes. The proportion of crashes within a town differed significantly across rural gradients (P<0.0001). Small rural crashes, compared to isolated rural crashes, were 1.98 (95%CI[1.28-3.06]) times more likely to be non-collisions. The distance from the crash to town differed significantly by the urban-rural distribution (P<0.0001). Crashes with agricultural equipment are unexpectedly common in urban areas and near towns and cities. Education among all roadway users, increased visibility of agricultural equipment and the development of complete rural roads are needed to increase road safety and prevent agricultural equipment-related crashes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Yonggang; Li, Linchao; Prato, Carlo G
2018-04-03
Although the taxi industry is playing an important role in Chinese everyday life, little attention has been posed towards occupational health issues concerning the taxi drivers' working conditions, driving behaviour and road safety. A cross-sectional survey was administered to 1021 taxi drivers from 21 companies in four Chinese cities and collected information about (i) sociodemographic characteristics, (ii) working conditions, (iii) frequency of daily aberrant driving behaviour, and (iv) involvement in property-damage-only (PDO) and personal injury (PI) crashes over the past two years. A hybrid bivariate model of crash involvement was specified: (i) the hybrid part concerned a latent variable model capturing unobserved traits of the taxi drivers; (ii) the bivariate part modelled jointly both types of crashes while capturing unobserved correlation between error terms. The survey answers paint a gloomy picture in terms of workload, as taxi drivers reported averages of 9.4 working hours per day and 6.7 working days per week that amount on average to about 63.0 working hours per week. Moreover, the estimates of the hybrid bivariate model reveal that increasing levels of fatigue, reckless behaviour and aggressive behaviour are positively related to a higher propensity of crash involvement. Lastly, the heavy workload is also positively correlated with the higher propensity of crashing, not only directly as a predictor of crash involvement, but also indirectly as a covariate of fatigue and aberrant driving behaviour. The findings from this study provide insights into potential strategies for preventive education and taxi industry management to improve the working conditions and hence reduce fatigue and road risk for the taxi drivers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Leem, Seong Kyu; Khan, Faheem; Cho, Sung Ho
2017-05-30
In order to avoid car crashes, active safety systems are becoming more and more important. Many crashes are caused due to driver drowsiness or mobile phone usage. Detecting the drowsiness of the driver is very important for the safety of a car. Monitoring of vital signs such as respiration rate and heart rate is important to determine the occurrence of driver drowsiness. In this paper, robust vital signs monitoring through impulse radio ultra-wideband (IR-UWB) radar is discussed. We propose a new algorithm that can estimate the vital signs even if there is motion caused by the driving activities. We analyzed the whole fast time vital detection region and found the signals at those fast time locations that have useful information related to the vital signals. We segmented those signals into sub-signals and then constructed the desired vital signal using the correlation method. In this way, the vital signs of the driver can be monitored noninvasively, which can be used by researchers to detect the drowsiness of the driver which is related to the vital signs i.e., respiration and heart rate. In addition, texting on a mobile phone during driving may cause visual, manual or cognitive distraction of the driver. In order to reduce accidents caused by a distracted driver, we proposed an algorithm that can detect perfectly a driver's mobile phone usage even if there are various motions of the driver in the car or changes in background objects. These novel techniques, which monitor vital signs associated with drowsiness and detect phone usage before a driver makes a mistake, may be very helpful in developing techniques for preventing a car crash.
Leem, Seong Kyu; Khan, Faheem; Cho, Sung Ho
2017-01-01
In order to avoid car crashes, active safety systems are becoming more and more important. Many crashes are caused due to driver drowsiness or mobile phone usage. Detecting the drowsiness of the driver is very important for the safety of a car. Monitoring of vital signs such as respiration rate and heart rate is important to determine the occurrence of driver drowsiness. In this paper, robust vital signs monitoring through impulse radio ultra-wideband (IR-UWB) radar is discussed. We propose a new algorithm that can estimate the vital signs even if there is motion caused by the driving activities. We analyzed the whole fast time vital detection region and found the signals at those fast time locations that have useful information related to the vital signals. We segmented those signals into sub-signals and then constructed the desired vital signal using the correlation method. In this way, the vital signs of the driver can be monitored noninvasively, which can be used by researchers to detect the drowsiness of the driver which is related to the vital signs i.e., respiration and heart rate. In addition, texting on a mobile phone during driving may cause visual, manual or cognitive distraction of the driver. In order to reduce accidents caused by a distracted driver, we proposed an algorithm that can detect perfectly a driver's mobile phone usage even if there are various motions of the driver in the car or changes in background objects. These novel techniques, which monitor vital signs associated with drowsiness and detect phone usage before a driver makes a mistake, may be very helpful in developing techniques for preventing a car crash. PMID:28556818
Does unbelted safety requirement affect protection for belted occupants?
Hu, Jingwen; Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A C; Narayanaswamy, Prabha; Reed, Matthew P; Andreen, Margaret; Neal, Mark; Lin, Chin-Hsu
2017-05-29
Federal regulations in the United States require vehicles to meet occupant performance requirements with unbelted test dummies. Removing the test requirements with unbelted occupants might encourage the deployment of seat belt interlocks and allow restraint optimization to focus on belted occupants. The objective of this study is to compare the performance of restraint systems optimized for belted-only occupants with those optimized for both belted and unbelted occupants using computer simulations and field crash data analyses. In this study, 2 validated finite element (FE) vehicle/occupant models (a midsize sedan and a midsize SUV) were selected. Restraint design optimizations under standardized crash conditions (U.S.-NCAP and FMVSS 208) with and without unbelted requirements were conducted using Hybrid III (HIII) small female and midsize male anthropomorphic test devices (ATDs) in both vehicles on both driver and right front passenger positions. A total of 10 to 12 design parameters were varied in each optimization using a combination of response surface method (RSM) and genetic algorithm. To evaluate the field performance of restraints optimized with and without unbelted requirements, 55 frontal crash conditions covering a greater variety of crash types than those in the standardized crashes were selected. A total of 1,760 FE simulations were conducted for the field performance evaluation. Frontal crashes in the NASS-CDS database from 2002 to 2012 were used to develop injury risk curves and to provide the baseline performance of current restraint system and estimate the injury risk change by removing the unbelted requirement. Unbelted requirements do not affect the optimal seat belt and airbag design parameters in 3 out of 4 vehicle/occupant position conditions, except for the SUV passenger side. Overall, compared to the optimal designs with unbelted requirements, optimal designs without unbelted requirements generated the same or lower total injury risks for belted occupants depending on statistical methods used for the analysis, but they could also increase the total injury risks for unbelted occupants. This study demonstrated potential for reducing injury risks to belted occupants if the unbelted requirements are eliminated. Further investigations are necessary to confirm these findings.
Road traffic crashes among farm vehicle drivers in southern China: A cross-sectional survey.
Zhang, Xujun; Yang, Yaming; Chen, Yu; Yao, Hongyan; Wu, Ming; Cui, Mengjing; Li, Yang; Hu, Jie; Zhang, Cong; Li, Zhen; Stallones, Lorann; Xiang, Huiyun
2017-01-02
The objective of this study was to identify the prevalence and potential risk factors of farm vehicle-related road traffic crashes among farm vehicle drivers in southern China. A cross-sectional study was used to interview 1,422 farm vehicle drivers in southern China. Farm vehicle-related road traffic crashes that occurred from December 2013 to November 2014 were investigated. Data on farm vehicle-related road traffic crashes and related factors were collected by face-to-face interviews. The prevalence of farm vehicle-related road traffic crashes among the investigated drivers was 7.2%. Farm vehicle-related road traffic crashes were significantly associated with self-reported vision problem (adjusted odds ratio [AOR] = 6.48, 95% confidence interval [CI], 3.86-10.87), self-reported sleep disorders (AOR = 10.03, 95% CI, 6.28-15.99), self-reported stress (AOR = 20.47, 95% CI, 9.96-42.08), reported history of crashes (AOR = 5.40, 95% CI, 3.47-8.42), reported history of drunk driving (AOR = 5.07, 95% CI, 2.97-8.65), and reported history of fatigued driving (AOR = 5.72, 95% CI, 3.73-8.78). The number of road traffic crashes was highest in the daytime and during harvest season. In over 96% of farm vehicle-related road traffic crashes, drivers were believed to be responsible for the crash. Major crash-causing factors included improper driving, careless driving, violating of traffic signals or signs, and being in the wrong lane. Findings of this study suggest that farm vehicle-related road traffic crashes have become a burgeoning public health problem in China. Programs need to be developed to prevent farm vehicle-related road traffic crashes in this emerging country.
McDonald, Catherine C.; Seacrist, Thomas S.; Lee, Yi-Ching; Loeb, Helen; Kandadai, Venk; Winston, Flaura K.
2014-01-01
Summary Driving simulators can be used to evaluate driving performance under controlled, safe conditions. Teen drivers are at particular risk for motor vehicle crashes and simulated driving can provide important information on performance. We developed a new simulator protocol, the Simulated Driving Assessment (SDA), with the goal of providing a new tool for driver assessment and a common outcome measure for evaluation of training programs. As an initial effort to examine the validity of the SDA to differentiate performance according to experience, this analysis compared driving behaviors and crashes between novice teens (n=20) and experienced adults (n=17) on a high fidelity simulator for one common crash scenario, a rear-end crash. We examined headway time and crashes during a lead truck with sudden braking event in our SDA. We found that 35% of the novice teens crashed and none of the experienced adults crashed in this lead truck braking event; 50% of the teens versus 25% of the adults had a headway time <3 seconds at the time of truck braking. Among the 10 teens with <3 seconds headway time, 70% crashed. Among all participants with a headway time of 2–3 seconds, further investigation revealed descriptive differences in throttle position and brake pedal force when comparing teens who crashed, teens who did not crash and adults (none of whom crashed). Even with a relatively small sample, we found statistically significant differences in headway time for adults and teens, providing preliminary construct validation for our new SDA. PMID:25197724
Prescription medicines and the risk of road traffic crashes: a French registry-based study.
Orriols, Ludivine; Delorme, Bernard; Gadegbeku, Blandine; Tricotel, Aurore; Contrand, Benjamin; Laumon, Bernard; Salmi, Louis-Rachid; Lagarde, Emmanuel
2010-11-16
In recent decades, increased attention has been focused on the impact of disabilities and medicinal drug use on road safety. The aim of our study was to investigate the association between prescription medicines and the risk of road traffic crashes, and estimate the attributable fraction. We extracted and matched data from three French nationwide databases: the national health care insurance database, police reports, and the national police database of injurious crashes. Drivers identified by their national health care number involved in an injurious crash in France, between July 2005 and May 2008, were included in the study. Medicines were grouped according to the four risk levels of the French classification system (from 0 [no risk] to 3 [high risk]). We included 72,685 drivers involved in injurious crashes. Users of level 2 (odds ratio [OR] = 1.31 [1.24-1.40]) and level 3 (OR = 1.25 [1.12-1.40]) prescription medicines were at higher risk of being responsible for a crash. The association remained after adjustment for the presence of a long-term chronic disease. The fraction of road traffic crashes attributable to levels 2 and 3 medications was 3.3% [2.7%-3.9%]. A within-person case-crossover analysis showed that drivers were more likely to be exposed to level 3 medications on the crash day than on a control day, 30 days earlier (OR = 1.15 [1.05-1.27]). The use of prescription medicines is associated with a substantial number of road traffic crashes in France. In light of the results, warning messages appear to be relevant for level 2 and 3 medications and questionable for level 1 medications. A follow-up study is needed to evaluate the impact of the warning labeling system on road traffic crash prevention.
Prescription Medicines and the Risk of Road Traffic Crashes: A French Registry-Based Study
Orriols, Ludivine; Delorme, Bernard; Gadegbeku, Blandine; Tricotel, Aurore; Contrand, Benjamin; Laumon, Bernard; Salmi, Louis-Rachid; Lagarde, Emmanuel
2010-01-01
Background In recent decades, increased attention has been focused on the impact of disabilities and medicinal drug use on road safety. The aim of our study was to investigate the association between prescription medicines and the risk of road traffic crashes, and estimate the attributable fraction. Methods and Findings We extracted and matched data from three French nationwide databases: the national health care insurance database, police reports, and the national police database of injurious crashes. Drivers identified by their national health care number involved in an injurious crash in France, between July 2005 and May 2008, were included in the study. Medicines were grouped according to the four risk levels of the French classification system (from 0 [no risk] to 3 [high risk]). We included 72,685 drivers involved in injurious crashes. Users of level 2 (odds ratio [OR] = 1.31 [1.24–1.40]) and level 3 (OR = 1.25 [1.12–1.40]) prescription medicines were at higher risk of being responsible for a crash. The association remained after adjustment for the presence of a long-term chronic disease. The fraction of road traffic crashes attributable to levels 2 and 3 medications was 3.3% [2.7%–3.9%]. A within-person case-crossover analysis showed that drivers were more likely to be exposed to level 3 medications on the crash day than on a control day, 30 days earlier (OR = 1.15 [1.05–1.27]). Conclusion The use of prescription medicines is associated with a substantial number of road traffic crashes in France. In light of the results, warning messages appear to be relevant for level 2 and 3 medications and questionable for level 1 medications. A follow-up study is needed to evaluate the impact of the warning labeling system on road traffic crash prevention. Please see later in the article for the Editors' Summary PMID:21125020
Morozoff, Edmund P; Smyth, John A
2009-01-01
Neonates with under developed lungs often require oxygen therapy. During the course of oxygen therapy, elevated levels of blood oxygenation, hyperoxemia, must be avoided or the risk of chronic lung disease or retinal damage is increased. Low levels of blood oxygen, hypoxemia, may lead to permanent brain tissue damage and, in some cases, mortality. A closed loop controller that automatically administers oxygen therapy using 3 algorithms - state machine, adaptive model, and proportional integral derivative (PID) - is applied to 7 ventilated low birth weight neonates and compared to manual oxygen therapy. All 3 automatic control algorithms demonstrated their ability to improve manual oxygen therapy by increasing periods of normoxemia and reducing the need for manual FiO(2) adjustments. Of the three control algorithms, the adaptive model showed the best performance with 0.25 manual adjustments per hour and 73% time spent within target +/- 3% SpO(2).
2014-01-01
Background The effectiveness of helmets in reducing the risk of severe head injury in motorcyclists who were involved in a crash is well established. There is limited evidence however, regarding the extent to which helmets protect riders from facial injuries. The objective of this study was to determine the effect of helmet type, components and fixation status on the risk of facial injuries among Malaysian motorcyclists. Method 755 injured motorcyclists were recruited over a 12-month period in 2010–2011 in southern Klang Valley, Malaysia in this case control study. Of the 755 injured motorcyclists, 391participants (51.8%) sustained facial injuries (cases) while 364 (48.2%) participants were without facial injury (control). The outcomes of interest were facial injury and location of facial injury (i.e. upper, middle and lower face injuries). A binary logistic regression was conducted to examine the association between helmet characteristics and the outcomes, taking into account potential confounders such as age, riding position, alcohol and illicit substance use, type of colliding vehicle and type of collision. Helmet fixation was defined as the position of the helmet during the crash whether it was still secured on the head or had been dislodged. Results Helmet fixation was shown to have a greater effect on facial injury outcome than helmet type. Increased odds of adverse outcome was observed for the non-fixed helmet compared to the fixed helmet with adjusted odds ratio (AOR) = 2.10 (95% CI 1.41- 3.13) for facial injury; AOR = 6.64 (95% CI 3.71-11.91) for upper face injury; AOR = 5.36 (95% CI 3.05-9.44) for middle face injury; and AOR = 2.00 (95% CI 1.22-3.26) for lower face injury. Motorcyclists with visor damage were shown with AOR = 5.48 (95% CI 1.46-20.57) to have facial injuries compared to those with an undamaged visor. Conclusions A helmet of any type that is properly worn and remains fixed on the head throughout a crash will provide some form of protection against facial injury. Visor damage is a significant contributing factor for facial injury. These findings are discussed with reference to implications for policy and initiatives addressing helmet use and wearing behaviors. PMID:25086638
Distracted Driving and Risk of Road Crashes among Novice and Experienced Drivers
Klauer, Sheila G.; Guo, Feng; Simons-Morton, Bruce G.; Ouimet, Marie Claude; Lee, Suzanne E.; Dingus, Thomas A.
2014-01-01
BACKGROUND Distracted driving attributable to the performance of secondary tasks is a major cause of motor vehicle crashes both among teenagers who are novice drivers and among adults who are experienced drivers. METHODS We conducted two studies on the relationship between the performance of secondary tasks, including cell-phone use, and the risk of crashes and near-crashes. To facilitate objective assessment, accelerometers, cameras, global positioning systems, and other sensors were installed in the vehicles of 42 newly licensed drivers (16.3 to 17.0 years of age) and 109 adults with more driving experience. RESULTS During the study periods, 167 crashes and near-crashes among novice drivers and 518 crashes and near-crashes among experienced drivers were identified. The risk of a crash or near-crash among novice drivers increased significantly if they were dialing a cell phone (odds ratio, 8.32; 95% confidence interval [CI], 2.83 to 24.42), reaching for a cell phone (odds ratio, 7.05; 95% CI, 2.64 to 18.83), sending or receiving text messages (odds ratio, 3.87; 95% CI, 1.62 to 9.25), reaching for an object other than a cell phone (odds ratio, 8.00; 95% CI, 3.67 to 17.50), looking at a roadside object (odds ratio, 3.90; 95% CI, 1.72 to 8.81), or eating (odds ratio, 2.99; 95% CI, 1.30 to 6.91). Among experienced drivers, dialing a cell phone was associated with a significantly increased risk of a crash or near-crash (odds ratio, 2.49; 95% CI, 1.38 to 4.54); the risk associated with texting or accessing the Internet was not assessed in this population. The prevalence of high-risk attention to secondary tasks increased over time among novice drivers but not among experienced drivers. CONCLUSIONS The risk of a crash or near-crash among novice drivers increased with the performance of many secondary tasks, including texting and dialing cell phones. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Highway Traffic Safety Administration.) PMID:24382065
Distracted driving and risk of road crashes among novice and experienced drivers.
Klauer, Sheila G; Guo, Feng; Simons-Morton, Bruce G; Ouimet, Marie Claude; Lee, Suzanne E; Dingus, Thomas A
2014-01-02
Distracted driving attributable to the performance of secondary tasks is a major cause of motor vehicle crashes both among teenagers who are novice drivers and among adults who are experienced drivers. We conducted two studies on the relationship between the performance of secondary tasks, including cell-phone use, and the risk of crashes and near-crashes. To facilitate objective assessment, accelerometers, cameras, global positioning systems, and other sensors were installed in the vehicles of 42 newly licensed drivers (16.3 to 17.0 years of age) and 109 adults with more driving experience. During the study periods, 167 crashes and near-crashes among novice drivers and 518 crashes and near-crashes among experienced drivers were identified. The risk of a crash or near-crash among novice drivers increased significantly if they were dialing a cell phone (odds ratio, 8.32; 95% confidence interval [CI], 2.83 to 24.42), reaching for a cell phone (odds ratio, 7.05; 95% CI, 2.64 to 18.83), sending or receiving text messages (odds ratio, 3.87; 95% CI, 1.62 to 9.25), reaching for an object other than a cell phone (odds ratio, 8.00; 95% CI, 3.67 to 17.50), looking at a roadside object (odds ratio, 3.90; 95% CI, 1.72 to 8.81), or eating (odds ratio, 2.99; 95% CI, 1.30 to 6.91). Among experienced drivers, dialing a cell phone was associated with a significantly increased risk of a crash or near-crash (odds ratio, 2.49; 95% CI, 1.38 to 4.54); the risk associated with texting or accessing the Internet was not assessed in this population. The prevalence of high-risk attention to secondary tasks increased over time among novice drivers but not among experienced drivers. The risk of a crash or near-crash among novice drivers increased with the performance of many secondary tasks, including texting and dialing cell phones. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Highway Traffic Safety Administration.).
2010 Wisconsin traffic crash facts
DOT National Transportation Integrated Search
2011-01-01
562 persons were killed in Wisconsin motor vehicle traffic crashes. This is an average of just over one life lost each day on Wisconsin traffic arteries. : 40,889 persons were injured in 29,380 reported injury crashes and 517 fatal crashes. 3,845, or...
Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash
NASA Astrophysics Data System (ADS)
Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari
In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are developed and calculated. Main criteria for estimating the maximum leakage rate for the lid metallic seal system are no loss of the pre-stress of the lid bolts, no appearance of the plastic region between the metal seal flanges, and no large relative deformation of the lid seals. Finally, in both cases, the low leakage rate for the metal cask lid closure system under the impulsive loads due to aircraft engine crash will be proved thoroughly.
Improvement of the performance of animal crossing warning signs.
Khalilikhah, Majid; Heaslip, Kevin
2017-09-01
Animal-vehicle collisions (AVCs) can result in serious injury and death to drivers, animals' death, and significant economic costs. However, the cost effectiveness of the majority of AVC mitigation measures is a significant issue. A mobile-based data collection effort was deployed to measure signs under the Utah Department of Transportation's (UDOT) jurisdiction. The crash data were obtained from the UDOT risk management database. ArcGIS was employed to link these two data sets and extract animal-related crashes and signs. An algorithm was developed to process the data and identify AVCs that occurred within sign recognition distance. Kernel density estimation (KDE) technique was applied to identify potential crash hotspots. Only 2% of AVCs occurred within the recognition distance of animal crossing signs. Almost 58% of animal-related crashes took place on the Interstate and U.S. highways, wherein only 30% of animal crossing signs were installed. State routes with a higher average number of signs experienced a lower number of AVCs per mile. The differences between AVCs that occurred within versus outside of sign recognition distance were not statistically significant regarding crash severity, time of crash, weather condition, driver age, vehicle speed, and type of animal. It is more likely that drivers become accustomed to deer crossing signs than cow signs. Based on the historical crash data and landscape structure, with attention given to the low cost safety improvement methods, a combination of different types of AVC mitigation measures can be developed to reduce the number of animal-related crashes. After an in-depth analysis of AVC data, warning traffic signs, coupled with other low cost mitigation countermeasures can be successfully placed in areas with higher priority or in critical areas. Practical applications: The findings of this study assist transportation agencies in developing more efficient mitigation measures against AVCs. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1999-06-01
The main purpose of Phase I of this project was to develop a methodology for predicting consequences of hazardous material (HM) crashes, such as injuries and property damage. An initial step in developing a risk assessment is to reliably estimate the...
Arkansas 2002 traffic crash statistics
DOT National Transportation Integrated Search
2002-01-01
On all public roads in Arkansas during 2002 there were: : 70,904 total crashes reported, a 3.1 % increase from 2001 : 557 fatal crashes reported, a 3.5 % increase from 2001 : 641 fatalities reported, a 4.9 % increase from 2001 : 243 alcohol/drug rela...
49 CFR 572.140 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Child Crash Test Dummy, Alpha Version § 572.140 Incorporation by reference. (a) The following materials... entitled, “Parts List and Drawings, Subpart P Hybrid III 3-year-old child crash test dummy, (H-III3C, Alpha..., Disassembly and Inspection (PADI), Subpart P, Hybird III 3-year-old Child Crash Test Dummy, (H-III3C, Alpha...
49 CFR 572.140 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Child Crash Test Dummy, Alpha Version § 572.140 Incorporation by reference. (a) The following materials... entitled, “Parts List and Drawings, Subpart P Hybrid III 3-year-old child crash test dummy, (H-III3C, Alpha..., Disassembly and Inspection (PADI), Subpart P, Hybird III 3-year-old Child Crash Test Dummy, (H-III3C, Alpha...
49 CFR 572.140 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Child Crash Test Dummy, Alpha Version § 572.140 Incorporation by reference. (a) The following materials... entitled, “Parts List and Drawings, Subpart P Hybrid III 3-year-old child crash test dummy, (H-III3C, Alpha..., Disassembly and Inspection (PADI), Subpart P, Hybird III 3-year-old Child Crash Test Dummy, (H-III3C, Alpha...
49 CFR 572.140 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Child Crash Test Dummy, Alpha Version § 572.140 Incorporation by reference. (a) The following materials... entitled, “Parts List and Drawings, Subpart P Hybrid III 3-year-old child crash test dummy, (H-III3C, Alpha..., Disassembly and Inspection (PADI), Subpart P, Hybird III 3-year-old Child Crash Test Dummy, (H-III3C, Alpha...
49 CFR 572.140 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Child Crash Test Dummy, Alpha Version § 572.140 Incorporation by reference. (a) The following materials... entitled, “Parts List and Drawings, Subpart P Hybrid III 3-year-old child crash test dummy, (H-III3C, Alpha..., Disassembly and Inspection (PADI), Subpart P, Hybird III 3-year-old Child Crash Test Dummy, (H-III3C, Alpha...
NACA Study of Crash Fires with a Fairchild C-82 Packet
1950-06-21
Researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory purposely crash a Fairchild C-82 Packet aircraft to study flame propagation. A rash of passenger aircraft crashes in 1946 and 1947 spurred a White House call for an investigatory board staffed by members of the Civil Aeronautics Board, military, and the NACA. The group addressed fire segregation, extinguishment, and prevention. The NACA established a Subcommittee on Aircraft Fire Prevention in February 1948 to coordinate its efforts. The Lewis team simulated situations in which an aircraft failed to become airborne during takeoff resulting in crashes into embankments and other objects. The Lewis researchers initially used surplus C-46 and C-82 military transport planes. In these situations, the aircraft generally suffered damage to its fuel system and other components, but was structurally survivable. The aircraft were mounted to a rail that ran down a 1700-foot long test runway. The aircraft was secured at the starting point with an anchor pier so it could get its engines up to takeoff speed before launching down the track. Barriers at the end of the runway were designed to simulate a variety of different types of crashes. Telemetry and high-speed cameras were crucial elements in these studies. The preliminary testing phase identified potential ignition sources and analyzed the spread of flammable materials.
Atahan, Ali O; Hiekmann, J Marten; Himpe, Jeffrey; Marra, Joseph
2018-07-01
Road restraint systems are designed to minimize the undesirable effects of roadside accidents and improve safety of road users. These systems are utilized at either side or median section of roads to contain and redirect errant vehicles. Although restraint systems are mainly designed against car, truck and bus impacts there is an increasing pressure by the motorcycle industry to incorporate motorcycle protection systems into these systems. In this paper development details of a new and versatile motorcycle barrier, CMPS, coupled with an existing vehicle barrier is presented. CMPS is intended to safely contain and redirect motorcyclists during a collision event. First, crash performance of CMPS design is evaluated by means of a three dimensional computer simulation program LS-DYNA. Then full-scale crash tests are used to verify the acceptability of CMPS design. Crash tests were performed at CSI proving ground facility using a motorcycle dummy in accordance with prEN 1317-8 specification. Full-scale crash test results show that CMPS is able to successfully contain and redirect dummy with minimal injury risk on the dummy. Damage on the barrier is also minimal proving the robustness of the CMPS design. Based on the test findings and further review by the authorities the implementation of CMPS was recommended at highway system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests
NASA Technical Reports Server (NTRS)
Annett, Martin; Littell, Justin
2015-01-01
The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.
Emergency Locator Transmitter Crash Testing
2015-07-29
Drop-testing a series of three Cessna 172 aircraft, NASA simulated severe but survivable plane accidents on July 2, July 29 and August 26, 2015, to test emergency locator transmitters (ELTs). A research team equipped the vintage airplanes with five ELTs, two crash test dummies, cameras and data-collecting sensors. ELTs are installed on general aviation and commercial planes to transmit a location signal in the event of a crash. Current ELT models send that signal to orbiting satellites, which repeat it to the nearest search and rescue ground station. The signal is used to determine and transmit the ELT's identity and location to rescuers. ELTs have to work in the extreme circumstances involved in an airplane crash. Included in those extreme circumstances are the possibilities of excessive vibration, fire and impact damage. NASA research is designed to find practical ways to improve ELT system performance and robustness, giving rescue workers the best chance of saving lives. The research was funded by the Search and Rescue Mission Office at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The testing took place at NASA’s Langley Research Center in Hampton, Virginia. This is a video of the July 29, 2015, test.
Dong, Chunjiao; Xie, Kun; Zeng, Jin; Li, Xia
2018-04-01
Highway safety laws aim to influence driver behaviors so as to reduce the frequency and severity of crashes, and their outcomes. For one specific highway safety law, it would have different effects on the crashes across severities. Understanding such effects can help policy makers upgrade current laws and hence improve traffic safety. To investigate the effects of highway safety laws on crashes across severities, multivariate models are needed to account for the interdependency issues in crash counts across severities. Based on the characteristics of the dependent variables, multivariate dynamic Tobit (MVDT) models are proposed to analyze crash counts that are aggregated at the state level. Lagged observed dependent variables are incorporated into the MVDT models to account for potential temporal correlation issues in crash data. The state highway safety law related factors are used as the explanatory variables and socio-demographic and traffic factors are used as the control variables. Three models, a MVDT model with lagged observed dependent variables, a MVDT model with unobserved random variables, and a multivariate static Tobit (MVST) model are developed and compared. The results show that among the investigated models, the MVDT models with lagged observed dependent variables have the best goodness-of-fit. The findings indicate that, compared to the MVST, the MVDT models have better explanatory power and prediction accuracy. The MVDT model with lagged observed variables can better handle the stochasticity and dependency in the temporal evolution of the crash counts and the estimated values from the model are closer to the observed values. The results show that more lives could be saved if law enforcement agencies can make a sustained effort to educate the public about the importance of motorcyclists wearing helmets. Motor vehicle crash-related deaths, injuries, and property damages could be reduced if states enact laws for stricter text messaging rules, higher speeding fines, older licensing age, and stronger graduated licensing provisions. Injury and PDO crashes would be significantly reduced with stricter laws prohibiting the use of hand-held communication devices and higher fines for drunk driving. Copyright © 2018 Elsevier Ltd. All rights reserved.
2006-06-01
Scientific Research. 5PAM-Crash is a trademark of the ESI Group . 6MATLAB and SIMULINK are registered trademarks of the MathWorks. 14 maneuvers...Laboratory (ARL) to develop methodologies to evaluate robotic behavior algorithms that control the actions of individual robots or groups of robots...methodologies to evaluate robotic behavior algorithms that control the actions of individual robots or groups of robots acting as a team to perform a
Fatal crashes involving large trucks, 2015 : analysis brief.
DOT National Transportation Integrated Search
2017-04-01
In 2015, 32,166 fatal crashes took place on our Nations roadways, with 11.2 percent (3,598) involving at least one large truck (see Figure 1). This report examines the various ways of looking at fatal crashes and presents a variety of crash rates ...
Mahajan, Narinder; Aggarwal, Meenu; Raina, Sunil; Verma, Lekh Raj; Mazta, Salig Ram; Gupta, B P
2013-07-01
What are the various injuries in road traffic crash cases? To study various non-fatal injuries in road traffic crash cases. Hospital based Descriptive study. The study population comprised of 401 consecutive cases of non- fatal injuries involved in road traffic crashes and reported at Indira Gandhi Medical College hospital, Shimla. 1(st) June 2005 to 31(st) May 2006. Demographic characteristics of the victims, pattern of injuries and hospital stay of the victims. Types of crashes, time, day and month of crashes, vehicles involved in crashes, use of protective gear etc. Percentages, Proportions. 73% of the injured victims were young between 20-49yrs, male to female ratio being 5.3:1. Employees (34.7%) and occupants of transport vehicles (45.9%) constituted the maximum number of the victims. Major injuries (fractures and abd. injuries) were reported in 53.4% of the victims and fractures of lower limb were the commonest of the injuries (26.3%). Use of seat-belt was found to be alarmingly low (14.3%) amongst the four- wheeler users and its non-use was found to be significantly associated with the major injuries. Helmet was used by 36 cases (66.7%) out of total of 54 users of motorized two-wheelers at the time of crash. Human error was the most reported cause of crash (82%) and the most common mode of crash was skidding and/rolling down (55%).23.1% of the drivers were reported to have consumed alcohol at the time of crash.
Crash pulse optimization for occupant protection at various impact velocities.
Ito, Daisuke; Yokoi, Yusuke; Mizuno, Koji
2015-01-01
Vehicle deceleration has a large influence on occupant kinematic behavior and injury risks in crashes, and the optimization of the vehicle crash pulse that mitigates occupant loadings has been the subject of substantial research. These optimization research efforts focused on only high-velocity impact in regulatory or new car assessment programs though vehicle collisions occur over a wide range of velocities. In this study, the vehicle crash pulse was optimized for various velocities with a genetic algorithm. Vehicle deceleration was optimized in a full-frontal rigid barrier crash with a simple spring-mass model that represents the vehicle-occupant interaction and a Hybrid III 50th percentile male multibody model. To examine whether the vehicle crash pulse optimized at the high impact velocity is useful for reducing occupant loading at all impact velocities less than the optimized velocity, the occupant deceleration was calculated at various velocities for the optimized crash pulse determined at a high speed. The optimized vehicle deceleration-deformation characteristics that are effective for various velocities were investigated with 2 approaches. The optimized vehicle crash pulse at a single impact velocity consists of a high initial impulse followed by zero deceleration and then constant deceleration in the final stage. The vehicle deceleration optimized with the Hybrid III model was comparable to that determined from the spring-mass model. The optimized vehicle deceleration-deformation characteristics determined at a high speed did not necessarily lead to an occupant deceleration reduction at a lower velocity. The maximum occupant deceleration at each velocity was normalized by the maximum deceleration determined in the single impact velocity optimization. The resulting vehicle deceleration-deformation characteristic was a square crash pulse. The objective function was defined as the number of injuries, which was the product of the number of collisions at the velocity and the probability of occupant injury. The optimized vehicle deceleration consisted of a high deceleration in the initial phase, a small deceleration in the middle phase, and then a high deceleration in the final phase. The optimized vehicle crash pulse at a single impact velocity is effective for reducing occupant deceleration in a crash at the specific impact velocity. However, the crash pulse does not necessarily lead to occupant deceleration reduction at a lower velocity. The optimized vehicle deceleration-deformation characteristics, which are effective for all impact velocities, depend on the weighting of the occupant injury measures at each impact velocity.
2013-05-18
26 4.3. 1-D Heat Transfer Model with Pyrolysis and Thermal Damage...Improvements and Added Features ........................................................................31 4.3.4. Pyrolysis Model Calibration... Pyrolysis Model ................................................32 Figure 25. Updated Heat Transfer Algorithm Flow Chart
DOT National Transportation Integrated Search
2012-04-01
Louisianas crash rate is consistently among the highest in the nation, and it imposes signifi cant economic and social : costs on the state. Property damage, lost productivity, medical expenses, and infl ated motor vehicle insurance rates : impose...
Highway safety : research continues on a variety of factors that contribute to motor vehicle crashes
DOT National Transportation Integrated Search
2003-03-31
Nearly 6.3 million motor vehicle crashes occurred in the United States in 2001, or one crash every 5 seconds. This study examined human, environmental, and vehicle factors that contribute to crashes. As requested, this report provides more recent inf...
Althoff, Seth; Overberger, Ryan; Sochor, Mark; Bose, Dipan; Werner, Joshua
2017-01-01
Introduction There are established and validated clinical decision tools for cervical spine clearance. Almost all the rules include spinal tenderness on exam as an indication for imaging. Our goal was to apply GLASS, a previously derived clinical decision tool for cervical spine clearance, to thoracolumbar injuries. GLass intact Assures Safe Spine (GLASS) is a simple, objective method to evaluate those patients involved in motor vehicle collisions and determine which are at low risk for thoracolumbar injuries. Methods We performed a retrospective cohort study using the National Accident Sampling System-Crashworthiness Data System (NASS-CDS) over an 11-year period (1998–2008). Sampled occupant cases selected in this study included patients age 16–60 who were belt-restrained, front- seat occupants involved in a crash with no airbag deployment, and no glass damage prior to the crash. Results We evaluated 14,191 occupants involved in motor vehicle collisions in this analysis. GLASS had a sensitivity of 94.4% (95% CI [86.3–98.4%]), specificity of 54.1% (95% CI [53.2–54.9%]), and negative predictive value of 99.9% (95% CI [99.8–99.9%]) for thoracic injuries, and a sensitivity of 90.3% (95% CI [82.8–95.2%]), specificity of 54.2% (95% CI [53.3–54.9%]), and negative predictive value of 99.9% (95% CI [99.7–99.9%]) for lumbar injuries. Conclusion The GLASS rule represents the possibility of a novel, more-objective thoracolumbar spine clearance tool. Prospective evaluation would be required to further evaluate the validity of this clinical decision rule. PMID:29085544
Crash and risky driving involvement among novice adolescent drivers and their parents.
Simons-Morton, Bruce G; Ouimet, Marie Claude; Zhang, Zhiwei; Klauer, Sheila E; Lee, Suzanne E; Wang, Jing; Albert, Paul S; Dingus, Thomas A
2011-12-01
We compared rates of risky driving among novice adolescent and adult drivers over the first 18 months of adolescents' licensure. Data-recording systems installed in participants' vehicles provided information on driving performance of 42 newly licensed adolescent drivers and their parents. We analyzed crashes and near crashes and elevated g-force event rates by Poisson regression with random effects. During the study period, adolescents were involved in 279 crashes or near crashes (1 involving injury); parents had 34 such accidents. The incidence rate ratio (IRR) comparing adolescent and parent crash and near-crash rates was 3.91. Among adolescent drivers, elevated rates of g-force events correlated with crashes and near crashes (r = 0.60; P < .001). The IRR comparing incident rates of risky driving among adolescents and parents was 5.08. Adolescents' rates of crashes and near crashes declined with time (with a significant uptick in the last quarter), but elevated g-force event rates did not decline. Elevated g-force events among adolescents may have contributed to crash and near-crash rates that remained much higher than adult levels after 18 months of driving.
Reductions in injury crashes associated with red light camera enforcement in oxnard, california.
Retting, Richard A; Kyrychenko, Sergey Y
2002-11-01
This study estimated the impact of red light camera enforcement on motor vehicle crashes in one of the first US communities to employ such cameras-Oxnard, California. Crash data were analyzed for Oxnard and for 3 comparison cities. Changes in crash frequencies were compared for Oxnard and control cities and for signalized and nonsignalized intersections by means of a generalized linear regression model. Overall, crashes at signalized intersections throughout Oxnard were reduced by 7% and injury crashes were reduced by 29%. Right-angle crashes, those most associated with red light violations, were reduced by 32%; right-angle crashes involving injuries were reduced by 68%. Because red light cameras can be a permanent component of the transportation infrastructure, crash reductions attributed to camera enforcement should be sustainable.
Estimated injury risk for specific injuries and body regions in frontal motor vehicle crashes.
Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Schoell, Samantha L; Swett, Katrina R; Stitzel, Joel D
2015-01-01
Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data. Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15-105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate. Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4-4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4.6-9.9% risk). The 6 body region curves with the highest risks were for AIS 2+ lower extremity, upper extremity, thorax, and head injury and AIS 3+ lower extremity and thorax injury (15.9-43.8% risk). These injury risk curves can be implemented into advanced automatic crash notification (AACN) algorithms that utilize vehicle EDR measurements to predict occupant injury immediately following a MVC. Through integration with AACN, these injury risk curves can provide emergency medical services (EMS) and other patient care providers with information on suspected occupant injuries to improve injury detection and patient triage.
Prevalence of teen driver errors leading to serious motor vehicle crashes.
Curry, Allison E; Hafetz, Jessica; Kallan, Michael J; Winston, Flaura K; Durbin, Dennis R
2011-07-01
Motor vehicle crashes are the leading cause of adolescent deaths. Programs and policies should target the most common and modifiable reasons for crashes. We estimated the frequency of critical reasons for crashes involving teen drivers, and examined in more depth specific teen driver errors. The National Highway Traffic Safety Administration's (NHTSA) National Motor Vehicle Crash Causation Survey collected data at the scene of a nationally representative sample of 5470 serious crashes between 7/05 and 12/07. NHTSA researchers assigned a single driver, vehicle, or environmental factor as the critical reason for the event immediately leading to each crash. We analyzed crashes involving 15-18 year old drivers. 822 teen drivers were involved in 795 serious crashes, representing 335,667 teens in 325,291 crashes. Driver error was by far the most common reason for crashes (95.6%), as opposed to vehicle or environmental factors. Among crashes with a driver error, a teen made the error 79.3% of the time (75.8% of all teen-involved crashes). Recognition errors (e.g., inadequate surveillance, distraction) accounted for 46.3% of all teen errors, followed by decision errors (e.g., following too closely, too fast for conditions) (40.1%) and performance errors (e.g., loss of control) (8.0%). Inadequate surveillance, driving too fast for conditions, and distracted driving together accounted for almost half of all crashes. Aggressive driving behavior, drowsy driving, and physical impairments were less commonly cited as critical reasons. Males and females had similar proportions of broadly classified errors, although females were specifically more likely to make inadequate surveillance errors. Our findings support prioritization of interventions targeting driver distraction and surveillance and hazard awareness training. Copyright © 2010 Elsevier Ltd. All rights reserved.
Comparing the Effects of Age, BMI and Gender on Severe Injury (AIS 3+) in Motor-Vehicle Crashes
Carter, Patrick M.; Flannagan, Carol A.C.; Reed, Matthew P.; Cunningham, Rebecca M.; Rupp, Jonathan D.
2016-01-01
Background The effects of age, body mass index (BMI) and gender on motor vehicle crash (MVC) injuries are not well understood and current prevention efforts do not effectively address variability in occupant characteristics. Objectives 1) Characterize the effects of age, BMI and gender on serious-to-fatal MVC injury 2) Identify the crash modes and body regions where the effects of occupant characteristics onthe numbers of occupants with injuryis largest, and thereby aid in prioritizing the need forhuman surrogates that the represent different types of occupant characteristics and adaptive restraint systems that consider these characteristics. Methods Multivariate logistic regression was used to model the effects of occupant characteristics (age, BMI, gender), vehicle and crash characteristics on serious-to-fatal injuries (AIS 3+) by body region and crash mode using the 2000-2010 National Automotive Sampling System (NASS-CDS) dataset. Logistic regression models were applied to weighted crash data to estimate the change in the number of annual injured occupants with AIS 3+ injury that would occur if occupant characteristics were limited to their 5th percentiles (age ≤ 17 years old, BMI ≤ 19 kg/m2) or male gender. Results Limiting age was associated with a decrease inthe total number of occupants with head [8,396, 95% CI 6,871-9,070] and thorax injuries [17,961, 95% CI 15,960 – 18,859] across all crash modes, decreased occupants with spine [3,843, 95% CI 3,065 – 4,242] and upper extremity [3,578, 95% CI 1,402 – 4,439] injuries in frontal and rollover crashes and decreased abdominal [1,368, 95% CI 1,062 – 1,417] and lower extremity [4,584, 95% CI 4,012 – 4,995] injuries in frontal impacts. The age effect was modulated by gender with older females morelikely to have thorax and upper extremity injuries than older males. Limiting BMI was associated with 2,069 [95% CI 1,107 – 2,775] fewer thorax injuries in nearside crashes, and 5,304 [95% CI 4,279 – 5,688] fewer lower extremity injuries in frontal crashes. Setting gender to male resulted in fewer occupants with head injuries in farside crashes [1,999, 95% CI 844 – 2,685] and fewer thorax [5,618, 95% CI 4,212 – 6,272], upper [3,804, 95% CI 1,781 – 4,803] and lower extremity [2,791, 95% CI 2,216 – 3,256] injuries in frontal crashes. Results indicate that age provides the greater relative contribution to injury when compared to gender and BMI, especially for thorax and head injuries. Conclusions Restraint systems that account for the differential injury risks associated with age, BMI and gender could have a meaningful effect on injury in motor-vehicle crashes. Computational models of humans that represent older, high BMI, and female occupants are needed for use in simulations of particular types of crashes to develop these restraint systems. PMID:25061920
Sleep quality and motor vehicle crashes in adolescents.
Pizza, Fabio; Contardi, Sara; Antognini, Alessandro Baldi; Zagoraiou, Maroussa; Borrotti, Matteo; Mostacci, Barbara; Mondini, Susanna; Cirignotta, Fabio
2010-02-15
Sleep-related complaints are common in adolescents, but their impact on the rate of motor vehicle crashes accidents is poorly known. We studied subjective sleep quality, driving habits, and self-reported car crashes in high-school adolescents. Self-administered questionnaires (with items exploring driving habits) were distributed to 339 students who had a driver's license and attended 1 of 7 high schools in Bologna, Italy. Statistical analysis were performed to describe lifestyle habits, sleep quality, sleepiness, and their relationship with the binary dependent variable (presence or absence of car crashes) to identify the factors significantly affecting the probability of car crashes in a multivariate binary logistic regression model. Nineteen percent of the sample reported bad sleep, 64% complained of daytime sleepiness, and 40% reported sleepiness while driving. Eighty students (24%), 76% of which were males, reported that they had already crashed at least once, and 15% considered sleepiness to have been the main cause of their crash. As compared with adolescents who had not had a crash, those who had at least 1 previous crash reported that they more frequently used to drive (79% vs 62%), drove at night (25% vs 9%), drove while sleepy (56% vs 35%), had bad sleep (29% vs 16%), and used stimulants such as caffeinated soft drinks (32% vs 19%), tobacco (54% vs 27%), and drugs (21% vs 7%). The logistic procedure established a significant predictive role of male sex (p < 0.0001; odds ratio = 3.3), tobacco use (p < 0.0001; odds ratio = 3.2), sleepiness while driving (p = 0.010; odds ratio = 2.1), and bad sleep (p = 0.047; odds ratio = 1.9) for the crash risk. Our results confirm the high prevalence of sleep-related complaints among adolescents and highlight their independent role on self-reported crash risk.
Mahajan, Narinder; Aggarwal, Meenu; Raina, Sunil; Verma, Lekh Raj; Mazta, Salig Ram; Gupta, B P
2013-01-01
Research Question: What are the various injuries in road traffic crash cases? Objectives: To study various non-fatal injuries in road traffic crash cases. Study Design: Hospital based Descriptive study. Study Population: The study population comprised of 401 consecutive cases of non- fatal injuries involved in road traffic crashes and reported at Indira Gandhi Medical College hospital, Shimla. Study Period: 1st June 2005 to 31st May 2006. Study Variables: Demographic characteristics of the victims, pattern of injuries and hospital stay of the victims. Types of crashes, time, day and month of crashes, vehicles involved in crashes, use of protective gear etc. Statistical Analysis: Percentages, Proportions. Results: 73% of the injured victims were young between 20-49yrs, male to female ratio being 5.3:1. Employees (34.7%) and occupants of transport vehicles (45.9%) constituted the maximum number of the victims. Major injuries (fractures and abd. injuries) were reported in 53.4% of the victims and fractures of lower limb were the commonest of the injuries (26.3%). Use of seat-belt was found to be alarmingly low (14.3%) amongst the four- wheeler users and its non-use was found to be significantly associated with the major injuries. Helmet was used by 36 cases (66.7%) out of total of 54 users of motorized two-wheelers at the time of crash. Human error was the most reported cause of crash (82%) and the most common mode of crash was skidding and/rolling down (55%).23.1% of the drivers were reported to have consumed alcohol at the time of crash. PMID:24404456
Bicycle Guidelines and Crash Rates on Cycle Tracks in the United States
Morency, Patrick; Miranda-Moreno, Luis F.; Willett, Walter C.; Dennerlein, Jack T.
2013-01-01
Objectives. We studied state-adopted bicycle guidelines to determine whether cycle tracks (physically separated, bicycle-exclusive paths adjacent to sidewalks) were recommended, whether they were built, and their crash rate. Methods. We analyzed and compared US bicycle facility guidelines published between 1972 and 1999. We identified 19 cycle tracks in the United States and collected extensive data on cycle track design, usage, and crash history from local communities. We used bicycle counts and crash data to estimate crash rates. Results. A bicycle facility guideline written in 1972 endorsed cycle tracks but American Association of State Highway and Transportation Officials (AASHTO) guidelines (1974–1999) discouraged or did not include cycle tracks and did not cite research about crash rates on cycle tracks. For the 19 US cycle tracks we examined, the overall crash rate was 2.3 (95% confidence interval = 1.7, 3.0) per 1 million bicycle kilometers. Conclusions. AASHTO bicycle guidelines are not explicitly based on rigorous or up-to-date research. Our results show that the risk of bicycle–vehicle crashes is lower on US cycle tracks than published crashes rates on roadways. This study and previous investigations support building cycle tracks. PMID:23678920
Examination of Air Force Crash Damaged or Disabled Aircraft Recovery Program Resourcing
2011-06-01
Positioning for Lift ................................................................................... 2 Figure 4. 26 and 15-Ton Airbags Under Wing...15 Figure 5. Manufacture Depiction of Airbag System...lifting capacities are calculated at an airbag working pressure of seven pounds per square inch. The lifting bag example below is from AGE
DOT National Transportation Integrated Search
2001-04-28
An Institute of Transportation Engineers (ITE) test at 122 standard four-leg intersections in Long Island, NY, shows that retiming the length of the yellow/red phases of traffic signals can reduce serious and reportable accidents ($1,000-plus damage ...
Marijuana use and car crash injury.
Blows, Stephanie; Ivers, Rebecca Q; Connor, Jennie; Ameratunga, Shanthi; Woodward, Mark; Norton, Robyn
2005-05-01
To investigate the relationship between marijuana use prior to driving, habitual marijuana use and car crash injury. Population based case-control study in Auckland, New Zealand. Case vehicles were all cars involved in crashes in which at least one occupant was hospitalized or killed anywhere in the Auckland region, and control vehicles were a random sample of cars driving on Auckland roads. The drivers of 571 case and 588 control vehicles completed a structured interview. Self reported marijuana use in the 3 hours prior to the crash/survey and habitual marijuana use over the previous 12 months were recorded, along with a range of other variables potentially related to crash risk. The main outcome measure was hospitalization or death of a vehicle occupant due to car crash injury. Acute marijuana use was significantly associated with car crash injury, after controlling for the confounders age, gender, ethnicity, education level, passenger carriage, driving exposure and time of day (OR 3.9, 95% CI 1.2-12.9). However, after adjustment for these confounders plus other risky driving at the time of the crash (blood alcohol concentration, seat-belt use, travelling speed and sleepiness score), the effect of acute marijuana intake was no longer significant (OR 0.8, 95% CI 0.2-3.3). There was a strong significant association between habitual use and car crash injury after adjustment for all the above confounders plus acute use prior to driving (OR 9.5, 95% CI 2.8-32.3). This population-based case-control study indicates that habitual use of marijuana is strongly associated with car crash injury. The nature of the relationship between marijuana use and risk-taking is unclear and needs further research. The prevalence of marijuana use in this driving population was low, and acute use was associated with habitual marijuana use, suggesting that intervention strategies may be more effective if they are targeted towards high use groups.
Crashworthiness simulation of composite automotive structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botkin, M E; Johnson, N L; Simunovic, S
1998-06-01
In 1990 the Automotive Composites Consortium (ACC) began the investigation of crash worthiness simulation methods for composite materials. A contract was given to Livermore Software Technology Corporation (LSTC) to implement a new damage model in LS-DYNA3D TM specifically for composite structures. This model is in LS-DYNA3D TM and is in use by the ACC partners. In 1994 USCAR, a partnership of American auto companies, entered into a partnership called SCAAP (Super Computing Automotive Applications Partnership) for the express purpose of working with the National Labs on computational oriented research. A CRADA (Cooperative Research and Development Agreement) was signed with Lawrencemore » Livermore National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Argonne National Laboratory, and Los Alamos National Laboratory to work in three distinctly different technical areas, one of which was composites material modeling for crash worthiness. Each Laboratory was assigned a specific modeling task. The ACC was responsible for the technical direction of the composites project and provided all test data for code verification. All new models were to be implemented in DYNA3D and periodically distributed to all partners for testing. Several new models have been developed and implemented. Excellent agreement has been shown between tube crush simulation and experiments.« less
NASA Technical Reports Server (NTRS)
Driver, E. T.
1971-01-01
Safety design features in the motor vehicle and highway construction fields result from systems analysis approach to prevent or lessen death, injury, and property damage results. Systems analysis considers the prevention of crashes, increased survivability in crashes, and prompt medical attention to injuries as well as other postcrash salvage measures. The interface of these system elements with the driver, the vehicle, and the environment shows that action on the vehicle system produces the greatest safety payoff through design modifications. New and amended safety standards developed through hazard analysis technique improved accident statistics in the 70'; these regulations include driver qualifications and countermeasures to identify the chronic drunken driver who is involved in more than two-thirds of all auto deaths.
Reference governors for controlled belt restraint systems
NASA Astrophysics Data System (ADS)
van der Laan, E. P.; Heemels, W. P. M. H.; Luijten, H.; Veldpaus, F. E.; Steinbuch, M.
2010-07-01
Today's restraint systems typically include a number of airbags, and a three-point seat belt with load limiter and pretensioner. For the class of real-time controlled restraint systems, the restraint actuator settings are continuously manipulated during the crash. This paper presents a novel control strategy for these systems. The control strategy developed here is based on a combination of model predictive control and reference management, in which a non-linear device - a reference governor (RG) - is added to a primal closed-loop controlled system. This RG determines an optimal setpoint in terms of injury reduction and constraint satisfaction by solving a constrained optimisation problem. Prediction of the vehicle motion, required to predict future constraint violation, is included in the design and is based on past crash data, using linear regression techniques. Simulation results with MADYMO models show that, with ideal sensors and actuators, a significant reduction (45%) of the peak chest acceleration can be achieved, without prior knowledge of the crash. Furthermore, it is shown that the algorithms are sufficiently fast to be implemented online.
Analysis of the frequency and severity of rear-end crashes in work zones.
Qi, Yi; Srinivasan, Raghavan; Teng, Hualiang; Baker, Robert
2013-01-01
The objective of this study was to identify the factors that influence the frequency and severity of rear-end crashes in work zones because rear-end crashes represent a significant proportion of crashes that occur in work zones. Truncated count data models were developed to identify influencing factors on the frequency of read-end crashes in work zones and ordered probit models were developed to evaluate influencing factors on the severity of rear-end crashes in work zones. Most of the variables identified in this study for these 2 models were significant at the 95 percent level. The statistics for models indicate that the 2 developed models are appropriate compared to alternative models. Major findings related to the frequency of rear-end crashes include the following: (1) work zones for capacity and pavement improvements have the highest frequency compared to other types of work zones; (2) work zones controlled by flaggers are associated with more rear-end crashes compared to those controlled by arrow boards; and (3) work zones with alternating one-way traffic tended to have more rear-end crashes compared to those with lane shifts. Major findings related to the severity of the rear-end crashes include the following: (1) rear-end crashes associated with alcohol, night, pedestrians, and roadway defects are more severe, and those associated with careless backing, stalled vehicles, slippery roadways, and misunderstanding flagging signals are less severe; (2) truck involvement and a large number of vehicles in a crash are both associated with increased severity, and (3) rear-end crashes that happened in work zones for bridge, capacity, and pavement are likely to be more severe than others.
Planar Impacts in Rollover Crashes: Significance, Distribution and Injury Epidemiology
Bose, Dipan; Kerrigan, Jason R.; Foster, Jonathan B.; Crandall, Jeff R.; Tobaru, Shigeo
2011-01-01
While one third of all fatal motor vehicle crashes involve rollover of the vehicle, a substantially large portion of these rollover crashes involve planar impacts (e.g., frontal, side or rear impact) that influence the crash kinematics and subsequently the injury outcome. The objective of the study was to evaluate the distribution of planar impacts in rollover crashes, and in particular, to describe the differences in the underlying crash kinematics, injury severity and the regional distribution of injuries when compared to the rollover-dominated crashes without significant planar impact (i.e., primary rollovers). Sampled cases (n=6,900) from the U.S. National Automotive Sampling System – Crashworthiness Data System, representing approximately 3.3 million belted drivers involved in a rollover crash in years 1998–2008, were analyzed. Single vehicle rollover crashes with significant planar impact (21% of all rollover crashes) were in general more likely to result in occupant fatality and involved higher incidence of moderate to severe injuries compared to single vehicle primary rollovers (p<0.05). A substantial proportion of the planar impact rollovers ended in single quarter turn crashes (30%), mostly resulting from a frontal impact (59%). While chest was the most frequently injured body region among all rollover victims sustaining severe injuries, severe injuries sustained in primary rollovers were more isolated (single body region) in comparison to the ones sustained in rollovers with planar impacts. The results emphasize the higher risk of rollover victims sustaining an injury and the differences in distribution of injuries sustained when a planar impact is associated with the rollover crash. PMID:22105400
Safety analysis of urban arterials at the meso level.
Li, Jia; Wang, Xuesong
2017-11-01
Urban arterials form the main structure of street networks. They typically have multiple lanes, high traffic volume, and high crash frequency. Classical crash prediction models investigate the relationship between arterial characteristics and traffic safety by treating road segments and intersections as isolated units. This micro-level analysis does not work when examining urban arterial crashes because signal spacing is typically short for urban arterials, and there are interactions between intersections and road segments that classical models do not accommodate. Signal spacing also has safety effects on both intersections and road segments that classical models cannot fully account for because they allocate crashes separately to intersections and road segments. In addition, classical models do not consider the impact on arterial safety of the immediately surrounding street network pattern. This study proposes a new modeling methodology that will offer an integrated treatment of intersections and road segments by combining signalized intersections and their adjacent road segments into a single unit based on road geometric design characteristics and operational conditions. These are called meso-level units because they offer an analytical approach between micro and macro. The safety effects of signal spacing and street network pattern were estimated for this study based on 118 meso-level units obtained from 21 urban arterials in Shanghai, and were examined using CAR (conditional auto regressive) models that corrected for spatial correlation among the units within individual arterials. Results showed shorter arterial signal spacing was associated with higher total and PDO (property damage only) crashes, while arterials with a greater number of parallel roads were associated with lower total, PDO, and injury crashes. The findings from this study can be used in the traffic safety planning, design, and management of urban arterials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of the Second Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full Scale Crash Test
NASA Technical Reports Server (NTRS)
Annett, Martin; Littell, Justin
2015-01-01
Two Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the longitudinal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.
Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption
NASA Astrophysics Data System (ADS)
Kim, Ji Hoon; Kim, Daeyong; Lee, Myoung-Gyu; Lee, Jong Kook
2016-09-01
The energy-absorbing characteristics of crash members in automotive collision play an important role in controlling the amount of damage to the passenger compartment. Aluminum foams have high strength-to-weight ratio and high deformability, thus good crashworthiness is expected while maintaining or even saving weights when foams are implemented in crash members. In order to investigate the effect of the open-cell aluminum foam fillers on impact performance and weight saving, a multiscale framework for evaluating the crashworthiness of aluminum foam-filled members is used. To circumvent the difficulties of mechanical tests on foams, a micromechanical model of the aluminum foam is constructed using the x-ray micro tomography and virtual tests are conducted for the micromechanical model to characterize the behavior of the foam. In the macroscale, the aluminum foam is represented by the crushable foam constitutive model, which is then incorporated into the impact test simulation of the foam-filled crash member. The multiscale foam-filled crash member model was validated for the high-speed impact test, which confirms that the material model characterized by the micromechanical approach represents the behavior of the open-cell foam under impact loading well. Finally, the crash member design for maximizing the energy absorption is discussed by investigating various designs from the foam-only structure to the hollow tube structure. It was found that the foam structure absorbs more energy than the hollow tube or foam-filled structure with the same weight.
An illustrated analysis of North Carolina traffic crash statistics for 2004
DOT National Transportation Integrated Search
2004-01-01
In 2004, there was a 1.4% increase in the number of fatalities, but a 3% decrease in the : number of traffic crashes reported. A crash occurred every 2.3 minutes and a person was : killed every 5.6 hours on our state highways. There were 1,574 lives ...
DYNA3D: A computer code for crashworthiness engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallquist, J.O.; Benson, D.J.
1986-09-01
A finite element program with crashworthiness applications has been developed at LLNL. DYNA3D, an explicit, fully vectorized, finite deformation structural dynamics program, has four capabilities that are critical for the efficient and realistic modeling crash phenomena: (1) fully optimized nonlinear solid, shell, and beam elements for representing a structure; (2) a broad range of constitutive models for simulating material behavior; (3) sophisticated contact algorithms for impact interactions; (4) a rigid body capability to represent the bodies away from the impact region at a greatly reduced cost without sacrificing accuracy in the momentum calculations. Basic methodologies of the program are brieflymore » presented along with several crashworthiness calculations. Efficiencies of the Hughes-Liu and Belytschko-Tsay shell formulations are considered.« less
Simons-Morton, Bruce; Hartos, Jessica L; Leaf, William A; Preusser, David F
2006-09-01
Motor vehicle crashes are highly elevated among newly licensed teenage drivers. Limits on high-risk driving conditions by driver licensing policies and parents can protect novice teens from negative driving outcomes, while they experience and driving proficiency. The purpose of this research was to evaluate the effects of strict parent-imposed driving limits on driving outcomes during the first year of licensure. A sample of 3,743 Connecticut teens was recruited and randomized to the Checkpoints Program or comparison condition. Assessments conducted at baseline, licensure, 3-, 6-, and 12-months postlicensure included parent-imposed driving limits, traffic violations, and crashes. Bivariate and multivariate analyses were conducted to assess the effects of strict parent limits on traffic violations and crashes during the first year of licensure. Thirty percent of teens reported at least one traffic violation and 40% reported at least one crash. More strict parent-imposed limits at licensure, 3-, 6-, and 12-months postlicensure, were associated with fewer violations and crashes in multivariate analyses. Notably, adherence to recommended night curfew was consistently associated with fewer violations and crashes. The findings indicate that strict parent-imposed limits may protect novice teen drivers from negative driving outcomes.
Motorcycle protective clothing: protection from injury or just the weather?
de Rome, Liz; Ivers, Rebecca; Fitzharris, Michael; Du, Wei; Haworth, Narelle; Heritier, Stephane; Richardson, Drew
2011-11-01
Apart from helmets, little is known about the effectiveness of motorcycle protective clothing in reducing injuries in crashes. The study aimed to quantify the association between usage of motorcycle clothing and injury in crashes. Cross-sectional analytic study. Crashed motorcyclists (n=212, 71% of identified eligible cases) were recruited through hospitals and motorcycle repair services. Data was obtained through structured face-to-face interviews. The main outcome was hospitalization and motorcycle crash-related injury. Poisson regression was used to estimate relative risk (RR) and 95% confidence intervals for injury adjusting for potential confounders. Motorcyclists were significantly less likely to be admitted to hospital if they crashed wearing motorcycle jackets (RR=0.79, 95% CI: 0.69-0.91), pants (RR=0.49, 95% CI: 0.25-0.94), or gloves (RR=0.41, 95% CI: 0.26-0.66). When garments included fitted body armour there was a significantly reduced risk of injury to the upper body (RR=0.77, 95% CI: 0.66-0.89), hands and wrists (RR=0.55, 95% CI: 0.38-0.81), legs (RR=0.60, 95% CI: 0.40-0.90), feet and ankles (RR=0.54, 95% CI: 0.35-0.83). Non-motorcycle boots were also associated with a reduced risk of injury compared to shoes or joggers (RR=0.46, 95% CI: 0.28-0.75). No association between use of body armour and risk of fracture injuries was detected. A substantial proportion of motorcycle designed gloves (25.7%), jackets (29.7%) and pants (28.1%) were assessed to have failed due to material damage in the crash. Motorcycle protective clothing is associated with reduced risk and severity of crash related injury and hospitalization, particularly when fitted with body armour. The proportion of clothing items that failed under crash conditions indicates a need for improved quality control. While mandating usage of protective clothing is not recommended, consideration could be given to providing incentives for usage of protective clothing, such as tax exemptions for safety gear, health insurance premium reductions and rebates. Copyright © 2011 Elsevier Ltd. All rights reserved.
Identification of victims of the 1998 Taoyuan Airbus crash accident using DNA analysis.
Hsu, C M; Huang, N E; Tsai, L C; Kao, L G; Chao, C H; Linacre, A; Lee, J C
1999-01-01
In February 1998 a civilian aeroplane carrying 196 individuals crashed in Taiwan and killed another 6 people on the ground. Although there were dental and medical records, fingerprints, photographic evidence and personal effects to identify some of the victims, DNA analysis was required to further identify severely damaged remains. From the 202 people known to have perished in the plane crash, a total of 685 fragments of human remains were subjected to DNA analysis. The analysis was carried out using nine microsatellite loci, plus amelogenin to cluster the 685 fragments into 202 groups, accounting for all the victims. To establish genetic relatedness of the victims to other victims and living relatives, additional DNA loci were used. In this case the paternity index was increased by using HLA DQA1 plus Polymarker. The same 16 DNA loci were used to test blood samples from 201 relatives to establish parent/child and sibling relationships. With the exception of 19 victims identified by non-genetic evidence, 183 victims were successfully identified by DNA typing with relatively high values of paternity index by the direct or indirect comparison of relatives. The 202 victims were from 37 different families, ranging in size from 2 to 13 members and 74 individuals known to be unrelated to any other victim. The DNA from living relatives was used to identify one member of a family group, from which other victims of the family could be identified. ABO blood group information was further used to confirm genetic relatedness within families. A comparison of the DNA profiling results to the ABO blood group of the victims showed no discrepancies with the exception of two mutations in the FGA locus. In cases of severely damaged victims from a plane crash, DNA analysis proved to be the best choice to identify victims.
Ivers, Rebecca Q; Sakashita, Chika; Senserrick, Teresa; Elkington, Jane; Lo, Serigne; Boufous, Soufiane; de Rome, Liz
2016-01-01
Motorcycle riding is increasing globally and confers a high risk of crash-related injury and death. There is community demand for investment in rider training programs but no high-quality evidence about its effectiveness in preventing crashes. This randomised trial of an on-road rider coaching program aimed to determine its effectiveness in reducing crashes in novice motorcycle riders. Between May 2010 and October 2012, 2399 newly-licensed provisional riders were recruited in Victoria, Australia and completed a telephone interview before randomisation to intervention or control groups. Riders in the intervention group were offered an on-road motorcycle rider coaching program which involved pre-program activities, 4h riding and facilitated discussion in small groups with a riding coach. Outcome measures were collected for all participants via telephone interviews at 3 and 12 months after program delivery (or equivalent for controls), and via linkage to police-recorded crash and offence data. The primary outcome was a composite measure of police-recorded and self-reported crashes; secondary outcomes included traffic offences, near crashes, riding exposure, and riding behaviours and motivations. Follow-up was 89% at 3 months and 88% at 12 months; 60% of the intervention group completed the program. Intention-to-treat analyses conducted in 2014 indicated no effect on crash risk at 3 months (adjusted OR 0.90, 95% CI: 0.65-1.27) or 12 months (adjusted OR 1.00, 95% CI: 0.78-1.29). Riders in the intervention group reported increased riding exposure, speeding behaviours and rider confidence. There was no evidence that this on-road motorcycle rider coaching program reduced the risk of crash, and we found an increase in crash-related risk factors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sorock, G S; Ranney, T A; Lehto, M R
1996-01-01
Motor vehicle travel through roadway construction workzones has been shown to increase the risk of a crash. The number of workzones has increased due to recent congressional funding in 1991 for expanded roadway maintenance and repair. In this paper, we describe the characteristics and costs of motor vehicle crashes in roadway construction workzones. As opposed to using standard accident codes to identify accident types, automobile insurance claims files from 1990-93 were searched to identify records with the keyword "construction" in the accident narrative field. A total of 3,686 claims were used for the analysis of crashes. Keywords from the accident narrative field were used to identify five pre-crash vehicle activities and five crash types. We evaluated misclassification error by reading 560 randomly selected claims and found it to be only 5%. For each of four years, 1990-93, there was a total of 648,996,977 and 1,065 crashes, respectively. There was a 70% increase in the crash rate per 10,000 personal insured vehicles from 1990-93 (2.1-3.6). Most crashes (26%) involved a stopped or slowing vehicle in the workzone. The most common crash (31%) was a rear-end collision. The most costly pre-crash activity was a major judgment error on the part of a driver (n = 120, median cost = $2,628). An overturned vehicle was the most costly crash type (n = 16, median cost = $4,745). In summary, keyword text analysis of accident narrative data used in this study demonstrated its utility and potential for enhancing injury epidemiology. The results suggest interventions are needed to respond to growing traffic hazards in construction workzones.
Crashes of sightseeing helicopter tours in Hawaii.
Haaland, Wren L; Shanahan, Dennis F; Baker, Susan P
2009-07-01
Crashes of sightseeing helicopter flights in Hawaii and the resulting tourist deaths prompted the FAA to issue regulations in 1994 specific to air tours in Hawaii. Research was undertaken to examine the effect of the 1994 Rule and to describe the circumstances of such crashes. From National Transportation Safety Board data, 59 crashes of helicopter air tour flights in Hawaii during 1981-2008 were identified; crash investigation reports were read and coded. Crashes in 1995-2008 were compared with those in 1981-1994. The 1994 Rule was followed by a 47% decrease in the crash rate, from 3.4 to 1.8/100,000 flight hours. The number of crashes into the ocean decreased from eight before the Rule to one afterwards. VFR-IMC crashes increased from 5 to 32% of crashes. There were 46 tourists and 9 pilots who died in 16 fatal crashes. Aircraft malfunctions, primarily due to poor maintenance, precipitated 34 (58%) of the crashes and persisted throughout the 28-yr period. Pilot errors were apparent in 23 crashes (39%). Flight from visual to instrument conditions occurred in two cases before the Rule and seven cases after. Terrain unsuitable for landing was cited in 37 crashes (63%). Decreases occurred in the overall number and rate of crashes and in ocean crash landings. The increase in VFR-IMC crashes may be related to the requirement that tour helicopters fly at least 1500 ft. above terrain. Attention is still needed to maintenance, pilot training, and restricting flights to operating areas and conditions that enable safe emergency landings.
Statewide analysis of bicycle crashes : [project summary].
DOT National Transportation Integrated Search
2017-06-01
An extensive literature review was conducted to locate existing studies in four areas: (1) risk factors that affect the frequency and severity of bicycle crashes; (2) bicycle crash causes, patterns, and contributing factors; (3) network screening met...
Brubacher, Jeffrey R.; Chan, Herbert; Erdelyi, Shannon; Schuurman, Nadine; Amram, Ofer
2016-01-01
Background British Columbia, Canada is a geographically large jurisdiction with varied environmental and socio-cultural contexts. This cross-sectional study examined variation in motor vehicle crash rates across 100 police patrols to investigate the association of crashes with key explanatory factors. Methods Eleven crash outcomes (total crashes, injury crashes, fatal crashes, speed related fatal crashes, total fatalities, single-vehicle night-time crashes, rear-end collisions, and collisions involving heavy vehicles, pedestrians, cyclists, or motorcyclists) were identified from police collision reports and insurance claims and mapped to police patrols. Six potential explanatory factors (intensity of traffic law enforcement, speed limits, climate, remoteness, socio-economic factors, and alcohol consumption) were also mapped to police patrols. We then studied the association between crashes and explanatory factors using negative binomial models with crash count per patrol as the response variable and explanatory factors as covariates. Results Between 2003 and 2012 there were 1,434,239 insurance claim collisions, 386,326 police reported crashes, and 3,404 fatal crashes. Across police patrols, there was marked variation in per capita crash rate and in potential explanatory factors. Several factors were associated with crash rates. Percent roads with speed limits ≤ 60 km/hr was positively associated with total crashes, injury crashes, rear end collisions, and collisions involving pedestrians, cyclists, and heavy vehicles; and negatively associated with single vehicle night-time crashes, fatal crashes, fatal speeding crashes, and total fatalities. Higher winter temperature was associated with lower rates of overall collisions, single vehicle night-time collisions, collisions involving heavy vehicles, and total fatalities. Lower socio-economic status was associated with higher rates of injury collisions, pedestrian collisions, fatal speeding collisions, and fatal collisions. Regions with dedicated traffic officers had fewer fatal crashes and fewer fatal speed related crashes but more rear end crashes and more crashes involving cyclists or pedestrians. The number of traffic citations per 1000 drivers was positively associated with total crashes, fatal crashes, total fatalities, fatal speeding crashes, injury crashes, single vehicle night-time crashes, and heavy vehicle crashes. Possible explanations for these associations are discussed. Conclusions There is wide variation in per capita rates of motor vehicle crashes across BC police patrols. Some variation is explained by factors such as climate, road type, remoteness, socioeconomic variables, and enforcement intensity. The ability of explanatory factors to predict crash rates would be improved if considered with local traffic volume by all travel modes. PMID:27099930
Serious injury prediction algorithm based on large-scale data and under-triage control.
Nishimoto, Tetsuya; Mukaigawa, Kosuke; Tominaga, Shigeru; Lubbe, Nils; Kiuchi, Toru; Motomura, Tomokazu; Matsumoto, Hisashi
2017-01-01
The present study was undertaken to construct an algorithm for an advanced automatic collision notification system based on national traffic accident data compiled by Japanese police. While US research into the development of a serious-injury prediction algorithm is based on a logistic regression algorithm using the National Automotive Sampling System/Crashworthiness Data System, the present injury prediction algorithm was based on comprehensive police data covering all accidents that occurred across Japan. The particular focus of this research is to improve the rescue of injured vehicle occupants in traffic accidents, and the present algorithm assumes the use of an onboard event data recorder data from which risk factors such as pseudo delta-V, vehicle impact location, seatbelt wearing or non-wearing, involvement in a single impact or multiple impact crash and the occupant's age can be derived. As a result, a simple and handy algorithm suited for onboard vehicle installation was constructed from a sample of half of the available police data. The other half of the police data was applied to the validation testing of this new algorithm using receiver operating characteristic analysis. An additional validation was conducted using in-depth investigation of accident injuries in collaboration with prospective host emergency care institutes. The validated algorithm, named the TOYOTA-Nihon University algorithm, proved to be as useful as the US URGENCY and other existing algorithms. Furthermore, an under-triage control analysis found that the present algorithm could achieve an under-triage rate of less than 10% by setting a threshold of 8.3%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Crash sequence based risk matrix for motorcycle crashes.
Wu, Kun-Feng; Sasidharan, Lekshmi; Thor, Craig P; Chen, Sheng-Yin
2018-04-05
Considerable research has been conducted related to motorcycle and other powered-two-wheeler (PTW) crashes; however, it always has been controversial among practitioners concerning with types of crashes should be first targeted and how to prioritize resources for the implementation of mitigating actions. Therefore, there is a need to identify types of motorcycle crashes that constitute the greatest safety risk to riders - most frequent and most severe crashes. This pilot study seeks exhibit the efficacy of a new approach for prioritizing PTW crash causation sequences as they relate to injury severity to better inform the application of mitigating countermeasures. To accomplish this, the present study constructed a crash sequence-based risk matrix to identify most frequent and most severe motorcycle crashes in an attempt to better connect causes and countermeasures of PTW crashes. Although the frequency of each crash sequence can be computed from crash data, a crash severity model is needed to compare the levels of crash severity among different crash sequences, while controlling for other factors that also have effects on crash severity such drivers' age, use of helmet, etc. The construction of risk matrix based on crash sequences involve two tasks: formulation of crash sequence and the estimation of a mixed-effects (ME) model to adjust the levels of severities for each crash sequence to account for other crash contributing factors that would have an effect on the maximum level of crash severity in a crash. Three data elements from the National Automotive Sampling System - General Estimating System (NASS-GES) data were utilized to form a crash sequence: critical event, crash types, and sequence of events. A mixed-effects model was constructed to model the severity levels for each crash sequence while accounting for the effects of those crash contributing factors on crash severity. A total of 8039 crashes involving 8208 motorcycles occurred during 2011 and 2013 were included in this study, weighted to represent 338,655 motorcyclists involved in traffic crashes in three years (2011-2013)(NHTSA, 2013). The top five most frequent and severe types of crash sequences were identified, accounting for 23 percent of all the motorcycle crashes included in the study, and they are (1) run-off-road crashes on the right, and hitting roadside objects, (2) cross-median crashes, and rollover, (3) left-turn oncoming crashes, and head-on, (4) crossing over (passing through) or turning into opposite direction at intersections, and (5) side-impacted. In addition to crash sequences, several other factors were also identified to have effects on crash severity: use of helmet, presence of horizontal curves, alcohol consumption, road surface condition, roadway functional class, and nighttime condition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Casualty Crash Types for which Teens are at Excess Risk
Bingham, C. R.; Shope, J. T.
2007-01-01
This study identified casualty crash types for which teen drivers experience excess risk relative to adults. Michigan State Police crash records were used to examine casualty crashes in two statewide populations of drivers who experienced at least one crash from 1989–1996 (pre-graduated driver licensing in Michigan): teens (ages 16–19) and adults (ages 45–65). Rates and rate ratios (RR) based on crash occurrence per 100,000 person miles driven (PMD) compared teens and adults from the two statewide populations. Excess risk was defined as a RR for a specific type of crash that was significantly greater than the RR for all crashes combined. The RRs for all crashes combined for teenage males was 2.41 and 1.75 for teenage females. RRs for teenage males ranged from a low of 2.16 for casualty crashes attributed to alcohol to 8.98 for casualty road departure crashes at night. Among teenage females, RRs ranged from 2.06 for casualty crashes on the weekend to 7.86 for casualty crashes at night with passengers. Casualty crash rates for teenage males ranged from 0.21 per 100,000 PMD for rollover crashes to 1.95 per 100,000 PMD for crashes with passengers. Among teen females, casualty crash rates ranged from 0.21 per 100,000 PMD for drink/driving with passengers to 3.31 per 100,000 PMD for crashes with passengers. Implications for graduated driver licensing, teen driver supervision, and policy are discussed. This study was funded by the National Institute on Alcohol Abuse and Alcoholism and the Centers for Disease Control and Prevention’s National Center for Injury Prevention and Control. PMID:18184510
The effect of organized systems of trauma care on motor vehicle crash mortality.
Nathens, A B; Jurkovich, G J; Cummings, P; Rivara, F P; Maier, R V
2000-04-19
Despite calls for wider national implementation of an integrated approach to trauma care, the effectiveness of this approach at a regional or state level remains unproven. To determine whether implementation of an organized system of trauma care reduces mortality due to motor vehicle crashes. Cross-sectional time-series analysis of crash mortality data collected for 1979 through 1995 from the Fatality Analysis Reporting System. All 50 US states and the District of Columbia. All front-seat passenger vehicle occupants aged 15 to 74 years. Rates of death due to motor vehicle crashes compared before and after implementation of an organized trauma care system. Estimates are based on within-state comparisons adjusted for national trends in crash mortality. Ten years following initial trauma system implementation, mortality due to traffic crashes began to decline; about 15 years following trauma system implementation, mortality was reduced by 8% (95% confidence interval [CI], 3%-12%) after adjusting for secular trends in crash mortality, age, and the introduction of traffic safety laws. Implementation of primary enforcement of restraint laws and laws deterring drunk driving resulted in reductions in crash mortality of 13% (95% CI, 11%-16%) and 5% (95% CI, 3%-7%), respectively, while relaxation of state speed limits increased mortality by 7% (95% CI, 3%-10%). Our data indicate that implementation of an organized system of trauma care reduces crash mortality. The effect does not appear for 10 years, a finding consistent with the maturation and development of trauma triage protocols, interhospital transfer agreements, organization of trauma centers, and ongoing quality assurance.
Frequency Response Function Based Damage Identification for Aerospace Structures
NASA Astrophysics Data System (ADS)
Oliver, Joseph Acton
Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite sandwich plate model. Chapter 6 presents the final extension to experimental systems-including methods for initial baseline correlation and data reduction-and validates the algorithm on an experimental composite plate with impact damage. The final chapter deviates from development and validation of the primary algorithm to discuss development of an experimental scaled-wing test bed as part of a collaborative effort for developing structural health monitoring and prognosis technology. The dissertation concludes with an overview of technical conclusions and recommendations for future work.
Crash test and evaluation of 3-ft mounting height sign support system.
DOT National Transportation Integrated Search
2016-07-01
The Texas Department of Transportation (TxDOT) and other transportation agencies continue to : research potential countermeasure for mitigating wrong-way crashes. Because many drivers involved in : wrong-way crashes are impaired, some highway safety ...
Carter, Patrick M.; Buckley, Lisa; Flannagan, Carol A. C.; Cicchino, Jessica B.; Hemmila, Mark; Bowman, Patrick J.; Almani, Farideh; Bingham, C. Raymond
2017-01-01
Objectives To evaluate the impact of the partial repeal of Michigan’s universal motorcycle helmet law on helmet use, fatalities, and head injuries. Methods We compared helmet use rates and motorcycle crash fatality risk for the 12 months before and after the April 13, 2012, repeal with a statewide police-reported crash data set. We linked police-reported crashes to injured riders in a statewide trauma registry. We compared head injury before and after the repeal. Regression examined the effect of helmet use on fatality and head injury risk. Results Helmet use decreased in crash (93.2% vs 70.8%; P < .001) and trauma data (91.1% vs 66.2%; P < .001) after the repeal. Although fatalities did not change overall (3.3% vs 3.2%; P = .87), head injuries (43.4% vs 49.6%; P < .05) and neurosurgical intervention increased (3.7% vs 6.5%; P < .05). Male gender (adjusted odds ratio [AOR] = 1.65), helmet nonuse (AOR = 1.84), alcohol intoxication (AOR = 11.31), intersection crashes (AOR = 1.62), and crashes at higher speed limits (AOR = 1.04) increased fatality risk. Helmet nonuse (AOR = 2.31) and alcohol intoxication (AOR = 2.81) increased odds of head injury. Conclusions Michigan’s helmet law repeal resulted in a 24% to 27% helmet use decline among riders in crashes and a 14% increase in head injury. PMID:27854530
School start times and teenage driver motor vehicle crashes.
Foss, Robert D; Smith, Richard L; O'Brien, Natalie P
2018-04-26
Shifting school start times to 8:30 am or later has been found to improve academic performance and reduce behavior problems. Limited research suggests this may also reduce adolescent driver motor vehicle crashes. A change in the school start time from 7:30 am to 8:45 am for all public high schools in one North Carolina county presented the opportunity to address this question with greater methodologic rigor. We conducted ARIMA interrupted time-series analyses to examine motor vehicle crash rates of high school age drivers in the intervention county and 3 similar comparison counties with comparable urban-rural population distribution. To focus on crashes most likely to be affected, we limited analysis to crashes involving 16- & 17-year-old drivers occurring on days when school was in session. In the intervention county, there was a 14% downward shift in the time-series following the 75 min delay in school start times (p = .076). There was no change approaching statistical significance in any of the other three counties. Further analysis indicated marked, statistically significant shifts in hourly crash rates in the intervention county, reflecting effects of the change in school start time on young driver exposure. Crashes from 7 to 7:59 am decreased sharply (-25%, p = .008), but increased similarly from 8 to 8:59 am (21%, p = .004). Crashes from 2 to 2:59 pm declined dramatically (-48%, p = .000), then increased to a lesser degree from 3 to 3:59 pm (32%, p = .024) and non-significantly from 4 to 4:59 (19%, p = .102). There was no meaningful change in early morning or nighttime crashes, when drowsiness-induced crashes might have been expected to be most common. The small decrease in crashes among high school age drivers following the shift in school start time is consistent with the findings of other studies of teen driver crashes and school start times. All these studies, including the present one, have limitations, but the similar findings suggest that crashes and school start times are indeed related, with earlier start times equating to more crashes. Later high school start times (>8:30 am) appear to be associated with lower adolescent driver crash rates, but additional research is needed to confirm this and to identify the mechanism by which this occurs (reduced drowsiness or reduced exposure). Copyright © 2018 Elsevier Ltd. All rights reserved.
Statistical Characteristics of Wrong-Way Driving Crashes on Illinois Freeways.
Zhou, Huaguo; Zhao, Jiguang; Pour-Rouholamin, Mahdi; Tobias, Priscilla A
2015-01-01
Driving the wrong way on freeways, namely wrong-way driving (WWD), has been found to be a major concern for more than 6 decades. The purpose of this study was to identify characteristics of this type of crash as well as to rank the locations/interchanges according to their vulnerability to WWD entries. The WWD crash data on Illinois freeways were statistically analyzed for a 6-year time period (2004 to 2009) from 3 aspects: crash, vehicle, and person. The temporal distributions, geographical distributions, roadway characteristics, and crash locations were analyzed for WWD crashes. The driver demographic information, physical condition, and injury severity were analyzed for wrong-way drivers. The vehicle characteristics, vehicle operation, and collision results were analyzed for WWD vehicles. A method was brought about to identify wrong-way entry points that was then used to develop a relative-importance technique and rank different interchange types in terms of potential WWD incidents. The findings revealed that a large proportion of WWD crashes occurred during the weekend from midnight to 5 a.m. Approximately 80% of WWD crashes were located in urban areas and nearly 70% of wrong-way vehicles were passenger cars. Approximately 58% of wrong-way drivers were driving under the influence (DUI). Of those, nearly 50% were confirmed to be impaired by alcohol, about 4% were impaired by drugs, and more than 3% had been drinking. The analysis of interchange ranking found that compressed diamond interchanges, single point diamond interchanges (SPDIs), partial cloverleaf interchanges, and freeway feeders had the highest wrong-way crash rates (wrong-way crashes per 100 interchanges per year). The findings of this study call for more attention to WWD crashes from different aspects such as driver age group, time of day, day of week, and DUI drivers. Based on the analysis results of WWD distance, the study explained why a 5-mile radius of WWD crash location should be studied for WWD fatal crashes with unknown entry points.
Aircraft Crash Survival Design Guide. Volume 2. Aircraft Crash Environment and Human Tolerance
1980-01-01
anthropometry , and crash test dummies, all of which serves as background for the design information presented in the other volumes. .I / V. L...Aeromedical Institute furnished assistance in locat- ing recent information on human tolerance, anthropometry , and crash test dummies. .3 TABLE OF CONTENTS...83 6.1 INTRODUCTION . . . . . . .. ..... 83 6.2 ANTHROPOMETRY . . . . . . 83 6.2.1 Conventional Anthropometric Measurements
Sleep Quality and Motor Vehicle Crashes in Adolescents
Pizza, Fabio; Contardi, Sara; Antognini, Alessandro Baldi; Zagoraiou, Maroussa; Borrotti, Matteo; Mostacci, Barbara; Mondini, Susanna; Cirignotta, Fabio
2010-01-01
Study Objectives: Sleep-related complaints are common in adolescents, but their impact on the rate of motor vehicle crashes accidents is poorly known. We studied subjective sleep quality, driving habits, and self-reported car crashes in high-school adolescents. Methods: Self-administered questionnaires (with items exploring driving habits) were distributed to 339 students who had a driver's license and attended 1 of 7 high schools in Bologna, Italy. Statistical analysis were performed to describe lifestyle habits, sleep quality, sleepiness, and their relationship with the binary dependent variable (presence or absence of car crashes) to identify the factors significantly affecting the probability of car crashes in a multivariate binary logistic regression model. Results: Nineteen percent of the sample reported bad sleep, 64% complained of daytime sleepiness, and 40% reported sleepiness while driving. Eighty students (24%), 76% of which were males, reported that they had already crashed at least once, and 15% considered sleepiness to have been the main cause of their crash. As compared with adolescents who had not had a crash, those who had at least 1 previous crash reported that they more frequently used to drive (79% vs 62%), drove at night (25% vs 9%), drove while sleepy (56% vs 35%), had bad sleep (29% vs 16%), and used stimulants such as caffeinated soft drinks (32% vs 19%), tobacco (54% vs 27%), and drugs (21% vs 7%). The logistic procedure established a significant predictive role of male sex (p < 0.0001; odds ratio = 3.3), tobacco use (p < 0.0001; odds ratio = 3.2), sleepiness while driving (p = 0.010; odds ratio = 2.1), and bad sleep (p = 0.047; odds ratio = 1.9) for the crash risk. Conclusions: Our results confirm the high prevalence of sleep-related complaints among adolescents and highlight their independent role on self-reported crash risk. Citation: Pizza F; Contardi S; Baldi Antognini A; Zagoraiou M; Borrotti M; Mostacci B; Mondini S; Cirignotta F. Sleep quality and motor vehicle crashes in adolescents. J Clin Sleep Med 2010;6(1):41-45. PMID:20191936
Perception-based road hazard identification with Internet support.
Tarko, Andrew P; DeSalle, Brian R
2003-01-01
One of the most important tasks faced by highway agencies is identifying road hazards. Agencies use crash statistics to detect road intersections and segments where the frequency of crashes is excessive. With the crash-based method, a dangerous intersection or segment can be pointed out only after a sufficient number of crashes occur. A more proactive method is needed, and motorist complaints may be able to assist agencies in detecting road hazards before crashes occur. This paper investigates the quality of safety information reported by motorists and the effectiveness of hazard identification based on motorist reports, which were collected with an experimental Internet website. It demonstrates that the intersections pointed out by motorists tended to have more crashes than other intersections. The safety information collected through the website was comparable to 2-3 months of crash data. It was concluded that although the Internet-based method could not substitute for the traditional crash-based methods, its joint use with crash statistics might be useful in detecting new hazards where crash data had been collected for a short time.
Kraemer, John D
2018-05-18
This study aims to examine potential road crash disparities across relative wealth and location of residence in Kenya by analyzing population-representative Demographic and Health Survey data. Relative wealth was measured by household assets, converted into an index by polychoric principal components analysis. Location and sex-stratified associations between wealth quantiles and crashes were flexibly estimated using fractional polynomial models. Structural equation models were fit to examine whether observed differences may operate through previously identified determinants. In rural areas, crashes were least common for both the poorest men (-5.2 percentage points, 95% CI: -7.3 to -3.2) and women (-1.6 percentage points, 95% CI: -2.9 to -0.4). In urban areas, male crashes were lowest (-3.0 percentage points, 95% CI: -5.2 to -0.8) among the wealthiest, while they peaked in the middle of the female wealth distribution (2.0 percentage points, 95% CI: 0.3-3.8). Male differences operate partially though occupational driving and vehicle ownership. Urban female differences operate partially through household vehicle ownership, but differences for rural women were not explained by modeled determinants. Relative wealth and road crash have opposite associations in rural and urban areas. Especially in rural areas, it is important to mitigate potential unintended effects of economic development.
Subaiya, Saleena; Hogg, Euan; Roberts, Ian
2011-02-03
All sectors of the economy, including the health research sector, must reduce their carbon emissions. The UK National Institute for Health Research has recently prepared guidelines on how to minimize the carbon footprint of research. We compare the carbon emissions from two international clinical trials in order to identify where emissions reductions can be made. We conducted a carbon audit of two clinical trials (the CRASH-1 and CRASH-2 trials), quantifying the carbon dioxide emissions produced over a one-year audit period. Carbon emissions arising from the coordination centre, freight delivery, trial-related travel and commuting were calculated and compared. The total emissions in carbon dioxide equivalents during the one-year audit period were 181.3 tonnes for CRASH-1 and 108.2 tonnes for CRASH-2. In total, CRASH-1 emitted 924.6 tonnes of carbon dioxide equivalents compared with 508.5 tonnes for CRASH-2. The CRASH-1 trial recruited 10,008 patients over 5.1 years, corresponding to 92 kg of carbon dioxide per randomized patient. The CRASH-2 trial recruited 20,211 patients over 4.7 years, corresponding to 25 kg of carbon dioxide per randomized patient. The largest contributor to emissions in CRASH-1 was freight delivery of trial materials (86.0 tonnes, 48% of total emissions), whereas the largest contributor in CRASH-2 was energy use by the trial coordination centre (54.6 tonnes, 30% of total emissions). Faster patient recruitment in the CRASH-2 trial largely accounted for its greatly increased carbon efficiency in terms of emissions per randomized patient. Lighter trial materials and web-based data entry also contributed to the overall lower carbon emissions in CRASH-2 as compared to CRASH-1. CRASH-1: ISRCTN74459797CRASH-2: ISRCTN86750102.
Arkansas 2007 traffic crash statistics
DOT National Transportation Integrated Search
2008-05-08
On all public roads in Arkansas during 2007 there were: : 66,393 total crashes reported, a 1.6% decrease from 2006 : 584 fatal crashes reported, a 2.0% decrease from 2006 : 650 fatalities reported, a 2.3% decrease from 2006 : 276 alcohol/drug rel...
Arkansas 2007 traffic crash statistics
DOT National Transportation Integrated Search
2007-01-01
On all public roads in Arkansas during 2007 there were: : 66,393 total crashes reported, a 1.6% decrease from 2006 : 584 fatal crashes reported, a 2.0% decrease from 2006 : 650 fatalities reported, a 2.3% decrease from 2006 : 276 alcohol/drug rel...
Arkansas 2001 traffic crash statistics
DOT National Transportation Integrated Search
2001-01-01
On all public roads in Arkansas during 2001 there were: : 68,797 total crashes reported, a 2.7 % decrease from 2000 : 538 fatal crashes reported, a 6.9 % decrease from 2000 : 611 fatalities reported, a 6.3 % decrease from 2000 : 213 alcohol/drug rela...
Arkansas 2005 traffic crash statistics
DOT National Transportation Integrated Search
2005-01-01
On all public roads in Arkansas during 2005 there were: : 69,515 total crashes reported, a 6.1% decrease from 2004 : 596 fatal crashes reported, a 4.8% decrease from 2004 : 654 fatalities reported, a 9.3% decrease from 2004 : 247 alcohol/drug rel...
NASA Astrophysics Data System (ADS)
Noh, Hae Young; Rajagopal, Ram; Kiremidjian, Anne S.
2012-04-01
This paper introduces a damage diagnosis algorithm for civil structures that uses a sequential change point detection method for the cases where the post-damage feature distribution is unknown a priori. This algorithm extracts features from structural vibration data using time-series analysis and then declares damage using the change point detection method. The change point detection method asymptotically minimizes detection delay for a given false alarm rate. The conventional method uses the known pre- and post-damage feature distributions to perform a sequential hypothesis test. In practice, however, the post-damage distribution is unlikely to be known a priori. Therefore, our algorithm estimates and updates this distribution as data are collected using the maximum likelihood and the Bayesian methods. We also applied an approximate method to reduce the computation load and memory requirement associated with the estimation. The algorithm is validated using multiple sets of simulated data and a set of experimental data collected from a four-story steel special moment-resisting frame. Our algorithm was able to estimate the post-damage distribution consistently and resulted in detection delays only a few seconds longer than the delays from the conventional method that assumes we know the post-damage feature distribution. We confirmed that the Bayesian method is particularly efficient in declaring damage with minimal memory requirement, but the maximum likelihood method provides an insightful heuristic approach.
Impact Test of a NACA-Designed Pilot Seat and Harness
1955-02-21
This time-lapse photograph shows the test of a pilot seat and restraint designed by researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The laboratory had undertaken a multi-year investigation into the causes and preventative measures for fires resulting from low altitude aircraft crashes. The program was expanded in the mid-1950s to include the study of crash impact on passengers, new types of types of seat restraints, and better seat designs. The impact program began by purposely wrecking surplus transport Fairchild C-82 Packet and Piper Cub aircraft into barricades at the end of a test runway. Instrumented dummies and cameras were installed in the pilot and passenger areas. After determining the different loads experienced during a crash and the effects on the passengers, the NACA researchers began designing new types of seats and restraints. The result was an elastic seat that flexed upon impact, absorbing 75 percent of the loads before it slowly recoiled. This photograph shows the seats mounted on a pendulum with a large spring behind the platform to provide the jolt that mimicked the forces of a crash. The seat was constructed without any potentially damaging metal parts and included rubber-like material, an inflated back and arms, and a seat cushion. After the pendulum tests, the researchers compared the flexible seats to the rigid seats during a crash of a transport aircraft. They found the passengers in the rigid seats received 66 percent higher g-forces than the NACA-designed seats.
Depression, antidepressants and driving safety.
Hill, Linda L; Lauzon, Vanessa L; Winbrock, Elise L; Li, Guohua; Chihuri, Stanford; Lee, Kelly C
2017-12-01
The purpose of this study was to review to review the reported associations of depression and antidepressants with motor vehicle crashes. A literature search for material published in the English language between January, 1995, and October, 2015, in bibliographic databases was combined with a search for other relevant material referenced in the retrieved articles. Retrieved articles were systematically reviewed for inclusion criteria: 19 epidemiological studies (17 case-control and 2 cohort studies) fulfilled the inclusion criteria by estimating the crash risk associated with depression and/or psychotropic medications in naturalistic settings. The estimates of the odds ratio (OR) of crash involvement associated with depression ranged from 1.78 to 3.99. All classes of antidepressants were reported to have side effects with the potential to affect driving safety. The majority of studies of antidepressant effects on driving reported an elevated crash risk, and ORs ranged from 1.19 to 2.03 for all crashes, and 3.19 for fatal crashes. In meta-analysis, depression was associated with approximately 2-fold increased crash risk (summary OR = 1.90; 95% CI, 1.06 to 3.39), and antidepressants were associated with approximately 40% increased crash risk (summary OR = 1.40; 95%CI, 1.18 to 1.66). Based on the findings of the studies reviewed, depression, antidepressants or the combination of depression and antidepressants may pose a potential hazard to driving safety. More research is needed to understand the individual contributions of depression and the medications used to treat depression.
Ballard, Sarah-Blythe; Osorio, Victor B
2015-01-01
This study provides new public health data about U.S. civil air shows. Risk factors for fatalities in civil air show crashes were analyzed. The value of the FIA score in predicting fatal outcomes was evaluated. With the use of the FAA's General Aviation and Air Taxi Survey and the National Transportation Safety Board's data, the incidence of civil air show crashes from 1993 to 2013 was calculated. Fatality risk factors for crashes were analyzed by means of regression methods. The FIA index was validated to predict fatal outcomes by using the factors of fire, instrument conditions, and away-from-airport location, and was evaluated through receiver operating characteristic (ROC) curves. The civil air show crash rate was 31 crashes per 1,000 civil air events. Of the 174 civil air show crashes that occurred during the study period, 91 (52%) involved at least one fatality; on average, 1.1 people died per fatal crash. Fatalities were associated with four major risk factors: fire [adjusted odds ratio (AOR) = 7.1, 95% confidence interval (CI) = 2.4 to 20.6, P < .001], pilot error (AOR = 5.2, 95% CI = 1.8 to 14.5, P = .002), aerobatic flight (AOR = 3.6, 95% CI = 1.6 to 8.2, P = .002), and off-airport location (AOR = 3.4, 95% CI = 1.5 to 7.5, P = .003). The area under the FIA score's ROC curve was 0.71 (95% CI = 0.64 to 0.78). Civil air show crashes were marked by a high risk of fatal outcomes to pilots in aerobatic performances but rare mass casualties. The FIA score was not a valid measurement of fatal risk in civil air show crashes.
Selecting exposure measures in crash rate prediction for two-lane highway segments.
Qin, Xiao; Ivan, John N; Ravishanker, Nalini
2004-03-01
A critical part of any risk assessment is identifying how to represent exposure to the risk involved. Recent research shows that the relationship between crash count and traffic volume is non-linear; consequently, a simple crash rate computed as the ratio of crash count to volume is not proper for comparing the safety of sites with different traffic volumes. To solve this problem, we describe a new approach for relating traffic volume and crash incidence. Specifically, we disaggregate crashes into four types: (1) single-vehicle, (2) multi-vehicle same direction, (3) multi-vehicle opposite direction, and (4) multi-vehicle intersecting, and define candidate exposure measures for each that we hypothesize will be linear with respect to each crash type. This paper describes initial investigation using crash and physical characteristics data for highway segments in Michigan from the Highway Safety Information System (HSIS). We use zero-inflated-Poisson (ZIP) modeling to estimate models for predicting counts for each of the above crash types as a function of the daily volume, segment length, speed limit and roadway width. We found that the relationship between crashes and the daily volume (AADT) is non-linear and varies by crash type, and is significantly different from the relationship between crashes and segment length for all crash types. Our research will provide information to improve accuracy of crash predictions and, thus, facilitate more meaningful comparison of the safety record of seemingly similar highway locations.
Effects of osteoporosis on AIS 3+ injury risk in motor-vehicle crashes.
Rupp, Jonathan D; Flannagan, Carol A C; Hoff, Carrie N; Cunningham, Rebecca M
2010-11-01
Older occupants in motor-vehicle crashes are more likely to experience injury than younger occupants. One possible reason for this is that increasing age is associated with increased prevalence of osteoporosis, which decreases bone strength. Crash-injury data were used with Bayes' Theorem to estimate the conditional probability of AIS 3+ skeletal injury given that an occupant is osteoporotic for the injury to the head, spine, thorax, lower extremities, and upper extremities. This requires the conditional probabilities of osteoporosis given AIS 3+ injury for each of the body regions, which were determined from analysis of the Crash Injury Research and Engineering Network database. It also requires information on probability of osteoporosis in the crash-involved population and the probabilities of AIS 3+ skeletal injury to different body regions in crashes. The latter probabilities were obtained from the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database. The former was obtained by modeling the probability of osteoporosis in the US populations using data from the 2006 National Health Examination Nutrition Survey and applying this model to the estimate of the crash-involved population in NASS-CDS. To attempt to account for the effects of age on injury outcome that are independent of osteoporosis, only data from occupants who were 60 years of age or older were used in all analyses. Results indicate that the only body region that experiences a statistically significant change in fracture injury risk with osteoporosis is the spine, for which osteoporosis increases the risk of AIS 3+ fracture by 3.28 times, or from 0.41% to 1.34% (p<0.0001). This finding suggests that the increase in AIS 3+ injury risk with age for non-spine injuries is likely influenced by factors other than osteoporosis. 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Espinosa, Christine; Lachaud, Frédéric; Limido, Jérome; Lacome, Jean-Luc; Bisson, Antoine; Charlotte, Miguel
2015-05-01
Energy absorption during crushing is evaluated using a thermodynamic based continuum damage model inspired from the Matzenmiller-Lubliner-Taylors model. It was found that for crash-worthiness applications, it is necessary to couple the progressive ruin of the material to a representation of the matter openings and debris generation. Element kill technique (erosion) and/or cohesive elements are efficient but not predictive. A technique switching finite elements into discrete particles at rupture is used to create debris and accumulated mater during the crushing of the structure. Switching criteria are evaluated using the contribution of the different ruin modes in the damage evolution, energy absorption, and reaction force generation.
Drug and alcohol crash risk : a case-control study.
DOT National Transportation Integrated Search
2016-12-01
This study used a case-control design to estimate the risk of crashes involving drivers using drugs, alcohol or both. Data was collected in Virginia Beach, Virginia, for 20 months. The study obtained biological measures on more than 3,000 crash...
Arkansas 2009 traffic crash statistics
DOT National Transportation Integrated Search
2009-01-01
On all public roads in Arkansas during 2007 there were: 66,393 total crashes reported, a 1.6% decrease from 2006 584 fatal crashes reported, a 2.0% decrease from 2006 650 fatalities reported, a 2.3% decrease from 2006 276 alcohol/drug related fat...
Analytical modeling of transport aircraft crash scenarios to obtain floor pulses
NASA Technical Reports Server (NTRS)
Wittlin, G.; Lackey, D.
1983-01-01
The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.
Can business road travel be safe? Experience of an international organization.
Goldoni Laestadius, Jasminka; Selod, Anne Gaëlle; Ye, Jian; Dimberg, Lennart; Bliss, Anthony G
2011-01-01
Globally, more than 1.2 million people die on the roads every year, and unfortunately so do one or two operational travelers for the World Bank Group (WBG). To investigate potentially preventable factors and improve the institution's road safety policies and practices, an electronic survey was designed in 2008 targeting about 16,000 WBG staff worldwide to inquire about road crashes and near crashes over the 3-year period. Also, questions were asked pertaining to contributing circumstances. Staff was encouraged to provide comments on prevention. A combined index based on the number of reported crashes and near crashes divided by person-days spent on mission in each country was used to rank the countries. A total of 3,760 responses were collected. There were 341 road crashes reported, about 1 in 175 missions. Seventy percent took place in taxis, and 40% of crash victims reported that seatbelts were not used. Contributing factors included driver's decision error, speeding, or road/weather conditions. On the basis of a combined index, a list of 36 high-risk countries is presented. A high correlation between crashes and near crashes (r = 0.89) justifies the method. Improved corporate policies will need to be developed to address preventable risk factors identified in the study. © 2011 International Society of Travel Medicine.
Structural damage identification using an enhanced thermal exchange optimization algorithm
NASA Astrophysics Data System (ADS)
Kaveh, A.; Dadras, A.
2018-03-01
The recently developed optimization algorithm-the so-called thermal exchange optimization (TEO) algorithm-is enhanced and applied to a damage detection problem. An offline parameter tuning approach is utilized to set the internal parameters of the TEO, resulting in the enhanced heat transfer optimization (ETEO) algorithm. The damage detection problem is defined as an inverse problem, and ETEO is applied to a wide range of structures. Several scenarios with noise and noise-free modal data are tested and the locations and extents of damages are identified with good accuracy.
Scanlon, John M; Sherony, Rini; Gabler, Hampton C
2017-05-29
Accounting for one fifth of all crashes and one sixth of all fatal crashes in the United States, intersection crashes are among the most frequent and fatal crash modes. Intersection advanced driver assistance systems (I-ADAS) are emerging vehicle-based active safety systems that aim to help drivers safely navigate intersections. The objective of this study was to estimate the number of crashes and number of vehicles with a seriously injured driver (Maximum Abbreviated Injury Scale [MAIS] 3+) that could be prevented or reduced if, for every straight crossing path (SCP) intersection crash, one of the vehicles had been equipped with an I-ADAS. This study retrospectively simulated 448 U.S. SCP crashes as if one of the vehicles had been equipped with I-ADAS. Crashes were reconstructed to determine the path and speeds traveled by the vehicles. Cases were then simulated with I-ADAS. A total of 30 variations of I-ADAS were considered in this study. These variations consisted of 5 separate activation timing thresholds, 3 separate computational latency times, and 2 different I-ADAS response modalities (i.e., a warning or autonomous braking). The likelihood of a serious driver injury was computed for every vehicle in every crash using impact delta-V. The results were then compiled across all crashes in order to estimate system effectiveness. The model predicted that an I-ADAS that delivers an alert to the driver has the potential to prevent 0-23% of SCP crashes and 0-25% of vehicles with a seriously injured driver. Conversely, an I-ADAS that autonomously brakes was found to have the potential to prevent 25-59% of crashes and 38-79% of vehicles with a seriously injured driver. I-ADAS effectiveness is a strong function of design. Increasing computational latency time from 0 to 0.5 s was found to reduce crash and injury prevention estimates by approximately one third. For an I-ADAS that delivers an alert, crash/injury prevention effectiveness was found to be very sensitive to changes in activation timing (warning delivered 1.0 to 3.0 s prior to impact). If autonomous braking was used, system effectiveness was found to largely plateau for activation timings greater than 1.5 s prior to impact. In general, the results of this study suggest that I-ADAS will be 2-3 times more effective if an autonomous braking system is utilized over a warning-based system. This study highlights the potential effectiveness of I-ADAS in the U.S. vehicle fleet, while also indicating the sensitivity of system effectiveness to design specifications. The results of this study should be considered by designers of I-ADAS and evaluators of this technology considering a future I-ADAS safety test.
DOT National Transportation Integrated Search
2012-06-01
On October 22, 2009, in Indianapolis, Indiana, a semi tanker carrying liquefied propane lost control on the underpass from I69 southbound to I465 eastbound, crashing beneath the east and westbound bridges carrying mainline I465 traffic. The ...
Dynamic compositional modeling of pedestrian crash counts on urban roads in Connecticut.
Serhiyenko, Volodymyr; Ivan, John N; Ravishanker, Nalini; Islam, Md Saidul
2014-03-01
Uncovering the temporal trend in crash counts provides a good understanding of the context for pedestrian safety. With a rareness of pedestrian crashes it is impossible to investigate monthly temporal effects with an individual segment/intersection level data, thus the time dependence should be derived from the aggregated level data. Most previous studies have used annual data to investigate the differences in pedestrian crashes between different regions or countries in a given year, and/or to look at time trends of fatal pedestrian injuries annually. Use of annual data unfortunately does not provide sufficient information on patterns in time trends or seasonal effects. This paper describes statistical methods uncovering patterns in monthly pedestrian crashes aggregated on urban roads in Connecticut from January 1995 to December 2009. We investigate the temporal behavior of injury severity levels, including fatal (K), severe injury (A), evident minor injury (B), and non-evident possible injury and property damage only (C and O), as proportions of all pedestrian crashes in each month, taking into consideration effects of time trend, seasonal variations and VMT (vehicle miles traveled). This type of dependent multivariate data is characterized by positive components which sum to one, and occurs in several applications in science and engineering. We describe a dynamic framework with vector autoregressions (VAR) for modeling and predicting compositional time series. Combining these predictions with predictions from a univariate statistical model for total crash counts will then enable us to predict pedestrian crash counts with the different injury severity levels. We compare these predictions with those obtained from fitting separate univariate models to time series of crash counts at each injury severity level. We also show that the dynamic models perform better than the corresponding static models. We implement the Integrated Nested Laplace Approximation (INLA) approach to enable fast Bayesian posterior computation. Taking CO injury severity level as a baseline for the compositional analysis, we conclude that there was a noticeable shift in the proportion of pedestrian crashes from injury severity A to B, while the increase for injury severity K was extremely small over time. This shift to the less severe injury level (from A to B) suggests that the overall safety on urban roads in Connecticut is improving. In January and February, there was some increase in the proportions for levels A and B over the baseline, indicating a seasonal effect. We found evidence that an increase in VMT would result in a decrease of proportions over the baseline for all injury severity levels. Our dynamic model uncovered a decreasing trend in all pedestrian crash counts before April 2005, followed by a noticeable increase and a flattening out until the end of the fitting period. This appears to be largely due to the behavior of injury severity level A pedestrian crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
McEvoy, Suzanne P; Stevenson, Mark R; Woodward, Mark
2007-11-01
There is evidence that mobile phone use while driving (including hands-free) is associated with motor vehicle crashes. However, whether the effects of mobile phone use differ from that of passengers in the vehicle remains unclear. The aim of this research was to estimate the risk of crash associated with passenger carriage and compare that with mobile phone use. A case-control study ('passenger study') was performed in Perth, Western Australia in 2003 and 2004. Cases were 274 drivers who attended hospital following a motor vehicle crash and controls were 1096 drivers (1:4 matching) recruited at service stations matched to the location and time and day of week of the crash. The results were compared with those of a case-crossover study ('mobile phone study') undertaken concurrently (n=456); 152 cases were common to both studies. Passenger carriage increased the likelihood of a crash (adjusted odds ratio (adj. OR), 95% confidence interval (95% CI), 1.6, 1.1-2.2). Drivers carrying two or more passengers were twice as likely to crash as unaccompanied drivers (adj. OR 2.2, 95% CI 1.3-3.8). By comparison, driver's use of a mobile phone within 5 min before a crash was associated with a fourfold increased likelihood of crashing (OR 4.1, 95% CI 2.2-7.7). Passenger carriage and increasing numbers of passengers are associated with an increased likelihood of crash, though not to the same extent as mobile phone use. Further research is needed to investigate the factors underlying the increased risks.
Occupant-to-occupant contact injury in motor vehicle crashes.
Viano, David C; Parenteau, Chantal S
2017-10-03
This is a descriptive study of the frequency and risk of occupant-to-occupant contact injury by crash type and occupant age. It focused on rear impacts because of a recent Senate inquiry. 1994-2013 NASS-CDS data were used to investigate the effects of occupant-to-occupant contact on the risk of serious-to-fatal injury (Abbreviated Injury Scale [AIS] 3+) by crash type and age group. NASS-CDS in-depth cases were analyzed to identify crash circumstances for AIS 3+ occupant-to-occupant contact injury in rear crashes. Serious injury (AIS 3+) due to occupant-to-occupant contact was uncommon. It represented only 0.84% of all AIS 3+ injury for all age groups. The overall risk of AIS 3+ occupant-to-occupant contact injury was 0.042 ± 0.007%. The highest incidence was in side impacts (69.8%) followed by rollovers (22.9%). Occupant-to-occupant contact injury risk was lower in rear impacts than in other crash types, at 0.0078 ± 0.0054%. The highest risk of AIS 3+ injury with occupant-to-occupant was for the <9-year-old age group when compared to other age groups for all crash types. The risk was 0.051 ± 0.026%, representing 2.69% of all AIS 3+ injury in the <9-year-old age group. Only 4.2% of AIS 3+ occupant-to-occupant contact injury occurred to children <9 years old in rear impacts. The corresponding injury risk was lowest in rear impacts, at 0.014 ± 0.014%%, when compared to other crash types. The analysis of in-depth NASS-CDS cases of occupant-to-occupant contact injury in children< 9 years old involved in rear impacts identified very severe collisions in older model vehicles with deformation of the occupant compartment and yielding front seats as main factors for the contact injury. Front seat occupants injuring rear-seated children was not identified in the in-depth NASS-CDS cases. AIS 3+ occupant-to-occupant contact injury occurs primarily in side impacts and rollovers. Most contact injury is to adults (89.4% incidence). Occupant-to-occupant contact injury to children is rare in rear impacts.
Correlates of pilot fatality in general aviation crashes.
Li, G; Baker, S P
1999-04-01
General aviation accounts for the majority of aviation crashes and casualties in the United States, and general aviation safety has not improved in the past decade. This study identifies factors associated with pilot fatality in general aviation crashes. We analyzed the National Transportation Safety Board's Factual Reports for all airplane and helicopter crashes of general aviation flights that occurred in North Carolina and Maryland during 1985 through 1994. Surviving pilots were compared with fatally injured pilots in relation to crash circumstances, and pilot and aircraft characteristics, at bivariate level and multivariate level. A total of 667 crashes resulted in 276 deaths and 368 injuries during the 10-yr period in the two states. Of the pilots-in-command involved in these crashes, 146 (22%) died. The case fatality rate for pilots was significantly higher in crashes that occurred between 6 p.m. and 5 a.m. (34%), away from airports (36%), with aircraft fire (69%), or in instrument meteorological weather conditions (IMC) (71%). Multivariate logistic regression revealed that the significant correlates of pilot fatality were aircraft fire [odds ratio (OR) 13.7, 95% confidence interval (CI) 6.9-27.2], off-airport location (OR 9.9, 95% CI 5.0-19.6), IMC (OR 9.1, 95% CI 4.3-19.6), nighttime (OR 2.2, 95% CI 1.3-3.7), and pilot age > or = 50 yr (OR 1.7, 95% CI 1.0-3.0). Pilot gender, flight experience, principal profession, and type of aircraft (airplane vs. helicopter) were not significantly associated with the likelihood of survival. The most important correlates of pilot fatality are variables likely related to increased impact forces. Better occupant protection equipment, such as air bag and crashworthy fuel system, are needed for general aviation aircraft.
An Election Algorithm for a Distributed Clock Synchronization Program
1985-12-01
distinguis h a pausing process from one that has crash ed. With an Archim edean timing system a process can use a ti mer to tell if some p rocess on a...Machines have clocks with Archim edean time function s. This assumption allows the use of tim ers. Note that no unre alistic assumptions are
NASA Astrophysics Data System (ADS)
Zorila, Alexandru; Stratan, Aurel; Nemes, George
2018-01-01
We compare the ISO-recommended (the standard) data-reduction algorithm used to determine the surface laser-induced damage threshold of optical materials by the S-on-1 test with two newly suggested algorithms, both named "cumulative" algorithms/methods, a regular one and a limit-case one, intended to perform in some respects better than the standard one. To avoid additional errors due to real experiments, a simulated test is performed, named the reverse approach. This approach simulates the real damage experiments, by generating artificial test-data of damaged and non-damaged sites, based on an assumed, known damage threshold fluence of the target and on a given probability distribution function to induce the damage. In this work, a database of 12 sets of test-data containing both damaged and non-damaged sites was generated by using four different reverse techniques and by assuming three specific damage probability distribution functions. The same value for the threshold fluence was assumed, and a Gaussian fluence distribution on each irradiated site was considered, as usual for the S-on-1 test. Each of the test-data was independently processed by the standard and by the two cumulative data-reduction algorithms, the resulting fitted probability distributions were compared with the initially assumed probability distribution functions, and the quantities used to compare these algorithms were determined. These quantities characterize the accuracy and the precision in determining the damage threshold and the goodness of fit of the damage probability curves. The results indicate that the accuracy in determining the absolute damage threshold is best for the ISO-recommended method, the precision is best for the limit-case of the cumulative method, and the goodness of fit estimator (adjusted R-squared) is almost the same for all three algorithms.
Bozeman, Andrew P; Dassinger, Melvin S; Recicar, John F; Smith, Samuel D; Rettiganti, Mallikarjuna R; Nick, Todd G; Maxson, Robert T
2012-12-01
Most trauma centers incorporate mechanistic criteria (MC) into their algorithm for trauma team activation (TTA). We hypothesized that characteristics of the crash are less reliable than restraint status in predicting significant injury and the need for TTA. We identified 271 patients (age, <15 y) admitted with a diagnosis of motor vehicle crash. Mechanistic criteria and restraint status of each patient were recorded. Both MC and MC plus restraint status were evaluated as separate measures for appropriately predicting TTA based on treatment outcomes and injury scores. Improper restraint alone predicted a need for TTA with an odds ratios of 2.69 (P = .002). MC plus improper restraint predicted the need for TTA with an odds ratio of 2.52 (P = .002). In contrast, the odds ratio when using MC alone was 1.65 (P = .16). When the 5 MC were evaluated individually as predictive of TTA, ejection, death of occupant, and intrusion more than 18 inches were statistically significant. Improper restraint is an independent predictor of necessitating TTA in this single-institution study. Copyright © 2012 Elsevier Inc. All rights reserved.
Relationship of Near-Crash/Crash Risk to Time Spent on a Cell Phone While Driving.
Farmer, Charles M; Klauer, Sheila G; McClafferty, Julie A; Guo, Feng
2015-01-01
The objective of this study was to examine in a naturalistic driving setting the dose-response relationship between cell phone usage while driving and risk of a crash or near crash. How is the increasing use of cell phones by drivers associated with overall near-crash/crash risk (i.e., during driving times both on and off the phone)? Day-to-day driving behavior of 105 volunteer subjects was monitored over a period of 1 year. A random sample was selected comprised of 4 trips from each month that each driver was in the study, and in-vehicle video was used to classify driver behavior. The proportion of driving time spent using a cell phone was estimated for each 3-month period and correlated with overall crash and near-crash rates for each period. Thus, it was possible to test whether changes in an individual driver's cell phone use over time were associated with changes in overall near-crash/crash risk. Drivers in the study spent 11.7% of their driving time interacting with a cell phone, primarily talking on the phone (6.5%) or simply holding the phone in their hand or lap (3.7%). The risk of a near-crash/crash event was approximately 17% higher when the driver was interacting with a cell phone, due primarily to actions of reaching for/answering/dialing, which nearly triples risk (relative risk = 2.84). However, the amount of driving time spent interacting with a cell phone did not affect a driver's overall near-crash/crash risk. Vehicle speeds within 6 s of the beginning of each call on average were 5-6 mph lower than speeds at other times. Results of this naturalistic driving study are consistent with the observation that increasing cell phone use in the general driving population has not led to increased crash rates. Although cell phone use can be distracting and crashes have occurred during this distraction, overall crash rates appear unaffected by changes in the rate of cell phone use, even for individual drivers. Drivers compensate somewhat for the distraction by conducting some of the more demanding tasks, such as reaching for or dialing a cell phone, at lower speeds. It is also possible that cell phones and other electronic devices in cars are changing how drivers manage their attention to various tasks and/or changing the kinds of secondary tasks in which they engage.
Multivariate poisson lognormal modeling of crashes by type and severity on rural two lane highways.
Wang, Kai; Ivan, John N; Ravishanker, Nalini; Jackson, Eric
2017-02-01
In an effort to improve traffic safety, there has been considerable interest in estimating crash prediction models and identifying factors contributing to crashes. To account for crash frequency variations among crash types and severities, crash prediction models have been estimated by type and severity. The univariate crash count models have been used by researchers to estimate crashes by crash type or severity, in which the crash counts by type or severity are assumed to be independent of one another and modelled separately. When considering crash types and severities simultaneously, this may neglect the potential correlations between crash counts due to the presence of shared unobserved factors across crash types or severities for a specific roadway intersection or segment, and might lead to biased parameter estimation and reduce model accuracy. The focus on this study is to estimate crashes by both crash type and crash severity using the Integrated Nested Laplace Approximation (INLA) Multivariate Poisson Lognormal (MVPLN) model, and identify the different effects of contributing factors on different crash type and severity counts on rural two-lane highways. The INLA MVPLN model can simultaneously model crash counts by crash type and crash severity by accounting for the potential correlations among them and significantly decreases the computational time compared with a fully Bayesian fitting of the MVPLN model using Markov Chain Monte Carlo (MCMC) method. This paper describes estimation of MVPLN models for three-way stop controlled (3ST) intersections, four-way stop controlled (4ST) intersections, four-way signalized (4SG) intersections, and roadway segments on rural two-lane highways. Annual Average Daily traffic (AADT) and variables describing roadway conditions (including presence of lighting, presence of left-turn/right-turn lane, lane width and shoulder width) were used as predictors. A Univariate Poisson Lognormal (UPLN) was estimated by crash type and severity for each highway facility, and their prediction results are compared with the MVPLN model based on the Average Predicted Mean Absolute Error (APMAE) statistic. A UPLN model for total crashes was also estimated to compare the coefficients of contributing factors with the models that estimate crashes by crash type and severity. The model coefficient estimates show that the signs of coefficients for presence of left-turn lane, presence of right-turn lane, land width and speed limit are different across crash type or severity counts, which suggest that estimating crashes by crash type or severity might be more helpful in identifying crash contributing factors. The standard errors of covariates in the MVPLN model are slightly lower than the UPLN model when the covariates are statistically significant, and the crash counts by crash type and severity are significantly correlated. The model prediction comparisons illustrate that the MVPLN model outperforms the UPLN model in prediction accuracy. Therefore, when predicting crash counts by crash type and crash severity for rural two-lane highways, the MVPLN model should be considered to avoid estimation error and to account for the potential correlations among crash type counts and crash severity counts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration
2016-08-01
percentile male occupant and 21 ft/s crash velocity ............................................................................69 Fig. 78 Posttest ...34 ft/s crash velocity ............................................................................71 Fig. 82 Posttest photo for test no. 2, 50th...74 Fig. 86 Posttest photo for test no. 3, 50th percentile male occupant and 42
US Commercial Air Tour Crashes, 2000–2011: Burden, Fatal Risk Factors, and FIA Score Validation
Ballard, Sarah-Blythe; Beaty, Leland P.; Baker, Susan P.
2013-01-01
Introduction This study provides new public health data concerning the US commercial air tour industry. Risk factors for fatality in air tour crashes were analyzed to determine the value of the FIA score in predicting fatal outcomes. Methods Using the Federal Aviation Administration’s (FAA) General Aviation and Air Taxi Survey and National Transportation Safety Board data, the incidence of commercial air tour crashes from 2000 through 2010 was calculated. Fatality risk factors for crashes occurring from 2000 through 2011 were analyzed using regression methods. The FIA score, Li and Baker’s fatality risk index, was validated using receiver operating characteristic (ROC) curves. Results The industry-wide commercial air tour crash rate was 2.7 per 100,000 flight hours. The incidence rates of Part 91 and 135 commercial air tour crashes were 3.4 and 2.3 per 100,000 flight hours, respectively (relative risk [RR] 1.5, 95% confidence interval [CI] 1.1–2.1, P=0.015). Of the 152 air tour crashes that occurred from 2000 through 2011, 30 (20%) involved at least one fatality and, on average, 3.5 people died per fatal crash. Fatalities were associated with three major risk factors: fire (Adjusted odds ratio [AOR] 5.1, 95% CI 1.5–16.7, P=0.008), instrument meteorological conditions (AOR 5.4, 95% CI 1.1–26.4, P=0.038), and off-airport location (AOR 7.2, 95% CI 1.6–33.2, P=0.011). The area under the FIA Score’s ROC curve was 0.79 (95% CI 0.71–0.88). Discussion Commercial air tour crash rates were high relative to similar commercial aviation operations. Disparities between Part 91 and 135 air tour crash rates reflect regulatory disparities that require FAA action. The FIA Score appeared to be a valid measurement of fatal risk in air tour crashes. The FIA should prioritize interventions that address the three major risk factors identified by this study. PMID:23631935
Huisingh, Carrie; Owsley, Cynthia; Levitan, Emily B; Irvin, Marguerite R; MacLennan, Paul; McGwin, Gerald
2018-05-17
The purpose of this study was to examine the association between secondary task involvement and risk of crash and near-crash involvement among older drivers using naturalistic driving data. Data from drivers aged ≥70 years in the Strategic Highway Research Program (SHRP2) Naturalistic Driving Study database was utilized. The personal vehicle of study participants was equipped with four video cameras enabling recording of the driver and the road environment. Secondary task involvement during a crash or near-crash event was compared to periods of non-crash involvement in a case-crossover study design. Conditional logistic regression was used to generate odds ratios (OR) and 95% confidence intervals (CI). Overall, engaging in any secondary task was not associated with crash (OR=0.94, 95% CI 0.68-1.29) or near-crash (OR=1.08, 95% CI 0.79-1.50) risk. The risk of a major crash event with cell phone use was 3.79 times higher than the risk with no cell phone use (95% CI 1.00-14.37). Other glances into the interior of the vehicle were associated with an increased risk of near-crash involvement (OR=2.55, 95% CI 1.24-5.26). Other distractions external to the vehicle were associated with a decreased risk of crash involvement (OR=0.53, 95% CI 0.30-0.94). Interacting with a passenger and talking/singing were not associated with crash or near-crash risk. Older drivers should avoid any cell phone use and minimize non-driving related eye glances towards the interior of the vehicle while driving. Certain types of events external to the vehicle are associated with a reduced crash risk among older drivers.
Investigation of the Performance of Safety Systems for Protection of the Elderly
Augenstein, J.; Digges, K; Bahouth, G.; Dalmotas, D.; Perdeck, E.; Stratton, J.
2005-01-01
This study investigates injury occurrence for belted occupants as a function of age. An analysis of NASS/CDS 1997–2003 data was conducted to determine crash involvement rates and injury rates for front seat occupants versus mean occupant age. In frontal and near-side crashes, the average age of MAIS 3+ belted front seat occupants injured in crashes less severe than 15 mph is of the order of 50 years. The average age of the population exposed to crashes less severe than 15 mph is under 40 years old. The crash exposure and frequency if injuries to the elderly were both found to be the highest in low severity crashes. The chest is the most frequent body region injured for the elderly. These findings suggest the need for more benign safety systems to protect the elderly in low severity crashes. Design of safety systems for the elderly should give priority to reducing the chest loading in low severity frontal and near-side crashes. PMID:16179159
Run-off-road and recovery - state estimation and vehicle control strategies
NASA Astrophysics Data System (ADS)
Freeman, P.; Wagner, J.; Alexander, K.
2016-09-01
Despite many advances in vehicle safety technology, traffic fatalities remain a devastating burden on society. With over two-thirds of all fatal single-vehicle crashes occurring off the roadway, run-off-road (ROR) crashes have become the focus of much roadway safety research. Current countermeasures, including roadway infrastructure modifications and some on-board vehicle safety systems, remain limited in their approach as they do not directly address the critical factor of driver behaviour. It has been shown that ROR crashes are often the result of poor driver performance leading up to the crash. In this study, the performance of two control algorithms, sliding control and linear quadratic control, was investigated for use in an autonomous ROR vehicle recovery system. The two controllers were simulated amongst a variety of ROR conditions where typical driver performance was inadequate to safely operate the vehicle. The sliding controller recovered the fastest within the nominal conditions but exhibited large variability in performance amongst the more extreme ROR scenarios. Despite some small sacrifices in lateral error and yaw rate, the linear quadratic controller demonstrated a higher level of consistency and stability amongst the various conditions examined. Overall, the linear quadratic controller recovered the vehicle 25% faster than the sliding controller while using 70% less steering, which combined with its robust performance, indicates its high potential as an autonomous ROR countermeasure.
Injury Risk for Rear-Seated Occupants in Small Overlap Crashes
Arbogast, Kristy B.; Locey, Caitlin M.; Hammond, Rachel; Belwadi, Aditya
2013-01-01
Small overlap crashes, where the primary crash engagement is outboard from the longitudinal energy absorbing structures of the vehicle, have received recent interest as a crash dynamic that results in high likelihood of injury. Previous analyses of good performing vehicles showed that 24% of crashes with AIS 3+ injuries to front seat occupants were small overlap crashes. However, similar evaluations have not been conducted for those rear seated. Vehicle dynamics suggest that rear seat occupants may be at greater risk due to lack of lateral seating support and a steering wheel to hold, making them more sensitive to lateral movement seen in these crashes. Thus, the objective was to calculate injury risk for rear-seated occupants in small overlap collisions. AIS 2+ and AIS 3+ injury risk was calculated from NASS-CDS data from 2000–2011. Inclusion criteria were vehicles of model year 2000 or later, with CDC codes of “FL” or “FR”, and an occupant in the second or third row. AIS2+ injury risk was 5.1%, and AIS3+ injury risk was 2.4%. Of note, half of the occupants were <15 years of age indicating rear seat protection should emphasize the young. Occupants seated near side were nearly three times as likely to sustain an AIS2+ injury than occupants seated far side. Particular attention should be paid to the prominence of head injuries in this crash dynamic and consideration given to their mitigation. Additional research should determine whether countermeasures being implemented for front seat occupants can be beneficial to rear seat occupants. PMID:24406964
2011-01-01
Background All sectors of the economy, including the health research sector, must reduce their carbon emissions. The UK National Institute for Health Research has recently prepared guidelines on how to minimize the carbon footprint of research. We compare the carbon emissions from two international clinical trials in order to identify where emissions reductions can be made. Methods We conducted a carbon audit of two clinical trials (the CRASH-1 and CRASH-2 trials), quantifying the carbon dioxide emissions produced over a one-year audit period. Carbon emissions arising from the coordination centre, freight delivery, trial-related travel and commuting were calculated and compared. Results The total emissions in carbon dioxide equivalents during the one-year audit period were 181.3 tonnes for CRASH-1 and 108.2 tonnes for CRASH-2. In total, CRASH-1 emitted 924.6 tonnes of carbon dioxide equivalents compared with 508.5 tonnes for CRASH-2. The CRASH-1 trial recruited 10,008 patients over 5.1 years, corresponding to 92 kg of carbon dioxide per randomized patient. The CRASH-2 trial recruited 20,211 patients over 4.7 years, corresponding to 25 kg of carbon dioxide per randomized patient. The largest contributor to emissions in CRASH-1 was freight delivery of trial materials (86.0 tonnes, 48% of total emissions), whereas the largest contributor in CRASH-2 was energy use by the trial coordination centre (54.6 tonnes, 30% of total emissions). Conclusions Faster patient recruitment in the CRASH-2 trial largely accounted for its greatly increased carbon efficiency in terms of emissions per randomized patient. Lighter trial materials and web-based data entry also contributed to the overall lower carbon emissions in CRASH-2 as compared to CRASH-1. Trial Registration Numbers CRASH-1: ISRCTN74459797 CRASH-2: ISRCTN86750102 PMID:21291517
Head-on crashes on two-way interurban roads: a public health concern in road safety.
Olabarria, Marta; Santamariña-Rubio, Elena; Marí-Dell'Olmo, Marc; Gotsens, Mercè; Novoa, Ana M; Borrell, Carme; Pérez, Katherine
2015-09-01
To describe the magnitude and characteristics of crashes and drivers involved in head-on crashes on two-way interurban roads in Spain between 2007 and 2012, and to identify the factors associated with the likelihood of head-on crashes on these roads compared with other types of crash. A cross-sectional study was conducted using the National Crash Register. The dependent variables were head-on crashes with injury (yes/no) and drivers involved in head-on crashes (yes/no). Factors associated with head-on crashes and with being a driver involved in a head-on crash versus other types of crash were studied using a multivariate robust Poisson regression model to estimate proportion ratios (PR) and confidence intervals (95% CI). There were 9,192 head-on crashes on two-way Spanish interurban roads. A total of 15,412 men and 3,862 women drivers were involved. Compared with other types of crash, head-on collisions were more likely on roads 7 m or more wide, on road sections with curves, narrowings or drop changes, on wet or snowy surfaces, and in twilight conditions. Transgressions committed by drivers involved in head-on crashes were driving in the opposite direction and incorrectly overtaking another vehicle. Factors associated with a lower probability of head-on crashes were the existence of medians (PR=0.57; 95%CI: 0.48-0.68) and a paved shoulder of less than 1.5 meters (PR=0.81; 95%CI: 0.77-0.86) or from 1.5 to 2.45 meters (PR=0.90; 95%CI: 0.84-0.96). This study allowed the characterization of crashes and drivers involved in head-on crashes on two-way interurban roads. The lower probability observed on roads with median strips point to these measures as an effective way to reduce these collisions. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.
Sequential structural damage diagnosis algorithm using a change point detection method
NASA Astrophysics Data System (ADS)
Noh, H.; Rajagopal, R.; Kiremidjian, A. S.
2013-11-01
This paper introduces a damage diagnosis algorithm for civil structures that uses a sequential change point detection method. The general change point detection method uses the known pre- and post-damage feature distributions to perform a sequential hypothesis test. In practice, however, the post-damage distribution is unlikely to be known a priori, unless we are looking for a known specific type of damage. Therefore, we introduce an additional algorithm that estimates and updates this distribution as data are collected using the maximum likelihood and the Bayesian methods. We also applied an approximate method to reduce the computation load and memory requirement associated with the estimation. The algorithm is validated using a set of experimental data collected from a four-story steel special moment-resisting frame and multiple sets of simulated data. Various features of different dimensions have been explored, and the algorithm was able to identify damage, particularly when it uses multidimensional damage sensitive features and lower false alarm rates, with a known post-damage feature distribution. For unknown feature distribution cases, the post-damage distribution was consistently estimated and the detection delays were only a few time steps longer than the delays from the general method that assumes we know the post-damage feature distribution. We confirmed that the Bayesian method is particularly efficient in declaring damage with minimal memory requirement, but the maximum likelihood method provides an insightful heuristic approach.
Brown, J Kristine; Jing, Yuezhou; Wang, Stewart; Ehrlich, Peter F
2006-02-01
Motor vehicle crashes (MVCs) account for 50% of pediatric trauma. Safety improvements are typically tested with child crash dummies using an in vitro model. The Crash Injury Research Engineering Network (CIREN) provides an in vivo validation process. Previous research suggest that children in lateral crashes or front-seat locations have higher Injury Severity Scale scores and lower Glasgow Coma Scale scores than those in frontal-impact crashes. However, specific injury patterns and crash characteristics have not been characterized. Data were collected from the CIREN multidisciplinary crash reconstruction network (10 pediatric trauma centers). Injuries were examined with regard to crash direction (frontal/lateral), restraint use, seat location, and change in velocity at impact (DeltaV). Injuries were limited to Abbreviated Injury Scale (AIS) scores of 3 or higher and included head, thoracic, abdominal, pelvic, spine, and long bone (orthopedic) injuries. Standard age groupings (0-4, 5-9, 10-14, and 15-18 years) were used. Statistical analyses used Fisher's Exact test and multiple logistic regressions. Four hundred seventeen MVCs with 2500 injuries were analyzed (males = 219, females = 198). Controlling for DeltaV and age, children in lateral-impact crashes (n = 232) were significantly more likely to suffer severe injuries to the head and thorax as compared with children in frontal crashes (n = 185), who were more likely to suffer severe spine and orthopedic injuries. Children in a front-seat (n = 236) vs those in a back-seat (n = 169) position had more injuries to the thoracic (27% vs 17%), abdominal (21% vs 13%), pelvic (11% vs 1%), and orthopedic (28% vs 10%) regions (P < .05 for all). Seat belts were protective for pelvic (5% vs 12% unbelted) and orthopedic (15% vs 40%) injuries (odds ratio = 3, P < .01 for both). A reproducible pattern of injury is noted for children involved in lateral-impact crashes characterized by head and chest injuries. The Injury Severity Scale scores were higher for children in front-seat positions. Increased lateral-impact safety measures such as mandatory side curtain airbags may decrease morbidity. Furthermore, continued public education for positioning children in the back seat of cars is warranted.
An illustrated analysis of North Carolina traffic crash statistics for 2005
DOT National Transportation Integrated Search
2005-01-01
Comparing the statistics of 2004 with 2005, there : was a 1.7% decrease in the number of fatalities, and : a 3.6% decrease in the number of traffic crashes : reported. A crash occurred every 2.4 minutes and a : person was killed every 5.7 hours on ou...
Fatal crashes involving drivers recorded as asleep or fatigued, 2013 : analysis brief.
DOT National Transportation Integrated Search
2016-05-01
In 2013, 30,057 fatal crashes took place on our Nations roadways, with 11.8 percent (3,541) involving at least 1 large truck. This analysis reviews fatal crashes in which the large truck driver was recorded as being fatigued at the time of the cra...
U.S. Civil Air Show Crashes, 1993 to 2013
Ballard, Sarah-Blythe; Osorio, Victor B.
2016-01-01
This study provides new public health data about U.S. civil air shows. Risk factors for fatalities in civil air show crashes were analyzed. The value of the FIA score in predicting fatal outcomes was evaluated. With the use of the FAA’s General Aviation and Air Taxi Survey and the National Transportation Safety Board’s data, the incidence of civil air show crashes from 1993 to 2013 was calculated. Fatality risk factors for crashes were analyzed by means of regression methods. The FIA index was validated to predict fatal outcomes by using the factors of fire, instrument conditions, and away-from-airport location, and was evaluated through receiver operating characteristic (ROC) curves. The civil air show crash rate was 31 crashes per 1,000 civil air events. Of the 174 civil air show crashes that occurred during the study period, 91 (52%) involved at least one fatality; on average, 1.1 people died per fatal crash. Fatalities were associated with four major risk factors: fire [adjusted odds ratio (AOR) = 7.1, 95% confidence interval (CI) = 2.4 to 20.6, P < .001], pilot error (AOR = 5.2, 95% CI = 1.8 to 14.5, P = .002), aerobatic flight (AOR = 3.6, 95% CI = 1.6 to 8.2, P = .002), and off-airport location (AOR = 3.4, 95% CI = 1.5 to 7.5, P = .003). The area under the FIA score’s ROC curve was 0.71 (95% CI = 0.64 to 0.78). Civil air show crashes were marked by a high risk of fatal outcomes to pilots in aerobatic performances but rare mass casualties. The FIA score was not a valid measurement of fatal risk in civil air show crashes. PMID:27773963
Real-world injury patterns associated with Hybrid III sternal deflections in frontal crash tests.
Brumbelow, Matthew L; Farmer, Charles M
2013-01-01
This study investigated the relationship between the peak sternal deflection measurements recorded by the Hybrid III 50th percentile male anthropometric test device (ATD) in frontal crash tests and injury and fatality outcomes for drivers in field crashes. ATD sternal deflection data were obtained from the Insurance Institute for Highway Safety's 64 km/h, 40 percent overlap crashworthiness evaluation tests for vehicles with seat belt crash tensioners, load limiters, and good-rated structure. The National Automotive Sampling System Crashworthiness Data System (NASS-CDS) was queried for frontal crashes of these vehicles in which the driver was restrained by a seat belt and air bag. Injury probability curves were calculated by frontal crash type using the injuries coded in NASS-CDS and peak ATD sternal deflection data. Fatality Analysis Reporting System (FARS) front-to-front crashes with exactly one driver death were also studied to determine whether the difference in measured sternal deflections for the 2 vehicles was related to the odds of fatality. For center impacts, moderate overlaps, and large overlaps in NASS-CDS, the probability of the driver sustaining an Abbreviated Injury Scale (AIS) score ≥ 3 thoracic injury, or any nonextremity AIS ≥ 3 injury, increased with increasing ATD sternal deflection measured in crash tests. For small overlaps, however, these probabilities decreased with increasing deflection. For FARS crashes, the fatally injured driver more often was in the vehicle with the lower measured deflection in crash tests (55 vs. 45%). After controlling for other factors, a 5-mm difference in measured sternal deflections between the 2 vehicles was associated with a fatality odds ratio of 0.762 for the driver in the vehicle with the greater deflection (95% confidence interval = 0.373, 1.449). Restraint systems that reduce peak Hybrid III sternal deflection in a moderate overlap crash test are beneficial in real-world crashes with similar or greater overlap but likely have a disbenefit in crashes with small overlap. This may occur because belt-force limiters employed to control deflections allow excursion that could produce contact with interior vehicle components in small overlaps, given the more oblique occupant motion and potential inboard movement of the air bag. Although based on a limited number of cases, this interpretation is supported by differences in skeletal fracture locations among drivers in crashes with different overlaps. Current restraint systems could be improved by designs that reduce sternal deflection in moderate and large overlap crashes without increasing occupant excursion in small overlap crashes.
Student drivers: a study of fatal motor vehicle crashes involving 16-year-old drivers.
Gonzales, Michael M; Dickinson, L Miriam; DiGuiseppi, Carolyn; Lowenstein, Steven R
2005-02-01
Motor vehicle crashes are the leading cause of death for US teenagers, accounting for 40% of fatalities. The purpose of this study was to compare novice (aged 16 years) and experienced (aged 25 to 49 years) drivers involved in fatal motor vehicle crashes with respect to crash characteristics and driver behaviors. This cross-sectional study of fatal motor vehicle crashes in Colorado used data from the Fatality Analysis Reporting System (1995 to 2001). Driver and crash variables were compared in the 2 age groups using separate logistic regression models, adjusted for sex, geographic locale, and year. Two thousand four hundred twenty fatal motor vehicle crashes were included; 158 fatalities (6.5%) were novice drivers. Novice drivers were more likely to have been speeding (odds ratio [OR] 1.87, 95% confidence interval [CI] 1.34 to 3.08); driving recklessly (OR 4.78, 95% CI 3.31 to 6.92); charged with a traffic violation (OR 3.08, 95% CI 2.20 to 4.31); in a single-vehicle (OR 1.84, 95% CI 1.32 to 2.57), rollover (OR 1.36, 95% CI 0.97 to 1.91) or run-off-the-road (OR 1.54, 95% CI 1.03 to 2.30) crash; and carrying 2 (OR 4.52, 95% CI 2.75 to 7.41) or more (OR 4.07, 95% CI 2.49 to 6.55) passengers. Safety belt nonuse was high for novice (48%) and experienced (42%) drivers (OR 1.19, 95% CI 0.86 to 1.67). Novice drivers had older cars (mean difference 1.5 years, 95% CI 0.37 to 2.57 years). Novice drivers were less likely to be involved in crashes caused by alcohol (OR 0.24, 95% CI 0.14 to 0.41) or adverse weather (OR 0.37, 95% CI 0.19 to 0.75) and to be driving a sport utility vehicle (OR 0.62, 95% CI 0.39 to 0.97). Fatal motor vehicle crashes involving novice drivers are characterized by speeding, recklessness, single-vehicle and rollover crashes, and traffic law violations, suggesting that novice drivers bear considerable responsibility for their fatal crashes. Moreover, almost half of 16-year-old drivers involved in fatal motor vehicle crashes were not wearing their safety belts. These data may prove useful in strengthening graduated licensing laws and in improving drivers' education courses and public safety campaigns.
Lipton, Robert; Ponicki, William R; Gruenewald, Paul J; Gaidus, Andrew
2018-06-01
Past research has linked alcohol outlet densities to drinking, drunken driving, and alcohol-related motor vehicle crashes (MVCs). Because impaired drivers travel some distances from drinking places to crash locations, spatial relationships between outlets and crashes are complex. We investigate these relationships at 3 geographic levels: census block groups (CBGs), adjacent (nearby) areas, and whole cities. We examined risks of all injury MVCs as well as "had been drinking" (HBD) and single-vehicle-nighttime (SVN) subgroups using data from the Statewide Integrated Traffic Records System across CBGs among 50 California cities from 2001 to 2008. Relationships between outlet densities at the city level, within CBGs, and in adjacent CBGs and crashes were examined using Bayesian Poisson space-time analyses controlling for population size income and other demographics (all as covariates). All injury MVCs were positively related to adjacent CBG population size (relative rate [RR] = 1.008, 95% credible interval (CI) = 1.004, 1.012), and outlet densities at CBG (RR = 1.027, CI = 1.020, 1.035), nearby area (RR = 1.084, CI = 1.060, 1.106) and city levels (RR = 1.227, CI = 1.147, 1.315), and proportion of bars or pubs at the city level (RR = 2.257, CI = 1.187, 4.125). HBD and SVN crashes were comparatively less frequent in high outlet density CBG (RR = 0.993, CI = 0.987, 0.999; RR = 0.963, CI = 0.951, 0.975) and adjacent areas (RR = 0.979, CI = 0.962, 0.996; RR = 0.909, CI = 0.883, 0.936), but positively associated with city-level proportions of bars (RR = 3.373, CI = 0.736, 15.644; RR = 10.322, CI = 1.704, 81.215). Overall, a 10% increase in all outlets was related to 2.8% more injury crashes (CI = 2.3, 3.3) and 2.5% more HBDs (CI = 1.7, 3.3). A 10% increase in bars was related to 1.4% more crashes, 4.3% more HBDs, and 10.3% more SVNs. Population size and densities of bars or pubs were found to be associated with crash rates, with population effects appearing across cities and outlet effects appearing within dense downtown areas. Summary estimates of outlet and population impacts on MVCs must consider varying contributions at multiple spatial scales. Copyright © 2018 by the Research Society on Alcoholism.
Zhang, Peng; Parenteau, Chantal; Wang, Lu; Holcombe, Sven; Kohoyda-Inglis, Carla; Sullivan, June; Wang, Stewart
2013-11-01
This study resulted in a model-averaging methodology that predicts crash injury risk using vehicle, demographic, and morphomic variables and assesses the importance of individual predictors. The effectiveness of this methodology was illustrated through analysis of occupant chest injuries in frontal vehicle crashes. The crash data were obtained from the International Center for Automotive Medicine (ICAM) database for calendar year 1996 to 2012. The morphomic data are quantitative measurements of variations in human body 3-dimensional anatomy. Morphomics are obtained from imaging records. In this study, morphomics were obtained from chest, abdomen, and spine CT using novel patented algorithms. A NASS-trained crash investigator with over thirty years of experience collected the in-depth crash data. There were 226 cases available with occupants involved in frontal crashes and morphomic measurements. Only cases with complete recorded data were retained for statistical analysis. Logistic regression models were fitted using all possible configurations of vehicle, demographic, and morphomic variables. Different models were ranked by the Akaike Information Criteria (AIC). An averaged logistic regression model approach was used due to the limited sample size relative to the number of variables. This approach is helpful when addressing variable selection, building prediction models, and assessing the importance of individual variables. The final predictive results were developed using this approach, based on the top 100 models in the AIC ranking. Model-averaging minimized model uncertainty, decreased the overall prediction variance, and provided an approach to evaluating the importance of individual variables. There were 17 variables investigated: four vehicle, four demographic, and nine morphomic. More than 130,000 logistic models were investigated in total. The models were characterized into four scenarios to assess individual variable contribution to injury risk. Scenario 1 used vehicle variables; Scenario 2, vehicle and demographic variables; Scenario 3, vehicle and morphomic variables; and Scenario 4 used all variables. AIC was used to rank the models and to address over-fitting. In each scenario, the results based on the top three models and the averages of the top 100 models were presented. The AIC and the area under the receiver operating characteristic curve (AUC) were reported in each model. The models were re-fitted after removing each variable one at a time. The increases of AIC and the decreases of AUC were then assessed to measure the contribution and importance of the individual variables in each model. The importance of the individual variables was also determined by their weighted frequencies of appearance in the top 100 selected models. Overall, the AUC was 0.58 in Scenario 1, 0.78 in Scenario 2, 0.76 in Scenario 3 and 0.82 in Scenario 4. The results showed that morphomic variables are as accurate at predicting injury risk as demographic variables. The results of this study emphasize the importance of including morphomic variables when assessing injury risk. The results also highlight the need for morphomic data in the development of human mathematical models when assessing restraint performance in frontal crashes, since morphomic variables are more "tangible" measurements compared to demographic variables such as age and gender. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joerissen, G.; Zuend, H.
From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). The probability and the consequences of an aircraft crash on a nuclear power plant incorporating a light water reactor are estimated considering the probabilities of an aircraft strike, missile penetration through walls and damage of structures and systems important for safety. The estimated risks are presented in a Farmer diagram and compared with tolerable risk limits. (6 references) (auth)
A Comparative Analysis of Two Full-Scale MD-500 Helicopter Crash Tests
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2011-01-01
Two full scale crash tests were conducted on a small MD-500 helicopter at NASA Langley Research Center fs Landing and Impact Research Facility. One of the objectives of this test series was to compare airframe impact response and occupant injury data between a test which outfitted the airframe with an external composite passive energy absorbing honeycomb and a test which had no energy absorbing features. In both tests, the nominal impact velocity conditions were 7.92 m/sec (26 ft/sec) vertical and 12.2 m/sec (40 ft/sec) horizontal, and the test article weighed approximately 1315 kg (2900 lbs). Airframe instrumentation included accelerometers and strain gages. Four Anthropomorphic Test Devices were also onboard; three of which were standard Hybrid II and III, while the fourth was a specialized torso. The test which contained the energy absorbing honeycomb showed vertical impact acceleration loads of approximately 15 g, low risk for occupant injury probability, and minimal airframe damage. These results were contrasted with the test conducted without the energy absorbing honeycomb. The test results showed airframe accelerations of approximately 40 g in the vertical direction, high risk for injury probability in the occupants, and substantial airframe damage.
Epidemiology of pedestrian–MVCs by road type in Cluj, Romania
Hamann, Cara; Peek-Asa, Corinne; Rus, Diana
2017-01-01
Objective Pedestrian–motor vehicle (PMV) crash rates in Romania are among the highest in all of Europe. The purpose of this study was to examine the characteristics of pedestrian–MVCs in Cluj County, Romania, on the two major types of roadways: national or local. Methods Cluj County police crash report data from 2010 were used to identify pedestrian, driver and crash characteristics of pedestrian–MVCs. Crashes with available location data were geocoded and road type (national or local) for each crash was determined. Distributions of crash characteristics were examined by road type and multivariable logistic regression models were built to determine predictors of crash road type. Results Crashes occurring on national roads involved more teenagers and adults, while those on local roads involved more young children (0–12) and older adults (65+) (p<0.01). Crashes on national roads were more likely to have marked pedestrian crossings and shoulders compared with local crashes. Pedestrian–MVCs that involved a moving violation by the motorist were more likely to occur on national roadways (adjusted OR=1.93, 95% CI 1.07 to 3.49). Conclusions Pedestrian–MVCs pose a considerable health burden in Romania. Results from this study suggest that factors leading to PMV crashes on national roads are more likely to involve driver-related causes compared with local roads. Intervention priorities to reduce pedestrian crashes on national roads should be directed towards driver behaviour on national roads. Further examination of driver and pedestrian behaviours related to crash risk on both national and local roads, such as distraction and speeding, is warranted. PMID:25178278
af Wåhlberg, Anders; Freeman, James; Watson, Barry; Watson, Angela
2016-01-01
Background Traffic offences have been considered an important predictor of crash involvement, and have often been used as a proxy safety variable for crashes. However the association between crashes and offences has never been meta-analysed and the population effect size never established. Research is yet to determine the extent to which this relationship may be spuriously inflated through systematic measurement error, with obvious implications for researchers endeavouring to accurately identify salient factors predictive of crashes. Methodology and Principal Findings Studies yielding a correlation between crashes and traffic offences were collated and a meta-analysis of 144 effects drawn from 99 road safety studies conducted. Potential impact of factors such as age, time period, crash and offence rates, crash severity and data type, sourced from either self-report surveys or archival records, were considered and discussed. After weighting for sample size, an average correlation of r = .18 was observed over the mean time period of 3.2 years. Evidence emerged suggesting the strength of this correlation is decreasing over time. Stronger correlations between crashes and offences were generally found in studies involving younger drivers. Consistent with common method variance effects, a within country analysis found stronger effect sizes in self-reported data even controlling for crash mean. Significance The effectiveness of traffic offences as a proxy for crashes may be limited. Inclusion of elements such as independently validated crash and offence histories or accurate measures of exposure to the road would facilitate a better understanding of the factors that influence crash involvement. PMID:27128093
Harland, Karisa K; Carney, Cher; McGehee, Daniel
2016-07-03
The objective of this study was to estimate the prevalence and odds of fleet driver errors and potentially distracting behaviors just prior to rear-end versus angle crashes. Analysis of naturalistic driving videos among fleet services drivers for errors and potentially distracting behaviors occurring in the 6 s before crash impact. Categorical variables were examined using the Pearson's chi-square test, and continuous variables, such as eyes-off-road time, were compared using the Student's t-test. Multivariable logistic regression was used to estimate the odds of a driver error or potentially distracting behavior being present in the seconds before rear-end versus angle crashes. Of the 229 crashes analyzed, 101 (44%) were rear-end and 128 (56%) were angle crashes. Driver age, gender, and presence of passengers did not differ significantly by crash type. Over 95% of rear-end crashes involved inadequate surveillance compared to only 52% of angle crashes (P < .0001). Almost 65% of rear-end crashes involved a potentially distracting driver behavior, whereas less than 40% of angle crashes involved these behaviors (P < .01). On average, drivers spent 4.4 s with their eyes off the road while operating or manipulating their cell phone. Drivers in rear-end crashes were at 3.06 (95% confidence interval [CI], 1.73-5.44) times adjusted higher odds of being potentially distracted than those in angle crashes. Fleet driver driving errors and potentially distracting behaviors are frequent. This analysis provides data to inform safe driving interventions for fleet services drivers. Further research is needed in effective interventions to reduce the likelihood of drivers' distracting behaviors and errors that may potentially reducing crashes.
Kusano, Kristofer; Gorman, Thomas I; Sherony, Rini; Gabler, Hampton C
2014-01-01
Single-vehicle collisions involve only 10 percent of all occupants in crashes in the United States, yet these same crashes account for 31 percent of all fatalities. Along with other vehicle safety advancements, lane departure warning (LDW) systems are being introduced to mitigate the harmful effects of single-vehicle collisions. The objective of this study is to quantify the number of crashes and seriously injured drivers that could have been prevented in the United States in 2012 had all vehicles been equipped with LDW. In order to estimate the potential injury reduction benefits of LDW in the vehicle fleet, a comprehensive crash and injury simulation model was developed. The model's basis was 481 single-vehicle collisions extracted from the NASS-CDS for year 2012. Each crash was simulated in 2 conditions: (1) as it occurred and (2) as if the driver had an LDW system. By comparing the simulated vehicle's off-road trajectory before and after LDW, the reduction in the probability of a crash was determined. The probability of a seriously injured occupant (Maximum Abbreviated Injury Score [MAIS] 3+) given a crash was computed using injury risk curves with departure velocity and seat belt use as predictors. Each crash was simulated between 18 and 216 times to account for variable driver reaction, road, and vehicle conditions. Finally, the probability of a crash and seriously injured driver was summed over all simulations to determine the benefit of LDW. A majority of roads where departure crashes occurred had 2 lanes and were undivided. As a result, 58 percent of crashes had no shoulder. LDW will not be as effective on roads with no shoulder as on roads with large shoulders. LDW could potentially prevent 28.9 percent of all road departure crashes caused by the driver drifting out of his or her lane, resulting in a 24.3 percent reduction in the number of seriously injured drivers. The results of this study show that LDW, if widely adopted, could significantly mitigate a harmful crash type. Larger shoulder width and the presence of lane markings, determined by manual examination of scene photographs, increased the effectiveness of LDW. This result suggests that highway systems should be modified to maximize LDW effectiveness by expanding shoulders and regularly painting lane lines.
Stigson, Helena; Hill, Julian
2009-10-01
The objective of this study was to evaluate a model for a safe road transport system, based on some safety performance indicators regarding the road user, the vehicle, and the road, by using crashes with fatally and seriously injured car occupants. The study also aimed to evaluate whether the model could be used to identify system weaknesses and components (road user, vehicles, and road) where improvements would yield the highest potential for further reductions in serious injuries. Real-life car crashes with serious injury outcomes (Maximum Abbreviated Injury Scale 2+) were classified according to the vehicle's safety rating by Euro NCAP (European New Car Assessment Programme) and whether the vehicle was fitted with ESC (Electronic Stability Control). For each crash, the road was also classified according to EuroRAP (European Road Assessment Programme) criteria, and human behavior in terms of speeding, seat belt use, and driving under the influence of alcohol/drugs. Each crash was compared and classified according to the model criteria. Crashes where the safety criteria were not met in more than one of the 3 components were reclassified to identify whether all the components were correlated to the injury outcome. In-depth crash injury data collected by the UK On The Spot (OTS) accident investigation project was used in this study. All crashes in the OTS database occurring between 2000 and 2005 with a car occupant with injury rated MAIS2+ were included, for a total of 101 crashes with 120 occupants. It was possible to classify 90 percent of the crashes according to the model. Eighty-six percent of the occupants were injured when more than one of the 3 components were noncompliant with the safety criteria. These cases were reclassified to identify whether all of the components were correlated to the injury outcome. In 39 of the total 108 cases, at least two components were still seen to interact. The remaining cases were only related to one of the safety criteria, namely, the road user (26), the vehicle (19), and the road (24). The criteria for the road and the vehicle did not address multiple event crashes, rear-end crashes, hitting stationary/parked vehicles, or trailers. The model for a safe road transport system was found useful to classify fatal and serious road vehicle crashes. It was possible to classify 90 percent of the crashes according to the safety road transport model. For all these cases it was possible to identify weaknesses and parts of the road transport system with the highest potential to prevent fatal and serious injuries. Injury outcomes were mostly related to an interaction between the 3 components: the road, the vehicle, and the road user.
Comparing the effects of age, BMI and gender on severe injury (AIS 3+) in motor-vehicle crashes.
Carter, Patrick M; Flannagan, Carol A C; Reed, Matthew P; Cunningham, Rebecca M; Rupp, Jonathan D
2014-11-01
The effects of age, body mass index (BMI) and gender on motor vehicle crash (MVC) injuries are not well understood and current prevention efforts do not effectively address variability in occupant characteristics. (1) Characterize the effects of age, BMI and gender on serious-to-fatal MVC injury. (2) Identify the crash modes and body regions where the effects of occupant characteristics on the numbers of occupants with injury is largest, and thereby aid in prioritizing the need for human surrogates that represent different types of occupant characteristics and adaptive restraint systems that consider these characteristics. Multivariate logistic regression was used to model the effects of occupant characteristics (age, BMI, gender), vehicle and crash characteristics on serious-to-fatal injuries (AIS 3+) by body region and crash mode using the 2000-2010 National Automotive Sampling System (NASS-CDS) dataset. Logistic regression models were applied to weighted crash data to estimate the change in the number of annual injured occupants with AIS 3+ injury that would occur if occupant characteristics were limited to their 5th percentiles (age≤17 years old, BMI≤19kg/m(2)) or male gender. Limiting age was associated with a decrease in the total number of occupants with head [8396, 95% CI 6871-9070] and thorax injuries [17,961, 95% CI 15,960-18,859] across all crash modes, decreased occupants with spine [3843, 95% CI 3065-4242] and upper extremity [3578, 95% CI 1402-4439] injuries in frontal and rollover crashes and decreased abdominal [1368, 95% CI 1062-1417] and lower extremity [4584, 95% CI 4012-4995] injuries in frontal impacts. The age effect was modulated by gender with older females more likely to have thorax and upper extremity injuries than older males. Limiting BMI was associated with 2069 [95% CI 1107-2775] fewer thorax injuries in nearside crashes, and 5304 [95% CI 4279-5688] fewer lower extremity injuries in frontal crashes. Setting gender to male resulted in fewer occupants with head injuries in farside crashes [1999, 95% CI 844-2685] and fewer thorax [5618, 95% CI 4212-6272], upper [3804, 95% CI 1781-4803] and lower extremity [2791, 95% CI 2216-3256] injuries in frontal crashes. Results indicate that age provides the greater relative contribution to injury when compared to gender and BMI, especially for thorax and head injuries. Restraint systems that account for the differential injury risks associated with age, BMI and gender could have a meaningful effect on injury in motor-vehicle crashes. Computational models of humans that represent older, high BMI, and female occupants are needed for use in simulations of particular types of crashes to develop these restraint systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ponte, G; Ryan, G A; Anderson, R W G
2016-01-01
The aim of this study was to estimate the potential effectiveness of an in-vehicle automatic collision notification (ACN) system in reducing all road crash fatalities in South Australia (SA). For the years 2008 to 2009, traffic accident reporting system (TARS) data, emergency medical services (EMS) road crash dispatch data, and coroner's reports were matched and examined. This was done to initially determine the extent to which there were differences between the reported time of a fatal road crash in the mass crash data and the time EMS were notified and dispatched. In the subset of fatal crashes where there was a delay, injuries detailed by a forensic pathologist in individual coroner's reports were examined to determine the likelihood of survival had there not been a delay in emergency medical assistance. In 25% (N = 53) of fatalities in SA in the period 2008 to 2009, there was a delay in the notification of the crash event, and hence dispatch of EMS, that exceeded 10 min. In the 2-year crash period, 5 people were likely to have survived through more prompt crash notification enabling quicker emergency medical assistance. Additionally, 3 people potentially would have survived if surgical intervention (or emergency medical assistance to sustain life until surgery) occurred more promptly. The minimum effectiveness rate of an ACN system in SA with full deployment is likely to be in the range of 2.4 to 3.8% of all road crash fatalities involving all vehicle types and all vulnerable road users (pedestrians, cyclists, and motorcyclists) from 2008 to 2009. Considering only passenger vehicle occupants, the benefit is likely to be 2.6 to 4.6%. These fatality reductions could only have been achieved through earlier notification of each crash and their location to enable a quicker medical response. This might be achievable through a fully deployed in-vehicle ACN system.
Injury risks for on-road farm equipment and horse and buggy crashes in Pennsylvania: 2010-2013.
Gorucu, Serap; Murphy, Dennis J; Kassab, Cathy
2017-04-03
The purpose of this study was to investigate characteristics associated with farm equipment and horse and buggy roadway crashes in relation to person, incident, and injury characteristics to identify appropriate points for injury incident prevention. Information on crashes occurring on public roads during the years 2010-2013 was obtained from the Pennsylvania Department of Transportation (PennDOT) and analyzed. There were 344 farm equipment and 246 horse and buggy crashes during the 4-year study period. These crashes involved 666 and 504 vehicles and 780 and 838 people, respectively. In incidents with farm equipment, the non-farm equipment drivers had an almost 2 times greater injury risk than farm equipment operators. Horse and buggy crashes were almost 3 times more injurious to the horse and buggy drivers than the drivers of the other vehicles. The average crash rate for farm equipment was 198.4 crashes per 100,000 farm population and for horse and buggy the crash rate was calculated as 89.4 crashes per 100,000 Amish population per year. This study suggests that road safety and public health programs should focus not only on farm equipment operators and horse and buggy drivers but on other motorists sharing the roadway with them.
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1980-01-01
The formulation basis for establishing the static or dynamic equilibrium configurations of finite element models of structures which may behave in the nonlinear range are provided. With both geometric and time independent material nonlinearities included, the development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. Representations of a rigid link and an impenetrable contact plane are added to the deformation model so that any number of nodes of the finite element model may be connected by a rigid link or may contact the plane. Equilibrium configurations are derived as the stationary conditions of a potential function of the generalized nodal variables of the model. Minimization of the nonlinear potential function is achieved by using the best current variable metric update formula for use in unconstrained minimization. Powell's conjugate gradient algorithm, which offers very low storage requirements at some slight increase in the total number of calculations, is the other alternative algorithm to be used for extremely large scale problems.
Schoell, Samantha L; Doud, Andrea N; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Winslow, James E; Stitzel, Joel D
2017-01-01
Occult injuries are not easily detected and can be potentially life-threatening. The purpose of this study was to quantify the perceived occultness of the most frequent motor vehicle crash injuries according to emergency medical services (EMS) professionals. An electronic survey was distributed to 1,125 EMS professionals who were asked to quantify the likelihood that first responders would miss symptoms related to a particular injury on a 5-point Likert scale. The Occult Score for each injury was computed from the average of all the survey responses and normalized to be a continuous metric ranging from 0 to 1 where 0 is a non-occult (highly apparent on initial presentation) injury and 1 is an occult (unapparent on initial presentation) injury. Overall, 110,671 survey responses were collected. The Occult Score ranged from 0 to 1 with a mean, median, and standard deviation of 0.443, 0.450, and 0.233, respectively. When comparing the Occult Score of an injury to its corresponding AIS severity, there was no relationship between the metrics. When stratifying by body region, injury type, and AIS severity, it was evident that AIS 2-4 abdominal injuries with lacerations, hemorrhage, or contusions were perceived as the most occult injuries. Timely triage is key to reduce the morbidity and mortality associated with occult injuries. The Occult Score developed in this study to describe the predictability of an injury in a motor vehicle crash will be used as part of a larger effort, including incorporation into an advanced automatic crash notification (AACN) algorithm to detect crash conditions associated with a patient's need for prompt treatment at a trauma center. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characteristics of Single Vehicle Crashes with a Teen Driver in South Carolina, 2005-2008.
Shults, Ruth A; Bergen, Gwen; Smith, Tracy J; Cook, Larry; Kindelberger, John; West, Bethany
2017-09-22
Teens' crash risk is highest in the first years of independent driving. Circumstances surrounding fatal crashes have been widely documented, but less is known about factors related to nonfatal teen driver crashes. This study describes single vehicle nonfatal crashes involving the youngest teen drivers (15-17 years), compares these crashes to single vehicle nonfatal crashes among adult drivers (35-44 years) and examines factors related to nonfatal injury producing crashes for teen drivers. Police crash data linked to hospital inpatient and emergency department data for 2005-2008 from the South Carolina Crash Outcomes Data Evaluation System (CODES) were analyzed. Nonfatal, single vehicle crashes involving passenger vehicles occurring on public roadways for teen (15-17 years) drivers were compared with those for adult (35-44 years) drivers on temporal patterns and crash risk factors per licensed driver and per vehicle miles traveled. Vehicle miles traveled by age group was estimated using data from the 2009 National Household Travel Survey. Multivariable log-linear regression analysis was conducted for teen driver crashes to determine which characteristics were related to crashes resulting in a minor/moderate injury or serious injury to at least one vehicle occupant. Compared with adult drivers, teen drivers in South Carolina had 2.5 times the single vehicle nonfatal crash rate per licensed driver and 11 times the rate per vehicle mile traveled. Teen drivers were nearly twice as likely to be speeding at the time of the crash compared with adult drivers. Teen driver crashes per licensed driver were highest during the afternoon hours of 3:00-5:59 pm and crashes per mile driven were highest during the nighttime hours of 9:00-11:59 pm. In 66% of the teen driver crashes, the driver was the only occupant. Crashes were twice as likely to result in serious injury when teen passengers were present than when the teen driver was alone. When teen drivers crashed while transporting teen passengers, the passengers were >5 times more likely to all be restrained if the teen driver was restrained. Crashes in which the teen driver was unrestrained were 80% more likely to result in minor/moderate injury and 6 times more likely to result in serious injury compared with crashes in which the teen driver was restrained. Despite the reductions in teen driver crashes associated with Graduated Driver Licensing (GDL), South Carolina's teen driver crash rates remain substantially higher than those for adult drivers. Established risk factors for fatal teen driver crashes, including restraint nonuse, transporting teen passengers, and speeding also increase the risk of nonfatal injury in single vehicle crashes. As South Carolina examines strategies to further reduce teen driver crashes and associated injuries, the state could consider updating its GDL passenger restriction to either none or one passenger <21years and dropping the passenger restriction exemption for trips to and from school. Surveillance systems such as CODES that link crash data with health outcome data provide needed information to more fully understand the circumstances and consequences of teen driver nonfatal crashes and evaluate the effectiveness of strategies to improve teen driver safety. Published by Elsevier Ltd.
Epidemiology of road traffic crashes among long distance drivers in Ibadan, Nigeria.
Adejugbagbe, Adewale Moses; Fatiregun, Akinola Ayoola; Rukewe, Ambrose; Alonge, Temitope
2015-06-01
Road Traffic Crashes (RTCs) are major causes of morbidity and mortality in Nigeria. Few studies in Ibadan have focused on the distribution and determinants of RTC among long distance drivers. To describe the distribution of crashes by place, times of occurrence, characteristics of persons involved and identify associated factors. A cross-sectional study was carried out among consenting long distance drivers within selected parks in Ibadan. Respondents (592) were males, with median age of 42.0 years (range 22.0-73.0 years). Secondary education was the highest level of education attained by 38.0%. About 34.0% reported current use of alcohol. The life-time prevalence of crashes was 35.3% (95% CI= 31.5-39.2%) and 15.9% (95% CI=13.1-19.0%) reported having had at least one episode of crash in the last one year preceding the study. The crash occurred mainly on narrow roads [32/94 (34.0%,)] and bad portions of tarred roads [35/94 (37.2%,)] with peak of occurrence on Saturdays 18/94 (19.1%,). Significantly higher proportions of drivers aged ≤39years (23.4%) versus >39years (11.7%), those with no education (29.9%) versus the educated (13.8%) and those who reported alcohol use (21.9%) versus non users (12.8%) were involved in crashes in the year preceding the study. Significant predictor of the last episode of crashes in the last one year were age (OR=2.2, 95% CI=1.4-3.5), education (OR=2.7, 95% CI=1.5-4.6) and alcohol use (OR=1.8, 95% CI=1.2-3.0). Road traffic crashes occurred commonly on bad roads, in the afternoon and during weekends, among young and uneducated long-distance drivers studied. Reconstruction of bad roads and implementation of road safety education programmes aimed at discouraging the use of alcohol and targeting the identified groups at risk are recommended.
Understanding fatal older road user crash circumstances and risk factors.
Koppel, Sjaan; Bugeja, Lyndal; Smith, Daisy; Lamb, Ashne; Dwyer, Jeremy; Fitzharris, Michael; Newstead, Stuart; D'Elia, Angelo; Charlton, Judith
2018-02-28
This study used medicolegal data to investigate fatal older road user (ORU) crash circumstances and risk factors relating to four key components of the Safe System approach (e.g., roads and roadsides, vehicles, road users, and speeds) to identify areas of priority for targeted prevention activity. The Coroners Court of Victoria's Surveillance Database was searched to identify coronial records with at least one deceased ORU in the state of Victoria, Australia, for 2013-2014. Information relating to the ORU, crash characteristics and circumstances, and risk factors was extracted and analyzed. The average rate of fatal ORU crashes per 100,000 population was 8.1 (95% confidence interval [CI] 6.0-10.2), which was more than double the average rate of fatal middle-aged road user crashes (3.6, 95% CI 2.5-4.6). There was a significant relationship between age group and deceased road user type (χ 2 (15, N = 226) = 3.56, p < 0.001). The proportion of deceased drivers decreased with age, whereas the proportion of deceased pedestrians increased with age. The majority of fatal ORU crashes involved a counterpart (another vehicle: 59.4%; fixed/stationary object: 25.4%), and occurred "on road" (87.0%), on roads that were paved (94.2%), dry (74.2%), and had light traffic volume (38.3%). Road user error was identified by the police and/or coroner for the majority of fatal ORU crashes (57.9%), with a significant proportion of deceased ORU deemed to have "misjudged" (40.9%) or "failed to yield" (37.9%). Road user error was the most significant risk factor identified in fatal ORU crashes, which suggests that there is a limited capacity of the Victorian road system to fully accommodate road user errors. Initiatives related to safer roads and roadsides, vehicles, and speed zones, as well as behavioral approaches, are key areas of priority for targeted activity to prevent fatal older road user crashes in the future.
The potential for further development of passive safety.
Frampton, Richard; Lenard, James
2009-10-01
In Europe, emphasis is being transferred from injury prevention to accident prevention to reduce road casualties. This study attempted to identify the current potential for serious casualty reduction using passive safety by examining the crash performance of new cars with seriously injured occupants. The Co-operative Crash Injury Study conducts in-depth investigations of around 1200 vehicles per year from seven sample regions around England. Attention was focussed on passenger cars manufactured from 2004 to 2008 with at least one occupant injured to AIS level 3 or more. 28% of MAIS 3+ occupants were unbelted and 40% were belted but involved in crashes with limited potential for passive protection. A further 32% of occupants were belted and involved in crashes with potential for improved crashworthiness design. For these occupants, five major functional requirements were identified for crashworthiness improvement: a reduction of seatbelt loads on the chest and abdomen in frontal crashes, particularly for seniors; reduction in femur and tibia loads in frontal crashes; provision of head and chest protection in near-side crashes; and reduction of occupant lateral excursion in far-side impacts. Together these functions accounted for 70% of the identified requirements. Other smaller requirements were identified, each contributing up to 5% of total. Overall, the case supporting further developments in passive safety still appears significant.
The Potential for Further Development of Passive Safety
Frampton, Richard; Lenard, James
2009-01-01
In Europe, emphasis is being transferred from injury prevention to accident prevention to reduce road casualties. This study attempted to identify the current potential for serious casualty reduction using passive safety by examining the crash performance of new cars with seriously injured occupants. The Co-operative Crash Injury Study conducts in-depth investigations of around 1200 vehicles per year from seven sample regions around England. Attention was focussed on passenger cars manufactured from 2004 to 2008 with at least one occupant injured to AIS level 3 or more. 28% of MAIS 3+ occupants were unbelted and 40% were belted but involved in crashes with limited potential for passive protection. A further 32% of occupants were belted and involved in crashes with potential for improved crashworthiness design. For these occupants, five major functional requirements were identified for crashworthiness improvement: a reduction of seatbelt loads on the chest and abdomen in frontal crashes, particularly for seniors; reduction in femur and tibia loads in frontal crashes; provision of head and chest protection in near-side crashes; and reduction of occupant lateral excursion in far-side impacts. Together these functions accounted for 70% of the identified requirements. Other smaller requirements were identified, each contributing up to 5% of total. Overall, the case supporting further developments in passive safety still appears significant. PMID:20184832
Byler, Christen; Kesy, Laura; Richardson, Scott; Pratt, Stephanie G; Rodríguez-Acosta, Rosa L
2016-07-01
Motor vehicle traffic crashes (MVTCs) remain the leading cause of work-related fatal injuries in the United States, with crashes on public roadways accounting for 25% of all work-related deaths in 2012. In the United States, the Bureau of Labor Statistics (BLS) Census of Fatal Occupational Injuries (CFOI) provides accurate counts of fatal work injuries based on confirmation of work relationship from multiple sources, while the National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting System (FARS) provides detailed data on fatal MVTCs based on police reports. Characterization of fatal work-related MVTCs is currently limited by data sources that lack either data on potential risk factors (CFOI) or work-relatedness confirmation and employment characteristics (FARS). BLS and the National Institute for Occupational Safety and Health (NIOSH) collaborated to analyze a merged data file created by BLS using CFOI and FARS data. A matching algorithm was created to link 2010 data from CFOI and FARS using date of incident and other case characteristics, allowing for flexibility in variables to address coding discrepancies. Using the matching algorithm, 953 of the 1044 CFOI "Highway" cases (91%) for 2010 were successfully linked to FARS. Further analysis revealed systematic differences between cases identified as work-related by both systems and by CFOI alone. Among cases identified as work-related by CFOI alone, the fatally-injured worker was considerably more likely to have been employed outside the transportation and warehousing industry or transportation-related occupations, and to have been the occupant of a vehicle other than a heavy truck. This study is the first step of a collaboration between BLS, NHTSA, and NIOSH to improve the completeness and quality of data on fatal work-related MVTCs. It has demonstrated the feasibility and value of matching data on fatal work-related traffic crashes from CFOI and FARS. The results will lead to improvements in CFOI and FARS case capture, while also providing researchers with a better description of fatal work-related MVTCs than would be available from the two data sources separately. Copyright © 2016. Published by Elsevier Ltd.
Damage identification of a TLP floating wind turbine by meta-heuristic algorithms
NASA Astrophysics Data System (ADS)
Ettefagh, M. M.
2015-12-01
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring (SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP (Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms (GA), Artificial Immune System (AIS), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine (TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.
Figler, Bradley D; Mack, Christopher D; Kaufman, Robert; Wessells, Hunter; Bulger, Eileen; Smith, Thomas G; Voelzke, Bryan
2014-03-01
The National Highway Traffic Safety Administration's New Car Assessment Program (NCAP) implemented side-impact crash testing on all new vehicles since 1998 to assess the likelihood of major thoracoabdominal injuries during a side-impact crash. Higher crash test rating is intended to indicate a safer car, but the real-world applicability of these ratings is unknown. Our objective was to determine the relationship between a vehicle's NCAP side-impact crash test rating and the risk of major thoracoabdominal injury among the vehicle's occupants in real-world side-impact motor vehicle crashes. The National Automotive Sampling System Crashworthiness Data System contains detailed crash and injury data in a sample of major crashes in the United States. For model years 1998 to 2010 and crash years 1999 to 2010, 68,124 occupants were identified in the Crashworthiness Data System database. Because 47% of cases were missing crash severity (ΔV), multiple imputation was used to estimate the missing values. The primary predictor of interest was the occupant vehicle's NCAP side-impact crash test rating, and the outcome of interest was the presence of major (Abbreviated Injury Scale [AIS] score ≥ 3) thoracoabdominal injury. In multivariate analysis, increasing NCAP crash test rating was associated with lower likelihood of major thoracoabdominal injury at high (odds ratio [OR], 0.8; 95% confidence interval [CI], 0.7-0.9; p < 0.01) and medium (OR, 0.9; 95% CI, 0.8-1.0; p < 0.05) crash severity (ΔV), but not at low ΔV (OR, 0.95; 95% CI, 0.8-1.2; p = 0.55). In our model, older age and absence of seat belt use were associated with greater likelihood of major thoracoabdominal injury at low and medium ΔV (p < 0.001), but not at high ΔV (p ≥ 0.09). Among adults in model year 1998 to 2010 vehicles involved in medium and high severity motor vehicle crashes, a higher NCAP side-impact crash test rating is associated with a lower likelihood of major thoracoabdominal trauma. Epidemiologic study, level III.
Non-damaging laser therapy of the macula: Titration algorithm and tissue response
NASA Astrophysics Data System (ADS)
Palanker, Daniel; Lavinsky, Daniel; Dalal, Roopa; Huie, Philip
2014-02-01
Retinal photocoagulation typically results in permanent scarring and scotomata, which limit its applicability to the macula, preclude treatments in the fovea, and restrict the retreatments. Non-damaging approaches to laser therapy have been tested in the past, but the lack of reliable titration and slow treatment paradigms limited their clinical use. We developed and tested a titration algorithm for sub-visible and non-damaging treatments of the retina with pulses sufficiently short to be used with pattern laser scanning. The algorithm based on Arrhenius model of tissue damage optimizes the power and duration for every energy level, relative to the threshold of lesion visibility established during titration (and defined as 100%). Experiments with pigmented rabbits established that lesions in the 50-75% energy range were invisible ophthalmoscopically, but detectable with Fluorescein Angiography and OCT, while at 30% energy there was only very minor damage to the RPE, which recovered within a few days. Patients with Diabetic Macular Edema (DME) and Central Serous Retinopathy (CSR) have been treated over the edematous areas at 30% energy, using 200μm spots with 0.25 diameter spacing. No signs of laser damage have been detected with any imaging modality. In CSR patients, subretinal fluid resolved within 45 days. In DME patients the edema decreased by approximately 150μm over 60 days. After 3-4 months some patients presented with recurrence of edema, and they responded well to retreatment with the same parameters, without any clinically visible damage. This pilot data indicates a possibility of effective and repeatable macular laser therapy below the tissue damage threshold.
Epidemiology of pedestrian-MVCs by road type in Cluj, Romania.
Hamann, Cara; Peek-Asa, Corinne; Rus, Diana
2015-04-01
Pedestrian-motor vehicle (PMV) crash rates in Romania are among the highest in all of Europe. The purpose of this study was to examine the characteristics of pedestrian-MVCs in Cluj County, Romania, on the two major types of roadways: national or local. Cluj County police crash report data from 2010 were used to identify pedestrian, driver and crash characteristics of pedestrian-MVCs. Crashes with available location data were geocoded and road type (national or local) for each crash was determined. Distributions of crash characteristics were examined by road type and multivariable logistic regression models were built to determine predictors of crash road type. Crashes occurring on national roads involved more teenagers and adults, while those on local roads involved more young children (0-12) and older adults (65+) (p<0.01). Crashes on national roads were more likely to have marked pedestrian crossings and shoulders compared with local crashes. Pedestrian-MVCs that involved a moving violation by the motorist were more likely to occur on national roadways (adjusted OR=1.93, 95% CI 1.07 to 3.49). Pedestrian-MVCs pose a considerable health burden in Romania. Results from this study suggest that factors leading to PMV crashes on national roads are more likely to involve driver-related causes compared with local roads. Intervention priorities to reduce pedestrian crashes on national roads should be directed towards driver behaviour on national roads. Further examination of driver and pedestrian behaviours related to crash risk on both national and local roads, such as distraction and speeding, is warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Geographic Region, Weather, Pilot Age and Air Carrier Crashes: a Case-Control Study
Li, Guohua; Pressley, Joyce C.; Qiang, Yandong; Grabowski, Jurek G.; Baker, Susan P.; Rebok, George W.
2009-01-01
Background Information about risk factors of aviation crashes is crucial for developing effective intervention programs. Previous studies assessing factors associated with crash risk were conducted primarily in general aviation, air taxis and commuter air carriers. Methods A matched case-control design was used to examine the associations of geographic region, basic weather condition, and pilot age with the risk of air carrier (14 CFR Part 121) crash involvement. Cases (n=373) were air carrier crashes involving aircraft made by Boeing, McDonnell Douglas, and Airbus, recorded in the National Transportation Safety Board’s aviation crash database during 1983 through 2002, and controls (n=746) were air carrier incidents involving aircraft of the same three makes selected at random from the Federal Aviation Administration’s aviation incident database. Each case was matched with two controls on the calendar year when the index crash occurred. Conditional logistic regression was used for statistical analysis. Results With adjustment for basic weather condition, pilot age, and total flight time, the risk of air carrier crashes in Alaska was more than three times the risk for other regions [adjusted odds ratio (OR) 3.18, 95% confidence interval (CI) 1.35 – 7.49]. Instrument meteorological conditions were associated with an increased risk for air carrier crashes involving pilot error (adjusted OR 2.26, 95% CI 1.15 – 4.44) and a decreased risk for air carrier crashes without pilot error (adjusted OR 0.57, 95% CI 0.40 – 0.87). Neither pilot age nor total flight time was significantly associated with the risk of air carrier crashes. Conclusions The excess risk of air carrier crashes in Alaska and the effect of adverse weather on pilot-error crashes underscore the importance of environmental hazards in flight safety. PMID:19378910
Geographic region, weather, pilot age, and air carrier crashes: a case-control study.
Li, Guohua; Pressley, Joyce C; Qiang, Yandong; Grabowski, Jurek G; Baker, Susan P; Rebok, George W
2009-04-01
Information about risk factors of aviation crashes is crucial for developing effective intervention programs. Previous studies assessing factors associated with crash risk were conducted primarily in general aviation, air taxis, and commuter air carriers. A matched case-control design was used to examine the associations of geographic region, basic weather condition, and pilot age with the risk of air carrier (14 CFR Part 121) crash involvement. Cases (N = 373) were air carrier crashes involving aircraft made by Boeing, McDonnell Douglas, and Airbus recorded in the National Transportation Safety Board's aviation crash database during 1983 through 2002, and controls (N = 746) were air carrier incidents involving aircraft of the same three makes selected at random from the Federal Aviation Administration's aviation incident database. Each case was matched with two controls on the calendar year when the index crash occurred. Conditional logistic regression was used for statistical analysis. With adjustment for basic weather condition, pilot age, and total flight time, the risk of air carrier crashes in Alaska was more than three times the risk for other regions ladjusted odds ratio (OR) 3.18, 95% confidence interval (CI) 1.35-7.49]. Instrument meteorological conditions were associated with an increased risk for air carrier crashes involving pilot error (adjusted OR 2.26, 95% CI 1.15-4.44) and a decreased risk for air carrier crashes without pilot error (adjusted OR 0.60, 95% CI 0.37-0.96). Neither pilot age nor total flight time were significantly associated with the risk of air carrier crashes. The excess risk of air carrier crashes in Alaska and the effect of adverse weather on pilot-error crashes underscore the importance of environmental hazards in flight safety.
Bajaj, Jasmohan S; Saeian, Kia; Schubert, Christine M; Hafeezullah, Muhammad; Franco, Jose; Varma, Rajiv R; Gibson, Douglas P; Hoffmann, Raymond G; Stravitz, R Todd; Heuman, Douglas M; Sterling, Richard K; Shiffman, Mitchell; Topaz, Allyne; Boyett, Sherry; Bell, Debulon; Sanyal, Arun J
2009-01-01
Patients with minimal hepatic encephalopathy (MHE) have impaired driving skills, but association of MHE with motor vehicle crashes is unclear. Standard psychometric tests (SPT) or inhibitory control test (ICT) can be used to diagnose MHE. The aim was to determine the association of MHE with crashes and traffic violations over the preceding year and on 1-year follow-up. Cirrhotics were diagnosed with MHE by ICT (MHEICT) and SPT (MHESPT). Self and department-of-transportation (DOT)-reports were used to determine crashes and violations over the preceding year. Agreement between self and DOT-reports was analyzed. Patients then underwent 1 year follow-up for crash/violation occurrence. Crashes in those with/without MHEICT and MHESPT were compared. 167 cirrhotics had DOT-reports, of which 120 also had self-reports. A significantly higher proportion of MHEICT cirrhotics experienced crashes in the preceding year compared to those without MHE by self-report (17% vs. 0%, p=0.0004) and DOT-reports (17% vs. 3%, p=0.004, relative risk:5.77). SPT did not differentiate between those with/without crashes. A significantly higher proportion of patients with crashes had MHEICT compared to MHESPT, both self-reported (100% vs. 50%, p=0.03) and DOT-reported (89% vs. 44%, p=0.01). There was excellent agreement between self and DOT-reports for crashes and violations (Kappa 0.90 and 0.80). 109 patients were followed prospectively. MHEICT patients had a significantly higher future crashes/violations compared to those without (22% vs. 7%, p=0.03) but MHESPT did not. MHEICT (Odds ratio:4.51) and prior year crash/violation (Odds ratio:2.96) were significantly associated with future crash/violation occurrence. PMID:19670416
2002 Michigan traffic crash facts
DOT National Transportation Integrated Search
2003-05-19
The 2002 traffic fatality count was 1,279, down 3.7 percent from the 2001 figure of 1,328. : Compared with 2001, injuries were down 0.2 percent and total crashes were down 1.3 : percent. These figures translated into a death rate of 1.3 per 100 milli...
Cook, Jerry L; Jones, Randall M
2011-12-01
We examined relations between young adult texting and accessing the web while driving with driving outcomes (viz. crashes and traffic citations). Our premise is that engaging in texting and accessing the web while driving is not only distracting but that these activities represent a pattern of behavior that leads to an increase in unwanted outcomes, such as crashes and citations. College students (N = 274) on 3 campuses (one in California and 2 in Utah) completed an electronic questionnaire regarding their driving experience and cell phone use. Our data indicate that 3 out of 4 (74.3%) young adults engage in texting while driving, over half on a weekly basis (51.8%), and some engage in accessing the web while driving (16.8%). Data analysis revealed a relationship between these cell phone behaviors and traffic citations and crashes. The findings support Jessor and Jessor's (1977) "problem behavior syndrome" by showing that traffic citations are related to texting and accessing the web while driving and that crashes are related to accessing the web while driving. Limitations and recommendations are discussed.
Motor vehicle crash-related subdural hematoma from real-world head impact data.
Urban, Jillian E; Whitlow, Christopher T; Edgerton, Colston A; Powers, Alexander K; Maldjian, Joseph A; Stitzel, Joel D
2012-12-10
Abstract Approximately 1,700,000 people sustain a traumatic brain injury (TBI) each year and motor vehicle crashes (MVCs) are a leading cause of hospitalization from TBI. Acute subdural hematoma (SDH) is a common intracranial injury that occurs in MVCs associated with high mortality and morbidity rates. In this study, SDH volume and midline shift have been analyzed in order to better understand occupant injury by correlating them to crash and occupant parameters. Fifty-seven head computed tomography (CT) scans were selected from the Crash Injury Research Engineering Network (CIREN) with Abbreviated Injury Scale (AIS) level 3+ SDH. Semi-automated methods were used to isolate the intracranial volume. SDH and additional occupant intracranial injuries were segmented across axial CT images, providing a total SDH injury volume. SDH volume was correlated to crash parameters and occupant characteristics. Results show a positive correlation between SDH volume and crash severity in near-side and frontal crashes. Additionally, the location of the resulting hemorrhage varied by crash type. Those with greater SDH volumes had significantly lower Glasgow Coma Scale (GCS) scores at the crash site in near-side crashes. Age and fracture type were found to be significant contributors to SDH volume. This study is a volumetric analysis of real world brain injuries and known MVC impacts. The results of this study demonstrate a relationship among SDH volume, crash mechanics, and occupant characteristics that provide a better understanding of the injury mechanisms of MVC-associated TBI.
The contribution of alcohol to serious car crash injuries.
Connor, Jennie; Norton, Robyn; Ameratunga, Shanthi; Jackson, Rod
2004-05-01
Alcohol impairment of drivers is considered the most important contributing cause of car crash injuries. The burden of injury attributable to drinking drivers has been estimated only indirectly. We conducted a population-based case-control study in Auckland, New Zealand between April 1998 and July 1999. Cases were 571 car drivers involved in crashes in which at least 1 occupant was admitted to the hospital or killed. Control subjects were 588 car drivers recruited on public roads, representative of driving in the region during the study period. Participants completed a structured interview and had blood or breath alcohol measurements. Drinking alcohol before driving was strongly associated with injury crashes after controlling for known confounders. This was true for several measures of alcohol consumption: for self-report of 2 or more 12-g alcoholic drinks in the preceding 6 hours compared with none, the odds ratio (OR) was 7.9 (95% confidence interval = 3.4-18); for blood alcohol concentration 3 to 50 mg/100 mL compared with <3 mg/100 mL, the OR was 3.2 (1.1-10); and for blood alcohol concentration greater than 50 mg/100 mL compared with <3 mg/100 mL, the OR was 23 (9-56). Approximately 30% of car crash injuries in this population were attributable to alcohol, with two-thirds involving drivers with blood alcohol concentration in excess of 150 mg/100 mL. Equal proportions of alcohol-related injury crashes were attributable to drivers with blood alcohol concentrations of 3 to 50 mg/100 mL as those with levels of 51 to 150 mg/100 mL. Evidence about the proportion of crashes attributable to drivers at different blood alcohol concentrations can inform the prioritization of interventions that target different groups of drivers. These data indicate where there is the most potential for reduction of the injury burden.
The effects of roadway characteristics on farm equipment crashes: A GIS approach
NASA Astrophysics Data System (ADS)
Greenan, Mitchell Joseph
Tractors and other self-propelled farm equipment, such as combines, sprayers, and towed grain carts, are often used on public roadways as the primary means for traveling from homestead to homestead or from homestead to a distributer. Increased roadway exposure has led to a growing concern for crashes involving farm equipment on the public roadway. A handful of studies exist examining public roadway crashes involving farm equipment using crash data, but none thus far have evaluated road segment data to identify road-specific risk factors. The objective of this study is to identify if roadway characteristics (traffic density, speed limit, road type, surface type, road width, and shoulder width) affect the risk of a crash involving farm equipment on Iowa public roadways. A retrospective cohort study of Iowa roads was conducted to identify the types of roads that are at an increased risk of having a farm-equipment crash on them. Crash data from the Iowa Department of Transportation (to identify crashes) were spatial linked to Iowa roadway data using Geographic Information Systems (GIS). Logistic regression was used to calculate ORs and 95% CL. Out of 319,705 road segments in Iowa, 0.4% segments (n=1,337) had a farm equipment crash from 2005-2011. The odds of having a farm equipment crash were significantly higher for road segments with increased traffic density and speed limit. Roads with an average daily traffic volume of at least 1,251 vehicles were at a 5.53 times greater odds of having a crash than roads with a daily traffic volume between 0-30 vehicles. (CI: 3.90-7.83). Roads with a posted speed limit between 50mph and 60mph were at a 4.88 times greater odds of having a crash than roads with a posted speed limit of 30mph or less. (CI: 3.85-6.20). Specific roadway characteristics such as roadway and shoulder width were also associated with the risk of a crash. For every 5 foot increase in road width, the odds for a crash decreased by 6 percent (CI: 0.89-0.99) and for every 5 foot increase in shoulder width, the odds of a crash decreased by 8 percent. (CI: 0.86-0.98). Although not statically significant, unpaved roads increased the odds of a crash by 17 percent. (CI: 0.91-1.50) Lastly, it was found that Farm to Market routes increased the odds of a crash by two fold compared to local roads (which make up roughly 67 percent of Iowa public roads). (CI: 1.72-2.43) When the same model was stratified by rurality (urban/rural), it was found that high traffic density leads to a higher risk of a crash in rural areas. Iowa routes and Farm to Market routes had a greater odds of a crash in urban than rural areas, and road and shoulder width were more protective in rural than urban areas. When only using roads with a crash involving an injury versus all other roads as the outcome, Iowa routes and roads with increased speed limits had higher odds for an injury-involved crash, while increased road width were more protective against crashes involving injuries. Findings from the study suggest that several roadway characteristics were associated with farm-equipment crashes. Through administrative and engineering controls, the six static explanatory variables used in this study may be modified to decrease the risk of a farm equipment crash. Speed limit can be modified through administrative controls while traffic density, road and shoulder width, road type, and surface type can be modified through engineering controls. Results from this study provide information that will aid policy-makers in developing safer roads for farm equipment.
Ivarsson, Johan; Poplin, Gerald; McMurry, Tim; Crandall, Jeff; Kerrigan, Jason
2015-12-01
Planar impacts with objects and other vehicles may increase the risk and severity of injury in rollover crashes. The current study compares the frequency of injury measures (MAIS 2+, 3+, and 4+; fatal; AIS 2+ head and cervical spine; and AIS 3+ head and thorax) as well as vehicle type distribution (passenger car, SUV, van, and light truck), crash kinematics, and occupant demographics between single vehicle single event rollovers (SV Pure) and multiple event rollovers to determine which types of multiple event rollovers can be pooled with SV Pure to study rollover induced occupant injury. Four different types of multiple event rollovers were defined: single and multi-vehicle crashes for which the rollover is the most severe event (SV Prim and MV Prim) and single and multi-vehicle crashes for which the rollover is not the most severe event (SV Non-Prim and MV Non-Prim). Information from real world crashes was obtained from the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) for the period from 1995 through 2011. Belted, contained or partially ejected, adult occupants in vehicles that completed 1-16 lateral quarter turns were assigned to one of the five rollover categories. The results showed that the frequency of injury in non-primary rollovers (SV Non-Prim and MV Non-Prim) involving no more than one roof inversion is substantially greater than in SV Pure, but that this disparity diminishes for crashes involving multiple inversions. It can further be concluded that for a given number of roof inversions, the distribution of injuries and crash characteristics in SV Pure and SV Prim crashes are sufficiently similar for these categories to be considered collectively for purposes of understanding etiologies and developing strategies for prevention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessment of Carbon Fiber Electrical Effects
NASA Technical Reports Server (NTRS)
1980-01-01
The risks associated with the use of carbon fiber composites in civil aircraft are discussed along with the need for protection of civil aircraft equipment from fire-released carbon fibers. The size and number of carbon fibers released in civil aircraft crash fires, the downwind dissemination of the fibers, their penetration into buildings and equipment, and the vulnerability of electrical/electronic equipment to damage by the fibers are assessed.
Traffic crash statistics report, 2007
DOT National Transportation Integrated Search
2008-01-01
Fatalities as a result of traffic crashes on Florida roadways decreased to 3,221 in 2007 from 3,365 in 2006. For the second consecutive year in more than 10 years, traffic fatalities have decreased from the previous year; State mileage Death rate dec...
NASA Astrophysics Data System (ADS)
Shahriari, Mohammadreza
2016-06-01
The time-cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate extra resources to short the finishing time of project and the project managers are intended to spend the lowest possible amount of money and achieve the maximum crashing time, as a result, both direct and indirect costs will be influenced in the project, and here, we are facing into the time value of money. It means that when we crash the starting activities in a project, the extra investment will be tied in until the end date of the project; however, when we crash the final activities, the extra investment will be tied in for a much shorter period. This study is presenting a two-objective mathematical model for balancing compressing the project time with activities delay to prepare a suitable tool for decision makers caught in available facilities and due to the time of projects. Also drawing the scheduling problem to real world conditions by considering nonlinear objective function and the time value of money are considered. The presented problem was solved using NSGA-II, and the effect of time compressing reports on the non-dominant set.
Missing Aircraft Crash Sites and Spatial Relationships to the Last Radar Fix.
Koester, Robert J; Greatbatch, Ian
2016-02-01
Few studies have examined the spatial characteristics of missing aircraft in actual distress. No previous studies have looked at the distance from the last radar plot to the crash site. The purpose of this study was to characterize this distance and then identify environmental and flight characteristics that might be used to predict the spatial relationship and, therefore, aid search and rescue planners. Detailed records were obtained from the U.S. Air Force Rescue Coordination Center for missing aircraft in distress from 2002 to 2008. The data was combined with information from the National Transportation Safety Board (NTSB) Accident Database. The spatial relationship between the last radar plot and crash site was then determined using GIS analysis. A total of 260 missing aircraft incidents involving 509 people were examined, of which 216 (83%) contained radar information. Among the missing aircraft the mortality rate was 89%; most occurred in mountainous terrain (57%); Part 91 flight accounted for 95% of the incidents; and 50% of the aircraft were found within 0.8 nmi from the last radar plot. Flight characteristics, descent rate, icing conditions, and instrument flight rule vs. visual flight rule flight could be used to predict spatial characteristics. In most circumstances, the last radar position is an excellent predictor of the crash site. However, 5% of aircraft are found further than 45.4 nmi. The flight and environmental conditions were identified and placed into an algorithm to aid search planners in determining how factors should be prioritized.
Ehrlich, Peter F; Brown, J Kristine; Sochor, Mark R; Wang, Stewart C; Eichelberger, Martin E
2006-11-01
Motor vehicle crashes account for more than 50% of pediatric injuries. Triage of pediatric patients to appropriate centers can be based on the crash/injury characteristics. Pediatric motor vehicle crash/injury characteristics can be determined from an in vitro laboratory using child crash dummies. However, to date, no detailed data with respect to outcomes and crash mechanism have been presented with a pediatric in vivo model. The Crash Injury Research Engineering Network is comprised of 10 level 1 trauma centers. Crashes were examined with regard to age, crash severity (DeltaV), crash direction, restraint use, and airbag deployment. Multiple logistic regression analysis was performed with Injury Severity Score (ISS) and Glasgow Coma Scale (GCS) as outcomes. Standard age groupings (0-4, 5-9, 10-14, and 15-18) were used. The database is biases toward a survivor population with few fatalities. Four hundred sixty-one motor vehicle crashes with 2500 injuries were analyzed (242 boys, 219 girls). Irrespective of age, DeltaV > 30 mph resulted in increased ISS and decreased GCS (eg, for 0-4 years, DeltaV < 30: ISS = 10, GCS = 13.5 vs DeltaV > 30: ISS = 19.5, GCS = 10.6; P < .007, < .002, respectively). Controlling for DeltaV, children in lateral crashes had increased ISS and decreased GCS versus those in frontal crashes. Airbag deployment was protective for children 15 to 18 years old and resulted in a lower ISS and higher GCS (odds ratio, 2.1; 95% confidence interval, 0.9-4.6). Front-seat passengers suffered more severe (ISS > 15) injuries than did backseat passengers (odds ratio, 1.7; 95% confidence interval, 0.7-3.4). A trend was noted for children younger than 12 years sitting in the front seat to have increased ISS and decreased GCS with airbag deployment but was limited by case number. A reproducible pattern of increased ISS and lower GCS characterized by high severity, lateral crashes in children was noted. Further analysis of the specific injuries as a function and the crash characteristic can help guide management and prevention strategies.
Naturalistic Assessment of Novice Teenage Crash Experience
Lee, Suzanne E.; Simons-Morton, Bruce G.; Klauer, Sheila E.; Ouimet, Marie Claude; Dingus, Thomas A.
2011-01-01
Background Crash risk is highest during the first months after licensure. Current knowledge about teenagers’ driving exposure and the factors increasing their crash risk is based on self-reported data and crash database analyses. While these research tools are useful, new developments in naturalistic technologies have allowed researchers to examine newly-licensed teenagers’ exposure and crash risk factors in greater detail. The Naturalistic Teenage Driving Study (NTDS) described in this paper is the first study to follow a group of newly-licensed teenagers continuously for 18 months after licensure. The goals of this paper are to compare the crash and near-crash experience of drivers in the NTDS to national trends, to describe the methods and lessons learned in the NTDS, and to provide initial data on driving exposure for these drivers. Methods A data acquisition system was installed in the vehicles of 42 newly-licensed teenage drivers 16 years of age during their first 18 months of independent driving. It consisted of cameras, sensors (accelerometers, GPS, yaw, front radar, lane position, and various sensors obtained via the vehicle network), and a computer with removable hard drive. Data on the driving of participating parents was also collected when they drove the instrumented vehicle. Findings The primary findings after 18 months included the following: (1) crash and near-crash rates among teenage participants were significantly higher during the first six months of the study than the final 12 months, mirroring the national trends; (2) crash and near-crash rates were significantly higher for teenage than adult (parent) participants, also reflecting national trends; (3) teenaged driving exposure averaged between 507-710 kilometers (315-441 miles) per month over the study period, but varied substantially between participants with standard errors representing 8-14 percent of the mean; and (4) crash and near-crash types were very similar for male and female teenage drivers.. Discussion The findings are the first comparing crash and near-crash rates among novice teenage drivers with those of adults using the same vehicle over the same period of time. The finding of highly elevated crash rates of novice teenagers during the first six months of licensure are consistent with and confirm the archival crash data showing high crash risk for novice teenagers. The NTDS convenience sample of teenage drivers was similar to the U.S. teenage driver population in terms of exposure and crash experience. The dataset is expected be a valuable resource for future in-depth analyses of crash risk, exposure to risky driving conditions, and comparisons of teenage and adult driving performance in various driving situations. PMID:21545880
Long-term impact on alcohol-involved crashes of lowering the minimum purchase age in New Zealand.
Huckle, Taisia; Parker, Karl
2014-06-01
We assessed the long-term effect of lowering the minimum purchase age for alcohol from age 20 to age 18 years on alcohol-involved crashes in New Zealand. We modeled ratios of drivers in alcohol-involved crashes to drivers in non-alcohol-involved crashes by age group in 3 time periods using logistic regression, controlling for gender and adjusting for multiple comparisons. Before the law change, drivers aged 18 to 19 and 20 to 24 years had similar odds of an alcohol-involved crash (P = .1). Directly following the law change, drivers aged 18 to 19 years had a 15% higher odds of being in an alcohol-involved crash than did drivers aged 20 to 24 years (P = .038). In the long term, drivers aged 18 to 19 years had 21% higher odds of an alcohol-involved crash than did the age control group (P ≤ .001). We found no effects for fatal alcohol-involved crashes alone and no trickle-down effects for the youngest group. Lowering the purchase age for alcohol was associated with a long-term impact on alcohol-involved crashes among drivers aged 18 to 19 years. Raising the minimum purchase age for alcohol would be appropriate.
Long-Term Impact on Alcohol-Involved Crashes of Lowering the Minimum Purchase Age in New Zealand
Parker, Karl
2014-01-01
Objectives. We assessed the long-term effect of lowering the minimum purchase age for alcohol from age 20 to age 18 years on alcohol-involved crashes in New Zealand. Methods. We modeled ratios of drivers in alcohol-involved crashes to drivers in non–alcohol-involved crashes by age group in 3 time periods using logistic regression, controlling for gender and adjusting for multiple comparisons. Results. Before the law change, drivers aged 18 to 19 and 20 to 24 years had similar odds of an alcohol-involved crash (P = .1). Directly following the law change, drivers aged 18 to 19 years had a 15% higher odds of being in an alcohol-involved crash than did drivers aged 20 to 24 years (P = .038). In the long term, drivers aged 18 to 19 years had 21% higher odds of an alcohol-involved crash than did the age control group (P ≤ .001). We found no effects for fatal alcohol-involved crashes alone and no trickle-down effects for the youngest group. Conclusions. Lowering the purchase age for alcohol was associated with a long-term impact on alcohol-involved crashes among drivers aged 18 to 19 years. Raising the minimum purchase age for alcohol would be appropriate. PMID:24825211
Assessment of methodologies for analysis of the dungeness B accidental aircraft crash risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaChance, Jeffrey L.; Hansen, Clifford W.
2010-09-01
The Health and Safety Executive (HSE) has requested Sandia National Laboratories (SNL) to review the aircraft crash methodology for nuclear facilities that are being used in the United Kingdom (UK). The scope of the work included a review of one method utilized in the UK for assessing the potential for accidental airplane crashes into nuclear facilities (Task 1) and a comparison of the UK methodology against similar International Atomic Energy Agency (IAEA), United States (US) Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) methods (Task 2). Based on the conclusions from Tasks 1 and 2, an additionalmore » Task 3 would provide an assessment of a site-specific crash frequency for the Dungeness B facility using one of the other methodologies. This report documents the results of Task 2. The comparison of the different methods was performed for the three primary contributors to aircraft crash risk at the Dungeness B site: airfield related crashes, crashes below airways, and background crashes. The methods and data specified in each methodology were compared for each of these risk contributors, differences in the methodologies were identified, and the importance of these differences was qualitatively and quantitatively assessed. The bases for each of the methods and the data used were considered in this assessment process. A comparison of the treatment of the consequences of the aircraft crashes was not included in this assessment because the frequency of crashes into critical structures is currently low based on the existing Dungeness B assessment. Although the comparison found substantial differences between the UK and the three alternative methodologies (IAEA, NRC, and DOE) this assessment concludes that use of any of these alternative methodologies would not change the conclusions reached for the Dungeness B site. Performance of Task 3 is thus not recommended.« less
Gasoline prices and traffic crashes in Alabama, 1999-2009.
Chi, Guangqing; McClure, Timothy E; Brown, David B
2012-09-01
The price of gasoline has been found to be negatively associated with traffic crashes in a limited number of studies. However, most of the studies have focused either on fatal crashes only or on all crashes but measured over a very short time period. In this study, we examine gasoline price effects on all traffic crashes by demographic groups in the state of Alabama from 1999 to 2009. Using negative binomial regression techniques to examine monthly data from 1999 to 2009 in the state of Alabama, we estimate the effects of changes in gasoline price on changes in automobile crashes. We also examine how these effects differ by age group (16-20, 21-25, 26-30, 31-64, and 65+), gender (male and female), and race/ethnicity (non-Hispanic white, non-Hispanic black, and Hispanic). The results show that gasoline prices have both short-term and long-term effects on reducing total traffic crashes and crashes of each age, gender, and race/ethnicity group (except Hispanic due to data limitations). The short-term and long-term effects are not statistically different for each individual demographic group. Gasoline prices have a stronger effect in reducing crashes involving drivers aged 16 to 20 than crashes involving drivers aged 31 to 64 and 65+ in the short term; the effects, however, are not statistically different across other demographic groups. Although gasoline price increases are not favored, our findings show that gasoline price increases (or decreases) are associated with reductions (or increases) in the incidence of traffic crashes. If gasoline prices had remained at the 1999 level of $1.41 from 1999 to 2009, applying the estimated elasticities would result in a predicted increase in total crashes of 169,492 (or 11.3%) from the actual number of crashes. If decision makers wish to reduce traffic crashes, increasing gasoline taxes is a possible option-however, doing so would increase travel costs and lead to equity concerns. These findings may help to shape transportation safety planning and policy making.
Amr, Sania; Braver, Elisa R.; Langenberg, Patricia; Zhan, Min; Smith, Gordon S.; Dischinger, Patricia C.
2013-01-01
PURPOSE To determine whether traffic court appearances and different court verdicts were associated with risk of subsequent speeding citations and crashes. METHODS A cohort of 29,754 Maryland drivers ticketed for speeding who either went to court or paid fines by mail in May/June 2003 was followed for 3 years. Drivers appearing in court were categorized by verdicts: 1) not guilty, 2) suspension of prosecution/no prosecution (STET/NP), 3) case dismissed, 4) probation before judgment and fines (PBJ), or 5) fines and demerit points. Cox proportional hazard models were used to estimate adjusted hazard ratios (AHR). RESULTS Court appearances were associated with lower risk of subsequent speeding citations (AHR = 0.92; 95% CI: 0.88-0.96), but higher risk of crashes (AHR=1.25; 95% CI: 1.16-1.35). PBJ was associated with significantly lower repeat speeding tickets (AHR = 0.83; 95% CI = 0.75-0.91) and a non-significant decrease in crashes (AHR = 0.87; 95% CI 0.75-1.02). Both repeat speeding tickets and subsequent crashes were significantly lower in the STET/NP group. CONCLUSIONS PBJ and STET/NP may reduce speeding and crashes, but neither verdict eliminated excess crash risk among drivers who choose court appearances. Randomized controlled evaluations of speeding countermeasures are needed to inform traffic safety policies. PMID:21684176
Traffic crash statistics report, 2006
DOT National Transportation Integrated Search
2007-01-01
Fatalities as a result of traffic crashes on Florida roadways decreased to 3,365 in 2006 from 3,533 in 2005 **for the first time in more than 10 years traffic fatalities have decreased from the previous year; State Mileage Death Rate decreased to 1.6...
Factors related to pilot survival in helicopter commuter and air taxi crashes.
Krebs, M B; Li, G; Baker, S P
1995-02-01
We examined factors related to pilot survival in 167 consecutive helicopter commuter and air taxi crashes that occurred during 1983-88. Case fatality rates and adjusted odds ratios from multivariate logistic regression models were determined using data from the National Transportation Safety Board (NTSB). During this 6-year period, 29 pilots-in-command died in 167 helicopter commuter and air taxi crashes, a case fatality rate of 17.4%. Factors significantly associated with increased risk of pilot fatality were aircraft fire [odds ratio (OR) 20.0, 95% confidence interval (CI) 4.6-86.8], not using shoulder harnesses (OR 9.2, 95% CI 2.2-37.3), and aircraft with two engines (OR 4.8, 95% CI 1.3-17.4). In addition, we present data regarding success and failure of emergency flotation devices. The results suggest that the likelihood of pilot survival in helicopter crashes could be greatly improved by preventing crash associated fires and promoting the usage of shoulder restraints.
Extent, consequences and economic burden of road traffic crashes in Iran.
Rezaei, Satar; Arab, Mohammad; Karami Matin, Behzad; Akbari Sari, Ali
2014-07-01
Road Traffic Injuries (RTIs) as a result of road traffic crashes (RTCs) rank as the leading cause of death, disability and property loss worldwide, especially in low and middle-income countries. This study aims to analyze the costs of RTCs in Iran. A standard human capital approach was used to estimate the costs. Costs included medical, administrative and funeral costs, property damage, production lost and intangible costs. Data about the number of deaths and injuries resulting from RTIs between 20 March 2009 and 20 March 2010 was obtained from two national databases designed at the Center for Disaster Management and Medical Emergencies (CDMME) and the Legal Medicine Organization (LMO), respectively. The severity and medical costs of injuries were identified by reviewing 400 medical records that were selected randomly from patients who were admitted to two large trauma centers in Shariati and Sina hospitals in Tehran province. Moreover, information about production lost, property damage, rehabilitation cost, intangible costs and administration costs were collected by review of current evidence and consulting with expert opinion. In total 806,922 RTIs and 22,974 deaths resulted from the RTCs in the study period. The total cost of RTCs was about 72,465 billion Rials (7.2 billion US Dollars), which amounts to 2.19% of Iran's Gross Domestic Production (GDP). Direct costs were 3,516 billion Rials (around 48.6 % of the total costs), following by 24,785 billion Rials (around 34.2 % of the total costs) for production lost and 12,513 billion Rials (around 17.2 % of the total costs) for intangible costs. This study indicated that the burden of both RTCs and RTIs in Iran is substantial. Moreover, RTCs have significant economic consequences and are a large drain on healthcare resources. @ 2014 KUMS, All rights reserved.
Extent, consequences and economic burden of road traffic crashes in Iran
Rezaei, Satar; Arab, Mohammad; Karami Matin, Behzad; Akbari Sari, Ali
2014-01-01
Abstract: Background: Road Traffic Injuries (RTIs) as a result of road traffic crashes (RTCs) rank as the leading cause of death, disability and property loss worldwide, especially in low and middle-income countries. This study aims to analyze the costs of RTCs in Iran. Methods: A standard human capital approach was used to estimate the costs. Costs included medical, administrative and funeral costs, property damage, production lost and intangible costs. Data about the number of deaths and injuries resulting from RTIs between 20 March 2009 and 20 March 2010 was obtained from two national databases designed at the Center for Disaster Management and Medical Emergencies (CDMME) and the Legal Medicine Organization (LMO), respectively. The severity and medical costs of injuries were identified by reviewing 400 medical records that were selected randomly from patients who were admitted to two large trauma centers in Shariati and Sina hospitals in Tehran province. Moreover, information about production lost, property damage, rehabilitation cost, intangible costs and administration costs were collected by review of current evidence and consulting with expert opinion. Results: In total 806,922 RTIs and 22,974 deaths resulted from the RTCs in the study period. The total cost of RTCs was about 72,465 billion Rials (7.2 billion US Dollars), which amounts to 2.19% of Iran’s Gross Domestic Production (GDP). Direct costs were 3,516 billion Rials (around 48.6 % of the total costs), following by 24,785 billion Rials (around 34.2 % of the total costs) for production lost and 12,513 billion Rials (around 17.2 % of the total costs) for intangible costs. Conclusions: This study indicated that the burden of both RTCs and RTIs in Iran is substantial. Moreover, RTCs have significant economic consequences and are a large drain on healthcare resources. PMID:24045158
Crash test ratings and real-world frontal crash outcomes: a CIREN study.
Ryb, Gabriel E; Burch, Cynthia; Kerns, Timothy; Dischinger, Patricia C; Ho, Shiu
2010-05-01
To establish whether the Insurance Institute for Highway Safety (IIHS) offset crash test ratings are linked to different mortality rates in real world frontal crashes. The study used Crash Injury Research Engineering Network drivers of age older than 15 years who were involved in frontal crashes. The Crash Injury Research Engineering Network is a convenience sample of persons injured in crashes with at least one Abbreviated Injury Scale score of 3+ injury or two Abbreviated Injury Scale score of 2+ injuries who were either treated at a Level I trauma center or died. Cases were grouped by IIHS crash test ratings (i.e., good, acceptable, marginal, poor, and not rated). Those rated marginal were excluded because of their small numbers. Mortality rates experienced by these ratings-based groups were compared using the Mantel-Haenszel chi test. Multiple logistic regression models were built to adjust for confounders (i.e., occupant, vehicular, and crash factors). A total of 1,226 cases were distributed within not rated (59%), poor (12%), average (16%), and good (14%) categories. Those rated good and average experienced a lower unadjusted mortality rate. After adjustment by confounders, those in vehicles rated good experienced a lower risk of death (adjusted OR 0.38 [0.16-0.90]) than those in vehicles rated poor. There was no significant effect for "acceptable" rating. Other factors influencing the occurrence of death were age, DeltaV >or=70 km/h, high body mass index, and lack of restraint use. After adjusting for occupant, vehicular, and crash factors, drivers of vehicles rated good by the IIHS experienced a lower risk of death in frontal crashes.
Opportunities for crash and injury reduction: A multiharm approach for crash data analysis.
Mallory, Ann; Kender, Allison; Moorhouse, Kevin
2017-05-29
A multiharm approach for analyzing crash and injury data was developed for the ultimate purpose of getting a richer picture of motor vehicle crash outcomes for identifying research opportunities in crash safety. Methods were illustrated using a retrospective analysis of 69,597 occupant cases from NASS CDS from 2005 to 2015. Occupant cases were analyzed by frequency and severity of outcome: fatality, injury by Abbreviated Injury Scale (AIS), number of cases, attributable fatality, disability, and injury costs. Comparative analysis variables included precrash scenario, impact type, and injured body region. Crash and injury prevention opportunities vary depending on the search parameters. For example, occupants in rear-end crash scenarios were more frequent than in any other precrash configuration, yet there were significantly more fatalities and serious injury cases in control loss, road departure, and opposite direction crashes. Fatality is most frequently associated with head and thorax injury, and disability is primarily associated with extremity injury. Costs attributed to specific body regions are more evenly distributed, dominated by injuries to the head, thorax, and extremities but with contributions from all body regions. Though AIS 3+ can be used as a single measure of harm, an analysis based on multiple measures of harm gives a much more detailed picture of the risk presented by a particular injury or set of crash conditions. The developed methods represent a new approach to crash data mining that is expected to be useful for the identification of research priorities and opportunities for reduction of crashes and injuries. As the pace of crash safety improvement accelerates with innovations in both active and passive safety, these techniques for combining outcome measures for insights beyond fatality and serious injury will be increasingly valuable.
Car Accident Reconstruction and Head Injury Correlation
NASA Astrophysics Data System (ADS)
Chawla, A.; Grover, V.; Mukherjee, S.; Hassan, A. M.
2013-04-01
Estimation of brain damage remains an elusive issue and controlled tests leading to brain damage cannot be carried out on volunteers. This study reconstructs real-world car accidents to estimate the kinematics of the head impact. This data is to be used to estimate the head injury measures through computer simulations and then correlate reported skull as well as brain damage to impact measures; whence validating the head FE model (Willinger, IJCrash 8:605-617, 2003). In this study, two crash cases were reconstructed. Injury correlation was successful in one of these cases in that the injuries to the brain of one of the car drivers could be correlated in terms of type, location and severity when compared with the tolerance limits of relevant injury parameters (Willinger, IJCrash 8:605-617, 2003).
Driver air bag effectiveness by severity of the crash.
Segui-Gomez, M
2000-01-01
OBJECTIVES: This analysis provided effectiveness estimates of the driver-side air bag while controlling for severity of the crash and other potential confounders. METHODS: Data were from the National Automotive Sampling System (1993-1996). Injury severity was described on the basis of the Abbreviated Injury Scale, Injury Severity Score, Functional Capacity Index, and survival. Ordinal, linear, and logistic multivariate regression methods were used. RESULTS: Air bag deployment in frontal or near-frontal crashes decreases the probability of having severe and fatal injuries (e.g., Abbreviated Injury Scale score of 4-6), including those causing a long-lasting high degree of functional limitation. However, air bag deployment in low-severity crashes increases the probability that a driver (particularly a woman) will sustain injuries of Abbreviated Injury Scale level 1 to 3. Air bag deployment exerts a net injurious effect in low-severity crashes and a net protective effect in high-severity crashes. The level of crash severity at which air bags are protective is higher for female than for male drivers. CONCLUSIONS: Air bag improvement should minimize the injuries induced by their deployment. One possibility is to raise their deployment level so that they deploy only in more severe crashes. PMID:11029991
Chen, H Y; Ivers, R Q; Martiniuk, A L C; Boufous, S; Senserrick, T; Woodward, M; Stevenson, M; Norton, R
2010-11-01
Previous studies that found increased crash risks for young drivers of low socioeconomic status (SES) have failed to adjust for factors such as driving exposure and rural residence. This aim of this study is to examine the independent effect of SES on crash risk, adjusting for such factors, and to examine the relationship between injury severity following a crash and SES. Information on risk factors for crash collected from 20,822 newly licenced drivers aged 17-24 years in New South Wales, Australia, as part of the DRIVE Study was prospectively linked to hospitalisation data. SES was classified as high, moderate or low based on the Australia 2001 Socio-Economic Index for Areas. Poisson regression was used to model risk of crash-related hospitalisation by SES, adjusting for confounders. Two measures of injury severity--urgency of treatment and length of hospital stay--were examined by SES. Results of multivariable analysis showed that drivers from low SES areas had increased relative risk (RR 1.8, 95% CI 1.1 to 3.1) of crash-related hospitalisation compared to drivers from high SES areas. This increased risk remained when adjusting for confounders including driving exposure and rurality (RR 1.9, 95% CI 1.1 to 3.2). No significant association was found between injury severity and SES. The higher risk of crash-related hospitalisation for young drivers from low SES areas is independent of driving exposure and rural-urban differences. This finding may help improve and better target interventions for youth of low SES.
Effects of legislative reform to reduce drunken driving and alcohol-related traffic fatalities.
Hingson, R W; Howland, J; Levenson, S
1988-01-01
From 1980 through 1985, considerable progress was made across the Nation in reducing drunken driving and fatal automobile crashes. More than 400 chapters of local citizen groups concerned with reducing drunken driving were formed. New media coverage, measured in number of stories, increased fiftyfold from 1980 to 1984. More than 500 legislative reforms were passed. All States now have adopted a legal drinking age of 21. Many also adopted criminal and administrative per se laws and instituted penalty increases for drunken driving. By 1985, the total number of fatal crashes declined to 39,168, a decrease of 6,116, or 16 percent, from the 1980 level of 45,284. Single-vehicle fatal crashes occurring at night, those most likely to involve alcohol, declined by 20 percent, with 3,674 fewer crashes in 1985 than in 1980. Among teenage drivers, declines in fatal crashes were steeper: Fatal crashes decreased 26 percent, and single-vehicle night fatal crashes were down 34 percent. After 1984, however, the number of new citizen groups established and the number of stories appearing in the media began to decline. In 1986, after decreasing for several years, the number of fatal crashes rose 5 percent, and single-vehicle night fatal crashes rose 7 percent, up 1,060 from 1985. Among teenage drivers, the increase in single-vehicle night fatal crashes was even higher, up 17 percent. In 1987, single-vehicle night fatal crashes declined slightly but still remained higher than in 1983, 1984, or 1985.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3141962
Multilevel analysis of the role of human factors in regional disparities in crash outcomes.
Adanu, Emmanuel Kofi; Smith, Randy; Powell, Lars; Jones, Steven
2017-12-01
A growing body of research has examined the disparities in road traffic safety among population groups and geographic regions. These studies reveal disparities in crash outcomes between people and regions with different socioeconomic characteristics. A critical aspect of the road traffic crash epidemic that has received limited attention is the influence of local characteristics on human elements that increase the risk of getting into a crash. This paper applies multilevel logistic regression modeling techniques to investigate the influence of driver residential factors on driver behaviors in an attempt to explain the area-based differences in the severity of road crashes across the State of Alabama. Specifically, the paper reports the effects of characteristics attributable to drivers and the geographic regions they reside on the likelihood of a crash resulting in serious injuries. Model estimation revealed that driver residence (postal code or region) accounted for about 7.3% of the variability in the probability of a driver getting into a serious injury crash, regardless of driver characteristics. The results also reveal disparities in serious injury crash rate as well as significant proportions of serious injury crashes involving no seatbelt usage, driving under influence (DUI), unemployed drivers, young drivers, distracted driving, and African American drivers among some regions. The average credit scores, average commute times, and populations of driver postal codes are shown to be significant predictors for risk of severe injury crashes. This approach to traffic crash analysis presented can serve as the foundation for evidence-based policies and also guide the implementation of targeted countermeasures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seacrist, Thomas; Douglas, Ethan C; Huang, Elaine; Megariotis, James; Prabahar, Abhiti; Kashem, Abyaad; Elzarka, Ayya; Haber, Leora; MacKinney, Taryn; Loeb, Helen
2018-02-28
Motor vehicle crashes are the leading cause of death among young drivers. Though previous research has focused on crash events, near crashes offer additional data to help identify driver errors that could potentially lead to crashes as well as evasive maneuvers used to avoid them. The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) contains extensive data on real-world driving and offers a reliable methodology to quantify and study near crashes. This article presents findings on near crashes and how they compare to crash events among teen, young adult, and experienced adult drivers. A subset from the SHRP2 database consisting of 1,653 near crashes for teen (16-19 years, n = 550), young adult (20-24 years, n = 748), and experienced adult (35-54 years, n = 591) drivers was used. Onboard instrumentation including scene cameras, accelerometers, and Global Positioning System logged time series data at 10 Hz. Scene videos were reviewed for all events to classify near crashes based on 7 types: rear-end, road departure, intersection, head-on, side-swipe, pedestrian/cyclist, and animal. Near crash rates, incident type, secondary tasks, and evasive maneuvers were compared across age groups and between crashes and near crashes. For rear-end near crashes, vehicle dynamic variables including near crash severity, headway distance, time headway, and time to collision at the time of braking were compared across age groups. Crashes and near crashes were combined to compare the frequency of critical events across age. Teen drivers exhibited a significantly higher (P <.01) near crash rate than young adult and experienced adult drivers. The near crash rates were 81.6, 56.6, and 37.3 near crashes per million miles for teens, young adults, and experienced adults, respectively. Teens were also involved in significantly more rear-end (P <.01), road departure (P <.01), side-swipe (P <.01), and animal (P <.05) near crashes compared to young and experienced adults. Teens exhibited a significantly greater (P <.01) critical event rate of 102.2 critical events per million miles compared to 72.4 and 40.0 critical events per million miles for young adults and experienced adults, respectively; the critical event rate ratio was 2.6 and 1.8 for teens and young adults, respectively. To our knowledge, this is the first study to examine near crashes among teen, young adult, and experienced adult drivers using SHRP2 naturalistic data. Near crash and critical event rates significantly decreased with increasing age and driver experience. Overall, teens were more than twice as likely to be involved in critical events compared to experienced adults. These data can be used to develop more targeted driver training programs and help manufacturers design active safety systems based on the most common driving errors for vulnerable road users.
Potential benefits of underride guards in large truck side crashes.
Brumbelow, Matthew L
2012-01-01
To evaluate the maximum potential for side underride guards (SUGs) to reduce passenger vehicle occupant fatalities and injuries in crashes with large trucks in the United States. Examination of the Large Truck Crash Causation Study (LTCCS) identified 206 crash events involving a passenger vehicle impact with the side of a large truck. Each case was evaluated to determine whether the most severe injury sustained by a passenger vehicle occupant was a result of the impact with the side of the truck and whether an SUG could have reduced the injury severity. Data from the 2006-2008 Fatality Analysis Reporting System (FARS) and Trucks Involved in Fatal Accidents (TIFA) survey were used to compare the types of trucks involved in all fatal side impacts with passenger vehicles with the truck types in the LTCCS cases that were studied. FARS and TIFA data also were used to estimate the total annual number of passenger vehicle occupants killed in truck side impacts. In 143 of the 206 cases, the truck side impact produced the most severe injury sustained by a passenger vehicle occupant. In the other cases, no passenger vehicle occupant was injured or the most severe injury was due to an event preceding or following the truck side impact. Forty-nine of these occupants sustained injuries coded as level 3 or higher on the abbreviated injury scale (AIS) or were killed. SUGs could have reduced injury severity in 76 of the 143 cases, including 38 of the 49 cases with an AIS ≥ 3 coded injury or fatality. Semi-trailers were the most common type of impacted truck unit, both overall and when considering only cases where an SUG could have mitigated injury severity. Crashes where the front of the passenger vehicle struck the side of the semi-trailer perpendicularly or obliquely from the oncoming direction were less common overall than side-to-side and oblique/same direction crashes but more often produced an AIS ≥ 3 injury or fatality. The distribution of truck types in the LTCCS sample was similar to that in the FARS and TIFA data. Overall, around 1600 passenger vehicle occupants were killed in 2-vehicle truck side impact crashes during 2006-2008, or 22 percent of all passenger vehicle occupants who died in 2-vehicle crashes with large trucks. Structural incompatibility was a common factor in LTCCS crashes between passenger vehicles and the sides of large trucks. SUGs could have reduced injury risk in around three fourths of the crashes that produced an AIS ≥ 3 injury or fatality. Most of these crashes involved semi-trailers. However, the necessary strength and location of these SUGs present technical challenges that need to be addressed.
Sleep-deprived young drivers and the risk for crash: the DRIVE prospective cohort study.
Martiniuk, Alexandra L C; Senserrick, Teresa; Lo, Serigne; Williamson, Ann; Du, Wei; Grunstein, Ronald R; Woodward, Mark; Glozier, Nick; Stevenson, Mark; Norton, Robyn; Ivers, Rebecca Q
2013-07-01
Short sleep duration is common in adolescents and young adults, and short sleep duration is a risk factor for motor vehicle crash. To assess the association between hours of sleep and the risk for motor vehicle crash, including the time of day of crash and types of crash (single, multiple vehicle, run off road, and intersection). Prospective cohort study. New South Wales, Australia. Questionnaire responses were obtained from 20,822 newly licensed drivers aged 17 to 24 years. Participants held a first-stage provisional license between June 2003 and December 2004 prospectively linked to licensing and police-reported crash data, with an average of 2 years of follow-up. Analyses were conducted on a subsample of 19,327 participants for which there was full information. Sleeping 6 or fewer hours per night. The main outcome variable was police-reported crash. Multivariable Poisson regression models were used to investigate the role of sleep duration on the risk for crash. On average, those who reported sleeping 6 or fewer hours per night had an increased risk for crash compared with those who reported sleeping more than 6 hours (relative risk [RR], 1.21; 95% CI, 1.04-1.41). Less weekend sleep was significantly associated with an increased risk for run-off-road crashes (RR, 1.55; 95% CI, 1.21-2.00). Crashes for individuals who had less sleep per night (on average and on weekends) were significantly more likely to occur between 8 pm and 6 am (RR, 1.86; 95% CI, 1.11-3.13, for midnight to 5:59 am and RR, 1.66; 95% CI, 1.15-2.39, for 8:00 pm to 11:59 pm). Less sleep per night significantly increased the risk for crash for young drivers. Less sleep on weekend nights increased the risk for run-off-road crashes and crashes occurring in the late-night hours. This provides rationale for governments and health care providers to address sleep-related crashes among young drivers.
Ebel, B E; Mack, C; Diehr, P; Rivara, F P
2004-10-01
In 2001, 6.3 million passengers were involved in motor vehicle crashes. This study aimed to determine the number of work days lost as a result of motor vehicle crashes and factors that influenced people's return to work. This was a retrospective, population based cohort study of occupants in motor vehicles involved in crashes from the 1993-2001 Crashworthiness Data System produced by the National Highway Traffic Safety Administration. The sample population of people aged 18-65 years included two groups: occupants who survived and were working before the crash and occupants who were injured fatally and were estimated to have been working before the crash. Multivariate linear regression was used to analyze the impact of restraint use and injury type on return to work. Overall, 30.1% of occupants of vehicles that crashed missed one or more days of work. A crash resulted in a mean 28.0 (95% confidence interval 15.8 to 40.1) days lost from work, including losses associated with fatalities. The 2.1 million working occupants of vehicles that crashed in 2001 lost a total of 60 million days of work, resulting in annual productivity losses of over $7.5 billion (2964 to 12 075). Unrestrained vehicle occupants accounted for $5.6 billion in lost productivity. Motor vehicle crashes result in large and potentially preventable productive losses that are mostly attributable to fatal injuries.
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
Landscaping of highway medians and roadway safety at unsignalized intersections.
Chen, Hongyun; Fabregas, Aldo; Lin, Pei-Sung
2016-05-01
Well-planted and maintained landscaping can help reduce driving stress, provide better visual quality, and decrease over speeding, thus improving roadway safety. Florida Department of Transportation (FDOT) Standard Index (SI-546) is one of the more demanding standards in the U.S. for landscaping design criteria at highway medians near intersections. The purposes of this study were to (1) empirically evaluate the safety results of SI-546 at unsignalized intersections and (2) quantify the impacts of geometrics, traffic, and landscaping design features on total crashes and injury plus fatal crashes. The studied unsignalized intersections were divided into (1) those without median trees near intersections, (2) those with median trees near intersections that were compliant with SI-546, and (3) those with median trees near intersections that were non-compliant with SI-546. A total of 72 intersections were selected, for which five-year crash data from 2006-2010 were collected. The sites that were compliant with SI-546 showed the best safety performance in terms of the lowest crash counts and crash rates. Four crash predictive models-two for total crashes and two for injury crashes-were developed. The results indicated that improperly planted and maintained median trees near highway intersections can increase the total number of crashes and injury plus fatal crashes at a 90% confidence level; no significant difference could be found in crash rates between sites that were compliant with SI-546 and sites without trees. All other conditions remaining the same, an intersection with trees that was not compliant with SI-546 had 63% more crashes and almost doubled injury plus fatal crashes than those at intersections without trees. The study indicates that appropriate landscaping in highway medians near intersections can be an engineering technology that not only improves roadway environmental quality but also maintains intersection safety. Copyright © 2016. Published by Elsevier Ltd.
Kaplan, Sigal; Prato, Carlo Giacomo
2012-01-01
The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that represents the selection among 5 emergency lateral and speed control maneuvers (i.e., "no avoidance maneuvers," "braking," "steering," "braking and steering," and "other maneuvers) while accommodating correlations across maneuvers and heteroscedasticity. Data for the analysis were retrieved from the General Estimates System (GES) crash database for the year 2009 by considering drivers for which crash avoidance maneuvers are known. The results show that (1) the nature of the critical event that made the crash imminent greatly influences the choice of crash avoidance maneuvers, (2) women and elderly have a relatively lower propensity to conduct crash avoidance maneuvers, (3) drowsiness and fatigue have a greater negative marginal effect on the tendency to engage in crash avoidance maneuvers than alcohol and drug consumption, (4) difficult road conditions increase the propensity to perform crash avoidance maneuvers, and (5) visual obstruction and artificial illumination decrease the probability to carry out crash avoidance maneuvers. The results emphasize the need for public awareness campaigns to promote safe driving style for senior drivers and warning about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing a forgiving infrastructure within a sustainable safety systems, and rethinking in-vehicle collision warning systems. Future research should address the effectiveness of crash avoidance maneuvers and joint modeling of maneuver selection and crash severity.
Conversion of the dominantly ideal perturbations into a tearing mode after a sawtooth crash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igochine, V., E-mail: valentin.igochine@ipp.mpg.de; Gude, A.; Günter, S.
2014-11-15
Forced magnetic reconnection is a topic of common interest in astrophysics, space science, and magnetic fusion research. The tearing mode formation process after sawtooth crashes implies the existence of this type of magnetic reconnection and is investigated in great detail in the ASDEX Upgrade tokamak. The sawtooth crash provides a fast relaxation of the core plasma temperature and can trigger a tearing mode at a neighbouring resonant surface. It is demonstrated for the first time that the sawtooth crash leads to a dominantly ideal kink mode formation at the resonant surface immediately after the sawtooth crash. Local measurements show thatmore » this kink mode transforms into a tearing mode on a much longer timescale (10{sup −3}s−10{sup −2}s) than the sawtooth crash itself (10{sup −4}s). The ideal kink mode formed after the sawtooth crash provides the driving force for magnetic reconnection and its amplitude is one of the critical parameters for the length of the transition phase from a ideal into an resistive mode. Nonlinear two fluid MHD simulations confirm these observations.« less
Durrani, Mohsin; Waseem, Hunniya; Bhatti, Junaid A; Razzak, Junaid A; Naseer, Rizwan
2012-01-01
The study assessed whether traffic safety attitudes and ticket fixing behaviours were associated with the crash history. A total of 4018 male drivers from Lahore city participated in this cross sectional study. Most were aged 18-30 years (58.7%, n = 2362), 71.9% (n = 2887) received a traffic ticket, 66.5% (n = 2672) reported previous traffic ticket fixing and 71.3% (n = 2865) considered crashes as being the will of God. Crash history was reported by 95.4% (n = 3821) of drivers, and 58.2% of them reported being involved in a road traffic crash. The likelihood of reporting a previous crash was higher in those who had received a traffic sign violation ticket [adjusted odds ratio (aOR) = 1.40; 95% confidence interval (95%CI) = 1.15-1.72], were involved in traffic ticket fixing (aOR = 1.28; 95%CI = 1.07-1.53), and considered crashes as will of God (aOR = 1.86; 95% CI = 1.57-2.22). These results suggested the need for improving traffic enforcement monitoring and safety education in Pakistan.
Fatal motorcycle crashes: a growing public health problem in Cambodia
Roehler, Douglas R.; Ear, Chariya; Parker, Erin M.; Sem, Panhavuth; Ballesteros, Michael F.
2015-01-01
This study examines the risk characteristics of fatal motorcycle crashes in Cambodia over a 5-year period (2007–2011). Secondary data analyses were conducted using the Cambodia Road Crash and Victim Information System, the only comprehensive and integrated road crash surveillance system in the country. Researchers from the Centers for Disease Control and Prevention and Handicap International found that (1) males are dying in motorcycle crashes roughly seven times more frequently than females; (2) motorcyclist fatalities increased by about 30% from 2007 to 2011; (3) the motorcyclist death rates per 100,000 population increased from 7.4 to 8.7 deaths from 2007 to 2011; and (4) speed-related crashes and not wearing motorcycle helmet were commonly reported for motorcyclist fatalities at approximately 50% and over 80% through the study years, respectively. Additionally, this study highlights that Cambodia has the highest motorcycle death rate in South-East Asia, far surpassing Thailand, Malaysia, and Myanmar. By recognising the patterns of fatal motorcycle crashes in Cambodia, local road-safety champions and stakeholders can design targeted interventions and preventative measures to improve road safety among motorcyclists. PMID:24499413
Jet Engines - The New Masters of Advanced Flight Control
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2018-05-01
ANTICIPATED UNITED STATES CONGRESS ACT should lead to reversing a neglected duty to the people by supporting FAA induced bill to civilize classified military air combat technology to maximize flight safety of airliners and cargo jet transports, in addition to FAA certifying pilots to master Jet-Engine Steering ("JES") as automatic or pilot recovery when Traditional Aerodynamic-only Flight Control ("TAFC") fails to prevent a crash and other related damages
Detection of insect damage in almonds
NASA Astrophysics Data System (ADS)
Kim, Soowon; Schatzki, Thomas F.
1999-01-01
Pinhole insect damage in natural almonds is very difficult to detect on-line. Further, evidence exists relating insect damage to aflatoxin contamination. Hence, for quality and health reasons, methods to detect and remove such damaged nuts are of great importance in this study, we explored the possibility of using x-ray imaging to detect pinhole damage in almonds by insects. X-ray film images of about 2000 almonds and x-ray linescan images of only 522 pinhole damaged almonds were obtained. The pinhole damaged region appeared slightly darker than non-damaged region in x-ray negative images. A machine recognition algorithm was developed to detect these darker regions. The algorithm used the first order and the second order information to identify the damaged region. To reduce the possibility of false positive results due to germ region in high resolution images, germ detection and removal routines were also included. With film images, the algorithm showed approximately an 81 percent correct recognition ratio with only 1 percent false positives whereas line scan images correctly recognized 65 percent of pinholes with about 9 percent false positives. The algorithms was very fast and efficient requiring only minimal computation time. If implemented on line, theoretical throughput of this recognition system would be 66 nuts/second.
Pigolkin, Yu I; Dubrovin, I A; Sedykh, E P; Mosoyan, A S
2015-01-01
The objective of the present study was to elucidate the specific features of the lesions of the cervical spine in the driver and the front-seat passenger of a modern car after the frontal crash. We made use of the archival materials of forensic medical expertises concerning the traffic accidents carried out in the city of Moscow during the period from 2005 to 2012. The study was focused on the analysis of the character of the fractures of cervical vertebrae in the drivers (n = 55) and the front-seat passengers (n = 85) of a modern motor vehicle involved in a traffic accident. It was shown that the drivers most frequently suffer bending-extension fractures of the cervical vertebrae, with the II-IV vertebrae being especially frequently subject to multiple fractures resulting in the damage to the anterior support column, sometimes to both the anterior and posterior columns, and much rarer to the posterior column. The front-seat passengers also suffer bending-extension fractures. The IV-VI vertebrae are most frequently affected in them with isolated damages to either the anterior or the posterior support column of the neck vertebrae.
1997 Michigan traffic crash facts
DOT National Transportation Integrated Search
1998-05-01
The 1997 traffic fatality count was 1,446, down 3.9 percent from the 1996 figure of 1,505. : Compared with 1996, injuries were down 3.5 percent and total crashes were down 2.2 : percent. These figures translated into a death rate of 1.6 per 100 milli...
2003 Michigan traffic crash facts
DOT National Transportation Integrated Search
2004-05-12
The 2003 traffic fatality count was 1,283, up 0.3 percent from the 2002 figure of 1,279. : Compared with 2002, injuries were down 6.2 percent and total crashes were down 1.0 : percent. These figures translated into a death rate of 1.3 per 100 million...
Jeong, Eunbi; Oh, Cheol; Lee, Seolyoung
2017-07-01
Automated driving systems (ADSs) are expected to prevent traffic accidents caused by driver carelessness on freeways. There is no doubt regarding this safety benefit if all vehicles in the transportation system were equipped with ADSs; however, it is implausible to expect that ADSs will reach 100% market penetration rate (MPR) in the near future. Therefore, the following question arises: 'Can ADSs, which consider only situations in the vicinity of an equipped vehicle, really contribute to a significant reduction in traffic accidents?' To address this issue, the interactions between equipped and unequipped vehicles must be investigated, which is the purpose of this study. This study evaluated traffic safety at different MPRs based on a proposed index to represent the overall rear-end crash risk of the traffic stream. Two approaches were evaluated for adjusting longitudinal vehicle maneuvers: vehicle safety-based maneuvering (VSM), which considers the crash risk of an equipped vehicle and its neighboring vehicles, and traffic safety-based maneuvering (TSM), which considers the overall crash risk in the traffic stream. TSM assumes that traffic operational agencies are able to monitor all the vehicles and to intervene in vehicle maneuvering. An optimization process, which attempts to obtain vehicle maneuvering control parameters to minimize the overall crash risk, is integrated into the proposed evaluation framework. The main purpose of employing the optimization process for vehicle maneuvering in this study is to identify opportunities to improve traffic safety through effective traffic management rather than developing a vehicle control algorithm that can be implemented in practice. The microscopic traffic simulator VISSIM was used to simulate the freeway traffic stream and to conduct systematic evaluations based on the proposed methodology. Both TSM and VSM achieved significant reductions in the potential for rear-end crashes. However, TSM obtained much greater reductions when the MPR was greater than 50%. This study should inspire transportation researchers and engineers to develop effective traffic operations strategies for automated driving environments. Copyright © 2017. Published by Elsevier Ltd.
Durbin, Dennis R
2011-04-01
Despite significant reductions in the number of children killed in motor vehicle crashes over the past decade, crashes continue to be the leading cause of death for children 4 years and older. Therefore, the American Academy of Pediatrics continues to recommend inclusion of child passenger safety anticipatory guidance at every health-supervision visit. This technical report provides a summary of the evidence in support of 5 recommendations for best practices to optimize safety in passenger vehicles for children from birth through adolescence that all pediatricians should know and promote in their routine practice. These recommendations are presented in the revised policy statement on child passenger safety in the form of an algorithm that is intended to facilitate their implementation by pediatricians with their patients and families. The algorithm is designed to cover the majority of situations that pediatricians will encounter in practice. In addition, a summary of evidence on a number of additional issues that affect the safety of children in motor vehicles, including the proper use and installation of child restraints, exposure to air bags, travel in pickup trucks, children left in or around vehicles, and the importance of restraint laws, is provided. Finally, this technical report provides pediatricians with a number of resources for additional information to use when providing anticipatory guidance to families.
Development of a frontal small overlap crashworthiness evaluation test.
Sherwood, Christopher P; Mueller, Becky C; Nolan, Joseph M; Zuby, David S; Lund, Adrian K
2013-01-01
Small overlap frontal crashes are those in which crash forces are applied outboard of the vehicle's longitudinal frame rails. In-depth analyses of crashes indicate that such crashes account for a significant proportion of frontal crashes with seriously injured occupants. The objective of this research was to evaluate possible barrier crash tests that could be used to evaluate the crashworthiness of vehicles across a spectrum of small overlap crash types. Sixteen full-scale vehicle tests were conducted using 3 midsize passenger vehicles in up to 6 different test configurations, including vehicle-to-vehicle and barrier tests. All vehicles were tested at 64 km/h with an instrumented Hybrid III midsize male driver dummy. All test configurations resulted in primary loading of the wheel, suspension system, and hinge pillar. Vehicles underwent substantial lateral movement during the crash, which varied by crash configuration. The occupant compartments had significant intrusion, particularly to the most outboard structures. Inboard movement of the steering wheel in combination with outboard movement of the dummies (due to the lateral vehicle motion) caused limited interaction with the frontal air bag in most cases. When assessing overall crashworthiness (based on injury measures, structural deformation, and occupant kinematics), one vehicle had superior performance in each crash configuration. This was confirmation that the countermeasures benefiting performance in a single small overlap test also will provide a benefit in other crash configurations. Based on these test results, the Insurance Institute for Highway Safety has developed a small overlap crashworthiness evaluation with the following characteristics: a rigid flat barrier with a 150-mm corner radius, 25 percent overlap, 64 km/h test speed, and a Hybrid III midsize male driver dummy.
2011-01-01
Insects carry out essential ecological functions, such as pollination, but also cause extensive damage to agricultural crops and transmit human diseases such as malaria and dengue fever. Advances in insect transgenesis are making it increasingly feasible to engineer genes conferring desirable phenotypes, and gene drive systems are required to spread these genes into wild populations. Medea provides one solution, being able to spread into a population from very low initial frequencies through the action of a maternally-expressed toxin linked to a zygotically-expressed antidote. Several other toxin-antidote combinations are imaginable that distort the offspring ratio in favor of a desired transgene, or drive the population towards an all-male crash. We explore two such systems—Semele, which is capable of spreading a desired transgene into an isolated population in a confined manner; and Merea, which is capable of inducing a local population crash when located on the Z chromosome of a Lepidopteron pest. PMID:21876382
Effects of North Carolina's mandatory safety belt law on children.
Margolis, L. H.; Bracken, J.; Stewart, J. R.
1996-01-01
OBJECTIVES: To assess the effect of the North Carolina law mandating that all front seat passengers use a safety belt on children 4 through 15 years of age. METHODS: North Carolina collision reports, completed by local police or the state highway patrol for crashes with greater than $500 worth of damage, were analyzed using time series analysis on the monthly percentage of deaths and serious injuries between January of 1980 and February of 1994. RESULTS: Following the 1985 implementation of the law, children 4 to 15 years of age experienced a 42% decline in deaths and serious injuries. CONCLUSIONS: The mandatory safety belt law in North Carolina has been associated with a decline in deaths and serious injuries. Additional research in needed to assess the seat belt behaviors of this age group as well as the specific effects of seat belt use using outcome measures more precise than those available in police crash reports. PMID:9346051
Blows, Stephanie; Ivers, Rebecca Q; Connor, Jennie; Ameratunga, Shanthi; Norton, Robyn
2003-01-01
This paper examines the association between periodic motor vehicle inspection and frequent tire pressure checks, and the risk of car crash injury. Data were analysed from the Auckland Car Crash Injury Study, a population-based case-control study in Auckland, NZ, where vehicles are required to undergo six-monthly safety inspections. Cases were all cars involved in crashes in which at least one occupant was hospitalised or killed, which represented 571 drivers. Controls were randomly selected cars on Auckland roads (588 drivers). Participants completed a structured interview. Vehicles that did not have a current certificate of inspection had significantly greater odds of being involved in a crash where someone was injured or killed compared with cars that had a current certificate, after adjustment for age, sex, marijuana use, ethnicity and licence type (OR 3.08, 95% CI 1.87-5.05). Vehicles that had not had their tire pressure checked within the past three months also had significantly greater odds of being involved in a crash compared with those that had a tire pressure check, after adjustment for age, sex, ethnicity, seatbelt use, licence type, self-reported speed and hours per week of driving exposure (OR 1.89, 95% CI 1.16-3.08). This study provides new evidence, using rigorous epidemiological methods and controlling for multiple confounding variables, of an association between periodic vehicle inspections and three-monthly tire pressure checks and reduced risk of car crash injury. This research suggests that vehicle inspection programs should be continued where they already exist and contributes evidence in support of introducing such programs to other areas.
Powered two-wheeler riders' risk of crashes associated with filtering on urban roads.
Clabaux, Nicolas; Fournier, Jean-Yves; Michel, Jean-Emmanuel
2017-02-17
The objective of this study is to estimate the crash risk per kilometer traveled by powered two-wheeler (PTW) riders filtering through traffic on urban roads. Using the traffic injury crashes recorded by the police over a period of 3 years on 14 sections of urban roads in the city of Marseille, France, and a campaign of observations of PTWs, the crash risk per kilometer traveled by PTWs filtering was estimated and compared to the risk of PTWs that did not filter. The results show that the risk of PTW riders being involved in injury crashes while filtering is significantly higher than the risk for riders who do not filter. For the 14 sections studied, it is 3.94 times greater (95% confidence interval [CI], 2.63, 5.89). This excess risk occurred for all PTW categories. Furthermore, no space appears to be safer than the others for filtering. Riders filtering forward along the axis of the carriageway, along bus lanes, or between traffic lanes (lane-splitting) all have a crash risk greater than the risk of those who do not filter. All measures limiting the practice of filtering by PTWs on urban roads would probably contribute to improving the safety of their users.
The nature of the alcohol problem in U.S. fatal crashes.
Fell, J C; Nash, C E
1989-01-01
Alcohol is involved in more than half of all U.S. traffic fatalities. In 1987, an estimated 23,630 people were killed in alcohol-related crashes. Alcohol-related traffic fatalities continue to be the leading cause of death for young people. Alcohol is involved in almost 80% of the fatal crashes that occur between 8 p.m. and 4 a.m. on any night of the week. During the 1980s, alcohol involvement in fatal crashes declined. The proportion of drivers involved in fatal crashes who were intoxicated at the time of the crash decreased 17% from 1982 to 1987. The reduction was especially significant for teenaged drivers, females, surviving drivers, teenaged pedestrians, older drivers, and drivers in daytime crashes. On the other hand, there was little or no change for drivers aged 25-34, motorcycle drivers, pedestrians aged 20 to 64, and drivers in late-night crashes. Reasons for the reduction in alcohol appear to be: (1) increased public awareness of the problem during that time period; (2) tougher laws and better enforcement of existing laws by state and local governments; (3) the raising of the drinking age to 21 in most states; (4) other public and private programs to reduce drinking and driving, and (5) socioeconomic and demographic factors.
Hanna, Christina L; Hasselberg, Marie; Laflamme, Lucie; Möller, Jette
2010-01-14
Young car drivers run a higher risk of road traffic crash and injury not only because of their lack of experience but also because of their young age and their greater propensity for adopting unsafe driving practices. Also, low family socioeconomic position increases the risk of crash and of severe crash in particular. Whether this holds true for young unlicensed drivers as well is not known. Increasing attention is being drawn to the prevalence and practice of unlicensed driving among young people as an important contributor to road traffic fatalities. This is a population-based cohort study linking Swedish national register data for a cohort of 1 616 621 individuals born between 1977 and 1991. Crash circumstances for first-time road traffic crash (RTC) were compared considering licensed and unlicensed drivers. The socioeconomic distribution of injury was assessed considering household socioeconomic position, social welfare benefits, and level of urbanicity of the living area. The main outcome measure is relative risk of RTC. RTCs involving unlicensed drivers were over-represented among male drivers, suspected impaired drivers, severe injuries, crashes occurring in higher speed limit areas, and in fair road conditions. Unlicensed drivers from families in a lower socioeconomic position showed increased relative risks for RTC in the range of 1.75 to 3.25. Those living in rural areas had an increased relative risk for a severe RTC of 3.29 (95% CI 2.47 - 4.39) compared to those living in metropolitan areas. At the time of the crash, young unlicensed drivers display more risky driving practices than their licensed counterparts. Just as licensed drivers, unlicensed young people from low socioeconomic positions are over-represented in the most severe injury crashes. Whether the mechanisms lying behind those similarities compare between these groups remains to be determined.
Redelmeier, Donald A; Naqib, Faisal; Thiruchelvam, Deva; R Barrett, Jon F
2016-09-20
To assess the incidence of cerebral palsy among children born to mothers who had their pregnancy complicated by a motor vehicle crash. Retrospective longitudinal cohort analysis of children born from 1 April 2002 to 31 March 2012 in Ontario, Canada. Cases defined as pregnancies complicated by a motor vehicle crash and controls as remaining pregnancies with no crash. Subsequent diagnosis of cerebral palsy by age 3 years. A total of 1 325 660 newborns were analysed, of whom 7933 were involved in a motor vehicle crash during pregnancy. A total of 2328 were subsequently diagnosed with cerebral palsy, equal to an absolute risk of 1.8 per 1000 newborns. For the entire cohort, motor vehicle crashes correlated with a 29% increased risk of subsequent cerebral palsy that was not statistically significant (95% CI -16 to +110, p=0.274). The increased risk was only significant for those with preterm birth who showed an 89% increased risk of subsequent cerebral palsy associated with a motor vehicle crash (95% CI +7 to +266, p=0.037). No significant increase was apparent for those with a term delivery (95% CI -62 to +79, p=0.510). A propensity score-matched analysis of preterm births (n=4384) yielded a 138% increased relative risk of cerebral palsy associated with a motor vehicle crash (95% CI +27 to +349, p=0.007), equal to an absolute increase of about 10.9 additional cases per 1000 newborns (18.2 vs 7.3, p=0.010). Motor vehicle crashes during pregnancy may be associated with an increased risk of cerebral palsy among the subgroup of cases with preterm birth. The increase highlights a specific role for traffic safety advice in prenatal care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Herman, Gabor T; Chen, Wei
2008-03-01
The goal of Intensity-Modulated Radiation Therapy (IMRT) is to deliver sufficient doses to tumors to kill them, but without causing irreparable damage to critical organs. This requirement can be formulated as a linear feasibility problem. The sequential (i.e., iteratively treating the constraints one after another in a cyclic fashion) algorithm ART3 is known to find a solution to such problems in a finite number of steps, provided that the feasible region is full dimensional. We present a faster algorithm called ART3+. The idea of ART3+ is to avoid unnecessary checks on constraints that are likely to be satisfied. The superior performance of the new algorithm is demonstrated by mathematical experiments inspired by the IMRT application.
Frisch, Larry
2007-03-01
Texas has more fatal crashes involving unlicensed drivers under age 15 than does any other US state. Numbers and rates of such crashes are also above the national mean in many southern and Southwest states. Data on fatal passenger vehicle crashes from 1999 through 2004 were obtained from the online Fatality Analysis Reporting System (FARS). During the study period, there were 51 fatal passenger vehicle crashes in Texas in which drivers were under age 15. These crashes accounted for 12.3% of the US total. Nine southern states, including Texas, together accounted for 44% of all fatal crashes involving drivers under 15. Unlicensed crash rates per million inhabitants were higher in Texas than in other states with comparable populations but were much lower than those in other southern, southwest, and north central states. While Texas has recently improved its compliance with proposed graduated licensing models, state law explicitly prohibits police from stopping drivers based solely on age-related probable cause. This restriction may be a major barrier to effective detection and interdiction of under-age unlicensed driving. Because of the relatively high number of fatal crashes involving drivers under age 15 occurring in Texas, preventive efforts targeted to this state could modestly reduce the national burden of deaths due to very young unlicensed drivers. Expanding these efforts to other southern and southwest states could further reduce numbers and rates of such crashes. Expanded use of graduated licensing and increased public awareness are likely to prove effective tools in this public health effort.
Ahmed, Mohamed M; Franke, Rebecca; Ksaibati, Khaled; Shinstine, Debbie S
2018-08-01
Roadway safety is an integral part of a functioning infrastructure. A major use of the highway system is the transport of goods. The United States has experienced constant growth in the amount of freight transported by truck in the last few years. Wyoming is experiencing a large increase in truck traffic on its local and county roads due to an increase in oil and gas production. This study explores the involvement of heavy trucks in crashes and their significance as a predictor of crash severity and addresses the effect that large truck traffic is having on the safety of roadways for various road classifications. Studies have been done on the factors involved in and the causation of heavy truck crashes, but none address the causation and effect of roadway classifications on truck crashes. Binary Logit Models (BLM) with Bayesian inferences were utilized to classify heavy truck involvement in severe and non-severe crashes using ten years (2002-2011) of historical crash data in the State of Wyoming. From the final main effects model, various interactions proved to be significant in predicting the severity of crashes and varied depending on the roadway classification. The results indicated the odds of a severe crash increase to 2.3 and 4.5 times when a heavy truck is involved on state and interstate highways respectively. The severity of crashes is significantly increased when road conditions were not clear, icy, and during snowy weather conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NACA Researcher Sets up a Test of a New Seat Design
1954-05-21
A researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory prepares for a test of an NACA-designed aircraft seat. The laboratory had undertaken a multi-year investigation into the causes and prevention of fires on low altitude aircraft crashes. The program was expanded in the mid-1950s to include the study of impact on passengers, types of seat restraints, and seat design. The crash impact portion of the program began by purposely wrecking surplus Fairchild C-82 Packet and Piper Cub aircraft into barricades at the end of a test runway at the Ravenna Arsenal, located approximately 40 miles south of the Lewis lab in Cleveland. Instrumented dummies and cameras were installed in the pilot and passenger areas. After determining the different loads and their effects on the passengers, the NACA researchers began designing new types of seats and restraints. The result was an elastic seat that flexed upon impact, absorbing 75 percent of the loads before it slowly recoiled. This photograph shows the seats mounted on a pendulum with a large spring behind the platform to provide the jolt that mimicked the forces of a crash. The seat was constructed without any potentially damaging metal parts and included rubber-like material, an inflated back and arms, and a seat cushion. After the pendulum tests, the researchers compared the flexible seats to the rigid seats during a crash of a transport aircraft. They found the passengers in the rigid seats received 66 percent higher g-forces than the NACA-designed seats.
Gyroplane accidents 1985-2005: epidemiological analysis and pilot factors in 223 events.
Pagán, Brian J; de Voogt, Alex
2008-10-01
Gyroplanes (autogyros) are regarded as a relatively safe and stable type of general-aviation aircraft. The U.S. Federal Aviation Administration categorizes them as sport pilot/light sport aircraft, and reports of gyroplane accidents are included in a publicly available database. We hypothesized that issues related to pilot experience and aircraft maintenance would affect the severity of accidents as indicated by aircraft damage and fatalities. A search of the National Transportation Safety Board database for the period 1985-2005 yielded 223 reports of gyroplane accidents. Information from those reports was compiled and cross-referenced with pilot performance breakdowns and contextual information. The data was then analyzed using the Human Factors Analysis and Classification System. There was a strong effect of pilot experience on crash outcomes; compared to more experienced pilots, crashes involving pilots with less than 40 flight hours in the same make/model gyroplane were five times more likely to involve loss of control, twice as likely to destroy the aircraft, and four times more likely to involve fatalities. On the other hand, crashes involving pilots with more than 40 make/model hours were more likely to be related to perception-based performance breakdown. Maintenance issues were not found to play a significant role in this sample of crashes. The results support the hypothesis that pilot experience is a significant predictor of accident fatality in gyroplanes. Training that is adapted to the experience level of pilots as implemented in new FAA regulations for sport pilot and light sport aircraft (2004) may help to reduce the frequency and seriousness of gyroplane accidents.
Trends and characteristics of animal-vehicle collisions in the United States.
Sullivan, John M
2011-02-01
Since 1990, fatal animal-vehicle collisions (AVCs) in the United States have more than doubled. This paper examines annual AVC trends in the United States over a 19-year period, seasonal and diurnal patterns of AVC risk, the geographic distribution of crash risk by state, and the association between posted speed limit and AVC crash risk in darkness. AVCs were compiled from the Fatality Analysis Reporting System (FARS) and the General Estimates System (GES) for the years 1990-2008 to examine annual crash trends for fatal and nonfatal crashes. Seasonal trends for fatal AVCs were examined with the aggregated FARS dataset; seasonal trends for fatal and nonfatal AVCs were also examined by aggregating four years of Michigan crash data. State-by-state distributions of fatal AVCs were also described with the aggregated FARS dataset. Finally, the relationship between posted speed limit and the odds that a fatal or nonfatal AVC occurred in darkness were examined with logistic regressions using the aggregated FARS and Michigan datasets. Between 1990 and 2008, fatal AVCs increased by 104% and by 1.3 crashes per trillion vehicle miles travelled per year. Although not all AVCs involve deer, daily and seasonal AVC crash trends follow the general activity pattern of deer populations, consistent with prior reports. The odds that a fatal AVC occurred in darkness were also found to increase by 2.3% for each mile-per-hour increase in speed; a similar, albeit smaller, effect was also observed in the aggregated Michigan dataset, among nonfatal crashes. AVCs represent a small but increasing share of crashes in the United States. Seasonal and daily variation in the pattern of AVCs seem to follow variation in deer exposure and ambient light level. Finally, the relative risk that a fatal and nonfatal AVC occurred in darkness is influenced by posted speed limit, suggesting that a driver's limited forward vision at night plays a role in AVCs, as it does in pedestrian collisions. The association between speed limit and crash risk in darkness suggests that AVC risk might be reduced with countermeasures that improve a driver's forward view of the road. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Busch, Arthur M.; Campbell, John A.
1959-01-01
A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Best Practices for Crash Modeling and Simulation
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.
2002-01-01
Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudipta; Deb, Debasis
2016-07-01
Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.
Motorcycle crash characteristics in Nigeria: implication for control.
Oluwadiya, K S; Kolawole, I K; Adegbehingbe, O O; Olasinde, A A; Agodirin, Olaide; Uwaezuoke, S C
2009-03-01
Despite being the second most common cause of road traffic injuries (RTIs) in Nigeria, no study had examined the peculiarities of motorcycle crash site characteristics in Nigeria. We examined and interviewed 363 motorcycle RTI patients in three tertiary hospitals in southwest Nigeria. All the motorcycles are small with capacities between 80 and 125cm3. 68.9% of the patients sustained their injuries while working or going to work and 23.4% on their way to school. 176 (48.5%) of the crashes were with moving vehicles and in 83 (22.3%) cases, either the motorcycle or the other vehicle is moving against the traffic. 37.8% of all crashes occurred at junctions with no roundabout versus 5% at junctions with roundabout. Some risky practices of the patient included carrying more than 2 persons (15.02%), travelling without headlight at night (31.7%) and not wearing helmets (96.5%). This study showed that risky behavior among motorcycle riders, chaotic traffic and road design faults accounted for most of the motorcycle crashes. The implications for the prevention and control of motorcycle injuries were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salajegheh, Nima; Abedrabbo, Nader; Pourboghrat, Farhang
An efficient integration algorithm for continuum damage based elastoplastic constitutive equations is implemented in LS-DYNA. The isotropic damage parameter is defined as the ratio of the damaged surface area over the total cross section area of the representative volume element. This parameter is incorporated into the integration algorithm as an internal variable. The developed damage model is then implemented in the FEM code LS-DYNA as user material subroutine (UMAT). Pure stretch experiments of a hemispherical punch are carried out for copper sheets and the results are compared against the predictions of the implemented damage model. Evaluation of damage parameters ismore » carried out and the optimized values that correctly predicted the failure in the sheet are reported. Prediction of failure in the numerical analysis is performed through element deletion using the critical damage value. The set of failure parameters which accurately predict the failure behavior in copper sheets compared to experimental data is reported as well.« less
Explaining reduction of pedestrian-motor vehicle crashes in Arkhangelsk, Russia, in 2005-2010.
Kudryavtsev, Alexander V; Nilssen, Odd; Lund, Johan; Grjibovski, Andrej M; Ytterstad, Børge
2012-01-01
To explain a reduction in pedestrian-motor vehicle crashes in Arkhangelsk, Russia, in 2005-2010. Retrospective ecological study. For 2005-2010, police data on pedestrian-motor vehicle crashes, traffic violations, and total motor vehicles (MVs) were combined with data on changes in national road traffic legislation and municipal road infrastructure. Negative binomial regression was used to investigate trends in monthly rates of pedestrian-motor vehicle crashes per total MVs and estimate changes in these rates per unit changes in the safety measures. During the 6 years, the police registered 2,565 pedestrian-motor vehicle crashes: 1,597 (62%) outside crosswalks, 766 (30%) on non-signalized crosswalks, and 202 (8%) on signalized crosswalks. Crash rates outside crosswalks and on signalized crosswalks decreased on average by 1.1% per month, whereas the crash rate on non-signalized crosswalks remained unchanged. Numbers of signalized and non-signalized crosswalks increased by 14 and 19%, respectively. Also, 10% of non-signalized crosswalks were combined with speed humps, and 4% with light-reflecting vertical signs. Pedestrian penalties for traffic violations increased 4-fold. Driver penalties for ignoring prohibiting signal and failure to give way to pedestrian on non-signalized crosswalk increased 7- and 8-fold, respectively. The rate of total registered drivers' traffic violations per total MVs decreased on average by 0.3% per month. All studied infrastructure and legislative measures had inverse associations with the rate of crashes outside crosswalks. The rate of crashes on signalized crosswalks showed inverse associations with related monetary penalties. The introduction of infrastructure and legislative measures is the most probable explanation of the reduction of pedestrian-motor vehicle crashes in Arkhangelsk. The overall reduction is due to decreases in rates of crashes outside crosswalks and on signalized crosswalks. No change was observed in the rate of crashes on non-signalized crosswalks.
Peripheral intravenous and central catheter algorithm: a proactive quality initiative.
Wilder, Kerry A; Kuehn, Susan C; Moore, James E
2014-12-01
Peripheral intravenous (PIV) infiltrations causing tissue damage is a global issue surrounded by situations that make vascular access decisions difficult. The purpose of this quality improvement project was to develop an algorithm and assess its effectiveness in reducing PIV infiltrations in neonates. The targeted subjects were all infants in our neonatal intensive care unit (NICU) with a PIV catheter. We completed a retrospective chart review of the electronic medical record to collect 4th quarter 2012 baseline data. Following adoption of the algorithm, we also performed a daily manual count of all PIV catheters in the 1st and 2nd quarters 2013. Daily PIV days were defined as follows: 1 patient with a PIV catheter equals 1 PIV day. An infant with 2 PIV catheters in place was counted as 2 PIV days. Our rate of infiltration or tissue damage was determined by counting the number of events and dividing by the number of PIV days. The rate of infiltration or tissue damage was reported as the number of events per 100 PIV days. The number of infiltrations and PIV catheters was collected from the electronic medical record and also verified manually by daily assessment after adoption of the algorithm. To reduce the rate of PIV infiltrations leading to grade 4 infiltration and tissue damage by at least 30% in the NICU population. Incidence of PIV infiltrations/100 catheter days. The baseline rate for total infiltrations increased slightly from 5.4 to 5.68/100 PIV days (P = .397) for the NICU. We attributed this increase to heightened awareness and better reporting. Grade 4 infiltrations decreased from 2.8 to 0.83/100 PIV catheter days (P = .00021) after the algorithm was implemented. Tissue damage also decreased from 0.68 to 0.3/100 PIV days (P = .11). Statistical analysis used the Fisher exact test and reported as statistically significant at P < .05. Our findings suggest that utilization of our standardized decision pathway was instrumental in providing guidance for problem solving related to vascular access decisions. We feel this contributed to the overall reduction in grade 4 intravenous infiltration and tissue damage rates. Grade 4 infiltration reductions were highly statistically significant (P = .00021).
Creating pedestrian crash scenarios in a driving simulator environment.
Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W
2015-01-01
In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to adjust time to arrival triggers for the pedestrian actions. This article discusses the rationale behind creating the simulator scenarios and some of the procedural considerations for conducting this type of research. Crash analyses can be used to construct test scenarios for driver behavior evaluations using driving simulators. By considering trajectories, roadway, and environmental conditions of real-world crashes, representative virtual scenarios can serve as safe test beds for advanced driver assistance systems. The results of such research can be used to inform pedestrian crash avoidance/mitigation systems by identifying driver error, driver response time, and driver response choice (i.e., steering vs. braking).
Evaluation of US rear underride guard regulation for large trucks using real-world crashes.
Brumbelow, Matthew L; Blanar, Laura
2010-11-01
Current requirements for rear underride guards on large trucks are set by the National Highway Traffic Safety Administration in Federal Motor Vehicle Safety Standards (FMVSS) 223 and 224. The standards have been in place since 1998, but their adequacy has not been evaluated apart from two series of controlled crash tests. The current study used detailed reviews of real-world crashes from the Large Truck Crash Causation Study to assess the ability of guards that comply with certain aspects of the regulation to mitigate passenger vehicle underride. It also evaluated the dangers posed by underride of large trucks that are exempt from guard requirements. For the 115 cases meeting the inclusion criteria, coded data, case narratives, photographs, and measurements were used to examine the interaction between study vehicles. The presence and type of underride guard was determined, and its performance in mitigating underride was categorized. Overall, almost one-half of the passenger vehicles had underride damage classified as severe or catastrophic. These vehicles accounted for 23 of the 28 in which occupants were killed. For the cases involving trailers with underride guards compliant with one or both FMVSS, guard deformation or complete failure was frequent and most commonly due to weak attachments, buckling of the trailer chassis, or bending of the lateral end of the guard under narrow overlap loading. Most of the truck units studied qualified for at least one of the FMVSS exemptions. The two largest groups were trailers with small wheel setbacks and single-unit straight trucks. Dump trucks represented a particularly hazardous category of straight truck. The current study suggests several weaknesses in the rear underride guard regulation. The standard allows too much ground clearance, the quasi-static test conditions allow guard designs that fail in narrow overlap crashes, and certifying guards independent of trailers leads to systems with inadequate attachment and chassis strength. Additionally, the regulation should be expanded to cover a higher percentage of the large truck fleet.
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.
2015-01-01
Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.
Weaver, Ashley A; Loftis, Kathryn L; Stitzel, Joel D
2013-01-01
The lower extremity is the most frequently injured body region and knee-thigh-hip (KTH) injuries account for half of these injuries. Knee bolster air bags (KBABs) have been incorporated in some vehicles to serve as an additional restraint for the occupant's knees and reduce KTH injuries. To investigate the safety benefits of KBABs, similar frontal crashes with opposing KBAB deployment were selected from the Crash Injury Research and Engineering Network (CIREN) database. An 8-point similarity scoring algorithm was used to quantify crash and occupant similarity and select case comparisons. A total of 183 cases without a KBAB were scored for similarity to 9 KBAB cases. These similarity scores were used to select 31 final case comparisons. The effect of KBAB deployment on occupant injury patterns was investigated with a particular focus on KTH injuries. Over half of the occupants exposed to a KBAB sustained no KTH injuries and a reduction in femur fractures was observed in KBAB occupants (P = .036). However, increases in proximal tibia/fibula and foot/ankle fractures were observed in KBAB occupants (P = .022 and .002, respectively). Mildly significant decreases in pelvic fractures and Abbreviated Injury Scale (AIS) 2+ head injuries were observed in the KBAB occupants, supporting the notion that KBABs reduce forward occupant excursion (P = .094 and .055, respectively). Investigation of each case comparison yielded further insight into the reasons for injury pattern differences between cases with opposing KBAB deployment. In addition to KBAB deployment status, differences in occupant factors (age, height, and weight) and crash factors (delta V and belt use) between the cases for a particular comparison could explain variation in injury patterns. The current study presents a preliminary in-depth qualitative and quantitative assessment of KBAB safety benefits. However, further investigation is recommended to provide conclusive evidence of KBAB effectiveness.
Imaging strategy for infants with urinary tract infection: a new algorithm.
Preda, Iulian; Jodal, Ulf; Sixt, Rune; Stokland, Eira; Hansson, Sverker
2011-03-01
We analyzed clinical data for prediction of permanent renal damage in infants with first time urinary tract infection. This population based, prospective, 3-year study included 161 male and 129 female consecutive infants with first time urinary tract infection. Ultrasonography and dimercapto-succinic acid scintigraphy were performed as acute investigations and voiding cystourethrography within 2 months. Late scintigraphy was performed after 1 year in infants with abnormality on the first dimercapto-succinic acid scan or recurrent febrile urinary tract infections. End point was renal damage on the late scan. A total of 270 patients had end point data available, of whom 70 had renal damage and 200 did not. Final kidney status was associated with C-reactive protein, serum creatinine, temperature, leukocyturia, non-Escherichia coli bacteria, anteroposterior diameter on ultrasound and recurrent febrile urinary tract infections. In stepwise multiple regression analysis C-reactive protein, creatinine, leukocyturia, anteroposterior diameter and non-E.coli bacteria were independent predictors of permanent renal damage. C-reactive protein 70 mg/l or greater combined with anteroposterior diameter 10 mm or greater had sensitivity of 87% and specificity of 59% for renal damage. An algorithm for imaging of infants with first time urinary tract infection based on these results would have eliminated 126 acute dimercapto-succinic acid scans compared to our study protocol, while missing 9 patients with permanent renal damage. C-reactive protein can be used as a predictor of permanent renal damage in infants with urinary tract infection and together with anteroposterior diameter serves as a basis for an imaging algorithm. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Rear Seat Occupant Thorax Protection in Near Side Impacts
Bohman, Katarina; Rosén, Erik; Sunnevang, Cecilia; Boström, Ola
2009-01-01
Thoracic side-airbags (SAB) have proven to protect front seat occupants in side impacts. This benefit has not been evaluated for rear seat occupants who are typically small statured. The objective was to analyze field data from rear seat occupants in near side impacts, and evaluate the effect of a SAB in the rear seat, through full scale vehicle tests. A field study using the NASS-CDS database was performed to review rear seat crash characteristics, occupant injuries (Abbreviated Injury Scale 3+, AIS3+) and injury sources. Full scale tests were performed with the side impact dummy SID-IIs at two different crash severities, with and without SAB in a midsize passenger car. Field data showed that of all AIS3+ injured restrained occupants 13 years and older, 59% had AIS3+ thoracic injuries and 38% had AIS3+ head injuries. The thoracic injuries were distributed to lungs (60%), skeletal fractures (38%) and injuries to arteries (1,26%) and heart (0,1%). For AIS3+ injured children, age 4–12, 51% had AIS3+ thoracic injuries and 54% had AIS3+ head injuries. Compared to adults, children sustained less fractures and more lung injuries. The rear side interior was the main injury source regardless of age group. In the full scale tests, the thoracic side-airbag reduced the average rib deflection by 50% and resulted in an AIS3+ injury risk reduction from 36% to 3%. At the higher impact speed, SAB reduced the injury risk from 93% to 24%. The full scale crash tests showed that SAB offer a significant potential for thoracic injury reduction in the crash severities causing the majority of serious injuries in real life crashes. PMID:20184828
The real-world safety potential of connected vehicle technology.
Doecke, Sam; Grant, Alex; Anderson, Robert W G
2015-01-01
This article estimates the safety potential of a current commercially available connected vehicle technology in real-world crashes. Data from the Centre for Automotive Safety Research's at-scene in-depth crash investigations in South Australia were used to simulate the circumstances of real-world crashes. A total of 89 crashes were selected for inclusion in the study. The crashes were selected as representative of the most prevalent crash types for injury or fatal crashes and had potential to be mitigated by connected vehicle technology. The trajectory, speeds, braking, and impact configuration of the selected in-depth cases were replicated in a software package and converted to a file format allowing "replay" of the scenario in real time as input to 2 Cohda Wireless MK2 onboard units. The Cohda Wireless onboard units are a mature connected vehicle technology that has been used in both the German simTD field trial and the U.S. Department of Transport's Safety Pilot project and have been tuned for low false alarm rates when used in the real world. The crash replay was achieved by replacing each of the onboard unit Global Positioning System (GPS) inputs with the simulated data of each of the involved vehicles. The time at which the Cohda Wireless threat detection software issued an elevated warning was used to calculate a new impact speed using 3 different reaction scenarios and 2 levels of braking. It was found that between 37 and 86% of the simulated crashes could be avoided, with highest percentage due a fully autonomous system braking at 0.7 g. The same system also reduced the impact speed relative to the actual crash in all cases. Even when a human reaction time of 1.2 s and moderate braking of 0.4 g was assumed, the impact speed was reduced in 78% of the crashes. Crash types that proved difficult for the threat detection engine were head-on crashes where the approach angle was low and right turn-opposite crashes. These results indicate that connected vehicle technology can be greatly beneficial in real-world crash scenarios and that this benefit would be maximized by having the vehicle intervene autonomously with heavy braking. The crash types that proved difficult for the connected vehicle technology could be better addressed if controller area network (CAN) information is available, such as steering wheel angle, so that driver intent can be inferred sooner. More accurate positioning in the real world (e.g., combining satellite positioning and accelerometer data) would allow the technology to be more effective for near-collinear head-on and rear-end crashes, because the low approach angles that are common in such crashes are currently ignored in order to minimize false alarms due to positioning uncertainty.
A spatial generalized ordered response model to examine highway crash injury severity.
Castro, Marisol; Paleti, Rajesh; Bhat, Chandra R
2013-03-01
This paper proposes a flexible econometric structure for injury severity analysis at the level of individual crashes that recognizes the ordinal nature of injury severity categories, allows unobserved heterogeneity in the effects of contributing factors, as well as accommodates spatial dependencies in the injury severity levels experienced in crashes that occur close to one another in space. The modeling framework is applied to analyze the injury severity sustained in crashes occurring on highway road segments in Austin, Texas. The sample is drawn from the Texas Department of Transportation (TxDOT) crash incident files from 2009 and includes a variety of crash characteristics, highway design attributes, driver and vehicle characteristics, and environmental factors. The results from our analysis underscore the value of our proposed model for data fit purposes as well as to accurately estimate variable effects. The most important determinants of injury severity on highways, according to our results, are (1) whether any vehicle occupant is ejected, (2) whether collision type is head-on, (3) whether any vehicle involved in the crash overturned, (4) whether any vehicle occupant is unrestrained by a seat-belt, and (5) whether a commercial truck is involved. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lam, Lawrence T
2004-09-01
This exploratory study aims to investigate the associations between some environmental factors and the increased risk of motor vehicle crash-related injuries among taxi drivers. Information utilised in the study are obtained from police reports of all road traffic accidents that occurred on the roads between 1996 and 2000 in New South Wales (NSW), Australia. Of the 7923 taxi drivers who involved in crashes, nearly 10% (n = 750) were killed or injured. Results indicate sex, and two environmental factors are significantly associated with an increased risk of crash-related mortality and injury among taxi drivers. The adjusted relative risk of crash-related mortality and injury is increased by 60% for those who work the night shift (OR = 1.59, 95%CI = 1.35-1.88), and by 20% for those who do not carry any passenger on board (OR = 1.20, 95%CI = 1.02-1.41) should these drivers involve in a crash. The increased relative risk of crash-related mortality and injury is nearly 2.5 times for female taxi drivers (OR = 2.30, 95%CI = 1.45-3.65) when compared with their male counterparts. Copyright 2003 Elsevier Ltd.
A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine
NASA Technical Reports Server (NTRS)
Campbell, John A.; Busch, Arthur M.
1959-01-01
A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Recent trends in cyclist fatalities in Australia.
Boufous, Soufiane; Olivier, Jake
2016-08-01
The study examines trends in bicycling fatalities reported to the Australian police between 1991 and 2013. Trends were estimated using Poisson regression modelling. Overall, cycling fatalities decreased by 1.9% annually between 1991 and 2013. However, while deaths following multivehicle crashes decreased at a rate of 2.9% per annum (95% CI -4.0% to -1.8%), deaths from single vehicle crashes increased by 5.8% per annum (95% CI 4.1% to 7.5%). Over the study period, the average age of cyclists who died in single vehicle crashes (45.3 years, 95% CI 41.5 to 49.1) was significantly higher than cyclists who died in multivehicle crashes (36.2 years, 95% CI 34.7 to 37.7). The average age of deceased cyclists increased significantly for both types of crashes. The observed increase in single vehicle crashes need to be closely monitored in Australia and internationally. In-depth studies are needed to investigate the circumstances of fatal single bicycle crashes in order to develop appropriate countermeasures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Compression Strength of Composite Primary Structural Components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Starnes, James H., Jr. (Technical Monitor)
2000-01-01
The focus of research activities under NASA Grant NAG-1-2035 was the response and failure of thin-walled structural components. The research is applicable to the primary load carrying structure of flight vehicles, with particular emphasis on fuselage and wing'structure. Analyses and tests were performed that are applicable to the following structural components an aft pressure bulkhead, or a composite pressure dome, pressure cabin damage containment, and fuselage frames subject to crash-type loads.
All-terrain vehicles (ATVs) on the road: a serious traffic safety and public health concern.
Denning, Gerene; Jennissen, Charles; Harland, Karisa; Ellis, David; Buresh, Christopher
2013-01-01
On-road all-terrain vehicle (ATV) crashes are frequent occurrences that disproportionately impact rural communities. These crashes occur despite most states having laws restricting on-road ATV use. A number of overall risk factors for ATV-related injuries have been identified (e.g., lack of helmet, carrying passengers). However, few studies have determined the relative contribution of these and other factors to on-road crashes and injuries. The objective of our study was to determine whether there were differences between on- and off-road ATV crashes in their demographics and/or mechanisms and outcomes of injuries. Data were derived from our statewide ATV injury surveillance database (2002-2009). Crash location and crash and injury mechanisms were coded using a modification of the Department of Transportation (DOT) coding system. Descriptive analyses and statistical comparisons (chi-square test) of variables were performed. Multivariate logistic regression analysis was used to determine relative risk. 976 records were included in the final analysis, with 38 percent of the injured individuals from on-road crashes. Demographics were similar for crashes at each location, with approximately 80 percent males, 30 percent under the age of 16, and 15 percent passengers. However, females and youths under 16 were over 4 times more likely to be passengers (P ≤ 0.0001), regardless of crash location. Compared to those off-road, on-road crash victims were approximately 10 times more likely to be involved in a vehicle-vehicle collision (P < 0.001), 3 times more likely to have a severe brain injury (P < 0.001), and twice as likely to have suffered major trauma (P < 0.001). Adult operators in on-road crashes were also twice as likely to test positive for alcohol as those off-road (P < 0.05). Helmet use significantly reduced the odds of sustaining a brain injury and on-road victims were only half as likely to be helmeted (P < 0.01). More than 1 in 3 on-road crashes involved a collision with another vehicle, suggesting that ATVs on the road represent a potential traffic safety concern. Of note, helmets were associated with reduced risk for the number and severity of brain injuries, providing further support for the importance of helmet use. Finally, even controlling for helmet use, on-road crash victims suffered more major trauma and severe brain injuries than those off-road. Overall, our data reinforce the importance of laws restricting ATV road use and the need for effective enforcement, as well as the need to increase user education about ATV road-use laws and the dangers of riding on the roads.
Impact of a graduated driver's license law on crashes involving young drivers in New York State.
Cheng, Julius D; Schubmehl, Heidi; Kahn, Steven A; Gestring, Mark L; Sangosanya, Ayodele; Stassen, Nicole A; Bankey, Paul E
2012-08-01
Motor vehicle crashes constitute the greatest risk of injury for young adults. Graduated driver licensing (GDL) laws have been used to reduce the number of injuries and deaths in the young driver population. The New York State GDL law increased supervision of young driver and limited both time-of-day driven and number of passengers. This review examines the impact of a GDL enacted in New York in September 2003. A retrospective review of New York State administrative databases from 2001 to 2009 was performed. During this period, a state-wide GDL requirement was implemented. Database review included all reported crashes to the New York State Department of Motor Vehicles by cause and driver age as well as motor fuel tax receipts by the New York State Comptroller's Office. Motor fuel tax receipts and consumption information were used as a proxy for overall miles driven. Before 2003, drivers younger than 18 years were involved in 90 fatal crashes and 10,406 personal-injury (PI) crashes, constituting 4.49% and 3.38% of all fatal and PI crashes in New York State, respectively. By 2009, the number of fatal and PI crashes involving drivers who are younger than 18 years decreased to 44 (2.87%) and 5,246 (2.24%), respectively. Of note, the number of crashes experienced by the age group 18 years to 20 years during this period also declined, from 192 (9.59% of all fatal crashes) and 25,407 (8.24% of all PI crashes) to 135 (8.81%) and 18,114 (7.73%), respectively. Overall numbers of crashes reported remained relatively stable, between 549,000 in 2001 and 520,000 in 2009. Motor fuel use during this period also declined, but to a lesser degree ($552 million to $516 million or 6.6%). The use of a GDL law in New York State has shown a large decrease in the number of fatalities and PI crashes involving young drivers. The delay in full driver privileges from the GDL did not result in an increase in fatal or PI crashes in the next older age group.
Koopmans, Joy M; Friedman, Lee; Kwon, Soyang; Sheehan, Karen
2015-04-01
Describe age-based urban pedestrian versus auto crash characteristics and identify crash characteristics associated with injury severity. Secondary analysis of the 2004-2010 National Highway and Traffic Safety Administration database for Illinois. All persons in Chicago crashes with age data who were listed as pedestrians (n=7175 child age ≤19 yo, n=16,398 adult age ≥20 yo) were included. Incidence and crash characteristics were analyzed by age groups and year. Main outcome measures were incidence, crash setting, and injury severity. Multivariate logistic regression analysis was performed to estimate injury severity by crash characteristics. Overall incidence was higher for child (146.6 per 100,000) versus adult (117.3 per 100,000) pedestrians but case fatality rate was lower (0.7% for children, 1.7% for adults). Child but not adult pedestrian injury incidence declined over time (trend test p<0.0001 for <5 yo, 5-9 yo, and 10-14 yo; p<0.05 for 15-19 yo, p=0.96 for ≥20 yo). Most crashes for both children and adults took place during optimal driving conditions. Injuries were more frequent during warmer months for younger age groups compared to older (χ(2)p<0.001). Midblock crashes increased as age decreased (p<0.0001 for trend). Most crashes occurred at sites with sub-optimal traffic controls but varied by age (p<0.0001 for trend). Crashes were more likely to be during daylight on dry roads in clear weather conditions for younger age groups compared to older (χ(2)p<0.001). Daylight was associated with less severe injury (child OR 0.93, 95% CI 0.87-0.98; adult OR 0.90, 95% CI 0.87-0.93). The incidence of urban pedestrian crashes declined over time for child subgroups but not for adults. The setting of pedestrian crashes in Chicago today varies by age but is similar to that seen in other urban locales previously. Injuries for all age groups tend to be less severe during daylight conditions. Age-based prevention efforts may prove beneficial. Copyright © 2015 Elsevier Ltd. All rights reserved.
Final Environmental Assessment: Proposed Fire Crash Rescue Station, Hill Air Force Base, Utah
2008-10-02
storage shed (Building 16) would be demolished and converted to parking ( see Figure 1 for the approximate locations). 1.3 Need for the Action The...existing facilities ( see Section 2.3.3.1), and other potential locations for siting the proposed fire crash rescue station ( see Section 2.3.3.2). 2.3...during scoping meetings, but eliminated from detailed consideration ( see Section 1.7.3) include: • geology and surface soils (seismicity, topography
Validation of the 'full reconnection model' of the sawtooth instability in KSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Y. B.; Ko, J. S.; Choe, G. H.
In this paper, the central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the 'full reconnection model'. The radial position of the excited modes right after the crash and time evolution into themore » 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Finally, additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the 'full reconnection model'.« less
Validation of the 'full reconnection model' of the sawtooth instability in KSTAR
Nam, Y. B.; Ko, J. S.; Choe, G. H.; ...
2018-03-26
In this paper, the central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the 'full reconnection model'. The radial position of the excited modes right after the crash and time evolution into themore » 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Finally, additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the 'full reconnection model'.« less
NASA Astrophysics Data System (ADS)
Shi, Binkai; Qiao, Pizhong
2018-03-01
Vibration-based nondestructive testing is an area of growing interest and worthy of exploring new and innovative approaches. The displacement mode shape is often chosen to identify damage due to its local detailed characteristic and less sensitivity to surrounding noise. Requirement for baseline mode shape in most vibration-based damage identification limits application of such a strategy. In this study, a new surface fractal dimension called edge perimeter dimension (EPD) is formulated, from which an EPD-based window dimension locus (EPD-WDL) algorithm for irregularity or damage identification of plate-type structures is established. An analytical notch-type damage model of simply-supported plates is proposed to evaluate notch effect on plate vibration performance; while a sub-domain of notch cases with less effect is selected to investigate robustness of the proposed damage identification algorithm. Then, fundamental aspects of EPD-WDL algorithm in term of notch localization, notch quantification, and noise immunity are assessed. A mathematical solution called isomorphism is implemented to remove false peaks caused by inflexions of mode shapes when applying the EPD-WDL algorithm to higher mode shapes. The effectiveness and practicability of the EPD-WDL algorithm are demonstrated by an experimental procedure on damage identification of an artificially-induced notched aluminum cantilever plate using a measurement system of piezoelectric lead-zirconate (PZT) actuator and scanning laser Doppler vibrometer (SLDV). As demonstrated in both the analytical and experimental evaluations, the new surface fractal dimension technique developed is capable of effectively identifying damage in plate-type structures.
Safety performance functions incorporating design consistency variables.
Montella, Alfonso; Imbriani, Lella Liana
2015-01-01
Highway design which ensures that successive elements are coordinated in such a way as to produce harmonious and homogeneous driver performances along the road is considered consistent and safe. On the other hand, an alignment which requires drivers to handle high speed gradients and does not meet drivers' expectancy is considered inconsistent and produces higher crash frequency. To increase the usefulness and the reliability of existing safety performance functions and contribute to solve inconsistencies of existing highways as well as inconsistencies arising in the design phase, we developed safety performance functions for rural motorways that incorporate design consistency measures. Since the design consistency variables were used only for curves, two different sets of models were fitted for tangents and curves. Models for the following crash characteristics were fitted: total, single-vehicle run-off-the-road, other single vehicle, multi vehicle, daytime, nighttime, non-rainy weather, rainy weather, dry pavement, wet pavement, property damage only, slight injury, and severe injury (including fatal). The design consistency parameters in this study are based on operating speed models developed through an instrumented vehicle equipped with a GPS continuous speed tracking from a field experiment conducted on the same motorway where the safety performance functions were fitted (motorway A16 in Italy). Study results show that geometric design consistency has a significant effect on safety of rural motorways. Previous studies on the relationship between geometric design consistency and crash frequency focused on two-lane rural highways since these highways have the higher crash rates and are generally characterized by considerable inconsistencies. Our study clearly highlights that the achievement of proper geometric design consistency is a key design element also on motorways because of the safety consequences of design inconsistencies. The design consistency measures which are significant explanatory variables of the safety performance functions developed in this study are: (1) consistency in driving dynamics, i.e., difference between side friction assumed with respect to the design speed and side friction demanded at the 85th percentile speed; (2) operating speed consistency, i.e., absolute value of the 85th percentile speed reduction through successive elements of the road; (3) inertial speed consistency, i.e., difference between the operating speed in the curve and the average operating speed along the 5 km preceding the beginning of the curve; and (4) length of tangent preceding the curve (only for run-off-the-road crashes). Copyright © 2014 Elsevier Ltd. All rights reserved.
Oginni, Fadekemi O; Ugboko, Vincent I; Adewole, Richard A
2007-06-01
This study was designed to evaluate the knowledge, attitude, and practice of some commercial motorcyclists in Nigeria in the use of crash helmet and other cycling safety measures. At randomly selected commercial motorcycle parks from two South Western Nigerian locations (Lagos and Ile-Ife), we obtained verbal consent from commercial motorcyclists (randomly selected) and thereafter administered structured questionnaires to consenting motorcyclists. The questionnaire sought to know the respondents' biodata (age, gender, and educational attainment inclusive), cycling background, and experience (trainer, duration of training and cycling, and history of crashes). Furthermore, risk factors and practices like alcoholism, maintenance history of the motorcycle, maximum number of pillion passengers carried, and use of crash helmet were elicited. Respondents' knowledge of available safety measures was also investigated. Data was entered into an IBM compatible computer and analyzed using the SPSS 11.0 statistical software. Statistical significance was inferred at p value<0.05. There were 224 male respondents aged 15-58 years. Their peak age was 25-29 years and mean 35.1+/-8.9 years; 8.4% had no formal education; 10.3% received formal training but the majority were either trained by self (35.5%) or an acquaintance (34.6%). Training lasted
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.
Off-Road Vehicle Crash Risk during the Six Months after a Birthday
Woodfine, Jason D.; Thiruchelvam, Deva; Redelmeier, Donald A.
2016-01-01
Background Off-road vehicles are popular and thrilling for youth outside urban settings, yet sometimes result in a serious crash that requires emergency medical care. The relation between birthdays and the subsequent risk of an off-road vehicle crash is unknown. Methods We conducted a population-based before-and-after longitudinal analysis of youth who received emergency medical care in Ontario, Canada, due to an off-road vehicle crash between April 1, 2002, and March 31, 2014. We identified youth injured in an off-road vehicle crash through population-based health-care databases of individuals treated for medical emergencies. We included youth aged 19 years or younger, distinguishing juniors (age ≤ 15 years) from juveniles (age ≥ 16 years). Results A total 32,777 youths accounted for 35,202 emergencies due to off-road vehicle crashes within six months of their nearest birthday. Comparing the six months following a birthday to the six months prior to a birthday, crashes increased by about 2.7 events per 1000 juniors (18.3 vs 21.0, p < 0.0001). The difference equaled a 15% increase in relative risk (95% confidence interval 12 to 18). The increase extended for months following a birthday, was not observed for traffic crashes due to on-road vehicles, and was partially explained by a lack of helmet wearing. As expected, off-road crash risks did not change significantly following a birthday among juveniles (19.2 vs 19.8, p = 0.61). Conclusions Off-road vehicle crashes leading to emergency medical care increase following a birthday in youth below age 16 years. An awareness of this association might inform public health messages, gift-giving practices, age-related parental permissions, and prevention by primary care physicians. PMID:27695070
Herman, Josephine; Kafoa, Berlin; Wainiqolo, Iris; Robinson, Elizabeth; McCaig, Eddie; Connor, Jennie; Jackson, Rod; Ameratunga, Shanthi
2014-03-01
Published studies investigating the role of driver sleepiness in road crashes in low and middle-income countries have largely focused on heavy vehicles. We investigated the contribution of driver sleepiness to four-wheel motor vehicle crashes in Fiji, a middle-income Pacific Island country. The population-based case control study included 131 motor vehicles involved in crashes where at least one person died or was hospitalised (cases) and 752 motor vehicles identified in roadside surveys (controls). An interviewer-administered questionnaire completed by drivers or proxies collected information on potential risks for crashes including sleepiness while driving, and factors that may influence the quantity or quality of sleep. Following adjustment for confounders, there was an almost six-fold increase in the odds of injury-involved crashes for vehicles driven by people who were not fully alert or sleepy (OR 5.7, 95%CI: 2.7, 12.3), or those who reported less than 6 h of sleep during the previous 24 h (OR 5.9, 95%CI: 1.7, 20.9). The population attributable risk for crashes associated with driving while not fully alert or sleepy was 34%, and driving after less than 6 h sleep in the previous 24 h was 9%. Driving by people reporting symptoms suggestive of obstructive sleep apnoea was not significantly associated with crash risk. Driver sleepiness is an important contributor to injury-involved four-wheel motor vehicle crashes in Fiji, highlighting the need for evidence-based strategies to address this poorly characterised risk factor for car crashes in less resourced settings. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cannabis and crash responsibility while driving below the alcohol per se legal limit.
Romano, Eduardo; Voas, Robert B; Camp, Bayliss
2017-11-01
There is a growing interest in how extensively the use of marijuana by drivers relates to crash involvement. While cognitive, lab-based studies are consistent in showing that the use of cannabis impairs driving tasks, epidemiological, field-based studies have been inconclusive regarding whether cannabis use causes an increased risk of accidents. There is ample evidence that the presence of cannabis among drivers with a BAC≥0.08g/dL highly increases the likelihood of a motor vehicle crash. Less clear, however, is the contribution of cannabis to crash risk when drivers have consumed very little or no alcohol. This effort addresses this gap in knowledge. We took advantage of a unique database that merged fatal crashes in the California Statewide Integrated Traffic Records System (SWITRS) and the Fatality Analysis Reporting System (FARS), which allows for a precise identification of crash responsibility. To account for recent increase in lab testing, we restricted our sample to cover only the years 1993-2009. A total of 4294 drivers were included in the analyses. Descriptive analyses and logistic regressions were run to model the contribution of alcohol and drugs to the likelihood of being responsible in a fatal crash. We found evidence that compared with drivers negative for alcohol and cannabis, the presence of cannabis elevates crash responsibility in fatal crashes among drivers at zero BACs (OR=1.89) and with 0
Risk of injurious road traffic crash after prescription of antidepressants.
Orriols, Ludivine; Queinec, Raphaëlle; Philip, Pierre; Gadegbeku, Blandine; Delorme, Bernard; Moore, Nicholas; Suissa, Samy; Lagarde, Emmanuel
2012-08-01
To estimate the risk of road traffic crash associated with prescription of antidepressants. Data were extracted and matched from 3 French national databases: the national health care insurance database, police reports, and the national police database of injurious crashes. A case-control analysis comparing 34,896 responsible versus 37,789 nonresponsible drivers was conducted. Case-crossover analysis was performed to investigate the acute effect of medicine exposure. 72,685 drivers, identified by their national health care number, involved in an injurious crash in France from July 2005 to May 2008 were included. 2,936 drivers (4.0%) were exposed to at least 1 antidepressant on the day of the crash. The results showed a significant association between the risk of being responsible for a crash and prescription of antidepressants (odds ratio [OR] = 1.34; 95% CI, 1.22-1.47). The case-crossover analysis showed no association with treatment prescription, but the risk of road traffic crash increased after an initiation of antidepressant treatment (OR = 1.49; 95% CI, 1.24-1.79) and after a change in antidepressant treatment (OR = 1.32; 95% CI, 1.09-1.60). Patients and prescribers should be warned about the risk of crash during periods of treatment with antidepressant medication and about particularly high vulnerability periods such as those when a treatment is initiated or modified. © Copyright 2012 Physicians Postgraduate Press, Inc.
Helicopter emergency medical services accident rates in different international air rescue systems
Hinkelbein, J; Schwalbe, M; Genzwuerker, HV
2010-01-01
Aim Each year approximately two to four helicopter emergency medical services (HEMS) crashes occur in Germany. The aim of the present study was to compare crash rates and fatal crash rates in Germany to rates in other countries. Materials and methods A MEDLINE search from 1970 to 2009 was performed using combinations of the keywords “HEMS”, “rescue helicopter”, “accident”, “accident rate”, “crash”, and “crash rate”. The search was supplemented by additional published data. Data were compared on the basis of 10,000 missions and 100,000 helicopter flying hours. These data were allocated to specific time frames for analyis. Results Eleven relevant studies were identified. Five studies (three from Germany, one from the US, one from Australia) analyzing HEMS accidents on the basis of 10,000 missions were identified. Crash rates per 10,000 missions ranged between 0.4 and 3.05 and fatal crash rates between 0.04 and 2.12. In addition, nine studies (six from the US, two from Germany, one from Australia) used 100,000 flying hours as a denominator. Here, crash rates ranged between 1.7 and 13.4 and fatal crash rates between 0.91 and 4.7. Conclusions Data and accident rates were inhomogeneous and differed significantly. Data analysis was impeded by publication of mean data, use of different time frames, and differences in HEMS systems. PMID:27147837
Née, Mélanie; Lagarde, Emmanuel; Schooler, Jonathan; Contrand, Benjamin; Orriols, Ludivine; Galera, Cédric
2017-01-01
The role of distractions on attentional lapses that place road users in higher risk of crash remains poorly understood. We aimed to assess the respective impact of (i) mind wandering trait (propensity to mind wander in the everyday life as measured with a set of 4 questions on the proportion of time spent mind wandering in 4 different situations) and (ii) mind wandering state (disturbing thoughts just before the crash) on road crash risk using a comparison between responsible and non-responsible drivers. 954 drivers injured in a road crash were interviewed at the adult emergency department of the Bordeaux university hospital in France (2013–2015). Responsibility for the crash, mind wandering (trait/state), external distraction, alcohol use, psychotropic drug use, and sleep deprivation were evaluated. Based on questionnaire reports, 39% of respondents were classified with a mind wandering trait and 13% reported a disturbing thought just before the crash. While strongly correlated, mind wandering state and trait were independently associated with responsibility for a traffic crash (State: OR = 2.51, 95% CI: 1.64–3.83 and Trait: OR = 1.62, 95% CI: 1.22–2.16 respectively). Self-report of distracting thoughts therefore did not capture the entire risk associated with the propensity of the mind to wander, either because of under-reported thoughts and/or other deleterious mechanisms to be further explored. PMID:28771623
Gil-Jardiné, Cédric; Née, Mélanie; Lagarde, Emmanuel; Schooler, Jonathan; Contrand, Benjamin; Orriols, Ludivine; Galera, Cédric
2017-01-01
The role of distractions on attentional lapses that place road users in higher risk of crash remains poorly understood. We aimed to assess the respective impact of (i) mind wandering trait (propensity to mind wander in the everyday life as measured with a set of 4 questions on the proportion of time spent mind wandering in 4 different situations) and (ii) mind wandering state (disturbing thoughts just before the crash) on road crash risk using a comparison between responsible and non-responsible drivers. 954 drivers injured in a road crash were interviewed at the adult emergency department of the Bordeaux university hospital in France (2013-2015). Responsibility for the crash, mind wandering (trait/state), external distraction, alcohol use, psychotropic drug use, and sleep deprivation were evaluated. Based on questionnaire reports, 39% of respondents were classified with a mind wandering trait and 13% reported a disturbing thought just before the crash. While strongly correlated, mind wandering state and trait were independently associated with responsibility for a traffic crash (State: OR = 2.51, 95% CI: 1.64-3.83 and Trait: OR = 1.62, 95% CI: 1.22-2.16 respectively). Self-report of distracting thoughts therefore did not capture the entire risk associated with the propensity of the mind to wander, either because of under-reported thoughts and/or other deleterious mechanisms to be further explored.
Another look at the safety effects of horizontal curvature on rural two-lane highways.
Saleem, Taha; Persaud, Bhagwant
2017-09-01
Crash Modification Factors (CMFs) are used to represent the effects on crashes of changes to highway design elements and are usually obtained from observational studies based on reported crashes. The design element of interest for this paper is horizontal curvature on rural 2-lane highways. The data for this study came from the Washington State database in the Highway Safety Information System (HSIS). Crash prediction models are developed for curve sections on rural 2-lane highway and the tangent sections up- and down-stream of the curve sections. Different negative binomial models were developed for segments on level grades (<3%), moderate grades (3-6%), and steep grades (>6%) to account for the confounding effects of gradient. The relationships between crashes at different traffic volumes and deflection angles are explored to illustrate how to get estimates of CMFs for increases in the minimum radius, considering the effect of increased tangent length for sharper curves, an effect that is overlooked in the Highway Safety Manual CMF, in addition to the effect of gradient. The results of that exploration indicated that even at different design speeds and deflection angles, the CMF estimates for incremental increases in radius lie within the same range, and that the crash reduction rate (CRR) is higher at segments on higher grades compared to the ones on lower grades. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bakhtiyari, Mahmood; Delpisheh, Ali; Monfared, Ayad Bahadori; Kazemi-Galougahi, Mohammad Hassan; Mehmandar, Mohammad Reza; Riahi, Mohammad; Salehi, Masoud; Mansournia, Mohammad Ali
2015-01-01
Traffic crashes are multifactorial events caused by human factors, technical issues, and environmental conditions. The present study aimed to determine the role of human factors in traffic crashes in Iran using the proportional odds regression model. The database of all traffic crashes in Iran in 2010 (n = 592, 168) registered through the "COM.114" police forms was investigated. Human risk factors leading to traffic crashes were determined and the odds ratio (OR) of each risk factor was estimated using an ordinal regression model and adjusted for potential confounding factors such as age, gender, and lighting status within and outside of cities. The drivers' mean age ± standard deviation was 34.1 ± 14.0 years. The most prevalent risk factors leading to death within cities were disregarding traffic rules and regulations (45%), driver rushing (31%), and alcohol consumption (12.3%). Using the proportional odds regression model, alcohol consumption was the most significant human risk factor in traffic crashes within cities (OR = 6.5, 95% confidence interval [CI], 4.88-8.65) and outside of cities (OR = 1.73, 95% CI, 1.22-3.29). Public health strategies and preventive policies should be focused on more common human risk factors such as disregarding traffic rules and regulations, drivers' rushing, and alcohol consumption due to their greater population attributable fraction and more intuitive impacts on society.
Alcohol and highway safety : behavioral and medical aspects
DOT National Transportation Integrated Search
1971-09-01
Drivers involved in fatal and serious injury highway crashes were compared with drivers: (1) using the same roads at similar times, but without crash involvement (2) with recent drunken driving arrests; (3) with arrests for other serious traffic viol...
Alcohol and highway safety : behavioral and medical aspects
DOT National Transportation Integrated Search
1971-09-01
Author's abstract: Drivers involved in fatal and serious injury highway crashes were compared with drivers: (1) using the same roads at similar times, but without crash involvement (2) with recent drunken driving arrests; (3) with arrests for other s...
Fitzharris, Michael; Franklyn, Melanie; Frampton, Richard; Yang, King; Morris, Andrew; Fildes, Brian
2004-09-01
Using in-depth, real-world motor vehicle crash data from the United States and the United Kingdom, we aimed to assess the incidence and risk factors associated with thoracic aorta injuries. De-identified National Automotive Sampling System Crashworthiness Data System (U.S.) and Co-operative Crash Injury Study (U.K.) data formed the basis of this retrospective analysis. Logistic regression was used to assess the level of risk of thoracic aorta injury associated with impact direction, seat belt use and, given the asymmetry of the thoracic cavity, whether being struck toward the left side of the body was associated with increased risk in side-impact crashes. A total of 13,436 U.S. and 3,756 U.K. drivers and front seat passengers were analyzed. The incidence of thoracic aorta injury in the U.S. and U.K. samples was 1.5% (n = 197) and 1.9% (n = 70), respectively. The risk was higher for occupants seated on the side closest to the impact than for occupants involved in frontal impact crashes. This was the case irrespective of whether the force was applied toward the left (belted: relative risk [RR], 4.6; 95% confidence interval [CI], 2.9-7.1; p < 0.001) or the right side (belted: RR, 2.6; 95% CI, 1.4-5.1; p < 0.004) of the occupant's body. For occupants involved in side-impact crashes, there was no difference in the risk of thoracic aorta injury whether the impacting force was applied toward the left or toward the right side of the occupant's body. Seat belt use provided a protective benefit such that the risk of thoracic aorta injury among unbelted occupants was three times higher than among belted occupants (RR, 3.0; 95% CI, 2.2-4.3; p < 0.001); however, the benefit varied across impact direction. Thoracic aorta injuries were found to be associated with high impact severity, and being struck by a sports utility vehicle relative to a passenger vehicle (RR, 1.7; 95% CI, 1.2-2.3; p = 0.001). Aortic injuries have been conventionally associated with frontal impacts. However, emergency clinicians should be aware that occupants of side-impact crashes are at greater risk, particularly if the occupant was unbelted and involved in a crash of high impact severity.
Heavy Vehicle Crash Characteristics in Oman 2009–2011
Al-Bulushi, Islam; Edwards, Jason; Davey, Jeremy; Armstrong, Kerry; Al-Reesi, Hamed; Al-Shamsi, Khalid
2015-01-01
In recent years, Oman has seen a shift in the burden of diseases towards road accidents. The main objective of this paper, therefore, is to describe key characteristics of heavy vehicle crashes in Oman and identify the key driving behaviours that influence fatality risks. Crash data from January 2009 to December 2011 were examined and it was found that, of the 22,543 traffic accidents that occurred within this timeframe, 3,114 involved heavy vehicles. While the majority of these crashes were attributed to driver behaviours, a small proportion was attributed to other factors. The results of the study indicate that there is a need for a more thorough crash investigation process in Oman. Future research should explore the reporting processes used by the Royal Oman Police, cultural influences on heavy vehicle operations in Oman and improvements to the current licensing system. PMID:26052451
Zhang, Meng; Khattak, Asad J; Liu, Jun; Clarke, David
2018-08-01
Rail-trespassing crashes that involve various levels of injuries to pedestrians are under-researched. Rail trespassing could occur at crossings where pedestrians are present at the wrong time and at non-crossings where pedestrians are not legally allowed to be present. This paper presents a comparative study examining rail-trespassing crashes in two contexts: highway-rail grade crossings vs. non-crossings. How pre-crash trespassing behaviors and other factors (e.g., crash time, locations, and socio-demographics) differ between grade crossings and non-crossings are explored. The analysis relies on a ten-year (2006-2015) database of rail-pedestrian trespassing crash records extracted from a Federal Railroad Administration safety database. Of these 7157 rail-pedestrian trespassing crashes, 6236 (87%) occurred at non-crossings, while 921 (13%) occurred at grade crossings. About 60% of the crashes were fatal at both crossings and non-crossings. The most prevalent pre-crash trespassing behavior is running or walking, 63% at grade crossings and 44% at non-crossings. Lying or sleeping account for 29% of non-crossing crashes, whereas they are 3.6% at grade crossings. A unique aspect of the study is that a diverse set of variables based on geographic variations across counties along with crash or injury data are modeled. Considering the data structure and heterogeneity that may exist due to unobserved factors, the multilevel mixed-effect ordered logistic regressions models are estimated. The results show that the correlates of injury severity differ across highway-rail grade crossings and non-crossings. For example, lying or sleeping on or near tracks contributed to higher chances of fatal injury in both contexts, however, they were relatively more injurious at grade crossings. The analytical results can provide guidance on railway safety improvement plans. Copyright © 2018. Published by Elsevier Ltd.
Changes in crash risk following re-timing of traffic signal change intervals.
Retting, Richard A; Chapline, Janella F; Williams, Allan F
2002-03-01
More than I million motor vehicle crashes occur annually at signalized intersections in the USA. The principal method used to prevent crashes associated with routine changes in signal indications is employment of a traffic signal change interval--a brief yellow and all-red period that follows the green indication. No universal practice exists for selecting the duration of change intervals, and little is known about the influence of the duration of the change interval on crash risk. The purpose of this study was to estimate potential crash effects of modifying the duration of traffic signal change intervals to conform with values associated with a proposed recommended practice published by the Institute of Transportation Engineers. A sample of 122 intersections was identified and randomly assigned to experimental and control groups. Of 51 eligible experimental sites, 40 (78%) needed signal timing changes. For the 3-year period following implementation of signal timing changes, there was an 8% reduction in reportable crashes at experimental sites relative to those occurring at control sites (P = 0.08). For injury crashes, a 12% reduction at experimental sites relative to those occurring at control sites was found (P = 0.03). Pedestrian and bicycle crashes at experimental sites decreased 37% (P = 0.03) relative to controls. Given these results and the relatively low cost of re-timing traffic signals, modifying the duration of traffic signal change intervals to conform with values associated with the Institute of Transportation Engineers' proposed recommended practice should be strongly considered by transportation agencies to reduce the frequency of urban motor vehicle crashes.
Disability risk in pediatric motor vehicle crash occupants.
Doud, Andrea N; Schoell, Samantha L; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Petty, John K; Stitzel, Joel D
2017-05-01
Mortality rates among children in motor vehicle crashes (MVCs) are typically low; however, nonfatal injuries can vary in severity by imposing differing levels of short- and long-term disability. To better discriminate the severity of nonfatal MVC injuries, a pediatric-specific disability risk (DR) metric was created. The National Automotive Sampling System 2000 to 2011 was used to define the top 95% most common Abbreviated Injury Scale (AIS) 2+ injuries among pediatric MVC occupants. Functional Independence Measure scores were abstracted from the National Trauma Data Bank 2002 to 2006. Multiple imputation was used to account for missing data. The DR and coinjury-adjusted DR (DRMAIS) of the most common AIS 2+ MVC-induced injuries were calculated for 7-year-old to 18-year-old children by determining the proportion of those disabled after an injury to those sustaining the injury. DR and DRMAIS values ranged from 0 to 1, representing 0% to 100% DR. The mean DR and DRMAIS of all injuries were 0.290 and 0.191, respectively. DR and DRMAIS were greatest for injuries to the head (DR, 0.340; DRMAIS, 0.279), thorax (DR, 0.320; DRMAIS, 0.233), and spine (DR, 0.315; DRMAIS, 0.200). The mean DR and DRMAIS increased with increasing AIS severity but there was significant variation and overlapping values across AIS severity levels. Comparison of DRMAIS to coinjury-adjusted mortality risk (MRMAIS) revealed that among 118 injuries with MRMAIS of 0.000, DRMAIS ranged from 0.000 to 0.429. Incorporation of DR metrics into injury severity metrics may improve the ability to distinguish between the severity of different nonfatal injuries. This is especially crucial in the pediatric population where permanent disability can result in a high number of years lost due to disability. The accuracy of such severity metrics is crucial to the success of pediatric triage algorithms such as Advanced Automatic Crash Notification algorithms. Epidemiologic/prognostic study, level III.
NASA Astrophysics Data System (ADS)
Durrenberger, L.; Even, D.; Molinari, A.; Rusinek, A.
2006-08-01
In order to reduce the gas emission without decreasing the passengers safety, the UHSS (Ultra High Strength Steel) steels are more and more used in the automotive industry. The very high mechanical characteristics of these steels allow to reduce the car weight thanks to the thickness reduction of the structure parts. The aim of this study is to analyse the plastic pre-strain effect (forming) on the crash properties of a crash-box structure. In order to achieve this goal, experimental rheological tests have been performed by combining quasi-static tensile tests followed by dynamic tensile test (8.10 - 3 s - 1 ≤ dot{\\varepsilon} ≤ 1000 s - 1) for a TRIP steel produced by ARCELOR. The combination of these results allows to obtain a better understanding of the steel behaviour in dynamic loading under different strain paths. All these information are necessary for an efficient simulation of crash test by including a pertinent material response. A special attention is given to the influence of the previous forming process on the dynamical response of crash boxes.
Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young
Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas whilemore » the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)« less
DOT National Transportation Integrated Search
2014-04-01
The National Highway Traffic Safety Administration estimates : 10% of fatal crashes (3,328) and 18% of injury crashes (421,000) : were attributable to distracted driving in 2012. Previous : research indicates dedicated law enforcement over a specifie...
On-road bicycle facilities and bicycle crashes in Iowa, 2007-2010.
Hamann, Cara; Peek-Asa, Corinne
2013-07-01
An average of 611 deaths and over 47,000 bicyclists are injured in traffic-related crashes in the United States each year. Efforts to increase bicycle safety are needed to reduce and prevent injuries and fatalities, especially as trends indicate that ridership is increasing rapidly. The objective of this study was to evaluate the effect of bicycle-specific roadway facilities (e.g., signage and bicycle lanes) in reducing bicycle crashes. We conducted a case site-control site study of 147 bicycle crash-sites identified from the Iowa Department of Transportation crash database from 2007 to 2010 and 147 matched non-crash sites. Control sites were randomly selected from intersections matched to case sites on neighborhood (census block group) and road classification (arterial, feeder, collector, etc.). We examined crash risk by any on-road bicycle facility present and by facility type (pavement markings--bicycle lanes and shared lane arrows, bicycle-specific signage, and the combination of markings and signage), controlling for bicycle volume, motor vehicle volume, street width, sidewalks, and traffic controls. A total of 11.6% of case sites and 15.0% of controls had an on-road bicycle facility. Case intersections had higher bicycle volume (3.52 vs. 3.34 per 30 min) and motor vehicle volume (248.77 vs. 205.76 per 30 min) than controls. Our results are suggestive that the presence of an on-road bicycle facility decreases crash risk by as much as 60% with a bicycle lane or shared lane arrow (OR=0.40, 95% CI=0.09-1.82) and 38% with bicycle-specific signage (OR=0.62, 95% CI=0.15-2.58). Investments in bicycle-specific pavement markings and signage have been shown to be beneficial to traffic flow, and our results suggest that they may also reduce the number of bicycle-motor vehicle crashes and subsequent injuries and fatalities. As a relatively low-cost traffic feature, community considerations for further implementation of these facilities are justified. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bunn, Terry L; Slavova, Svetla; Rock, Peter J
2017-11-22
There is ongoing concern at the national level about the availability of adequate commercial vehicle rest areas and truck stops for commercial vehicle drivers to rest or to wait for a delivery window. A retrospective case-control study was conducted to determine the association between the occurrence of sleepiness/fatigue-related (cases) vs. all other human factor-related commercial vehicle driver at-fault crashes (controls) and proximity to rest areas, weigh stations with rest havens, and truck stops. Commercial vehicle driver at-fault crashes involving sleepiness/fatigue were more likely to occur on roadways where the nearest rest areas/weigh stations with rest havens/truck stops were located 20 miles or more from the commercial vehicle crash site (Odds Ratio [OR]=2.32; Confidence Interval [CI] 1.615, 3.335] for 20-39.9 miles vs. <20 miles; and OR=6.788 [CI 2.112, 21.812] for 40+ miles) compared to commercial vehicle at-fault driver crashes with human factors other than sleepiness/fatigue cited in crash reports. Commercial vehicle driver at-fault crashes involving sleepiness/fatigue also were more likely to occur on parkways compared to interstates (adjusted OR=3.747 [CI 2.83, 4.95]), during nighttime hours (adjusted OR=6.199 [CI 4.733, 8.119]), and on dry pavement (adjusted OR 1.909, [CI 1.373, 2.655]). The use of statewide crash data analysis coupled with ArcGIS mapping capabilities provided the opportunity to both statistically determine and to visualize the association between rest area/weigh station with rest haven/truck stop distance and the occurrence of commercial vehicle driver at-fault crashes involving sleepiness/fatigue. Implementation and evaluation of commercial vehicle employer policies and interventions such as the use of commercial vehicle driver fatigue alert systems may help to reduce fatigue and sleepiness in commercial vehicle drivers. These results can be used by state and local highway transportation officials to inform and increase truck parking availability, especially on parkways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multi-jagged: A scalable parallel spatial partitioning algorithm
Deveci, Mehmet; Rajamanickam, Sivasankaran; Devine, Karen D.; ...
2015-03-18
Geometric partitioning is fast and effective for load-balancing dynamic applications, particularly those requiring geometric locality of data (particle methods, crash simulations). We present, to our knowledge, the first parallel implementation of a multidimensional-jagged geometric partitioner. In contrast to the traditional recursive coordinate bisection algorithm (RCB), which recursively bisects subdomains perpendicular to their longest dimension until the desired number of parts is obtained, our algorithm does recursive multi-section with a given number of parts in each dimension. By computing multiple cut lines concurrently and intelligently deciding when to migrate data while computing the partition, we minimize data movement compared to efficientmore » implementations of recursive bisection. We demonstrate the algorithm's scalability and quality relative to the RCB implementation in Zoltan on both real and synthetic datasets. Our experiments show that the proposed algorithm performs and scales better than RCB in terms of run-time without degrading the load balance. Lastly, our implementation partitions 24 billion points into 65,536 parts within a few seconds and exhibits near perfect weak scaling up to 6K cores.« less
2013-01-01
the occa- sional emergency resuscitative thoracotomy. The United Kingdom has also reported the successful prehospital use of tranexamic acid (TXA...treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet 2011;377:1096-101...1101 e1-2. 56. Abramovich A, Lipsky AM, Feinstein U. Tranexamic acid in the prehospital setting: the Israel Defense forces’ initial experience. J
Perception and biodynamics in unalerted precrash response.
McGehee, Daniel V; Carsten, Oliver M J
2010-01-01
This research seeks to better understand unalerted driver response just prior to a serious vehicle crash. Few studies have been able to view a crash from the inside-with a camera focused on the driver and occupants. Four studies are examined: 1) a high-fidelity simulator study with an unalerted intersection incursion crash among 107 drivers; 2) four crashes from the Virginia Tech Transportation Institute (VTTI) 100 car study; 3) 58 crashes from vehicles equipped with an event triggered video recorder; and 4) a custom-designed high-fidelity simulator experiment that examined unalerted driver response to a head-on crash with a heavy truck. Analyses concentrate on decomposing driver perception, action, facial and postural changes with a focus on describing the neurophysiologic mechanisms designed to respond to danger. Results indicate that drivers involved in severe crashes generally have preview that an impact is about to occur. They respond first with vehicle control inputs (accelerator pedal release) along with facial state changes and withdrawal of the head back towards the head restraint. These responses frequently occur almost simultaneously, providing safety system designers with a number of reliable driver performance measures to monitor. Understanding such mechanisms may assist future advanced driver assistance systems (ADAS), advanced restraints, model development of advanced anthropomorphic test dummies (ATDs), injury prediction and the integration of active and passive safety systems.
Jafari Anarkooli, A; Hadji Hosseinlou, M
2016-02-01
Many studies have examined different factors contributing to the injury severity of crashes; however, relatively few studies have focused on the crashes by considering the specific effects of lighting conditions. This research investigates lighting condition differences in the injury severity of crashes using 3-year (2009-2011) crash data of two-lane rural roads of the state of Washington. Separate ordered-probit models were developed to predict the effects of a set of factors expected to influence injury severity in three lighting conditions; daylight, dark, and dark with street lights. A series of likelihood ratio tests were conducted to determine if these lighting condition models were justified. The modeling results suggest that injury severity in specific lighting conditions are associated with contributing factors in different ways, and that such differences cannot be uncovered by focusing merely on one aggregate model. Key differences include crash location, speed limit, shoulder width, driver action, and three collision types (head-on, rear-end, and right-side impact collisions). This paper highlights the importance of deploying street lights at and near intersections (or access points) on two-lane rural roads because injury severity highly increases when crashes occur at these points in dark conditions. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
Delgado, M Kit; Wanner, Kathryn J; McDonald, Catherine
2016-06-16
Motor vehicle crashes are the leading cause of death in adolescents, and drivers aged 16-19 are the most likely to die in distracted driving crashes. This paper provides an overview of the literature on adolescent cellphone use while driving, focusing on the crash risk, incidence, risk factors for engagement, and the effectiveness of current mitigation strategies. We conclude by discussing promising future approaches to prevent crashes related to cellphone use in adolescents. Handheld manipulation of the phone while driving has been shown to have a 3 to 4-fold increased risk of a near crash or crash, and eye glance duration greater than 2 seconds increases crash risk exponentially. Nearly half of U.S. high school students admit to texting while driving in the last month, but the frequency of use according to vehicle speed and high-risk situations remains unknown. Several risk factors are associated with cell phone use while driving including: parental cellphone use while driving, social norms for quick responses to text messages, and higher levels of temporal discounting. Given the limited effectiveness of current mitigation strategies such as educational campaigns and legal bans, a multi-pronged behavioral and technological approach addressing the above risk factors will be necessary to reduce this dangerous behavior in adolescents.
Prescription of antiepileptics and the risk of road traffic crash.
Orriols, Ludivine; Foubert-Samier, Alexandra; Gadegbeku, Blandine; Delorme, Bernard; Tricotel, Aurore; Philip, Pierre; Moore, Nicholas; Lagarde, Emmanuel
2013-03-01
Studies assessing the impact of epilepsy and its medication on the risk of road traffic crashes have shown inconsistent results. The aim in this study was to assess this risk using French databases. Data from three French national databases were extracted and matched: the national health care insurance database, police reports, and the national police database of injurious crashes. Only antiepileptics prescribed predominantly in epilepsy were studied (phenobarbital, phenytoin, ethosuximide, valproic acid, vigabatrin, tiagabin, levitiracetam, zonisamide, and lacosamide). A case-control analysis comparing responsible and non-responsible drivers and a case-crossover analysis were performed. Drivers (72 685) involved in an injurious crash in France between July 2005 and May 2008, were included. Drivers exposed to prescribed antiepileptic medicines (n = 251) had an increased risk of being responsible for a crash (OR 1.74 [1.29-2.34]). The association was also significant for the most severe epileptic patients (n = 99; OR = 2.20 [1.31-3.69]). Case-crossover analysis found no association between crash risk and treatment prescription. Patients with prescription of antiepileptic drugs should be cautioned about their potential risk of road traffic crash. This risk is however more likely to be related to seizures than to the effect of antiepileptic medicines. © The Author(s) 2013.
Delgado, M. Kit; Wanner, Kathryn J.; McDonald, Catherine
2016-01-01
Motor vehicle crashes are the leading cause of death in adolescents, and drivers aged 16–19 are the most likely to die in distracted driving crashes. This paper provides an overview of the literature on adolescent cellphone use while driving, focusing on the crash risk, incidence, risk factors for engagement, and the effectiveness of current mitigation strategies. We conclude by discussing promising future approaches to prevent crashes related to cellphone use in adolescents. Handheld manipulation of the phone while driving has been shown to have a 3 to 4-fold increased risk of a near crash or crash, and eye glance duration greater than 2 seconds increases crash risk exponentially. Nearly half of U.S. high school students admit to texting while driving in the last month, but the frequency of use according to vehicle speed and high-risk situations remains unknown. Several risk factors are associated with cell phone use while driving including: parental cellphone use while driving, social norms for quick responses to text messages, and higher levels of temporal discounting. Given the limited effectiveness of current mitigation strategies such as educational campaigns and legal bans, a multi-pronged behavioral and technological approach addressing the above risk factors will be necessary to reduce this dangerous behavior in adolescents. PMID:27695663
Damage identification on spatial Timoshenko arches by means of genetic algorithms
NASA Astrophysics Data System (ADS)
Greco, A.; D'Urso, D.; Cannizzaro, F.; Pluchino, A.
2018-05-01
In this paper a procedure for the dynamic identification of damage in spatial Timoshenko arches is presented. The proposed approach is based on the calculation of an arbitrary number of exact eigen-properties of a damaged spatial arch by means of the Wittrick and Williams algorithm. The proposed damage model considers a reduction of the volume in a part of the arch, and is therefore suitable, differently than what is commonly proposed in the main part of the dedicated literature, not only for concentrated cracks but also for diffused damaged zones which may involve a loss of mass. Different damage scenarios can be taken into account with variable location, intensity and extension of the damage as well as number of damaged segments. An optimization procedure, aiming at identifying which damage configuration minimizes the difference between its eigen-properties and a set of measured modal quantities for the structure, is implemented making use of genetic algorithms. In this context, an initial random population of chromosomes, representing different damage distributions along the arch, is forced to evolve towards the fittest solution. Several applications with different, single or multiple, damaged zones and boundary conditions confirm the validity and the applicability of the proposed procedure even in presence of instrumental errors on the measured data.
Guest Editor's Introduction: Special section on dependable distributed systems
NASA Astrophysics Data System (ADS)
Fetzer, Christof
1999-09-01
We rely more and more on computers. For example, the Internet reshapes the way we do business. A `computer outage' can cost a company a substantial amount of money. Not only with respect to the business lost during an outage, but also with respect to the negative publicity the company receives. This is especially true for Internet companies. After recent computer outages of Internet companies, we have seen a drastic fall of the shares of the affected companies. There are multiple causes for computer outages. Although computer hardware becomes more reliable, hardware related outages remain an important issue. For example, some of the recent computer outages of companies were caused by failed memory and system boards, and even by crashed disks - a failure type which can easily be masked using disk mirroring. Transient hardware failures might also look like software failures and, hence, might be incorrectly classified as such. However, many outages are software related. Faulty system software, middleware, and application software can crash a system. Dependable computing systems are systems we can rely on. Dependable systems are, by definition, reliable, available, safe and secure [3]. This special section focuses on issues related to dependable distributed systems. Distributed systems have the potential to be more dependable than a single computer because the probability that all computers in a distributed system fail is smaller than the probability that a single computer fails. However, if a distributed system is not built well, it is potentially less dependable than a single computer since the probability that at least one computer in a distributed system fails is higher than the probability that one computer fails. For example, if the crash of any computer in a distributed system can bring the complete system to a halt, the system is less dependable than a single-computer system. Building dependable distributed systems is an extremely difficult task. There is no silver bullet solution. Instead one has to apply a variety of engineering techniques [2]: fault-avoidance (minimize the occurrence of faults, e.g. by using a proper design process), fault-removal (remove faults before they occur, e.g. by testing), fault-evasion (predict faults by monitoring and reconfigure the system before failures occur), and fault-tolerance (mask and/or contain failures). Building a system from scratch is an expensive and time consuming effort. To reduce the cost of building dependable distributed systems, one would choose to use commercial off-the-shelf (COTS) components whenever possible. The usage of COTS components has several potential advantages beyond minimizing costs. For example, through the widespread usage of a COTS component, design failures might be detected and fixed before the component is used in a dependable system. Custom-designed components have to mature without the widespread in-field testing of COTS components. COTS components have various potential disadvantages when used in dependable systems. For example, minimizing the time to market might lead to the release of components with inherent design faults (e.g. use of `shortcuts' that only work most of the time). In addition, the components might be more complex than needed and, hence, potentially have more design faults than simpler components. However, given economic constraints and the ability to cope with some of the problems using fault-evasion and fault-tolerance, only for a small percentage of systems can one justify not using COTS components. Distributed systems built from current COTS components are asynchronous systems in the sense that there exists no a priori known bound on the transmission delay of messages or the execution time of processes. When designing a distributed algorithm, one would like to make sure (e.g. by testing or verification) that it is correct, i.e. satisfies its specification. Many distributed algorithms make use of consensus (eventually all non-crashed processes have to agree on a value), leader election (a crashed leader is eventually replaced by a new leader, but at any time there is at most one leader) or a group membership detection service (a crashed process is eventually suspected to have crashed but only crashed processes are suspected). From a theoretical point of view, the service specifications given for such services are not implementable in asynchronous systems. In particular, for each implementation one can derive a counter example in which the service violates its specification. From a practical point of view, the consensus, the leader election, and the membership detection problem are solvable in asynchronous distributed systems. In this special section, Raynal and Tronel show how to bridge this difference by showing how to implement the group membership detection problem with a negligible probability [1] to fail in an asynchronous system. The group membership detection problem is specified by a liveness condition (L) and a safety property (S): (L) if a process p crashes, then eventually every non-crashed process q has to suspect that p has crashed; and (S) if a process q suspects p, then p has indeed crashed. One can show that either (L) or (S) is implementable, but one cannot implement both (L) and (S) at the same time in an asynchronous system. In practice, one only needs to implement (L) and (S) such that the probability that (L) or (S) is violated becomes negligible. Raynal and Tronel propose and analyse a protocol that implements (L) with certainty and that can be tuned such that the probability that (S) is violated becomes negligible. Designing and implementing distributed fault-tolerant protocols for asynchronous systems is a difficult but not an impossible task. A fault-tolerant protocol has to detect and mask certain failure classes, e.g. crash failures and message omission failures. There is a trade-off between the performance of a fault-tolerant protocol and the failure classes the protocol can tolerate. One wants to tolerate as many failure classes as needed to satisfy the stochastic requirements of the protocol [1] while still maintaining a sufficient performance. Since clients of a protocol have different requirements with respect to the performance/fault-tolerance trade-off, one would like to be able to customize protocols such that one can select an appropriate performance/fault-tolerance trade-off. In this special section Hiltunen et al describe how one can compose protocols from micro-protocols in their Cactus system. They show how a group RPC system can be tailored to the needs of a client. In particular, they show how considering additional failure classes affects the performance of a group RPC system. References [1] Cristian F 1991 Understanding fault-tolerant distributed systems Communications of ACM 34 (2) 56-78 [2] Heimerdinger W L and Weinstock C B 1992 A conceptual framework for system fault tolerance Technical Report 92-TR-33, CMU/SEI [3] Laprie J C (ed) 1992 Dependability: Basic Concepts and Terminology (Vienna: Springer)
Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.
Scanlon, John M; Kusano, Kristofer D; Gabler, Hampton C
2015-01-01
Intersection crashes account for over 4,500 fatalities in the United States each year. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging vehicle-based active safety systems that have the potential to help drivers safely navigate across intersections and prevent intersection crashes and injuries. The performance of an I-ADAS is expected to be highly dependent upon driver evasive maneuvering prior to an intersection crash. Little has been published, however, on the detailed evasive kinematics followed by drivers prior to real-world intersection crashes. The objective of this study was to characterize the frequency, timing, and kinematics of driver evasive maneuvers prior to intersection crashes. Event data recorders (EDRs) downloaded from vehicles involved in intersection crashes were investigated as part of NASS-CDS years 2001 to 2013. A total of 135 EDRs with precrash vehicle speed and braking application were downloaded to investigate evasive braking. A smaller subset of 59 EDRs that collected vehicle yaw rate was additionally analyzed to investigate evasive steering. Each vehicle was assigned to one of 3 precrash movement classifiers (traveling through the intersection, completely stopped, or rolling stop) based on the vehicle's calculated acceleration and observed velocity profile. To ensure that any significant steering input observed was an attempted evasive maneuver, the analysis excluded vehicles at intersections that were turning, driving on a curved road, or performing a lane change. Braking application at the last EDR-recorded time point was assumed to indicate evasive braking. A vehicle yaw rate greater than 4° per second was assumed to indicate an evasive steering maneuver. Drivers executed crash avoidance maneuvers in four-fifths of intersection crashes. A more detailed analysis of evasive braking frequency by precrash maneuver revealed that drivers performing complete or rolling stops (61.3%) braked less often than drivers traveling through the intersection without yielding (79.0%). After accounting for uncertainty in the timing of braking and steering data, the median evasive braking time was found to be between 0.5 to 1.5 s prior to impact, and the median initial evasive steering time was found to occur between 0.5 and 0.9 s prior to impact. The median average evasive braking deceleration for all cases was found to be 0.58 g. The median of the maximum evasive vehicle yaw rates was found to be 8.2° per second. Evasive steering direction was found to be most frequently in the direction of travel of the approaching vehicle. The majority of drivers involved in intersection crashes were alert enough to perform an evasive action. Most drivers used a combination of steering and braking to avoid a crash. The average driver attempted to steer and brake at approximately the same time prior to the crash.
Benignus, Vernon A; Bushnell, Philip J; Boyes, William K
2011-12-01
Acute solvent exposures may contribute to automobile accidents because they increase reaction time and decrease attention, in addition to impairing other behaviors. These effects resemble those of ethanol consumption, both with respect to behavioral effects and neurological mechanisms. These observations, along with the extensive data on the relationship between ethanol consumption and fatal automobile accidents, suggested a way to estimate the probability of fatal automobile accidents from solvent inhalation. The problem can be approached using the logic of the algebraic transitive postulate of equality: if A=B and B=C, then A=C. We first calculated a function describing the internal doses of solvent vapors that cause the same magnitude of behavioral impairment as ingestion of ethanol (A=B). Next, we fit a function to data from the literature describing the probability of fatal car crashes for a given internal dose of ethanol (B=C). Finally, we used these two functions to generate a third function to estimate the probability of a fatal car crash for any internal dose of organic solvent vapor (A=C). This latter function showed quantitatively (1) that the likelihood of a fatal car crash is increased by acute exposure to organic solvent vapors at concentrations less than 1.0 ppm, and (2) that this likelihood is similar in magnitude to the probability of developing leukemia from exposure to benzene. This approach could also be applied to other potentially adverse consequences of acute exposure to solvents (e.g., nonfatal car crashes, property damage, and workplace accidents), if appropriate data were available. © 2011 Society for Risk Analysis Published 2011. This article is a U.S. Government work and is in the public domain for the U.S.A.
Graduated driver licensing programs and fatal crashes of 16-year-old drivers: a national evaluation.
Chen, Li-Hui; Baker, Susan P; Li, Guohua
2006-07-01
Implementation of graduated driver licensing programs is associated with reductions in crash rates of young drivers, but graduated driver licensing programs vary in their components. The impact of programs with different components is unknown. The purpose of this work was to determine which graduated driver licensing programs are associated with the greatest reductions in fatal motor vehicle crashes involving 16-year-old drivers. We conducted a retrospective study of all 16-year-old drivers involved in fatal crashes in the United States from 1994 through 2004 using data from the Fatality Analysis Reporting System and the US Census Bureau. We measured incidence rate ratios of fatal motor vehicle crashes involving 16-year-old drivers according to graduated driver licensing programs, adjusted for state and year. Compared with state quarters with no graduated driver licensing program components, reductions of 16% to 21% in fatal crash involvement rates of 16-year-old drivers occurred with programs that included > or = 3-month mandatory waiting period, nighttime driving restriction, and either > or = 30 hours of supervised driving or passenger restriction. Reductions of 18% to 21% occurred in state quarters with programs that included > or = 5 of the 7 components examined. Drivers aged 20 to 24 or 25 to 29 years did not experience significant reductions. Comprehensive graduated driver licensing programs are associated with reductions of approximately 20% in 16-year-old drivers' fatal crash involvement rates. The greatest benefit seems to be associated with programs that include age requirements and > or = 3 months of waiting before the intermediate stage, nighttime driving restriction, and either > or = 30 hours of supervised driving or passenger restriction.
Influence of Different Yield Loci on Failure Prediction with Damage Models
NASA Astrophysics Data System (ADS)
Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.
2017-09-01
Advanced high strength steels are widely used in the automotive industry to simultaneously improve crash performance and reduce the car body weight. A drawback of these multiphase steels is their sensitivity to damage effects and thus the reduction of ductility. For that reason the Forming Limit Curve is only partially suitable for this class of steels. An improvement in failure prediction can be obtained by using damage mechanics. The objective of this paper is to comparatively review the phenomenological damage model GISSMO and the Enhanced Lemaitre Damage Model. GISSMO is combined with three different yield loci, namely von Mises, Hill48 and Barlat2000 to investigate the influence of the choice of the plasticity description on damage modelling. The Enhanced Lemaitre Model is used with Hill48. An inverse parameter identification strategy for a DP1000 based on stress-strain curves and optical strain measurements of shear, uniaxial, notch and (equi-)biaxial tension tests is applied to calibrate the models. A strong dependency of fracture strains on the choice of yield locus can be observed. The identified models are validated on a cross-die cup showing ductile fracture with slight necking.
Bae, Tae Soo; Loan, Peter; Choi, Kuiwon; Hong, Daehie; Mun, Mu Seong
2010-12-01
When car crash experiments are performed using cadavers or dummies, the active muscles' reaction on crash situations cannot be observed. The aim of this study is to estimate muscles' response of the major muscle groups using three-dimensional musculoskeletal model by dynamic simulations of low-speed sled-impact. The three-dimensional musculoskeletal models of eight subjects were developed, including 241 degrees of freedom and 86 muscles. The muscle parameters considering limb lengths and the force-generating properties of the muscles were redefined by optimization to fit for each subject. Kinematic data and external forces measured by motion tracking system and dynamometer were then input as boundary conditions. Through a least-squares optimization algorithm, active muscles' responses were calculated during inverse dynamic analysis tracking the motion of each subject. Electromyography for major muscles at elbow, knee, and ankle joints was measured to validate each model. For low-speed sled-impact crash, experiment and simulation with optimized and unoptimized muscle parameters were performed at 9.4 m/h and 10 m/h and muscle activities were compared among them. The muscle activities with optimized parameters were closer to experimental measurements than the results without optimization. In addition, the extensor muscle activities at knee, ankle, and elbow joint were found considerably at impact time, unlike previous studies using cadaver or dummies. This study demonstrated the need to optimize the muscle parameters to predict impact situation correctly in computational studies using musculoskeletal models. And to improve accuracy of analysis for car crash injury using humanlike dummies, muscle reflex function, major extensor muscles' response at elbow, knee, and ankle joints, should be considered.
Jayatilleke, A U; Nakahara, S; Dharmaratne, S D; Jayatilleke, A C; Poudel, K C; Jimba, M
2009-04-01
To explore the effects of working conditions of private-bus drivers on bus crashes in Kandy district, Sri Lanka. A case-control study was carried out from August to September 2006. All private-bus drivers registered in Kandy district and involved in crashes reported to the police between November 2005 and April 2006 (n = 63) were selected as cases. Two control groups were included: private-bus drivers working on the same routes as the case drivers (n = 90) and private-bus drivers selected randomly from other routes of the district (n = 111). Data were collected using an anonymous self-administered questionnaire. Associations between working conditions and crashes were analysed using logistic regression. A strong association was observed between drivers' disagreements about working hours and bus crashes (matched controls, adjusted odds ratio (AOR) 5.98, 95% CI 1.02 to 34.90; unmatched controls, AOR 18.74, 95% CI 2.00 to 175.84). A significant association was also observed between low salaries (
Population density and mortality among individuals in motor vehicle crashes.
Gedeborg, Rolf; Thiblin, Ingemar; Byberg, Liisa; Melhus, Håkan; Lindbäck, Johan; Michaelsson, Karl
2010-10-01
To assess whether higher mortality rates among individuals in motor vehicle crashes in areas with low population density depend on injury type and severity or are related to the performance of emergency medical services (EMS). Prehospital and hospital deaths were studied in a population-based cohort of 41,243 motor vehicle crashes that occurred in Sweden between 1998 and 2004. The final multivariable analysis was restricted to 6884 individuals in motor vehicle crashes, to minimise the effects of confounding factors. Crude mortality rates following motor vehicle crashes were inversely related to regional population density. In regions with low population density, the unadjusted rate ratio for prehospital death was 2.2 (95% CI 1.9 to 2.5) and for hospital death 1.5 (95% CI 1.1 to 1.9), compared with a high-density population. However, after controlling for regional differences in age, gender and the type/severity of injuries among 6884 individuals in motor vehicle crashes, low population density was no longer associated with increased mortality. At 25 years of age, predicted prehospital mortality was 9% lower (95% CI 5% to 12%) in regions with low population density compared with high population density. This difference decreased with increasing age, but was still 3% lower (95% CI 0.5% to 5%) at 65 years of age. The inverse relationship between population density and mortality among individuals in motor vehicle crashes is related to pre-crash factors that influence the type and severity of injuries and not to differences in EMS.
Traffic-law enforcement and risk of death from motor-vehicle crashes: case-crossover study.
Redelmeier, Donald A; Tibshirani, Robert J; Evans, Leonard
2003-06-28
Driving offences and traffic deaths are common in countries with high rates of motor-vehicle use. We tested whether traffic convictions, because of their direct effect on the recipient, might be associated with a reduced risk of fatal motor-vehicle crashes. We identified licensed drivers in Ontario, Canada, who had been involved in fatal crashes in the past 11 years. We used the case-crossover design to analyse the protective effect of recent convictions on individual drivers. 8975 licensed drivers had fatal crashes during the study period. 21501 driving convictions were recorded for all drivers from the date of obtaining a full licence to the date of fatal crash, equivalent to about one conviction per driver every 5 years. The risk of a fatal crash in the month after a conviction was about 35% lower than in a comparable month with no conviction for the same driver (95% CI 20-45, p=0.0002). The benefit lessened substantially by 2 months and was not significant by 3-4 months. The benefit was not altered by age, previous convictions, and other personal characteristics; was greater for speeding violations with penalty points than speeding violations without points; was no different for crashes of differing severity; and was not seen in drivers whose licences were suspended. Traffic-law enforcement effectively reduces the frequency of fatal motor-vehicle crashes in countries with high rates of motor-vehicle use. Inconsistent enforcement, therefore, may contribute to thousands of deaths each year worldwide.
Schneider, Lawrence W; Klinich, Kathleen D; Moore, Jamie L; MacWilliams, Joel B
2010-04-01
In-depth investigations of motor-vehicle crashes involve detailed inspection, measurement, and photodocumentation of vehicle exterior and interior damage, evidence of belt-restraint use, and evidence of occupant contacts with the vehicle interior. Results of in-depth investigations thereby provide the most objective way to identify current and emerging injury problems and issues in occupant safety and crash protection, and provide important feedback on the real-world performance of the latest restraint-system and vehicle crashworthiness technologies. To provide an objective understanding of real-world transportation safety issues for wheelchair-seated travelers, the University of Michigan Transportation Research Institute (UMTRI) has been conducting and assembling data from in-depth investigations of motor-vehicle crashes and non-crash adverse moving-vehicle incidents, such as emergency vehicle braking, turning, and swerving, in which there was at least one vehicle occupant sitting in a wheelchair. The results of 39 investigations involving 42 wheelchair-seated occupants have been assembled and entered into a wheelchair-occupant crash/injury database. In addition, a biomechanical analysis of each case has been performed to identify key safety issues for wheelchair-seated travelers. The wheelchairs of 34 of the 42 occupants who were seated in wheelchairs while traveling in motor vehicles were effectively secured by either a four-point, strap-type tiedown system or a docking securement device, and all but one of these properly secured wheelchairs remained in place during the crash or non-collision event. However, 30 of the 42 occupants were improperly restrained, either because of non-use or incomplete use of available belt restraints, or because the belt restraints were improperly positioned on the occupant's body. Twenty-six of the 42 occupants sustained significant injuries and 10 of these occupants died as a direct result of injuries sustained, or from complications resulting from those injuries. These findings, when combined with the analyses of the individual cases, point to a need for better driver and caregiver education and training on how to properly secure wheelchairs and position belt restraints on wheelchair-seated passengers. They also point to a need for improved restraint systems used by wheelchair-seated drivers, and a need for wheelchair designs that facilitate the proper use and positioning of vehicle-anchored belt restraints. Copyright 2009 IPEM. Published by Elsevier Ltd. All rights reserved.
A Bayesian ridge regression analysis of congestion's impact on urban expressway safety.
Shi, Qi; Abdel-Aty, Mohamed; Lee, Jaeyoung
2016-03-01
With the rapid growth of traffic in urban areas, concerns about congestion and traffic safety have been heightened. This study leveraged both Automatic Vehicle Identification (AVI) system and Microwave Vehicle Detection System (MVDS) installed on an expressway in Central Florida to explore how congestion impacts the crash occurrence in urban areas. Multiple congestion measures from the two systems were developed. To ensure more precise estimates of the congestion's effects, the traffic data were aggregated into peak and non-peak hours. Multicollinearity among traffic parameters was examined. The results showed the presence of multicollinearity especially during peak hours. As a response, ridge regression was introduced to cope with this issue. Poisson models with uncorrelated random effects, correlated random effects, and both correlated random effects and random parameters were constructed within the Bayesian framework. It was proven that correlated random effects could significantly enhance model performance. The random parameters model has similar goodness-of-fit compared with the model with only correlated random effects. However, by accounting for the unobserved heterogeneity, more variables were found to be significantly related to crash frequency. The models indicated that congestion increased crash frequency during peak hours while during non-peak hours it was not a major crash contributing factor. Using the random parameter model, the three congestion measures were compared. It was found that all congestion indicators had similar effects while Congestion Index (CI) derived from MVDS data was a better congestion indicator for safety analysis. Also, analyses showed that the segments with higher congestion intensity could not only increase property damage only (PDO) crashes, but also more severe crashes. In addition, the issues regarding the necessity to incorporate specific congestion indicator for congestion's effects on safety and to take care of the multicollinearity between explanatory variables were also discussed. By including a specific congestion indicator, the model performance significantly improved. When comparing models with and without ridge regression, the magnitude of the coefficients was altered in the existence of multicollinearity. These conclusions suggest that the use of appropriate congestion measure and consideration of multicolilnearity among the variables would improve the models and our understanding about the effects of congestion on traffic safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
Determination of characteristics of fatally injured drivers
DOT National Transportation Integrated Search
2001-12-01
The objective of this study was to identify driver characteristics that can be used to predict driver risk of fatal crashes. The study had 3 components: (1) Comparisons were made among drivers who were killed in single-vehicle crashes or were at faul...
Impact test of a crash-energy management passenger rail car
DOT National Transportation Integrated Search
2004-04-06
On December 3, 2003, a single-car impact test was : conducted to assess the crashworthiness performance of a : modified passenger rail car. A coach car retrofitted with a : Crash Energy Management (CEM) end structure impacted a : fixed barrier at app...
Road weather management best practices : version 3.0.
DOT National Transportation Integrated Search
2012-06-01
On average, there are over 6,301,000 vehicle crashes each year. Twenty-four (24) percent of these crashes approximately 1,511,000 are weather-related, resulting in 7,130 fatalities and 629,000 injuries. In spite of these statistics, there is ...
Non-linear dynamics of compound sawteeth in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J.-H., E-mail: jae-heon.ahn@polytechnique.edu; Garbet, X.; Sabot, R.
2016-05-15
Compound sawteeth is studied with the XTOR-2F code. Non-linear full 3D magnetohydrodynamic simulations show that the plasma hot core is radially displaced and rotates during the partial crash, but is not fully expelled out of the q = 1 surface. Partial crashes occur when the radius of the q = 1 surface exceeds a critical value, at fixed poloidal beta. This critical value depends on the plasma elongation. The partial crash time is larger than the collapse time of an ordinary sawtooth, likely due to a weaker diamagnetic stabilization. This suggests that partial crashes result from a competition between destabilizing effects such as themore » q = 1 radius and diamagnetic stabilization.« less
Geometric identification and damage detection of structural elements by terrestrial laser scanner
NASA Astrophysics Data System (ADS)
Hou, Tsung-Chin; Liu, Yu-Wei; Su, Yu-Min
2016-04-01
In recent years, three-dimensional (3D) terrestrial laser scanning technologies with higher precision and higher capability are developing rapidly. The growing maturity of laser scanning has gradually approached the required precision as those have been provided by traditional structural monitoring technologies. Together with widely available fast computation for massive point cloud data processing, 3D laser scanning can serve as an efficient structural monitoring alternative for civil engineering communities. Currently most research efforts have focused on integrating/calculating the measured multi-station point cloud data, as well as modeling/establishing the 3D meshes of the scanned objects. Very little attention has been spent on extracting the information related to health conditions and mechanical states of structures. In this study, an automated numerical approach that integrates various existing algorithms for geometric identification and damage detection of structural elements were established. Specifically, adaptive meshes were employed for classifying the point cloud data of the structural elements, and detecting the associated damages from the calculated eigenvalues in each area of the structural element. Furthermore, kd-tree was used to enhance the searching efficiency of plane fitting which were later used for identifying the boundaries of structural elements. The results of geometric identification were compared with M3C2 algorithm provided by CloudCompare, as well as validated by LVDT measurements of full-scale reinforced concrete beams tested in laboratory. It shows that 3D laser scanning, through the established processing approaches of the point cloud data, can offer a rapid, nondestructive, remote, and accurate solution for geometric identification and damage detection of structural elements.
Latent Classes of Polydrug Users as a Predictor of Crash Involvement and Alcohol Consumption.
Scherer, Michael; Romano, Eduardo; Voas, Robert; Taylor, Eileen
2018-05-01
Polydrug users have been shown to be at higher risk for alcohol consumption and crash involvement. However, research has shown that polydrug groups differ in some important ways. It is currently unknown how polydrug-using groups differ in terms of crash involvement and alcohol consumption. The current study used latent class analysis to examine subgroups of polydrug users (n = 384) among a sample of drivers in Virginia Beach, Virginia (N = 10,512). A series of logistic regression analyses were conducted to determine the relationship between polydrug use categories and crash involvement and alcohol consumption. Four distinct subclasses of users were identified among polydrug-using drivers: Class 1 is the "marijuana-amphetamines class" and accounts for 21.6% of polydrug users. Class 2 is the "benzo-antidepressant class" and accounts for 39.0% of polydrug users. Class 3 is the "opioid-benzo class" and accounts for 32.7% of polydrug users. Finally, Class 4 is the "marijuana-cocaine class" and accounts for 6.7% of the study sample. Drivers in the opioid-benzo class were significantly more likely than those in any other class as well as non-drug users and single-drug users to be involved in a crash and were more likely than those in most other conditions to consume alcohol. No significant difference was found between marijuana-amphetamine users or benzo-antidepressant users and non-drug users on crash risk. Some polydrug users are indeed at greater risk for crash involvement and alcohol consumption; however, not all polydrug users are significantly worse than single-drug users and/or non-drug users, and the practice of lumping polydrug users together when predicting crash risk runs the risk of inaccurately attributing crash involvement to certain drivers.
Kusano, Kristofer D; Gabler, Hampton C
2010-01-01
To mitigate the severity of rear-end and other collisions, Pre-Crash Systems (PCS) are being developed. These active safety systems utilize radar and/or video cameras to determine when a frontal crash, such as a front-to-back rear-end collisions, is imminent and can brake autonomously, even with no driver input. Of these PCS features, the effects of autonomous pre-crash braking are estimated. To estimate the maximum potential for injury reduction due to autonomous pre-crash braking in the striking vehicle of rear-end crashes, a methodology is presented for determining 1) the reduction in vehicle crash change in velocity (ΔV) due to PCS braking and 2) the number of injuries that could be prevented due to the reduction in collision severity. Injury reduction was only performed for belted drivers, as unbelted drivers have an unknown risk of being thrown out of position. The study was based on 1,406 rear-end striking vehicles from NASS / CDS years 1993 to 2008. PCS parameters were selected from realistic values and varied to examine the effect on system performance. PCS braking authority was varied from 0.5 G's to 0.8 G's while time to collision (TTC) was held at 0.45 seconds. TTC was then varied from 0.3 second to 0.6 seconds while braking authority was held constant at 0.6 G's. A constant braking pulse (step function) and ramp-up braking pulse were used. The study found that automated PCS braking could reduce the crash ΔV in rear-end striking vehicles by an average of 12% - 50% and avoid 0% - 14% of collisions, depending on PCS parameters. Autonomous PCS braking could potentially reduce the number of injured drivers who are belted by 19% to 57%.
Temporal factors in motor-vehicle crash deaths: Ten years later.
Weast, Rebecca
2018-06-01
To assess trends in traffic fatalities on several temporal scales: year to year, by month, by day of week, and by time of day, to determine why some times correspond with higher rates of crash deaths, and to assess how these trends relate to age, the role of the deceased, and alcohol consumption. Traffic fatalities were identified using the Fatality Analysis Reporting System (FARS) for 1998 through 2014 and assessed for their time of occurrence. Three days that, on average, contained particularly high numbers of crash deaths were then assessed in greater detail, considering the age of the deceased, role of the deceased (vehicle occupant, bicyclist, motorcyclist, or pedestrian), and the blood alcohol content of either the driver (for passenger vehicle occupants) or the deceased. Annual crash fatality totals were much lower in 2014 than in 1998, but the decrease was not steady; a marked drop in crash deaths occurred after 2007 and continued until 2014. On average the most fatalities per day occurred in July and August (116 per day), followed closely by June, September, and October. During the week, the greatest number of fatalities on average occur on weekend days, and during the day the most fatalities tend to occur between the hours of 3p.m. and 7p.m. Holidays like Independence Day and New Year's Day show elevated crash fatalities, and a greater percentage of these crashes involved alcohol, when compared with adjacent days. Certain days and times of year stand out as posing an elevated crash risk, and even with the decrease in average daily fatalities over the past decade, these days and times of year have remained consistent. These results indicate focused areas for continued efforts to reduce fatal crashes. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.
Cell phone use while driving and attributable crash risk.
Farmer, Charles M; Braitman, Keli A; Lund, Adrian K
2010-10-01
Prior research has estimated that crash risk is 4 times higher when talking on a cell phone versus not talking. The objectives of this study were to estimate the extent to which drivers talk on cell phones while driving and to compute the implied annual number of crashes that could have been avoided if driver cell phone use were restricted. A national survey of approximately 1200 U.S. drivers was conducted. Respondents were asked to approximate the amount of time spent driving during a given day, number of cell phone calls made or received, and amount of driving time spent talking on a cell phone. Population attributable risk (PAR) was computed for each combination of driver gender, driver age, day of week, and time of day. These were multiplied by the corresponding crash counts to estimate the number of crashes that could have been avoided. On average, drivers were talking on cell phones approximately 7 percent of the time while driving. Rates were higher on weekdays (8%), in the afternoon and evening (8%), and for drivers younger than 30 (16%). Based on these use rates, restricting cell phones while driving could have prevented an estimated 22 percent (i.e., 1.3 million) of the crashes in 2008. Although increased rates of cell phone use while driving should be leading to increased crash rates, crash rates have been declining. Reasons for this paradox are unclear. One possibility is that the increase in cell phone use and crash risk due to cell phone use have been overestimated. Another possibility is that cell phone use has supplanted other driving distractions that were similarly hazardous.
Crash testing difference-smoothing algorithm on a large sample of simulated light curves from TDC1
NASA Astrophysics Data System (ADS)
Rathna Kumar, S.
2017-09-01
In this work, we propose refinements to the difference-smoothing algorithm for the measurement of time delay from the light curves of the images of a gravitationally lensed quasar. The refinements mainly consist of a more pragmatic approach to choose the smoothing time-scale free parameter, generation of more realistic synthetic light curves for the estimation of time delay uncertainty and using a plot of normalized χ2 computed over a wide range of trial time delay values to assess the reliability of a measured time delay and also for identifying instances of catastrophic failure. We rigorously tested the difference-smoothing algorithm on a large sample of more than thousand pairs of simulated light curves having known true time delays between them from the two most difficult 'rungs' - rung3 and rung4 - of the first edition of Strong Lens Time Delay Challenge (TDC1) and found an inherent tendency of the algorithm to measure the magnitude of time delay to be higher than the true value of time delay. However, we find that this systematic bias is eliminated by applying a correction to each measured time delay according to the magnitude and sign of the systematic error inferred by applying the time delay estimator on synthetic light curves simulating the measured time delay. Following these refinements, the TDC performance metrics for the difference-smoothing algorithm are found to be competitive with those of the best performing submissions of TDC1 for both the tested 'rungs'. The MATLAB codes used in this work and the detailed results are made publicly available.
A Green's Function Approach to Simulate DNA Damage by the Indirect Effect
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cicinotta, Francis A.
2013-01-01
The DNA damage is of fundamental importance in the understanding of the effects of ionizing radiation. DNA is damaged by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research, many questions on the DNA damage by ionizing radiation remains. In the recent years, the Green's functions of the diffusion equation (GFDE) have been used extensively in biochemistry [1], notably to simulate biochemical networks in time and space [2]. In our future work on DNA damage, we wish to use an approach based on the GFDE to refine existing models on the indirect effect of ionizing radiation on DNA. To do so, we will use the code RITRACKS [3] developed at the NASA Johnson Space Center to simulate the radiation track structure and calculate the position of radiolytic species after irradiation. We have also recently developed an efficient Monte-Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state [4], which can be modified and adapted to simulate DNA damage by free radicals. To do so, we will use the known reaction rate constants between radicals (OH, eaq, H,...) and the DNA bases, sugars and phosphates and use the sampling algorithms to simulate the diffusion of free radicals and chemical reactions with DNA. These techniques should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.
2010 Michigan traffic crash facts
DOT National Transportation Integrated Search
2011-01-01
The 2010 traffic fatality count was 937, up 7.6 percent from the 2009 figure of 871. : Compared with 2009, injuries were down 0.6 percent and total crashes were down : 3.1 percent. These figures translated into a death rate of 0.96 per 100 million mi...
Crash test and evaluation of the TxDOT T631 bridge rail.
DOT National Transportation Integrated Search
2014-01-01
In August 2010, Midwest Roadside Safety Facility (MwRSF) developed and crash tested a low-cost, energy-absorbing bridge rail for the Manual for Assessing Safety Hardware (MASH) TL-3 applications. This low-cost bridge rail was designed to be compatibl...
Impact tests of crash energy management passenger rail cars: analysis and structural measurements
DOT National Transportation Integrated Search
2004-11-13
Two full-scale impact tests were conducted to measure the : crashworthiness performance of Crash Energy Management : (CEM) passenger rail cars. On December 3, 2003 a single car : impacted a fixed barrier at approximately 35 mph and on : February 26, ...
Characteristics and Contributory Causes Related to Large Truck Crashes (Phase I) - Fatal Crashes
DOT National Transportation Integrated Search
2010-06-01
One-ninth of all traffic fatalities in the United States have involved large trucks in the past five years, although large trucks contributed to only 3% of registered vehicles and 7% of vehicle miles travelled. This contrasting proportion indicates t...
DOT National Transportation Integrated Search
1995-08-01
INTELLIGENT VEHICLE INITIATIVE OR IVI : THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. :...
Owner-operator versus company-driver safety performance analysis : tech transfer summaries.
DOT National Transportation Integrated Search
2016-01-01
The Federal Motor Carrier Safety Administration (FMCSA) reported : that, in 2013, more than 3,800 fatal crashes and 385,000 non-fatal : crashes across the US involved at least one large truck or bus. While : the FMCSA has implemented safety practices...
Owner-operator versus company-driver safety performance analysis : [tech transfer summary].
DOT National Transportation Integrated Search
2016-01-01
The Federal Motor Carrier Safety Administration (FMCSA) reported : that, in 2013, more than 3,800 fatal crashes and 385,000 non-fatal : crashes across the US involved at least one large truck or bus. While : the FMCSA has implemented safety practices...
Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures: Task 3, Volume 1
DOT National Transportation Integrated Search
1995-08-23
The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity oi these crashes. This report describes the findings of the...
Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures Task 3 - Volume 2
DOT National Transportation Integrated Search
1995-08-23
The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. : This report describes the findings of t...
Validation of the ‘full reconnection model’ of the sawtooth instability in KSTAR
NASA Astrophysics Data System (ADS)
Nam, Y. B.; Ko, J. S.; Choe, G. H.; Bae, Y.; Choi, M. J.; Lee, W.; Yun, G. S.; Jardin, S.; Park, H. K.
2018-06-01
The central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the ‘full reconnection model’. The radial position of the excited modes right after the crash and time evolution into the 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the ‘full reconnection model’.
Driver sleepiness and risk of serious injury to car occupants: population based case control study
Connor, Jennie; Norton, Robyn; Ameratunga, Shanthi; Robinson, Elizabeth; Civil, Ian; Dunn, Roger; Bailey, John; Jackson, Rod
2002-01-01
Objectives To estimate the contribution of driver sleepiness to the causes of car crash injuries. Design Population based case control study. Setting Auckland region of New Zealand, April 1998 to July 1999. Participants 571 car drivers involved in crashes where at least one occupant was admitted to hospital or killed (“injury crash”); 588 car drivers recruited while driving on public roads (controls), representative of all time spent driving in the study region during the study period. Main outcome measures Relative risk for injury crash associated with driver characteristics related to sleep, and the population attributable risk for driver sleepiness. Results There was a strong association between measures of acute sleepiness and the risk of an injury crash. After adjustment for major confounders significantly increased risk was associated with drivers who identified themselves as sleepy (Stanford sleepiness score 4-7 v 1-3; odds ratio 8.2, 95% confidence interval 3.4 to 19.7); with drivers who reported five hours or less of sleep in the previous 24 hours compared with more than five hours (2.7, 1.4 to 5.4); and with driving between 2 am and 5 am compared with other times of day (5.6, 1.4 to 22.7). No increase in risk was associated with measures of chronic sleepiness. The population attributable risk for driving with one or more of the acute sleepiness risk factors was 19% (15% to 25%). Conclusions Acute sleepiness in car drivers significantly increases the risk of a crash in which a car occupant is injured or killed. Reductions in road traffic injuries may be achieved if fewer people drive when they are sleepy or have been deprived of sleep or drive between 2 am and 5 am. What is already known on this topicDriver sleepiness is considered a potentially important risk factor for car crashes and related injuries but the association has not been reliably quantifiedPublished estimates of the proportion of car crashes attributable to driver sleepiness vary from about 3% to 30%What this study addsDriving while feeling sleepy, driving after five hours or less of sleep, and driving between 2 am and 5 am were associated with a substantial increase in the risk of a car crash resulting in serious injury or deathReduction in the prevalence of these three behaviours may reduce the incidence of injury crashes by up to 19% PMID:12003884
Driving behaviors and accident risk under lifetime license revocation.
Chang, Hsin-Li; Woo, T Hugh; Tseng, Chien-Ming; Tseng, I-Yen
2011-07-01
This study explored the driving behaviors and crash risk of 768 drivers who were under administrative lifetime driver's license revocation (ALLR). It was found that most of the ALLR offenders (83.2%) were still driving and only a few (16.8%) of them gave up driving completely. Of the offenders still driving, 67.6% experienced encountering a police roadside check, but were not detained or ticketed by the police. Within this group, 50.6% continued driving while encountering a police check, 18.0% of them made an immediate U-turn and 9.5% of them parked and exited their car. As to crash risk, 15.2% of the ALLR offenders had at least one crash experience after the ALLR had been imposed. The results of the logistic regression models showed that the offenders' crash risk while under the ALLR was significantly correlated with their personal characteristics (personal income), penalty status (incarceration, civil compensation and the time elapsed since license revocation), annual distance driven, and needs for driving (working, commuting and driving kids). Low-income offenders were more inclined to have a crash while driving under the ALLR. Offenders penalized by being incarcerated or by paying a high civil compensation drove more carefully and were less of a crash risk under the ALLR. The results also showed there were no differences in crash risk under the ALLR between hit-and-run offences and drunk driving offences or for offenders with a professional license or an ordinary license. Generally, ALLR offenders drove somewhat more carefully and were less of a crash risk (4.3 crashes per million km driven) than legal licensed drivers (23.1 crashes per million km driven). Moreover, they seemed to drive more carefully than drivers who were under short-term license suspension/revocation which previous studies have found. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gonçalves, M; Peralta, A R; Monteiro Ferreira, J; Guilleminault, Christian
2015-01-01
Sleepiness is considered to be a leading cause of crashes. Despite the huge amount of information collected in questionnaire studies, only some are based on representative samples of the population. Specifics of the populations studied hinder the generalization of these previous findings. For the Portuguese population, data from sleep-related car crashes/near misses and sleepiness while driving are missing. The objective of this study is to determine the prevalence of near-miss and nonfatal motor vehicle crashes related to sleepiness in a representative sample of Portuguese drivers. Structured phone interviews regarding sleepiness and sleep-related crashes and near misses, driving habits, demographic data, and sleep quality were conducted using the Pittsburgh Sleep Quality Index and sleep apnea risk using the Berlin questionnaire. A multivariate regression analysis was used to determine the associations with sleepy driving (feeling sleepy or falling asleep while driving) and sleep-related near misses and crashes. Nine hundred subjects, representing the Portuguese population of drivers, were included; 3.1% acknowledged falling asleep while driving during the previous year and 0.67% recalled sleepiness-related crashes. Higher education, driving more than 15,000 km/year, driving more frequently between 12:00 a.m. and 6 a.m., fewer years of having a driver's license, less total sleep time per night, and higher scores on the Epworth Sleepiness Scale (ESS) were all independently associated with sleepy driving. Sleepiness-related crashes and near misses were associated only with falling asleep at the wheel in the previous year. Sleep-related crashes occurred more frequently in drivers who had also had sleep-related near misses. Portugal has lower self-reported sleepiness at the wheel and sleep-related near misses than most other countries where epidemiological data are available. Different population characteristics and cultural, social, and road safety specificities may be involved in these discrepancies. Despite this, Portuguese drivers report sleep-related crashes in frequencies similar to those of drivers in other countries.
Modeling crash injury severity by road feature to improve safety.
Penmetsa, Praveena; Pulugurtha, Srinivas S
2018-01-02
The objective of this research is 2-fold: to (a) model and identify critical road features (or locations) based on crash injury severity and compare it with crash frequency and (b) model and identify drivers who are more likely to contribute to crashes by road feature. Crash data from 2011 to 2013 were obtained from the Highway Safety Information System (HSIS) for the state of North Carolina. Twenty-three different road features were considered, analyzed, and compared with each other as well as no road feature. A multinomial logit (MNL) model was developed and odds ratios were estimated to investigate the effect of road features on crash injury severity. Among the many road features, underpass, end or beginning of a divided highway, and on-ramp terminal on crossroad are the top 3 critical road features. Intersection crashes are frequent but are not highly likely to result in severe injuries compared to critical road features. Roundabouts are least likely to result in both severe and moderate injuries. Female drivers are more likely to be involved in crashes at intersections (4-way and T) compared to male drivers. Adult drivers are more likely to be involved in crashes at underpasses. Older drivers are 1.6 times more likely to be involved in a crash at the end or beginning of a divided highway. The findings from this research help to identify critical road features that need to be given priority. As an example, additional advanced warning signs and providing enlarged or highly retroreflective signs that grab the attention of older drivers may help in making locations such as end or beginning of a divided highway much safer. Educating drivers about the necessary skill sets required at critical road features in addition to engineering solutions may further help them adopt safe driving behaviors on the road.
"Crashing the gates" - selection criteria for television news reporting of traffic crashes.
De Ceunynck, Tim; De Smedt, Julie; Daniels, Stijn; Wouters, Ruud; Baets, Michèle
2015-07-01
This study investigates which crash characteristics influence the probability that the crash is reported in the television news. To this purpose, all news items from the period 2006-2012 about traffic crashes from the prime time news of two Belgian television channels are linked to the official injury crash database. Logistic regression models are built for the database of all injury crashes and for the subset of fatal crashes to identify crash characteristics that correlate with a lower or higher probability of being reported in the news. A number of significant biases in terms of crash severity, time, place, types of involved road users and victims' personal characteristics are found in the media reporting of crashes. More severe crashes are reported in the media more easily than less severe crashes. Significant fluctuations in media reporting probability through time are found in terms of the year and month in which the crash took place. Crashes during week days are generally less reported in the news. The geographical area (province) in which the crash takes place also has a significant impact on the probability of being reported in the news. Crashes on motorways are significantly more represented in the news. Regarding the age of the involved victims, a clear trend of higher media reporting rates of crashes involving young victims or young fatalities is observed. Crashes involving female fatalities are also more frequently reported in the news. Furthermore, crashes involving a bus have a significantly higher probability of being reported in the news, while crashes involving a motorcycle have a significantly lower probability. Some models also indicate a lower reporting rate of crashes involving a moped, and a higher reporting rate of crashes involving heavy goods vehicles. These biases in media reporting can create skewed perceptions in the general public about the prevalence of traffic crashes and eventually may influence people's behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.
Morpheus 1.5A Lander Failure Investigation Results
NASA Technical Reports Server (NTRS)
Munday, Steve; Olansen, John
2013-01-01
On August 9th, 2012, the Morpheus 1.5 Vertical Testbed (VTB) crashed during Free Flight 2 (FF2) at KSC SLF, resulting in the loss of 1.5 VTB hardware. JSC/KSC Morpheus team immediately executed the pre-rehearsed Emergency Action Plan to protect personnel and property, so damage was limited to 1.5 VTB hardware. JSC/KSC Morpheus team secured data and mapped & recovered debris. Project had pre-declared loss of VTB to be a test failure, not a mishap.
2013-06-13
pilots or had sustained combat damage prior to falling in Dutch hands. Sometimes even wrecks had to be salvaged from the bottom of the North Sea and...emergency (crash) dives (based on the Japanese air threat).260 By 1939, the Dutch roedel tactic had been developed into a mature and very effective... diving hours for submarines was significantly reduced, flying hours and flying allowance for the Marine Luchtvaartdienst were reduced. Additionally, new
2013-01-01
earlier use of balanced blood component transfusion7,8 and the use of adjuncts such as tranexamic acid ,9,10 collec- tively termed damage control...K. Early fluid resuscitation in severe trauma. Br Med J 2012;345:5752. 9. CRASH-2 Collaborators. Effects of tranexamic acid on death, vascular...23e32. 10. Morrison JJ, DuBose JJ, Rasmussen TE, Midwinter MJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs
Damage Assessment Map from Interferometric Coherence
NASA Astrophysics Data System (ADS)
Yun, S.; Fielding, E. J.; Simons, M.; Rosen, P. A.; Owen, S. E.; Webb, F.
2010-12-01
Large earthquakes cause buildings to collapse, which often claims the lives of many. For example, 2010 Haiti earthquake killed about 230,000 people, with about 280,000 buildings collapsed or severely damaged. When a major earthquake hits an urban area, one of the most critical information for rescue operations is rapid and accurate assessment of building-collapse areas. From a study on 2003 Bam earthquake in Iran, interferometric coherence was proved useful for earthquake damage assessment (Fielding et al., 2005) when similar perpendicular baselines can be found for pre- and coseismic interferometric pairs and when there is little temporal and volume decorrelation. In this study we develop a new algorithm to create a more robust and accurate damage assessment map using interferometric coherence despite different interferometric baselines and with other decorrelation sources. We test the algorithm on a building block that recently underwent demolition, which is a proxy for building collapse due to earthquakes, for new construction in the City of Pasadena, California. The size of the building block is about 150 m E-W and 300 m N-S, and the demolition project started on April 23, 2007 and continued until January 22, 2008. After we process Japanese L-band ALOS PALSAR data with ROI_PAC, an interferometric coherence map that spans the demolition period is registered to a coherence map before the demolition, and the relative bias of the coherence values are removed, then a causality constraint is applied to enhance the change due to demolition. The results show clear change in coherence at the demolition site. We improve the signal-to-noise ratio of the coherence change at the demolition site from 17.3 (for simple difference) to 44.6 (with the new algorithm). The damage assessment map algorithm will become more useful with the emergence of InSAR missions with more frequent data acquisition, such as Sentinel-1 and DESDynI.
Wang, Junhua; Kong, Yumeng; Fu, Ting; Stipancic, Joshua
2017-01-01
This paper presents the use of the Aimsun microsimulation program to simulate vehicle violating behaviors and observe their impact on road traffic crash risk. Plugins for violations of speeding, slow driving, and abrupt stopping were developed using Aimsun's API and SDK module. A safety analysis plugin for investigating probability of rear-end collisions was developed, and a method for analyzing collision risk is proposed. A Fuzzy C-mean Clustering algorithm was developed to identify high risk states in different road segments over time. Results of a simulation experiment based on the G15 Expressway in Shanghai showed that abrupt stopping had the greatest impact on increasing collision risk, and the impact of violations increased with traffic volume. The methodology allows for the evaluation and monitoring of risks, alerting of road hazards, and identification of hotspots, and could be applied to the operations of existing facilities or planning of future ones.
Kong, Yumeng; Stipancic, Joshua
2017-01-01
This paper presents the use of the Aimsun microsimulation program to simulate vehicle violating behaviors and observe their impact on road traffic crash risk. Plugins for violations of speeding, slow driving, and abrupt stopping were developed using Aimsun’s API and SDK module. A safety analysis plugin for investigating probability of rear-end collisions was developed, and a method for analyzing collision risk is proposed. A Fuzzy C-mean Clustering algorithm was developed to identify high risk states in different road segments over time. Results of a simulation experiment based on the G15 Expressway in Shanghai showed that abrupt stopping had the greatest impact on increasing collision risk, and the impact of violations increased with traffic volume. The methodology allows for the evaluation and monitoring of risks, alerting of road hazards, and identification of hotspots, and could be applied to the operations of existing facilities or planning of future ones. PMID:28886141
Guo, Yanyong; Liu, Pan; Liang, Qiyu; Wang, Wei
2016-10-01
The primary objective of this study was to evaluate the effects of parallelogram-shaped pavement markings on vehicle speed and crashes in the vicinity of urban pedestrian crosswalks. The research team measured speed data at twelve sites, and crash data at eleven sites. Observational cross-sectional studies were conducted to identify if the effects of parallelogram-shaped pavement markings on vehicle speeds and speed violations were statistically significant. The results showed that parallelogram-shaped pavement markings significantly reduced vehicle speeds and speed violations in the vicinity of pedestrian crosswalks. More specifically, the speed reduction effects varied from 1.89km/h to 4.41km/h with an average of 3.79km/h. The reduction in the 85th percentile speed varied from 0.81km/h to 5.34km/h with an average of 4.19km/h. Odds ratios (OR) showed that the parallelogram-shaped pavement markings had effects of a 7.1% reduction in the mean speed and a 6.9% reduction in the 85th percentile speed at the pedestrian crosswalks. The reduction of proportion of drivers exceeding the speed limit varied from 8.64% to 14.15% with an average of 11.03%. The results of the crash data analysis suggested that the use of parallelogram-shaped pavement markings reduced both the frequency and severity of crashes at pedestrian crosswalks. The parallelogram-shaped pavement markings had a significant effect on reducing the vehicle-pedestrian crashes. Two crash prediction models were developed for vehicle-pedestrian crashes and rear-end crashes. According to the crash models, the presence of parallelogram-shaped pavement markings reduced vehicle-pedestrian crashes at pedestrian crosswalks by 24.87% with a 95% confidence interval of [10.06-30.78%]. However, the model results also showed that the presence of parallelogram-shaped pavement markings increased rear-end crashes at pedestrian crosswalks by 5.4% with a 95% confidence interval of [0-11.2%]. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kraemer, John D; Benton, Connor S
2015-01-01
Objective This study aims to quantify and describe the burden of fatal pedestrian crashes among persons using wheelchairs in the USA from 2006 to 2012. Design The occurrence of fatal pedestrian crashes among pedestrians using wheelchairs was assessed using two-source capture-recapture. Descriptive analysis of fatal crashes was conducted using customary approaches. Setting Two registries were constructed, both of which likely undercounted fatalities among pedestrians who use wheelchairs. The first used data from the Fatality Analysis Reporting System, and the second used a LexisNexis news search. Outcome measures Mortality rate (per 100 000 person-years) and crash-level, driver-level and pedestrian-level characteristics of fatal crashes. Results This study found that, from 2006 to 2012, the mortality rate for pedestrians using wheelchairs was 2.07/100 000 person-years (95% CI 1.60 to 2.54), which was 36% higher than the overall population pedestrian mortality rate (p=0.02). Men's risk was over fivefold higher than women's risk (p<0.001). Compared to the overall population, persons aged 50–64 using wheelchairs had a 38% increased risk (p=0.04), and men who use wheelchairs aged 50–64 had a 75% increased risk over men of the same age in the overall population (p=0.006). Almost half (47.6%; 95% CI 42.8 to 52.5) of fatal crashes occurred in intersections and 38.7% (95% CI 32.0 to 45.0) of intersection crashes occurred at locations without traffic control devices. Among intersection crashes, 47.5% (95% CI 40.6 to 54.5) involved wheelchair users in a crosswalk; no crosswalk was available for 18.3% (95% CI 13.5 to 24.4). Driver failure to yield right-of-way was noted in 21.4% (95% CI 17.7 to 25.7) of crashes, and no crash avoidance manoeuvers were detected in 76.4% (95% CI 71.0 to 81.2). Conclusions Persons who use wheelchairs experience substantial pedestrian mortality disparities calling for behavioural and built environment interventions. PMID:26589426
2000 Michigan traffic crash facts
DOT National Transportation Integrated Search
2001-06-22
The 2000 traffic fatality count was 1,382, down 0.3 percent from the 1999 figure of 1,386. : Compared with 1999, injuries were down 2.2 percent and total crashes were up 2.2 percent. : These figures translated into a death rate of 1.5 per 100 million...
1998 Michigan traffic crash facts
DOT National Transportation Integrated Search
1999-05-01
The 1998 traffic fatality count was 1,367, down 5.5 percent from the 1997 figure of 1,446. : Compared with 1997, injuries were down 4.3 percent and total crashes were down 5.2 : percent. These figures translated into a death rate of 1.5 per 100 milli...
2001 Michigan traffic crash facts
DOT National Transportation Integrated Search
2002-06-18
The 2001 traffic fatality count was 1,328, down 3.9 percent from the 2000 figure of 1,382. : Compared with 2000, injuries were down 7.8 percent and total crashes were down 5.7 : percent. These figures translated into a death rate of 1.4 per 100 milli...
1999 Michigan traffic crash facts
DOT National Transportation Integrated Search
2000-05-01
The 1999 traffic fatality count was 1,386, up 1.4 percent from the 1998 figure of 1,367. : Compared with 1998, injuries were down 5.3 percent and total crashes were up 2.9 percent. : These figures translated into a death rate of 1.5 per 100 million m...
1995 Michigan traffic crash facts
DOT National Transportation Integrated Search
1996-05-01
The 1995 traffic fatality count was 1,537, up 8.3 percent from the 1994 figure of 1,419. : Compared with 1994, injuries were up 2.9 percent and total crashes were up 5.8 percent. : These figures translated into a death rate of 1.8 per 100 million mil...
1996 Michigan traffic crash facts
DOT National Transportation Integrated Search
1997-05-01
The 1996 traffic fatality count was 1,505, down 2.1 percent from the 1995 figure of 1,537. : Compared with 1995, injuries were down 2.6 percent and total crashes were up 3.4 percent. : These figures translated into a death rate of 1.7 per 100 million...
Pedestrian and bicyclist fatalities in large truck crashes, 2013 : [analysis brief].
DOT National Transportation Integrated Search
2015-11-01
From 2006 to 2013, pedestrian fatalities as a : percentage of total fatalities in all motor vehicle : crashes rose from 11.2 percent to 14.5 percent, and : bicyclist fatalities as a percentage of total fatalities : rose from 1.8 percent to 2.3 percen...
Implications of Functional Capacity Loss and Fatality for Vehicle Safety Prioritization.
McMurry, Timothy L; Sherwood, Chris; Poplin, Gerald S; Seguí-Gómez, María; Crandall, Jeff
2015-01-01
We investigate the use of the Functional Capacity Index (FCI) as a tool for establishing vehicle safety priorities by comparing the life year burden of injuries to the burden of fatality in frontal and side automotive crashes. We demonstrate FCI's utility by investigating in detail the resulting disabling injuries and their life year costs. We selected occupants in the 2000-2013 NASS-CDS database involved in frontal and side crashes, merged their injuries with FCI, and then used the merged data to estimate each occupant's overall functional loss. Lifetime functional loss was assessed by combining this measure of impairment with the occupants' expected future life spans, estimated from the Social Security Administration's Actuarial Life Table. Frontal crashes produce a large number of disabling injuries, particularly to the lower extremities. In our population, these crashes are estimated to account for approximately 400,000 life years lost to disability in comparison with 500,000 life years lost to fatality. Victims of side crashes experienced a higher rate of fatality but a significantly lower rate of disabling injury (0.3 vs. 1.0%), resulting in approximately 370,000 life years lost to fatality versus 50,000 life years lost to disability. The burden of disabling injuries to car crash survivors should be considered when setting vehicle safety design priorities. In frontal crashes this burden in life years is similar to the burden attributable to fatality.
Perception and Biodynamics in Unalerted Precrash Response
McGehee, Daniel V.; Carsten, Oliver M.J.
2010-01-01
This research seeks to better understand unalerted driver response just prior to a serious vehicle crash. Few studies have been able to view a crash from the inside—with a camera focused on the driver and occupants. Four studies are examined: 1) a high-fidelity simulator study with an unalerted intersection incursion crash among 107 drivers; 2) four crashes from the Virginia Tech Transportation Institute (VTTI) 100 car study; 3) 58 crashes from vehicles equipped with an event triggered video recorder; and 4) a custom-designed high-fidelity simulator experiment that examined unalerted driver response to a head-on crash with a heavy truck. Analyses concentrate on decomposing driver perception, action, facial and postural changes with a focus on describing the neurophysiologic mechanisms designed to respond to danger. Results indicate that drivers involved in severe crashes generally have preview that an impact is about to occur. They respond first with vehicle control inputs (accelerator pedal release) along with facial state changes and withdrawal of the head back towards the head restraint. These responses frequently occur almost simultaneously, providing safety system designers with a number of reliable driver performance measures to monitor. Understanding such mechanisms may assist future advanced driver assistance systems (ADAS), advanced restraints, model development of advanced anthropomorphic test dummies (ATDs), injury prediction and the integration of active and passive safety systems. PMID:21050614
Comparing motor-vehicle crash risk of EU and US vehicles.
Flannagan, Carol A C; Bálint, András; Klinich, Kathleen D; Sander, Ulrich; Manary, Miriam A; Cuny, Sophie; McCarthy, Michael; Phan, Vuthy; Wallbank, Caroline; Green, Paul E; Sui, Bo; Forsman, Åsa; Fagerlind, Helen
2018-08-01
This study examined the hypotheses that passenger vehicles meeting European Union (EU) safety standards have similar crashworthiness to United States (US) -regulated vehicles in the US driving environment, and vice versa. The first step involved identifying appropriate databases of US and EU crashes that include in-depth crash information, such as estimation of crash severity using Delta-V and injury outcome based on medical records. The next step was to harmonize variable definitions and sampling criteria so that the EU data could be combined and compared to the US data using the same or equivalent parameters. Logistic regression models of the risk of a Maximum injury according to the Abbreviated Injury Scale of 3 or greater, or fatality (MAIS3+F) in EU-regulated and US-regulated vehicles were constructed. The injury risk predictions of the EU model and the US model were each applied to both the US and EU standard crash populations. Frontal, near-side, and far-side crashes were analyzed together (termed "front/side crashes") and a separate model was developed for rollover crashes. For the front/side model applied to the US standard population, the mean estimated risk for the US-vehicle model is 0.035 (sd = 0.012), and the mean estimated risk for the EU-vehicle model is 0.023 (sd = 0.016). When applied to the EU front/side population, the US model predicted a 0.065 risk (sd = 0.027), and the EU model predicted a 0.052 risk (sd = 0.025). For the rollover model applied to the US standard population, the US model predicted a risk of 0.071 (sd = 0.024), and the EU model predicted 0.128 risk (sd = 0.057). When applied to the EU rollover standard population, the US model predicted a 0.067 risk (sd = 0.024), and the EU model predicted 0.103 risk (sd = 0.040). The results based on these methods indicate that EU vehicles most likely have a lower risk of MAIS3+F injury in front/side impacts, while US vehicles most likely have a lower risk of MAIS3+F injury in llroovers. These results should be interpreted with an understanding of the uncertainty of the estimates, the study limitations, and our recommendations for further study detailed in the report. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Meuser, Thomas M.; Carr, David B.; Ulfarsson, Gudmundur F.
2009-01-01
The identification and evaluation of medically impaired drivers is an important safety issue. Medical fitness to drive is applicable to all ages but is particularly salient for older adults. Voluntary procedures, whereby various professionals and family members may report medical fitness concerns to State driver license bureaus, are common in the United States. This paper examines traffic crashes of drivers reported during 2001–2005 under the State of Missouri’s voluntary reporting law (House Bill HB-1536) and the resulting licensing outcomes. Missouri’s law is non-specific as to age, but the mean age of reported drivers was 80. Reports were submitted by police officers (30%), license office staff (27%), physicians (20%), family members (16%), and others (7%). The most common medical condition was dementia/cognitive (45%). Crash history for reported drivers was higher than that of controls, dating back to 1993, reaching a peak in 2001 when the crash involvement of reported drivers was 9.3% vs. 2.2% for controls—a fourfold difference. The crash involvement of reported drivers decreased rapidly after, indicating the impact of HB-1536 reporting with subsequent license revocation and to a lesser degree, mortality. Of the 4,100 reported individuals, 144 (3.5%) retained a driver’s license after the process. PMID:19245882
Doecke, Sam D; Kloeden, Craig N; Dutschke, Jeffrey K; Baldock, Matthew R J
2018-05-19
The objective of this article is to provide empirical evidence for safe speed limits that will meet the objectives of the Safe System by examining the relationship between speed limit and injury severity for different crash types, using police-reported crash data. Police-reported crashes from 2 Australian jurisdictions were used to calculate a fatal crash rate by speed limit and crash type. Example safe speed limits were defined using threshold risk levels. A positive exponential relationship between speed limit and fatality rate was found. For an example fatality rate threshold of 1 in 100 crashes it was found that safe speed limits are 40 km/h for pedestrian crashes; 50 km/h for head-on crashes; 60 km/h for hit fixed object crashes; 80 km/h for right angle, right turn, and left road/rollover crashes; and 110 km/h or more for rear-end crashes. The positive exponential relationship between speed limit and fatal crash rate is consistent with prior research into speed and crash risk. The results indicate that speed zones of 100 km/h or more only meet the objectives of the Safe System, with regard to fatal crashes, where all crash types except rear-end crashes are exceedingly rare, such as on a high standard restricted access highway with a safe roadside design.
Cummings, P
2002-01-01
Objective: Estimates of any protective effect of seat belts could be exaggerated if some crash survivors falsely claimed to police that they were belted in order to avoid a fine. The aim of this study was to determine whether estimates of seat belt effectiveness differed when based on belt use as recorded by the police and belt use determined by trained crash investigators. Design: Matched cohort study. Setting: United States. Subjects: Adult driver-passenger pairs in the same vehicle with at least one death (n=1689) sampled from crashes during 1988–2000; data from the National Accident Sampling System Crashworthiness Data System. Main outcome measure: Risk ratio for death among belted occupants compared with those not belted. Results: Trained investigators determined post-crash seat belt use by vehicle inspections for 92% of the occupants, confidential interviews with survivors for 5%, and medical or autopsy reports for 3%. Using this information, the adjusted risk ratio for belted persons was 0.36 (95% confidence interval 0.29 to 0.46). The risk ratio was also 0.36 using police reported belt use for the same crashes. Conclusions: Estimates of seat belt effects based upon police data were not substantially different from estimates which used data obtained by trained crash investigators who were not police officers. These results were from vehicles in which at least one front seat occupant died; these findings may not apply to estimates which use data from crashes without a death. PMID:12460976
Evaluation of the Scottsdale Loop 101 automated speed enforcement demonstration program.
Shin, Kangwon; Washington, Simon P; van Schalkwyk, Ida
2009-05-01
Speeding is recognized as a major contributing factor in traffic crashes. In order to reduce speed-related crashes, the city of Scottsdale, Arizona implemented the first fixed-camera photo speed enforcement program (SEP) on a limited access freeway in the US. The 9-month demonstration program spanning from January 2006 to October 2006 was implemented on a 6.5 mile urban freeway segment of Arizona State Route 101 running through Scottsdale. This paper presents the results of a comprehensive analysis of the impact of the SEP on speeding behavior, crashes, and the economic impact of crashes. The impact on speeding behavior was estimated using generalized least square estimation, in which the observed speeds and the speeding frequencies during the program period were compared to those during other periods. The impact of the SEP on crashes was estimated using 3 evaluation methods: a before-and-after (BA) analysis using a comparison group, a BA analysis with traffic flow correction, and an empirical Bayes BA analysis with time-variant safety. The analysis results reveal that speeding detection frequencies (speeds> or =76 mph) increased by a factor of 10.5 after the SEP was (temporarily) terminated. Average speeds in the enforcement zone were reduced by about 9 mph when the SEP was implemented, after accounting for the influence of traffic flow. All crash types were reduced except rear-end crashes, although the estimated magnitude of impact varies across estimation methods (and their corresponding assumptions). When considering Arizona-specific crash related injury costs, the SEP is estimated to yield about $17 million in annual safety benefits.
Crash energy absorption of two-segment crash box with holes under frontal load
NASA Astrophysics Data System (ADS)
Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina
2016-03-01
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.