Sample records for crater formation process

  1. An investigation of the cratering-induced motions occurring during the formation of bowl-shaped craters. [using high explosive charges as the cratering source

    NASA Technical Reports Server (NTRS)

    Piekutowski, A. J.

    1980-01-01

    The effects of the dynamic processes which occur during crater formation were examined using small hemispherical high-explosive charges detonated in a tank which had one wall constructed of a thick piece of clear plexiglas. Crater formation and the motions of numerous tracer particles installed in the cratering medium at the medium-wall interface were viewed through the wall of this quarter-space tank and recorded with high-speed cameras. Subsequent study and analysis of particle motions and events recorded on the film provide data needed to develop a time-sequence description of the formation of a bowl-shaped crater. Tables show the dimensions of craters produced in a quarter-space tank compared with dimensions of craters produced in normal half-space tanks. Crater growth rate summaries are also tabulated.

  2. Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies

    NASA Astrophysics Data System (ADS)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel

    2015-03-01

    Lunar floor-fractured craters are a class of 170 lunar craters with anomalously shallow, fractured floors. Two end-member processes have been proposed for the floor formation: viscous relaxation, and subcrater magmatic intrusion and sill formation. Recent morphometric analysis with new Lunar Reconnaissance Orbiter Laser Altimeter (LOLA) and image (LROC) data supports an origin related to shallow magmatic intrusion and uplift. We find that the distribution and characteristics of the FFC population correlates strongly with crustal thickness and the predicted frequency distribution of overpressurization values of magmatic dikes. For a typical nearside lunar crustal thickness, dikes with high overpressurization values favor surface effusive eruptions, medium values favor intrusion and sill formation, and low values favor formation of solidified dikes concentrated lower in the crust. We develop a model for this process, make predictions for the morphologic, morphometric, volcanic, and geophysical consequences of the process and then compare these predictions with the population of observed floor-fractured craters. In our model, the process of magmatic intrusion and sill formation begins when a dike propagates vertically towards the surface; as the dike encounters the underdense brecciated region beneath the crater, the magmatic driving pressure is insufficient to continue vertical propagation, but pressure in the stalled dike exceeds the local lithostatic pressure. The dike then begins to propagate laterally forming a sill which does not propagate past the crater floor region because increased overburden pressure from the crater wall and rim crest pinch off the dike at this boundary; the sill then continues to inflate, further raising and fracturing the brittle crater floor. When the intrusion diameter to intrusion depth ratio is smaller than a critical value, the intrusion assumes a laccolith shape with a domed central region. When the ratio exceeds a critical value, the intrusion concentrates bending primarily at the periphery, resulting in a flat, tabular intrusion. We predict that this process will result in concentric fractures over the region of greatest bending. This location is close to the crater wall in large, flat-floored craters, as observed in the crater Humboldt, and interior to the crater over the domed floor in smaller craters, as observed in the crater Vitello. A variety of volcanic features are predicted to be associated with the solidification and degassing of the intrusion; these include: (1) surface lava flows associated with concentric fractures (e.g., in the crater Humboldt); (2) vents with no associated pyroclastic material, from the deflation of under-pressurized magmatic foam (e.g., the crater Damoiseau); and (3) vents with associated pyroclastic deposits from vulcanian eruptions of highly pressurized magmatic foam (e.g., the crater Alphonsus). The intrusion of basaltic magma beneath the crater is predicted to contribute a positive component to the Bouguer gravity anomaly; we assess the predicted Bouguer anomalies associated with FFCs and outline a process for their future interpretation. We conclude that our proposed mechanism serves as a viable formation process for FFCs and accurately predicts numerous morphologic, morphometric, and geophysical features associated with FFCs. These predictions can be further tested using GRAIL (Gravity Recovery and Interior Laboratory) data.

  3. The excavation stage of basin formation - A qualitative model

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1981-01-01

    One of the most complex problems in planetary geology and geophysics is the determination of the nature of the impact cratering processes at scales of tens to thousands of kilometers that produce the complex morphological structures of multiring basins. The cratering process is frequently considered to be divided into three stages, including a short high-pressure stage of initial contact between the projectile and the planetary crust, a longer excavation or cratering flow stage culminating in the formation of a transient crater, and a still longer modification stage during which the transient crater is modified into the observed final geologic form. The transient crater may be considered as the initial boundary condition of the modification stage. In the present investigation, the nature of the transient crater is indicated by the cratering flow field determined from numerical simulations of the excavation stage. Attention is given to empirical and theoretical scaling.

  4. Cratering history of Miranda: Implications for geologic processes

    USGS Publications Warehouse

    Plescia, J.B.

    1988-01-01

    Miranda's surface is divisible into cratered terrain and coronae. The cratered terrain is the most heavily cratered of the terrains and presumably is the oldest. The frequency of craters in the cratered terrain is variable and related to position on the satellite. The coronae are also variably cratered. Elsinore and Arden Coronae have similar crater frequencies and may have formed simultaneously. They are of intermediate agompared to the cratered terrain and to Inverness Corona, which is the youngest major terrain. Graben formation appears to have occured both before and after the formation of the coronae reflecting periods of global expansion. Miranda's surfaces are, in general, the least cratered and therefore inferred to be the youngest within the Uranian system. ?? 1988.

  5. The formation of floor-fractured craters in Xanthe Terra

    NASA Astrophysics Data System (ADS)

    Sato, Hiroyuki; Kurita, Kei; Baratoux, David

    2010-05-01

    Floor-fractured craters (FFC) are a peculiar form of degradation of impact craters defined by the presence of crevice networks and mesas affecting crater floors. They are preferentially distributed near chaotic terrains and outflow channels. The scope of this paper is to present a detailed systematic analysis of FFC at Xanthe Terra. FFC morphologies in this region are classified into five types making a picture of different stages of the same degradation process. FFC are geographically intermixed with un-fractured normal craters (non-FFC). Young craters are less prone to show this type of degradation, as suggested by fresh ejecta layer with preserved crater floor. Size distributions of FFC and non-FFC indicate that larger craters are preferentially fractured. Careful examinations of the crater floor elevations reveal that the crevices often extend deeper than the original crater cavity. Furthermore, an onset depth for the formation of FFC is evidenced from the difference of spatial distributions between FFC and non-FFC. Roof-collapsed depressions observed in the same region have been also documented and their characteristics suggest the removal of subsurface material at depth from about 1200 to 4000 m. These observations taken together suggest a subsurface zone of volume deficit at depth from 1 to 2 km down to several kilometers responsible for FFC formation. Then a scenario of FFC formations is presented in the context of groundwater discharge events at the late Hesperian. This scenario involves two key processes, Earth fissuring and piping erosion, known to occur with rapid groundwater migrations on Earth.

  6. A depth versus diameter scaling relationship for the best-preserved melt-bearing complex craters on Mars

    NASA Astrophysics Data System (ADS)

    Tornabene, Livio L.; Watters, Wesley A.; Osinski, Gordon R.; Boyce, Joseph M.; Harrison, Tanya N.; Ling, Victor; McEwen, Alfred S.

    2018-01-01

    We use topographic data to show that impact craters with pitted floor deposits are among the deepest on Mars. This is consistent with the interpretation of pitted materials as primary crater-fill impactite deposits emplaced during crater formation. Our database consists of 224 pitted material craters ranging in size from ∼1 to 150 km in diameter. Our measurements are based on topographic data from the Mars Orbiter Laser Altimeter (MOLA) and the High-Resolution Stereo Camera (HRSC). We have used these craters to measure the relationship between crater diameter and the initial post-formation depth. Depth was measured as maximum rim-to-floor depth, (dr), but we also report the depth measured using other definitions. The database was down-selected by refining or removing elevation measurements from ;problematic; craters affected by processes and conditions that influenced their dr/D, such as pre-impact slopes/topography and later overprinting craters. We report a maximum (deepest) and mean scaling relationship of dr = (0.347 ± 0.021)D0.537 ± 0.017 and dr = (0.323 ± 0.017)D0.538 ± 0.016, respectively. Our results suggest that significant variations between previously-reported MOLA-based dr vs. D relationships may result from the inclusion of craters that: 1) are influenced by atypical processes (e.g., highly oblique impact), 2) are significantly degraded, 3) reside within high-strength regions, and 4) are transitional (partially collapsed). By taking such issues into consideration and only measuring craters with primary floor materials, we present the best estimate to date of a MOLA-based relationship of dr vs. D for the least-degraded complex craters on Mars. This can be applied to crater degradation studies and provides a useful constraint for models of complex crater formation.

  7. Sesquinary reimpacts dominate surface characteristics on Phobos

    NASA Astrophysics Data System (ADS)

    Nayak, Michael

    2018-01-01

    We use topographic data to show that impact craters with pitted floor deposits are among the deepest on Mars. This is consistent with the interpretation of pitted materials as primary crater-fill impactite deposits emplaced during crater formation. Our database consists of 224 pitted material craters ranging in size from ˜1 to 150 km in diameter. Our measurements are based on topographic data from the Mars Orbiter Laser Altimeter (MOLA) and the High-Resolution Stereo Camera (HRSC). We have used these craters to measure the relationship between crater diameter and the initial post-formation depth. Depth was measured as maximum rim-to-floor depth, (dr), but we also report the depth measured using other definitions. The database was down-selected by refining or removing elevation measurements from "problematic" craters affected by processes and conditions that influenced their dr/D, such as pre-impact slopes/topography and later overprinting craters. We report a maximum (deepest) and mean scaling relationship of dr = (0.347±0.021)D0.537±0.017 and dr = (0.323±0.017)D0.538±0.016, respectively. Our results suggest that significant variations between previously-reported MOLA-based dr vs. D relationships may result from the inclusion of craters that: 1) are influenced by atypical processes (e.g., highly oblique impact), 2) are significantly degraded, 3) reside within high-strength regions, and 4) are transitional (partially collapsed). By taking such issues into consideration and only measuring craters with primary floor materials, we present the best estimate to date of a MOLA-based relationship of dr vs. D for the least-degraded complex craters on Mars. This can be applied to crater degradation studies and provides a useful constraint for models of complex crater formation.

  8. Granular Crater Formation

    NASA Astrophysics Data System (ADS)

    Clark, Abe; Behringer, Robert; Brandenburg, John

    2009-11-01

    This project characterizes crater formation in a granular material by a jet of gas impinging on a granular material, such as a retro-rocket landing on the moon. We have constructed a 2D model of a planetary surface, which consists of a thin, clear box partially filled with granular materials (sand, lunar and Mars simulants...). A metal pipe connected to a tank of nitrogen gas via a solenoid valve is inserted into the top of the box to model the rocket. The results are recorded using high-speed video. We process these images and videos in order to test existing models and develop new ones for describing crater formation. A similar set-up has been used by Metzger et al.footnotetextP. T. Metzger et al. Journal of Aerospace Engineering (2009) We find that the long-time shape of the crater is consistent with a predicted catenary shape (Brandenburg). The depth and width of the crater both evolve logarithmically in time, suggesting an analogy to a description in terms of an activated process: dD/dt = A (-aD) (D is the crater depth, a and A constants). This model provides a useful context to understand the role of the jet speed, as characterized by the pressure used to drive the flow. The box width also plays an important role in setting the width of the crater.

  9. Zhamanshin meteor crater

    NASA Technical Reports Server (NTRS)

    Florenskiy, P. V.; Dabizha, A. I.

    1987-01-01

    A historical survey and geographic, geologic and geophysical characteristics, the results of many years of study of the Zhamanshin meteor crater in the Northern Aral region, are reported. From this data the likely initial configuration and cause of formation of the crater are reconstructed. Petrographic and mineralogical analyses are given of the brecciated and remelted rocks, of the zhamanshinites and irgizite tektites in particular. The impact melting, dispersion and quenching processes resulting in tektite formation are discussed.

  10. Moon - 'Ghost' craters formed during Mare filling.

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Hartmann, W. K.; Wood, C. A.

    1973-01-01

    This paper discusses formation of 'pathological' cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D less than 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.

  11. Sequence of infilling events in Gale Crater, Mars: Results from morphology, stratigraphy, and mineralogy

    NASA Astrophysics Data System (ADS)

    Le Deit, Laetitia; Hauber, Ernst; Fueten, Frank; Pondrelli, Monica; Rossi, Angelo Pio; Jaumann, Ralf

    2013-12-01

    Crater is filled by sedimentary deposits including a mound of layered deposits, Aeolis Mons. Using orbital data, we mapped the crater infillings and measured their geometry to determine their origin. The sediment of Aeolis Mons is interpreted to be primarily air fall material such as dust, volcanic ash, fine-grained impact products, and possibly snow deposited by settling from the atmosphere, as well as wind-blown sands cemented in the crater center. Unconformity surfaces between the geological units are evidence for depositional hiatuses. Crater floor material deposited around Aeolis Mons and on the crater wall is interpreted to be alluvial and colluvial deposits. Morphologic evidence suggests that a shallow lake existed after the formation of the lowermost part of Aeolis Mons (the Small yardangs unit and the mass-wasting deposits). A suite of several features including patterned ground and possible rock glaciers are suggestive of periglacial processes with a permafrost environment after the first hundreds of thousands of years following its formation, dated to ~3.61 Ga, in the Late Noachian/Early Hesperian. Episodic melting of snow in the crater could have caused the formation of sulfates and clays in Aeolis Mons, the formation of rock glaciers and the incision of deep canyons and valleys along its flanks as well as on the crater wall and rim, and the formation of a lake in the deepest portions of Gale.

  12. Preliminary Impact Crater Dimensions on 433 Eros from the NEAR Laser Rangefinder and Imager

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Garvin, J. B.; Cheng, A. F.; Zuber, M.; Smith, D.; Neumann, G.; Murchie, S.; Veverka, J.; Robinson, M.

    2001-01-01

    We report preliminary observations obtained from the NEAR Laser Rangefinder (NLR) and NEAR Multispectral Imager (MSI) for approx. 300 craters seen on 433 Eros to address Eros crater formation and degradation processes. Additional information is contained in the original extended abstract.

  13. Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles

    NASA Astrophysics Data System (ADS)

    Elton, Eric S.; Rosenberg, Ethan R.; Ristenpart, William D.

    2017-11-01

    We report that metallic electrodes are physically pitted during charge transfer events with water droplets or other conductive objects moving in strong electric fields (>1 kV/cm). Post situ microscopic inspection of the electrode shows that an individual charge transfer event yields a crater approximately 1 to 3 microns wide, often with features similar to splash coronae. We interpret the crater formation in terms of localized melting of the electrode via resistive heating concurrent with dielectric breakdown through the surrounding insulating fluid. A scaling analysis indicates that the crater diameter scales as the inverse cube root of the melting point temperature Tm of the metal, in accord with measurements on several metals (660°C <=Tm <= 3414°C). The process of crater formation provides a possible explanation for the longstanding difficulty in quantitatively corroborating Maxwell's prediction for the amount of charge acquired by spheres contacting a planar electrode.

  14. Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles

    NASA Astrophysics Data System (ADS)

    Elton, E. S.; Rosenberg, E. R.; Ristenpart, W. D.

    2017-09-01

    We report that metallic electrodes are physically pitted during charge transfer events with water droplets or other conductive objects moving in strong electric fields (>1 kV /cm ). Post situ microscopic inspection of the electrode shows that an individual charge transfer event yields a crater approximately 1-3 μ m wide, often with features similar to a splash corona. We interpret the crater formation in terms of localized melting of the electrode via resistive heating concurrent with dielectric breakdown through the surrounding insulating fluid. A scaling analysis indicates that the crater diameter scales as the inverse cube root of the melting point temperature Tm of the metal, in accord with measurements on several metals (660 °C ≤Tm≤3414 °C ). The process of crater formation provides a possible explanation for the longstanding difficulty in quantitatively corroborating Maxwell's prediction for the amount of charge acquired by spheres contacting a planar electrode.

  15. Impact Craters on Earth: Lessons for Understanding Martian Geological Materials and Processes

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.

    2015-12-01

    Impact cratering is one of the most ubiquitous geological processes in the Solar System and has had a significant influence on the geological evolution of Mars. Unlike the Moon and Mercury, the Martian impact cratering record is notably diverse, which is interpreted to reflect interactions during the impact process with target volatiles and/or the atmosphere. The Earth also possesses a volatile-rich crust and an atmosphere and so is one of the best analogues for understanding the effects of impact cratering on Mars. Furthermore, fieldwork at terrestrial craters and analysis of samples is critical to ground-truth observations made based on remote sensing data from Martian orbiters, landers, and rovers. In recent years, the effect of target lithology on various aspects of the impact cratering process has emerged as a major research topic. On Mars, volatiles have been invoked to be the primary factor influencing the morphology of ejecta deposits - e.g., the formation of single-, double- and multiple-layered ejecta deposits - and central uplifts - e.g., the formation of so-called "central pit" craters. Studies of craters on Earth have also shown that volatiles complicate the identification of impactites - i.e., rocks produced and/or affected by impact cratering. Identifying impactites on Earth is challenging, often requiring intensive and multi-technique laboratory analysis of hand specimens. As such, it is even more challenging to recognize such materials in remote datasets. Here, observations from the Haughton (d = 23 km; Canada), Ries (d = 24 km; Germany), Mistastin (d = 28 km; Canada), Tunnunik, (d = 28 km; Canada), and West Clearwater Lake (d = 36 km; Canada) impact structures are presented. First, it is shown that some impactites mimic intrusive, volcanic, volcanoclastic and in some cases sedimentary clastic rocks. Care should, therefore, be taken in the identification of seemingly unusual igneous rocks at rover landing sites as they may represent impact melt rocks. Second, it is proposed that layered ejecta deposits on Earth and Mars form from a common multi-stage emplacement model. Third, in terms of the origin of central pit craters it is shown that based on current definitions, these central uplift morphologies also occur on Earth, which offers important insights in their formation.

  16. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our experiments show that different sources of water form valleys of similar size in quite different timescales.

  17. Gradational evolution of young, simple impact craters on the Earth

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    From these three craters, a first order gradational evolutionary sequence can be proposed. As crater rims are reduced by backwasting and downwasting through fluvial and mass wasting processes, craters are enlarged by approx. 10 pct. Enlargement of drainages inside the crater eventually forms rim breaches, thereby capturing headward portions of exterior drainages. At the same time, the relative importance of gradational processes may reverse on the ejecta: aeolian activity may supersede fluvial incisement and fan formation at late stages of modification. Despite actual high drainage densities on the crater exterior during early stages of gradation, the subtle scale of these systems results in low density estimates from air photos and satellite images. Because signatures developed on surfaces around all three craters appear to be mostly gradient dependent, they may not be unique to simple crater morphologies. Similar signatures may develop on portions of complex craters as well; however, important differences may also occur.

  18. Analysis of impact craters on Mercury's surface.

    NASA Astrophysics Data System (ADS)

    Martellato, E.; Cremonese, G.; Marzari, F.; Massironi, M.; Capria, M. T.

    The formation of a crater is a complex process, which can be analyzed with numerical simulations and/or observational methods. This work reports a preliminary analysis of some craters on Mercury, based on the Mariner 10 images. The physical and dynamical properties of the projectile may not derive from the knowledge of the crater alone, since the size of an impact crater depends on many parameters. We have calculated the diameter of the projectile using the scaling law of Schmidt and Housen (\\citep{SandM87}). It is performed for different projectile compositions and impact velocities, assuming an anorthositic composition of the surface. The melt volume production at the initial phases of the crater formation is also calculated by the experimental law proposed by O'Keefe and Ahrens (\\citep{OA82}), giving the ratio between melt and projectile mass.

  19. Infrared and radar signatures of lunar craters - Implications about crater evolution

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.; Shorthill, R. W.; Zisk, S. H.

    1980-01-01

    Geological models accounting for the strongly crater size-dependent IR and radar signatures of lunar crater floors are examined. The simplest model involves the formation and subsequent 'gardening' of an impact melt layer on the crater floor, but while adequate in accounting for the gradual fading of IR temperatures and echo strengths in craters larger than 30 km in diameter, it is inadequate for smaller ones. It is concluded that quantitative models of the evolution of rock populations in regoliths and of the interaction of microwaves with regoliths are needed in order to understand crater evolutionary processes.

  20. In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids

    NASA Astrophysics Data System (ADS)

    Yasui, Minami; Arakawa, Masahiko; Hasegawa, Sunao; Fujita, Yukihiro; Kadono, Toshihiko

    2012-11-01

    Recent studies of impact craters formed on low-density asteroids led to the proposal of a new crater formation mechanism dominated by pore collapse and compaction. Thus, it is important to study the crater formation process associated with the projectile penetration on porous cohesive targets. Laboratory impact experiments were conducted for a porous gypsum target with porosity of 50%, and flash X-rays were used to visualize the interior of the target for in situ observation of crater formation and projectile penetration. Spherical projectiles made of three different materials, stainless steel, aluminum, and nylon were impacted at 1.9-2.4 km/s (low-velocity impact) and 5.6-6.4 km/s (high-velocity impact) by using a two-stage light-gas gun. Two imaging plates were used to take two X-ray images at a different delay time from the impact moment for one shot. Two types of crater cavity shape were found on the porous gypsum target, that is, penetration holes or hemispherical cavities, depending on the projectile size and density, and the impact velocity. The drag coefficient of a projectile was determined by measuring the penetration depth changing with time, and we found that it was closely related to the crater cavity shape: it was about 0.9 for a penetration hole, while it was 2.3-3.9 for a hemispherical cavity. This large value for a hemispherical cavity could have been caused by the deformation or the disruption of the projectile. The cratering efficiency, ρtVcr(t)/mp, was found to have a power law relationship to the scaling time for crater growth, πt = vit/rp, where vi is the impact velocity, rp is the projectile radius, and t is the time after the impact, and all data for stainless steel and aluminum projectiles merged completely and could be fitted by a power-law equation of ρtVcr(t)/mp=2.69×10-1πt1.10. Furthermore, the scaled crater volume, πV = Vcr_finalρt/mp, where Vcr_final is the final crater cavity volume, ρt is the target density, and mp is the projectile mass, was successfully fitted by a power law equation when another scaling parameter was used for the crater formation in strength regime, πY=Yt/ρtvi2, where Yt is the target material strength, as follows: πV=1.69×10-1πY-0.51. As a result, the crater formed on porous gypsum was revealed to be more than one order of magnitude smaller than that formed on basalt. Based on our experimental results, which visualize how crater cavities on porous cohesive materials grow with projectile penetration, we are able to discuss compression and excavation processes during crater formation quantitatively. This observation enables us to investigate and revise numerical models and crater scaling laws for high-velocity impacts into porous cohesive materials.

  1. Shatter cones formed in large-scale experimental explosion craters

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Davis, L. K.

    1977-01-01

    In 1968, a series of 0.5-ton and 100-ton TNT explosion experiments were conducted in granitic rock near Cedar City, Utah, as part of a basic research program on cratering and shock wave propagation. Of special interest was the formation of an important type of shock metamorphic feature, shatter cones. A description is presented of the first reported occurrence of shatter cones in high explosion trials. A background to shatter cone studies is presented and attention is given to the test program, geology and physical properties of the test medium, the observed cratering, and the formational pressures for shatter cones. The high explosion trials conducted demonstrate beyond any doubt, that shatter cones can be formed by shock wave processes during cratering and that average formational pressures in these crystalline rocks are in the 20-60 kb range.

  2. Covariant C and O Isotope Trends in Some Terrestrial Carbonates and ALH 84001: Possible Linkage Through Similar Formation Processes

    NASA Technical Reports Server (NTRS)

    Volk, Kathryn E.; Niles, Paul B.; Socki, Richard A.

    2011-01-01

    Carbonate minerals found on the surface of Mars and in martian meteorites indicate that liquid water has played a significant role in the planet's history. These findings have raised questions regarding the history of the martian hydrosphere and atmosphere as well as the possibility of life. Sunset Crater, Arizona is a dry environment with relatively high evaporation and brief periods of precipitation. This environment resembles Mars and may make Sunset Crater a good analog to martian carbonates. In this study we sought to identify discrete micro-scale isotopic variation within the carbonate crusts in Sunset Crater to see if they resembled the micro-scale isotope variation found in ALH 84001 carbonates. Sunset Crater carbonate formation may be used as a martian analog and ultimately provide insight into carbonate formation in ALH 84001.

  3. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  4. Modelling of crater formation on anode surface by high-current vacuum arcs

    NASA Astrophysics Data System (ADS)

    Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura

    2016-11-01

    Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.

  5. Processes of lunar crater degradation - Changes in style with geologic time

    NASA Technical Reports Server (NTRS)

    Head, J. W.

    1975-01-01

    Relative age schemes of crater degradation are calibrated to radiometric dates obtained from lunar samples, changes in morphologic features are analyzed, and the style and rate of lunar surface degradation processes are modeled in relation to lunar geologic time. A comparison of radiometric age scales and the relative degradation of morphologic features for craters larger than about 5 km in diameter shows that crater degradation can be divided into two periods: Period I, prior to about 3.9 billion years ago and characterized by a high meteoritic influx rate and the formation of large multiringed basins, and Period II, from about 3.9 billion years ago to the present and characterized by a much lower influx rate and a lack of large multiringed basins. Diagnostic features for determining the relative ages of craters are described, and crater modification processes are considered, including primary impacts, lateral sedimentation, proximity weathering, landslides, and tectonism. It is suggested that the fundamental degradation of early Martian craters may be associated with erosional and depositional processes related to the intense bombardment characteristics of Period I.

  6. Geomorphology of crater and basin deposits - Emplacement of the Fra Mauro formation

    NASA Technical Reports Server (NTRS)

    Morrison, R. H.; Oberbeck, V. R.

    1975-01-01

    Characteristics of continuous deposits near lunar craters larger than about 1 km wide are considered, and it is concluded that (1) concentric dunes, radial ridges, and braided lineations result from deposition of the collision products of ejecta from adjacent pairs of similarly oriented secondary-crater chains and are, therefore, concentrations of secondary-crater ejecta; (2) intracrater ridges are produced within preexisting craters surrounding a fresh primary crater by ricocheting and focusing of secondary-crater ejecta from the preexisting craters' walls; and (3) secondary cratering has produced many of the structures of the continuous deposits of relatively small lunar craters and is the dominant process for emplacement of most of the radial facies of the continuous deposits of large lunar craters and basins. The percentages of Imbrium ejecta in deposits and the nature of Imbrium sculpturing are investigated.

  7. Volatile-rich Crater Interior Deposits on Mars: An Energy Balance Model of Modification

    NASA Technical Reports Server (NTRS)

    Russell, Patrick S.; Head, James W.; Hecht, Michael H.

    2003-01-01

    Several craters on Mars are partially filled by material emplaced by post-impact processes. Populations of such craters include those in the circumsouth polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. In this study, crater fill material refers to an interior mound, generally separated from the interior walls of the crater by a trough that may be continuous along the crater s circumference (i.e. a ring-shaped trough), or may only partially contact the crater walls (i.e. a crescent-shaped trough). The fill deposit is frequently off-center from the crater center and may be asymmetric, (i.e. not circular) in plan view shape. Here we test the hypothesis that asymmetries in volatile fill shape, profile, and center-location within a crater result from asymmetries in local energy balance within the crater due mainly to variation of solar insolation and radiative effects of the crater walls over the crater interior. We first focus on Korolev crater in the northern lowlands. We can then apply this model to other craters in different regions. If asymmetry in morphology and location of crater fill are consistent with radiative-dominated asymmetries in energy budget within the crater, then 1) the volatile-rich composition of the fill is supported (this process should not be effective at shaping volcanic or sedimentary deposits), and 2) the dominant factor determining the observed shape of volatile-rich crater fill is the local radiative energy budget within the crater (and erosive processes such as eolian deflation are not necessary).

  8. Gully formation in terrestrial simple craters: Meteor Crater, USA and Lonar Crater, India

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Head, J. W.; Kring, D. A.

    2007-12-01

    Geomorphic features such as gullies, valley networks, and channels on Mars have been used as a proxy to understand the climate and landscape evolution of Mars. Terrestrial analogues provide significant insight as to how the various exogenic and endogenic processes might contribute to the evolution of these martian landscapes. We describe here a terrestrial example from Meteor Crater, which shows a spectacular development of gullies throughout the inner wall in response to rainwater precipitation, snow melting and groundwater discharge. As liquid water has been envisaged as one of the important agents of landscape sculpturing, Meteor Crater remains a useful landmark, where planetary geologists can learn some lessons. We also show here how the lithology and structural framework of this crater controls the gully distribution. Like many martian impact craters, it was emplaced in layered sedimentary rocks with an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels and fans. Some of the gullies originate from the rim crest and others from the middle crater wall, where a lithologic transition occurs. Deeply incised alcoves are well-developed on the soft sandstones of the Coconino Formation exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of groundwater flow and discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing degradation. Like martian craters, channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when groundwater seeped from springs on the crater wall. Caves exposed on the lower crater level may point to percolation of surface runoff and selective discharge through fractures on the crater wall. Similar relationships are seen at Lonar Crater, India. Although these hydrological processes continue at Meteor Crater today, conditions at the crater are much more arid than they were soon after impact, reflecting a climatic shift similar in direction to that inferred for Mars.

  9. A Frost Enhanced Landscape

    NASA Image and Video Library

    2015-12-23

    The arc of hills in this image from NASA Mars Reconnaissance Orbiter spacecraft is the rim of an old and infilled impact crater. The sediments that were deposited within the crater have since formed polygonal cracks due to repeated cycles of freezing and thawing. The process of polygon formation is common at these polar latitudes, but polygons are not always as striking as they are here. In this image, the polygons have been highlighted by persistent frost in the cracks. The crater rim constrains the polygon formation within the crater close to the rim, creating a spoke and ring pattern of cracks. This leads to more rectangular polygons than those near the center of the crater. The polygons close to the center of the crater display a more typical pattern. A closer look shows some of these central polygons, which have smaller polygons within them, and smaller polygons within those smaller polygons, which makes for a natural fractal. http://photojournal.jpl.nasa.gov/catalog/PIA20289

  10. Impact into the earth's ocean floor - Preliminary experiments, a planetary model, and possibilities for detection

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.

    1982-01-01

    Impact processes and plate tectonics are invoked in an experimental study of craters larger than 100 km in diameter on the ocean floor. Although the results obtained from 22-caliber (383 m/sec) ammunition experiments using dense, saturated sand as a target medium cannot be directly scaled to large events, the phenomenology exhibited is that expected of actual craters on the ocean floor: steep, mixed ejecta plume, gravitational adjustment of the crater to form a shallow basin, and extensive reworking of the ejecta, rim, and floor materials by violent collapse of the transient water cavity. Excavation into the mantle is predicted, although asthenospheric influence on outer ring formation is not. The clearest geophysical signature of such a crater is not topography; detection should instead be based on gravity and geoid anomalies due to uplift of the Moho, magnetic anomalies, and seismic resolution of the Moho uplift and crater formation fault planes.

  11. The Mechanics of Peak-Ring Impact Crater Formation from the IODP-ICDP Expedition 364

    NASA Astrophysics Data System (ADS)

    Melosh, H.; Collins, G. S.; Morgan, J. V.; Gulick, S. P. S.

    2017-12-01

    The Chicxulub impact crater is one of very few peak-ring impact craters on Earth. While small (less than 3 km on Earth) impact craters are typically bowl-shaped, larger craters exhibit central peaks, which in still larger (more than about 100 km on Earth) craters expand into mountainous rings with diameters close to half that of the crater rim. The origin of these peak rings has been contentious: Such craters are far too large to create in laboratory experiments and remote sensing of extraterrestrial examples has not clarified the mechanics of their formation. Two principal models of peak ring formation are currently in vogue, the "nested crater" model, in which the peak ring originates at shallow depths in the target, and the "dynamic collapse" model in which the peak ring is uplifted at the base of a collapsing, over-steepened central peak and its rocks originate at mid-crustal depths. IODP-ICDP Expedition 364 sought to elucidate, among other important goals, the mechanics of peak ring formation in the young (66 Myr), fresh, but completely buried Chicxulub impact crater. The cores from this borehole now show unambiguously that the rocks in the Chicxulub peak ring originated at mid-crustal depths, apparently ruling out the nested crater model. These rocks were shocked to pressures on the order of 10-35 GPa and were so shattered that their densities and seismic velocities now resemble those of sedimentary rocks. The morphology of the final crater, its structure as revealed in previous seismic imaging, and the results from the cores are completely consistent with modern numerical models of impact crater excavation and collapse that incorporate a model for post-impact weakening. Subsequent to the opening of a ca. 100 km diameter and 30 km deep transient crater, this enormous hole in the crust collapsed over a period of about 10 minutes. Collapse was enabled by movement of the underlying rocks, which briefly behaved in the manner of a high-viscosity fluid, a brittle deformation state described by the process of "acoustic" fluidization initiated by strong elastic vibrations accompanying the opening and collapse of the crater. The shattered core, cut by both melt rock and clastic dikes, is consistent with the block model of acoustic fluidization supporting its application to crater collapse both on the Earth and on other planets.

  12. Subsurface volatile content of martian double-layer ejecta (DLE) craters

    USGS Publications Warehouse

    Viola, Donna; McEwen, Alfred S.; Dundas, Colin M.; Byrne, Shane

    2017-01-01

    Excess ice is widespread throughout the martian mid-latitudes, particularly in Arcadia Planitia, where double-layer ejecta (DLE) craters also tend to be abundant. In this region, we observe the presence of thermokarstically-expanded secondary craters that likely form from impacts that destabilize a subsurface layer of excess ice, which subsequently sublimates. The presence of these expanded craters shows that excess ice is still preserved within the adjacent terrain. Here, we focus on a 15-km DLE crater that contains abundant superposed expanded craters in order to study the distribution of subsurface volatiles both at the time when the secondary craters formed and, by extension, remaining today. To do this, we measure the size distribution of the superposed expanded craters and use topographic data to calculate crater volumes as a proxy for the volumes of ice lost to sublimation during the expansion process. The inner ejecta layer contains craters that appear to have undergone more expansion, suggesting that excess ice was most abundant in that region. However, both of the ejecta layers had more expanded craters than the surrounding terrain. We extrapolate that the total volume of ice remaining within the entire ejecta deposit is as much as 74 km3 or more. The variation in ice content between the ejecta layers could be the result of (1) volatile preservation from the formation of the DLE crater, (2) post-impact deposition in the form of ice lenses; or (3) preferential accumulation or preservation of subsequent snowfall. We have ruled out (2) as the primary mode for ice deposition in this location based on inconsistencies with our observations, though it may operate in concert with other processes. Although none of the existing DLE formation hypotheses are completely consistent with our observations, which may merit a new or modified mechanism, we can conclude that DLE craters contain a significant quantity of excess ice today.

  13. Ejecta from Targets Strong and Weak: Experimental Measurements of Strength Controlled and Strengthless Craters

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.

    2014-09-01

    This study presents novel time-resolved 3D measurements of the impact ejecta through crater formation and the arresting process that ceases growth into a variety of targets exhibiting a spectrum of different strengths of interest on planetary bodies.

  14. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    NASA Astrophysics Data System (ADS)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.

  15. Crater size estimates for large-body terrestrial impact

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.; Housen, Kevin R.

    1988-01-01

    Calculating the effects of impacts leading to global catastrophes requires knowledge of the impact process at very large size scales. This information cannot be obtained directly but must be inferred from subscale physical simulations, numerical simulations, and scaling laws. Schmidt and Holsapple presented scaling laws based upon laboratory-scale impact experiments performed on a centrifuge (Schmidt, 1980 and Schmidt and Holsapple, 1980). These experiments were used to develop scaling laws which were among the first to include gravity dependence associated with increasing event size. At that time using the results of experiments in dry sand and in water to provide bounds on crater size, they recognized that more precise bounds on large-body impact crater formation could be obtained with additional centrifuge experiments conducted in other geological media. In that previous work, simple power-law formulae were developed to relate final crater diameter to impactor size and velocity. In addition, Schmidt (1980) and Holsapple and Schmidt (1982) recognized that the energy scaling exponent is not a universal constant but depends upon the target media. Recently, Holsapple and Schmidt (1987) includes results for non-porous materials and provides a basis for estimating crater formation kinematics and final crater size. A revised set of scaling relationships for all crater parameters of interest are presented. These include results for various target media and include the kinematics of formation. Particular attention is given to possible limits brought about by very large impactors.

  16. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; hide

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  17. Ancient impact and aqueous processes at Endeavour Crater, Mars

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Calef, F.J.; Clark, B. C.; Cohen, B. A.; Crumpler, L.A.; de Souza, P. A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Herkenhoff, K. E.; Hurowitz, J.A.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.J.; Paulsen, G.; Rice, M.S.; Ruff, S.W.; Schröder, C.; Yen, A. S.; Zacny, K.

    2012-01-01

    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.

  18. Modeling concentric crater fill in Utopia Planitia, Mars, with an ice flow line model

    NASA Astrophysics Data System (ADS)

    Weitz, N.; Zanetti, M.; Osinski, G. R.; Fastook, J. L.

    2018-07-01

    Impact craters in the mid-latitudes of Mars are commonly filled to variable degrees with some combination of ice, dust, and rocky debris. Concentric surface features visible in these craters have been linked to debris transportation and glacial and periglacial processes. Concentric crater fill (CCF) observed today are interpreted to be the remains of repeated periods of accumulation and sublimation during the last tens to hundreds of million years. Previous work suggests that during phases of high obliquity, ice accumulates in crater interiors and begins to flow down steep crater slopes, slowly filling the crater. During times of low obliquity ice is protected from sublimation through a surface debris layer consisting of dust and rocky material. Here, we use an ice flow line model to understand the development of concentric crater fill. In a regional study of Utopia Planitia craters, we address questions about the influence of crater size on the CCF formation process, the time scales needed to fill an impact crater with ice, and explore commonly described flow features of CCF. We show that observed surface debris deposits as well as asymmetric flow features can be reproduced with the model. Using surface mass balance data from global climate models and a credible obliquity scenario, we find that craters less than 80 km in diameter can be entirely filled in less than 8 My, beginning as recently as 40 Ma ago. Uncertainties in input variables related to ice viscosity do not change the overall behavior of ice flow and the filling process. We model CCF for the Utopia Planitia region and find subtle trends for crater size versus fill level, crater size versus sublimation reduction by the surface debris layer, and crater floor elevation versus fill level.

  19. Topography and Geomorphology of the Interior of Occator Crater on Ceres

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf

    2017-04-01

    With a diameter of 92km, Occator is one of the most prominent craters on Ceres. Its depth ranges from 4.8km along the crater rim to -1.1km at the crater floor with respect to a reference ellipsoid. Occator shows a set of specific features such as post impact formation crater filling including multiple flow features, a central pit with a dome in its center, extensional tectonics expressed as linear radial and concentric graben, and spectral variations indicating a complex formation process. We processed 550 LAMO stereo images from Cycle01-Cycle11 with a resolution of 35m/pixel to generate a high-resolution digital terrain model (DTM) of the Occator impact structure. Occator crater has mass wasting deposits originating from the crater rims and walls, which extend into the crater for 10 to 20km. However, in the southeast and northeast these mass wasting deposits are completely covered by crater floor plains material that extends from the crater center to the rim, ponding against the crater walls. The flows also superimpose the mass wasting deposits from the rims [1]. Furthermore, crater densities on Occator's interior deposits are slightly lower than on its ejecta blanket, indicating post-impact formation or target parameter variation between consolidated melt and unconsolidated ejecta deposits [2,3,4]. The terrain northwest of the central area is very rough, shows mass wasting deposits and is about 2km thick w.r.t the rim of the central pit. The plains to the southeast are smooth, pond against the crater wall, and are less than 500m thick w.r.t. the rim of the central pit The central pit is about 3.5km wide and 600m deep while the dome rises 250m within the pit [5]. In the northeast, multiple flows approaching the crater rim very closely. These flow plains are also less than 500m thick w.r.t. the rim of the central pit. Some of the flows seem to have been superposed on the lower parts of the crater wall and then flowed back into depressions of the plains. The flows to the northeast appear to originate from the central region and move slightly uphill. This indicates either a feeding zone that pushes the flows forward by supplying low-viscosity material or an extended subsidence of the crater center, possibly after discharging a subsurface reservoir [1,2], or lateral oscillations of an impact melt sheet during emplacement. The plains material covers an area of about 4750km2 with an average depth of about 250m resulting in a body of plains material of about 1200km3. The plains material is slightly younger than the impact event and the bright deposits are even younger than the plains material. Post impact processes might be due to impact melt, hydrothermal alteration, or cryovolcanic crater filling [1] K. Krohn et al, GRL43, 11994, (2016). [2] R. Jaumann et al., LPSC47, 1455 (2016). [3] N. Schmedemann et al, GRL43, 11987. (2016) [4] A. Neesemann, et al., Icarus, in prep. [5] P. Schenk, et al., LPSC47 (2016).

  20. Transient features and growth behavior of artificial cracks during the initial damage period.

    PubMed

    Ma, Bin; Wang, Ke; Lu, Menglei; Zhang, Li; Zhang, Lei; Zhang, Jinlong; Cheng, Xinbin; Wang, Zhanshan

    2017-02-01

    The laser damage of transmission elements contains a series of complex processes and physical phenomena. The final morphology is a crater structure with different sizes and shapes. The formation and development of the crater are also accompanied by the generation, extension, and submersion of cracks. The growth characteristics of craters and cracks are important in the thermal-mechanism damage research. By using pump-probe detection and an imaging technique with a nanosecond pulsewidth probe laser, we obtained the formation time of the crack structure in the radial and circumferential directions. We carried out statistical analysis in angle, number, and crack length. We further analyzed the relationship between cracks and stress intensity or laser irradiation energy as well as the crack evolution process and the inner link between cracks and pit growth. We used an artificial indentation defect to investigate the time-domain evolution of crack growth, growth speed, transient morphology, and the characteristics of crater expansion. The results can be used to elucidate thermal stress effects on cracks, time-domain evolution of the damage structure, and the damage growth mechanism.

  1. Comparison Between Terrestrial Explosion Crater Morphology in Floating Ice and Europan Chaos

    NASA Technical Reports Server (NTRS)

    Billings, S. E.; Kattenhorn, S. A.

    2003-01-01

    Craters created by explosives have been found to serve as valuable analogs to impact craters, within limits. Explosion craters have been created in floating terrestrial ice in experiments related to clearing ice from waterways. Features called chaos occur on the surface of Europa s floating ice shell. Chaos is defined as a region in which the background plains have been disrupted. Common features of chaos include rafted blocks of pre-existing terrain suspended in a matrix of smooth or hummocky material; low surface albedo; and structural control on chaos outline shape by pre-existing lineaments. All published models of chaos formation call on endogenic processes whereby chaos forms through thermal processes. Nonetheless, we note morphological similarities between terrestrial explosion craters and Europan chaos at a range of scales and consider whether some chaos may have formed by impact. We explore these similarities through geologic and morphologic mapping.

  2. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  3. The Age of Lunar South Circumpolar Craters Haworth, Shoemaker, Faustini, and Shackleton: Implications for Regional Geology, Surface Processes, and Volatile Sequestration

    NASA Technical Reports Server (NTRS)

    Tye, A. R.; Fassett, C. I.; Head, J. W.; Mazarico, E.; Basilevsky, A. T.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2015-01-01

    The interiors of the lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton contain permanently shadowed regions (PSRs) and have been interpreted to contain sequestered volatiles including water ice. Altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter provide a new means of examining the permanently shadowed interiors of these craters in unprecedented detail. In this study, we used extremely high-resolution gridded LOLA data of Haworth, Shoemaker, Faustini, and Shackleton to determine the size-frequency distributions and the spatial density of craters superposing their rims, inner slopes, and floors. Based on their population of superposed D greater than or equal to 2 km craters, Haworth, Shoemaker, and Faustini have pre-Nectarian formation ages. Shackleton is interpreted as having a Late Imbrian age on the basis of craters with diameter D greater than or equal to 0.5 km superposed on its rim. The local density of craters with sub-km diameters across our study area is strongly dependent on slope; because of its steep interior slopes, the lifetime of craters on the interior of Shackleton is limited. The slope-dependence of the small crater population implies that the population in this size range is controlled primarily by the rate at which craters are destroyed. This is consistent with the hypothesis that crater removal and resurfacing is a result of slopedependent processes such as diffusive mass wasting and seismic shaking, linked to micrometeorite and meteorite bombardment. Epithermal neutron flux data and UV albedo data show that these circumpolar PSRs, particularly Shoemaker, may have approximately 1-2% water ice by mass in their highly porous surface regolith, and that Shoemaker may have approximately 5% or more water ice by mass in the near subsurface. The ancient formation ages of Shoemaker, Faustini and Haworth, and the Late Imbrian (approximately 3.5 Ga) crater retention ages of their floors suggests that any water ice that might have been deposited in their permanently shadowed areas was insufficient to modify the superposed crater population since that time.

  4. Investigation of Secondary Craters in the Saturnian System

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Schenk, P.; White, O. L.

    2012-03-01

    To derive accurate ages using impact craters, the impact source must be determined. We investigate secondary crater size, frequency, distribution, formation, and crater chain formation on icy satellites throughout the Jupiter and Saturn systems.

  5. Regional variations in degradation and density of Martian craters.

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.; Wise, D. U.

    1972-01-01

    Martian craters visible on Mariner 6 and 7 imagery show a spectrum of topographic types from very fresh to highly degraded. A method of numerical scoring of rim, wall, and floor is proposed to yield a degradation number to classify each crater. Plots of degradation class vs density of large craters are similar for all four regions studied, whereas similar plots for small craters show marked differences between regions. The data suggest general continuity of crater formation and degradation, along with locally sporadic formation and/or degradation of the smallest craters classified. Deucalionis Regio, with an excess of fresh, small craters, experienced an episode of small crater formation (or nondegradation) most recently; Margaritifer Sinus was similarly disturbed at some more remote time. Meridiani Sinus and Hellespontus-Noachis show little or no sign of excess fresh, small craters.

  6. An assessment of crater erosional histories on the Earth and Mars using digital terrain models.

    NASA Astrophysics Data System (ADS)

    Paul, R. L.; Muller, J.-P.; Murray, J. B.

    The research will examine quantitatively the geomorphology of both Terrestrial and Martian craters. The erosional and sub-surface processes will be investigated to understand how these affect a crater's morphology. For example, the Barringer crater in Arizona has an unusual shape. The Earth has a very high percentage of water both in the atmosphere as clouds or rain and under the surface. The presence of water will therefore affect a crater's formation and its subsequent erosional modification. On Mars there is little or no water present currently, though recent observations suggest there may be near-surface ice in some areas. How do craters formed in the Martian environment therefore differ from Terrestrial ones? How has the structure of Martian craters changed in areas of possible fluvial activity? How does the surface material affect crater formation? How does the Earth's fluvial activity affect a crater's evolution? At present, four measurements of circularity have been used to describe a crater (Murray & Guest, 1972). These parameters will be re-examined to see how effectively they describe Terrestrial and Martian craters using high resolution DTMs which were not available at the time of the original study. The model described by Forsberg-Taylor et al. 2004, and others will also be applied to results obtained from the chosen craters to assess how effectively these craters are described. Both hypsometric curves and hydrological analysis will be used to assess crater evolution. A suitable criterion for the selection of Terrestrial and Martian craters is essential for this type of research. Terrestrial craters have been selected in arid or semi-arid terrain with crater diameters larger than one kilometre. Craters less than five million years old would be ideal. However, this was too restrictive and so a variety of crater ages have had to be used. Eight terrestrial craters have been selected in arid or semi-arid areas for study, using the Earth Impact Database and ICEDS. These are: Barringer, Arizona, U.S.A; Goat Paddock, West Australia; Ouarkziz, Algeria; Roter Kamm, Namibia; Talemzane, Algeria; Tenoumer, Mauritania; Tswaing, South Africa 1 and Upheaval Dome, Utah, U.S.A. Comparable Martian craters are in the process of being chosen using the USGS PIGWAD database and the Morphological Catalogue of the Craters of Mars. Digital Terrain Models of each crater using SRTM DEMs and data from the recent Mars Express HRSC will be used at various resolutions (30m upwards) to provide three dimensional models to assess the capabilities of measuring erosional effects. There is also available ASTER DEMs and ASTER Level 1A for terrestrial craters and MOLA tracks for Martian craters. Both laboratory and theoretical models of crater shape and erosion features will provide a better understanding of the processes observed. This will enable us to develop a better explanation of why craters are the shape they are. References. Barlow N., 1987, Crater Size-Frequency Distribution and a Revised Martian Relative Chronology, Icarus, 75, 285-305. Barlow, N., 1995, The degradation of impact craters in Maja Valles and Arabia Mars, Journal GeoPhys. Res., 100, 23307-23316. Earth Impact Database http://www.unb.ca/passc/ImpactDatabase/ Earth PIGWAD database http://webgis.wr.usgs.gov/website/mars%5Fcrater%5Fhtml/viewer.htm ICEDS http://iceds.ge.ucl.ac.uk/ Morphology Catalogue of the Craters of Mars http://selena.sai.msu.ru/Home/Mars_Cat/Mars_Cat.htm Murray J.B, Guest J.E, 1970, Circularities of craters and related structures on Earth and Moon, Modern Geology, 1, 149-159. Forsberg-Taylor N., Howard A.D., 2004, Crater degradation in the Martian Highlands: Morphometric Analysis of the Sinus Sabaeus region and simulation modelling suggest fluvial processes, Journal GeoPhys Res., 109, E05002. 2

  7. [INVITED] On the mechanisms of single-pulse laser-induced backside wet etching

    NASA Astrophysics Data System (ADS)

    Tsvetkov, M. Yu.; Yusupov, V. I.; Minaev, N. V.; Akovantseva, A. A.; Timashev, P. S.; Golant, K. M.; Chichkov, B. N.; Bagratashvili, V. N.

    2017-02-01

    Laser-induced backside wet etching (LIBWE) of a silicate glass surface at interface with a strongly absorbing aqueous dye solution is studied. The process of crater formation and the generated optoacoustic signals under the action of single 5 ns laser pulses at the wavelength of 527 nm are investigated. The single-pulse mode is used to avoid effects of incubation and saturation of the etched depth. Significant differences in the mechanisms of crater formation in the ;soft; mode of laser action (at laser fluencies smaller than 150-170 J/cm2) and in the ;hard; mode (at higher laser fluencies) are observed. In the ;soft; single-pulse mode, LIBWE produces accurate craters with the depth of several hundred nanometers, good shape reproducibility and smooth walls. Estimates of temperature and pressure of the dye solution heated by a single laser pulse indicate that these parameters can significantly exceed the corresponding critical values for water. We consider that chemical etching of glass surface (or molten glass) by supercritical water, produced by laser heating of the aqueous dye solution, is the dominant mechanism responsible for the formation of crater in the ;soft; mode. In the ;hard; mode, the produced craters have ragged shape and poor pulse-to-pulse reproducibility. Outside the laser exposed area, cracks and splits are formed, which provide evidence for the shock induced glass fracture. By measuring the amplitude and spectrum of the generated optoacoustic signals it is possible to conclude that in the ;hard; mode of laser action, intense hydrodynamic processes induced by the formation and cavitation collapse of vapor-gas bubbles at solid-liquid interface are leading to the mechanical fracture of glass. The LIBWE material processing in the ;soft; mode, based on chemical etching in supercritical fluids (in particular, supercritical water) is very promising for structuring of optical materials.

  8. Impact Cratering Processes as Understood Through Martian and Terrestrial Analog Studies

    NASA Astrophysics Data System (ADS)

    Caudill, C. M.; Osinski, G. R.; Tornabene, L. L.

    2016-12-01

    Impact ejecta deposits allow an understanding of subsurface lithologies, volatile content, and other compositional and physical properties of a planetary crust, yet development and emplacement of these deposits on terrestrial bodies throughout the solar system is still widely debated. Relating relatively well-preserved Martian ejecta to terrestrial impact deposits is an area of active research. In this study, we report on the mapping and geologic interpretation of 150-km diameter Bakhuysen Crater, Mars, which is likely large enough to have produced a significant volume of melt, and has uniquely preserved ejecta deposits. Our mapping supports the current formation hypothesis for Martian crater-related pitted material, where pits are likened to collapsed degassing features identified at the Ries and Haughton terrestrial impact structures. As hot impact melt-bearing ejecta deposits are emplaced over volatile-saturated material during crater formation, a rapid degassing of the underlying layer results in lapilli-like fluid and gas flow pipes which may eventually lead to collapse features on the surface. At the Haughton impact structure, degassing pipes are related to crater fracture and fault systems; this is analogous to structure and collapse pits mapped in Bakhuysen Crater. Based on stratigraphic superposition, surface and flow texture, and morphological and thermophysical mapping of Bakhuysen, we interpret the top-most ejecta unit to be likely melt-bearing and analogous to terrestrial impact deposits (e.g., Ries suevites). Furthermore, we suggest that Chicxulub is an apt terrestrial comparison based on its final diameter and the evidence of a ballistically-emplaced and volatile-entrained initial ejecta. This is significant as Bakhuysen ejecta deposits may provide insight into larger impact structures where limited exposures make studies difficult. This supports previous work which suggests that given similarities in volatile content and subsurface stratigraphy, mechanisms of multi-unit ejecta emplacement extend to impact cratering processes on comparable rocky bodies. The widespread pitted material, ejecta rampart and lobe formations, and distal debris flows associated with Bakhuysen impactite emplacement further indicates a volatile-rich Martian crust during its formation.

  9. Geological mapping of lunar highland crater Lalande: Topographic configuration, morphology and cratering process

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Liu, ChangQing; Bi, Xiangyu

    2018-02-01

    Highland crater Lalande (4.45°S, 8.63°W; D = 23.4 km) is located on the PKT area of the lunar near side, southeast of the Mare Insularum. It is a complex crater in Copernican era and has three distinguishing features: high silicic anomaly, the highest Th abundance and special landforms on its floor. There are some low-relief bulges on the left of Lalande's floor with regular circle or ellipse shapes. They are ∼250-680 m wide and ∼30-91 m high with maximum flank slopes >20°. There are two possible scenarios for the formation of these low-relief bulges which are impact melt products or young silicic volcanic eruptions. We estimated the absolute model ages of the ejecta deposits, several melt ponds and the hummocky floor and determined the ratio of diameter and depth of the crater Lalande. In addition, we found some similar bugle features within other Copernican-aged craters and there were no volcanic source vents on Lalande's floor. Thus, we hypothesized that these low-relief bulges were most consistent with an origin of impact melts during the crater formation instead of small and young volcanic activities occurring on the floor. Based on Kaguya Terrain Camera (TC) ortho-mosaic and Digital Terrain Model (DTM) data produced by TC imagery in stereo, geological units and some linear features on the floor and wall of Lalande have been mapped. Eight geological units are organized by crater floor units: hummocky floor, central peak and low-relief bulges; and crater wall units: terraced walls, channeled and veneered walls, interior walls, mass wasting areas, blocky areas, and melt ponds. These geological units and linear features provided us a chance to understand some details of the cratering process and elevation differences on the floor. We proposed that subsidence due to melt cooling, late-stage wall collapse and rocks uplifted from beneath the surface could be the possible causes of the observed elevation differences on Lalande's floor.

  10. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; hide

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts of its ejecta field (depending upon choice of chronology system), and its ejecta field is the second oldest unit in this quadrangle. The relatively young craters and their related ejecta materials in this quadrangle are in stark contrast to the surrounding heavily cratered units that are related to the billion years old or older Rheasilvia and Veneneia impact basins and Vesta's ancient crust preserved on Vestalia Terra.

  11. Volatile-rich Crater Interior Deposits in the Polar Regions of Mars: Evidence for Ice Cap Advance and Retreat

    NASA Technical Reports Server (NTRS)

    Russell, Patrick S.; Head, James W.; Hecht, Michael H.

    2003-01-01

    Many craters on Mars are partially filled by distinctive material emplaced by post-impact processes. This crater fill material is an interior mound which is generally separated from the walls of the crater by a trough that may be continuous along the crater circumference (i.e. a ring-shaped trough), or which may only partially contact the crater walls (i.e. a crescent-shaped trough). The fill deposit is frequently offset from the crater center and may be asymmetric in plan view. Populations of such craters include those in the circum-south polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. We focus on those craters in circumpolar regions and assess their relationship to polar cap advance and retreat, especially the possibility that fill material represents remnants of a formerly larger contiguous cap. Volatile-rich deposits have the property of being modifiable by the local stability of the solid volatile, which is governed by local energy balance. Here we test the hypothesis that asymmetries in volatile fill shape, profile, and center-location within a crater result from asymmetries in local energy balance within the crater, due mainly to variation of solar insolation and radiative effects of the crater walls over the crater interior. Model profiles of crater fill are compared with MOLA topographic profiles to assess this hypothesis. If asymmetry in morphology and location of crater fill are consistent with radiative-dominated asymmetries in energy budget within the crater, then 1) the volatile-rich composition of the fill is supported (this process should not be effective at shaping volcanic or sedimentary deposits), and 2) the dominant factor determining the observed shape of volatile-rich crater fill is the local radiative energy budget (and erosive processes such as eolian deflation are secondary or unnecessary). We also use a geographic and energy model approach to specifically test the idea that material in partially filled craters around the south pole may once have been contiguous to the cap and may have been sustained and modified by radiative processes specific to the crater environment (as opposed to the surrounding plains) as the cap retreated.

  12. The Degradational History of Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Parker, T. J.; Crumpler, L. S.; Wilson, S. A.; Golombek, M. P.; Mittlefehldt, D. W.

    2015-01-01

    Endeavour crater (2.28 deg S, 354.77 deg E) is a Noachian-aged 22 km-diameter impact structure of complex morphology in Meridiani Planum. The degradation state of the crater has been studied using Mars Reconnaissance Orbiter and Opportunity rover data. Exposed rim segments rise approximately 10 m to approximately 100 m above the level of the embaying Burns Formation and the crater is 200-500 m deep with the southern interior wall exposing over approximately 300 m relief. Both pre-impact rocks (Matijevic Formation) and Endeavour impact ejecta (Shoemaker Formation) are present at Cape York, but only the Shoemaker crops out (up to approximately 140 m) along the rim segment from Murray Ridge to Cape Tribulation. Study of pristine complex craters Bopolu and Tooting, and morphometry of other martian complex craters, enables us to approximate Endeavour's pristine form. The original rim likely averaged 410 m (+/-)200 m in elevation and a 250-275 m section of ejecta ((+/-)50-60 m) would have composed a significant fraction of the rim height. The original crater depth was likely between 1.5 km and 2.2 km. Comparison between the predicted original and current form of Endeavour suggests approximately 100-200 m rim lowering that removed most ejecta in some locales (e.g., Cape York) while thick sections remain elsewhere (e.g., Cape Tribulation). Almost complete removal of ejecta at Cape York and minimal observable offset across fractures indicates current differences in rim relief are not solely due to original rim relief. Rim segments are embayed by approximately 100-200 m thickness of plains rocks outside the crater, but thicker deposits lie inside the crater. Ventifact textures confirm ongoing eolian erosion with the overall extent difficult to estimate. Analogy with degraded Noachian-aged craters south of Endeavour, however, suggests fluvial erosion dominated rim degradation in the Noachian and was likely followed by approximately 10s of meters modification by alternate processes. Such degradation is consistent with 1) the interpretation of a pediment on the rim flanks of Endeavour, 2) the formation of features such as Marathon Valley, 3) the nearly complete removal of ejecta at Cape York, 4) preservation of a thicker section of ejecta at Cape Tribulation and perhaps, 5) the origin of some gaps in the rim around the crater. A paucity of debris shed from the rim indicates most degradation occurred prior to embayment by the plains rocks.

  13. Experimental Investigation of the Formation of Complex Craters

    NASA Astrophysics Data System (ADS)

    Martellato, E.; Dörfler, M. A.; Schuster, B.; Wünnemman, K.; Kenkmann, T.

    2017-09-01

    The formation of complex impact craters is still poorly understood, because standard material models fail to explain the gravity-driven collapse at the observed size-range of a bowl-shaped transient crater into a flat-floored crater structure with a central peak or ring and terraced rim. To explain such a collapse the so-called Acoustic Fluidization (AF) model has been proposed. The AF assumes that heavily fractured target rocks surrounding the transient crater are temporarily softened by an acoustic field in the wake of an expanding shock wave generated upon impact. The AF has been successfully employed in numerous modeling studies of complex crater formation; however, there is no clear relationship between model parameters and observables. In this study, we present preliminary results of laboratory experiments aiming at relating the AF parameters to observables such as the grain size, average wave length of the acoustic field and its decay time τ relative to the crater formation time.

  14. Chesapeake Bay impact structure: Morphology, crater fill, and relevance for impact structures on Mars

    USGS Publications Warehouse

    Horton, J. Wright; Ormo, J.; Powars, D.S.; Gohn, G.S.

    2006-01-01

    The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best-preserved "wet-target" craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile-rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ???85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the "inverted sombrero" morphology observed at some craters in layered targets. The distribution of crater-fill materials i n the CBIS is related to the morphology. Suevitic breccia, including pre-resurge fallback deposits, is found in the central crater. Impact-modified sediments, formed by fluidization and collapse of water-saturated sand and silt-clay, occur in the annular trough. Allogenic sediment-clast breccia, interpreted as ocean-resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat-floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar-sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles. ?? The Meteoritical Society, 2006.

  15. Application of high explosion cratering data to planetary problems

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1977-01-01

    The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.

  16. Craters and Granular Jets Generated by Underground Cavity Collapse

    NASA Astrophysics Data System (ADS)

    Loranca-Ramos, F. E.; Carrillo-Estrada, J. L.; Pacheco-Vázquez, F.

    2015-07-01

    We study experimentally the cratering process due to the explosion and collapse of a pressurized air cavity inside a sand bed. The process starts when the cavity breaks and the liberated air then rises through the overlying granular layer and produces a violent eruption; it depressurizes the cavity and, as the gas is released, the sand sinks under gravity, generating a crater. We find that the crater dimensions are totally determined by the cavity volume; the pressure does not affect the morphology because the air is expelled vertically during the eruption. In contrast with impact craters, the rim is flat and, regardless of the cavity shape, it evolves into a circle as the cavity depth increases or if the chamber is located deep enough inside the bed, which could explain why most of the subsidence craters observed in nature are circular. Moreover, for shallow spherical cavities, a collimated jet emerges from the collision of sand avalanches that converge concentrically at the bottom of the depression, revealing that collapse under gravity is the main mechanism driving the jet formation.

  17. Martian Central Pit Craters

    NASA Technical Reports Server (NTRS)

    Hillman, E.; Barlow, N. G.

    2005-01-01

    Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.

  18. Geologic investigation of layered mound of Henry Crater, Mars: Implications for history of ancient hydrological activities in the region

    NASA Astrophysics Data System (ADS)

    Sarkar, Samarpita; Sinha, Rishitosh Kumar; Banerjee, Debabrata; Vijayan, S.

    2016-07-01

    Craters around the Schiaparelli Basin (sim460 km diameter; 2.71^circS 16.77^circE) on Mars are distributed in a unique combination that includes infilled craters with mound on their floors. The mounds have preserved intriguing layers in stratigraphy that has exposed pristine sets of geomorphic and geochemical signatures bearing strong implications towards understanding geological history of Mars. With a view to avail the maximum scientific benefit from this unique geological assemblage on Mars, we have carried out remote analysis of stratigraphy of layers exposed over Henry crater's (sim150 km diameter; 10.79^circN 23.45^circE) mound (rising sim2km from floor) to infer the origin and episodes of geological events occurred in the region. Henry crater is situated approximately 500 km northeast of Schiaparelli Basin. Using crater counting technique the age of the topmost surface of the crater mound is found to be sim3.64 Ga since the exposure of this strata post complete infilling. The stratigraphy of consistent and conformable layers in the crater interior acts as a proxy of the long-lived event of sediment deposition in a rather quiescent condition. Distinct layering can be traced across the crater from the mound to the crater wall across the floor. Evidence for differential erosion of deposited materials, wherein local geological setup developed in the different parts of the crater interior is preserved. Using MRO HiRISE & CTX images, distinct spatial distribution of morphological features distributed in stratigraphy is observed that reveals the dominant geological agents behind their formation, viz. temporal hydrological and eolian processes. The morphological features were aided with an understanding of the composition of the exposed sedimentary succession. MRO CRISM based mineralogical investigation reveals diagnostic signature of the hydrated sulfate mineral Kieserite. Based on the thermodynamic properties of Kieserite and apparent lack of desiccation cracks in the scale of observation, it is inferred that the water level inside the crater did not experience fluctuation. Rather on systematic compilation of the mineralogical and morphological data, it is inferred that the mound formation process was gradual and can be correlated with the water level inside the crater at various stages during the recession stage.

  19. Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity.

    PubMed

    Blewett, David T; Chabot, Nancy L; Denevi, Brett W; Ernst, Carolyn M; Head, James W; Izenberg, Noam R; Murchie, Scott L; Solomon, Sean C; Nittler, Larry R; McCoy, Timothy J; Xiao, Zhiyong; Baker, David M H; Fassett, Caleb I; Braden, Sarah E; Oberst, Jürgen; Scholten, Frank; Preusker, Frank; Hurwitz, Debra M

    2011-09-30

    High-resolution images of Mercury's surface from orbit reveal that many bright deposits within impact craters exhibit fresh-appearing, irregular, shallow, rimless depressions. The depressions, or hollows, range from tens of meters to a few kilometers across, and many have high-reflectance interiors and halos. The host rocks, which are associated with crater central peaks, peak rings, floors, and walls, are interpreted to have been excavated from depth by the crater-forming process. The most likely formation mechanisms for the hollows involve recent loss of volatiles through some combination of sublimation, space weathering, outgassing, or pyroclastic volcanism. These features support the inference that Mercury's interior contains higher abundances of volatile materials than predicted by most scenarios for the formation of the solar system's innermost planet.

  20. Using THEMIS thermal infrared observations of rays from Corinto crater to study secondary crater formation on Mars

    NASA Astrophysics Data System (ADS)

    Williams, J. P.

    2017-12-01

    Corinto crater (16.95°N, 141.72°E), a 13.8 km diameter crater in Elysium Planitia, displays dramatic rays in Mars Odyssey's Thermal Emission Imaging System (THEMIS) nighttime infrared imagery where high concentrations of secondary craters have altered the thermophysical properties of the martian surface. The THEMIS observations provide a record of secondary crater formation in the region and ray segments are identified up to 2000 km ( 145 crater radii) distance [1][2]. Secondary craters are likely to have the largest influence on model surfaces ages between 0.1 to a few Myr as there is the potential for one or two sizeable craters to project secondary craters onto those surfaces and thus alter the crater size-frequency distribution (CSFD) with an instantaneous spike in crater production [3]. Corinto crater is estimated to be less than a few Ma [4] placing the formation of its secondaries within this formative time period. Secondary craters superposed on relatively young impact craters that predate Corinto provide observations of the secondary crater populations. Crater counts at 520 and 660 km distance from Corinto (38 and 48 crater radii respectively), were conducted. Higher crater densities were observed within ray segments, however secondary craters still influenced the CSFD where ray segments were not apparent, resulting in steepening in the CSFD. Randomness analysis confirms an increase in clustering as diameters decrease suggesting an increasing fraction of secondary craters at smaller diameters, both within the ray and outside. The counts demonstrate that even at nearly 50 crater radii, Corinto secondaries still influence the observed CSFD, even outside of any obvious rays. Crater populations used to derive model ages on many geologically young regions on Mars, such as glacial and periglacial landforms related to obliquity excursions that occur on 106 - 107 yr cycles, should be used cautiously and analyzed for any evidence, either morphologic or statistical, for secondary cratering that may potentially influence the derived age. [1] Williams et al. (2017) MAPS, in press. [2] Bloom et al. (2014) Mars 8th, #1289. [3] Hartmann and Daubar (2017), MAPS, 52, 493- 510. [4] Hundal et al. (2017), LPSC, #1726.

  1. The geomorphology of Rhea - Implications for geologic history and surface processes

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Horner, V. M.; Greeley, R.

    1985-01-01

    Morphological analyses of landforms on Rhea are used to define three physiographic provinces: cratered terrain 1 undifferentiated; cratered terrain 1 lineated; and cratered terrain 2. The important statigraphic relationships between the different provinces are examined with respect to major impact basins and tectonic features. It is shown that the formation of multiringed basins may have caused, or at least controlled the locations of major resurfacing and mantling events. The diameters of the central peaks relative to the impact crater diameters are found to be significantly larger than those within the craters of the moon or Mercury. Both cratered and noncrater lineaments have regional orientations which do not fit current global or regional stress models. On the basis of the morphological analysis, a chronological order is established for the origin of the three provinces: the cratered terrain 1 province was formed first; and cratered terrain 1 lineated and cratered terrain 2 were formed second, and last, respectively. It is shown that the chronological order is generally consistent with current theoretical models of the evolution of Rhea.

  2. Gullies and Craters and Dunes, Oh My!

    NASA Image and Video Library

    2017-06-02

    This unnamed, approximately 30-kilometer diameter crater, formed in the Southern highlands of Mars. This image from NASA's Mars Reconnaissance Orbiter shows regions of geologic diversity within, making this an interesting spot for scientists to study how different Martian processes interact with each other. Gullies, or channels formed by fluids such as water or lava, cut into the rim and sides of this crater. The presence of gullies can reveal clues about the ancient history of Mars, such as the amount of flowing fluid needed to form them and roughly how long ago that happened. This crater may also host features actively changing on the surface of Mars known as "recurring slope lineae" (RSL). Manifesting as dark streaks on steep slopes such as the walls of craters, scientists posit briny flows of small volumes of water as a possible RSL formation method. Studying the behavior of RSL further may provide evidence for the presence of water on Mars today. Moving toward the crater floor, one can observe patterns indicative of dunes. Dunes arise from the breakdown of exposed rocks by wind and subsequent manipulation of the eroded sand particles into wave-like structures. The presence of dust devil tracks provides additional evidence for significant wind activity at this location. These dunes are very dusty and so likely haven't been active (moved) in some time. HiRISE also captured a small, relatively fresh crater on the floor near the dunes. One of the most ubiquitous processes in the solar system, impact cratering can drastically change the surface of a planetary body. As such, craters provide sources of comparison between planets, moons, and other bodies across the solar system. Impacts still occur today, helping scientists find relative ages of different areas of a planet and discover materials buried under the surface. All of these processes have altered the surface of Mars in the past and continue to do so today. Since gully formation, wind erosion, and impact cratering could have interacted with each other for many years, planetary scientists find it difficult to work backwards and make definitive statements about ancient Martian history. However, HiRISE imagery has aided in closing these gaps in our scientific knowledge. https://photojournal.jpl.nasa.gov/catalog/PIA21654

  3. Mass movement on Vesta at steep scarps and crater rims

    NASA Astrophysics Data System (ADS)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.

    2014-12-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  4. Mass Movement on Vesta at Steep Scarps and Crater Rims

    NASA Technical Reports Server (NTRS)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; hide

    2014-01-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  5. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact age, cratering, target-impactite stratigraphy, ejecta, impact dynamics, hydrothermal alterations and post-impact processes are presented. The challenges and perspectives of drilling studies of impact craters are discussed.

  6. Sedimentary Mounds on Mars: Tracing Present-day Formation Processes into the Past

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J.; Edwards, C. S.

    2014-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one and revealed spectacular views of finely layered sedimentary materials throughout the globe [1]. Some of these sedimentary deposits are 'mound' shaped and lie inside of craters (Fig 1). Crater mound deposits are found throughout the equatorial region, as well as ice-rich deposits found in craters in the north and south polar region [2-4]. Despite their wide geographical extent and varying volatile content, the 'mound' deposits have a large number of geomorphic and structural similarities that suggest they formed via equivalent processes. Thus, modern depositional processes of ice and dust can serve as an invaluable analog for interpreting the genesis of ancient sedimentary mound deposits.

  7. Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars

    USGS Publications Warehouse

    Banham, Steve G.; Gupta, Sanjeev; Rubin, David M.; Watkins, Jessica A.; Sumner, Dawn Y.; Edgett, Kenneth S.; Grotzinger, John P.; Lewis, Kevin W.; Edgar, Lauren; Stack, Kathryn M.; Barnes, Robert; Bell, Jame F. III; Day, Mackenzie D.; Ewing, Ryan C.; Lapotre, Mathieu G.A.; Stein, Nathan T.; Rivera-Hernandez, Frances; Vasavada, Ashwin R.

    2018-01-01

    Reconstruction of the palaeoenvironmental context of Martian sedimentary rocks is central to studies of ancient Martian habitability and regional palaeoclimate history. This paper reports the analysis of a distinct aeolian deposit preserved in Gale crater, Mars, and evaluates its palaeomorphology, the processes responsible for its deposition, and its implications for Gale crater geological history and regional palaeoclimate. Whilst exploring the sedimentary succession cropping out on the northern flank of Aeolis Mons, Gale crater, the Mars Science Laboratory rover Curiosity encountered a decametre‐thick sandstone succession, named the Stimson formation, unconformably overlying lacustrine deposits of the Murray formation. The sandstone contains sand grains characterized by high roundness and sphericity, and cross‐bedding on the order of 1 m in thickness, separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops. The cross‐beds are composed of uniform thickness cross‐laminations interpreted as wind‐ripple strata. Cross‐sets are separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops that are interpreted as dune migration surfaces. Grain characteristics and presence of wind‐ripple strata indicate deposition of the Stimson formation by aeolian processes. The absence of features characteristic of damp or wet aeolian sediment accumulation indicate deposition in a dry aeolian system. Reconstruction of the palaeogeomorphology suggests that the Stimson dune field was composed largely of simple sinuous crescentic dunes with a height of ca10 m, and wavelengths of ca 150 m, with local development of complex dunes. Analysis of cross‐strata dip‐azimuths indicates that the general dune migration direction and hence net sediment transport was towards the north‐east. The juxtaposition of a dry aeolian system unconformably above the lacustrine Murray formation represents starkly contrasting palaeoenvironmental and palaeoclimatic conditions. Stratigraphic relationships indicate that this transition records a significant break in time, with the Stimson formation being deposited after the Murray formation and stratigraphically higher Mount Sharp group rocks had been buried, lithified and subsequently eroded.

  8. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah T.; Valiant, Gregory J.

    2006-10-01

    The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3-50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5-2.0 times deeper (≥5σo difference) with >50% larger cavities (≥2σo) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45-70% of their transient cavity volumes, while highland craters preserve only 25-50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9-12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ˜1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.

  9. Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system

    NASA Astrophysics Data System (ADS)

    Fassett, Caleb I.

    2016-10-01

    Analyzing the density of impact craters on planetary surfaces is the only known technique for learning their ages remotely. As a result, crater statistics have been widely analyzed on the terrestrial planets, since the timing and rates of activity are critical to understanding geologic process and history. On the Moon, the samples obtained by the Apollo and Luna missions provide critical calibration points for cratering chronology. On Mercury, Venus, and Mars, there are no similarly firm anchors for cratering rates, but chronology models have been established by extrapolating from the lunar record or by estimating their impactor fluxes in other ways. This review provides a current perspective on crater population measurements and their chronological interpretation. Emphasis is placed on how ages derived from crater statistics may be contingent on assumptions that need to be considered critically. In addition, ages estimated from crater populations are somewhat different than ages from more familiar geochronology tools (e.g., radiometric dating). Resurfacing processes that remove craters from the observed population are particularly challenging to account for, since they can introduce geologic uncertainty into results or destroy information about the formation age of a surface. Regardless of these challenges, crater statistics measurements have resulted in successful predictions later verified by other techniques, including the age of the lunar maria, the existence of a period of heavy bombardment in the Moon's first billion years, and young volcanism on Mars.

  10. Increased depth-diameter ratios in the Medusae Fossae Formation deposits of Mars

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1993-01-01

    Depth to diameter ratios for fresh impact craters on Mars are commonly cited as approximately 0.2 for simple craters and 0.1 for complex craters. Recent computation of depth-diameter ratios in the Amazonis-Memnonia region of Mars indicates that craters within the Medusae Fossae Formation deposits found in this region display greater depth-diameter ratios than expected for both simple and complex craters. Photoclinometric and shadow length techniques have been used to obtain depths of craters within the Amazonis-Memnonia region. The 37 craters in the 2 to 29 km diameter range and displaying fresh impact morphologies were identified in the area of study. This region includes the Amazonian aged upper and middle members of the Medusae Fossae Formation and Noachian aged cratered and hilly units. The Medusae Fossae Formation is characterized by extensive, flat to gently undulating deposits of controversial origin. These deposits appear to vary from friable to indurated. Early analysis of crater degradation in the Medusae Fossae region suggested that simple craters excavated to greater depths than expected based on the general depth-diameter relationships derived for Mars. However, too few craters were available in the initial analysis to estimate the actual depth-diameter ratios within this region. Although the analysis is continuing, we are now beginning to see a convergence towards specific values for the depth-diameter ratio depending on geologic unit.

  11. A Comparative Analysis of the Magnetic Field Signals over Impact Structures on the Earth, Mars and the Moon

    NASA Technical Reports Server (NTRS)

    Isac, Anca; Mandea, Mioara; Purucker, Michael; Langlais, Benoit

    2015-01-01

    An improved description of magnetic fields of terrestrial bodies has been obtained from recent space missions, leading to a better characterization of the internal fields including those of crustal origin. One of the striking differences in their crustal magnetic field is the signature of large impact craters. A comparative analysis of the magnetic characteristics of these structures can shed light on the history of their respective planetary-scale magnetic dynamos. This has motivated us to identify impact craters and basins, first by their quasi-circular features from the most recent and detailed topographic maps and then from available global magnetic field maps. We have examined the magnetic field observed above 27 complex craters on the Earth, 34 impact basins on Mars and 37 impact basins on the Moon. For the first time, systematic trends in the amplitude and frequency of the magnetic patterns, inside and outside of these structures are observed for all three bodies. The demagnetization effects due to the impact shock wave and excavation processes have been evaluated applying the Equivalent Source Dipole forward modeling approach. The main characteristics of the selected impact craters are shown. The trends in their magnetic signatures are indicated, which are related to the presence or absence of a planetary-scale dynamo at the time of their formation and to impact processes. The low magnetic field intensity at center can be accepted as the prime characteristic of a hypervelocity impact and strongly associated with the mechanics of impact crater formation. In the presence of an active internal field, the process of demagnetization due to the shock impact is associated with post-impact remagnetization processes, generating a more complex magnetic signature.

  12. Exploring Tectonic Activity on Vesta and Ceres

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    Images of Vesta and Ceres taken by the Dawn spacecraft revealed large-scale linear structural features on both asteroids. We evaluate their morphology to determine 1) what processes caused them to form and 2) what implications this has for the history of Vesta and Ceres as planetary bodies. The Divalia Fossae are wide troughs bounded by steep scarps that encircle Vesta roughly aligned with the equator. Fault plane analysis suggests that their formation was triggered by the impact event that formed the Rheasilvia basin. The Saturnalia Fossae extend from Divalia to the northern polar region; fault plane analysis ties their formation to the Veneneia basin impact event. Also, it has been suggested that the elongate hill Brumalia Tholus could have been formed as a magmatic intrusion utilizing the subsurface Albalonga fracture as a conduit to the surface, intruding into and deforming the rock above it. Kilometer-scale linear structures cross much of the eastern hemisphere of Ceres. Many structures appear to be radial to the large craters Urvara and Yalode, and likely formed due to impact processes. However, the Samhain Catenae do not have any obvious relationship to a crater and the lack of raised rims makes it unlikely that these are secondary impacts; they are also crosscut by linear features radial to Urvara and Yalode, indicating they are not fractures formed during those impact events. Instead, the morphology of these structures more closely resembles that of pit crater chains (buried normal faults), and show en echelon orientation and S-shaped linkages. Polygonal craters, which form where there is pervasive subsurface fracturing, are widespread on Ceres, and those polygonal craters proximal to the Samhain Catenae have straight crater rims aligned with the structures. Several craters on Ceres have fractured floors, similar to lunar floor-fractured craters (FFCs), which are theorized to form from floor uplift due to magmatic intrusion. Large (>50 km) Ceres FFCs can have both radial and concentric fractures at the crater center, and/or concentric fractures near the crater wall. Smaller craters have a v-shaped moat separating the wall scarp from the crater interior, but different interior morphologies. A depth vs. diameter analysis shows that the Ceres FFCs are unusually shallow, consistent with the magmatic intrusion models.

  13. Successive Formation of Impact Craters

    NASA Image and Video Library

    2012-02-16

    This image from NASA Dawn spacecraft shows two overlapping impact craters on asteroid Vesta. The rims of the craters are both reasonably fresh but the larger crater must be older because the smaller crater cuts across the larger crater rim.

  14. Constraints on the Formation and Modification of Lobate Debris Aprons Through Categorized Crater Counts

    NASA Astrophysics Data System (ADS)

    Berman, D. C.; Crown, D. A.; Joseph, E. C. S.

    2012-03-01

    Compilation of crater counts using CTX images and analysis of SFD, coupled with categorization of crater morphologies, provides important insights into interpretation of the formation and modification of lobate debris aprons.

  15. Floor-Fractured Craters on Ceres and Implications for Internal Composition and Processes

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Schenk, P.; Scully, J. E. C.; Park, R. S.; Preusker, F.; Raymond, C. A.; Russell, C. T.

    2016-12-01

    Several of the impact craters on Ceres have patterns of fractures on their floors. These fractures appear similar to those found within a class of lunar craters referred to as Floor-Fractured Craters (FFCs) [1]. Lunar FFCs are characterized by anomalously shallow floors cut by radial, concentric, and/or polygonal fractures, and have been classified into crater classes, Types 1 through 6, based on their morphometric properties [1,2]. Models for their formation have included both floor uplift due to magmatic intrusion below the crater or floor shallowing due to viscous relaxation. However, the observation that the depth versus diameter (d/D) relationship of the FFCs is distinctly shallower than the same association for other lunar craters supports the hypotheses that the floor fractures form due to shallow magmatic intrusion under the crater [2]. We have cataloged the Ceres FFCs according to the classification scheme designed for the Moon. Large (>50 km) Ceres FFCs are most consistent with Type 1 lunar FFCs, having deep floors, central peaks, wall terraces, and radial and/or concentric fractures. Smaller craters on Ceres are more consistent with Type 4 lunar FFCs, having less-pronounced floor fractures and v-shaped moats separating the wall scarp from the crater interior. An analysis of the d/D ratio for Ceres craters shows that, like lunar FFCs, the Ceres FFCs are anomalously shallow. This suggests that the fractures on the floor of Ceres FFCs may be due the intrusion of a low-density material below the craters that is uplifting their floors. While on the Moon the intrusive material is hypothesized to be silicate magma, this is unlikely for Ceres. However, a cryovolcanic extrusive edifice has been identified on Ceres [3], suggesting that cryomagmatic intrusions could be responsible for the formation of the Ceres FFCs. References: [1] Schultz P. (1976) Moon, 15, 241-273 [2] Jozwiak L.M. et al (2015) JGR 117, doi: 10.1029/2012JE004134 [3] Ruesch O. et al (2016) Science

  16. Degradation sequence of young lunar craters from orbital infrared survey

    NASA Technical Reports Server (NTRS)

    Wieczorek, M. A.; Mendell, W. W.

    1993-01-01

    Using new software, nighttime thermal maps of the lunar surface have been generated from data obtained by the Apollo 17 Infrared Scanning Radiometer (ISR) in lunar orbit. Most of the thermal anomalies observed in the maps correspond to fresh lunar craters because blocks on the lunar surface maintain a thermal contrast relative to surrounding soil during the lunar night. Craters of Erastosthenian age and older - relatively young by lunar standards - have developed soil covers that make them almost indistinguishable from their surroundings in the thermal data. Thermal images of Copernican age craters show various stages of a degradation process, allowing the craters to be ranked by age. The ISR data should yield insights into lunar surface evolution as well as a more detailed understanding of the bombardment history after formation of the great mare basins.

  17. Testing models for the formation of the equatorial ridge on Iapetus via crater counting

    NASA Astrophysics Data System (ADS)

    Damptz, Amanda L.; Dombard, Andrew J.; Kirchoff, Michelle R.

    2018-03-01

    Iapetus's equatorial ridge, visible in global views of the moon, is unique in the Solar System. The formation of this feature is likely attributed to a key event in the evolution of Iapetus, and various models have been proposed as the source of the ridge. By surveying imagery from the Cassini and Voyager missions, this study aims to compile a database of the impact crater population on and around Iapetus's equatorial ridge, assess the relative age of the ridge from differences in cratering between on ridge and off ridge, and test the various models of ridge formation. This work presents a database that contains 7748 craters ranging from 0.83 km to 591 km in diameter. The database includes the study area in which the crater is located, the latitude and longitude of the crater, the major and minor axis lengths, and the azimuthal angle of orientation of the major axis. Analysis of crater orientation over the entire study area reveals that there is no preference for long-axis orientation, particularly in the area with the highest resolution. Comparison of the crater size-frequency distributions show that the crater distribution on the ridge appears to be depleted in craters larger than 16 km with an abruptly enhanced crater population less than 16 km in diameter up to saturation. One possible interpretation is that the ridge is a relatively younger surface with an enhanced small impactor population. Finally, the compiled results are used to examine each ridge formation hypothesis. Based on these results, a model of ridge formation via a tidally disrupted sub-satellite appears most consistent with our interpretation of a younger ridge with an enhanced small impactor population.

  18. The mechanism of liquid metal jet formation in the cathode spot of vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Gashkov, M. A.; Zubarev, N. M.; Mesyats, G. A.; Uimanov, I. V.

    2016-08-01

    We have theoretically studied the dynamics of molten metal during crater formation in the cathode spot of vacuum arc discharge. At the initial stage, a liquid-metal ridge is formed around the crater. This process has been numerically simulated in the framework of the two-dimensional axisymmetric heat and mass transfer problem in the approximation of viscous incompressible liquid. At a more developed stage, the motion of liquid metal loses axial symmetry, which corresponds to a tendency toward jet formation. The development of azimuthal instabilities of the ridge is analyzed in terms of dispersion relations for surface waves. It is shown that maximum increments correspond to instability of the Rayleigh-Plateau type. Estimations of the time of formation of liquid metal jets and their probable number are obtained.

  19. It Shrinks! It Cracks!

    NASA Image and Video Library

    2017-04-20

    Given enough time, impact craters on Mars tend to fill up with different materials. For instance, some craters on Mars had lakes inside them in the past. When these lakes dried out, they left behind traces of their past existence, such as sedimentary deposits (materials that were carried along with the running water into the lake inside the crater and then settled down). Some craters, especially in high latitudes, contain ice deposits that filled the crater when an earlier ice age allowed ice to extend into the crater's latitude. Here, NASA's Mars Reconnaissance Orbiter spies a crater that lies close to Elysium, a major volcanic system on Mars. The whole region surrounding the crater was at some point covered by lava from the volcano creating vast lava plains, and in the process, flooding impact craters in their way. When the lava eventually cooled down, it solidified and began to shrink in size. This shrinking led to formation of cracks on the surface of the lava that grew in a circular pattern matching the shape of the crater it was filling. Scientists can study these fractures and estimate how much it shrank in volume to better understand the properties of the lava (such as its temperature) during the time it filled the crater. https://photojournal.jpl.nasa.gov/catalog/PIA21596

  20. What Dominates a Craters Size, the Largest Single Explosion of the Formation Process or the Cumulative Energy of Many? Results of Multiblast Crater Evolution Experiments

    NASA Astrophysics Data System (ADS)

    Sonder, I.; Graettinger, A. H.; Valentine, G. A.

    2015-12-01

    Craters of explosive volcanic eruptions are products of many explosions. Such craters are different than products of single events such as meteorite impacts or those produced by military testing because they typically result from multiple, rather than single, explosions. We analyzed the evolution of experimental craters that were created by several detonations of chemical explosives in layered aggregates. A method to calculate an effective explosion depth for non-flat topography (e.g. for explosions below existing craters) is derived, showing how multi-blast crater sizes differ from the single blast case. It is shown that sizes of natural caters (radii, volumes) are not characteristic of the number of explosions, and therefore not characteristic for the total acting energy, that formed a crater. Also the crater size is not simply related to the largest explosion in a sequence, but depends upon that explosion and the energy of that single blast and on the cumulative energy of all blasts that formed the crater. The two energies can be combined to form an effective number of explosions that is characteristic for the crater evolution. The multi-blast crater size evolution implies that it is not correct to estimate explosion energy of volcanic events from crater size using previously published relationships that were derived for single blast cases.

  1. Widespread Magmatism as a Result of Impact Related Decompression Melting on Early Mars

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.; Rogers, D.

    2012-12-01

    Flat-floored craters on Mars have been observed since early spacecraft viewed the surface. Early work characterized these craters as infilled by sedimentary materials [e.g. Christensen, 1983] but later work using THEMIS thermal inertia determined these craters contain some of the rockiest materials on the planet and not sedimentary materials [Edwards et al., 2009]. Here we investigate the distribution, physical properties (morphology and thermal inertia), and composition of these craters over the entire planet. We find the majority of rocky crater floors identified (~3300) are concentrated in the low albedo (0.1-0.17), cratered southern highlands. These craters are associated with the highest thermal inertia values (e.g. > 500 to 2000 J m-2 K-1 s-1/2), some of the most mafic materials on the planet (enriched in olivine/pyroxene vs. high-Si phases/plagioclase, often with >10-15% olivine areal abundance), and formed ~3.5 billion years ago. Based on the properties of the crater fill materials described, three mechanisms are considered for the formation of flat-floored, high thermal inertia crater floors on Mars including: 1) the lithification/induration of sediments, 2) the ponding of crustal melt material related to the heat generated during the impact process, and 3) infilling by volcanic materials. We find the only likely scenario is volcanic infilling through fractures created in the impact event. Furthermore, we find the generation of the primitive magma would be directly sourced from the decompression melting of the martian mantle due to the removal of several kilometers of overlying crustal material by the impactor. As the ancient martian crust was likely thin and the geothermal gradients were significantly higher than present day [e.g. Zuber, 2001], the decompression melting of the mantle [Bertka and Holloway, 1994] would be more likely to occur on early Mars then under present day conditions. This is borne out by the ancient ages (~3-4Ga) of the crater floors that indicates their formation early in martian history and not after the crustal thickening of the southern highlands and reduction of the geothermal gradient. Based on the distribution of these crater floors, we find that this process occurred over much of the surface of early Mars, during or shortly thereafter the Late Heavy Bombardment when the crust was still relatively thin and heat flow was high. We have shown that this process was widespread and ubiquitous, responsible for the eruption of significant volumes of primitive mantle material, both inside and outside of craters, and is an important planetary process that has gone previously undocumented. However, this process is likely not unique to Mars and while we have not examined other planetary bodies in detail, craters on Earth's moon and Mercury show distinctive morphologic similarities [e.g. Schultz, 1976] that suggest this process occurred throughout the early solar system on many rocky bodies. References: Bertka, C. M., et al. (1994), Contributions to Mineralogy and Petrology, 115(3), 313-322. Christensen, P. R. (1983), Icarus, 56(3), 496-518. Edwards, C. S., et al. (2009), J. Geophys. Res, 114, E11001. Schultz, P. H. (1976), The Moon, 15, 241-273. Zuber, M. T. (2001), Nature, 412, 220-227.

  2. Fluids during diagenesis and sulfate vein formation in sediments at Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Schwenzer, S. P.; Bridges, J. C.; Wiens, R. C.; Conrad, P. G.; Kelley, S. P.; Leveille, R.; Mangold, N.; Martín-Torres, J.; McAdam, A.; Newsom, H.; Zorzano, M. P.; Rapin, W.; Spray, J.; Treiman, A. H.; Westall, F.; Fairén, A. G.; Meslin, P.-Y.

    2016-11-01

    We model the fluids involved in the alteration processes recorded in the Sheepbed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations—relative to terrestrial groundwaters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10-3 to 10-2 concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this groundwater-type fluid formed impure sulfate- and silica-rich deposits—veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay, or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.

  3. A Lower Limit on the Thickness of Europa's Ice Shell from Numerical Simulations of Impact Cratering

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Ivanov, B. A.

    2001-12-01

    If Europa has an ice-covered, liquid water ocean, the thickness of the ice shell can be tested by analyzing the impact crater morphologies revealed by Galileo images. Several of Europa's 28 primary impact structures have morphologies typical of complex impact craters on other planetary bodies: terraced rims, flat floors, and central peaks [1]. To constrain the minimum ice thickness necessary to reproduce the observed complex crater morphologies, we have performed numerical simulations, using the modified SALE-2D code [2], of the formation of impact craters in ice layers with thicknesses ranging from 5 to 11 km overlying liquid water. The target ice has ice strength properties from published laboratory data [3] with a gradual decrease towards the base of the ice as the temperature approaches the melting point. The projectile parameters were chosen to produce a 10 km diameter crater in thick ice. We find that ice layers less than 7 km thick are not sufficient to prevent an outburst of liquid water during collapse of the transient cavity. At thicknesses of 8 and 9 km we observe a boundary regime: crater collapse produces a flat or upward-domed floor, however the water under the crater center does not reach the surface. In ice greater than 10 km thick a normal transient cavity forms. These results indicate that the ice thickness, at the times and locations of complex crater formation, must have been comparable to the diameters of the transient craters, the largest of which was between 11.9 and 18.5 km [1]. Implementation of additional mechanisms such as acoustic fluidization and creep may affect the shape of the final crater produced in our simulations: acoustic fluidization can produce central peak and peak-ring craters [4], and creep may result in a flattened crater. We are currently investigating the influence of these processes on the final crater morphology. References: [1] Moore et al., Icarus 151, 2001. [2] Ivanov et al., GSA Spec. Pap., in press. [3] Beeman et al., JGR 93, 1988. [4] Melosh and Ivanov, Ann. Rev. Earth Plan. Sci. 27, 1999.

  4. Mars, Always Cold, Sometimes Wet: New Constraints on Mars Denudation Rates and Climate Evolution from Analog Studies at Haughton Crater, Devon Island, High Arctic

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; Boucher, M.; Desportes, C.; Glass, B. J.; Lim, D.; McKay, C. P.; Osinski, G. R.; Parnell, J.; Schutt, J. W.

    2005-01-01

    Analysis of crater modification on Mars and at Haughton Crater, Devon Island, High Arctic, which was recently shown to be significantly older than previously believed (Eocene age instead of Miocene) [1], suggest that Mars may have never been climatically wet and warm for geological lengths of time during and since the Late Noachian. Impact structures offer particularly valuable records of the evolution of a planet s climate and landscape through time. The state of exposure and preservation of impact structures and their intracrater fill provide clues to the nature, timing, and intensity of the processes that have modified the craters since their formation. Modifying processes include weathering, erosion, mantling, and infilling. In this study, we compare the modification of Haughton through time with that of impact craters in the same size class on Mars. We derive upper limits for time-integrated denudation rates on Mars during and since the Late Noachian. These rates are significantly lower than previously published and provide important constraints for Mars climate evolution.

  5. Relative chronology of Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Landheim, R.; Barlow, N. G.

    1991-01-01

    Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history.

  6. Impact cratering experiments in brittle targets with variable thickness: Implications for deep pit craters on Mars

    NASA Astrophysics Data System (ADS)

    Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.

    2014-06-01

    High-resolution images reveal that numerous pit craters exist on the surface of Mars. For some pit craters, the depth-to-diameter ratios are much greater than for ordinary craters. Such deep pit craters are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit crater might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact cratering into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the crater formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. Craters are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when craters on the opposite sides of the target connect with each other. In this case, the cross section of crater somehow attains a flat hourglass-like shape. We also find that the crater diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the crater on the opposite side than from the crater on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit craters lack a raised rim and have the ejecta deposit on their floor instead. Craters are formed on the opposite impact side even when no penetration occurs. Penetration is achieved when craters of both sides are connected. Crater diameter on the opposite side is larger than that on the impact side. More fragments are ejected from the opposite side than from the impact side. We present a qualitative explanation for the shapes of Martian deep pit craters.

  7. Remote sensing and geologic studies of the planetary crusts

    NASA Technical Reports Server (NTRS)

    Hawke, B. R.

    1983-01-01

    Dark haloed craters and regions of the Moon which were sites of ancient volcanism were remotely sensed as well as KREEP deposits in the Inbrium region. The relationship between geology and geochemistry in the Undarum/Spumans region was also examined. Results are summarized for observations of the Reiner Gamma formation, studies of impact cratering mechanics and processes, spectral variations of asteroidal surfaces, albedo and color variations on Ganymede, and studies of lunar impact structures.

  8. Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, Ralf; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, Kenneth E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W.; Squyres, S. W.; Sullivan, R.; Yen, A. S.

    2015-01-01

    Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.

  9. Global survey of lunar wrinkle ridge formation times

    NASA Astrophysics Data System (ADS)

    Yue, Z.; Michael, G. G.; Di, K.; Liu, J.

    2017-11-01

    Wrinkle ridges are a common feature of the lunar maria and record subsequent contraction of mare infill. Constraining the timing of wrinkle ridge formation from crater counts is challenging because they have limited areal extent and it is difficult to determine whether superposed craters post-date ridge formation or have alternatively been uplifted by the deformation. Some wrinkle ridges do allow determination to be made. This is possible where a ridge shows a sufficiently steep boundary or scarp that can be identified as deforming an intersecting crater or the crater obliterates the relief of the ridge. Such boundaries constitute only a small fraction of lunar wrinkle ridge structures yet they are sufficiently numerous to enable us to obtain statistically significant crater counts over systems of structurally related wrinkle ridges. We carried out a global mapping of mare wrinkle ridges, identifying appropriate boundaries for crater identification, and mapping superposed craters. Selected groups of ridges were analyzed using the buffered crater counting method. We found that, except for the ridges in mare Tranquilitatis, the ridge groups formed with average ages between 3.5 and 3.1 Ga ago, or 100-650 Ma after the oldest observable erupted basalts where they are located. We interpret these results to suggest that local stresses from loading by basalt fill are the principal agent responsible for the formation of lunar wrinkle ridges, as others have proposed. We find a markedly longer interval before wrinkle ridge formation in Tranquilitatis which likely indicates a different mechanism of stress accumulation at this site.

  10. Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.

    2018-06-01

    On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.

  11. Floor-fractured craters on Ceres and implications for interior processes

    NASA Astrophysics Data System (ADS)

    Buczkowski, Debra; Schenk, Paul M.; Scully, Jennifer E. C.; Park, Ryan; Preusker, Frank; Raymond, Carol; Russell, Christopher T.

    2016-10-01

    Several of the impact craters on Ceres have patterns of fractures on their floors. These fractures appear similar to those found within a class of lunar craters referred to as Floor-Fractured Craters (FFCs) [Schultz, 1976].Lunar FFCs are characterized by anomalously shallow floors cut by radial, concentric, and/or polygonal fractures, and have been classified into crater classes, Types 1 through 6, based on their morphometric properties [Schultz, 1976; Jozwiak et al, 2012, 2015]. Models for their formation have included both floor uplift due to magmatic intrusion below the crater or floor shallowing due to viscous relaxation. However, the observation that the depth versus diameter (d/D) relationship of the FFCs is distinctly shallower than the same association for other lunar craters supports the hypotheses that the floor fractures form due to shallow magmatic intrusion under the crater [Jozwiak et al, 2012, 2015].FFCs have also been identified on Mars [Bamberg et al., 2014]. Martian FFCs exhibit morphological characteristics similar to the lunar FFCs, and analyses suggest that the Martian FCCs also formed due to volcanic activity, although heavily influenced by interactions with groundwater and/or ice.We have cataloged the Ceres FFCs according to the classification scheme designed for the Moon. Large (>50 km) Ceres FFCs are most consistent with Type 1 lunar FFCs, having deep floors, central peaks, wall terraces, and radial and/or concentric fractures. Smaller craters on Ceres are more consistent with Type 4 lunar FFCs, having less-pronounced floor fractures and a v-shaped moats separating the wall scarp from the crater interior.An analysis of the d/D ratio for Ceres craters shows that, like lunar FFCs, the Ceres FFCs are anomalously shallow. This suggests that the fractures on the floor of Ceres FFCs may be due the intrusion of a low-density material below the craters that is uplifting their floors. While on the Moon and Mars the intrusive material is hypothesized to be silicate magma, this is unlikely for Ceres. However, a cryovolcanic extrusive edifice has been identified on Ceres [Ruesch et al., 2016], suggesting that cryomagmatic intrusions could be responsible for the formation of the Ceres FFCs.

  12. Gas-emission crater in Central Yamal, West Siberia, Russia, a new permafrost feature

    NASA Astrophysics Data System (ADS)

    Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Streletskaya, Irina; Gubarkov, Anatoly

    2016-04-01

    The Yamal crater is a hole funnel-shaped on top and cylinder-shaped down to the bottom, surrounded by a parapet. Field study of the crater included size measurements, photo- video-documentation of the feature and the surrounding environment, and geochemical sampling. The upper part of the geological section within the crater consisted of stratified icy sediments, underlain by almost pure stratified ice of nearly vertical orientation of the layers. The volume of discharged material (volume of the void of the crater) was 6 times larger than the volume of material in the parapet. The difference was due to a significant amount of ice exposed in the walls of the crater, emitted to the surface and melted there. Remote sensing data was processes and validated by field observations to reveal the date of crater formation, previous state of the surface, evolution of the crater and environmental conditions of the surrounding area. Crater formed between 9 October and 1 November 2013. The initial size derived from Digital Elevation Model (DEM) had diameter of the vegetated rim 25-29 m. It turned through a sharp bend into a cylinder with close to vertical sides and diameter 15-16 m. Depth of the hole was impossible to estimate from DEM because of no light reaching walls in the narrow hole. By the time of initial observation in July 2014, water was found at the depth exceeding 50 m below the rim. In November 2014 this depth was 26 m. By September 2015 almost all the crater was flooded, with water surface about 5 m below the rim. The plan dimensions of the crater increased dramatically from initial 25-29 to 47-54 m in 2015. Thus, it took two warm seasons to almost entirely fill in the crater. We suppose that during the next 1-2 years parapet will be entirely destroyed, and as a result the crater will look like an ordinary tundra lake. Excluding impossible and improbable versions of the crater's development, the authors conclude that the origin of this crater can be attributed to the air temperature warming trend along with the extreme of 2012. The increased ground temperature and amount of unfrozen water in the permafrost, expanding of cryopegs, formation of a pingo-like mound and its outburst due to high pressure produced by gas hydrate decomposition within permafrost are the main controls. Similar temperature anomalies may increase in number in the future decades, presenting risks for human activities in the region. This conclusion is supported by recent studies of gas-hydrate behavior in the upper permafrost as well as by subsea processes in gas-bearing provinces where analogue mechanism is known to produce pockmarks - subsea depressions. As the crater is surrounded by the parapet, thus is resulting from expulsion of ice and rocks from beneath to the surface and should not be treated as a "sinkhole", "thermokarst" or "collapse".

  13. Crater Formation Above Salt Caverns: Piston vs Hour-glass

    NASA Astrophysics Data System (ADS)

    Berest, P.

    2016-12-01

    Conditions leading to crater formation above salt caverns are discussed. In most cases, at the end of leaching, the cavern roof had reached the top of the salt formation, allowing direct contact between brine and marl (or argillite) layers that compose the overburden of the salt formation. These layers are prone to weathering when in contact with saturated brine. Stoping takes place, and the cavern roof rises through the overburden. This process may be several years or dozens of years long. In Lorraine salt formations, stoping stops when the rising cavern top reaches a competent layer, the Beaumont Dolomite. Operators then lower cavern-brine pressure to trigger collapse. A rigid cylinder of rock (a "piston") drops into the cavern, and a crater whose initial edges are vertical is created. Cavern drop is more abrupt when the cavern top is filled partly with air. The contour of the piston is circular, as a circle is the shape such that the ratio between perimeter and area is minimal. In other cases, for instance in Kansas, the cavern rises until the uppermost keystone in the bedrock at shallow depth is breached, permitting loose materials to flow into the cavern through a relatively narrow hole at the bottom of the sink hole, as in an hour glass.

  14. Crater Mound Formation by Wind Erosion on Mars

    NASA Astrophysics Data System (ADS)

    Steele, L. J.; Kite, E. S.; Michaels, T. I.

    2018-01-01

    Most of Mars' ancient sedimentary rocks by volume are in wind-eroded sedimentary mounds within impact craters and canyons, but the connections between mound form and wind erosion are unclear. We perform mesoscale simulations of different crater and mound morphologies to understand the formation of sedimentary mounds. As crater depth increases, slope winds produce increased erosion near the base of the crater wall, forming mounds. Peak erosion rates occur when the crater depth is ˜2 km. Mound evolution depends on the size of the host crater. In smaller craters mounds preferentially erode at the top, becoming more squat, while in larger craters mounds become steeper sided. This agrees with observations where smaller craters tend to have proportionally shorter mounds and larger craters have mounds encircled by moats. If a large-scale sedimentary layer blankets a crater, then as the layer recedes across the crater it will erode more toward the edges of the crater, resulting in a crescent-shaped moat. When a 160 km diameter mound-hosting crater is subject to a prevailing wind, the surface wind stress is stronger on the leeward side than on the windward side. This results in the center of the mound appearing to "march upwind" over time and forming a "bat-wing" shape, as is observed for Mount Sharp in Gale crater.

  15. Fluids During Diagenesis and Sulfate Vein Formation in Sediments at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Schwenzer, S. P.; Bridges, J. C.; Weins, R. C.; Conrad, P. G.; Kelley, S. P.; Leveille, R.; Mangold, N.; Martin-Torres, J.; McAdam, A.; Newsom, H.; hide

    2016-01-01

    We model the fluids involved in the alteration processes recorded in the Sheep bed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations relative to terrestrial ground waters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10(exp -3) to 10(exp -2) concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this ground water- type fluid formed impure sulfate- and silica-rich deposits veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay,or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.

  16. Impact-Induced Clay Mineral Formation and Distribution on Mars

    NASA Technical Reports Server (NTRS)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  17. Constraints on the geomorphological evolution of the nested summit craters of Láscar volcano from high spatio-temporal resolution TerraSAR-X interferometry

    NASA Astrophysics Data System (ADS)

    Richter, Nicole; Salzer, Jacqueline Tema; de Zeeuw-van Dalfsen, Elske; Perissin, Daniele; Walter, Thomas R.

    2018-03-01

    Small-scale geomorphological changes that are associated with the formation, development, and activity of volcanic craters and eruptive vents are often challenging to characterize, as they may occur slowly over time, can be spatially localized, and difficult, or dangerous, to access. Using high-spatial and high-temporal resolution synthetic aperture radar (SAR) imagery collected by the German TerraSAR-X (TSX) satellite in SpotLight mode in combination with precise topographic data as derived from Pléiades-1A satellite data, we investigate the surface deformation within the nested summit crater system of Láscar volcano, Chile, the most active volcano of the central Andes. Our aim is to better understand the structural evolution of the three craters that comprise this system, to assess their physical state and dynamic behavior, and to link this to eruptive activity and associated hazards. Using multi-temporal SAR interferometry (MT-InSAR) from ascending and descending orbital geometries, we retrieve the vertical and east-west components of the displacement field. This time series indicates constant rates of subsidence and asymmetric horizontal displacements of all summit craters between June 2012 and July 2014, as well as between January 2015 and March 2017. The vertical and horizontal movements that we observe in the central crater are particularly complex and cannot be explained by any single crater formation mechanism; rather, we suggest that short-term activities superimposed on a combination of ongoing crater evolution processes, including gravitational slumping, cooling and compaction of eruption products, as well as possible piston-like subsidence, are responsible for the small-scale geomorphological changes apparent in our data. Our results demonstrate how high-temporal resolution synthetic aperture radar interferometry (InSAR) time series can add constraints on the geomorphological evolution and structural dynamics of active crater and vent systems at volcanoes worldwide.

  18. The indication of Martian gully formation processes by slope-area analysis

    USGS Publications Warehouse

    Conway, S.J.; Balme, M.R.; Murray, J.B.; Towner, M.C.; Okubo, C.H.; Grindrod, P.M.

    2011-01-01

    The formation process of recent gullies on Mars is currently under debate. This study aims to discriminate between the proposed formation processes - pure water flow, debris flow and dry mass wasting - through the application of geomorphological indices commonly used in terrestrial geomorphology. High-resolution digital elevation models (DEMs) of Earth and Mars were used to evaluate the drainage characteristics of small slope sections. Data from Earth were used to validate the hillslope, debris-flow and alluvial process domains previously found for large fluvial catchments on Earth, and these domains were applied to gullied and ungullied slopes on Mars. In accordance with other studies, our results indicate that debris flow is one of the main processes forming the Martian gullies that were being examined. The source of the water is predominantly distributed surface melting, not an underground aquifer. Evidence is also presented indicating that other processes may have shaped Martian crater slopes, such as ice-assisted creep and solifluction, in agreement with the proposed recent Martian glacial and periglacial climate. Our results suggest that, within impact craters, different processes are acting on differently oriented slopes, but further work is needed to investigate the potential link between these observations and changes in Martian climate. ?? The Geological Society of London 2011.

  19. Original size of the Vredefort structure, South Africa

    NASA Technical Reports Server (NTRS)

    Therriault, A. M.; Reid, A. M.; Reimold, W. U.

    1993-01-01

    The Vredefort structure is located approximately 120 km southwest of Johannesburg, South Africa, and is deeply eroded. Controversies remain on the origin of this structure with the most popular hypotheses being: (1) by impact cratering about 2.0 Ga; (2) as a cryptoexplosion structure about 2.0 Ga; and (3) by purely tectonic processes starting at about 3.0 Ga and ending with the Vredefort event at 2.0 Ga. In view of recent work in which the granophyre dikes are interpreted as the erosional remants of a more extensive impact melt sheet, injected downward into the underlying country rocks, the impact origin hypothesis for Vredefort is adopted. In order to estimate the original dimensions of the Vredefort impact structure, it is assumed that the structure was initially circular, that its predeformation center corresponds to the center of the granitic core, and that the pre-Vredefort geology of the area prior to approximately 2.0 Ga ago is as suggested by Fletcher and Reimold. The spatial relationship between shock metamorphic effects, the shock pressures they record, and the morphological features of the crater were established for a number of large terrestrial craters. The principles of crater formation at large complex impact structures comparable in size to Vredefort were also established, although many details remain unresolved. An important conclusion is that the transient crater, which is formed directly by excavation and displacement by the shock-induced cratering flow-field (i.e., the particle velocity flow field existing in the region of the transient crater but behind the initial outgoing shock front), is highly modified during the late stage processes. The original transient crater diameter lies well within the final rim of the crater, which is established by structural movements during late-stage cavity modification.

  20. Crater Formation Due to Lunar Plume Impingement

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon

    2011-01-01

    Thruster plume impingement on a surface comprised of small, loose particles may cause blast ejecta to be spread over a large area and possibly cause damage to the vehicle. For this reason it is important to study the effects of plume impingement and crater formation on surfaces like those found on the moon. Lunar soil, also known as regolith, is made up of fine granular particles on the order of 100 microns.i Whenever a vehicle lifts-off from such a surface, the exhaust plume from the main engine will cause the formation of a crater. This crater formation may cause laterally ejected mass to be deflected and possibly damage the vehicle. This study is a first attempt at analyzing the dynamics of crater formation due to thruster exhaust plume impingement during liftoff from the moon. Though soil erosion on the lunar surface is not considered, this study aims at examining the evolution of the shear stress along the lunar surface as the engine fires. The location of the regions of high shear stress will determine where the crater begins to form and will lend insight into how big the crater will be. This information will help determine the probability that something will strike the vehicle. The final sections of this report discuss a novel method for studying this problem that uses a volume of fluid (VOF)ii method to track the movement of both the exhaust plume and the eroding surface.

  1. IS THE LARGE CRATER ON THE ASTEROID (2867) STEINS REALLY AN IMPACT CRATER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, A. J. W.; Price, M. C.; Burchell, M. J., E-mail: m.j.burchell@kent.ac.uk

    The large crater on the asteroid (2867) Steins attracted much attention when it was first observed by the Rosetta spacecraft in 2008. Initially, it was widely thought to be unusually large compared to the size of the asteroid. It was quickly realized that this was not the case and there are other examples of similar (or larger) craters on small bodies in the same size range; however, it is still widely accepted that it is a crater arising from an impact onto the body which occurred after its formation. The asteroid (2867) Steins also has an equatorial bulge, usually consideredmore » to have arisen from redistribution of mass due to spin-up of the body caused by the YORP effect. Conversely, it is shown here that, based on catastrophic disruption experiments in laboratory impact studies, a similarly shaped body to the asteroid Steins can arise from the break-up of a parent in a catastrophic disruption event; this includes the presence of a large crater-like feature and equatorial bulge. This suggests that the large crater-like feature on Steins may not be a crater from a subsequent impact, but may have arisen directly from the fragmentation process of a larger, catastrophically disrupted parent.« less

  2. Geologic Mapping of the Martian Impact Crater Tooting

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter; Boyce, Joseph M.

    2008-01-01

    Tooting crater is approximately 29 km in diameters, is located at 23.4 deg N, 207.5 deg E and is classified as a multi-layered ejecta crater. Tooting crater is a very young crater, with an estimated age of 700,000 to 2M years. The crater formed on virtually flat lava flows within Amazonis Planitia where there appears to have been no major topographic features prior to the impact, so that we can measure ejecta thickness and cavity volume. In the past 12 months, the authors have: published their first detailed analysis of the geometry of the crater cavity and the distribution of the ejecta layers; refined the geologic map of the interior of Tooting crater through mapping of the cavity at a scale of 1:1100K; and continued the analysis of an increasing number of high resolution images obtained by the CTX and HiRISE instruments. Currently the authors seek to resolve several science issues that have been identified during this mapping, including: what is the origin of the lobate flows on the NW and SW rims of the crater?; how did the ejecta curtain break apart during the formation of the crater, and how uniform was the emplacement process for the ejecta layers; and, can we infer physical characteristics about the ejecta? Future study plans include the completion of a draft geologic map of Tooting crater and submission of it to the U.S. Geological survey for a preliminary review, publishing a second research paper on the detailed geology of the crater cavity and the distribution of the flows on the crater rim, and completing the map text for the 1:100K geologic map description of units at Tooting crater.

  3. Well-Preserved Impact Ejecta and Impact Melt-Rich Deposits in Terra Sabaea

    NASA Image and Video Library

    2017-01-12

    This image of a well-preserved unnamed elliptical crater in Terra Sabaea, is illustrative of the complexity of ejecta deposits forming as a by-product of the impact process that shapes much of the surface of Mars. Here we see a portion of the western ejecta deposits emanating from a 10-kilometer impact crater that occurs within the wall of a larger, 60-kilometer-wide crater. In the central part is a lobe-shaped portion of the ejecta blanket from the smaller crater. The crater is elliptical not because of an angled (oblique) impact, but because it occurred on the steep slopes of the wall of a larger crater. This caused it to be truncated along the slope and elongated perpendicular to the slope. As a result, any impact melt from the smaller crater would have preferentially deposited down slope and towards the floor of the larger crater (towards the west). Within this deposit, we can see fine-scale morphological features in the form of a dense network of small ridges and pits. These crater-related pitted materials are consistent with volatile-rich impact melt-bearing deposits seen in some of the best-preserved craters on Mars (e.g., Zumba, Zunil, etc.). These deposits formed immediately after the impact event, and their discernible presence relate to the preservation state of the crater. This image is an attempt to visualize the complex formation and emplacement history of these enigmatic deposits formed by this elliptical crater and to understand its degradation history. http://photojournal.jpl.nasa.gov/catalog/PIA13078

  4. What can we learn about impact mechanics from large craters on Venus?

    NASA Technical Reports Server (NTRS)

    Mckinnon, William B.; Alexopoulos, J. S.

    1992-01-01

    More than 50 unequivocal peak-ring craters and multiringed impact basins have been identified on Venus from Earth-based Arecibo, Venera 15/16, and Magellan radar images. These ringed craters are relatively pristine, and so serve as an important new dataset that will further understanding of the structural and rheological properties of the venusian surface and of impact mechanics in general. They are also the most direct analogues for craters formed on the Earth in Phanerozoic time. Finite-element simulations of basin collapse and ring formation were undertaken in collaboration with V. J. Hillgren (University of Arizona). These calculations used an axisymmetric version of the viscoelastic finite element code TECTON, modeled structures on the scale of Klenova or Meitner, and demonstrated two major points. First, viscous flow and ring formation are possible on the timescale of crater collapse for the sizes of multiringed basins seen on Venus and heat flows appropriate to the plant. Second, an elastic lithosphere overlying a Newtonian viscous asthenosphere results mainly in uplift beneath the crater. Inward asthenospheric flow mainly occurs at deeper levels. Lithospheric response is dominantly vertical and flexural. Tensional stress maxima occur and ring formation by normal faulting is predicted in some cases, but these predicted rings occur too far out to explain observed ring spacings on Venus (or on the Moon). Overall, these estimates and models suggest that multiringed basin formation is indeed possible at the scales observed on Venus. Furthermore, due to the strong inverse dependence of solid-state viscosity on stress, the absence of Cordilleran-style ring faulting in craters smaller than Meitner or Klenova makes sense. The apparent increase in viscosity of shock-fluidized rock with crater diameter, greater interior temperatures accessed by larger, deeper craters, and decreased non-Newtonian viscosity associated with larger craters may conspire to make the transition with diameter from peak-ring crater to Orientale-type multiringed basin rather abrupt.

  5. Vesta and Ceres as Seen by Dawn

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Nathues, A.; De Sanctis, M. C.; Prettyman, T. H.; Konopliv, A. S.; Park, R. S.; Jaumann, R.; McSween, H. Y., Jr.; Raymond, C. A.; Pieters, C. M.; McCord, T. B.; Marchi, S.; Schenk, P.; Buczkowski, D.

    2015-12-01

    Ceres and Vesta are the most massive bodies in the main asteroid belt. They have witnessed 4.6 Ga of solar system history. Dawn's objective is to interview these two witnesses. These bodies are relatively simple protoplanets, with a modest amount of thermal evolution and geochemical alteration. They are our best archetypes of the early building blocks of the terrestrial planets. In particular siderophile elements in the Earth's core were probably first segregated in Vesta-like bodies, and its water was likely first condensed in Ceres-like bodies. Vesta has provided copious meteorites for geochemical analysis. This knowledge was used to infer the constitution of the parent body. Dawn verified that Vesta was consistent with being that body, confirming the geochemical inferences from these samples on the formation and evolution of the solar system. Ceres has not revealed itself with a meteoritic record nor an asteroid family. While the surface is scarred with craters, it is probable that the ejecta from the crater-forming events created little competent material from the icy crust and any such ejected material that reached Earth might have disintegrated upon entry into the Earth's atmosphere. Ceres' surface differs greatly from Vesta's. Plastic or fluidized mass wasting is apparent as are many irregularly shaped craters, including many polygonal crater forms. There are many central-pit craters possibly caused by volatilization of the crust in the center of the impact. There are many central-peak craters but are these due to rebound or pingo-like formation processes? Bright spots, possibly salt deposits, dot the landscape, evidence of fluvial processes beneath the crust. Observations of the largest region of bright spots may suggest sublimation from the surface of the bright area, consistent with Herschel water vapor observations. Ceres is not only the most massive body in the asteroid belt but also possibly the most active occupant of the main belt.

  6. Karstic terrain in the equatorial layered deposits within a crater in northern Sinus Meridiani, Mars.

    NASA Astrophysics Data System (ADS)

    Baioni, Davide

    2017-04-01

    This work investigates the equatorial layered deposits (ELDs) located within a crater located in northern Sinus Meridiani, Mars (4.430 N, 3.320 W), which display traits that are consistent with formation by karst-driven processes. Here, shallow depressions showing a variety of plan forms ranging from rounded, circular, elongated, polygonal and drop-like to elliptical can be observed. The morphologic and morphometric analyses performed, highlight that these depressions display strong morphometric (sizes) and morphologic (shapes, bottoms, walls) similarities with the karst depressions that are common on limestone and evaporite terrains on the Earth and other regions on Mars. On the basis of the characteristics of the investigated landforms and the similarities of features on Earth and Mars, and after discarding other possible origins such as, aeolian, periglacial, volcanic or impact related processes, it has been inferred that the depressions are karstic dolines formed polygenetically by corrosion and solution-related intra-crater processes.

  7. Samples from Martian craters: Origin of the Martian soil by hydrothermal alteration of impact melt deposits and atmospheric interactions with ejecta during crater formation

    NASA Technical Reports Server (NTRS)

    Newsom, Horton E.

    1988-01-01

    The origin of the Martian soil is an important question for understanding weathering processes on the Martian surface, and also for understanding the global geochemistry of Mars. Chemical analyses of the soil will provide an opportunity to examine what may be a crustal average, as studies of loess on the Earth have demonstrated. In this regard the origin of the Martian soil is also important for understanding the chemical fractionations that have affected the composition of the soil. Several processes that are likely to contribute to the Martian soil are examined.

  8. Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocks

    NASA Astrophysics Data System (ADS)

    Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.

    2009-12-01

    Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.

  9. Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Phillips, Roger J.

    1994-01-01

    The dense atmosphere on Venus prevents craters smaller than about 2 km in daimater from forming and also causes formation of several crater fields and multiple-floored craters (collectively referred to as multiple impacts). A model has been constructed that simulates the behavior of a meteoroid in a dense planetary atmosphere. This model was then combined with an assumed flux of incoming meteoroids in an effort to reproduce the size-frequency distribution of impact craters and several aspects of the population of the crater fields and multiple-floored craters on Venus. The modeling indicates that it is plausible that the observed rollover in the size-frequency curve for Venus is due entirely to atmospheric effects on incoming meteoroids. However, there must be substantial variation in the density and behavior of incoming meteoroids in the atmosphere. Lower-density meteoroids must be less likely to survive atmospheric passage than simple density differences can account for. Consequently, it is likely that the percentage of craters formed by high-density meteoroids is very high at small crater diameters, and this percentage decreases substantially with increasing crater diameter. Overall, high-density meteoroids created a disproportionately large percentage of the impact craters on Venus. Also, our results indicate that a process such as meteoroid flattening or atmospheric explosion of meteoroids must be invoked to prevent craters smaller than the observed minimum diameter (2 km) from forming. In terms of using the size-frequency distribution to age-date the surface, the model indicates that the observed population has at least 75% of the craters over 32 km in diameter that would be expected on an atmosphereless Venus; thus, this part of the curve is most suitable for comparison with calibrated curves for the Moon.

  10. Mineral abundances at the final four curiosity study sites and implications for their formation

    NASA Astrophysics Data System (ADS)

    Poulet, F.; Carter, J.; Bishop, J. L.; Loizeau, D.; Murchie, S. M.

    2014-03-01

    A component of the landing site selection process for the Mars Science Laboratory (MSL) involved the presence of phyllosilicates as the main astrobiological targets. Gale crater was selected as the MSL landing site from among 4 down selected study sites (Gale, Eberswalde and Holden craters, Mawrth Vallis) that addressed the primary scientific goal of assessing the past habitability of Mars. A key constraint on the formation process of these phyllosilicate-bearing deposits is in the precise mineralogical composition. We present a reassessment of the mineralogy of the sites combined with a determination of the modal mineralogy of the major phyllosilicate-bearing deposits of the four final study sites from the modeling of near-infrared spectra using a radiative transfer model. The largest abundance of phyllosilicates (30-70%) is found in Mawrth Vallis, the lowest one in Eberswalde (<25%). Except for Mawrth Vallis, the anhydrous phases (plagioclase, pyroxenes and martian dust) are the dominant phases, suggesting formation conditions with a lower alteration grade and/or a post-formation mixing with anhydrous phases. The composition of Holden layered deposits (mixture of saponite and micas with a total abundance in the range of 25-45%) suggests transport and deposition of altered basalts of the Noachian crust without major chemical transformation. For Eberswalde, the modal mineralogy is also consistent with detrital clays, but the presence of opaline silica indicates that an authigenic formation occurred during the deposition. The overall composition including approximately 20-30% smectite detected by MSL in the rocks of Yellow-knife Bay area interpreted to be material deposited on the floor of Gale crater by channels (http://www.nasa.gov/mission_pages/msl/news/msl20130312.html).

  11. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; hide

    2015-01-01

    One of the most compelling features of the Gale landing site is its age. Based on crater counts, the formation of Gale crater is dated to be near the beginning of the Hesperian near the pivotal Hesperian/Noachian transition. This is a time period on Mars that is linked to increased fluvial activity through valley network formation and also marks a transition from higher erosion rates/clay mineral formation to lower erosion rates with mineralogies dominated by sulfate minerals. Results from the Curiosity mission have shown extensive evidence for fluvial activity within the crater suggesting that sediments on the floor of the crater and even sediments making up Mt. Sharp itself were the result of longstanding activity of liquid water. Warm/wet conditions on early Mars are likely due to a thicker atmosphere and increased abundance of greenhouse gases including the main component of the atmosphere, CO2. Carbon dioxide is minor component of the Earth's atmosphere yet plays a major role in surface water chemistry, weathering, and formation of secondary minerals. An ancient martian atmosphere was likely dominated by CO2 and any waters in equilibrium with this atmosphere would have different chemical characteristics. Studies have noted that high partial pressures of CO2 would result in increased carbonic acid formation and lowering of the pH so that carbonate minerals are not stable. However, if there were a dense CO2 atmosphere present at the Hesperian/Noachian transition, it would have to be stored in a carbon reservoir on the surface or lost to space. The Mt. Sharp sediments are potentially one of the best places on Mars to investigate these CO2 reservoirs as they are proposed to have formed in the early Hesperian, from an alkaline lake, and record the transition to an aeolian dominated regime near the top of the sequence. The total amount of CO2 in the Gale crater soils and sediments is significant but lower than expected if a thick atmosphere was present at the Hesperian/Noachian boundary. Likewise, the absence of carbonates suggests that CO2- weathering processes similar to those present on Earth were not dominant. Instead it is possible that more exotic CO2 deposition has occurred driven by atmospheric photochemistry and/or degradation of organic carbon.

  12. On the nature of the Ni-rich component in splash-form Australasian tektites

    NASA Astrophysics Data System (ADS)

    Goderis, Steven; Tagle, Roald; Fritz, Jörg; Bartoschewitz, Rainer; Artemieva, Natalia

    2017-11-01

    The Australasian tektite strewn field is exceptional, not only as the largest and most recent, but also as the only strewn field without an identified source impact crater. Therefore, scenarios without the formation of an impact crater, such as a low altitude cometary airburst, have proven hard to discard. Here, new geochemical evidence is presented for mixing of projectile and target material, which implies the formation of an Australasian tektite-related impact crater. First, ninety-two Australasian tektites were grouped according to their Cr, Co and Ni concentrations. Based on this data, Australasian tektites with the highest Ni contents (>200 μg/g) occur more than 1500 km south-southeast (SSE) of the northern Indochina region, with the highest concentration of Ni-rich tektites in South Vietnam, the islands of Borneo, Belitung, and Java, and reports in literature for Ni-rich tektites in central Australia. The tektites with the highest Cr and Ni abundances often also show highly siderophile element (HSE) enrichments of up to 4 ng/g Ir. The most Ni-rich samples exhibit broadly chondrite-relative HSE proportions. However, a chondritic impactor contribution appears to be inconsistent with the observed Ni/Cr, Ni/Co, and Cr/Co ratios. A previously suggested significant terrestrial mantle contribution can also not explain the siderophile element enrichments in combination with relatively low FeOtot (<7 wt.%) and MgO (<4 wt.%) contents. Elemental fractionation during impact cratering or tektite formation by an impactor with a chondritic signature may explain these observations. Alternatively, a projectile component from a primitive achondrite may be advocated, with contribution from a mafic to ultramafic extraterrestrial lithology with a relatively unfractionated HSE signature and Ni/Cr ratio distinctly higher than those of Earth's mantle. Element distribution maps obtained from individual Australasian tektites document complex mingling processes of chemically distinct melt batches, each exhibiting variable contributions from distinct endmember compositions. These texturally recorded mingling processes are consistent with high-resolution numerical models of impact cratering processes that resolve the growth of Kelvin-Helmholtz instabilities at the projectile/target interface during impact, when both materials co-occur at high pressure. These numerical models indicate that Ni-rich tektite populations across the central part of the Australasian tektite strewn field could represent projectile-enriched material preferentially ejected downrange. Continued tracing of this Ni-rich component across the strewn field may help to constrain the location of the yet to be identified source crater of the Australasian (micro)tektites.

  13. Numerical Modelling of the Deep Impact Mission Experiment

    NASA Technical Reports Server (NTRS)

    Wuennemann, K.; Collins, G. S.; Melosh, H. J.

    2005-01-01

    NASA s Deep Impact Mission (launched January 2005) will provide, for the first time ever, insights into the interior of a comet (Tempel 1) by shooting a approx.370 kg projectile onto the surface of a comets nucleus. Although it is usually assumed that comets consist of a very porous mixture of water ice and rock, little is known about the internal structure and in particular the constitutive material properties of a comet. It is therefore difficult to predict the dimensions of the excavated crater. Estimates of the crater size are based on laboratory experiments of impacts into various target compositions of different densities and porosities using appropriate scaling laws; they range between 10 s of meters up to 250 m in diameter [1]. The size of the crater depends mainly on the physical process(es) that govern formation: Smaller sizes are expected if (1) strength, rather than gravity, limits crater growth; and, perhaps even more crucially, if (2) internal energy losses by pore-space collapse reduce the coupling efficiency (compaction craters). To investigate the effect of pore space collapse and strength of the target we conducted a suite of numerical experiments and implemented a novel approach for modeling porosity and the compaction of pores in hydrocode calculations.

  14. Interior and Ejecta Morphologies of Impact Craters on Ganymede

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Klaybor, K.; Katz-Wigmore, J.

    2006-09-01

    We are utilizing Galileo SSI imagery of Ganymede to classify impact crater interior and ejecta morphologies. Although we are in the early stages of compiling our Catalog of Impact Craters on Ganymede, some interesting trends are beginning to emerge. Few craters display obvious ejecta morphologies, but 68 craters are classified as single layer ejecta and 3 as double layer ejecta. We see no obvious correlation of layered ejecta morphologies with terrain or latitude. All layered ejecta craters have diameters between 10 and 40 km. Sinuosity ("lobateness") and ejecta extent ("ejecta mobility ratio") of Ganymede layered ejecta craters are lower than for martian layered ejecta craters. This suggests less mobility of ejecta materials on Ganymede, perhaps due to the colder temperatures. Interior structures being investigated include central domes, peaks, and pits. 57 dome craters, 212 central peak craters, and 313 central pit craters have been identified. Central domes occur in 50-100 km diameter craters while peaks are found in craters between 20 and 50 km and central pit craters range between 29 and 74 km in diameter. The Galileo Regio region displays higher concentrations of central dome and central pit craters than other regions we have investigated. 67% of central pit craters studied to date are small pits, where the ratio of pit diameter to crater diameter is <0.2. Craters containing the three interior structures preferentially occur on darker terrain units, suggesting that an ice-silicate composition is more conducive to interior feature formation than pure ice alone. Results of this study have important implications not only for the formation of specific interior and ejecta morphologies on Ganymede but also for analogous features associated with Martian impact craters. This research is funded through NASA Outer Planets Research Program Award #NNG05G116G to N. G. Barlow.

  15. Statistical models of lunar rocks and regolith

    NASA Technical Reports Server (NTRS)

    Marcus, A. H.

    1973-01-01

    The mathematical, statistical, and computational approaches used in the investigation of the interrelationship of lunar fragmental material, regolith, lunar rocks, and lunar craters are described. The first two phases of the work explored the sensitivity of the production model of fragmental material to mathematical assumptions, and then completed earlier studies on the survival of lunar surface rocks with respect to competing processes. The third phase combined earlier work into a detailed statistical analysis and probabilistic model of regolith formation by lithologically distinct layers, interpreted as modified crater ejecta blankets. The fourth phase of the work dealt with problems encountered in combining the results of the entire project into a comprehensive, multipurpose computer simulation model for the craters and regolith. Highlights of each phase of research are given.

  16. Impact cratering on porous targets in the strength regime

    NASA Astrophysics Data System (ADS)

    Nakamura, Akiko M.

    2017-12-01

    Cratering on small bodies is crucial for the collision cascade and also contributes to the ejection of dust particles into interplanetary space. A crater cavity forms against the mechanical strength of the surface, gravitational acceleration, or both. The formation of moderately sized craters that are sufficiently larger than the thickness of the regolith on small bodies, in which mechanical strength plays the dominant role rather than gravitational acceleration, is in the strength regime. The formation of microcraters on blocks on the surface is also within the strength regime. On the other hand, the formation of a crater of a size comparable to the thickness of the regolith is affected by both gravitational acceleration and cohesion between regolith particles. In this short review, we compile data from the literature pertaining to impact cratering experiments on porous targets, and summarize the ratio of spall diameter to pit diameter, the depth, diameter, and volume of the crater cavity, and the ratio of depth to diameter. Among targets with various porosities studied in the laboratory to date, based on conventional scaling laws (Holsapple and Schmidt, J. Geophys. Res., 87, 1849-1870, 1982) the cratering efficiency obtained for porous sedimentary rocks (Suzuki et al., J. Geophys. Res. 117, E08012, 2012) is intermediate. A comparison with microcraters formed on a glass target with impact velocities up to 14 km s-1 indicates a different dependence of cratering efficiency and depth-to-diameter ratio on impact velocity.

  17. Meteorite crater impact study: a new way to study seismology at school with exciting experiments, and an example of meteorite astroblema in France (Rochechouart)

    NASA Astrophysics Data System (ADS)

    Carrer, Diane; Berenguer, Jean-Luc; MacMurray, Andrew

    2016-04-01

    The InSIGHT mission to Mars (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) supported by NASA, IPGP and CNES, is a great opportunity for teachers and pupils to study the Red planet, but also to study other fields of geology at school, such as seismology. With our pupils, we are following the InSight mission and we look forward to analyze seismic data registered by the SEIS seismometer , once it will be available (the InSight mission will launch in 2018 from California, and will land to Mars in 2018 or 2019). As this mission needs meteorite impacts to generate seismic waves ( to discover the Martian interior structure) , we've decided to model those meteorite strikes in the classroom. With our pupils, we've modeled meteorite impact craters with different impactors , such as tennis balls, baseballs, or pingpong balls, and used an analogue substratum made by flour and cocoa. Then, we kept on going our geophysical investigation , studying several parameters. For instance, we've studied the link between size of impactor and size of crater , the link between mass of impactor and Crater Formation, and the link between velocity of impactor and crater formation. In this geophysical approach , potential energy and kinetic energy can be introduced in terms of energy transfer as the impactor falls ( calculation of the velocity of impact and plotting that against crater diameter using v = (2gh)1/2). For each crater formation made in class by students, we have registered seismological data thanks to Audacity software, and study the seismic signal propagation. This exemple of hands-on activity with pupils, and its wide range of geophysical calculation shows how we can do simple experiment modeling meteorite crater impact and exploit registered seismological data at school. We've finaly focused our work with the very famous example of the astroblema of Rochechouart in the South-west of France ( crater formation : - 214 My) , in which it's easy to recognize every typical structure of crater formation (ejecta blankets, overturned crater rim) . In this activity, pupils understand how a model in class can be close to real geological objects.

  18. Noachian and more recent phyllosilicates in impact craters on Mars

    PubMed Central

    Fairén, Alberto G.; Chevrier, Vincent; Abramov, Oleg; Marzo, Giuseppe A.; Gavin, Patricia; Davila, Alfonso F.; Tornabene, Livio L.; Bishop, Janice L.; Roush, Ted L.; Gross, Christoph; Kneissl, Thomas; Uceda, Esther R.; Dohm, James M.; Schulze-Makuch, Dirk; Rodríguez, J. Alexis P.; Amils, Ricardo; McKay, Christopher P.

    2010-01-01

    Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times. PMID:20616087

  19. Noachian and more recent phyllosilicates in impact craters on Mars.

    PubMed

    Fairén, Alberto G; Chevrier, Vincent; Abramov, Oleg; Marzo, Giuseppe A; Gavin, Patricia; Davila, Alfonso F; Tornabene, Livio L; Bishop, Janice L; Roush, Ted L; Gross, Christoph; Kneissl, Thomas; Uceda, Esther R; Dohm, James M; Schulze-Makuch, Dirk; Rodríguez, J Alexis P; Amils, Ricardo; McKay, Christopher P

    2010-07-06

    Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times.

  20. Terrestrial analog field investigations to enable science and exploration studies of impacts and volcanism on the Moon, NEAs, and moons of Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Colaprete, A.; Cohen, B. A.; Elphic, R. C.; Garry, W. B.; Hodges, K. V.; Hughes, S. S.; Kim, K. J.; Lim, D.; McKay, C. P.; Osinski, G. R.; Petro, N. E.; Sears, D. W.; Squyres, S. W.; Tornabene, L. L.

    2013-12-01

    Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives.

  1. Terrestrial Analog Field Investigations to Enable Science and Exploration Studies of Impacts and Volcanism on the Moon, NEAs, and Moons of Mars

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer Lynne; Colaprete, Anthony; Cohen, Barbara; Elphic, Richard; Garry, William; Hodges, Kip; Hughes, Scott; Kim, Kyeon; Lim, Darlene; McKay, Chris; hide

    2013-01-01

    Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives.

  2. Asteroid entry in Venusian atmosphere: Pressure and density fields effect on crater formation

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert

    1995-01-01

    The objectives are to look at time scales of overpressure compared to cratering and to determine: what are the transient pressure and density due to atmospheric entry; do shock waves evacuate ambient gas; do transient atmospheric disturbances 'settle down' during cratering; can the pressure/density field be approximated as quasi-static; how does disturbance scale with impactor size; and what is the role of atmospheric thickness. The general approach is to perform inexpensive exploratory calculations, perform experiments to validate code and observe crater growth, and to follow up with more realistic coupling calculations. This viewgraph presentation presents progress made with the objective to obtain useful scaling relationships for crater formation when atmospheric effects are important.

  3. Hailar crater - A possible impact structure in Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Chen, Zhaoxu; Pu, Jiang; Xiao, Xiao; Wang, Yichen; Huang, Jun

    2018-04-01

    Hailar crater, a probable impact structure, is a circular depression about 300 m diameter in Inner Mongolia, northeast China. With broad elevated rims, the present rim-to-floor depth is 8-20 m. Regional geological background and geomorphological comparison suggest that this feature is likely not formed by surface processes such as salt diapir, karst, aeolian, glacial, or volcanic activity. Its unique occurrence in this region and well-preserved morphology are most consistent with it being a Cenozoic impact crater. Two field expeditions in 2016 and 2017 investigated the origin of this structure, recognizing that (1) no additional craters were identified around Hailar crater in the centimeter-scale digital topography models that were constructed using a drone imaging system and stereo photogrammetry; (2) no bedrock exposures are visible within or adjacent to the crater because of thick regolith coverage, and only small pieces of angular unconsolidated rocks are present on the crater wall and the gently-sloped crater rim, suggesting recent energetic formation of the crater; (3) most samples collected from the crater have identical lithology and petrographic characteristics with the background terrain, but some crater samples contain more abundant clasts and silicate hydrothermal veins, indicating that rocks from depths have been exposed by the crater; (4) no shock metamorphic features were found in the samples after thin section examinations; and (5) a systematic sample survey and iron detector scan within and outside of the crater found no iron-rich meteorites larger than 2 cm in size in a depth of 30 cm. Although no conclusive evidence for an impact origin is found yet, Hailar crater was most likely formed by an impact based on its unique occurrence and comparative geomorphologic study. We suggest that drilling in the crater center is required to verify the impact origin, where hypothesized melt-bearing impactites may be encountered.

  4. Chemical transport during formation and alteration of Martian impact and volcanic deposits

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.

    1992-01-01

    Much of the surface of Mars, including volcanic and cratered terrains, probably experienced alteration and degassing processes. These processes may have depleted or enriched many important elements in surface materials, including bedrock, dust, and soils. The composition of the martian soil may represent the best estimate, for some elements, of the average composition of the martian crust, similar to the composition of loess created by glacial action on the Earth. The martian soil may represent the only convenient, globally or regionally averaged sample of the martian crust. In order to understand the composition of the source material for the soil, however, we need to understand the contributions of volcanic vs. impact sources for this material and the chemical fractionations involved in its production. The processes to be addressed include degassing of volcanic deposits, as observed in the Valley of Ten Thousand Smokes at Katmai, Alaska, and degassing of meltbearing impact ejecta as inferred for suevite ejecta sheets at the Ries Crater, and alteration or palagonitization of volcanic deposits, as documented for volcanos in British Columbia and many other volcanic terrains, and impact crater deposits. The process of palagonitization has been the subject of several studies with reference to Mars, and palagonite is a good analogue for the spectroscopic properties of the martian dust. The role of impact in cratering has not been as well studied, although other researchers have established that both degassing and alteration are common features of impact crater deposits. Other relevant sources of experimental data include the extensive literature on the corrosion of nuclear waste glass and leaching of shocked materials.

  5. Shatter cones: (Mis)understood?

    PubMed

    Osinski, Gordon R; Ferrière, Ludovic

    2016-08-01

    Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and "double" cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship D sc = 0.4 D a, where D sc is the maximum spatial extent of in situ shatter cones, and D a is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact.

  6. Shatter cones: (Mis)understood?

    PubMed Central

    Osinski, Gordon R.; Ferrière, Ludovic

    2016-01-01

    Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and “double” cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship Dsc = 0.4 Da, where Dsc is the maximum spatial extent of in situ shatter cones, and Da is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact. PMID:27532050

  7. Major Element Analysis of the Target Rocks at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Hoerz, Friedrich; Mittlefehldt, David W.; Varley, Laura; Mertzman, Stan; Roddy, David

    2002-01-01

    We collected approximately 400 rock chips in continuous vertical profile at Meteor Crater, Arizona, representing, from bottom to top, the Coconino, Toroweap, Kaibab, and Moenkopi Formations to support ongoing compositional analyses of the impact melts and their stratigraphic source depth(s) and other studies at Meteor Crater that depend on the composition of the target rocks. These rock chips were subsequently pooled into 23 samples for compositional analysis by XRF (x ray fluorescence) methods, each sample reflecting a specific stratigraphic "subsection" approximately 5-10 in thick. We determined the modal abundance of quartz, dolomite, and calcite for the entire Kaibab Formation at vertical resolutions of 1-2 meters. The Coconino Formation composes the lower half of the crater cavity. It is an exceptionally pure sandstone. The Toroweap is only two inches thick and compositionally similar to Coconino, therefore, it is not a good compositional marker horizon. The Kaibab Formation is approximately 80 in thick. XRD (x ray diffraction) studies show that the Kaibab Formation is dominated by dolomite and quartz, albeit in highly variable proportions; calcite is a minor phase at best. The Kaibab at Meteor Crater is therefore a sandy dolomite rather than a limestone, consistent with pronounced facies changes in the Permian of SE Arizona over short vertical and horizontal distances. The Moenkopi forms the 12 in thick cap rock and has the highest Al2O3 and FeO concentrations of all target rocks. With several examples, we illustrate how this systematic compositional and modal characterization of the target ideologies may contribute to an understanding of Meteor Crater, such as the depth of its melt zone, and to impact cratering in general, such as the liberation of CO2 from shocked carbonates.

  8. Effects of Pre-Existing Target Structure on the Formation of Large Craters

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Cintala, M. J.; Crawford, D. A.

    2003-01-01

    The shapes of large-scale craters and the mechanics responsible for melt generation are influenced by broad and small-scale structures present in a target prior to impact. For example, well-developed systems of fractures often create craters that appear square in outline, good examples being Meteor Crater, AZ and the square craters of 433 Eros. Pre-broken target material also affects melt generation. Kieffer has shown how the shock wave generated in Coconino sandstone at Meteor crater created reverberations which, in combination with the natural target heterogeneity present, created peaks and troughs in pressure and compressed density as individual grains collided to produce a range of shock mineralogies and melts within neighboring samples. In this study, we further explore how pre-existing target structure influences various aspects of the cratering process. We combine experimental and numerical techniques to explore the connection between the scales of the impact generated shock wave and the pre-existing target structure. We focus on the propagation of shock waves in coarse, granular media, emphasizing its consequences on excavation, crater growth, ejecta production, cratering efficiency, melt generation, and crater shape. As a baseline, we present a first series of results for idealized targets where the particles are all identical in size and possess the same shock impedance. We will also present a few results, whereby we increase the complexities of the target properties by varying the grain size, strength, impedance and frictional properties. In addition, we investigate the origin and implications of reverberations that are created by the presence of physical and chemical heterogeneity in a target.

  9. Target and Projectile: Material Effects on Crater Excavation and Growth

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Burleson, T.; Cintala, Mark J.

    2010-01-01

    Scaling relationships allow the initial conditions of an impact to be related to the excavation flow and final crater size and have proven useful in understanding the various processes that lead to the formation of a planetary-scale crater. In addition, they can be examined and tested through laboratory experiments in which the initial conditions of the impact are known and ejecta kinematics and final crater morphometry are measured directly. Current scaling relationships are based on a point-source assumption and treat the target material as a continuous medium; however, in planetary-scale impacts, this may not always be the case. Fragments buried in a megaregolith, for instance, could easily approach or exceed the dimensions of the impactor; rubble-pile asteroids could present similar, if not greater, structural complexity. Experiments allow exploration into the effects of target material properties and projectile deformation style on crater excavation and dimensions. This contribution examines two of these properties: (1) the deformation style of the projectile, ductile (aluminum) or brittle (soda-lime glass) and (2) the grain size of the target material, 0.5-1 mm vs. 1-3 mm sand.

  10. Inversion of Crater Morphometric Data to Gain Insight on the Cratering Process

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Lyons, Suzane N.

    1998-01-01

    In recent years, morphometric data for Venus and several outer planet satellites have been collected, so we now have observational data of complex Craters formed in a large range of target properties. We present general inversion techniques that can utilize the morphometric data to quantitatively test various models of complex crater formation. The morphometric data we use in this paper are depth of a complex crater, the diameter at which the depth-diameter ratio changes, and onset diameters for central peaks, terraces, and peak rings. We tested the roles of impactor velocities and hydrostatic pressure vs. crustal strength, and we tested the specific models of acoustic fluidization (Melosh, 1982) and nonproportional growth (Schultz, 1988). Neither the acoustic fluidization model nor the nonproportional growth in their published formulations are able to successfully reproduce the data. No dependence on impactor velocity is evident from our inversions. Most of the morphometric data is consistent with a linear dependence on the ratio of crustal strength to hydrostatic pressure on a planet, or the factor c/pg.

  11. Collisional and dynamical history of Gaspra

    NASA Technical Reports Server (NTRS)

    Greenberg, R.; Nolan, M. C.; Bottke, W. F., Jr.; Kolvoord, R. A.

    1993-01-01

    Interpretation of the impact record on Gaspra requires understanding of the effects of collisions on a target body of Gaspra's size and shape, recognition of impact features that may have different morphologies from craters on larger planets, and models of the geological processes that erase and modify impact features. Crater counts on the 140 sq km of Gaspra imaged at highest resolution by the Galileo spacecraft show a steep size-frequency distribution (cumulative power-law index near -3.5) from the smallest resolvable size (150 m diameter) up through the large feature (1.5 km diameter crater) of familiar crater-like morphology. In addition, there appear to be as many as eight roughly circular concavities with diameters greater than 3 km visible on the asteroid. If we restrict our crater counts to features with traditionally recognized crater morphologies, these concavities would not be included. However, if we define craters to include any concave structures that may represent local or regional damage at an impact size, then the larger features on Gaspra are candidates for consideration. Acceptance of the multi-km features as craters has been cautious for several reasons. First, scaling laws (the physically plausible algorithms for extrapolating from experimental data) indicate that Gaspra could not have sustained such large-crater-forming impacts without being disrupted; second, aside from concavity, the larger structures have no other features (e.g. rims) that can be identified with known impact craters; and third, extrapolation of the power-law size distribution for smaller craters predicts no craters larger than 3 km over the entire surface. On the other hand, recent hydrocode modeling of impacts shows that for given impact (albeit into a sphere), the crater size is much larger than given by scaling laws. Gaspra-size bodies can sustain formation of up to 8-km craters without disruption. Besides allowing larger impact craters, this result doubles the lifetime since the last catastrophic fragmentation event up to one billion years. Events that create multi-km craters also globally damage the material structure, such that regolith is produced, whether or not Gaspra 'initially' had a regolith, contrary to other models in which initial regolith is required in order to allow current regolith. Because the globally destructive shock wave precedes basin formation, crater size is closer to the large size extrapolated from gravity-scaling rather than the strength-scaling that had earlier been assumed for such small bodies. This mechanism may also help explain the existence of Stickney on Phobos. Moreover, rejection of the large concavities as craters based on unfamiliar morphology would be premature, because (aside from Stickney) we have no other data on such large impact structures on such a small, irregular body. The eight candidate concavities cover an area greater than that counted for smaller craters, because they are most apparent where small craters cannot be seen: on low resolution images and at the limb on high resolution images. We estimate that there are at least two with diameter greater than 4 km per 140 sq km, which would have to be accounted for in any model that claims these are impact craters.

  12. The large impact process inferred from the geology of lunar multiring basins

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1992-01-01

    The nature of the impact process has been inferred through the study of the geology of a wide variety of impact crater types and sizes. Some of the largest craters known are the multiring basins found in ancient terrains of the terrestrial planets. Of these features, those found on the Moon possess the most extensive and diverse data coverage, including morphological, geochemical, geophysical, and sample data. The study of the geology of lunar basins over the past 10 years has given us a rudimentary understanding of how these large structures have formed and evolved. The topics covered include basin morphology, basin ejecta, basin excavation, and basin ring formation.

  13. Lunar and Planetary Science XXXV: Impacts: Modeling and Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This document covers the following topics: Cratering on Titan: Projectiles, Craters and Impact Melt; The Cratering Database: Making Code Jockeys Honest; Popigai Impact Structure Modeling: Morphology and Worldwide Ejecta; Anhydrite EOS and Phase Diagram in Relation to Shock Decomposition; Computational Investigations of the Chesapeake Bay Impact Structure; Hydrocode Simulations of the Chesapeake Bay Impact; Lockne Crater as a Result of Oblique Impact; The Influence of a Deep Shelf Sea on the Excavation and Modification of a Marine-Target Crater, the Lockne Crater, Central Sweden; Pre-Drilling Investigation of the Lake Bosumtwi Impact Crater: Constraints from Geophysics and Numerical Modelling; Central Uplift Formation at the Middlesboro Impact Structure, Kentucky, USA; A SRTM Investigation of Serra da Cangalho Impact Structure, Brazil; Brazilian Impact Craters: A Review; Flynn Creek Impact Structure: New Insights from Breccias, Melt Features, Shatter Cones, and Remote Sensing; The Howell Structure, Lincoln County, Tennessee: A Review of Past and Current Research; After the Chicxulub Impact: Control on Depositional and Diagenetic History of the Cenozoic Carbonate Formations of the Northwestern Yucatan Peninsula, Mexico; Ni Contents by Non-Destructive In-Situ XRF Method of Takamatsu-Kagawa Crater District in Japan; and Akiyoshi Limestone Blocks Transported by the P/T Boundary Event to Japan Islands.

  14. Numerical modeling of seismic anomalies at impact craters on a laboratory scale

    NASA Astrophysics Data System (ADS)

    Wuennemann, K.; Grosse, C. U.; Hiermaier, S.; Gueldemeister, N.; Moser, D.; Durr, N.

    2011-12-01

    Almost all terrestrial impact craters exhibit a typical geophysical signature. The usually observed circular negative gravity anomaly and reduced seismic velocities in the vicinity of crater structures are presumably related to an approximately hemispherical zone underneath craters where rocks have experienced intense brittle plastic deformation and fracturing during formation (see Fig.1). In the framework of the "MEMIN" (multidisciplinary experimental and modeling impact crater research network) project we carried out hypervelocity cratering experiments at the Fraunhofer Institute for High-Speed Dynamics on a decimeter scale to study the spatiotemporal evolution of the damage zone using ultrasound, acoustic emission techniques, and numerical modeling of crater formation. 2.5-10 mm iron projectiles were shot at 2-5.5 km/s on dry and water-saturated sandstone targets. The target material was characterized before, during and after the impact with high spatial resolution acoustic techniques to detect the extent of the damage zone, the state of rocks therein and to record the growth of cracks. The ultrasound measurements are applied analog to seismic surveys at natural craters but used on a different - i.e. much smaller - scale. We compare the measured data with dynamic models of crater formation, shock, plastic and elastic wave propagation, and tensile/shear failure of rocks in the impacted sandstone blocks. The presence of porosity and pore water significantly affects the propagation of waves. In particular the crushing of pores due to shock compression has to be taken into account. We present preliminary results showing good agreement between experiments and numerical model. In a next step we plan to use the numerical models to upscale the results from laboratory dimensions to the scale of natural impact craters.

  15. Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Seelos, K. D.

    2010-12-01

    The Caloris basin on Mercury is floored by light-toned plains and surrounded by an annulus of dark-toned material interpreted to be ejecta blocks and smooth, dark, ridged plains. Strangely, preliminary crater-counts indicate that these intra-ejecta dark plains are younger than the light-toned plains within the Caloris basin. This would imply a second, younger plains emplacement event, possibly involving lower albedo material volcanics, which resurfaced the original ejecta deposit. On the other hand, the dark plains may be pre-Caloris light plains covered by a thin layer of dark ejecta. Another alternative to the hypothesis of young, dark volcanism is the possibility that previous crater-counts have not thoroughly distinguished between superposed craters (fresh) and partly-buried craters (old) and therefore have not accurately determined the ages of the Caloris units. We here outline the tasks associated with a new mapping project of the Caloris basin, intended to improve our knowledge of the geology and geologic history of the basin, and thus facilitate an understanding of the thermal evolution of this region of Mercury. We will 1) classify craters based on geomorphology and infilling, 2) create a high-resolution map of the intra-ejecta dark plains, 3) perform crater counts of the intra-ejecta dark plains, the ejecta, and the Caloris floor light plains and 4) refine the stratigraphy of Caloris basin units. We will use new high resolution (200-300 m/p) imaging data from the MDIS instrument to create a new geomorphic map of the dark annulus around the Caloris basin. Known Caloris group formations will be mapped where identified and any new units will be defined and mapped as necessary. Specifically, we will delineate hummocks and smooth plains within the Odin formation and map them separately. We will look for unequivocal evidence of volcanic activity within the dark annulus and the Odin Formation, such as vents and flow lobes. The location of any filled craters will be especially noted, to be incorporated into a new crater classification scheme that includes both degradation state and level and type of infilling. We will also distinguish between craters infilled with 1) lava, 2) impact melt and 3) ejecta, based on our interpretation of the MDIS images. We will then determine the crater size-frequency distribution of each geomorphic unit. We will analyze the crater density of the Caloris floor plains unit, the Odin Formation ejecta and the Odin Formation intra-ejecta dark plains. We will do a second count of Caloris floor craters that includes filled craters, to attempt to get a minimum age for the underlying dark basement. Crater counting on any additional geologic units will depend upon results of the geomorphic mapping. Finally, we will refine the stratigraphy of the Caloris basin units. We start in the region where MESSENGER data over-laps Mariner 10 images. By comparing the Caloris group formations mapped in the Tolstoj and Shakespeare quadrangles to the overlapping MDIS images, we determine the distinctive geomorphology of each of these units in the high resolution MESSENGER data. We will then use this as diagnostic criteria as we map the rest of the basin.

  16. The Global Contribution of Secondary Craters on the Icy Satellites

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Johnson, K. E.; Schenk, P.

    2014-12-01

    At present, surface ages of bodies in the Outer Solar System are determined only from crater size-frequency distributions (a method dependent on an understanding of the projectile populations responsible for impact craters in these planetary systems). To derive accurate ages using impact craters, the impactor population must be understood. Impact craters in the Outer Solar System can be primary, secondary or sesquinary. The contribution of secondary craters to the overall population has recently become a "topic of interest." Our objective is to better understand the contribution of dispersed secondary craters to the small crater populations, and ultimately that of small comets to the projectile flux on icy satellites in general. We measure the diameters of obvious secondary craters (determined by e.g. irregular crater shape, small size, clustering) formed by all primary craters on Ganymede for which we have sufficiently high resolution data to map secondary craters. Primary craters mapped range from approximately 40 km to 210 km. Image resolution ranges from 45 to 440 m/pixel. Bright terrain on Ganymede is our primary focus. These resurfaced terrains have relatively low crater densities and serve as a basis for characterizing secondary populations as a function of primary size on an icy body for the first time. Although focusing on Ganymede, we also investigate secondary crater size, frequency, distribution, and formation, as well as secondary crater chain formation on icy satellites throughout the Saturnian and Jovian systems principally Rhea. We compare our results to similar studies of secondary cratering on the Moon and Mercury. Using Galileo and Voyager data, we have identified approximately 3,400 secondary craters on Ganymede. In some cases, we measured crater density as a function of distance from a primary crater. Because of the limitations of the Galileo data, it is necessary to extrapolate from small data sets to the global population of secondary craters. Nonetheless, we confirm that secondary craters on Ganymede have narrow size-frequency distributions and that they correlate with primary crater diameter. From these data we will evaluate the contribution of secondary craters over a range of crater diameters.

  17. Geomorphic record of Noachian, Hesperian and Amazonian materials and deposits preserved within Asimov Crater, Mars: A cross-sectional view of the role of volatiles through martian history

    NASA Astrophysics Data System (ADS)

    Morgan, G. A.; Head, J. W.; Marchant, D. R.

    2010-12-01

    We describe the geomorphic record preserved within the highly degraded 80 km diameter Asimov impact crater located within Noachis Terra. The crater has been significantly in-filled since its formation in the Noachian, presumably by sedimentary materials similar to units identified elsewhere in Noachian aged craters. In this case the fill is unusual in that there is an annulus of disconnected valleys adjacent to the interior flanks of the crater wall. High-resolution images reveal that Hesperian-aged layered basalt with distinctive columnar jointing caps the interior crater fill and provides a source of debris that via mass wasting, accumulates in the surrounding annular valleys. Models for the formation of the valleys need to account for the removal of large volumes of crater fill material from below the basaltic cap. One distinct possibility is that the fill material originally contained high proportions of volatiles that have since been lost to the atmosphere. We explore this model and others and investigate the surrounding regions to place further constraints on valley formation. The occurrence of steep slopes (>20 °), relatively narrow (sheltered) valleys, and a source of debris have provided favorable conditions for the preservation of late Amazonian shallow-ice deposits. Detailed mapping reveals morphological evidence for viscous ice flow, in the form of several lobate debris tongues (LDT). Superimposed on LDT are a series of fresh-appearing gullies, with typical alcove, channel, and fan morphologies. The shift from ice-rich viscous-flow formation to gully erosion is best explained as a shift in martian climate, from one compatible with excess snowfall and flow of ice-rich deposits, to one consistent with minor snowfall and gully formation. Available dating suggests that the climate transition occurred >8 Ma, prior to the formation of other small-scale ice-rich flow features identified elsewhere on Mars that have been interpreted to have formed during the most recent phases of high obliquity. Taken altogether, Asimov Crater may contain deposits related to volatile accumulation and loss from two distinct epochs of martian history, further supporting the growing evidence of multiple shifts in the martian climate.

  18. Venus: Dating Post-Regional-Plains Formations Through Analysis of Preservation of Crater-Associated Radar-Dark Deposits

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.; Head, J. W., III

    2002-01-01

    The degree of preservation of crater-associated radar-dark deposits is used to estimate the age of the crater and adjacent deposits. Additional information is contained in the original extended abstract.

  19. Are Floor-Fractured Craters on Ceres Formed by Cryomagmatism?

    NASA Astrophysics Data System (ADS)

    Buczkowski, D. L.; Sizemore, H. G.; Bland, M. T.; Scully, J. E. C.; Quick, L. C.; Hughson, K. H. G.; Park, R. S.; Preusker, F.; Raymond, C. A.; Russell, C. T.

    2018-06-01

    Several of the impact craters on Ceres have sets of fractures on their floors, morphologically similar lunar Floor-Fractured Craters. We present a geomorphic and topographic analysis of the cerean FFCs and propose hypotheses for their formation.

  20. Degradation of Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Crumpler, L. S.; Parker, T. J.; Golombek, M. P.; Wilson, S. A.; Mittlefehldt, D. W.

    2015-01-01

    The Opportunity rover has traversed portions of two western rim segments of Endeavour, a 22 km-diameter crater in Meridiani Planum, for the past three years. The resultant data enables the evaluation of the geologic expression and degradation state of the crater. Endeavour is Noa-chian-aged, complex in morphology, and originally may have appeared broadly similar to the more pristine 20.5 km-diameter Santa Fe complex crater in Lunae Palus (19.5degN, 312.0degE). By contrast, Endeavour is considerably subdued and largely buried by younger sulfate-rich plains. Exposed rim segments dubbed Cape York (CY) and Solander Point/Murray Ridge/Pillinger Point (MR) located approximately1500 m to the south reveal breccias interpreted as remnants of the ejecta deposit, dubbed the Shoemaker Formation. At CY, the Shoemaker Formation overlies the pre-impact rocks, dubbed the Matijevic Formation.

  1. Relative Ages of the Highlands, Lowlands, and Transition Zone Along a Portion of the Mars Crustal Dichotomy from Densities of Visible and Buried Impact Craters

    NASA Technical Reports Server (NTRS)

    DeSoto, G. E.; Frey, H. V.

    2005-01-01

    Understanding the fundamental age relationships of the different parts of the Mars Crustal Dichotomy is essential to fully understanding the events that shaped the early history and formation of the surface of Mars. A dominant question is what are the true relative ages of the Northern Lowlands and the Southern Highlands? Using MOLA data from the Mars Global Surveyor and Viking visual images, a dataset of both buried and visible crater diameters was created over a nine million sq km study area of a section of the dichotomy boundary stretching from Arabia Terra to Utopia Planitia. Cumulative frequency plots on a log-log scale were used to determine the relative ages for the Highlands, the Lowlands, and the Transition Zone, separately for the visible, the buried and the combined total (visible+ buried) populations. We find the overall Highland crater population in this area is slightly older than the Lowlands, consistent with previous global studies, but the Lowlands and Transition Zone are also very old and formed at roughly the same time. It appears that the formation of the Lowlands in this region formed contemporaneously with a large-scale resurfacing event in the Highlands, perhaps caused by the process responsible for the Lowland formation.

  2. Are pre-crater mounds gas-inflated?

    NASA Astrophysics Data System (ADS)

    Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Babkina, Elena; Arefiev, Stanislav; Khairullin, Rustam

    2017-04-01

    Gas-emission craters (GEC) on Yamal peninsula, which occupied minds of researches for the last couple of years since first discovered in 2014, appeared to form on the place of specifically shaped mounds. There was a number of hypotheses involving pingo as an origin of these mounds. This arouse an interest in mapping pingo thus marking the areas of GEC formation risk. Our field research allows us to suggest that remote-sensing-based mapping of pingo may result in mix up of mounds of various origin. Thus, we started with classification of the mounds based on remote-sensing, field observations and survey from helicopter. Then we compared indicators of mounds of various classes to the properties of pre-crater mounds to conclude on their origin. Summarizing field experience, there are three main mound types on Yamal. (1) Outliers (remnant hills), separated from the main geomorphic landform by erosion. Often these mounds comprise polygonal blocks, kind of "baydzherakh". Their indicators are asymmetry (short gentle slope towards the main landform, and steep slope often descending into a small pond of thermokarst-nivation origin), often quadrangle or conic shape, and large size. (2) Pingo, appear within the khasyrei (drain lake basin); often are characterized by open cracks resulting from expansion of polygonal network formed when re-freezing of lake talik prior to pingo formation; old pingo may bear traces of collapse on the top, with depression which differs from the GEC by absence of parapet. (3) Frost-heave mounds (excluding pingo) may form on deep active layer, reducing due to moss-peat formation and forming ice lenses from an active layer water, usually they appear in the drainage hollows, valley bottoms, drain-lake basins periphery. These features are smaller than the first two types of mounds. Their tops as a rule are well vegetated. We were unable to find a single or a set of indicators unequivocally defining any specific mound type, thus indicators of pre-crater mounds are still debatable. Our hypothesis initially does not involve pingo origin of pre-crater mounds for several reasons, among which were the initial depth (70 m) and width (18 m) of the crater void, frozen walls and bottom, no traces of sub-lake talik, an important control for pingo formation, and more. Pre-crater mounds are closer to frost-heave mounds in size (4-7 m high and 30-60 m in diameter). Yet frost-heave mounds like palsa or lithalsa have segregated ice lenses closer to the surface, total thickness of these lenses is equal to the height of the mound. Pre-crater mounds have at least 20 m of tabular ground ice in the section that has no manifestation in the mound height or diameter. All above-mentioned leads to the conclusion that pre-crater mounds form because of gas inflation rather than regular frost heave process involving moisture migration towards the freezing front. This research is supported by Russian Science Foundation Grant 16-17-10203.

  3. Double-layered ejecta craters on Mars: morphology, formation, and a comparison with the Ries ejecta blanket

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Wulf, Gerwin; Sturm, Sebastian; Pietrek, Alexa

    2015-04-01

    The ejecta blankets of impact craters in volatile-rich environments often show characteristic layered ejecta morphologies. The so-called double-layer ejecta (DLE) craters are probably the most confusing crater types showing two ejecta layers with distinct morphologies. A phenomenological ejecta excavation and emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim - a textbook like, pristine DLE crater - and studies of other DLE craters [1]. The observations show that DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice. The deposits of the ejecta curtain are wet in the distal part and dryer in composition in the proximal part. As a result, the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a fluid saturated debris flow mode after landing overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits. This slide overruns and superimposes parts of the outer ejecta layer. Basal melting of the ice components of the ejecta volumes at the transient crater rim is induced by frictional heating and the enhanced pressure at depth. The results indicate similar processes also for other planetary bodies with volatile-rich environments, such as Ganymede, Europa or the Earth. The Ries crater on Earth has a similar ejecta thickness distribution as DLE craters on Mars [2]. Here basal sliding and fluidization of the ejecta increases outward by the entrainment of locally derived Tertiary sands and clays, that are saturated with groundwater. References: [1] Wulf, G. & Kenkmann, T. (2015) Met. Planet. Sci. (in press); [2] Sturm, S., Wulf. G., Jung, D. & Kenkmann, T. (2013) Geology 41, 531-534.

  4. The Role of Breccia Lenses in Regolith Generation From the Formation of Small, Simple Craters: Application to the Apollo 15 Landing Site

    NASA Astrophysics Data System (ADS)

    Hirabayashi, M.; Howl, B. A.; Fassett, C. I.; Soderblom, J. M.; Minton, D. A.; Melosh, H. J.

    2018-02-01

    Impact cratering is likely a primary agent of regolith generation on airless bodies. Regolith production via impact cratering has long been a key topic of study since the Apollo era. The evolution of regolith due to impact cratering, however, is not well understood. A better formulation is needed to help quantify the formation mechanism and timescale of regolith evolution. Here we propose an analytically derived stochastic model that describes the evolution of regolith generated by small, simple craters. We account for ejecta blanketing as well as regolith infilling of the transient crater cavity. Our results show that the regolith infilling plays a key role in producing regolith. Our model demonstrates that because of the stochastic nature of impact cratering, the regolith thickness varies laterally, which is consistent with earlier work. We apply this analytical model to the regolith evolution at the Apollo 15 site. The regolith thickness is computed considering the observed crater size-frequency distribution of small, simple lunar craters (< 381 m in radius for ejecta blanketing and <100 m in radius for the regolith infilling). Allowing for some amount of regolith coming from the outside of the area, our result is consistent with an empirical result from the Apollo 15 seismic experiment. Finally, we find that the timescale of regolith growth is longer than that of crater equilibrium, implying that even if crater equilibrium is observed on a cratered surface, it is likely that the regolith thickness is still evolving due to additional impact craters.

  5. Amorphous and Crystalline H20 Ice at Rhea's Inktomi Crater

    NASA Technical Reports Server (NTRS)

    Lewis, Emma M.; Dalle Ore, Cristina M.; Cruikshank, Dale P.; White, Oliver L.

    2014-01-01

    We present the analysis of Cassini spectral data from spectral mapping of Saturnian icy moons Dione and Rhea, to investigate possible effects of impact crater formation on the relative abundances of crystalline and amorphous water ice in the moons' ice crusts. Both moons display morphologically young ray craters as well as older craters. Possible changes in ice properties due to crater formation are conjectured to be more visible in younger craters, and as such Rhea's well imaged ray crater Inktomi is analysed, as are older craters for comparison. We used data from Cassini's Visual and Infrared Mapping Spectrometer (VIMS). For each pixel in the VIMS maps, spectral data were extracted in the near-infrared range (1.75 micrometers less than lambda less than 2.45 micrometers). Analysis was begun by fitting a single Gaussian to the peak in absorption at 2.0 micrometers, which was then subtracted from the data, leaving residuals with a minimum on either side of the original 2.0-micrometers band. The spectra of the individual spatial pixels were then clustered by the differences between these minima, which are sensitive to changes in both ice grain size and crystallinity. This yielded preliminary maps which approximated the physical characteristics of the landscape and were used to identify candidates for further analysis. Spectra were then clustered by the properties of the 1.5-micrometers band, to divide the map into regions based on inferred grain size. For each region, the predicted differences in minima from the Gaussian residuals, over a range of crystallinities, were calculated based on the found grain sizes. This model was used to find the crystallinity of each pixel via grain size and characteristics of the residual function. Preliminary results show a greater degree of crystallization of young crater interiors, particularly in Rhea's ray crater Inktomi, where ice showed crystalline ice abundances between 33 percent and 61 percent. These patterns in ice crystallization are possibly attributable to increased heat generated during crater formation.

  6. Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: Crater hopping at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Bell, J. F., III; Catalano, J. G.; Clark, B. C.; Fox, V. K.; Gellert, R.; Grotzinger, J. P.; Guinness, E. A.; Herkenhoff, K. E.; Knoll, A. H.; Lapotre, M. G. A.; McLennan, S. M.; Ming, D. W.; Morris, R. V.; Murchie, S. L.; Powell, K. E.; Smith, M. D.; Squyres, S. W.; Wolff, M. J.; Wray, J. J.

    2015-03-01

    Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral (1.0-2.65 μm) along-track oversampled observations covering Victoria, Santa Maria, Endeavour, and Ada craters were processed to 6 m/pixel and used in combination with Opportunity observations to detect and map hydrated Mg and Ca sulfate minerals in the Burns formation. The strongest spectral absorption features were found to be associated with outcrops that are relatively young and fresh (Ada) or preferentially scoured of dust, soil, and coatings by prevailing winds. At Victoria and Santa Maria, the scoured areas are on the southeastern rims and walls, opposite to the sides where wind-blown sands extend out of the craters. At Endeavour, the deepest absorptions are in Botany Bay, a subdued and buried rim segment that exhibits high thermal inertias, extensive outcrops, and is interpreted to be a region of enhanced wind scour extending up and out of the crater. Ada, Victoria, and Santa Maria outcrops expose the upper portion of the preserved Burns formation and show spectral evidence for the presence of kieserite. In contrast, gypsum is pervasive spectrally in the Botany Bay exposures. Gypsum, a relatively insoluble evaporative mineral, is interpreted to have formed close to the contact with the Noachian crust as rising groundwaters brought brines close to and onto the surface, either as a direct precipitate or during later diagenesis. The presence of kieserite at the top of the section is hypothesized to reflect precipitation from evaporatively concentrated brines or dehydration of polyhydrated sulfates, in both scenarios as the aqueous environment evolved to very arid conditions.

  7. Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: crater hopping at Meridiani Planum

    USGS Publications Warehouse

    R.E. Arvidson,; Bell, J.F.; Catalano, J.G.; Clark, B. C.; Fox, V.K.; Gellert, Ralf; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Knoll, A.H.; Lapotre, M.G.A.; McLennan, S.M.; Ming, D. W.; Morris, R.V.; Murchie, S.L.; Powell, K. E.; Smith, M.D.; Squyres, S. W.; Wolff, M.J.; J.J. Wray,

    2015-01-01

    Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral (1.0–2.65 µm) along-track oversampled observations covering Victoria, Santa Maria, Endeavour, and Ada craters were processed to 6 m/pixel and used in combination with Opportunity observations to detect and map hydrated Mg and Ca sulfate minerals in the Burns formation. The strongest spectral absorption features were found to be associated with outcrops that are relatively young and fresh (Ada) or preferentially scoured of dust, soil, and coatings by prevailing winds. At Victoria and Santa Maria, the scoured areas are on the southeastern rims and walls, opposite to the sides where wind-blown sands extend out of the craters. At Endeavour, the deepest absorptions are in Botany Bay, a subdued and buried rim segment that exhibits high thermal inertias, extensive outcrops, and is interpreted to be a region of enhanced wind scour extending up and out of the crater. Ada, Victoria, and Santa Maria outcrops expose the upper portion of the preserved Burns formation and show spectral evidence for the presence of kieserite. In contrast, gypsum is pervasive spectrally in the Botany Bay exposures. Gypsum, a relatively insoluble evaporative mineral, is interpreted to have formed close to the contact with the Noachian crust as rising groundwaters brought brines close to and onto the surface, either as a direct precipitate or during later diagenesis. The presence of kieserite at the top of the section is hypothesized to reflect precipitation from evaporatively concentrated brines or dehydration of polyhydrated sulfates

  8. Exposed Fractured Bedrock in the Central Pit of a Crater

    NASA Image and Video Library

    2016-11-09

    This HiRISE image shows the central pit feature of an approximately 20-kilometer diameter complex crater in located at 304.480 degrees east, -11.860 degrees south, just north of the Valles Marineris. Here we can observe a partial ring of light-toned, massive and fractured bedrock, which has been exposed by the impact-forming event, and via subsequent erosion that typically obscure the bedrock of complex central features. Features such as this one are of particular interest as they provide scientists with numerous exposures of bedrock that can be readily observed from orbit and originate from the deep Martian subsurface. Unlike on Earth, plate tectonics do not appear to be active on Mars. Thus, much of the Martian subsurface is not directly observable through uplift, erosion and exposure of mountain chains, which provide the majority of bedrock exposures on Earth. Exposures of subsurface materials generated by these features provides us with some of the only "windows" into the subsurface geology. This makes the study of impact craters an invaluable source of information when trying to understand, not only the impact process, but also the composition and history of Mars. Although much of what we see here is composed of massive and fractured bedrock, there are zones of rock fragmentation, called "brecciation." These fragmented rocks (a.k.a., breccias) are best viewed in the eastern portion of the central pit, which was captured in a previous HiRISE image. Additionally, we see some occurrences of impact melt-bearing deposits that surround and coat the bedrock exposed within the central pit. Several dunes are on the surface throughout the central pit and surrounding crater floor. The mechanisms behind the formation of central features, particularly central pits, are not completely understood. Geologic mapping of these circumferential "mega" blocks of bedrock indicate radial and concentric fracturing that is consistent with deformation through uplift. The exposed bedrock shows well-expressed lineament features that are likely fractures and faults formed during the uplift process. Studies of the bedrock, and such structures in this image, allows us better to understand the formative events and physical processes responsible for their formation. Current research suggests that their formation is the result of some component of uplift followed by collapse. http://photojournal.jpl.nasa.gov/catalog/PIA21205

  9. Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure

    NASA Astrophysics Data System (ADS)

    Rae, A. S. P.; Collins, G. S.; Grieve, R. A. F.; Osinski, G. R.; Morgan, J. V.

    2017-07-01

    Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35-40 km and has since experienced up to 2 km of differential erosion.

  10. Diamond Head Revisited with Ammonium Dichromate.

    ERIC Educational Resources Information Center

    Arrigoni, Edward

    1981-01-01

    The classroom demonstration using ammonium dichromate to simulate a volcanic eruption can be modified into a more dramatic and accurate representation of the geologic processes involved in the formation of a volcanic crater. The materials, demonstration setup, safety procedures, and applications to instruction are presented. (Author/WB)

  11. The topography of Ceres and implications for the formation of linear surface structures

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Otto, K.; Ruesch, O.; Scully, J. E. C.; Williams, D. A.; Mest, S. C.; Schenk, P.; Jaumann, R.; Nathues, A.; Preusker, F.; Park, R. S.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    NASA's Dawn spacecraft began orbiting the dwarf planet Ceres in April 2015. Framing Camera data from the Approach (1.3 km/px) and Survey (415 m/px) orbits include digital terrain models derived from processing stereo images. These models have supported various scientific studies of the surface. The eastern hemisphere of Ceres is topographically higher than the western hemisphere. Some of linear structures on Ceres (which include grooves, pit crater chains, fractures and troughs) appear to be radial to the large basins Urvara and Yalode, and most likely formed due to impact processes. However, set of regional linear structures (RLS) that do not have any obvious relationship to impact craters are found on the eastern hemisphere topographic high region. Many of the longer RLS are comprised of smaller structures that have linked together, suggestive of en echelon fractures. Polygonal craters, theorized to form when pervasive subsurface fracturing affects crater formation [1], are widespread on Ceres [2], and those proximal to the RLS have straight crater rims aligned with the grooves and troughs, suggesting that the RLS are fracture systems. A cross-section of one RLS is displayed in FC images of the Occator crater wall. Comparing these images to the digital terrain models show 1) that the structure dips ~60º and 2) there is downward motion on the hanging wall, implying normal faulting. The digital terrain models also reveal the presence of numerous positive relief features with sub-circular shapes. These dome-like features have been tentatively interpreted as volcanic/magmatic features [3]; other possibilities include salt domes. Analog models of domal uplift in areas of regional extension [4] predict patterns of linear structures similar to those observed in the RLS near Occator. Utilizing topography data provided by the Ceres digital terrain models, we assess the relationship between the RLS and nearby domes and topographic high regions to determine the mechanism by which the RLS may have formed. [1] Thomas, P.C. et al. (1999) Icarus, doi: 10.1006/icar.1999.6121 [2] Otto et al. (2015) EPSC2015-284 [3] Ruesch et al. [this meeting] [4] Sims et al. (2013) AAPG Bulletin, doi: 10.1306/02101209136

  12. Projectile-target mixing in melted ejecta formed during a hypervelocity impact cratering event

    NASA Technical Reports Server (NTRS)

    Evans, Noreen Joyce; Ahrens, Thomas J.; Shahinpoor, M.; Anderson, W. W.

    1993-01-01

    Tektites contain little to no projectile contamination while, in contrast, some distal ejecta deposits can be relatively projectile-rich (e.g. the Cretaceous-Tertiary (K-T) boundary clay). This compositional difference motivated an experimental study of hypervelocity target-projectile mixing processes. We hope to scale up the results from these experiments and apply them to terrestrial impact structures like the Chicxulub Crater, Yucutan, Mexico, the leading contender as the site for the impact that caused the mass extinction that marks the K-T boundary. Shock decomposition of the approximately 500m thickness of anhydrite, or greater thickness of limestone, in the target rocks at Chicxulub may have been a critical mechanism for either global cooling via SO3, and subsequently H2SO4, formation, or possibly, global warming via increased CO2 formation. Understanding target-projectile mixing processes during hypervelocity impact may permit more accurate estimates of the amount of potentially toxic, target-derived material reaching stratospheric heights.

  13. Modeling Low Velocity Impacts: Predicting Crater Depth on Pluto

    NASA Astrophysics Data System (ADS)

    Bray, V. J.; Schenk, P.

    2014-12-01

    The New Horizons mission is due to fly-by the Pluto system in Summer 2015 and provides the first opportunity to image the Pluto surface in detail, allowing both the appearance and number of its crater population to be studied for the first time. Bray and Schenk (2014) combined previous cratering studies and numerical modeling of the impact process to predict crater morphology on Pluto based on current understanding of Pluto's composition, structure and surrounding impactor population. Predictions of how the low mean impact velocity (~2km/s) of the Pluto system will influence crater formation is a complex issue. Observations of secondary cratering (low velocity, high angle) and laboratory experiments of impact at low velocity are at odds regarding how velocity controls depth-diameter ratios: Observations of secondary craters show that these low velocity craters are shallower than would be expected for a hyper-velocity primary. Conversely, gas gun work has shown that relative crater depth increases as impact velocity decreases. We have investigated the influence of impact velocity further with iSALE hydrocode modeling of comet impact into Pluto. With increasing impact velocity, a projectile will produce wider and deeper craters. The depth-diameter ratio (d/D) however has a more complex progression with increasing impact velocity: impacts faster than 2km/s lead to smaller d/D ratios as impact velocity increases, in agreement with gas-gun studies. However, decreasing impact velocity from 2km/s to 300 m/s produced smaller d/D as impact velocity was decreased. This suggests that on Pluto the deepest craters would be produced by ~ 2km/s impacts, with shallower craters produced by velocities either side of this critical point. Further simulations to investigate whether this effect is connected to the sound speed of the target material are ongoing. The complex relationship between impact velocity and crater depth for impacts occurring between 300m/s and 10 km/s suggests that there might be a larger range of 'pristine' crater depths on Pluto than on bodies with higher mean impact velocity. This might affect our ability to define a pristine crater depth as a starting point for crater infill and relaxation studies.

  14. The structural inventory of a small complex impact crater: Jebel Waqf as Suwwan, Jordan

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Sturm, Sebastian; Krüger, Tim; Salameh, Elias; Al-Raggad, Marwan; Konsul, Khalil

    2017-07-01

    The investigation of terrestrial impact structures is crucial to gain an in-depth understanding of impact cratering processes in the solar system. Here, we use the impact structure Jebel Waqf as Suwwan, Jordan, as a representative for crater formation into a layered sedimentary target with contrasting rheology. The complex crater is moderately eroded (300-420 m) with an apparent diameter of 6.1 km and an original rim fault diameter of 7 km. Based on extensive field work, IKONOS imagery, and geophysical surveying we present a novel geological map of the entire crater structure that provides the basis for structural analysis. Parametric scaling indicates that the structural uplift (250-350 m) and the depth of the ring syncline (<200 m) are anomalously low. The very shallow relief of the crater along with a NE vergence of the asymmetric central uplift and the enhanced deformations in the up-range and down-range sectors of the annular moat and crater rim suggest that the impact was most likely a very oblique one ( 20°). One of the major consequences of the presence of the rheologically anisotropic target was that extensive strata buckling occurred during impact cratering both on the decameter as well as on the hundred-meter scale. The crater rim is defined by a circumferential normal fault dipping mostly toward the crater. Footwall strata beneath the rim fault are bent-up in the down-range sector but appear unaffected in the up-range sector. The hanging wall displays various synthetic and antithetic rotations in the down-range sector but always shows antithetic block rotation in the up-range sector. At greater depth reverse faulting or folding is indicated at the rim indicating that the rim fault was already formed during the excavation stage.

  15. Early Mars: A regional assessment of denudation chronology

    NASA Technical Reports Server (NTRS)

    Maxwell, T. A.; Craddock, R. A.

    1993-01-01

    Within the oldest highland units on Mars, the record of crater degradation indicates that fluvial resurfacing was responsible for modifying the Noachian through middle-Hesperian crater population. Based on crater frequency in the Noachian cratered terrain, age/elevation relations suggest that the highest exposures of Noachian dissected and plateau units became stabilized first, followed by successively lower units. In addition, studies of drainage networks indicate that the frequency of Noachian channels is greatest at high elevations. Together, these observations provide strong evidence of atmospheric involvement in volatile recycling. The long time period of crater modification also suggests that dendritic highland drainage was not simply the result of sapping by release of juvenile water, because the varied geologic units as well as the elevation dependence of stability ages makes it unlikely that subsurface recycling could provide a continuous supply of water for channel formation by sapping. While such geomorphic constraints on volatile history have been established by crater counts and stratigraphic relations using the 1:2M photomosaic series, photogeologic age relationships at the detailed level are needed to establish a specific chronology of erosion and sedimentation. Age relations for discrete erosional slopes and depositional basins will help refine ages of fluvial degradation, assess effectiveness of aeolian processes, and provide a regional chronology of fluvial events.

  16. Ancient fluvial processes in the equatorial highlands of Mars

    NASA Technical Reports Server (NTRS)

    Craddock, Robert A.; Maxwell, Ted A.

    1991-01-01

    Martian highland craters typically lack ejecta deposits, have no noticeable rim, and are flat floored. In addition, crater size frequency distribution curves show that highland craters have depleted populations less than 20 km in diameter. A variety of processes have been suggested to explain these observations including deposition of aeolian or volcanic materials up to the crater rim crests, thermal creep, terrain softening, and mass wasting. However, none of these processes adequately explains both the crater morphology and population distribution. In order to explain both the Martian highland crater morphology and population distribution, a fluvial process is proposed which is capable of removing the loose crater rim material. The resulting effect is to decrease the crater diameter, thereby causing the population curves to bendover. The eroded material is redistributed, burying or partially burying smaller diameter craters before complete erosion. This material may also be deposited into local topographic lows, creating the depositional basins observed. A fluvial process explains both sets of observations: crater morphology and crater population distribution curves.

  17. A Triple Crater

    NASA Image and Video Library

    2017-06-01

    This image from NASA's Mars Reconnaissance Orbiter shows an elongated depression from three merged craters. The raised rims and ejecta indicate that these are impact craters rather than collapse or volcanic landforms. The pattern made by the ejecta and the craters suggest this was a highly oblique (low angle to the surface) impact, probably coming from the west. There may have been three major pieces flying in close formation to make this triple crater. https://photojournal.jpl.nasa.gov/catalog/PIA21652

  18. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Self-Trail, Jean M.; Edwards, Lucy E.; Litwin, Ronald J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)–U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of water- saturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dino-flagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As a result, intact Paleogene clasts in Eyreville cores are rare, but clasts of semilithified Potomac Formation silts and clays are common.

  19. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    ,; Edwards, L.E.; Litwin, R.J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of watersaturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dinoflagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As a result, intact Paleogene clasts in Eyreville cores are rare, but clasts of semilithified Potomac Formation silts and clays are common. ?? 2009 The Geological Society of America.

  20. A Theory for the RF Surface Field for Various Metals at the Destructive Breakdown Limit

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    2006-11-01

    By destructive breakdown we mean a breakdown event that results in surface melting over a macroscopic area in a high E-field region of an accelerator structure. A plasma forms over the molten area, bombarding the surface with an intense ion current (˜108 A/cm2), equivalent to a pressure of about a thousand Atmospheres. This pressure in turn causes molten copper to migrate away from the iris tip, resulting in measurable changes in the iris shape. The breakdown process can be roughly divided into four stages: (1) the formation of "plasma spots" at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a crater cluster; (4) the process after surface melting that leads to destructive breakdown. The physics underlying each of these stages is developed, and a comparison is made between the theory and experimental evidence whenever possible. The key to preventing breakdown lies in stage (3). A single plasma spot emits a current of several amperes, a portion of which returns to impact the surrounding area with a power density on the order 107 Watt/cm2. This power density is not quite adequate to melt the surrounding surface on a time scale short compared to the rf pulse length. In a crater field, however, the impact areas from multiple plasma spots overlap to provide sufficient power density for surface melting over an area on the order of 0.1 mm2 or more. The key to preventing breakdown is to choose an iris tip material that requires the highest power density (proportional to the square of the rf surface field) for surface melting, taking into account the penetration depth of the impacting electrons. The rf surface field required for surface melting (relative to copper) has been calculated for a large number elementary metals, plus stainless-steel and carbon.

  1. Equatorial Layered Deposits in Arabia Terra, Mars: Facies and Process Variability

    NASA Astrophysics Data System (ADS)

    Pondrelli, M.; Rossi, A.; van Gasselt, S.; Le Deit, L.; Glamoclija, M.; Cavalazzi, B.; Franchi, F.; Fueten, F.; Hauber, E.; Zegers, T.

    2012-12-01

    Genetic mechanisms proposed to explain Equatorial Layered Deposits (ELDs) formation include subglacial volcanism, aeolian/airfall, lacustrine, lacustrine/volcanic and spring-fed deposition. ELDs have been frequently shown to consist of sulfates (e.g. Gendrin et al., 2005) that might form as a response to evaporation in a playa environment (Hoefen et al., 2003) or during spring precipitation (e.g. Allen and Oehler, 2008; Rossi et al., 2008). The importance of groundwater-dominated hydrological systems was proposed to explain the formation of light-toned deposits in Meridiani Planum and Arabia Terra (e.g. Andrews-Hanna et al. 2007). Additionally, fluid expulsion processes have been invoked to explain the formation of mounds within the light-toned deposits in Arabia Terra (Allen and Oehler, 2008; Rossi et al., 2008; Pondrelli et al., 2011). Potential for habitable conditions of both playa and spring-related settings (Cavalazzi et al., 2007; Glamoclija et al., 2011) coupled with the high preservation potential within sulfates (Panieri et al., 2010), make these deposits a good candidate to understand the potential past habitability of the planet. In order to investigate ELDs genesis, an area in the vicinity of Firsoff crater, where ELDs are present within and outside the craters, was selected for geological mapping and analysis of the landforms and their association using the available dataset, including CRISM in order to infer ELDs composition. Within Firsoff crater, ELDs form a bulge that can be estimated to be at least a few hundred meters thick, while, outside the craters, ELDs form flat-lying deposits. Although heavily eroded by wind and carved by yardangs, several morphologies within the ELDs in the craters seem to be depositional, which would exclude that the entire Firsoff basin had been originally filled by ELDs. Within craters, ELDs consist of roughly meter thick layers draping and onlapping the substratum. They appear affected by polygonal patterns with no evidence of sedimentary structures. Polyhydrated sulfates have been detected. At places, ELDs appear to be linked to and possibly sourced from tectonically controlled lineaments. Large cone-shaped mounds (100 to 500 m) are situated locally on top of ELDs. They consist of boulders embedded in a matrix, and about one-third of them display an orifice at their top. Outside of the craters, ELDs show large-scale cross stratification associated to duneforms, which suggests an aeolian origin possibly associated to playa deposits. We distinguish between fluid expulsion ELDs forming within the crater and aeolian ELDs outside and possibly inside the craters. Fluid expulsion ELDs would result from groundwater upwelling and following evaporitic precipitation, whereas aeolian ELDs would result from reworking and redeposition of the spring ELDs. References Allen and Oehler (2008), Astrobiology, 8, 1093-1112. Andrews-Hanna et al. (2007), Nature, 446, 163-166. Cavalazzi et al. (2007), Sed. Geol., 200, 73-88. Gendrin et al. (2005), Science, 307, 1587. Glamoclija et al. (2011), Geomicrob. J., 29, 733-751. Hoefen et al. (2003), Science, 302, 627-630. Panieri et al. (2010), Geobiology, 8, 101-111. Pondrelli et al. (2011), EPSL, 304, 511-519. Rossi et al. (2008), JGR, 113(8).

  2. Vesta and Ceres by the light of Dawn

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.

    2015-11-01

    Ceres and Vesta are the most massive bodies in the main asteroid belt. They both appear to be intact protoplanets whose growth may have been drastically altered by the concomitant formation of Jupiter.. These two bodies have witnessed 4.6 Ga of solar system history, much, but not all, of which has been recorded in their surfaces. Dawn’s objective is to interview these two witnesses to learn as much as possible about the early epoch. These bodies are protoplanets, our best archetypes of the early building blocks of the terrestrial planets. In particular, siderophile elements in the Earth’s core were probably first segregated in Vesta-like bodies, and its water was likely first condensed in Ceres-like bodies.Many of the basaltic achondrites originated from a common parent body. Dawn verified that Vesta was consistent with that parent body. hence strengthening geochemical inferences from these samples on the formation and evolution of the solar system and supporting hypotheses for their delivery from Vesta to Earth. Ceres has not revealed itself with a meteoritic record. While the surface is scarred with craters, it is probable that the ejecta from the crater-forming event created little competent material from the icy crust and any such ejected projectiles that reached Earth might have disintegrated upon entry into the Earth’s atmosphere.Ceres’ surface differs greatly from Vesta’s. Plastic or fluidized mass wasting is apparent, as are many irregularly shaped craters, including many polygonal crater forms. There are many central-pit craters possibly caused by volatilization of the crust in the center of the impact. There are also many central-peak craters, which were made by rebound or pingo-like formation processes. Bright deposits dot the landscape, which are possibly salt-rich, suggesting fluvial activity beneath the crust. Observations of the brightest spots on Ceres could suggest sublimation from the surface of the bright area, which may be water vapor driven, as Herschel observations suggest. Ceres is not only the most massive body in the asteroid belt but also possibly the most active.

  3. Numerical modeling of Stickney crater and its aftermath

    NASA Astrophysics Data System (ADS)

    Schwartz, Stephen R.; Michel, Patrick; Bruck Syal, Megan; Owen, J. Michael; Miller, Paul L.; Richardson, Derek C.; Zhang, Yun

    2016-10-01

    Phobos is characterized by a large crater called Stickney. Its collisional formation and its aftermath have important implications on the final structure, morphology, and surface properties of Phobos that still need further clarification. This is particularly important in the current environment, with space mission concepts to Phobos under active study by several space agencies. SPH hydrocode simulations of the impact that formed Stickney crater [1] have been performed. Using the Soft-Sphere Discrete Element Method (SSDEM) collisional routine of the N-body code pkdgrav [2], we take the outcome of SPH simulations as inputs and model the ensuing phase of the crater formation process and its ejecta evolution under the gravitational influence of Phobos and Mars. In our simulations, about 9 million particles comprise Phobos' shape [3], and the evolution of particles that are expected to form or leave the crater is followed using multiple plausible orbits for Phobos around Mars. We track the immediate fate of low-speed ejecta (~3-8 m/s), allowing us to test an hypothesis [4] that they may scour certain groove marks that have been observed on Phobos' surface and to quantify the amounts and locations of re-impacting ejecta. We also compute the orbital fate of ejecta whose speed is below the system escape speed (about 3 km/s). This allows us to estimate the thickness and distribution of the final ejecta blanket and to check whether crater chains may form. Finally, particles forming the crater walls are followed until achieving stability, allowing us to estimate the final crater depth and diameter. We will show examples of these simulations from a set of SPH initial conditions and over a range of parameters (e.g., material friction coefficients). Work ongoing to cover a larger range of plausible impact conditions, allowing us to explore different scenarios to explain Phobos' observed properties and to infer more, giving useful constraints to space mission studies. [1] Bruck Syal, M. et al. (this meeting); [2] Schwartz, S.R. et al. 2012, Granul. Matter 14, 363; [3] Willner, K. et al. 2010, E. Earth Planet. Sci. Lett. 294, 541; [4] Wilson, L. & Head, J.W. 2015, Planet. Space Sci. 105, 26.

  4. Nature of the Martian uplands: Effect on Martian meteorite age distribution and secondary cratering

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.; Barlow, Nadine G.

    2006-10-01

    Martian meteorites (MMs) have been launched from an estimated 5-9 sites on Mars within the last 20 Myr. Some 80-89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near-surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1-2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial-derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic-ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ˜45 km, ˜19 km, and ˜10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.

  5. The Chesapeake Bay Impact Crater: An Educational Investigation for Students into the Planetary Impact Process and its Environmental Consequences

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S.

    2008-01-01

    Planetary impact craters are a common surface feature of many planetary bodies, including the Earth, the Moon, Mars, Mercury, Venus, and Jupiter s moons, Ganymede and Callisto. The NASA Langley Research Center in Hampton, VA, is located about 5 km inside the outer rim of the Chesapeake Bay Impact Crater. The Chesapeake Bay Impact Crater, with a diameter of 85 km is the sixth largest impact crater on our planet. The U.S. Geological Survey (USGS), in collaboration with the NASA Langley Research Center, the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Planning District Commission (HRPDC), and the Department of Geology of the College of William and Mary (WM) drilled into and through the crater at the NASA Langley Research Center and obtained a continuous core to a depth of 2075.9 ft (632.73 meters) from the Chesapeake Bay Impact Crater. At the NASA Langley location, the granite basement depth was at 2046 ft (623.87 meters). This collaborative drilling activity provided a unique educational opportunity and ongoing educational partnership between USGS, NASA Langley and the other collaborators. NASA Langley has a decade-long, ongoing educational partnership with the Colonial Coast Council of the Girl Scouts. The core drilling and on site analysis and cataloguing of the core segments provided a unique opportunity for the Girl Scouts to learn how geologists work in the field, their tools for scientific investigation and evaluation, how they perform geological analyses of the cores in an on-site tent and learn about the formation of impact craters and the impact of impacting bodies on the sub-surface, the surface, the oceans and atmosphere of the target body. This was accomplished with a two-part activity. Girl Scout day camps and local Girl Scout troops were invited to Langley Research Center Conference Center, where more than 300 Girl Scouts, their leaders and adult personnel were given briefings by scientists and educators from the USGS, NASA, VDEQ, HRPDC and WM on the principles of geology, the formation of impact craters, the consequences of the impacting body on the atmosphere, ocean, surface and sub-surface, the geological, chemical and biological analyses of the core and the cataloguing and storage of the core segments, etc. After the briefings, the Girl Scouts visited the drilling site where they inspected the core drilling rig, examined the core samples and discussed the drilling procedures, cores and interpretation of the cores with scientists and educators from the organizations conducting the core drilling. Demonstrations at the drilling site included demonstrations of impacting objects hitting multi-colored layered mud targets at different angles of entry. The multi-colored layers of mud were instructive in mapping out the distribution of impact-ejected material around the impact crater. The presentation will include a series of photographs of the Girl Scout participating in activities at the Chesapeake Bay Impact Crater drill site, including retrieving cores from the drilling rig, inspecting the core samples and participating in the impact-crater formation demonstrations.

  6. Crater-associated dark diffuse features on Venus: Properties of surficial deposits and their evolution

    NASA Astrophysics Data System (ADS)

    Bondarenko, N. V.; Head, J. W.

    2009-03-01

    In order to assess the nature of crater-associated radar-dark diffuse features (DDFs) on Venus and to understand their formation and evolution, we analyzed Magellan radar roughness, emissivity, and reflectivity data in the vicinity of craters accompanied by these features. Following others, we assumed that DDFs are deposits (mantles) of ejected material emplaced during formation of the impact crater. The majority of radar-dark parabolas (the youngest DDFs) are characterized by a smooth mantle-atmosphere interface having low root-mean-square (rms) slopes on scales of 1-100 m, as derived from Magellan altimeter data. Older DDFs also often have areas with low rms slopes, suggesting that the mantle rms slopes can be preserved for geologically long periods of time. Some parabolas and older DDFs have asymmetric small-scale (decimeter-scale) relief that is interpreted to be dunes that formed as a result of eolian processes. This implies that the mantle material is mobile and can saltate under the influence of wind action. On average, aging of these features is accompanied by a decrease of mantle material dielectric permittivity. The most efficient mechanism for parabola degradation seems to be the removal of mantle material from the site of initial deposition by subsequent winds. We found a few examples of features that could be interpreted to be the result of in situ modification of the primary mantle.

  7. Marine-target craters on Mars? An assessment study

    USGS Publications Warehouse

    Ormo, J.; Dohm, J.M.; Ferris, J.C.; Lepinette, A.; Fairen, A.G.

    2004-01-01

    Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine-target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within "contacts 1 and 2," cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long-lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller "contact 2" with a duration of 100,000 yr and the low present crater formation rate, only ???1-2 detectable marine-target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger "contact 1-Meridiani," with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine-target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine-target craters. The implications regarding the discovery of marine-target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions. ?? Meteoritical Society, 2004.

  8. Paleomagnetic and Magnetostratigraphic Studies in Drilling Projects of Impact Craters - Recent Studies, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Velasco-Villarreal, M.; Perez-Cruz, L. L.

    2013-05-01

    Paleomagnetic studies have long been successfully carried out in drilling projects, to characterize the borehole columns and to investigate the subsurface structure and stratigraphy. Magnetic susceptibility logging and magnetostratigraphic studies provide data for lateral correlation, formation evaluation, azimuthal core orientation, physical properties, etc., and are part of the tools available in the ocean and continental drilling programs. The inclusion of continuous core recovery in scientific drilling projects have greatly expanded the range of potential applications of paleomagnetic and rock magnetic studies, by allowing laboratory measurements on core samples. For this presentation, we concentrate on drilling studies of impact structures and their usefulness for documenting the structure, stratigraphy and physical properties at depth. There are about 170-180 impact craters documented in the terrestrial record, which is a small number compared to what is observed in the Moon, Mars, Venus and other bodies of the solar system. Of the terrestrial impact craters, only a few have been studied by drilling. Some craters have been drilled as part of industry exploration surveys and/or academic projects, including notably the Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake and El gygytgyn craters. Drilling of terrestrial craters has proved important in documenting the shallow stratigraphy and structure, providing insight on the cratering and impact dynamics. Questions include several that can only be addressed by retrieving core samples and laboratory analyses. Paleomagnetic, rock magnetic and fabric studies have been conducted in the various craters, which are here summarized with emphasis on the Chicxulub crater and Yucatan carbonate platform. Chicxulub is buried under a kilometer of younger sediments, making drilling an essential tool. Oil exploration included several boreholes, and additionally we have drilled 11 boreholes with continuous core recovery. Contributions and limitations of paleomagnetism for investigating the impact age, crater stratigraphy, cratering, ejecta emplacement, impact dynamics, hydrothermal system and post-impact processes are discussed.

  9. Preliminary Geological Map of the Ac-H-2 Coniraya Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; Pasckert, J. H.; Williams, D. A.; Crown, D. A.; Mest, S. C.; Buczkowski, D.; Schenk, P.; Scully, J. E. C.; Jaumann, R.; Roatsch, T.; Preusker, F.; Platz, T.; Nathues, A.; Hoffmann, M.; Marchi, S.; De Sanctis, M. C.; Russell, C. T.; Raymond, C. A.

    2015-12-01

    To better understand the geologic history of dwarf planet Ceres, the surface has been divided into 15 quadrangles that are systematically mapped on the basis of images obtained by NASA's Dawn spacecraft, which began orbiting Ceres in April 2015. We will report on preliminary mapping results for the Ac-H-2 Coniraya Quadrangle based on Framing Camera (FC) mosaics from the Dawn Approach (1.3 km/px) and Survey (415 m/px) orbits. This quadrangle is located between 21-66°N and 0-90°E and is dominated by mostly highly degraded impact craters of diameters between 50 and 200 km and clusters of small- to midsize impact craters. Color data show that this quadrangle is generally darker than most regions of the southern hemisphere. Two prominent impact craters in this quadrangle have been named Coniraya and Gaue crater, respectively. Coniraya is the largest more or less intact impact crater with a diameter of 136 km, centered at 65.8°N/40.5°E. It appears shallow and its crater rim is heavily degraded but still continuous. At the current image resolution, textural differences between the interior and exterior of the crater are not visible. With a diameter of 84 km, Gaue crater appears to be the freshest large impact crater in this quadrangle. It is located at the eastern border of the Coniraya Quadrangle with a small central peak at 30°N/85.7°E. The crater rim is quite sharp and the ejecta blanket can be traced around the crater to a distance of ~200km from the crater center. Most of the crater floor around the central peak is covered by a smooth uniform unit with a lower impact crater population than the surrounding surfaces. Color data show that this smooth unit is darker than the surrounding surfaces. A similar unit can be found on the floor of a complex cluster of 10-56 km diameter craters at 32°N/40°E. With upcoming higher resolution data we will refine our geologic map and will specifically investigate possible formation processes of these smooth units.

  10. Excavation of buried hydrated minerals on Mars by impact cratering? (Invited)

    NASA Astrophysics Data System (ADS)

    Carter, J.; Poulet, F.; Loizeau, D.; Bibring, J.

    2010-12-01

    Impact cratering is a key process when studying Mars’s past aqueous environments. It is a widespread and dynamic process which has been active throughout Mars’s history, especially during the Noachian era. Noachian-aged hydrated minerals have been reported on Mars (e.g. [1, 2]) and provide strong constrains on the alleged early wet Martian environment [3]. Our knowledge of this early wet environment will be greatly improved if we understand how hydrated minerals are formed, modified or destroyed by impact processes. One main consequence of impact cratering is the excavation of buried material. Excavated material is found in walls, ejecta and central uplifts in the case of large complex craters. It may originate from the deeply buried crust or subsurface, depending on crater size [4]. In this case craters act as natural boreholes that allow orbital spectroscopic inquiry of otherwise hidden material and is of great importance when investigating the aqueous alteration of Mars. This process has proven particularly useful when studying the northern crust of Mars which is covered by a thick mantling unit [5]. Large craters have penetrated the cover and exhumed buried hydrated crustal material, including the low-grade metamorphic mineral prehnite and there is evidence that the ancient crust has been altered by water down to kilometer depths, both in the northern plains and southern highlands [6]. Using the OMEGA and CRISM [7, 8] near-infrared hyperspectral instruments currently in orbit around Mars we have mapped surface exposures of hydrated minerals and found that many are associated with impact structures [9]. Here we report how detailed analysis of these sites reveal exposures of various hydrated minerals including phyllosilicates, zeolites and sulfates, associated with crater central uplifts, floors, walls, rims and ejecta. We focus on the heavily cratered Tyrrhena Terra region of Mars as well as the large northern plain craters. In both cases, excavation of buried, pre-existing phyllosilicates is thought to be the driving process. Other hydrated mineral formation pathways linked with impact cratering include impact-induced hydrothermal alteration [10-12], shock-induced and post-impact changes to mineral composition. [1]Poulet et al., Nature 438, 623 (2005). [2]Murchie et al., J. Geophys. Res. 114, E00D06 (2009). [3]Bibring et al., Science 312, 5772 (2006). [4]Baratoux et al., J. Geophys. Res. 112, E08S05 (2007). [5]Tanaka et al., J. Geophys. Res. 108, (E4), 8043 (2003). [6]Carter et al., Science 328, 1682 (2010). [7]Bibring et al., Eur. Space Agency Spec. Pub. 1240, 37 (2004). [8]Murchie et al., J. Geophys. Res. 114, E00D07 (2009). [9]Carter et al., Proc. Lunar Planet. Sci. Conf. 40, abstr. 2028 (2009). [10]Abramov and Kring, J. Geophys. Res. 110, (E12), E12S09 (2005). [11]Schwenzer and Kring, Geology 37, 1091 (2009). [12]Marzo et al., Icarus 208, 667-683 (2010).

  11. Impact structures in Africa: A review

    PubMed Central

    Reimold, Wolf Uwe; Koeberl, Christian

    2014-01-01

    More than 50 years of space and planetary exploration and concomitant studies of terrestrial impact structures have demonstrated that impact cratering has been a fundamental process – an essential part of planetary evolution – ever since the beginning of accretion and has played a major role in planetary evolution throughout the solar system and beyond. This not only pertains to the development of the planets but to evolution of life as well. The terrestrial impact record represents only a small fraction of the bombardment history that Earth experienced throughout its evolution. While remote sensing investigations of planetary surfaces provide essential information about surface evolution and surface processes, they do not provide the information required for understanding the ultra-high strain rate, high-pressure, and high-temperature impact process. Thus, hands-on investigations of rocks from terrestrial impact craters, shock experimentation for pressure and temperature calibration of impact-related deformation of rocks and minerals, as well as parameter studies pertaining to the physics and chemistry of cratering and ejecta formation and emplacement, and laboratory studies of impact-generated lithologies are mandatory tools. These, together with numerical modeling analysis of impact physics, form the backbone of impact cratering studies. Here, we review the current status of knowledge about impact cratering – and provide a detailed account of the African impact record, which has been expanded vastly since a first overview was published in 1994. No less than 19 confirmed impact structures, and one shatter cone occurrence without related impact crater are now known from Africa. In addition, a number of impact glass, tektite and spherule layer occurrences are known. The 49 sites with proposed, but not yet confirmed, possible impact structures contain at least a considerable number of structures that, from available information, hold the promise to be able to expand the African impact record drastically – provided the political conditions for safe ground-truthing will become available. The fact that 28 structures have also been shown to date NOT to be of impact origin further underpins the strong interest in impact in Africa. We hope that this review stimulates the education of students about impact cratering and the fundamental importance of this process for Earth – both for its biological and geological evolution. This work may provide a reference volume for those workers who would like to search for impact craters and their ejecta in Africa. PMID:27065753

  12. Iapetus: Unique Surface Properties and a Global Color Dichotomy from Cassini Imaging

    NASA Astrophysics Data System (ADS)

    Denk, Tilmann; Neukum, Gerhard; Roatsch, Thomas; Porco, Carolyn C.; Burns, Joseph A.; Galuba, Götz G.; Schmedemann, Nico; Helfenstein, Paul; Thomas, Peter C.; Wagner, Roland J.; West, Robert A.

    2010-01-01

    Since 2004, Saturn’s moon Iapetus has been observed repeatedly with the Imaging Science Subsystem of the Cassini spacecraft. The images show numerous impact craters down to the resolution limit of ~10 meters per pixel. Small, bright craters within the dark hemisphere indicate a dark blanket thickness on the order of meters or less. Dark, equator-facing and bright, poleward-facing crater walls suggest temperature-driven water-ice sublimation as the process responsible for local albedo patterns. Imaging data also reveal a global color dichotomy, wherein both dark and bright materials on the leading side have a substantially redder color than the respective trailing-side materials. This global pattern indicates an exogenic origin for the redder leading-side parts and suggests that the global color dichotomy initiated the thermal formation of the global albedo dichotomy.

  13. Iapetus: unique surface properties and a global color dichotomy from Cassini imaging.

    PubMed

    Denk, Tilmann; Neukum, Gerhard; Roatsch, Thomas; Porco, Carolyn C; Burns, Joseph A; Galuba, Götz G; Schmedemann, Nico; Helfenstein, Paul; Thomas, Peter C; Wagner, Roland J; West, Robert A

    2010-01-22

    Since 2004, Saturn's moon Iapetus has been observed repeatedly with the Imaging Science Subsystem of the Cassini spacecraft. The images show numerous impact craters down to the resolution limit of approximately 10 meters per pixel. Small, bright craters within the dark hemisphere indicate a dark blanket thickness on the order of meters or less. Dark, equator-facing and bright, poleward-facing crater walls suggest temperature-driven water-ice sublimation as the process responsible for local albedo patterns. Imaging data also reveal a global color dichotomy, wherein both dark and bright materials on the leading side have a substantially redder color than the respective trailing-side materials. This global pattern indicates an exogenic origin for the redder leading-side parts and suggests that the global color dichotomy initiated the thermal formation of the global albedo dichotomy.

  14. Geologic Mapping of the Av-11 Pinaria Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Hoogenboom, T.; Williams, D.; Yingst, R. A.; Jaumann, R.; Gaskell, R.; Preusker, F.; Nathues, A.; Roatsch, T.

    2012-04-01

    As part of the Dawn's orbital mapping investigation of Vesta, the Science Team is conducting geologic mapping of the surface in the form of 15 quadrangle maps, including quadrangle Av-11 (Pinaria). The base map is a monochrome Framing Camera (FC) mosaic at ~70 m/pixel, supplemented by Digital Terrain Models (DTM) and FC color ratio images, both at ~250 m/pixel, slope and contour maps, and Visible and Infrared (VIR) hyperspectral images. Av-11 straddles the 45-degree longitude in the South Polar Region, and is dominated by the rim of the ~505 km south polar topographic feature, Rheasilvia. Sparsely cratered (relatively), Av-11 is dominated by a 20 km high rim scarp (Matronalia Rupes) and by arcuate ridges and troughs forming a radial to spiral pattern across the basin floor. Primary geologic features of Av-11 include the following. Ridge-and-groove terrain radiating arcuately from the central mound unit, interpreted to be structural disruption of the basin floor associated with basin formation. The largest crater in Av-11 is Pinaria (37 km). Mass wasting deposits are observed on its floor. Secondary crater chains and fields are also evident. Mass wasting observed along Rheasilvia rim scarp and in the largest craters indicates scarp failure is a significant process. Parallel fault scarps mark this deposit of slumped debris at the base of 20 km high Matronalia Rupes, which may have formed during or shortly after basin excavation. We interpret most of these deposits as slump material emplaced as a result of the effects of basin formation and collapse. Lobate materials are characterized by lineations and lobate scarps and interpreted as Rheasilvia ejecta deposit outside Rheasilvia rim (the smoothest terrain on Vesta), and are consistent with formation by ejecta. Partial burial of older craters near the edge of these deposits are also observed.

  15. Foraminiferal repopulation of the late Eocene Chesapeake Bay impact crater

    USGS Publications Warehouse

    Poag, C. Wylie

    2012-01-01

    The Chickahominy Formation is the initial postimpact deposit in the 85km-diameter Chesapeake Bay impact crater, which is centered under the town of Cape Charles, Virginia, USA. The formation comprises dominantly microfossil-rich, silty, marine clay, which accumulated during the final ~1.6myr of late Eocene time. At cored sites, the Chickahominy Formation is 16.8-93.7m thick, and fills a series of small troughs and subbasins, which subdivide the larger Chickahominy basin. Nine coreholes drilled through the Chickahominy Formation (five inside the crater, two near the crater margin, and two ~3km outside the crater) record the stratigraphic and paleoecologic succession of 301 indigenous species of benthic foraminifera, as well as associated planktonic foraminifera and bolboformids. Two hundred twenty of these benthic species are described herein, and illustrated with scanning electron photomicrographs. Absence of key planktonic foraminiferal and Bolboforma species in early Chickahominy sediments indicates that detrimental effects of the impact also disturbed the upper oceanic water column for at least 80-100kyr postimpact. After an average of ~73kyr of stressed, rapidly fluctuating paleoenvironments, which were destabilized by after-effects of the impact, most of the cored Chickahominy subbasins maintained stable, nutrient-rich, low-oxygen bottom waters and interstitial microhabitats for the remaining ~1.3myr of late Eocene time.

  16. Characterizing the Early Impact Bombardment

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.

    2005-01-01

    The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.

  17. A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Ishitsuka, J.; Schultz, P. H.; Harris, R. S.; Brown, P.; Revelle, D. O.; Antier, K.; Le Pichon, A.; Rosales, D.; Vidal, E.; Varela, M. E.; Sánchez, L.; Benavente, S.; Bojorquez, J.; Cabezas, D.; Dalmau, A.

    2009-01-01

    On September 15, 2007, a bright fireball was observed and a big explosion was heard by many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater-forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth’s atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes.

  18. Calculation of ejecta thickness and structural uplift for Lunar and Martian complex crater rims.

    NASA Astrophysics Data System (ADS)

    Krüger, Tim; Sturm, Sebastian; Kenkmann, Thomas

    2014-05-01

    Crater rims of simple and complex craters have an elevation that is formed during the excavation stage of crater formation. For simple crater rims it is believed that the elevation is due to the sum of two equal parts, the thickness of the most proximal impact ejecta blanket (overturned flap) plus the thickness that results from plastic deformation including injection [1, 2, 3]. We intend to measure and quantify the kinematics of mass movements, especially concerning the question why complex impact craters have elevated crater rims like simple craters and precisely constrain the ejecta thickness and structural uplift of Lunar and Martian crater rims to understand what the main contributor to the elevated rim is [4]. We investigated a pristine 16 km-diameter unnamed Martian complex crater (21.52°N, 184.35°) and the lunar complex craters Bessel (21.8°N, 17.9°E) 16 km in diameter and Euler (23.3°N, 29.2°W) 28 km in diameter [5, 6]. In the crater walls of these craters we found columnar lavas on Mars and basaltic layering on the Moon. We used the uppermost layers of these exposed outcrops along the crater wall to determine the dip of the target rocks (Mars) and to distinguish between the bedrock and the overlying ejecta. We precisely measured the structural uplift and ejecta thickness of these complex craters. The unnamed crater on Mars has a mean rim height of 375.75 m, with a structural uplift of 233.88 m (57.44%), exposed as columnar lavas and the superposing ejecta has a height of 141.87 m (43.56%). For the Lunar complex crater Euler the mean total rim height is 790 ± 100 m, with a minimal structural uplift of 475 ± 100 m (60 ± 10 %), exposed as basaltic layers [e.g., 7, 8] and a maximum ejecta thickness of 315 ± 100 m (40 ± 10%). The Lunar complex crater Bessel has a total rim height of 430 ± 15 m , with a minimal structural uplift of 290 ± 15 m (67 ± 3 %), exposed as basaltic layers and a maximum ejecta thickness of 140 ± 115 m (33 ± 3%). For the Martian crater, the calculated structural uplift has a value of 215.83 m [9]. For Euler and Bessel crater calculated values for the structural uplift are 310.76 m and 262.8 m, respectively [10]. The structural uplift of the crater rim only by dike injection and plastic deformation in the underlying target material seems unlikely at distances ~1 km beyond the transient crater cavity. Other mechanisms, like reverse faulting, beginning in the excavation stage of crater formation, could be responsible for additional structural uplift of the crater rim. Nevertheless, our results show that structural uplift is a more dominant effect than ejecta emplacement for complex impact craters. References: [1] Melosh H.J. (1989) Oxford monographs on geology and geophysics, 11, Impact cratering: a geologic process. [2] Poelchau M.H. et al. (2009) JGR, 114, E01006. [3] Shoemaker E. M. (1963) The Solar System, 4, 301-336. [4] Settle M., and Head J.W. (1977) Icarus, v. 31, p. 123. [5] Sturm, S. et al. (2014) LPSC 45, #1801. [6] Krüger T. et al. (2014) LPSC 45, #1834. [7] Hiesinger H. et al. (2002) GRL, 29. [8] Enns A.C. (2013) LPSC XLIV, #2751. [9] Steward S. T. and Valiant G. J. (2006) Meteoritics & Planet. Sci., 41, 1509-1537. [10] Pike R. J. (1974) EPSL, 23, 265-274. [11]Turtle, E. et al. (2005) GSA-SP. 384, 1.

  19. Chemical variations observed on Aeolis Mons in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Frydenvang, Jens; Gasda, Patrick J.; Thompson, Lucy; Hurowitz, Joel; Grotzinger, John P.; Blaney, Diana L.; Gellert, Ralf; Wiens, Roger; Vasavada, Ashwin R.; MSL Science Team

    2016-10-01

    The extraordinarily extensive exposure of hematite-, clay-, sulfate-bearing stratigraphic layers in the lower part of Aeolis Mons was the primary reason Gale Crater was selected as the landing site for the Mars Science Laboratory rover, Curiosity. 753 martian solar days (sols) after the Curiosity rover landed in Gale Crater in August 2012, and after driving more than 9 km, the Curiosity rover arrived at the first exposure of the Murray formation, the basal layer of Aeolis Mons. The Murray formation is a thinly laminated lacustrine mudstone showing stratification down to the millimeter scale. This supports the idea that the stratigraphic layers of Aeolis Mons are sedimentary, and likely deposited in a series of long-lived lakes extending into the early Hesperian time, as recently described by Grotzinger et al. (Science, vol. 350, 2015). The chemical variations observed throughout the Murray formation by the ChemCam and APXS instruments in the 600+ sols since first arriving at Aeolis Mons will be presented. While Murray remains thinly laminated throughout the 30+ vertical meters of stratigraphy explored, large chemical variations are observed. The most extreme variations arise from likely co-located detrital and diagenetic silica enrichments in Murray. Remarkably, an associated diagenetic silica enrichment is also observed in the unconformably overlying eolian sandstone of the Stimson formation in that location. The detrital enrichment provides evidence of how the source region chemistry varied as the sedimentary layers of Aeolis Mons were deposited. Conversely, the diagenetic enrichment observed across both the Murray and Stimson formations provides compelling evidence for the presence of subsurface fluids in Gale Crater, thousands to millions of years after the crater lakes disappeared. This evidence of liquid water greatly extends the timescale in which Gale Crater might have been habitable.

  20. Latitude dependence of Martian pedestal craters: Evidence for a sublimation-driven formation mechanism

    NASA Astrophysics Data System (ADS)

    Kadish, Seth J.; Barlow, Nadine G.; Head, James W.

    2009-10-01

    We report on the results of a survey to document and characterize pedestal craters on Mars equatorward of ˜60°N and 65°S latitude. The identification of 2696 pedestal craters reveals a strong latitude dependence, with the vast majority found poleward of 33°N and 40°S. This latitudinal extent is correlated with many climate indicators consistent with the presence of an ice-rich substrate and with climate model predictions of where ice is deposited during periods of higher obliquity in the Amazonian. We have measured key physical attributes of pedestal craters, including the farthest radial extents of the pedestals, pedestal heights, and the circularity of the pedestal margins. In conjunction with the geographic distribution, our measurements strongly support a sublimation-related formation mechanism. This is in contrast to previous hypotheses, which have relied on eolian deflation to produce the elevated plateaus. The identification of marginal pits on the scarps of some pedestal craters, interpreted to be sublimation pits, provide direct evidence for the presence of ice-rich material underlying the armored surface of pedestal craters. On the basis of our findings, we propose a formation mechanism whereby projectiles impact into a volatile-rich dust/snow/ice substrate tens to hundreds of meters thick overlying a dominantly fragmental silicate regolith. The area surrounding the resulting crater becomes armored. Pedestals extend to a distance of multiple crater radii, farther than typical ejecta deposits, necessitating an armoring mechanism that is capable of indurating the surface to a distance greater than the reach of the ejecta. Return to low obliquity causes sublimation of the volatile-rich layer from the intercrater plains, lowering the elevation of the regional terrain. This yields generally circular pedestal craters elevated above the surrounding plains. As a result, the armored surfaces of pedestal craters have preserved a significant record of Amazonian climate history in the form of ice-rich deposits.

  1. Discrete curvatures combined with machine learning for automated extraction of impact craters on 3D topographic meshes

    NASA Astrophysics Data System (ADS)

    Christoff, Nicole; Jorda, Laurent; Viseur, Sophie; Bouley, Sylvain; Manolova, Agata; Mari, Jean-Luc

    2017-04-01

    One of the challenges of Planetary Science is to estimate as accurately as possible the age of the geological units that crop out on the different space objects in the Solar system. This dating relies on the counting of the impact craters that cover the given outcrop surface. Using this technique, a chronology of the geological events can be determined and their formation and evolution processes can be understood. Over the last decade, several missions to asteroids and planets, such as Dawn to Vesta and Ceres, Messenger to Mercury, Mars Orbiter and Mars Express, produced a huge amount of images, from which equally huge DEMs have been generated. Planned missions, such as BepiColombo, will produce an even larger set of images. This rapidly growing amount of visible images and DEMs makes it more and more fastidious to manually identify craters. Acquisition data will become bigger and this will then require more accurate planetary surface analysis. Because of the importance of the problem, many Crater Detection Algorithm (CDA) were developed and applied onto either image data (2D) or DEM (2D1/5), and rarely onto full 3D data such as 3D topographic meshes. We propose a new approach, based on the detection of crater rim, which form a characteristic round shape. The proposed approach contains two main steps: 1) each vertex is labelled with the values of the mean curvature and minimal curvatures; 2) this curvature map is injected into a Neural Network (NN) to automatically process the region of interest. As a NN approach, it requires a training set of manually detected craters to estimate the optimal weights of the NN. Once trained, the NN can be applied onto the regions of interest for automatically extracting all the craters. As a result, it was observed that detecting forms using a two-dimensional map based on the computation of discrete differential estimators on the 3D mesh is more efficient than using a simple elevation map. This approach significantly reduces the number of false negative detections compared to previous approaches based on 2.5D data processing. The proposed method was validated on a Mars dataset, including a numerical topography acquired by the Mars Orbiter Laser Altimeter (MOLA) instrument and combined with Barlow et al. (2000) crater database. Keywords: geometric modeling, mesh processing, neural network, discrete curvatures, crater detection, planetary science.

  2. Meteor Crater: Energy of formation - Implications of centrifuge scaling

    NASA Technical Reports Server (NTRS)

    Schmidt, R. M.

    1980-01-01

    Recent work on explosive cratering has demonstrated the utility of performing subscale experiments on a geotechnic centrifuge to develop scaling rules for very large energy events. The present investigation is concerned with an extension of this technique to impact cratering. Experiments have been performed using a projectile gun mounted directly on the centrifuge rotor to launch projectiles into a suitable soil container undergoing centripetal accelerations in excess of 500 G. The pump tube of a two-stage light-gas gun was used to attain impact velocities of approximately 2 km/sec. The results of the experiments indicate that the energy of formation of any large impact crater depends upon the impact velocity. This dependence, shown for the case of Meteor Crater, is consistent with analogous results for the specific energy dependence of explosives and is expected to persist to impact velocities in excess of 25 km/sec.

  3. Lunar Floor-Fractured Craters: Classification, Distribution and Implications for Magmatism and Shallow Crustal Structure

    NASA Technical Reports Server (NTRS)

    Jozwiak, L. M.; Head, J. W.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-01-01

    Floor-fractured craters (FFCs) are a class of lunar craters defined by their distinctly shallow, often plate-like floors, and combinations of radial, con-centric, and polygonal floor-fractures; a variety of other interior features are often observed, such as moats, ridges, small dark-haloed pits, and patches of mare material. They were first classified by Schultz [1] , who recognized eight overall types of floor-fractured crater. These eight subtypes have widely differing appearances, a factor that could provide insight into formation mechanisms (different manifestations of the same mechanism, or indicators of varying formation mechanisms). Two formation mechanisms for FFCs were initially proposed: 1) magmatic intrusion [1], in which magma rising toward the surface in dikes encountered low-density breccia lenses beneath crater floors and spread laterally to form sills, raising and fracturing the crater floor. 2) viscous relaxation [2], in which the properties of the crust permitted viscous flow in the vicinity of the crater, causing long-wavelength relaxation of the topography and uplift and fracturing of the crater floor. Critical to distinguishing between these two end-member hypotheses and identifying others is a quantitative assessment of the topography of FFCs and knowledge of their regional and local settings. The purpose of this study is to use newly available Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) altimeter and Lunar Reconnaissance Orbiter Camera (LROC) image data to provide an updated global catalog of the locations, classes, morphometric and morphologic characteristics of all lunar floor-fractured craters. We use the excellent 8-class system initially described in Schultz [1] as a starting point for classification and the enhanced LOLA/LROC data sets to examine and categorize all FFCs; we found evidence for a new FFC class, discernably different from the previously existing types. Our approach, and the global categorization of all FFCs, permits the spatial distribution of each FFC-subtype to be plotted and assessed allowing for further investigation into FFC formation mechanisms. Upon completion, the data set will be made available on our web site at http://www.planetary.brown.edu/html_pages/data.htm.

  4. Lunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data

    NASA Astrophysics Data System (ADS)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-02-01

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D ≥ 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

  5. Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data

    NASA Technical Reports Server (NTRS)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

  6. Tektites: Origin as melts produced by the impact of small projectiles onto dry targets

    NASA Technical Reports Server (NTRS)

    Wasson, John T.

    1988-01-01

    The formation of tektites in general and layered tektites in particular seems to require a very special kind of cratering event. Evidence for the formation of pools of melt free of unmelted clasts has not been reported for the well-studied terrestrial craters such as Manicouagan or Ries. It is suggested that large amounts of relict-free melt were produced only when a sizeable fraction of the cratered target consisted of dry, high-porosity materials such as aeolian sediments. Since dry, high-porosity target materials are always confined to the outer 100 to 200 m of the Earth, the fraction of melt produced melt is probably higher in small (radius 50 to 500 m) craters than in large (r greater than 1 km) craters. Another reason to infer that the Southeast Asian tektites were produced in a multitude of small craters is the wide distribution of layered tektites. The file spans at least 1200 km, which would require ballistic ejection at velocities greater than 2 km s(-1) if all melt was generated in a single crater. It seems impossible to devise a scenario that would lead to the deposition of primary melt as a crystal-free pool at a distance of 600 km from the crater.

  7. Geomagnetic and morphological signature of small crateriform structures in the Alpine Foreland, Southeast Germany

    NASA Astrophysics Data System (ADS)

    Neumair, A.; Ernstson, K.

    2011-12-01

    Lots of rimmed crateriform structures with diameters of the order of meters and ten meters in young fluvial and moraine sediments in Southeast Germany have raised increased interest in the last decade although they have been known since longtime. An anthropogenic origin (for smelting or lime kiln purposes, as prospecting pits, bomb craters, etc) can in most cases be excluded, and the ring walls are speaking against a formation as simple sink holes. Some earlier geomagnetic field and soil susceptibility measurements found anomalies without giving them further enhanced consideration. In a new geomagnetic campaign we exemplarily investigated a few of these craters by fluxgate gradiometer surveys and by magnetic susceptibility measurements of the crater soil and of rock samples digged from the crater underground that also supplied remnant magnetization data. Conspicuously, the craters although morphologically similar, can be subdivided into structures with a clear magnetic signature and ones free of mentionable anomalies. The magnetic signature is expressed by soil susceptibilities up to one order of magnititude higher for the depression and rim area compared to outside the structure, and by an irregular cluster of short-wavelength magnetic anomalies in extreme cases exceding several 1000 nT/m amplitude. Excavations do not show any anthropogenic influence but highly magnetized, frequently strongly fractured cobbles and boulders as the cause. Susceptibilities up to more than 6000 x 10-5 SI and remnant magnetizations of the order of 10 A/m (Koenigsberger ratio Q up to 3.5) were measured. So far enigmatic are very high susceptibilities and remnant magnetizations of limestone clasts. While in general carbonate clasts of the region have susceptibilities of the order of 0.00005 x 10-5 SI and negligible remanence, we measured up to more than 1500 x 10-5 SI and remnant magnetizations of up to 2 A/m (Q up to 3) for limestone samples from the craters. Detailed rock-magnetic studies are ongoing, and, for the moment, we point to new ideas focusing on a formation of at least part of the craters as meteorite craters originating from the recently proposed large Holocene so-called Chiemgau impact event. The magnetic signature as described may prove as a characteristic attribute of identifying respective craters, and thermal effects implying a thermal remnant magnetization are discussed. On the other hand, the highly magnetized carbonate rocks do not show any significant thermal overprint, and a strong shock magnetization debated for some magnetic anomalies in impact craters must seriously be considered. The "magnetic" craters irrespective of their diameters show when appropriately scaled more or less identical diametral cross sections while the craters without magnetic signature have a different profile. Hence, two different processes are suggested to have produced "magnetic" meteorite craters and a second group of craters that may have an endogenetic origin possibly by soil liquefaction sand explosions in the course of the postulated impact event.

  8. Martian cratering 11. Utilizing decameter scale crater populations to study Martian history

    NASA Astrophysics Data System (ADS)

    Hartmann, W. K.; Daubar, I. J.

    2017-03-01

    New information has been obtained in recent years regarding formation rates and the production size-frequency distribution (PSFD) of decameter-scale primary Martian craters formed during recent orbiter missions. Here we compare the PSFD of the currently forming small primaries (P) with new data on the PSFD of the total small crater population that includes primaries and field secondaries (P + fS), which represents an average over longer time periods. The two data sets, if used in a combined manner, have extraordinary potential for clarifying not only the evolutionary history and resurfacing episodes of small Martian geological formations (as small as one or few km2) but also possible episodes of recent climatic change. In response to recent discussions of statistical methodologies, we point out that crater counts do not produce idealized statistics, and that inherent uncertainties limit improvements that can be made by more sophisticated statistical analyses. We propose three mutually supportive procedures for interpreting crater counts of small craters in this context. Applications of these procedures support suggestions that topographic features in upper meters of mid-latitude ice-rich areas date only from the last few periods of extreme Martian obliquity, and associated predicted climate excursions.

  9. Diagenetic Crystal Growth in the Murray Formation, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Kah, L. C.; Kronyak, R. E.; Ming, D. W.; Grotzinger, J. P.; Schieber, J.; Sumner, D. Y.; Edgett, K. S.

    2015-01-01

    The Pahrump region (Gale Crater, Mars) marks a critical transition between sedimentary environments dominated by alluvial-to-fluvial materials associated with the Gale crater rim, and depositional environments fundamentally linked to the crater's central mound, Mount Sharp. At Pahrump, the Murray formation consists of an approximately 14-meter thick succession dominated by massive to finely laminated mudstone with occasional interbeds of cross-bedded sandstone, and is best interpreted as a dominantly lacustrine environment containing tongues of prograding fluvial material. Murray formation mudstones contain abundant evidence for early diagenetic mineral precipitation and its subsequent removal by later diagenetic processes. Lenticular mineral growth is particularly common within lacustrine mudstone deposits at the Pahrump locality. High-resolution MAHLI images taken by the Curiosity rover permit detailed morphological and spatial analysis of these features. Millimeter-scale lenticular features occur in massive to well-laminated mudstone lithologies and are interpreted as pseudomorphs after calcium sulfate. The distribution and orientation of lenticular features suggests deposition at or near the sediment-water (or sediment-air) interface. Retention of chemical signals similar to host rock suggests that original precipitation was likely poikilotopic, incorporating substantial amounts of the primary matrix. Although poikilotopic crystal growth is common in burial environments, it also occurs during early diagenetic crystal growth within unlithified sediment where high rates of crystal growth are common. Loss of original calcium sulfate mineralogy suggests dissolution by mildly acidic, later-diagenetic fluids. As with lenticular voids observed at Meridiani by the Opportunity Rover, these features indicate that calcium sulfate deposition may have been widespread on early Mars; dissolution of depositional and early diagenetic minerals is a likely source for both calcium and sulfate ion-enrichment in burial fluids that precipitated in ubiquitous late-stage hydrofracture veins

  10. A proposed origin for palimpsests and anomalous pit craters on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1983-01-01

    The hypothesis that palimpsests and anomalous pit craters are essentially pristine crater forms derived from high-velocity impacts and/or impacts into an ice crust with preimpact temperatures near melting is explored. The observational data are briefly reviewed, and an impact model is proposed for the direct formation of a palimpsest from an impact when the modification flow which produces the final crater is dominated by 'wet' fluid flow, as opposed to the 'dry' granular flow which produces normal craters. Conditions of 'wet' modification occur when the volume of impact melt remaining in the transient crater attains a volume comparable to the transient crater. The normal crater-palimpsest transition is found to occur for sufficiently large impacts or sufficiently fast impactors. The range of crater diameters and morphological characteristics inferred from the impact model is consistent with the observed characteristics of palimpsests and anomalous pit craters.

  11. Results of the Mars Exploration Rover Athena science investigation

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.; Athena Science Team

    2004-05-01

    The Mars Exploration Rovers ``Spirit" and ``Opportunity" have performed missions of scientific exploration at Gusev Crater and Meridiani Planum on Mars. Their objective is to search for evidence of water activity at the two sites, and to assess the past habitability of the sites. The Gusev Crater site investigated by Spirit is a flat, rock-strewn plain. All rocks at the site investigated to date are olivine basalt. The rover has conducted a radial traverse through the ejecta blanket of the crater Bonneville. After investigation of this crater, the rover will continue its traverse toward the Columbia Hills, a range of hills over 100 m high approximately 2.5 km to the west. To date, no unambiguous evidence of aqueous activity has been found at the Gusev site. The lander carrying Opportunity came to rest in a 20-meter crater in Meridiani Planum. Exposed within this crater is a small outcrop of bedrock. The bedrock outcrop has been studied in detail, and shows compelling evidence for formation and alteration processes involving liquid water. This evidence includes (a) embedded hematite-rich spherules that appear to be concretions, (b) tabular voids with characteristics consistent with those of molds of crystals formed by precipitation from water, (c) extremely high sulfur content, suggesting a compositon of 30-40 salts by weight, (d) significant quantities of jarosite, (e) Cl/Br systematics similar to those of terrestrial evaporites, and (f) cross stratification indicative of deposition in a moving fluid environment, probably water. Precipitated minerals at the Meridiani site could be very effective at preserving evidence of conditions and processes in the aqueous environment there, making them an attractive potential target for future study.

  12. Martian Cratering 7: The Role of Impact Gardening

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.; Anguita, Jorge; de la Casa, Miguel A.; Berman, Daniel C.; Ryan, Eileen V.

    2001-01-01

    Viking-era researchers concluded that impact craters of diameter D<50 m were absent on Mars, and thus impact gardening was considered negligible in establishing decameter-scale surface properties. This paper documents martian crater populations down to diameter D˜11 m and probably less on Mars, requiring a certain degree of impact gardening. Applying lunar data, we calculate cumulative gardening depth as a function of total cratering. Stratigraphic units exposed since Noachian times would have experienced tens to hundreds of meters of gardening. Early Amazonian/late Hesperian sites, such as the first three landing sites, experienced cumulative gardening on the order of 3-14 m, a conclusion that may conflict with some landing site interpretations. Martian surfaces with less than a percent or so of lunar mare crater densities have negligible impact gardening because of a probable cutoff of hypervelocity impact cratering below D˜1 m, due to Mars' atmosphere. Unlike lunar regolith, martian regolith has been affected, and fines removed, by many processes. Deflation may have been a factor in leaving widespread boulder fields and associated dune fields, observed by the first three landers. Ancient regolith provided a porous medium for water storage, subsurface transport, and massive permafrost formation. Older regolith was probably cemented by evaporites and permafrost, may contain interbedded sediments and lavas, and may have been brecciated by later impacts. Growing evidence suggests recent water mobility, and the existence of duricrust at Viking and Pathfinder sites demonstrates the cementing process. These results affect lander/rover searches for intact ancient deposits. The upper tens of meters of exposed Noachian units cannot survive today in a pristine state. Intact Noachian deposits might best be found in cliffside strata, or in recently exhumed regions. The hematite-rich areas found in Terra Meridiani by the Mars Global Surveyor are probably examples of the latter.

  13. Wind-related processes detected by the Spirit rover at Gusev crater, Mars

    USGS Publications Warehouse

    Greeley, R.; Squyres, S. W.; Arvidson, R. E.; Bartlett, P.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Farmer, J.; Farrand, B.; Golombek, M.P.; Gorevan, S.P.; Grant, J. A.; Haldemann, A.F.C.; Herkenhoff, K. E.; Johnson, J.; Landis, G.; Madsen, M.B.; McLennan, S.H.; Moersch, J.; Rice, J. W.; Richter, L.; Ruff, S.; Sullivan, R.J.; Thompson, S.D.; Wang, A.; Weitz, C.M.; Whelley, P.

    2004-01-01

    Wind-abraded rocks, ripples, drifts, and other deposits of windblown sediments are seen at the Columbia Memorial Station where the Spirit rover landed. Orientations of these features suggest formative winds from the north-northwest, consistent with predictions from atmospheric models of afternoon winds in Gusev Crater. Cuttings from the rover Rock Abrasion Tool are asymmetrically distributed toward the south-southeast, suggesting active winds from the north-northwest at the time (midday) of the abrasion operations. Characteristics of some rocks, such as a two-toned appearance, suggest that they were possibly buried and exhumed on the order of 5 to 60 centimeters by wind deflation, depending on location.

  14. Craters near the south pole of Callisto

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the south polar region of the Jovian satellite Callisto was taken in twilight by the Galileo spacecraft on its eighth orbit around Jupiter. Craters ranging in size from 60 kilometers (36 miles) down to the limit of resolution are visible in this image. Scientists count the number of craters on a planetary surface to estimate its relative (and sometimes absolute) age. Note that many of the craters are not as sharp in appearance as the two large craters near the bottom of the image. This is an indication that some process has eroded the craters since their formation.

    This image is centered at 82.5 south latitude and 62.6 west longitude, and covers an area approximately 370 kilometers (220 miles) by 280 kilometers (170 miles). North is toward the top of the image. This image was taken on May 6, 1997 by the Solid State Imaging system (CCD) on board NASA's Galileo spacecraft at a resolution of 676 meters (417 feet) per picture element.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  15. Patterned surfaces in the drying of films composed of water, polymer, and alcohol

    NASA Astrophysics Data System (ADS)

    Fichot, Julie; Heyd, Rodolphe; Josserand, Christophe; Chourpa, Igor; Gombart, Emilie; Tranchant, Jean-Francois; Saboungi, Marie-Louise

    2012-12-01

    A study of the complex drying dynamics of polymeric mixtures with optical microscopy and gravimetric measurement is presented. Droplet formation is observed, followed by a collapse that leads to the residual craters in the dried film. The process is followed in situ under well-defined temperature and hygrometric conditions to determine the origin and nature of these droplets and craters. The drying process is usually completed within 1 h. The observations are explained using a simple diffusion model based on experimental results collected from mass and optical measurements as well as Raman confocal microspectrometry. Although the specific polymeric mixtures used here are of interest to the cosmetic industry, the general conclusions reached can apply to other polymeric aqueous solutions with applications to commercial and artistic painting.

  16. Some implications of large impact craters and basins on Venus for terrestrial ringed craters and planetary evolution

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.; Alexopoulos, J. S.

    1994-01-01

    Approximately 950 impact craters have been identified on the surface of Venus, mainly in Magellan radar images. From a combination of Earth-based Arecibo, Venera 15/1, and Magellan radar images, we have interpreted 72 as unequivocal peak-ring craters and four as multiringed basins. The morphological and structural preservation of these craters is high owing to the low level of geologic activity on the venusian surface (which is in some ways similar to the terrestrial benthic environment). Thus these craters should prove crucial to understanding the mechanics of ringed crater formation. They are also the most direct analogs for craters formed on the Earth in Phanerozoic time, such as Chicxulub. We summarize our findings to date concerning these structures.

  17. Alteration Effects at Gale and Gusev Craters

    NASA Image and Video Library

    2015-12-17

    This graph shows the ratio of concentrations of several elements in four different pairs of targets examined by Alpha Particle X-ray Spectrometer (APXS) instruments on NASA Mars rovers Curiosity and Spirit. For each pair of targets, one shows evidence of mineral alteration and the other is an unaltered counterpart. The first three pairs (with ratios shown by green, blue and red lines) are targets in Gale Crater analyzed by Curiosity's APXS. The fourth pair (with ratio shown by the black line) is in Gusev Crater and was analyzed by Spirit's APXS. Similar profiles are observed, suggesting the possibility of related formation processes. As with examples of silica enrichment found by Curiosity, the origin of high-silica nodular deposits found by Spirit also remains unresolved: Either acidic weathering or silica addition could be responsible. It is clear, however, that liquid water was involved in either alteration scenario. http://photojournal.jpl.nasa.gov/catalog/PIA20276

  18. Eruption of magmatic foams on the Moon: Formation in the waning stages of dike emplacement events as an explanation of ;irregular mare patches;

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Head, James W.

    2017-04-01

    Volcanic eruptions on the Moon take place in conditions of low gravity and negligible atmospheric pressure, very different from those on Earth. These differences lead to characteristic lunar versions of hawaiian and strombolian explosive activity, and to the production of unusual eruption products neither predicted nor observed on Earth in the terminal stages of eruptions. These include the unusual mounds and rough (hummocky, blocky) floors of some small-shield summit pit crater floors, elongate depressions and mare flows (similar to those named ;irregular mare patches;, IMPs, by Braden et al., 2014). We examine the ascent and eruption of magma in the waning stages of the eruptive process in small-shield summit pit crater floors and show that many IMP characteristics can be plausibly explained by basaltic magma behavior as the rise rate of the ascending magma slows to zero, volatiles exsolve in the dike and lava lake to form a very vesicular foam, and the dike begins to close. Stresses in the very vesicular and porous lava lake crust produce fractures through which the foam extrudes at a rate determined by its non-Newtonian rheology. Waning-stage extrusion of viscous magmatic foams to the surface produces convex mounds whose physical properties inhibit typical impact crater formation and regolith development, creating an artificially young crater retention age. This mechanism for the production and extrusion of very vesicular magmatic foams is also applicable to waning-stage dike closure associated with pit craters atop dikes, and fissure eruptions in the lunar maria, providing an explanation for many irregular mare patches. This mechanism implies that IMPs and associated mare structures (small shields, pit craters and fissure flows) formed synchronously billions of years ago, in contrast to very young ages (less than 100 million years) proposed for IMPs by some workers.

  19. Ejecta- and Size-Scaling Considerations from Impacts of Glass Projectiles into Sand

    NASA Technical Reports Server (NTRS)

    Anderson J. L. B.; Cintala, M. J.; Siebenaler, S. A.; Barnouin-Jha, O. S.

    2007-01-01

    One of the most promising means of learning how initial impact conditions are related to the processes leading to the formation of a planetary-scale crater is through scaling relationships.1,2,3 The first phase of deriving such relationships has led to great insight into the cratering process and has yielded predictive capabilities that are mathematically rigorous and internally consistent. Such derivations typically have treated targets as continuous media; in many, cases, however, planetary materials represent irregular and discontinuous targets, the effects of which on the scaling relationships are still poorly understood.4,5 We continue to examine the effects of varying impact conditions on the excavation and final dimensions of craters formed in sand. Along with the more commonly treated variables such as impact speed, projectile size and material, and impact angle,6 such experiments also permit the study of changing granularity and friction angle of the target materials. This contribution presents some of the data collected during and after the impact of glass spheres into a medium-grained sand.

  20. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  1. Mercury

    NASA Technical Reports Server (NTRS)

    Vilas, Faith (Editor); Chapman, Clark R. (Editor); Matthews, Mildred Shapley (Editor)

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury.

  2. Investigation of Charon's Craters With Abrupt Terminus Ejecta, Comparisons With Other Icy Bodies, and Formation Implications

    NASA Astrophysics Data System (ADS)

    Robbins, Stuart J.; Runyon, Kirby; Singer, Kelsi N.; Bray, Veronica J.; Beyer, Ross A.; Schenk, Paul; McKinnon, William B.; Grundy, William M.; Nimmo, Francis; Moore, Jeffrey M.; Spencer, John R.; White, Oliver L.; Binzel, Richard P.; Buie, Marc W.; Buratti, Bonnie J.; Cheng, Andrew F.; Linscott, Ivan R.; Reitsema, Harold J.; Reuter, Dennis C.; Showalter, Mark R.; Tyler, G. Len; Young, Leslie A.; Olkin, Catherine B.; Ennico, Kimberly S.; Weaver, Harold A.; Stern, S. Alan

    2018-01-01

    On the moon and other airless bodies, ballistically emplaced ejecta transitions from a thinning, continuous inner deposit to become discontinuous beyond approximately one crater radius from the crater rim and can further break into discrete rays and secondary craters. In contrast, on Mars, ejecta often form continuous, distinct, and sometimes thick deposits that transition to a low ridge or escarpment that may be circular or lobate. The Martian ejecta type has been variously termed pancake, rampart, lobate, or layered, and in this work we refer to it as "abrupt termini" ejecta (ATE). Two main formation mechanisms have been proposed, one requiring interaction of the ejecta with the atmosphere and the other mobilization of near-surface volatiles. ATE morphologies are also unambiguously seen on Ganymede, Europa, Dione, and Tethys, but they are not as common as on Mars. We have identified up to 38 craters on Charon that show signs of ATE, including possible distal ramparts and lobate margins. These ejecta show morphologic and morphometric similarities with other moons in the solar system, which are a subset of the properties observed on Mars. From comparison of these ejecta on Charon and other solar system bodies, we find the strongest support for subsurface volatile mobilization and ejecta fluidization as the main formation mechanism for the ATE, at least on airless, icy worlds. This conclusion comes from the bodies on which they are found, an apparent preference for certain terrains, and the observation that craters with ATE can be near to similarly sized craters that only have gradational ejecta.

  3. Relative crater production rates on planets

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.

    1977-01-01

    The relative numbers of impacts on different planets, estimated from the dynamical histories of planetesimals in specified orbits (Wetherill, 1975), are converted by a described procedure to crater production rates. Conversions are dependent on impact velocity and surface gravity. Crater retention ages can then be derived from the ratio of the crater density to the crater production rate. The data indicate that the terrestrial planets have crater production rates within a factor ten of each other. As an example, for the case of Mars, least-squares fits to crater-count data suggest an average age of 0.3 to 3 billion years for two types of channels. The age of Olympus Mons is discussed, and the effect of Tharsis volcanism on channel formation is considered.

  4. The Structure of the Kaali Impact Crater (Estonia) based on 3D Laser Scanning, Photogrammetric Modelling and Strike and Dip Measurements

    NASA Astrophysics Data System (ADS)

    Zanetti, Michael; Wilk, Jakob; Joeleht, Argo; Välja, Rudolf; Losiak, Anna; Wisniowski, Tomek; Huber, Matthew; Pavel, Kristiina; Kriiska, Aivar; Plado, Jüri; Geppert, Wolf Dietrich; Kukko, Antero; Kaartinen, Harri

    2015-04-01

    Introduction: The Kaali Impact Crater on the island of Saaremaa, Estonia (58.37° N, 22.67° E) is part of a crater-strewn-field consisting of nine identified craters, ranging in size from 110m (Kaali Main) to a few meters in diameter [1-3]. The strewn field was formed by the breakup of an IAB iron meteorite during atmospheric entry [4]. The main crater is due to its size an important crater to study the effects of small asteroidal impacts on terrestrial planets. Despite some anthropomorphic changes, the crater is well preserved. During a scientific expedition in August 2014, we mapped the crater in unprecedented detail using 3D laser scanning tools and made detailed strike and dip measurements of all outcrops. Additional measurements using ground-penetrating radar and electro-resistivity tomography we also conducted to further refine the subsurface crater morphology. The results include a high resolution topographic map of the crater, previously unreported observations of overturned ejecta, and refined morphometric estimates of the crater. Additionally, research conducted as part of the expedition has provided a new, best-estimate for the formation of the crater (3200a +/- 30 BP) based on 14C AMS dating of charcoal from within the ejecta blanket [Losiak et al., 2015, this conference]. Structural Mapping: Although Kaali Main has been the subject of previous investigation (e.g. [2,5,6]), most of the structural descriptions of the crater pre-date modern crater investigations. Strongly inclined blocks were previously considered being affected by erosion and slope processes, our new observations show that most high dip-angle features fit well with overall dip-angle systematics. The existence of the overturned flap can be demonstrated in at least four areas around the crater. 3D Laser Scanning: A point cloud containing 16 million data points was created using 43 individual scans from a tripod mounted Faro 3D 330x laser scanner. Scans were processed using Trimble Realworks software. A DEM, Hillshade, Slope Map and Contour Map were created in ESRI ArcScene software. Photogrammetry: Photogrammetric techniques from images of key outcrops were used to create texture, photorealistic 3D representations using Agisoft PhotoScan software. Acknowledgements: We extend our sincerest gratitude to the Estonian National Heritage Board for permission to dig and make measurements at the crater. References: [1] I.Kolkun (1922) Üldine geologia. Tallin, 170. [2] J. A.Reinwald (1933) Publications of the Geological Institution of the University of Tartu, 30:1-20. [3] J.A.Reinwald (1928) thesis; Univ of Tartu [4] L.J.Spencer (1938) Miner. Mag., 25:75-80. [5] A.Aaloe (1959) ENSV TA Geoloogia Instituudi Uurimused, 2:105-117. [6] A.Raukas et al. (2002) Impact Studies 2005, 341-355.

  5. The 45th Annual Meteoritical Society Meeting

    NASA Technical Reports Server (NTRS)

    Jones, P. (Compiler); Turner, L. (Compiler)

    1982-01-01

    Impact craters and shock effects, chondrite formation and evolution, meteorites, chondrules, irons, nebular processes and meteorite parent bodies, regoliths and breccias, antarctic meteorite curation, isotopic studies of meteorites and lunar samples, organics and terrestrial weathering, refractory inclusions, cosmic dust, particle irradiations before and after compaction, and mineralogic studies and analytical techniques are discussed.

  6. An Assessment of Regional Variations in Martian Modified Impact Crater Morphology

    NASA Astrophysics Data System (ADS)

    Craddock, Robert A.; Bandeira, Lourenço.; Howard, Alan D.

    2018-03-01

    Impact craters on Mars have been extensively modified by ancient geologic processes that may have included rainfall and surface runoff, snow and ice, denudation by lava flows, burial by eolian material, or others. Many of these processes can leave distinct signatures on the morphometry of the modified impact crater as well as the surrounding landscape. To look for signs of potential regional differences in crater modification processes, we conducted an analysis of different morphometric parameters related to modified impact craters located in the Margaritifer Sinus, Sinus Sabaeus, Iapygia, Mare Tyrrhenum, Aeolis, and Eridania quadrangles, including depth, crater wall slope, crater floor slope, the curvature between the interior wall and the crater floor slope, and the curvature between the interior wall and surrounding landscape. A Welch's t test analysis comparing these parameters shows that fresh impact craters (Type 4) have consistent morphologies regardless of their geographic location examined in this study, which is not unexpected. Modified impact craters both in the initial (Type 3) and terminal stages (Type 1) of modification also have statistically consistent morphologies. This would suggest that the processes that operated in the late Noachian were globally ubiquitous, and that modified craters eventually reached a stable crater morphology. However, craters preserved in advanced (but not terminal) stages of modification (Type 2) have morphologies that vary across the quadrangles. It is possible that these variations reflect spatial differences in the types and intensity of geologic processes that operated during the Noachian, implying that the ancient climate also varied across regions.

  7. Formation (and dating) of small impact craters on Earth as an analogue for Mars (Ilumetsa Craters Estonia)

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Jõeleht, Argo; Plado, Juri; Szyszka, Mateusz; Wild, Eva Maria; Bronikowska, Malgorzata; Belcher, Claire; Kirsimäe, Kalle; Steier, Peter

    2017-04-01

    Crater-strewn-fields are present on planetary bodies with an atmosphere such as Earth and Mars, but the process of their formation is still not fully understood. For example, a recent discovery of small pieces of impact-produced-charcoal within the ejecta blanket of 100 m in diameter Kaali crater (Losiak et al. 2016) may suggest existence of very local ( 10 cm thick layer in the distance of 10 m from the rim), short lived ( hours) thermal anomalies ( 300°C) in the ejecta blanket of even small craters. Ilumetsa in SE Estonia is an atypical example of crater-strewn-field consisting of only two relatively large, rimmed structures with diameters of 75-80 m (Ilumetsa Large: IL) and 50 m (Ilumetsa Small: IS) with true depths of about 8 and 3.5 m, respectively (Plado 2012 MAPS). Structures were previously dated by the 14C analysis of gyttja from the bottom of IL (Liiva et al. 1979 Eesti Loodus) to be 7170-6660 cal. BP. About 600 years older age (7570-7320 cal. BC: Raukas et al. 2001, MAPS) was proposed based on dated layer of peat in which glassy spherules, interpreted as dissipated melt or condensed vapor (however their chemical composition was not reported). Ilumetsa is listed as a proven meteorite impact in the Earth Impact Database, but neither remnants of the projectile nor other identification criteria (e.g., PDFs) have been found up to this point. The aim of this study was to search for possible impact related charcoals in order to determine the size and extend of thermal anomalies around small impact craters, as well as to determine how this atypical strew field was formed. Additionally, we hoped to determine/confirm the age of those structures. We have found charcoal in a similar geological setting as in Kaali Main crater in both Ilumetsa structures. The calibrated (95,4% probability) time ranges of four dated samples from IL and one sample of IS span the time interval from 7670-6950 cal. BP (consistent with previous dating). One sample from IS is younger (4830-4580 cal. BP) - it was found less deep than other charcoals found within the same trench, and it may be interpreted as a remnant of a "recent" forest fire, later buried within the sediment derived from the erosion of the raised rim. The second sample is older (8540-8400 cal. BP). It was found on a greater depth than most of the samples and may represent an older plant material that was buried within the sediments before the impact happened. More 14C dating will be performed. Chemical analyses of sediments exposed in profiles did not reveal any specific enrichment with respect the host rocks in elements (Ni, Cr) that could be related to extraterrestrial material. INAA measurements will be performed. Field search for metal-containing meteorites was inconclusive (until now nothing was found), but preliminary studies on the atmospheric entry modeling of the Ilumetsa meteoroid shows that using standard value of strength (4.4e6 - 4.4e7 N/kg) for a stony meteoroid, cannot lead to reproduction of the Ilumetsa craters formation due to cascade fragmentation specific for such weak bodies. In conclusion: the Ilumetsa structures were formed around 7000 cal. BP, but a clear proof of their impact origin is still missing. More analysis is being currently performed. Understanding formation of small terrestrial impact craters will lead to better understanding formation of similar structures on other planetary bodies, and their influence on their environment.

  8. Magma genesis at Gale Crater: Evidence for Pervasive Mantle Metasomatism

    NASA Astrophysics Data System (ADS)

    Filiberto, J.

    2017-12-01

    Basaltic rocks have been analyzed at Gale Crater with a larger range in bulk chemistry than at any other landing site [1]. Therefore, the rocks may have experienced significantly different formation conditions than those experienced by magmas at Gusev Crater or Meridiani Planum. Specifically, the rocks at Gale Crater have higher potassium than other Martian rocks, with a potential analog of the Nakhlite parental magma, and are consistent with forming from a metasomatized mantle source [2-4]. Mantle metasomatism would not only affect the bulk chemistry but mantle melting conditions, as metasomatism fluxes fluids into the source region. Here I will combine differences in bulk chemistry between Martian basalts to calculate formation conditions in the interior and investigate if the rocks at Gale Crater experienced magma genesis conditions consistent with metasomatism - lower temperatures and pressures of formation. To calculate average formation conditions, I rely on experimental results, where available, and silica-activity and Mg-exchange thermometry calculations for all other compositions following [5, 6]. The results show that there is a direct correlation between the calculated mantle potential temperature and the K/Ti ratio of Gale Crater rocks. This is consistent with fluid fluxed metasomatism introducing fluids to the system, which depressed the melting temperature and fluxed K but not Ti to the system. Therefore, all basalts at Gale Crater are consistent with forming from a metasomatized mantle source, which affected not only the chemistry of the basalts but also the formation conditions. References: [1] Cousin A. et al. (2017) Icarus. 288: 265-283. [2] Treiman A.H. et al. (2016) Journal of Geophysical Research: Planets. 121: 75-106. [3] Treiman A.H. and Medard E. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10.1130/abs/2016AM-285851. [4] Schmidt M.E. et al. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10.1130/abs/2016AM-285651. [5] Filiberto J. and Dasgupta R. (2011) Earth and Planetary Science Letters. 304: 527-537. [6] Filiberto J. and Dasgupta R. (2015) Journal of Geophysical Research: Planets. 120: DOI: 10.1002/2014JE004745.

  9. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2002-01-01

    Many Martian craters are surrounded by ejecta blankets which appear to have been fluidized forming lobate and layered deposits terminated by one or more continuous distal scarps, or ramparts. One of the first hypotheses for the formation of so-called rampart ejecta features was shock-melting of subsurface ice, entrainment of liquid water into the ejecta blanket, and subsequent fluidized flow. Our work quantifies this concept. Rampart ejecta found on all but the youngest volcanic and polar regions, and the different rampart ejecta morphologies are correlated with crater size and terrain. In addition, the minimum diameter of craters with rampart features decreases with increasing latitude indicating that ice laden crust resides closer to the surface as one goes poleward on Mars. Our second goal in was to determine what strength model(s) reproduce the faults and complex features found in large scale gravity driven craters. Collapse features found in large scale craters require that the rock strength weaken as a result of the shock processing of rock and the later cratering shear flows. In addition to the presence of molten silicate in the intensely shocked region, the presence of water, either ambient, or the result of shock melting of ice weakens rock. There are several other mechanisms for the reduction of strength in geologic materials including dynamic tensile and shear induced fracturing. Fracturing is a mechanism for large reductions in strength. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting in the atmosphere produce final crater profiles having the major features found in the field measurements (central uplifts, inner ring, terracing and faulting). This was accomplished with undamaged surface strengths (0.1 GPa) and in depth strengths (1.0 GPa).

  10. Landing site selection for Luna-Glob mission in crater Boguslawsky

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Hiesinger, H.; Abdrakhimov, A. M.; Basilevsky, A. T.; Head, J. W.; Pasckert, J.-H.; Bauch, K.; van der Bogert, C. H.; Gläser, P.; Kohanov, A.

    2015-11-01

    Boguslawsky crater (72.9°S, 43.3°E, ~100 km in diameter) is a primary target for the Luna-Glob mission. The crater has a morphologically smooth (at the resolution of WAC images), flat, and horizontal floor, which is about 55-60 km in diameter. Two ellipses were selected as specific candidate landing areas on the floor: the western ellipse is centered at 72.9°S, 41.3°E and the eastern ellipse is centered at 73.9°S, 43.9°E. Both ellipses represent areas from which Earth is visible during the entire year of 2016 and lack permanently shadowed areas. Boguslawsky crater is located on or near the rim of the South Pole-Aitken basin, which provides the unique possibility to sample some of the most ancient rocks on the Moon that probably pre-date the SPA impact event. The low depth/diameter ratio of Boguslawsky suggests that the crater has been partly filled after its formation. Although volcanic flooding of the crater cannot be ruled out, the more likely process of filling of Boguslawsky is the emplacement of ejecta from nearby and remote large craters/basins. Three morphologically distinctive units are the most abundant within the selected landing ellipses: rolling plains (rpc), flat plains (fp), and ejecta from crater Boguslawsky-D (ejf), which occurs on the eastern wall of Boguslawsky. The possible contribution of materials from unknown sources makes the flat and rolling plains less desirable targets for landing. In contrast, ejecta from Boguslawsky-D represents local materials re-distributed by the Boguslawsky-D impact from the wall onto the floor of Boguslawsky. Thus, this unit, which constitutes about 50% of the eastern landing ellipse, represents a target of clearer provenance and a higher scientific priority.

  11. Duginavi and Oxo

    NASA Image and Video Library

    2017-12-01

    This image taken by NASA's Dawn spacecraft shows Duginavi Crater, a large (96 miles, 155 kilometers in diameter) crater on Ceres. Duginavi's degraded rim barely stands out in this picture, which indicates this feature is very old. There are several factors that alter and eventually erase the shapes of geological features on bodies that do not have an atmosphere. These include gravity, which is responsible for landslides and scarps. The formation of newer craters, and the material that gets ejected in the process, has smoothed over craters such as Duginavi. Duginavi hosts the small Oxo Crater, recognizable by its bright rim and ejecta. Oxo is the first site at which ice was discovered on Ceres. Duginavi is named for an agriculture god of the Kogi people of northern Colombia. Oxo bears the name of the god of agriculture in Afro-Brazilian beliefs of Yoruba derivation. These features can be found on the global map of Ceres. Dawn took this image on October 8, 2015, from its high-altitude mapping orbit, at a distance of about 915 miles (1,470 kilometers) above the surface. It has a resolution of 450 feet (140 meters) per pixel. The center coordinates of this image are 39 degrees north latitude, 8 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21912

  12. Between Two Lakes: Opportunities for the Inception of Life in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Heydari, E.; Calef, F.; Schroeder, J.; van Beek, J.; Parker, T. J.; Rowland, S. K.; Fairén, A. G.; Hallet, B.

    2017-12-01

    Many lakes may have existed in Gale crater, Mars. Five years of investigations by the Curiosity Rover has revealed clear sedimentological evidence for the presence of at least two in the rover's landing ellipse. They are here named the first lake and the last lake. The first lake formed soon after the formation of the crater and was previously introduced by Grotzinger et al. (2015). Water rushed into the crater from its northern rim inundating the crater quickly. Physical evidence for the presence of the first lake includes 300 m of mudstone of the Murray formation exposed in the foothills of Mt. Sharp. Abundance of fine-grained lithologies, dominance of laminations, absence of features suggestive of sedimentation in shallow-waters, and the lack of indicators of an ice-covered lake, all suggest that the Murray formation was deposited at the bottom of a lake that was kilometers deep and was not frozen. The first lake eventually dried up and about 3 km of sediments whose characteristics are known only from orbital images filled Gale crater (Malin and Edgett, 2000). A sediment-filled Gale crater was later exhumed from its margins, leading to the emergence of Mt. Sharp at the crater center. Afterwards, water flowed into the crater, this time from the south, forming a100 m - 200 m deep lake in the vicinity of the landing ellipse: the last lake. The evidence for the last lake is sedimentological record of two to three river deltas preserved in the Rugged Terrain Unit. These deltas prograded rapidly from south to north depositing a 5 m-thick layer over all previously deposited strata. The first lake established the potential conditions for life to begin in Gale crater. They continued until the last lake dried up and Mars became permanently cold. The duration is not well known, but it may have endured for millions of years. Sedimentological evidence provided by the Curiosity rover suggests that multitude of opportunities existed for the inception of life between the two lakes. These include diverse shallow- and deep-water environments hospitable to life, abundant supply of liquid waters of varied geochemical characteristics, and favorable climate conditions.

  13. From lakes to sand seas: a record of early Mars climate change explored in northern Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Banham, S.; Rubin, D. M.; Watkins, J. A.; Edgett, K. S.; Sumner, D. Y.; Grotzinger, J. P.; Lewis, K. W.; Edgar, L. A.; Stack, K.; Day, M.; Lapôtre, M. G. A.; Bell, J. F., III; Ewing, R. C.; Stein, N.; Rivera-Hernandez, F.; Vasavada, A. R.

    2017-12-01

    While traversing the northern flank of Aeolis Mons, Gale crater, Mars Science Laboratory rover Curiosity encountered a decametre-thick sandstone unit unconformably overlying the lacustrine Murray formation. This sandstone contains cross-bed sets on the order of 1 m thick, composed of uniform mm-thick laminations of uniform thickness, and lacks silt- or mud-grade sediments. Cross sets are separated by sub-horizontal bounding surfaces which extend for tens of metres across outcrops. Dip-azimuths of cross-laminations are predominantly toward the north-east, which is oblique to the north-west slope of the unconformity on which the sandstone accumulated. This sandstone was designated the Stimson formation after Mt. Stimson, where it was delineated from the Murray formation. Textural analysis of this sandstone revealed a bi-modal sorting with well-rounded grains, typical of particles transported by aeolian processes. Stacked cross-bedded sets, representing the migration of aeolian dune-scale bedforms, combined with the absence of finer-grained facies characteristic of interdune deposits, suggest that the Stimson accumulated by aerodynamic processes and that the depositional surface was devoid of moisture which could have attracted dust to form interdune deposits. Reconstruction of this "dry" dune-field based on architectural measurements suggest that cross sets were emplaced by the migration of dunes with minimum heights of 10m, that were spaced 160 m apart. The dune field covered an area of 30-45 km2, and was confined to the break-in-slope at the base of Aeolis Mons. Cross-set dips suggest that the palaeowind drove these dunes toward the north east, oblique to the slope of the unconformity on which these sandstones accumulated. Construction of a dry dune field in Gale crater required an environment of extreme aridity with absence of water at the surface and within the shallow sub-surface. This is in stark contrast to the lacustrine environment in which the underlying Murray formation accumulated. The contrast in depositional environments between these units suggest that the prevailing climate in Gale crater changed, at least temporarily, from a humid environment with surface water that had potential for sustaining life, to a barren desert with reduced potential for habitability at the surface.

  14. The cratering record in the inner solar system: Implications for earth

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1988-01-01

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters. The estimated size of the impactor purportedly responsible for the Cretaceous-Tertiary mass extinctions is 10 km in diameter. Thus impactors greater than or equal to the size postulated for K-T impactor are rare within the inner solar system since the end of heavy bombardment.

  15. Syn- and posteruptive hazards of maar diatreme volcanoes

    NASA Astrophysics Data System (ADS)

    Lorenz, Volker

    2007-01-01

    Maar-diatreme volcanoes represent the second most common volcano type on continents and islands. This study presents a first review of syn- and posteruptive volcanic and related hazards and intends to stimulate future research in this field. Maar-diatreme volcanoes are phreatomagmatic monogenetic volcanoes. They may erupt explosively for days to 15 years. Above the preeruptive surface a relatively flat tephra ring forms. Below the preeruptive surface the maar crater is incised because of formation and downward penetration of a cone-shaped diatreme and its root zone. During activity both the maar-crater and the diatreme grow in depth and diameter. Inside the diatreme, which may penetrate downwards for up to 2.5 km, fragmented country rocks and juvenile pyroclasts accumulate in primary pyroclastic deposits but to a large extent also as reworked deposits. Ejection of large volumes of country rocks results in a mass deficiency in the root zone of the diatreme and causes the diatreme fill to subside, thus the diatreme represents a kind of growing sinkhole. Due to the subsidence of the diatreme underneath, the maar-crater is a subsidence crater and also grows in depth and diameter with ongoing activity. As long as phreatomagmatic eruptions continue the tephra ring grows in thickness and outer slope angle. Syneruptive hazards of maar-diatreme volcanoes are earthquakes, eruption clouds, tephra fall, base surges, ballistic blocks and bombs, lahars, volcanic gases, cutting of the growing maar crater into the preeruptive ground, formation of a tephra ring, fragmentation of country rocks, thus destruction of area and ground, changes in groundwater table, and potential renewal of eruptions. The main hazards mostly affect an area 3 to possibly 5 km in radius. Distal effects are comparable to those of small eruption clouds from polygenetic volcanoes. Syneruptive effects on infrastructure, people, animals, vegetation, agricultural land, and drainage are pointed out. Posteruptive hazards concern erosion and formation of lahars. Inside the crater a lake usually forms and diverse types of sediments accumulate in the crater. Volcanic gases may be released in the crater. Compaction and other diagenetic processes within the diatreme fill result in its subsidence. This posteruptive subsidence of the diatreme fill and thus crater floor is relatively large initially but will decrease with time. It may last millions of years. Various studies and monitoring are suggested for syn- and posteruptive activities of maar-diatreme volcanoes erupting in the future. The recently formed maar-diatreme volcanoes should be investigated repeatedly to understand more about their syneruptive behaviour and hazards and also their posteruptive topographic, limnic, and biologic evolution, and potential posteruptive hazards. For future maar-diatreme eruptions a hazard map with four principal hazard zones is suggested with the two innermost ones having a joint radius of up to 5 km. Areas that are potentially endangered by maar-diatreme eruptions in the future are pointed out.

  16. Categorized Crater Counts on Martian Lobate Debris Aprons

    NASA Astrophysics Data System (ADS)

    Berman, D. C.; Crown, D. A.; Joseph, E. C.

    2015-05-01

    We have developed a new approach for analyzing crater size-frequency distributions designed to interpret formation and modification ages from complex geologic surfaces, such as those of ice-rich debris aprons.

  17. A newly discovered impact crater in Titan's Senkyo: Cassini VIMS observations and comparison with other impact features

    USGS Publications Warehouse

    Buratti, B.J.; Sotin, Christophe; Lawrence, K.; Brown, R.H.; Le, Mouelic S.; Soderblom, J.M.; Barnes, J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.

    2012-01-01

    Senkyo is an equatorial plain on Titan filled with dunes and surrounded by hummocky plateaus. During the Titan targeted flyby T61 on August 25, 2009, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed a circular feature, centered at 5.4?? N and 341??W, that superimposes the dune fields and a bright plateau. This circular feature, which has been named Paxsi by the International Astronomical Union, is 120??10 km in diameter (measured from the outer edge of the crater rim) and exhibits a central bright area that can be interpreted as the central peak or pit of an impact crater. Although there are only a handful of certain impact craters on Titan, there are two other craters that are of similar size to this newly discovered feature and that have been studied by VIMS: Sinlap (Le Mou??lic et al, 2008) and Selk (Soderblom et al, 2010). Sinlap is associated with a large downwind, fan-like feature that may have been formed from an impact plume that rapidly expanded and deposited icy particles onto the surface. Although much of the surrounding region is covered with dunes, the plume region is devoid of dunes. The formation process of Selk also appears to have removed (or covered up) dunes from parts of the adjacent dune-filled terrain. The circular feature on Senkyo is quite different: there is no evidence of an ejecta blanket and the crater itself appears to be infilled with dune material. The rim of the crater appears to be eroded by fluvial processes; at one point the rim is breached. The rim is unusually narrow, which may be due to mass wasting on its inside and subsequent infill by dunes. Based on these observations, we interpret this newly discovered feature to be a more eroded crater than both Sinlap and Selk. Paxsi may have formed during a period when Titan was warmer and more ductile than it is currently. ?? 2011 Elsevier Ltd. All rights reserved.

  18. Magma ascent and magmatism controlled by cratering on the Moon

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Pinel, V.

    2016-12-01

    The lunar primary crust was formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a relatively light and thick crust. This crust acted as a barrier for the denser primary mantle melts: mare basalts erupted primarily within large impact basins where at least part of this crust was removed. Thus, lunar magmas likely stored at the base of or deep in the lunar crust and the ascent of magma to shallow depths probably required local or regional tensional stresses. On the Moon, evidences of shallow sites of magmatism are mostly concentrated within old and degraded simple and complex craters that surround the Mare basalts. Impacts, that were numerous in the early times of the Moon, created depressions at the lunar surface that induced specific states of stress. Below a crater, magma ascent is helped by the tensional stresses caused by the depression up to a depth that is close to the crater radius. However, many craters that are the sites of shallow magmatism are less than 10 to 20 km in radius and are equally situated in regions of thin (i.e. 20 km) or thick (i.e. 60km) crust suggesting that the depression, although significant enough to control magma emplacement, was not large enough to induce it. Since the sites of magmatism surround the mare basalts, we explore the common idea that the weight of the Mare induced a tensile state of stress in the surrounding regions. We constrain the regional state of stress that was necessary to help magma ascent to shallow depths but was low enough for the local depression due to a crater to control magma emplacement. This state of stress is consistent with a relatively thin but extended mare load. We also show that the depression due to the crater probably caused the horizontalization and hence the storage of the magmatic intrusion at shallow depth below the crater. In the end, because of the neutral buoyancy of magmas in the crust and the lack of tectonic processes, impact processes largely controlled magma transport and secondary crust formation on the Moon.

  19. Topographic Evaluation of Mars 2001 Candidate Landing Sites: A MGS-Viking Synergistic Study

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Schenk, P. M.; Howard, A. D.

    1999-01-01

    One of the greatest unresolved issues concerns the evolution of Mars early in its history; during the time period that accretion was winding down but the frequency of impacting debris was still heavy. Ancient cratered terrain that has only been moderately modified since the period of heavy bombardment covers about a quarter of the planet's surface but the environment during its formation is still uncertain. This terrain was dominantly formed by cratering. But unlike on the airless Moon, the impacting craters were strongly modified by other contemporary surface processes that have produced distinctive features such as 1) dendritic channel networks, 2) rimless, flatfloored craters, 3) obliteration of most craters smaller than a few kilometers in diameter (except for post heavy-bombardment impacts), and 4) smooth intercrater plains. The involvement of water in these modification processes seems unavoidable, but interpretations of the surface conditions on early Mars range from the extremes of 1) the "cold" model which envisions a thin atmosphere and surface temperatures below freezing except for local hydrothermal springs; and 2) the "warm" model, which invokes a thick atmosphere, seasonal temperatures above freezing in temperate and equatorial regions, and at least occasional precipitation as part of an active hydrological cycle. The nature of hydrologic cycles, if they occurred on Mars, would have been critically dependent on the environment. The resolution of where along this spectrum the actual environment of early Mars occurred is clearly a major issue, particularly because the alternate scenarios have much different implications about the possibility that life might have evolved on Mars.

  20. Topographic Analysis of the Asymmetric Ejecta of Zunil Crater, Mars

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Sharpton, V. L.

    2016-12-01

    The 10.1 km diameter crater Zunil (7.7oN, 166.2oE) has many of the attributes of a fresh impact crater on Mars, including pitted material on the crater floor, an extensive field of secondary craters, as well as thermally-distinct crater rays. But unlike most craters of this size and location, Zunil crater displays a striking azimuthal variation in ejecta deposits with both fluidized and ballistic ejecta. Here we investigate the geometric attributes of the crater cavity and rim to try to identify the cause of this ejecta asymmetry, as well as the possible explanation for the formation of the ballistic ejecta. To accomplish this, we have created a digital elevation model (DEM) from stereo Context Camera (CTX) images, using the Ames Stereo Pipeline software. We used CTX frames F06_038250_1877 and G05_020211_1877 to produce a DEM with a nominal spatial resolution of 24 m/pixel, and use this DEM to conduct a detailed morphometric analysis of the crater in order to ascertain the nature of this "lobate-ballistic ejecta dichotomy", as well as derive new information on local target properties and the nature of the impact process itself. Measuring the rim height and radius at one-degree increments of azimuth, we find there are numerous places on the rim crest that are both higher and wider, or lower and narrower, than is typical for Zunil crater. There are places where rim height and radius are both close to average, while in other places both the rim height and radius are larger or smaller than the average. There is also a lack of consistency between the geometry of the crater and the type of ejecta; namely no direct correlation between rim height, crater radius, and ejecta type, but a slight negative correlation between radius and rim height for parts of the crater which possess ballistic ejecta. We find good circumstantial evidence that some of the target rock within which Zunil crater formed may have been dry at the time of impact compared to other craters of this size, latitude and elevation. We speculate that this lack of volatiles most likely arose from the drainage of water to depths greater than the excavation depth of Zunil crater. The asymmetric nature of the ejecta blanket argues strongly against the notion that the Martian atmosphere was partially responsible for ejecta fluidization.

  1. In Situ Sedimentological Evidence for Climate Change in Early Mars Provided by the Curiosity Rover in Gale Crater

    NASA Astrophysics Data System (ADS)

    Heydari, Ezat; Fairen, Alberto G.

    2016-10-01

    The Striated formation is one of the rock units that was deposited in Gale crater, Mars, during the Late Noachian to Hesperian time (4.2 to 3.6 billion years ago). It crops out for 3 km along the Curiosity's traverse. The Striated formation strikes N65○E and has a depositional dip of 10○ - 20○ to SE. It consists of 500 m to 1000 m of highly rhythmic layers each 1 m to 4 m in thickness. Study of MAHLI and MastCam images provided by the Curiosity Rover indicates that layers form fining-upward cycles consisting of thick-bedded to massive conglomerate at the base that grades upward to thinly bedded conglomerate, then to pebbly sandstone, and topped by laminated, fine grained sandstone. Layers show slump folds, soft sediment deformation, and cross-beddings.The highly rhythmic occurrence and the fining-upward grain size characteristic indicate that each layer within the Striated formation is a coarse-grained turbidite: a type of rock that forms when sediments move down-hill by gravity-driven turbidity flows and deposit in deep waters. We propose that turbidite layers of the Striated formation are related to delivery of sediments to Gale crater by megafloods through its northern rim. Upon entering Gale crater, sediments moved down-hill and deposited as turbidite layers when the crater may have been filled to the rim with water. About 1000 to 3000 turbidite layers are present suggesting the occurrences of as many megafloods during hothouse climatic intervals when Mars was warmer than the Present and had plenty of liquid water. Floods were generated by one or a combination of the following processes: (1) torrential rain along the margins of Mars's Northern Ocean, 500 km to 1000 km to the north, (2) rapid melting of ice in highland areas, and (3) tsunamis formed by impacts on the Northern Ocean. Cold and/or dry climate of icehouse intervals may have followed each warming episode. Mars's climate forcing mechanism and periodicities of climate change are not clear at this point. However, the highly regular and rhythmic nature of turbidite layers point to an orbital triggering mechanism, possibly driven by changes in obliquity.

  2. The Geographic Distribution of Boulder Halo Craters at Mid-to-High Latitudes on Mars

    NASA Technical Reports Server (NTRS)

    Rader, L. X.; Fassett, C. I.; Levy, J. S.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; hide

    2017-01-01

    Extensive evidence exists for ground ice at mid-to-high latitudes on Mars, including results from neutron spectroscopy [1-3], thermal properties [4-5], geomorphology [e.g., 6-9], and the in situ observations of Mars Phoenix [10]. This ground ice has been hypothesized to be emplaced diffusively and fill pores [11], or to have accumulated by ice and dust deposition that draped or mantled the terrain [7, 12]. These two processes are not mutually exclusive; both potentially have occurred on Mars [5]. One of the landforms found in areas where ground ice is common on Mars are boulder halo craters [e.g., 13-15] (Figure 1), which are topographically muted impact craters that are filled by ice-rich regolith. They are outlined by boulders that trace a circular outline of the original crater rim. Boulder halos generally have distinctly higher boulder densities than the surrounding background plains and have few boulders in their interiors. The mechanism of boulder halo crater formation is somewhat uncertain. Our working model is that an impact event occurs with sufficient size to excavate to a depth greater than the boulder-poor, ice-rich soils. Excavated boulders are deposited around the crater's rim and in its proximal ejecta. Quite rapidly [14], the crater becomes infilled by icy soil. Rather than being buried, boulders in the halo remain at the surface, perhaps be-cause they 'float' relative to finer-grained materials [14, 16]. Regardless of the details of this process, the life-time of boulders at the surface is much greater than the timescale needed to remove most of the craters' topography. Physical weathering of rocks must be greatly out-paced by crater infilling (the opposite of what is typical, e.g., on the Moon [17]). The rapidity of this infilling is easiest to understand if icy mantling material is deposited and accumulates, rather than simply being added by pore filling of soils. If this model is correct, boulder halos only form when they excavate rock-producing materials from beneath the upper surface. Thus, the distribution and size of craters that result in boulders halos may provide in-sight into the thickness of the ice-rich surface layer in different locations. Note that this thickness is necessarily that of the ice-rich layer at the time of impact, not at present. This study is an initial survey of boulder halo crater locations in the 50deg to 80degN and 50deg to 80degS latitude bands on Mars.

  3. Intercrater Plains and Heavily Cratered Terrain

    NASA Image and Video Library

    2000-08-05

    This image, from NASA Mariner 10 spacecraft which launched in 1974, shows intercrater plains and heavily cratered terrain typical of much of Mercury outside the area affected by the formation of the Caloris basin.

  4. An Impact Ejecta Behavior Model for Small, Irregular Bodies

    NASA Technical Reports Server (NTRS)

    Richardson, J. E.; Melosh, H. J.; Greenberg, R.

    2003-01-01

    In recent years, spacecraft observations of asteroids 951 Gaspra, 243 Ida, 253 Mathilde, and 433 Eros have shown the overriding dominance of impact processes with regard to the structure and surface morphology of these small, irregular bodies. In particular, impact ejecta play an important role in regolith formation, ranging from small particles to large blocks, as well as surface feature modification and obscuration. To investigate these processes, a numerical model has been developed based upon the impact ejecta scaling laws provided by Housen, Schmidt, and Holsapple, and modified to more properly simulate the late-stage ejection velocities and ejecta plume shape changes (ejection angle variations) shown in impact cratering experiments. A target strength parameter has also been added to allow the simulation of strength-dominated cratering events in addition to the more familiar gravity-dominated cratering events. The result is a dynamical simulation which models -- via tracer particles -- the ejecta plume behavior, ejecta blanket placement, and impact crater area resulting from a specified impact on an irregularly shaped target body, which is modeled in 3-dimensional polygon fashion. This target body can be placed in a simple rotation state about one of its principal axes, with the impact site and projectile/target parameters selected by the user. The gravitational force from the irregular target body (on each tracer particle) is determined using the polygonized surface (polyhedron) gravity technique developed by Werner.

  5. On the nature and rate of resurfacing of Venus

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Grimm, Robert E.; Phillips, Roger J.; Schaber, Gerald G.; Shoemaker, Eugene M.

    1990-01-01

    Crrater production and obliteration are modeled for the plains of Venus, using (1) the observed distribution of Venus-crossing asteroids and comets; (2) viscous relaxation of crater topography; and (3) erosion and burial by atmospheric, volcanic, and tectonic processes. Crater lifetimes are assumed to be proportional to crater depths for both classes of obliterative processes although the individual criteria vary. An average crater retention age between 0.4 to 2.0 Gyr is estimated for plains, under the assumption that craters are produced and not removed. The range is driven by uncertainty in identifying degraded impact as opposed to volcanic craters. On the other hand, crater retention ages greater than about 1.6 Gyr are unlikely if viscous relaxation operates without loading of crater floor by burial. The preferred model has plains subject to crater production and obliteration processes that vary over both space and time.

  6. Martian planetwide crater distributions: Implications for geologic history and surface processes

    USGS Publications Warehouse

    Soderblom, L.A.; Condit, C.D.; West, R.A.; Herman, B.M.; Kreidler, T.J.

    1974-01-01

    Population-density maps of craters in three size ranges (0.6 to 1.2 km, 4 to 10 km, and >20 km in diameter) were compiled for most of Mars from Mariner 9 imagery. These data provide: historical records of the eolian processes (0.6 to 1.2 km craters); stratigraphic, relative, and absolute timescales (4 to 10 km craters); and a history of the early postaccretional evolution of the uplands (> 20 km craters). Based on the distribution of large craters (>20 km diameters), Mars is divisible into two general classes of terrain, densely cratered and very lightly cratered-a division remarkably like the uplands-maria dichotomy of the moon. It is probable that this bimodal character in the density distribution of large craters arose from an abrupt transition in the impact flux rate from an early intense period associated with the tailing off of accretion to an extended quiescent epoch, not from a void in geological activity during much of Mars' history. Radio-isotope studies of Apollo lunar samples show that this transition occurred on the moon in a short time. The intermediate-sized craters (4 to 10 km diameter) and the small-sized craters (0.6 to 1.2 km diameter) appear to be genetically related. The smaller ones are apparently secondary impact craters generated by the former. Most of the craters in the larger of these two size classes appear fresh and uneroded, although many are partly buried by dust mantles. Poleward of the 40?? parallels the small fresh craters are notably absent owing to these mantles. The density of small craters is highest in an irregular band centered at 20??S. This band coincides closely with (1) the zone of permanent low-albedo markings; (2) the "wind equator" (the latitude of zero net north or south transport at the surface); and (3) a band that includes a majority of the small dendritic channels. Situated in the southermost part of the equatorial unmantled terrain which extends from about 40??N to 40??S, this band is apparently devoid of even a thin mantle. Because this belt is also coincident with the latitutde of maximum solar insolation (periapsis occurs near summer solstice), we suggest that this band arises from the asymmetrical global wind patterns at the surface and that the band probably follows the latitude of maximum heating which migrates north and south from 25??N to 25??S within the unmantled terrain on a 50,000 year timescale. The population of intermediate-sized craters (4-10 km diameter) appears unaffected by the eolian mantles, at least within the ??45?? latitudes. Hence the local density of these craters is probably a valid indicator of the relative age of surfaces generated during the period since the uplands were intensely bombarded and eroded. It now appears that the impact fluxes at Mars and the moon have been roughly the same over the last 4 b.y. because the oldest postaccretional, mare-like surfaces on Mars and the moon display about the same crater density. If so, the nearness of Mars to the asteroid belt has not generated a flux 10 to 25 times greater than the lunar flux. Whereas the lunar maria show a variation of about a factor of three in crater density from the oldest to the youngest major units, analogous surfaces on Mars show a variation between 30 and 50. This implies that periods of active eolian erosion, tectonic evolution, volcanic eruption, and possibly fluvial modification have been scattered throughout Martian history since the formation and degradation of the martian uplands and not confined to small, ancient or recent, epochs. These processes are surely active on the planet today. ?? 1974.

  7. Distribution and Orientation of Alluvial Fans in Martian Craters

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. I.

    2005-01-01

    We present the results of the complete survey of Martian alluvial fans from 0-30 S, initiated by Moore and Howard. Nineteen impact craters contain alluvial fans. They are regionally grouped into three distinct areas. We present our initial results regarding their distribution and orientation in order to understand what controls their formation. Since alluvial fans are formed by water transport of sediment, these features record wetter episodes of Martian climate. In addition, their enigmatic distribution (in regional groups and in some craters, but not similar adjacent ones) needs to be understood, to see how regional geology, topographic characteristics, and/or climate influence their formation and distribution.

  8. Landform degradation on Mercury, the moon, and Mars - Evidence from crater depth/diameter relationships

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Dzurisin, D.

    1977-01-01

    Craters on Mercury, the moon, and Mars were classified into two groups, namely, fresh and degraded craters, on the basis of qualitative visual degradation as revealed by degree of rim crispness, terraced interior walls, slumping from crater walls, etc., and the depth/diameter relationship of craters was studied. Lunar and Mercurian crater populations indicate the existence of terrain-correlated degradational phenomena. The depth/diameter relations for Mercury and the moon display remarkably similar forms, suggesting similar degrees of landform degradation. Depth/diameter curves display a break in slope, dividing two distinct crater populations. Mars craters show few of the trends of those of Mercury and the moon. The depth/diameter curve has no definite break in slope, though there is considerable depth variation. The role of nonballistic degradation in connection with the early formation of large expanses of intercrater plains is discussed.

  9. Formation of lunar basin rings

    USGS Publications Warehouse

    Hodges, C.A.; Wilhelms, D.E.

    1978-01-01

    The origin of the multiple concentric rings that characterize lunar impact basins, and the probable depth and diameter of the transient crater have been widely debated. As an alternative to prevailing "megaterrace" hypotheses, we propose that the outer scarps or mountain rings that delineate the topographic rims of basins-the Cordilleran at Orientale, the Apennine at Imbrium, and the Altai at Nectaris-define the transient cavities, enlarged relatively little by slumping, and thus are analogous to the rim crests of craters like Copernicus; inner rings are uplifted rims of craters nested within the transient cavity. The magnitude of slumping that occurs on all scarps is insufficient to produce major inner rings from the outer. These conclusions are based largely on the observed gradational sequence in lunar central uplifts:. from simple peaks through somewhat annular clusters of peaks, peak and ring combinations and double ring basins, culminating in multiring structures that may also include peaks. In contrast, belts of slump terraces are not gradational with inner rings. Terrestrial analogs suggest two possible mechanisms for producing rings. In some cases, peaks may expand into rings as material is ejected from their cores, as apparently occurred at Gosses Bluff, Australia. A second process, differential excavation of lithologically diverse layers, has produced nested experimental craters and is, we suspect, instrumental in the formation of terrestrial ringed impact craters. Peak expansion could produce double-ring structures in homogeneous materials, but differential excavation is probably required to produce multiring and peak-in-ring configurations in large lunar impact structures. Our interpretation of the representative lunar multiring basin Orientale is consistent with formation of three rings in three layers detected seismically in part of the Moon-the Cordillera (basin-bounding) ring in the upper crust, the composite Montes Rook ring in the underlying, more coherent "heald" crust, and an innermost, 320-km ring at the crust-mantle interface. Depth-diameter ratios of 1 10to 1 15 are consistent with this interpretation and suggest that volumes of transient cavities and hence of basin ejecta may be considerably greater than commonly assumed. ?? 1978.

  10. Tafoni - A Llink Between Mars and Earth

    NASA Astrophysics Data System (ADS)

    Iacob, R. H.; Iacob, C. E.

    2013-12-01

    Remarkable rock erosion structures on the planetary surface, tafoni represent an important instrument for investigating the specific environmental conditions causing such rock formations. From simple cavities to refined honeycomb or other intricate patterns, tafoni are a reflection of the complex interaction between the rock structure and the environmental factors. On the genesis of tafoni, there is no unique breakdown mechanism at work, but a multitude of physical and chemical processes developing over time. However, some of these formation mechanisms are typically predominant. Tafoni can be found on a variety of rock substrates, from sandstone and vesicular lava rocks to granite and basalt, and in a variety of environments, from wet coastal areas to the extreme dry zones of hot deserts, high plateaus or frozen lands of Antarctica. During various NASA missions, tafoni were also identified on rock formations on Mars. Comparative study of the environmental conditions leading to the formation of tafoni on Earth and Mars can help explain past and present surface erosion mechanisms on the Red Planet. The mechanisms responsible for tafoni formation on Earth include wind erosion, exfoliation, frost shattering, and, in the majority of cases, salt weathering. Microclimate variations of temperature, evaporation of salt water, disaggregation of mineral grains, as well as sandblasting, are among most common contributors that initiate the pitting of the rock surface, giving way to further development of tafoni alveoli, cavities and other erosion patterns. Dissolution of calcium carbonates and siliceous cements, or hydration of feldspars, are representative examples of tafoni erosion involving rain water, sea water or air moisture. Live organisms and biochemical processes are significant contributors to the formation and evolution of tafoni, especially in humid or water reach environments. In many instances, tafoni reflect erosion mechanism specific to environmental conditions that no longer exist. NASA's current Mars Science Laboratory mission offers exceptional opportunities to perform a comparative study between tafoni formations on Mars and those on Earth. The present mission of Curiosity at Gale Crater, benefiting not only from the most advanced technology for in-situ investigations but also from a terrain rich in rock breakdown features, was able to reveal new tafoni formations. Gale Crater's landscape presents a variety of surface erosion elements, witnesses of major planetary transformations suffered by Mars during the past 3 billion years. While the wind and sand-blasting erosion are the most recent causes of the surface erosion at Gale Crater, leading to the smoothing, thinning, exfoliation and piercing of various rock layers, other geological formations such as alluvial fans, moat areas, gravel sediments, round shaped mounds and toadstool formations demonstrate that liquid water was vigorously shaping the surface of Mars billions of years ago. In such a context, the study of tafoni formations revealed during Curiosity's trek from Bradbury Landing through the Glenelg area of Gale Crater, will help advance the understanding of the Martian past and present environment, providing scenarios for the evolution of the Red Planet. The presentation contains various images of tafoni samples from Mars and Earth, explaining by similitude presumptive weathering mechanisms on Mars.

  11. Preservation of layered paleodeposits in high-latitude pedestal craters on Mars

    NASA Astrophysics Data System (ADS)

    Kadish, Seth J.; Head, James W.

    2011-06-01

    An outstanding question in Mars' climate history is whether or not pedestal craters represent the armored remnants of ice-rich paleodeposits. We address this question using new high-resolution images; in a survey of several hundred high-latitude pedestal craters, we have identified 12 examples in which visible and/or topographically expressed layers are exposed on the marginal scarp of the pedestal. One example, located on the south polar layered deposits, preserves ice-rich layers that have otherwise been completely removed from the polar cap. These observations provide empirical evidence that the pedestal crater formation mechanism is capable of armoring and preserving ice-rich layered paleodeposits. Although layered exposures have not yet been observed in mid-latitude pedestal craters, high-latitude instances of discontinuous, partially covered layers suggest that layers can be readily concealed, likely through mantling and/or mass wasting processes along the marginal scarp. This interpretation is supported by the observation that high-latitude pedestals with exposed layers along their margins are, on average, taller than mid-latitude examples, and have larger, steeper marginal scarps, which may help to maintain layer exposures. These observations favor the interpretation that mid- to high-latitude pedestal craters represent the armored remnants of ice- and dust-rich paleodeposits, which occurred transiently due to changes in the climate regime. Preservation of fine-scale layering of ice and dust at these latitudes implies that the climate change did not involve regional melting conditions.

  12. Crater Retention Ages from (4) Vesta Matching Independent Ar-Ar Ages of HED Meteorites

    NASA Astrophysics Data System (ADS)

    Schmedemann, Nico; Kneissl, Thomas; Ivanov, Boris A.; Michael, Gregory G.; Neukum, Gerhard; Nathues, Andreas; Sierks, Holger; Wagner, Roland; Krohn, Katrin; Le Corre, Lucille; Reddy, Vishnu; Ruesch, Ottaviano; Hiesinger, Harald; Jaumann, Ralf; Raymond, Carol A.; Russell, Christopher T.

    2013-04-01

    In July 2012 the Dawn spacecraft completed its mapping task of the Main Belt asteroid Vesta with a second high altitude mapping orbit. Dawn is now on its way to the dwarf planet (1) Ceres, where it will perform a similar mapping campaign like that at Vesta [1]. The Main Belt is the source region of most impactors in the inner solar system [2,3,4], making it a key region for understanding the early history of our Solar System. In order to determine absolute surface ages from Vesta we derived a crater production function and a chronology function for Vesta. We derived these functions from the respective lunar functions [2] and scaled [5] them to the impact conditions on Vesta [6]. In general we find good agreement between the derived crater production function and the measured crater distribution. However, we also find disagreement between 8 and 15 km crater size, on areas older ~2.2 Ga. Older areas show a steep (~-6 cumulative) slope, which we link to a decaying influence of the vestan collisional family (Vestoids). The lower boundary of 8 km crater size may be explained by fast ejected small spalls and/or a more efficient Yarkovsky effect [7]. This influence is not observed for instance inside the large Rheasilvia basin, which we date with ~2.2 Ga. Since the formation of this basin is believed to be a major source of replenishment of the Vestoids, it's currently observed cratering record is not indicative for the basin formation age in contrast to [8]. The young interior of the Rheasilvia basin is likely a result of repeated resets of the crater retention age due to mass wasting processes on the basin walls. We use topographic heights, which are less affected by mass wasting such as the top of the central peak of the basin as well as proximal ejecta blankets outside the basin to date the formation age of Rheasilvia. For the central peak we derive a surface age of 3.59 (+0.079/-0.18) Ga. The proximal ejecta blanket at the Oppia crater is dated with 3.62 (+0.054/-0.087) Ga and 3.63 (+0.058/-0.096) Ga. We also find seismic (miniscule ejecta blanket from Rheasilvia) resurfacing events in the time frame of ~3.56 to ~3.59 Ga at several areas in the northern hemisphere, indicative for a major seismic activity probably connected to the Rheasilvia formation. An antipodal activity is also suggested by hydrocode modeling [9]. By summation of age probability curves of measurements we link to the Rheasilvia formation, we find 3.58 (+0.07/-0.12) Ga. Using a similar attempt we find 3.75 (+0.05/-0.21) Ga for the Veneneia formation. Both crater retention ages correspond within the error bars with prominent peaks of independent Ar-Ar ages of Vesta related HED meteorites [10]. Acknowledgement: This work has been supported by the German Space Agency (DLR) on behalf of the Federal Ministry of Economics and Technology, grants 50OW1101(NS,TK), 50QM1001 (GM) and 50OW1102 (OR,HH). References: [1] Russell et al. (2007): Advances in Space Research 40(2): pp193-201, 2007. [2] Neukum and Ivanov: In: Gehrels T (ed) "Hazards due to comets and asteroids". University of Arizona Press, Tucson, 359-416, 1994. [3] O'Brien and Greenberg (2005): Icarus 178(1): 179-212. [4] Nesvorny et al. (2009): Icarus 200(2): 698-701. [5] Ivanov (2001): Chronology and Evolution of Mars 96, 87-104, 2001. [6] Schmedemann et al. (2012): 43.LPSC, The Woodlands, #1659. [7] Morbidelli et al. (2003): Icarus 162, 328-336. [8] Marchi et al. (2012): Science 336, 690. [9] Bowling et al. (2012): 75th Annual Meeting of the Meteoritical Society, 2012, Cairns, Australia. Meteoritics and Planetary Science Supplement, id.5256. [10] Bogard, D. D. (2011): Chemie der Erde - Geochemistry, vol. 71, issue 3: 207-226.

  13. Using the Bombardment History of the Moon to Understand Planet Formation

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; NASA/NLSI CenterLunar Origin; Evolution (CLOE)

    2011-12-01

    The Moon is unique. It is the only object that is both relatively accessible and still bears scars from practically every epoch of solar system formation. This is both a challenge and a blessing. It is a challenge because to understand the Moon's complex bombardment history, we need to understand the formation and evolution of the solar system as a whole. It is a blessing because the Moon is an irreplaceable resource for the study of events that have shaped the Earth and other planets. For example, we can now show the Moon's bombardment history can be broken into several episodes defined by planet formation processes. The earliest phase lasts for several hundreds of My after the first solids form. Here many planets grow via a new process called "planetesimal-driven migration", with embryos moving outward in the disk by gravitationally-scattering planetesimals. This mobility assists accretion and may explain the interesting properties of certain worlds (e.g., Mars). In the outer solar system, the giant planets form on different orbits than their observed ones via a variety of processes that we are still struggling to understand. The evidence they had a different configuration, however, can be found in (i) the orbital distribution of the asteroid belt, with particular unusual asteroids residing where Jupiter used to have its mean motion resonances, and (ii) in the lunar crater record, with the oldest craters formed at half the impact velocity than more recent ones. The lunar impact flux over this interval constrains how these worlds evolved. The second episode occurred near 4.1 Ga and is often called the "Nice model". It was triggered by a dynamical instability taking place among the giant planets, who quickly moved to their current orbits via interactions with both themselves and comet-like planetesimals scattered out of a disk residing beyond 12 AU. A by-product of this planetary reconfiguration was the ejection of comets and asteroids from stable reservoirs across this solar system. Some hit the Moon and produced the so-called lunar "cataclysm", with impact velocities nearly the same as current values. This velocity change allows us to use craters to predict that this episode started near the formation time of lunar basin Nectaris. The episode's end is often thought to be marked across the solar system by the formation of the last lunar basin Orientale near 3.7 Ga. However, basin-forming projectiles liberated by this event continued to hit Earth throughout the Archean and likely persisted until ~2.5 Ga. The implications of this for the history of our biosphere are likely to be profound. The final episode, which lasted billions of years, is defined by collision events in the asteroid belt, which deliver impactors to the inner solar system via dynamical processes. This period likely contains both "lulls" and intervals of steeply higher impact rates via asteroid showers. While the history of this period is still poorly understood, correlations between the lunar crater record and family-forming events in the main belt suggest impacts have influenced, perhaps significantly, the evolution of life on Earth.

  14. Reports of planetary geology program, 1976 - 1977. [abstracts

    NASA Technical Reports Server (NTRS)

    Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III

    1977-01-01

    One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.

  15. The Explorer's Guide to Impact Craters

    NASA Technical Reports Server (NTRS)

    Chuang, F.; Pierazzo, E.; Osinski, G.

    2005-01-01

    Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: How do scientists learn about impact cratering? , and What information do impact craters provide in understanding the evolution of a planetary surface? Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering.

  16. Ceres' intriguing Occator crater and its faculae: formation and evolution

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Scully, J. E. C.; Bowling, T.; Bu, C.; Castillo, J. C.; Jaumann, R.; Longobardo, A.; Nathues, A.; Neesemann, A.; Palomba, E.; Platz, T.; Quick, L. C.; Raponi, A.; Raymond, C. A.; Ruesch, O.; Russell, C. T.; Schenk, P.; Stein, N.

    2017-12-01

    Since March 2015, the Dawn spacecraft has orbited and explored Ceres, which is a dwarf planet and the largest object in the asteroid belt (radius 470 km). One of the most intriguing features on Ceres' surface is Occator crater, a 92-km-diameter impact crater that contains distinctive bright spots, called faculae, within its floor (Nathues et al., 2015; Russell et al., 2016; Schenk et al., 2017). Occator crater has been dated to 20-30 million years old (Nathues et al., 2017; Neesemann et al., 2017). The single scattering albedo of Occator's faculae is 0.67-0.80, which is greater than Ceres' average single scattering albedo of 0.09-0.11 (Li et al., 2016). The central facula is named Cerealia Facula, and is located in a 9 km wide and 700 m deep pit. There are also multiple additional faculae in the eastern crater floor, which are named the Vinalia Faculae. The faculae are mostly composed of sodium carbonate, are distinct from Ceres' average surface composition and are proposed to be the solid residues of crystallized brines (De Sanctis et al., 2016). The presence of such bright, apparently fresh, material on the surface of a dwarf planet that is billions of years old is intriguing, and indicates that active processes involving brines occurred within the geologically recent past. The Dawn Science Team has investigated whether the processes that formed the crater and the faculae are entirely endogenic, entirely exogenic or a combination of both. For example, the extensive lobate materials within the crater floor have been proposed to be impact melt, mass wasting deposits or cryolava flows (e.g. Buczkowski et al., 2017; Jaumann et al., 2017; Nathues et al., 2017; Schenk et al., 2017). Each possibility has the potential to provide fascinating insights into Ceres' evolution, including the potential for liquids within Ceres' interior today. The team's in-depth investigation of Occator crater will be presented in an upcoming special issue of the journal Icarus. This special issue will include analyses of Occator and the faculae based on Dawn data, modeling studies, laboratory experiments, and studies comparing Occator and the faculae to other impact craters and bright deposits. In this presentation we will preview and summarize these results.

  17. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  18. Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2014-02-01

    Concentric crater fill (CCF) occurs in the interior of impact craters in mid- to high latitudes on Mars and is interpreted to have formed by glacial ice flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in mid- to high-latitude pedestal craters (Pd), the volumes of the current polar caps, and information about regional slopes and ice rheology to address questions about (1) the maximum thickness of regional ice deposits during the Late Amazonian, (2) the likelihood that these deposits flowed regionally, (3) the geological regions and features most likely to induce ice-flow, and (4) the locations and environments in which ice is likely to have been sequestered up to the present. We find that regional ice flow under Late Amazonian climate conditions requires ice thicknesses exceeding many hundreds of meters for slopes typical of the vast majority of the surface of Mars, a thickness for the mid-latitudes that is well in excess of the total volume available from polar ice reservoirs. This indicates that although conditions for mid- to high-latitude glaciation may have persisted for tens to hundreds of millions of years, the process is “supply limited”, with a steady state reached when the polar ice cap water ice supply becomes exhausted. Impact craters are by far the most abundant landform with associated slopes (interior wall and exterior rim) sufficiently high to induce glacial ice flow under Late Amazonian climate conditions, and topographic slope data show that Amazonian impact craters have been clearly modified, undergoing crater interior slope reduction and floor shallowing. We show that these trends are the predictable response of ice deposition and preferential accumulation and retention in mid- to high-latitude crater interiors during episodes of enhanced spin-axis obliquity. We demonstrate that flow from a single episode of an inter-crater terrain layer comparable to Pedestal Crater deposit thicknesses (~50 m) cannot fill the craters in a time period compatible with the interpreted formation times of the Pedestal Crater mantled ice layers. We use a representative obliquity solution to drive an ice flow model and show that a cyclical pattern of multiply recurring layers can both fill the craters with a significant volume of ice, as well as transport debris from the crater walls out into the central regions of the craters. The cyclical pattern of waxing and waning mantling layers results in a rippled pattern of surface debris extending out into the crater interiors that would manifest itself as an observable concentric pattern, comparable in appearance to concentric crater fill. In this scenario, the formation of mantling sublimation till layers seals the accumulating ice and sequesters it from significant temperature variations at diurnal, annual and spin-axis/orbital cycle time scales, to produce ancient ice records preserved today below CCF crater floors. Lack of meltwater features associated with concentric crater fill provides evidence that the Late Amazonian climate did not exceed the melting temperature in the mid- to high-latitudes for any significant period of time. Continued sequestration of ice with time in CCF and related deposits (lobate debris aprons and lineated valley fill) further reduces the already supply-limited polar ice sources, suggesting that there has been a declining reservoir of available ice with each ensuing glacial period. Together, these deposits represent a candidate library of climate chemistry and global change dating from the Late Amazonian, and a non-polar water resource for future exploration.

  19. Constraints on the Martian cratering rate imposed by the SNC meteorites and Vallis Marineris layered deposits

    NASA Technical Reports Server (NTRS)

    Brandenburg, J. E.

    1993-01-01

    Following two independent lines of evidence -- estimates of the age and formation time of a portion of the Martian geologic column exposed in the layered deposits and the crystallization and ejection ages of the SNC meteorites -- it appears that the Martian cratering rate must be double the lunar rate or even higher. This means models such as NHII or NHIII (Neukum and Hiller models II and III), which estimate the Martian cratering rate as being several times lunar are probably far closer to reality on Mars than lunar rates. The effect of such a shift is profound: Mars is transformed from a rather Moon-like place into a planet with vigorous dynamics, multiple large impacts, erosion, floods, and volcanism throughout its history. A strong shift upward in cratering rates on Mars apparently solves some glaring problems; however, it creates others. The period of time during which Earth-like atmospheric conditions existed, the liquid water era on Mars, persists in NHIII up to only 0.5 b.y. ago. Scenarios of extended Earth-like conditions on Mars have been discounted in the past because they would have removed many of the craters from the early bombardment era found in the south. It does appear that some process of crater removal was quite vigorous in the north during Mars' past. Evidence exists that the northern plains may have been the home of long-lived seas or perhaps even a paleo-ocean, so models exist for highly localized destruction of craters in the north. However, the question of how the ancient crater population could be preserved in the south under a long liquid-water era found in any high-cratering-rate models is a serious question that must be addressed. It does appear to be a higher-order problem because it involves low-energy dynamics acting in localized areas, i.e., erosion of craters in the south of Mars, whereas the two problems with the low-cratering-rate models involve high-energy events acting over large areas: the formation of the Vallis Marineris, the SNC ejecting impacts, and the global atmospheric pressure and temperature conditions that allow liquid water to exist as a robust entity anywhere on the Martian surface. In any case, it appears Mars is a more complex and dynamic planet than previously supposed. It has canyons dating from the middle to late period of its history that contain apparent lake sediments bedded deeper than most sediments on Earth. Recent multiple, violent impacts on Mars have apparently provided us with multiple random samples of its surface that all crystallized less than 1.5 b.y. ago. These things cannot be accommodated in our present cratering chronologies of Mars, based on 1x lunar cratering rates, without great difficulties. These difficulties suggest that a new chronology, probably based on NHII or even NHIII, should be adopted; this new chronology will provide us with a new view of Mars as a dynamic planet of rich history.

  20. The formation of peak rings in large impact craters.

    PubMed

    Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William

    2016-11-18

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. Copyright © 2016, American Association for the Advancement of Science.

  1. Two astroblems in Ukraine - witnesses of the last days of dinosaurs

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2017-05-01

    Moor then 65 million years ago an asteroid with a few kilometers in size with mass of 1 trillion tons created a crater Chicxulub with a diameter of 170 km on the Yucatán Peninsula in Mexico. Then the dinosaurs died out. The largest of Ukrainian astroblems is Manevichska, located in Volyn region. It has a diameter of 45 km and occurred about 65 million years ago too. In the central part of Ukraine on the border of Kirovograd and Cherkassy regions, there is Boltyshka astrobleme. The crater has diameter 25 km and depth of more than 1 km. Boltyshka crater also appeared more than 65 million years ago. These dating of the occurrence of astroblems indicates the close age of these two craters with formation of Chicxulub. If almost coinciding formation time of two or more impact structures, it is significantly increases the effect of impact on the environment and living beings.

  2. Numerical modelling of impact crater formation associated with isolated lunar skylight candidates on lava tubes

    NASA Astrophysics Data System (ADS)

    Martellato, E.; Foing, B. H.; Benkhoff, J.

    2013-09-01

    Skylights are openings on subsurface voids as lava tubes and caves. Recently deep hole structures, possibly skylights, were discovered on lunar photo images by the JAXA SELenological and ENgineering Explorer (SELENE)-Kaguya mission, and successively confirmed by the NASA Lunar Reconnaissance Orbiter (LRO) mission. Vertical hole structures and possibly underlying subsurface voids have high potential as resources for scientific study, and future unmanned and manned activities on the Moon. One mechanism proposed for their formation is impact cratering. The collapse of craters is due to the back spallation phenomena on the rear surface of the lava tube roofs. Previous analysis in this topic was based on small-scales laboratory experiments. These have pointed out that (i) the target thickness-to-crater diameter ratio is 0.7, and (ii) the projectile diameter-to-target thickness ratio is 0.16, at the ballistic limit once extrapolated to planetary conditions.

  3. Characteristic properties of laser ablation of translucent targets

    NASA Astrophysics Data System (ADS)

    Platonov, V. V.; Kochurin, E. A.; Osipov, V. V.; Lisenkov, V. V.; Zubarev, N. M.

    2018-07-01

    This study reveals the characteristic features of the laser ablation of the solid Nd:Y2O3 targets, such as the dynamics of the laser plume, the crater depth, and the weight and size distribution of liquid melt droplets. The ablation was initiated by the ytterbium fiber laser radiation pulses with constant energy (0.67 J) and with different power densities. The dependence on the power density of such parameters as the injection time of drops, mass distribution of drops, crater depth, and productivity of synthesis of nonopowder was revealed. To explain the formation of deep craters a model was proposed, stating that the formation of liquid droplets is a consequence of the Kelvin–Helmholtz instability’s appearing and developing on the border between the liquid melt on the crater’s wall and the vapor flow from the crater. The increment of this instability and its characteristic size was determined.

  4. A cold-wet middle-latitude environment on Mars during the Hesperian-Amazonian transition: Evidence from northern Arabia valleys and paleolakes

    NASA Astrophysics Data System (ADS)

    Wilson, Sharon A.; Howard, Alan D.; Moore, Jeffrey M.; Grant, John A.

    2016-09-01

    The growing inventory of post-Noachian fluvial valleys may represent a late, widespread episode of aqueous activity on Mars, contrary to the paradigm that fluvial activity largely ceased around the Noachian-Hesperian boundary. Fresh shallow valleys (FSVs) are widespread from ~30 to 45° in both hemispheres with a high concentration in northern Arabia Terra. Valleys in northern Arabia Terra characteristically start abruptly on steeper slopes and terminate in topographic depressions at elevations corresponding to model-predicted lake levels. Longer valley systems flowed into and out of chains of paleolakes. Minimum discharges based on the dimensions of the incised channel assuming medium to coarse sand-size grains ranges from tens to hundreds of m3 s-1, respectively, consistent with formation via snowmelt from surface or sub-ice flows. Hydrologic calculations indicate the valleys likely formed in hundreds of years or less, and crater statistics constrain the timing of fluvial activity to between the Hesperian and middle Amazonian. Several craters with channels extending radially outward supports evidence for overflow of interior crater lakes possibly fed by groundwater. Most FSVs occur away from young impact craters which make an association with impact processes improbable. The widespread occurrence of FSVs along with their similar morphology and shared modest state of degradation is consistent with most forming during a global interval of favorable climate, perhaps contemporaneous with alluvial fan formation in equatorial and midlatitudes. Evidence for a snowmelt-based hydrology and considerable depths of water on the landscape in Arabia supports a cold, wet, and possibly habitable environment late in Martian history.

  5. Geologic Mapping of the Ac-H-6 Quadrangle of Ceres from Nasa's Dawn Mission: Compositional Changes

    NASA Astrophysics Data System (ADS)

    Krohn, Katrin; Jaumann, Ralf; Tosi, Federico; Nass, Andrea; Otto, Katharina A.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland J.; Williams, David A.; Buczkowski, Debra L.; Mest, Scott C.; Scully, Jennifer E. C.; von der Gathen, Isabel; Kersten, Elke; Matz, Klaus-Dieter; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; De Sanctis, Maria Cristina; Zambon, Francesca

    2016-04-01

    Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the source of impact melt flows is diffusely distributed but many of the observed flows originate from district sources in the crater interior and the flows, however, are well defined. The compositional differences derived from the color ratio and possible time variable effects related to cryo-processes either volcanic or glacial [1,2]. Furthermore, the suggestion of an occurrence ice within the Cerean crust [5] as well as possible salts incorporated into a regolith layer [4,5,6] indicates similar geological processes as seen on other icy bodies. Some lobate flow-like deposits on Ganymede such as at Sippar Sulcus are suggested to be formed by volcanic eruptions creating a channel and flow, and cutting down into the surface forming a depression. Thus, an endogenic formation process cannot be excluded. References: [1] Jaumann R. et al. (2015) EPSC X, Abstract #2015-83. [2] Jaumann R. et al. (2015) AGU, Abstract #P42A-05. [3] Krohn K. et al. (2016) LPSC XLVII, this issue. [4] Jaumann R. et al. (2016) LPSC XLVII, this issue. [5] McCord T.B. and Sotin C. (2005) J. Geophys. Res., 110, E05009. [6] Castillo-Rogez J.C. and McCord T.B. (2010) Icarus 203, 443-459.

  6. Morphology of Cryogenic Flows and Channels on Dwarf Planet Ceres

    NASA Astrophysics Data System (ADS)

    Krohn, Katrin; Jaumann, Ralf; Otto, Katharina A.; von der Gathen, Isabel; Matz, Klaus-Dieter; Buczkowski, Debra L.; Williams, David A.; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Stephan, Katrin; Wagner, Roland J.; Russell, Christopher T.; Raymond, Carol A.

    2016-04-01

    Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the source of impact melt flows is diffusely distributed but many of the observed flows originate from district sources in the crater interior and the flows, however, are well defined. The compositional differences derived from the color ratio and possible time variable effects related to cryo-processes either volcanic or glacial [1,2]. Furthermore, the suggestion of an occurrence ice within the Cerean crust [5] as well as possible salts incorporated into a regolith layer [4,5,6] indicates similar geological processes as seen on other icy bodies. Some lobate flow-like deposits on Ganymede such as at Sippar Sulcus are suggested to be formed by volcanic eruptions creating a channel and flow, and cutting down into the surface forming a depression. Thus, an endogenic formation process cannot be excluded. References: [1] Jaumann R. et al. (2015) EPSC X, Abstract #2015-83. [2] Jaumann R. et al. (2015) AGU, Abstract #P42A-05. [3] Krohn K. et al. (2016) LPSC XLVII, this issue. [4] Jaumann R. et al. (2016) LPSC XLVII, this issue. [5] McCord T.B. and Sotin C. (2005) J. Geophys. Res., 110, E05009. [6] Castillo-Rogez J.C. and McCord T.B. (2010) Icarus 203, 443-459.

  7. Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars

    NASA Technical Reports Server (NTRS)

    Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.

    2011-01-01

    Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.

  8. Impact cratering in viscous targets - Laboratory experiments

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Fink, J.; Snyder, D. B.; Gault, D. E.; Guest, J. E.; Schultz, P. H.

    1980-01-01

    To determine the effects of target yield strength and viscosity on the formation and morphology of Martian multilobed, slosh and rampart-type impact craters, 75 experiments in which target properties and impact energies were varied were carried out for high-speed motion picture observation in keeping with the following sequence: (1) projectile initial impact; (2) crater excavation and rise of ejecta plume; (3) formation of a transient central mound which generates a surge of material upon collapse that can partly override the plume deposit; and (4) oscillation of the central mound with progressively smaller surges of material leaving the crater. A dimensional analysis of the experimental results indicates that the dimensions of the central mound are proportional to (1) the energy of the impacting projectile and (2) to the inverse of both the yield strength and viscosity of the target material, and it is determined that extrapolation of these results to large Martian craters requires an effective surface layer viscosity of less than 10 to the 10th poise. These results may also be applicable to impacts on outer planet satellites composed of ice-silicate mixtures.

  9. Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars

    USGS Publications Warehouse

    McCoy, T.J.; Sims, M.; Schmidt, M.E.; Edwards, L.; Tornabene, L.L.; Crumpler, L.S.; Cohen, B. A.; Soderblom, L.A.; Blaney, D.L.; Squyres, S. W.; Arvidson, R. E.; Rica, J.W.; Treguier, E.; d'Uston, C.; Grant, J. A.; McSween, H.Y.; Golombek, M.P.; Haldemann, A.F.C.; de Souza, P.A.

    2008-01-01

    The strike and dip of lithologic units imaged in stereo by the Spirit rover in the Columbia Hills using three-dimensional imaging software shows that measured dips (15-32??) for bedding on the main edifice of the Columbia Hill are steeper than local topography (???8-10??). Outcrops measured on West Spur are conformable in strike with shallower dips (7-15??) than observed on Husband Hill. Dips are consistent with observed strata draping the Columbia Hills. Initial uplift was likely related either to the formation of the Gusev Crater central peak or ring or through mutual interference of overlapping crater rims. Uplift was followed by subsequent draping by a series of impact and volcaniclastic materials that experienced temporally and spatially variable aqueous infiltration, cementation, and alteration episodically during or after deposition. West Spur likely represents a spatially isolated depositional event. Erosion by a variety of processes, including mass wasting, removed tens of meters of materials and formed the Tennessee Valley primarily after deposition. This was followed by eruption of the Adirondack-class plains basalt lava flows which embayed the Columbia Hills. Minor erosion, impact, and aeolian processes have subsequently modified the Columbia Hills. Copyright 2008 by the American Geophysical Union.

  10. Proceedings of the 38th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,

  11. Impact crater morphology and the Central Pit/Dome of Occator: Ceres as an Ice-rich Body

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Marchi, S.; O'Brien, D. P.; Platz, T.; Bland, M. T.; Buczkowski, D.; Scully, J. E. C.; Ammannito, E.; Raymond, C. A.; Russell, C. T.

    2016-12-01

    Pristine crater morphologies on Ceres (at D <40 km) are astonishingly similar to those on midsize icy bodies (e.g., moons of Saturn) but very different from those on silicate-rich Vesta. All these bodies have similar gravity and broadly similar impact velocities, and these patterns reveal that the upper 10s of km of Ceres are much weaker than on silicate-rich Vesta. This stands in contrast to the lack of viscous relaxation (Bland et al., 2016), which implies an upper layer on Ceres capable of resisting flow despite the relatively high surface temperatures. This can be explained as distinct responses of an outer layer partially composed of weak ices and strong silicates that fail during high-strain impact processes (which are apparently controlled by the weak phase) but does not flow under low-strain creep (which is apparently controlled more by the strong phase). Furthermore, comparison with Martian craters indicates that, in contrast to Ceres, the amount of water ice in the crust of Mars results in hybrid morphologies only midway between silicate and ice worlds, indicating that the upper layers of Ceres must have more ice than does Mars. The presence of apparent impact melt deposits and central pits in larger craters (D>40 km and D>75 km, respectively) on Ceres implies either warmer conditions than at Saturn, or the presence of a deeper layer enriched in (weaker) ice at comparable depths, also consistent with partial relaxation in larger craters. The formation of a fractured dome 3-km-wide and 0.75-km-high within recently formed Occator crater may be due to refreezing of a water zone melted after impact, or mobilization of carbonates or ice in the crater center, possibly from such deeper layers.

  12. Ernst Julius Öpik's (1916) note on the theory of explosion cratering on the Moon's surface—The complex case of a long-overlooked benchmark paper

    NASA Astrophysics Data System (ADS)

    Racki, Grzegorz; Koeberl, Christian; Viik, Tõnu; Jagt-Yazykova, Elena A.; Jagt, John W. M.

    2014-10-01

    High-velocity impact as a common phenomenon in planetary evolution was ignored until well into the twentieth century, mostly because of inadequate understanding of cratering processes. An eight-page note, published in Russian by the young Ernst Julius Öpik, a great Estonian astronomer, was among the key selenological papers, but due to the language barrier, it was barely known and mostly incorrectly cited. This particular paper is here intended to serve as an explanatory supplement to an English translation of Öpik's article, but also to document an early stage in our understanding of cratering. First, we outline the historical-biographical background of this benchmark paper, and second, a comprehensive discussion of its merits is presented, from past and present perspectives alike. In his theoretical research, Öpik analyzed the explosive formation of craters numerically, albeit in a very simple way. For the first time, he approximated relationships among minimal meteorite size, impact energy, and crater diameter; this scaling focused solely on the gravitational energy of excavating the crater (a "useful" working approach). This initial physical model, with a rational mechanical basis, was developed in a series of papers up to 1961. Öpik should certainly be viewed as the founder of the numerical simulation approach in planetary sciences. In addition, the present note also briefly describes Nikolai A. Morozov as a remarkable man, a forgotten Russian scientist and, surprisingly, the true initiator of Öpik's explosive impact theory. In fact, already between 1909 and 1911, Morozov probably was the first to consider conclusively that explosion craters would be circular, bowl-shaped depressions even when formed under different impact angles.

  13. Mapping Variability in the Medusae Fossae Formation: Yardang Morphologies, Fluvial Reworking, and Crater Depth to Diameter Ratios

    NASA Astrophysics Data System (ADS)

    Khuller, A. R.; Kerber, L.

    2017-12-01

    The Medusae Fossae Formation (MFF) is a voluminous, fine-grained deposit thought to be of pyroclastic origin. While it contains widespread, well-preserved inverted fluvial features, its pervasive cover of dust means that little is known about its composition, and indirect means must be used to characterize its material properties. This project aims to correlate fluvial features in the Western MFF with other indicators of material strength: yardang morphology and crater depth-to-diameter ratios. For this work, Context Camera (CTX) images were used to map features of fluvial origin (inverted channels, sinuous ridges, alluvial fans). The presence of rounded, meso-yardangs in close proximity to fluvial features was also mapped. Crater depth-diameter (d/D) ratios (for craters 1-512km) were analyzed using a global Mars crater database (Robbins and Hynek, 2012) as a proxy for material strength. Approximately 1400 fluvial segments were mapped, with the most populous cluster located in Aeolis and Zephyria Plana. Rounded meso-yardangs were found to be common in areas that also have fluvial features. In agreement with previous work (Barlow, 1993), MFF craters were found to have a greater d/D ratio (0.0523) than the global mean (0.0511). Ratios between MFF lobes differ significantly, providing insight into the heterogeneity of induration within the formation. The deepest craters are found in Eumenides Dorsum and the shallowest in Aeolis Planum, consistent with a greater degree of induration and reworking in the western part of the formation where the fluvial features and "salt-playa" meso-yardangs are found. It also suggests that Eumenides, which is the tallest MFF outcrop, could also be the least compacted. The presence of long, complex, and sometimes overlapping branching networks imply multiple relative episodes of channel formation. Rounded meso-yardangs, which are associated with salt playa surfaces on Earth, provide additional evidence for the presence of liquid water during the history of the MFF. The preservation of fluvial activity, through inversion and negative relief as well as the `protection' provided by the layers of friable MFF deposits indicates that some of the most well-preserved stratigraphy could perhaps be accessed by future Martian surface exploration missions within the MFF.

  14. Ballistic Performance Model of Crater Formation in Monolithic, Porous Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Christiansen, E. L.; Deighton, K. D.

    2014-01-01

    Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.

  15. Styles of crater gradation in Southern Ismenius Lacus, Mars

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Preserved morphology around selected impact craters together with results from study of long term gradational evolution are used to assess processes responsible for crater modification in southern Ismenius Lacus. Results are compared with the gradational styles of selected terrestrial craters. Although most craters in the region display complex primary morphologies, some first order comparisons with the gradational styles around simple terrestrial craters may be valid. Nearly complete high resolution coverage provides a basis for studying morphologic features at scales comparable to those observed in LANDSAT TM images of terrestrial craters. It is concluded that the relative importance of gradational processes differs around the terrestrial and Martian craters considered here: Martian rimless morphologies are produced by mass wasting, eolian deposition/erosion, and limited fluvial incisement resulting in downwasting and significant backwasting of crater walls.

  16. Intercrater Plains and Heavily Cratered Terrain - First Encounter

    NASA Image and Video Library

    2000-01-18

    Intercrater plains and heavily cratered terrain typical of much of Mercury outside the area affected by the formation of the Caloris basin are shown in this image taken during the NASA Mariner 10 first encounter with Mercury in 1974.

  17. The Topography and Basin Deposits of the Equatorial Highlands: A MGS-Viking Synergistic Study

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Schenk, P. M.; Howard, A. D.

    1999-01-01

    One of the greatest unresolved issues concerns the evolution of Mars early in its history; during the time period that accretion was winding down but the frequency of impacting debris was still heavy. Ancient cratered terrain that has only been moderately modified since the period of heavy bombardment covers about a quarter of the planet's surface but the environment during its formation is still uncertain. This terrain was dominantly formed by cratering. But unlike on the airless Moon, the impacting craters were strongly modified by other contemporary surface processes that have produced distinctive features such as: 1) dendritic channel networks, 2) rimless, flatfloored craters, 3) obliteration of most craters smaller than a few kilometers in diameter (except for post heavy-bombardment impacts), and 4) smooth intercrater plains. The involvement of water in these modification processes seems unavoidable, but interpretations of the surface conditions on early Mars range from the extremes of: 1) the "cold" model which envisions a thin atmosphere and surface temperatures below freezing except for local hydrothermal springs; and 2) the "warm" model, which invokes a thick atmosphere, seasonal temperatures above freezing in temperate and equatorial regions, and at least occasional precipitation as part of an active hydrological cycle. The nature of hydrologic cycles, if they occurred on Mars, would have been critically dependent on the environment. The resolution of where along this spectrum the actual environment of early Mars occurred is clearly a major issue, particularly because the alternate scenarios have much different implications about the possibility that life might have evolved on Mars. Additional information is contained in the original extended abstract.

  18. ­­­­High-Resolution Mapping of Kick`em Jenny Submarine Volcano and Associated Landslides

    NASA Astrophysics Data System (ADS)

    Ruchala, T. L.; Carey, S.; Hart, L.; Chen, M.; Scott, C.; Tominaga, M.; Dondin, F. J. Y.; Fujii, M.

    2016-02-01

    To understand the physical and geological processes that drive the volcanism and control the morphology of Kick`em Jenny (KEJ) volcano, the only active submarine volcano in the in the Lesser Antilles volcanic arc, we conducted near-source, high-resolution mapping of KEJ and its subsurface using the Remotely Operated Vehicle (ROV) Hercules during cruise NA054 of the E/V Nautilus (Sept.-Oct. 2014). Shipboard bathymetric data (EM302 system) and slope analysis maps were used to decipher the detailed seafloor morphology surrounding KEJ. Multiple generations of submarine landslides and canyons were observed, suggesting the area has been hosting dynamic sediment transport systems at multiple scales over time. Some of them might have been associated by past eruptions. Clear contacts between partially lithified carbonate sediments and volcanic formations were identified from ROV videos at the middle of the landslide slope face. Detailed observations of facies on these exposures provide constraints on the time intervals between landslide events along the western slope of KEJ. ROV video imagery also identified outcrops of columnar basalts located in the middle of the landslide deposits. These are similar in appearance to those observed in the KEJ crater during previous ROV dives, indicating a possible travel distance of volcanic materials from the crater region along landslide path. High-resolution photo mosaics, bathymetry, and magnetic data acquired by ROV Hercules were used to investigate geological processes and the possible volcanic source of landslide material within the KEJ crater. Mapping in the northwestern part of the crater floor revealed distinctive regions, including (i) microbial mats, (ii) active hydrothermal vent sites; (iii) landforms curved by channelized bottom current where seafloor is outcropped; and (iv) coarse scree the distribution of which may correlate with the distance from the crater rim. Near-bottom magnetic profiles show coherent magnetic signatures with correlatable high amplitude anomalies located in the middle of the KEJ crater.

  19. IODP/ICDP Expedition 364-Drilling the Cretaceous-Paleogene Chicxulub impact crater: Insights into large craters formation and their effect on life.

    NASA Astrophysics Data System (ADS)

    Gulick, S. P. S.; Morgan, J. V.; Fucugauchi, J. U.; Bralower, T. J.; Chenot, É.; Christeson, G. L.; Claeys, P.; Cockell, C. S.; Collins, G. S.; Coolen, M.; Gebhardt, C.; Goto, K.; Kring, D. A.; Xiao, L.; Lowery, C.; Mellett, C.; Ocampo-Torres, R.; Osinski, G. R.; Perez-Cruz, L. L.; Pickersgill, A.; Poelchau, M.; Rae, A.; Rasmussen, C.; Rebolledo-Vieyra, M.; Riller, U. P.; Sato, H.; Schmitt, D. R.; Smit, J.; Tikoo, S.; Tomioka, N.; Whalen, M. T.; Zylberman, W.; Jones, H.; Gareth, C.; Wittmann, A.; Lofi, J.; Yamaguchi, K. E.; Ferrière, L.

    2016-12-01

    An international project to drill the Chicxulub impact crater was conducted in April and May, 2016 as Expedition 364 of the International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Project (ICDP). Site M0077 is located offshore Yucatan in the southern Gulf of Mexico. The target was to core the only pristine terrestrial peak ring and to measure physical properties of the entire borehole. Specific questions included: What rocks comprise a topographic peak ring? How are peak rings formed? How are rocks weakened during large impacts to allow them to collapse and form relatively wide, flat craters? What insights arise from biologic recovery in the Paleogene within a potentially "toxic" ocean basin? Are impact craters (including peak rings) habitats for life? Coring occurred from 503 - 1334.7 mbsf with nearly 100% recovery. Wireline logs were collected from ultra slimline tools to total depth including gamma ray, magnetic susceptibility, sonic, borehole fluid temperature and conductivity, resistivity data, borehole images, and a finely spaced vertical seismic profile. Stratigraphy cored included 110 m of Eocene and Paleocene carbonates, 130 m of allochthonous impactites, and 590 m of crustal basement with dikes. All cores were measured using a shipboard core logger (density, gamma ray, magnetic susceptibility and resistivity) and shorebased dual energy, 0.3 mm resolution CT scanner. These data allow us to: 1) refine numerical models of the formation of the Chicxulub impact structure; 2) place constraints on environmental perturbations that led to the K-Pg mass extinction; 3) improve simulations of impact craters on other planetary bodies; 4) examine deformation mechanisms for insights into how rocks weaken during impacts; 5) study impact generated hydrothermal systems and 6) understand the effects of impacts on the deep biosphere including as a habitat for microbial life with implications for evolution on Earth and astrobiology. Key results are that the Chicxulub peak ring is formed from fractured basement rocks that may host a subsurface biosphere. The impactite layer overlying the peak ring in turn provides insight into resurge and tsunami processes, while the Paleogene sediments contain the record of the recovery of life after the mass extinction event.

  20. Shallow magma diversions during explosive diatreme-forming eruptions.

    PubMed

    Le Corvec, Nicolas; Muirhead, James D; White, James D L

    2018-04-13

    The diversion of magma is an important mechanism that may lead to the relocation of a volcanic vent. Magma diversion is known to occur during explosive volcanic eruptions generating subterranean excavation and remobilization of country and volcanic rocks. However, feedbacks between explosive crater formation and intrusion processes have not been considered previously, despite their importance for understanding evolving hazards during volcanic eruptions. Here, we apply numerical modeling to test the impacts of excavation and subsequent infilling of diatreme structures on stress states and intrusion geometries during the formation of maar-diatreme complexes. Explosive excavation and infilling of diatremes affects local stress states which inhibits magma ascent and drives lateral diversion at various depths, which are expected to promote intra-diatreme explosions, host rock mixing, and vent migration. Our models demonstrate novel mechanisms explaining the generation of saucer-shaped sills, linked with magma diversion and enhanced intra-diatreme explosive fragmentation during maar-diatreme volcanism. Similar mechanisms will occur at other volcanic vents producing crater-forming eruptions.

  1. Small lunar craters at the Apollo 16 and 17 landing sites - morphology and degradation

    NASA Astrophysics Data System (ADS)

    Mahanti, P.; Robinson, M. S.; Thompson, T. J.; Henriksen, M. R.

    2018-01-01

    New analysis and modeling approaches are applied to high-resolution images and topography of the Apollo 16 and 17 landing sites to investigate the morphology and estimate degradation of small lunar craters (SLCs; 35 to 250 m diameter). We find SLCs at the two sites are mostly degraded with an average depth-diameter ratio (d/D) < 0.1 , resulting in a landscape dominated by shallow, inverted cone-shaped craters. An improved standardized morphological classification and a novel set of quantitative shape indicators are defined and used to compare SLCs between the two sites. Our classification methodology allows morphological class populations to be designated with minimal (and measurable) ambiguity simplifying the study of SLC degradation at different target regions. SLC shape indicators are computationally obtained from topography, further facilitating a quantitative and repeatable comparison across study areas. Our results indicate that the interior slopes of SLCs evolve faster and through different processes relative to larger craters ( > 500 m). Assuming SLCs are formed with large initial depth-to-diameter ratio (d/D ≥ 0.2), our observation that even the fresher SLCs are relatively shallow imply that a faster mass wasting process post-formation stabilizes the crater walls and eventually slows down degradation. We also found that the Apollo 16 Cayley plains have a higher percentage of fresh craters than the Apollo 17 Taurus Littrow (TL) plains. A combination of a less-cohesive target material and/or seismic shaking resulting from moonquakes or the impact of Tycho crater secondaries was likely responsible for a higher degradation rate in the TL-plains compared to the Cayley plains. This study explores the relationship between the symmetry and probability densities of key morphological traits like d/D, mean wall slope and rate of degradation. We show that the shape of d/D probability density function of SLCs in a study area encodes their rate of degradation. Comparison of power-law fitting and probabilistic modeling of depth-diameter relations shows that probabilistic methods complement regression models and are necessary for robust prediction of SLC depths from diameter (and vice versa) for different geological targets.

  2. Meteorite impact in the ocean

    NASA Technical Reports Server (NTRS)

    Strelitz, R.

    1979-01-01

    In the present study, the dynamic of hypervelocity impacts and crater formation in water are examined with allowance for the unique properties of water. More precisely, the transient crater calculated is permitted to relax and act as a source of oceanic surface waves.

  3. The Enigmatic Bench Unit of Endeavour Crater Rim in Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Ruff, S. W.

    2013-12-01

    For the first 2680 sols of its mission, the Mars Exploration Rover Opportunity traversed across essentially the same rocks: sulfur-rich sandstones known as the Burns formation. On August 8, 2011 Opportunity completed a ~21 km traverse from Victoria crater to the rim of the ~22 km diameter Endeavour crater where it crossed a slightly raised smooth bench unit that surrounds an interior core of higher standing and more rugged terrain on a rim segment named Cape York. As recognized by its distinctive morphologic character evident in orbital images, the inward sloping bench feature is found associated with portions of other segments of the discontinuous raised rim of Endeavour crater. Viewed by Opportunity, it appears as platy, fractured, relatively light-toned outcrop that is fine-grained, lacks hematite concretions and in places hosts veins of Ca- and S-rich composition, likely due to precipitation of gypsum in fractures that cut the bench unit (1). The bench outcrop target named Grasberg included a grind using the Rock Abrasion Tool (RAT) to obtain a cleaner surface for the Alpha Particle X-ray Spectrometer chemistry measurement compared with the initially investigated target named Deadwood. In addition to its greater strength than Burns formation as determined by the RAT grind operation, Grasberg and other examples of the bench unit have lower S, higher Cl and other elemental characteristics that depart from typical Burns formation. Thus the 'Grasberg unit' clearly represents a distinct rock type compared to the Meridiani plains. A second unit makes up the exposed core of the Cape York rim segment. Known as Shoemaker formation, it is composed of breccias that are recognized as a suevite deposit produced from the Endeavour impact event (1). The Shoemaker formation appears to be onlapped by the Grasberg unit with Burns formation onlapping it (1). However, a well-exposed section observed in a wedge-shaped fracture known as Whim Creek on the northeast portion of the Cape York bench clearly presents Grasberg rocks above Burns rocks. Erosion of a plunging synclinal form could explain this apparent inverted relationship, or it reveals that the Grasberg unit is younger than Burns formation. But this latter interpretation implies that Grasberg rocks, which have been observed only at the Endeavour rim, have been stripped off of Burns formation everywhere else. The Grasberg bench unit has recently been encountered in an isthmus setting between two low knobs of presumed Shoemaker formation called Nobbys Head and Sutherland Point just south of Cape York. The isthmus also presents Grasberg as topographically elevated above the Burns formation rocks. Despite its broad, smooth exposure, no remnants of Burns formation have been found on top of Grasberg at this location or anywhere on the Cape York bench. So the stratigraphic relationship between Grasberg and Burns rocks remains enigmatic. At the time of writing, Opportunity is at the edge of Solander Point, another bench feature on the northern tip of a rim segment known as Cape Tribulation. The erosional expression of this example appears different from those examined previously and perhaps offers the best chance to understand stratigraphic relationships. 1. S. W. Squyres et al., Ancient impact and aqueous processes at Endeavour Crater, Mars. Science 336, 570 (2012).

  4. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results.

    PubMed

    Christensen, Philip R; Bandfield, Joshua L; Bell, James F; Gorelick, Noel; Hamilton, Victoria E; Ivanov, Anton; Jakosky, Bruce M; Kieffer, Hugh H; Lane, Melissa D; Malin, Michael C; McConnochie, Timothy; McEwen, Alfred S; McSween, Harry Y; Mehall, Greg L; Moersch, Jeffery E; Nealson, Kenneth H; Rice, James W; Richardson, Mark I; Ruff, Steven W; Smith, Michael D; Titus, Timothy N; Wyatt, Michael B

    2003-06-27

    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

  5. Global stratigraphy. [of planet Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.; Scott, David H.; Greeley, Ronald

    1992-01-01

    Attention is given to recent major advances in the definition and documentation of Martian stratigraphy and geology. Mariner 9 provided the images for the first global geologic mapping program, resulting in the recognition of the major geologic processes that have operated on the planet, and in the definition of the three major chronostratigraphic divisions: the Noachian, Hesperian, and Amazonian Systems. Viking Orbiter images permitted the recognition of additional geologic units and the formal naming of many formations. Epochs are assigned absolute ages based on the densities of superposed craters and crater-flux models. Recommendations are made with regard to future areas of study, namely, crustal stratigraphy and structure, the highland-lowland boundary, the Tharsis Rise, Valles Marineris, channels and valley networks, and possible Martian oceans, lakes, and ponds.

  6. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results

    USGS Publications Warehouse

    Christensen, P.R.; Bandfield, J.L.; Bell, J.F.; Gorelick, N.; Hamilton, V.E.; Ivanov, A.; Jakosky, B.M.; Kieffer, H.H.; Lane, M.D.; Malin, M.C.; McConnochie, T.; McEwen, A.S.; McSween, H.Y.; Mehall, G.L.; Moersch, J.E.; Nealson, K.H.; Rice, J. W.; Richardson, M.I.; Ruff, S.W.; Smith, M.D.; Titus, T.N.; Wyatt, M.B.

    2003-01-01

    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

  7. Expanded Craters on Mars: Implications for Shallow, Mid-latitude Excess Ice

    NASA Astrophysics Data System (ADS)

    Viola, Donna

    Understanding the age and distribution of shallow ice on Mars is valuable for interpreting past and present climate conditions, and has implications on habitability and future in situ resource utilization. Many ice-related features, such as lobate debris aprons and concentric crater fill, have been studied using a range of remote sensing techniques. Here, I explore the distribution of expanded craters, a form of sublimation thermokarst where shallow, excess ice has been destabilized and sublimated following an impact event. This leads to the collapse of the overlying dry regolith to produce the appearance of diameter widening. The modern presence of these features suggests that excess ice has remained preserved in the terrain immediately surrounding the craters since the time of their formation in order to maintain the surface. High-resolution imagery is ideal for observing thermokarst features, and much of the work described here will utilize data from the Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO). Expanded craters tend to be found in clusters that emanate radially from at least four primary craters in Arcadia Planitia, and are interpreted as secondary craters that formed nearly simultaneously with their primaries. Crater age dates of the primaries indicate that the expanded secondaries, as well as the ice layer into which they impacted, must be at least tens of millions of years old. Older double-layer ejecta craters in Arcadia Planitia commonly have expanded craters superposed on their ejecta - and they tend to be more expanded (with larger diameters) in the inner ejecta layer. This has implications on the formation mechanisms for craters with this unique ejecta morphology. Finally, I explore the distribution of expanded craters south of Arcadia Planitia and across the southern mid-latitudes, along with scalloped depressions (another form of sublimation thermokarst), in order to identify the modern excess ice boundary in this region and any longitudinal variations. This study identifies some potential low-latitude locations with patchy excess ice, possibly preserved during a past climate. Through these studies, I will infer regions that contain abundant ice today and consider the implications that this ice has on both the martian climate and future exploration.

  8. Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Langevin, Y.; Bibring, J.-P.; Bellucci, G.; Altieri, F.; Gondet, B.; Vincendon, M.; Carter, J.; Manaud, N.

    2012-09-01

    We here reassess the global distribution of several key mineral species using the entire OMEGA/Mars Express VIS-NIR imaging spectrometer data set, acquired from orbit insertion in January 2004 to August 2010. Thirty-two pixels per degree global maps of ferric oxides, pyroxenes and olivines have been derived. A significant filtering process was applied in order to exclude data acquired with unfavorable observation geometries or partial surface coverage with water and CO2 frosts. Because of strong atmospheric variations over the 3.6 Martian years of observations primarily due to the interannual variability of the aerosol opacity, a new filter based on the atmospheric dust opacity calibrated by the Mars Exploration Rovers measurements has also been implemented. The Fe3+ absorption features are present everywhere on the surface, with a variety of intensities indicating distinct formation processes. The pyroxene-bearing regions are localized in low albedo regions, while the bright regions are spectrally comparable to anhydrous nanophase ferric oxides. The expanded data set increases by a factor of about 2, the number of olivine detections reported in previous OMEGA-based studies. Olivine is mainly detected in three types of areas over the Martian surface: discontinuous patches on the terraces of the three main basins; smooth inter-crater plains and smooth crater floors throughout the southern highlands; and crater sand dunes, crater ejectas and extended bedrock exposures in the northern plains. Olivine is also detected in the low albedo pyroxene-bearing dunes surrounding the northern polar cap.

  9. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  10. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  11. Ray craters on Ganymede: Implications for cratering apex-antapex asymmetry and surface modification processes

    NASA Astrophysics Data System (ADS)

    Xu, Luyuan; Hirata, Naoyuki; Miyamoto, Hideaki

    2017-10-01

    As the youngest features on Ganymede, ray craters are useful in revealing the sources of recent impactors and surface modification processes on the satellite. We examine craters with D > 10 km on Ganymede from images obtained by the Voyager and Galileo spacecraft to identify ray craters and study their spatial distributions. Furthermore, we carefully select images of appropriate solar and emission angles to obtain unbiased ray crater densities. As a result, we find that the density of large ray craters (D > 25 km) on the bright terrain exhibits an apex-antapex asymmetry, and its degree of asymmetry is much lower than the theoretical estimation for ecliptic comets. For large craters (D > 25 km), ecliptic comets ought to be less important than previously assumed, and a possible explanation is that nearly isotropic comets may play a more important role on Ganymede than previously thought. We also find that small ray craters (10 km < D < 25 km) on the bright terrain and ray craters (D > 10 km) on the dark terrain show no apex-antapex asymmetry. We interpret that the distribution difference between the terrain types comes from preferential thermal sublimation on the dark terrain, while the distribution difference between large and small ray craters suggests that rays of small craters are more readily erased by some surface modification processes, such as micrometeorite gardening.

  12. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage

    NASA Astrophysics Data System (ADS)

    Kenkmann, T.; Artemieva, N. A.; Wünnemann, K.; Poelchau, M. H.; Elbeshausen, D.; Núñez Del Prado, H.

    2009-08-01

    The recent Carancas meteorite impact event caused a worldwide sensation. An H4-5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye-witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter-sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100-1000 MJ (0.024- 0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12- 14 kms-1) and shallow entry angles (<20°) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40-60°), and an impact velocity of 350-600 ms-1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of infrasound signals.

  13. Monte Carlo calculations of lunar regolith thickness distributions.

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Quaide, W. L.; Mahan, M.; Paulson, J.

    1973-01-01

    It is pointed out that none of the existing models of lunar regolith evolution take into account the relationship between regolith thickness, crater shape, and volume of debris ejected. The results of a Monte Carlo computer simulation of regolith evolution are presented. The simulation was designed to consider the full effect of the buffering regolith through calculation of the amount of debris produced by any given crater as a function of the amount of debris present at the site of the crater at the time of crater formation. The method is essentially an improved version of the Oberbeck and Quaide (1968) model.

  14. Acidic Fluids Across Mars: Detections of Magnesium-Nickel Sulfates

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Ming, D. W.; Gellert, R.; Mittlefehldt, D. W.; Rampe, E. B.; Vaniman, D. T.; Thompson, L. M.; Morris, R. V.; Clark, B. C.; VanBommel, S. J.

    2017-01-01

    Calcium, magnesium and ferric iron sulfates have been detected by the instrument suites on the Mars rovers. A subset of the magnesium sulfates show clear associations with nickel. These associations indicate Ni(2+) co-precipitation with or substitution for Mg(2+) from sulfate-saturated solutions. Nickel is ex-tracted from primary rocks almost exclusively at pH values less than 6, constraining the formation of these Mg-Ni sulfates to mildly to strongly acidic conditions. There is clear evidence for aqueous alteration at the rim of Endeavour Crater (Meridiani Planum), in the Murray formation mudstone (Gale Crater), and near Home Plate (Gusev Crater). The discovery of Mg-Ni sulfates at these locations indicates a history of fluid-rock interactions at low pH.

  15. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  16. Distribution, morphology, and origins of Martian pit crater chains

    NASA Astrophysics Data System (ADS)

    Wyrick, Danielle; Ferrill, David A.; Morris, Alan P.; Colton, Shannon L.; Sims, Darrell W.

    2004-06-01

    Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution (analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView™ Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from (1) visible faulting to (2) faults and pits to (3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development.

  17. Pacific Enewetak Atoll Crater Exploration (PEACE) program, Enewetak Atoll, Republic of the Marshall Islands; Part 1, Drilling operations and descriptions of boreholes in vicinity of KOA and OAK craters

    USGS Publications Warehouse

    Henry, T.W.; Wardlaw, B.R.; Skipp, Betty; Major, R. P.; Tracey, J.I.

    1986-01-01

    Evidence of a post-Cretaceous uplift of the Sioux Quartzite ridge in southeastern South Dakota consists of deformation of the Dakota Formation, Graneros Shale, Greenhorn Limestone, Carlile Shale, and Niobrara Formation of Cretaceous age. The Greenhorn is warped upward about 400 ft on the Sioux Quartzite with a formation dip ranging from 30-50 ft/mi. Elsewhere in eastern South Dakota the dip of the Greenhorn ranges from 3-8 ft/mi. (Author 's abstract)

  18. Formation and disruption of aquifers in southwestern Chryse Planitia, Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Tanaka, K.L.; Kargel, J.S.; Dohm, J.M.; Kuzmin, R.; Fairen, A.G.; Sasaki, S.; Komatsu, G.; Schulze-Makuch, D.; Jianguo, Y.

    2007-01-01

    We present geologic evidence suggesting that after the development of Mars' cryolithosphere, the formation of aquifers in southwestern Chryse Planitia and their subsequent disruption led to extensive regional resurfacing during the Late Hesperian, and perhaps even during the Amazonian. In our model, these aquifers formed preferentially along thrust faults associated with wrinkle ridges, as well as along fault systems peripheral to impact craters. The characteristics of degraded wrinkle ridges and impact craters in southwestern Chryse Planitia indicate a profound role of subsurface volatiles and especially liquid water in the upper crust (the upper one hundred to a few thousands of meters). Like lunar wrinkle ridges, the martian ones are presumed to mark the surface extensions of thrust faults, but in our study area the wrinkle ridges are heavily modified. Wrinkle ridges and nearby plains have locally undergone collapse, and in other areas they are associated with domical intrusions we interpret as mud volcanoes and mud diapirs. In at least one instance, a sinuous valley emanates from a modified wrinkle ridge, further indicating hydrological influences on these thrust-fault-controlled features. A key must be the formation of volatile-rich crust. Primary crustal formation and differentiation incorporated juvenile volatiles into the global crust, but the crustal record here was then strongly modified by the giant Chryse impact. The decipherable rock record here begins with the Chryse impact and continues with the resulting basin's erosion and infilling, which includes outflow channel activity. We propose that in Simud Vallis surface flow dissection into the base of the cryolithosphere-produced zones where water infiltrated and migrated along SW-dipping strata deformed by the Chryse impact, thereby forming an extensive aquifer in southwestern Chryse Planitia. In this region, compressive stresses produced by the rise of Tharsis led to the formation of wrinkle ridges. Zones of high fracture density within the highly strained planes of the thrust faults underlying the wrinkle ridges formed regions of high permeability; thus, groundwater likely flowed and gathered along these tectonic structures to form zones of elevated permeability. Volatile depletion and migration within the upper crustal materials, predominantly along fault systems, led to structurally controlled episodic resurfacing in southwestern Chryse Planitia. The erosional modification of impact craters in this region is linked to these processes. This erosion is scale independent over a range of crater diameters from a few hundred meters to tens of kilometers. According to our model, pressurized water and sediment intruded and locally extruded and caused crustal subsidence and other degradational activity across this region. The modification of craters across this wide range of sizes, according to our model, implies that there was intensive mobilization of liquid water in the upper crust ranging from about one hundred to several thousand meters deep. ?? 2007 Elsevier Inc. All rights reserved.

  19. Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon

    NASA Astrophysics Data System (ADS)

    Zanetti, M.; Stadermann, A.; Jolliff, B.; Hiesinger, H.; van der Bogert, C. H.; Plescia, J.

    2017-12-01

    Crater size-frequency distributions on the ejecta blankets of Aristarchus and Tycho Craters are highly variable, resulting in apparent absolute model age differences despite ejecta being emplaced in a geologic instant. Crater populations on impact melt ponds are a factor of 4 less than on the ejecta, and crater density increases with distance from the parent crater rim. Although target material properties may affect crater diameters and in turn crater size-frequency distribution (CSFD) results, they cannot completely reconcile crater density and population differences observed within the ejecta blanket. We infer from the data that self-secondary cratering, the formation of impact craters immediately following the emplacement of the continuous ejecta blanket by ejecta from the parent crater, contributed to the population of small craters (< 300 m diameter) on ejecta blankets and must be taken into account if small craters and small count areas are to be used for relative and absolute model age determinations on the Moon. Our results indicate that the cumulative number of craters larger than 1 km in diameter per unit area, N(1), on the continuous ejecta blanket at Tycho Crater, ranges between 2.17 × 10-5 and 1.0 × 10-4, with impact melt ponds most accurately reflecting the primary crater flux (N(1) = 3.4 × 10-5). Using the cratering flux recorded on Tycho impact melt deposits calibrated to accepted exposure age (109 ± 1.5 Ma) as ground truth, and using similar crater distribution analyses on impact melt at Aristarchus Crater, we infer the age of Aristarchus Crater to be ∼280 Ma. The broader implications of this work suggest that the measured cratering rate on ejecta blankets throughout the Solar System may be overestimated, and caution should be exercised when using small crater diameters (i.e. < 300 m on the Moon) for absolute model age determination.

  20. Hydrated Sulfates in the Southern High Latitudes of Mars

    NASA Astrophysics Data System (ADS)

    Ackiss, S. E.; Wray, J. J.

    2012-12-01

    Sulfates on Mars appear largely concentrated in sedimentary rocks dating to the Late Noachian or Hesperian [e.g., 1], but they are also abundant in Amazonian sand dunes around the north polar cap [2]. The gypsum in those dunes derives from the polar layered deposits [e.g., 3], where it may form when sunlight causes minor melting and weathering of embedded dust. We are investigating whether such processes might have also contributed to sulfate formation elsewhere, specifically in regions surrounding the south polar terrain. Our study regions to date include the Sisyphi Montes (20W-40E and 55-75S) and other mountainous areas near the Thyles Rupes (110-140E and 55-75S), the Ulyxis Rupes (150-180E and 55-70S), and Chamberlin Crater (110-150W and 55-75S). We searched for sulfates using the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). TRR3 images were evaluated using standard CRISM procedures, including the "volcano scan" atmospheric correction. We used spectral parameters to identify regions of interest, from which we extracted spectra, which we divided by spectrally neutral regions in the same scene to remove systematic artifacts. The resulting ratio spectra were visually compared to library spectra to identify possible hydrated mineral constituents. Some sulfates in the southern high latitudes appear localized to mountains of the Sisyphi Montes, which have been interpreted as volcanoes that erupted under a Hesperian ice sheet [4]. These sulfates might have formed via volcanic hydrothermal or acid fog alteration. We found that nearly 50% of the images on putative volcanoes in the Sisyphi Montes show a 1.9 μm absorption consistent with hydration. The percentage for images on the plains between volcanoes is actually higher; i.e., hydration is not unique to the volcanoes. Nevertheless, the three locations at which we found the strongest absorptions are all on volcanoes. In the Thyles Rupes region, 25% of the images on putative volcanoes are hydrated with a broad band at ~1.92 μm. Roughly 45% of the images off volcanoes are hydrated with the majority of them being located inside a crater, on a crater rim, or in the plains. Nearly 80% of hydrated images near the Ulyxis Rupes are also located either on a crater rim or inside a crater. Twenty percent of the images near the Chamberlin Crater are hydrated and mostly located in the plains or on a crater rim. Their spectra show consistent absorptions around 1.9 and 2.5 μm. The concentration of hydrated sulfates inside and on the rims of craters in all three of these regions suggests that the sulfates may be relatively old, and were exposed when the surface was impacted. Our results substantially expand the number of known areas in the southern high latitudes exhibiting hydration. The fact that hydration is found in all the regions we studied suggests an ubiquitous process for hydrated mineral formation, possibly similar to icy weathering processes proposed for the north polar region. References: [1] Bibring J.-P. et al. (2006) Science, 312, 400-404. [2] Langevin Y. et al. (2005) Science, 307, 1584-1586. [3] Massé M. et al. (2010) Icarus, 209, 434-451. [4] Ghatan G. and Head J. (2002) JGR, 107, 5048

  1. Processing Images of Craters for Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Johnson, Andrew E.; Matthies, Larry H.

    2009-01-01

    A crater-detection algorithm has been conceived to enable automation of what, heretofore, have been manual processes for utilizing images of craters on a celestial body as landmarks for navigating a spacecraft flying near or landing on that body. The images are acquired by an electronic camera aboard the spacecraft, then digitized, then processed by the algorithm, which consists mainly of the following steps: 1. Edges in an image detected and placed in a database. 2. Crater rim edges are selected from the edge database. 3. Edges that belong to the same crater are grouped together. 4. An ellipse is fitted to each group of crater edges. 5. Ellipses are refined directly in the image domain to reduce errors introduced in the detection of edges and fitting of ellipses. 6. The quality of each detected crater is evaluated. It is planned to utilize this algorithm as the basis of a computer program for automated, real-time, onboard processing of crater-image data. Experimental studies have led to the conclusion that this algorithm is capable of a detection rate >93 percent, a false-alarm rate <5 percent, a geometric error <0.5 pixel, and a position error <0.3 pixel.

  2. The role of igneous sills in shaping the Martian uplands

    NASA Technical Reports Server (NTRS)

    Wilhelms, D. E.; Baldwin, R. J.

    1989-01-01

    Relations among geologic units and landforms suggest that igneous sills lie beneath much of the intercrater and intracrater terrain of the Martian uplands. The igneous rocks crop out along the upland-lowland front and in crater floors and other depressions that are low enough to intersect the sill's intrusion horizons. It is suggested that heat from the cooling sills melted some of the ice contained in overlying fragmental deposits, creating valley networks by subsurface flow of the meltwater. Terrains with undulatory, smooth surfaces and softened traces of valleys were created by more direct contact with the sills. Widespread subsidence following emplacement of the sills deformed both them and the nonvolcanic deposits that overlie them, accounting for the many structures that continue from ridged plains into the hilly uplands. Crater counts show that the deposit that became valleyed, softened, and ridged probably began to form (and to acquire interstitial ice) during or shortly after the Middle Noachian Epoch, and continued to form as late as the Early Hesperian Epoch. The upper layers of this deposit, many of the visible valleys, and the ridged plains and postulated sills all have similar Early Hesperian ages. Continued formation of valleys is indicated by their incision of fresh-appearing crater ejecta. The dependence of valley formation on internal processes implies that Mars did not necessarily have a dense early atmosphere or warm climate.

  3. Terrestrial analogs to lunar sinuous rilles - Kauhako Crater and channel, Kalaupapa, Molokai, and other Hawaiian lava conduit systems

    NASA Technical Reports Server (NTRS)

    Coombs, C. R.; Hawke, B. R.; Wilson, L.

    1990-01-01

    Two source vents, one explosive and one effusive erupted to form a cinder cone and low lava shield that together compose the Kalaupapa peninsula of Molokai, Hawaii, A 50-100-m-wide channel/tube system extends 2.3 km northward from kauhako crater in the center of the shield. Based on modeling, a volume of up to about 0.2 cu km of lava erupted at a rate of 260 cu m/sec to flow through the Kauhako conduit system in one of the last eruptive episodes on the peninsula. Channel downcutting by thermal erosion occurred at a rate of about 10 micron/sec to help form the 30-m-deep conduit. Two smaller, secondary tube systems formed east of the main lava channel/tube. Several other lava conduit systems on the islands of Oahu and Hawaii were also compared to the Kauhako and lunar sinuous rille systems. These other lava conduits include Whittington, Kupaianaha, and Mauna Ulu lava tubes. Morphologically, the Hawaiian tube systems studied are very similar to lunar sinuous rilles in that they have deep head craters, sinuous channels, and gentle slopes. Thermal erosion is postulated to be an important factor in the formation of these terrestrial channel systems and by analogy is inferred to be an important process involved in the formation of lunar sinuous rilles.

  4. Terrestrial analogs to lunar sinuous rilles - Kauhako Crater and channel, Kalaupapa, Molokai, and other Hawaiian lava conduit systems

    NASA Astrophysics Data System (ADS)

    Coombs, C. R.; Hawke, B. R.; Wilson, L.

    Two source vents, one explosive and one effusive erupted to form a cinder cone and low lava shield that together compose the Kalaupapa peninsula of Molokai, Hawaii, A 50-100-m-wide channel/tube system extends 2.3 km northward from kauhako crater in the center of the shield. Based on modeling, a volume of up to about 0.2 cu km of lava erupted at a rate of 260 cu m/sec to flow through the Kauhako conduit system in one of the last eruptive episodes on the peninsula. Channel downcutting by thermal erosion occurred at a rate of about 10 micron/sec to help form the 30-m-deep conduit. Two smaller, secondary tube systems formed east of the main lava channel/tube. Several other lava conduit systems on the islands of Oahu and Hawaii were also compared to the Kauhako and lunar sinuous rille systems. These other lava conduits include Whittington, Kupaianaha, and Mauna Ulu lava tubes. Morphologically, the Hawaiian tube systems studied are very similar to lunar sinuous rilles in that they have deep head craters, sinuous channels, and gentle slopes. Thermal erosion is postulated to be an important factor in the formation of these terrestrial channel systems and by analogy is inferred to be an important process involved in the formation of lunar sinuous rilles.

  5. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.

  6. Spatial distribution of impact craters on Deimos

    NASA Astrophysics Data System (ADS)

    Hirata, Naoyuki

    2017-05-01

    Deimos, one of the Martian moons, has numerous impact craters. However, it is unclear whether crater saturation has been reached on this satellite. To address this issue, we apply a statistical test known as nearest-neighbor analysis to analyze the crater distribution of Deimos. When a planetary surface such as the Moon is saturated with impact craters, the spatial distribution of craters is generally changed from random to more ordered. We measured impact craters on Deimos from Viking and HiRISE images and found (1) that the power law of the size-frequency distribution of the craters is approximately -1.7, which is significantly shallower than those of potential impactors, and (2) that the spatial distribution of craters over 30 m in diameter cannot be statistically distinguished from completely random distribution, which indicates that the surface of Deimos is inconsistent with a surface saturated with impact craters. Although a crater size-frequency distribution curve with a slope of -2 is generally interpreted as indicating saturation equilibrium, it is here proposed that two competing mechanisms, seismic shaking and ejecta emplacement, have played a major role in erasing craters on Deimos and are therefore responsible for the shallow slope of this curve. The observed crater density may have reached steady state owing to the obliterations induced by the two competing mechanisms. Such an occurrence indicates that the surface is saturated with impact craters despite the random distribution of craters on Deimos. Therefore, this work proposes that the age determined by the current craters on Deimos reflects neither the age of Deimos itself nor that of the formation of the large concavity centered at its south pole because craters should be removed by later impacts. However, a few of the largest craters on Deimos may be indicative of the age of the south pole event.

  7. Surface ages of mid-size saturnian satellites

    NASA Astrophysics Data System (ADS)

    Di Sisto, Romina P.; Zanardi, Macarena

    2016-01-01

    The observations of the surfaces of the mid-sized saturnian satellites made by Cassini-Huygens mission have shown a variety of features that allows study of the processes that took place and are taking place on those worlds. Research of the saturnian satellite surfaces has clear implications not only for Saturn's history and Saturn's surroundings, but also for the Solar System. Crater counting from high definition images is very important and could serve for the determination of the age of the surfaces. In a recent paper, we have calculated the production of craters on the mid-sized saturnian satellites by Centaur objects considering the current configuration of the Solar System. Also, we have compared our results with crater counts from Cassini images by other authors and we have noted that the number of observed small craters is less than our calculated theoretical number. In this paper we estimate the age of the surface for each observed terrain on each mid-sized satellite of Saturn. All the surfaces analyzed appear to be old with the exception of Enceladus. However, we have noticed that since there are less observed small craters than calculated (except on Iapetus), this results in younger ages than expected. This could be the result of efficient endogenous or exogenous process(es) for erasing small craters and/or crater saturation at those sizes. The size limit from which the observed number of smaller craters is less than the calculated is different for each satellite, possibly indicating processes that are unique to each, but other potential common explanations for this paucity of small craters would be crater saturation and/or deposition of E-ring particles. These processes are also suggested by the findings that the smaller craters are being preferentially removed, and the erasure process is gradual. On Enceladus, only mid and high latitude plains have remnants of old terrains; the other regions could be young. In particular, the regions near the South Polar Terrain could be as young as 50 Myr old. On the contrary for Iapetus, all the surface is old and it notably registers a primordial source of craters. As the crater size is decreased, it would be perceived to approach saturation until D≲ 2 km-craters, where saturation is complete.

  8. Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.

    1975-01-01

    Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.

  9. Significant results from Apollo 14 lunar orbital photography.

    NASA Technical Reports Server (NTRS)

    El-Baz, F.; Roosa, S. A.

    1972-01-01

    Apollo 14 obtained 950 photographs from lunar orbit using the Hasselblad and Hycon cameras. The photographs reveal a number of new geologic features as well as previously unrecognized details of the morphology, structure, and stratigraphy of lunar surface units. The primary result is the verification of the extensive role of volcanism in the formation and modification of the lunar highlands, especially on the far side. Terra volcanism appears to be manifest in the formation of (1) constructional units of hilly and furrowed materials of regional extent as in the Kant Plateau in the central near-side highlands and northwest of the crater Pasteur near the eastern limb of the moon; (2) somewhat viscous lava flows and pools associated with fracture systems and/or what appear to be volcanic craters; (3) craters, crater chains, and irregular depressions, particularly on the lunar far side. The first photographs of a flow channel, a leveed sinuous rille that apparently originated by lava flowage on the surface, were obtained by Apollo 14. Another first is a high-resolution photograph of the interior of what appears to be the youngest lunar crater yet photographed in the 20- 40-km size range.

  10. Sporadic Groundwater Upwelling in Deep Martian Craters: Evidence for Lacustrine Clays and Carbonates

    NASA Technical Reports Server (NTRS)

    Michalski, J. R.; Rogers, A. D.; Wright, S. P.; Niles, P.; Cuadros, J.

    2012-01-01

    While the surface of Mars may have had an active hydrosphere early in its history [1], it is likely that this water retreated to the subsurface early on due to loss of the magnetic field and early atmosphere [2]. This likely resulted in the formation of two distinct aqueous regimes for Mars from the Late Noachian onward: one dominated by redistribution of surface ice and occasional melting of snow/ice [3], and one dominated by groundwater activity [4]. The excavation of alteration minerals from deep in the crust by impact craters points to an active, ancient, deep hydrothermal system [5]. Putative sapping features [6] may occur where the groundwater breached the surface. Upwelling groundwater may also have played a critical role in the formation of massive, layered, cemented sediments in Sinus Meridiani [7,8], in the Valles Marineris [9], and possibly in Gale Crater [10], where the Curiosity Rover will land later this year. Understanding the past distribution, geochemistry, and significance of groundwater on Mars is critical to untangling the origins of deep alteration minerals, Hesperian sulfate deposits, and crater fill deposits at Gale Crater or in other locations.

  11. First natural occurrence of coesite

    USGS Publications Warehouse

    Chao, E.C.T.; Shoemaker, E.M.; Madsen, B.M.

    1960-01-01

    Coesite, the high-pressure polymorph of SiO2, hitherto known only as a synthetic compound, is identified as an abundant mineral in sheared Coconino sandstone at Meteor Crater, Arizona. This natural occurrence has important bearing on the recognition of meteorite impact craters in quartz-bearing geologic formations.

  12. Bunte Breccia of the Ries - Continuous deposits of large impact craters

    NASA Technical Reports Server (NTRS)

    Horz, F.; Ostertag, R.; Rainey, D. A.

    1983-01-01

    The 26-km-diameter Ries impact crater in south Germany and the mechanism of ejection and emplacement associated with its formation about 15 Myr ago are discussed in detail, and the implications of the findings for models of crater formation on earth, moon, and planets are considered. Field observations and laboratory tests on 560-m core materials from nine locations are reported. The continuous deposits (Bunte Breccia) are found to be a chaotic mixture resulting from deposition at ambient temperatures in a highly turbulent environment, probably in the ballistic scenario proposed by Oberbeck et al. (1975), with an emplacement time of only about 5 min. Further impact parameters are estimated using the 'Z model' of Maxwell (1977): initial radius = 6.5 km, excavation depth = 1650 m, excavation volume = 136 cu km, and transient cavity volume = 230 cu km. The interpretation of lunar and planetary remote-sensing and in situ evidence from impact craters is reviewed in the light of the Ries findings. Numerous photographs, maps, diagrams, and tables illustrate the investigation.

  13. The Formation and Erosion History of Mt. Sharp

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Dapremont, Angela M.

    2014-01-01

    The Curiosity rover is exploring 155 km diameter Gale crater and Mt. Sharp, Gale's 5 km high central mound (Fig. 1). This study addresses the formation and erosion history of Mt. Sharp. Gale lies on the topographic dichotomy between the southern highlands and the northern plains - a drop of over 2 km [1,2]. Altitude differences between the north and south rim reflect this regional slope, as do altitude differences between the deep annulus north of Mt. Sharp and the southern crater floor. Orbiter and rover images demonstrate that most exposed areas on Mt. Sharp consist of thin, sub-parallel units interpreted as sedimentary layers [3]. Gale is typical of the 50 large martian craters that have been totally or partially filled with such layers [4,5]. In many craters these sediments have been deeply eroded. Central Peak and Peak Ring: The highest point on Mt. Sharp, near the crater's center, is interpreted as a central peak [6]. The peak has a massive lower portion and a thin, smooth capping deposit (Fig. 2). Gale's size is transitional between martian craters with single central peaks and craters with peak rings approximately half the crater's diameter [2,6]. The boundaries of Mt. Sharp, as well as an arc of hills to the southeast of the mountain, closely match a circle approximately 80 km in diameter (Fig. 3). This morphology suggests that the Gale impact may have formed both a central peak and a partial peak ring, which is covered by the sediments of Mt. Sharp in the north and possibly exposed in the arc of eroded hills in the southeast quadrant (Figs. 3,4).

  14. Formation and mantling ages of lobate debris aprons on Mars: Insights from categorized crater counts

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Crown, David A.; Joseph, Emily C. S.

    2015-06-01

    Lobate debris aprons in the Martian mid-latitudes offer important insights into the history of the Martian climate and the role of volatiles in Martian geologic activity. Here we present the results of counts of small impact craters, categorized by morphology, on debris aprons in the Deuteronilus Mensae region and the area east of Hellas basin. Mars Reconnaissance Orbiter (MRO) ConTeXt Camera (CTX) images were used to document crater populations on the apron surfaces. Each crater was assessed and categorized according to its morphological characteristics (fresh, degraded, or filled). Fresh and most degraded craters likely superpose recent mantling deposits, whereas filled craters contain mantling deposits and thus indicate a minimum formation age for the apron (i.e., the age since stabilization of the debris apron surface following some modification but prior to mantling). Size-frequency distributions (SFDs) were compiled using established methodologies and plotted to assess their fit to the isochrons. The range or ranges in crater diameter over which each distribution paralleled the isochrons was determined by visual inspection, and general age constraints were noted from SFDs for all craters on a given surface and from each morphological class. The diameter range of each SFD segment observed to parallel an isochron was then input into the Craterstats2 analysis tool to calculate specific age estimates. The aprons were assessed both individually and as regional populations, which improved interpretation of the results and demonstrated the value and limitations of both approaches. The categorized counts reveal three groups of ages: (a) filled impact craters at larger diameters (>~500 m) typically show the oldest ages, between ~300 Ma and 1 Ga, (b) smaller diameter filled and degraded craters reveal ages of resurfacing events between ~10 Ma and 300 Ma, and (c) fresh crater populations (<~100 m diameter) indicate mantling deposits of less than ~10 Ma in age. These results indicate that the lobate debris apron populations formed (or their surfaces became stable) in the Early to Middle Amazonian Epochs, and were subsequently subjected to complex degradation by erosion and sublimation and/or melting of contained ice, culminating in episodes of deposition of ice-rich mantles in the Late Amazonian Epoch.

  15. Martian planetwide crater distributions - Implications for geologic history and surface processes

    NASA Technical Reports Server (NTRS)

    Soderblom, L. A.; Condit, C. D.; West, R. A.; Herman, B. M.; Kreidler, T. J.

    1974-01-01

    Three different diameter size ranges are considered in connection with the Martian crater distribution, taking into account small craters from 0.6 to 1.2 km, intermediate-sized craters from 4 to 10 km, and large craters with diameters exceeding 20 km. One of the objectives of the investigation reported is to establish the effects of eolian processes in the modification of craters in the different size ranges. Another objective is concerned with a description of the genetic relationships among the three size ranges of craters. Observables related to the relative age of geologic provinces are to be separated from observables related to geographic variations in eolian transport and deposition. Lunar and Martian cratering histories are compared as a basis for establishing relative and absolute time scales for the geological evolution of Mars.

  16. Filled Crater and Scallops

    NASA Image and Video Library

    2015-01-28

    In this observation from NASA Mars Reconnaissance Orbiter made for a study of ancient craters, we see the craters filled with smooth material that has subsequently degraded into scallops. These formations might be possibly due to ground ice sublimation. High resolution can help to estimate any differences in roughness on the smoother main mantle and in the eroded hollows. With the enhanced color swath, we might be able to view composition variations of the material. http://photojournal.jpl.nasa.gov/catalog/PIA19288

  17. The Explorer's Guide to Impact Craters

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Osinski, G.; Chuang, F.

    2004-12-01

    Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.

  18. Synthesis of Akaganeite in the Presence of Sulfate: Implications for Akaganeite Formation in Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Fox, A.; Sutter, B.; Niles, P. B.; Adams, M.; Morris, R. V.; Ming, D. W.

    2016-01-01

    Akaganeite (beta-FeOOH) is an Fe(III) (hydr)oxide with a tunnel structure usually occupied by chloride. Akaganeite has been recently discovered in a mudstone on the surface of Mars by the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments onboard the Mars Science Laboratory (MSL) Curiosity Rover in Gale crater [1, 2]. Akaganeite was detected together with sulfate minerals [anhydrite (CaSO4) and basanite (2CaSO4·2H2O)] in the drilled Cumberland and John Clein mudstone samples at Yellowknife Bay [2]. Discovery of akaganeite and sulfates in the same samples suggests that sulfate ions could be present in aqueous solution during akaganeite formation. However, mechanism and aqueous environmental conditions of akaganeite formation (e.g., pH and range of sulfate concentration) in Yellowknife Bay remain unknown. The objective of our work was to perform synthesis of akaganeite without or with sulfate addition at variable pHs in order to constrain formation conditions of akaganeite in Yellowknife Bay, Gale crater on Mars.

  19. Processes Modifying Cratered Terrains on Pluto

    NASA Technical Reports Server (NTRS)

    Moore, J. M.

    2015-01-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as approximately 100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto's existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.

  20. Impact craters: their importance in geologic record and implications for natural resource development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levie, D. Jr.

    1986-05-01

    Impacting bodies of sufficient size traveling at hypervelocities carry tremendous potential energy. This relatively infrequent process results in the instantaneous formation of unique structures that are characterized by extensive fracturing and brecciation of the target material. Impacts onto continental shield areas can create rich ore deposits, such as the Sudbury mining district in Canada. Impacts into the sedimentary column can instantaneously create hydrocarbon reservoirs out of initially nonporous rocks, such as at Red Wing Creek and Viewfield in the Williston basin. Associated reservoirs are usually limited to a highly deformed central uplift in larger craters, or to the fractured rimmore » facies in smaller craters. The presence of reservoirs and trapping mechanisms is largely dependent, however, upon the preservation state of the crater in the subsurface. A catastrophic extraterrestrial event (a large asteroid impact) has also been suggested as the cause for the extinction of the dinosaurs, but the latest theory proposes a companion star with a 26 m.y. periodicity as the cause for numerous lifeform extinctions over a similar time interval. Regardless of their magnitude and distribution over the earth, it is clear that catastrophic extraterrestrial events have been responsible for altering the geologic column locally, regionally, and quite possibly on a global scale.« less

  1. Interpretations of family size distributions: The Datura example

    NASA Astrophysics Data System (ADS)

    Henych, Tomáš; Holsapple, Keith A.

    2018-04-01

    Young asteroid families are unique sources of information about fragmentation physics and the structure of their parent bodies, since their physical properties have not changed much since their birth. Families have different properties such as age, size, taxonomy, collision severity and others, and understanding the effect of those properties on our observations of the size-frequency distribution (SFD) of family fragments can give us important insights into the hypervelocity collision processes at scales we cannot achieve in our laboratories. Here we take as an example the very young Datura family, with a small 8-km parent body, and compare its size distribution to other families, with both large and small parent bodies, and created by both catastrophic and cratering formation events. We conclude that most likely explanation for the shallower size distribution compared to larger families is a more pronounced observational bias because of its small size. Its size distribution is perfectly normal when its parent body size is taken into account. We also discuss some other possibilities. In addition, we study another common feature: an offset or "bump" in the distribution occurring for a few of the larger elements. We hypothesize that it can be explained by a newly described regime of cratering, "spall cratering", which controls the majority of impact craters on the surface of small asteroids like Datura.

  2. HiRISE observations of new impact craters exposing Martian ground ice

    USGS Publications Warehouse

    Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.; Mellon, Michael T.; Kennedy, Megan R.; Daubar, Ingrid J.; Saper, Lee

    2014-01-01

    Twenty small new impact craters or clusters have been observed to excavate bright material inferred to be ice at mid and high latitudes on Mars. In the northern hemisphere, the craters are widely distributed geographically and occur at latitudes as low as 39°N. Stability modeling suggests that this ice distribution requires a long-term average atmospheric water vapor content around 25 precipitable microns, more than double the present value, which is consistent with the expected effect of recent orbital variations. Alternatively, near-surface humidity could be higher than expected for current column abundances if water vapor is not well-mixed with atmospheric CO2, or the vapor pressure at the ice table could be lower due to salts. Ice in and around the craters remains visibly bright for months to years, indicating that it is clean ice rather than ice-cemented regolith. Although some clean ice may be produced by the impact process, it is likely that the original ground ice was excess ice (exceeding dry soil pore space) in many cases. Observations of the craters suggest small-scale heterogeneities in this excess ice. The origin of such ice is uncertain. Ice lens formation by migration of thin films of liquid is most consistent with local heterogeneity in ice content and common surface boulders, but in some cases nearby thermokarst landforms suggest large amounts of excess ice that may be best explained by a degraded ice sheet.

  3. Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models

    NASA Astrophysics Data System (ADS)

    Wünnemann, Kai; Zhu, Meng-Hua; Stöffler, Dieter

    2016-10-01

    We investigated the ejection mechanics by a complementary approach of cratering experiments, including the microscopic analysis of material sampled from these experiments, and 2-D numerical modeling of vertical impacts. The study is based on cratering experiments in quartz sand targets performed at the NASA Ames Vertical Gun Range. In these experiments, the preimpact location in the target and the final position of ejecta was determined by using color-coded sand and a catcher system for the ejecta. The results were compared with numerical simulations of the cratering and ejection process to validate the iSALE shock physics code. In turn the models provide further details on the ejection velocities and angles. We quantify the general assumption that ejecta thickness decreases with distance according to a power-law and that the relative proportion of shocked material in the ejecta increase with distance. We distinguish three types of shock metamorphic particles (1) melt particles, (2) shock lithified aggregates, and (3) shock-comminuted grains. The agreement between experiment and model was excellent, which provides confidence that the models can predict ejection angles, velocities, and the degree of shock loading of material expelled from a crater accurately if impact parameters such as impact velocity, impactor size, and gravity are varied beyond the experimental limitations. This study is relevant for a quantitative assessment of impact gardening on planetary surfaces and the evolution of regolith layers on atmosphereless bodies.

  4. Crater topography on Titan: Implications for landscape evolution

    NASA Astrophysics Data System (ADS)

    Neish, C.; Kirk, R.; Lorenz, R.; Bray, V.; Schenk, P.; Stiles, B.; Turtle, E.; Cassini Radar Team

    2012-04-01

    Unique among the icy satellites, Titan’s surface shows evidence for extensive modification by fluvial and aeolian erosion, which act to change the topography of its surface over time. Quantifying the extent of this landscape evolution is difficult, since the original, ‘non-eroded’ surface topography is generally unknown. However, fresh craters on icy satellites have a well-known shape and morphology, which has been determined from extensive studies on the airless worlds of the outer solar system (Schenk et al., 2004). By comparing the topography of craters on Titan to similarly sized, pristine analogues on airless bodies, we can obtain one of the few direct measures of the amount of erosion that has occurred on Titan. Cassini RADAR has imaged >30% of the surface of Titan, and more than 60 potential craters have been identified in this data set (Wood et al., 2010; Neish and Lorenz, 2012). Topographic information for these craters can be obtained from a technique known as ‘SARTopo’, which estimates surface heights by comparing the calibration of overlapping synthetic aperture radar (SAR) beams (Stiles et al., 2009). We present topography data for several craters on Titan, and compare the data to similarly sized craters on Ganymede, for which topography has been extracted from stereo-derived digital elevation models (Bray et al., 2012). We find that the depths of craters on Titan are generally within the range of depths observed on Ganymede, but several hundreds of meters shallower than the average (Fig. 1). A statistical comparison between the two data sets suggests that it is extremely unlikely that Titan’s craters were selected from the depth distribution of fresh craters on Ganymede, and that is it much more probable that the relative depths of Titan are uniformly distributed between ‘fresh’ and ‘completely infilled’. This is consistent with an infilling process that varies linearly with time, such as aeolian infilling. Figure 1: Depth of craters on Titan (gray diamonds) compared to similarly sized, fresh craters on Ganymede (central peaks, +; central pits, *) and a handful of relaxed craters (black squares) from Bray et al. (2012). References: Bray, V., et al.: "Ganymede crater dimensions - implications for central peak and central pit formation and development". Icarus, Vol. 217, pp. 115-129, 2012. Neish, C.D., Lorenz, R.D.: "Titan’s global crater population: A new assessment". Planetary and Space Science, Vol. 60, pp. 26-33, 2012. Schenk, P.M., et al.: "Ages and interiors: the cratering record of the Galilean satellites". In: Bagenal, F., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004. Stiles, B.W., et al.: "Determining Titan surface topography from Cassini SAR data". Icarus, Vol. 202, pp. 584-598, 2009. Wood, C.A., et al.: "Impact craters on Titan". Icarus, Vol. 206, pp. 334-344, 2010.

  5. Geologic implications of the Apollo 14 Fra Mauro breccias and comparison with ejecta from the Ries Crater, Germany

    USGS Publications Warehouse

    Chao, E.C.T.

    1973-01-01

    On the basis of petrographic and laboratory and active seismic data for the Fra Mauro breccias, and by comparison with the nature and distribution of the ejecta from the Ries crater, Germany, some tentative conclusions regarding the geologic significance of the Fra Mauro Formation on the moon can be drawn. The Fra Mauro Formation, as a whole, consists of unwcldcd, porous ejecta, slightly less porous than the regolith. It contains hand-specimen and larger size clasts of strongly annealed complex breccias, partly to slightly annealed breccias, basalts, and perhaps spherule-rich breccias. These clasts are embedded in a matrix of porous aggregate dominated by mineral and breccia fragments and probably largely free of undevitrified glass. All strongly annealed hand-specimen-size breccias are clasts in the Fra Mauro Formation. To account for the porous, unwelded state of the Fra Mauro Formation, the ejecta must have been deposited at a temperature below that required for welding and annealing. Large boulders probably compacted by the Cone crater event occur near the rim of the crater. They probably consist of a similar suite of fragments, but are probably less porous than the formation. The geochronologic clocks of fragments in the Fra Mauro Formation, with textures ranging from unannealed to strongly annealed, were not reset or strongly modified by the Imbrian event. Strongly annealed breccia clasts and basalt clasts are pre-Imbrian, and probably existed as ejecta mixed with basalt flows in the Imbrium Basin prior to the Imbrian event. The Imbrian event probably occurred between 3.90 or 3.88 and 3.65 b.y. ago.

  6. Styles of crater gradation in Southern Ismenius Lacus, Mars: Clues from Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1992-01-01

    Impact craters on the Earth and Mars provide a unique opportunity to quantify the gradational evolution of instantaneously created landforms in a variety of geologic settings. Unlike most landforms, the initial morphology associated with impact craters on both planets is uncomplicated by competition between construction and degradation during formation. Furthermore, pristine morphologies are both well-constrained and similar to a first order. The present study compares styles of graduation at Meteor Crater with those around selected craters (greater than 1-2 km in diameter) in southern Ismenius Lacus. Emphasis is placed on features visible in images near LANDSAT TM resolution (30-50 m/pixel) which is available for both areas. In contrast to Mars, vegetation on the Earth can modify gradation, but appears to influence overall rates and styles by 2X-3X rather than orders of magnitude. Further studies of additional craters in differing settings will refine the effects of this and other factors (e.g., substrate). Finally, by analogy with results from other terrestrial gradational surfaces this study should help provide constraints on climate over crater histories.

  7. ARC-1965-A-33996

    NASA Image and Video Library

    1965-02-17

    30 calibabor Vertical Gun Range in horizontal loading position. Dr. William Quaide and Donald Gault of Ames planetology branch used this gun range to study the formation of impact craters on the Moon. N-204A Verticle Gun is used to simulate the physics and mechanics of planetaryimpact cratering phenomena.

  8. Martian Cratering 10. Progress in use of crater counts to interpret geological processes: Examples from two debris aprons

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.; Werner, Stephanie C.

    2010-06-01

    Recent controversies about systems of crater-count dating have been largely resolved, and with continuing refinements, crater counts will offer a fundamental geological tool to interpret not only ages, but also the nature of geological processes altering the surface of Mars. As an example of the latter technique, we present data on two debris aprons east of Hellas. The aprons show much shorter survival times of small craters than do the nearby contiguous plains. The order-of-magnitude depths of layers involved in the loss process can be judged from the depths of the affected craters. We infer that ice-rich layers in the top tens of meters of both aprons have lost crater topography within the last few 10 8 yr, probably due to flow or sublimation of ice-rich materials. Mantling by ice-rich deposits, associated with climate change cycles of obliquity change, has probably also affected both the aprons and the plains. The crater-count tool thus adds chronological and vertical dimensional information to purely morphological studies.

  9. The missing large impact craters on Ceres.

    PubMed

    Marchi, S; Ermakov, A I; Raymond, C A; Fu, R R; O'Brien, D P; Bland, M T; Ammannito, E; De Sanctis, M C; Bowling, T; Schenk, P; Scully, J E C; Buczkowski, D L; Williams, D A; Hiesinger, H; Russell, C T

    2016-07-26

    Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10-15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6-7 such basins. However, Ceres' surface appears devoid of impact craters >∼280 km. Here, we show a significant depletion of cerean craters down to 100-150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.

  10. Origin of the outer layer of martian low-aspect ratio layered ejecta craters

    NASA Astrophysics Data System (ADS)

    Boyce, Joseph M.; Wilson, Lionel; Barlow, Nadine G.

    2015-01-01

    Low-aspect ratio layered ejecta (LARLE) craters are one of the most enigmatic types of martian layered ejecta craters. We propose that the extensive outer layer of these craters is produced through the same base surge mechanism as that which produced the base surge deposits generated by near-surface, buried nuclear and high-explosive detonations. However, the LARLE layers have higher aspect ratios compared with base surge deposits from explosion craters, a result of differences in thicknesses of these layers. This characteristics is probably caused by the addition of large amounts of small particles of dust and ice derived from climate-related mantles of snow, ice and dust in the areas where LARLE craters form. These deposits are likely to be quickly stabilized (order of a few days to a few years) from eolian erosion by formation of duricrust produced by diffusion of water vapor out of the deposits.

  11. The missing large impact craters on Ceres

    USGS Publications Warehouse

    Marchi, S.; Ermakov, A.; Raymond, C.A.; Fu, R.R.; O'Brien, D.P.; Bland, Michael T.; Ammannito, E.; De Sanctis, M.C.; Bowling, Tim; Schenk, P.; Scully, J.E.C.; Buczkowski, D.L.; Williams, D.A.; Hiesinger, H.; Russell, C.T.

    2016-01-01

    Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6–7 such basins. However, Ceres’ surface appears devoid of impact craters >~280 km. Here, we show a significant depletion of cerean craters down to 100–150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.

  12. Lunar floor-fractured craters: Modes of dike and sill emplacement and implications of gas production and intrusion cooling on surface morphology and structure

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Head, James W.

    2018-05-01

    Lunar floor-fractured craters (FFCs) represent the surface manifestation of a class of shallow crustal intrusions in which magma-filled cracks (dikes) rising to the surface from great depth encounter contrasts in host rock lithology (breccia lens, rigid solidified melt sheet) and intrude laterally to form a sill, laccolith or bysmalith, thereby uplifting and deforming the crater floor. Recent developments in the knowledge of lunar crustal thickness and density structure have enabled important revisions to models of the generation, ascent and eruption of magma, and new knowledge about the presence and behavior of magmatic volatiles has provided additional perspectives on shallow intrusion processes in FFCs. We use these new data to assess the processes that occur during dike and sill emplacement with particular emphasis on tracking the fate and migration of volatiles and their relation to candidate venting processes. FFCs result when dikes are capable of intruding close to the surface, but fail to erupt because of the substructure of their host impact craters, and instead intrude laterally after encountering a boundary where an increase in ductility (base of breccia lens) or rigidity (base of solidified melt sheet) occurs. Magma in dikes approaching the lunar surface experiences increasingly lower overburden pressures: this enhances CO gas formation and brings the magma into the realm of the low pressure release of H2O and sulfur compounds, both factors adding volatiles to those already collected in the rising low-pressure part of the dike tip. High magma rise velocity is driven by the positive buoyancy of the magma in the part of the dike remaining in the mantle. The dike tip overshoots the interface and the consequent excess pressure at the interface drives the horizontal flow of magma to form the intrusion and raise the crater floor. If sill intrusion were controlled by the physical properties at the base of the melt sheet, dikes would be required to approach to within ∼300 m of the surface, and thus eruptions, rather than intrusions, would be very likely to occur; instead, dynamical considerations strongly favor the sub-crustal breccia lens as the location of the physical property contrast localizing lateral intrusion, at a depth of several kilometers. The end of lateral and vertical sill growth occurs when the internal magma pressure equals the external pressure (the intrusion just supports the weight of the overlying crust). Dynamical considerations lead to the conclusion that dike magma volumes are up to ∼1100 km3, and are generally insufficient to form FFCs on the lunar farside; the estimated magma volumes available for injection into sills on the lunar nearside (up to ∼800 km3) are comparable to the observed floor uplift in many smaller FFCs, and thus consistent with these FFCs forming from a single dike emplacement event. In contrast, the thickest intrusions in the largest craters imply volumes requiring multiple dike contributions; these are likely to be events well-separated in time, rather than injection of new magma into a recently-formed and still-cooling intrusion. We present a temporal sequence of 1) dike emplacement, 2) sill formation and surface deformation, 3) bubble rise, foam layer formation and collapse, 4) intrusion cooling, and a synthesis of predicted deformation sequence and eruption styles. Initial lateral injection of the sill at a depth well below the upper dike tip initiates upbowing of the overburden, leveraging deformation of the crater floor melt sheet above. This is followed by lateral spreading of the sill toward the edges of the crater floor, where crater wall and rim deposit overburden inhibit further lateral growth, and the sill grows vertically into a laccolith or bysmalith, uplifting the entire floor above the intrusion. Subsidiary dikes can be emplaced in the fractures at the uplift margins and will rise to the isostatic level of the initial dike tip; if these contain sufficient volatiles to decrease magma density, eruptions can also occur. This initial phase of intrusion, sill lateral spreading and floor uplift occurs within a few hours after initial dike emplacement. During the subsequent cooling of the sill, bubbles can rise hundreds of meters to the top of the intrusion to create a foam layer; when drainage of gas bubble wall magma occurs in the foam layer, a continuous gas layer forms above the foam. Gas formation and upward migration produces an increase in sill thickness, while subsequent cooling and solidification cause a thickness decreases and subsidence. The total topographic evolution history, following an initial 2 km thick sill intrusion and floor uplift (hours), includes further floor uplift by gas formation and migration (decades; ∼30 m), followed by cooling, solidification and subsidence (∼a century; ∼350 m). An initial 2 km thick sill is predicted to have a final thickness of ∼1.7 km. This predicted sequence of events can be compared with the sequence of floor deformation and volcanism in FFCs in order to test and refine this model.

  13. A possible formation mechanism of rampart-like ejecta pattern in a laboratory

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Kadono, T.; Nakamura, A. M.; Arakawa, M.; Wada, K.; Yamamoto, S.

    2011-12-01

    The ejecta morphologies around impact craters represent highly diverse appearance on the surface of solid bodies in our Solar System. It is considered that the varied ejecta morphologies result from the environments such as the atmospheric pressure, the volatile content in the subsurface, because they affect the emplacement process of the ejecta. Clarifying the relationships between the ejecta morphologies and the formation processes and environments could constrain the ancient surface environment and the evolution of the planets. We have investigated the ejecta patterns around the impact craters which formed on a glass beads layer in a laboratory, and found that the patterns depend on impact velocity, atmospheric pressure, and initial state of packing of the target [Suzuki et al., 2010, JpGU abstract]. Now, we focus on one of the ejecta patterns which has a petal-like (or sometimes concentric) ridges on the distal edge of the continuous ejecta. This ejecta pattern looks very similar to the rampart ejecta morphology observed around Martian impact craters [e.g. Barlow et al., 2000]. The experiments are conducted with the small light gas gun placed in Kobe University, Japan. The projectile is a cylinder with a diameter of 10 mm and a height of 10 mm, and is made of aluminum, nylon, or stainless. The target is a layer of glass beads (nearly uniform diameter) in a tub with ~28 cm in diameter. The bulk density is about 1.7 g/cm^3. The following three parameters are varied: 1) the diameter of the target glass beads (50, 100, 420 microns), 2) the ambient atmospheric pressure in the chamber (from ~500 Pa to atmospheric pressure), 3) the impact velocity of the projectile (from a few to ~120 m/s). In our experiments, the rampart-like ridged patterns are observed within the following conditions: 1) the diameter of the target glass beads is 50 and 100 microns, 2) the ambient pressure in the chamber is higher than ~10^4 Pa, and 3) the impact velocity is higher than 16 m/s. Eventually, we have succeeded to capture the formation of the rampart-like ridges with high-speed video camera. Our experiments clarify that the rampart-like ridges are formed by the thin, radial ejecta flow that originates around the crater rim, other than the sedimentation of ejecta decelerated by the ambient atmosphere. A wake of the projectile going through the atmosphere might be responsible for the crater rim collapsed, which results in initiating the radial ejecta flow. Additionally, it is found that erodible surface (i.e. a particle layer in this case) is essential to produce the rampart-like ridges.

  14. Lunar History

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer E.

    2009-01-01

    This section of the workshop describes the history of the moon, and offers explanations for the importance of understanding lunar history for engineers and users of lunar simulants. Included are summaries of the initial impact that is currently in favor as explaining the moon's formation, the crust generation, the creation of craters by impactors, the era of the lunar cataclysm, which some believe effected the evolution of life on earth, the nature of lunar impacts, crater morphology, which includes pictures of lunar craters that show the different types of craters, more recent events include effect of micrometeorites, solar wind, radiation and generation of agglutinates. Also included is a glossary of terms.

  15. Recharge from a subsidence crater at the Nevada test site

    USGS Publications Warehouse

    Wilson, G. V.; Ely, D.M.; Hokett, S. L.; Gillespie, D. R.

    2000-01-01

    Current recharge through the alluvial fans of the Nevada Test Site (NTS) is considered to be negligible, but the impact of more than 400 nuclear subsidence craters on recharge is uncertain. Many of the craters contain a playa region, but the impact of these playas has not been addressed. It was hypothesized that a crater playa would focus infiltration through the surrounding coarser-grained material, thereby increasing recharge. Crater U5a was selected because it represented a worst case for runoff into craters. A borehole was instrumented for neutron logging beneath the playa center and immediately outside the crater. Physical and hydraulic properties were measured along a transect in the crater and outside the crater. Particle-size analysis of the 14.6 m of sediment in the crater and morphological features of the crater suggest that a large ponding event of ≈63000 m3 had occurred since crater formation. Water flow simulations with HYDRUS-2D, which were corroborated by the measured water contents, suggest that the wetting front advanced initially by as much as 30 m yr−1 with a recharge rate 32 yr after the event of 2.5 m yr−1Simulations based on the measured properties of the sediments suggest that infiltration will occur preferentially around the playa perimeter. However, these sediments were shown to effectively restrict future recharge by storing water until removal by evapotranspiration (ET). This work demonstrated that subsidence craters may be self-healing.

  16. Is There any Relationship Between the Santa Elena Depression and Chicxulub Impact Crater, Northwestern Yucatan Peninsula, Mexico?

    NASA Astrophysics Data System (ADS)

    Lefticariu, L.

    2005-05-01

    The Terminal Cretaceous Chicxulub Impact Crater had a strong control on the depositional and diagenetic history of the northern Yucatan Platform during most of the Cenozoic Era. The Chicxulub Sedimentary Basin (henceforth Basin), which approximately coincides with the impact crater, is circumscribed by a concentration of karstic sinkholes known as the Ring of Cenotes. Santa Elena Depression (henceforth Depression) is the name proposed for the bowl-shaped buried feature, first contoured by geophysical studies, immediately south of the Basin, in the area where the Ticul 1 and UNAM 5 wells were drilled. Lithologic, petrographic, and biostratigraphic data on PEMEX, UNAM, and ICDP cores show that: 1) Cenozoic deposits are much thicker inside the Basin than inside the Depression, 2) in general, the Cenozoic formations from inside the Depression are the thickest among those outside the Basin, 3) variably dolomitized pelagic or outer-platform wackestone or mudstone occur both inside the Basin and Depression, 4) the age of the deeper-water sedimentary carbonate rocks is Paleocene-Eocene inside the Basin and Paleocene?-Early Eocene inside the Depression, 5) the oldest formations that crop out are of Middle Eocene age at the edge of the Basin and Early-Middle Eocene age inside the Depression, 6) saline lake deposits, that consist chiefly of anhydrite, gypsum, and fine carbonate, and also contain quartz, chert, clay, zeolite, potassium feldspar, pyrite, and fragments of wood, are present in the Cenozoic section of the UNAM 5 core between 282 and 198 m below the present land surface, 7) the dolomite, subaerial exposure features (subaerial crusts, vugs, karst, dedolomite), and vug-filling cement from the Eocene formations are more abundant inside the Depression than inside the Basin. The depositional environments that are proposed for explaining the Cenozoic facies succession within the Santa Elena Depression are: 1) deeper marine water (Paleocene?-Early Eocene), 2) relatively isolated saline lake (Middle Eocene), and 3) shallow marine water (Middle-Late Eocene?). In places, the deeper-water facies are similar to those within the Chicxulub Sedimentary Basin. The shallow-water facies is similar to those occurring outside the Basin. In general, quartz and silicates are rare in the Cenozoic sedimentary carbonate of the northwestern Yucatan Peninsula. Therefore, their presence in the UNAM 5 core could be attributed to either impact breccia reworking or silicic volcanic processes. Quartz, chert, zeolite, and clay also are common in the suevite breccia of both Yax-1 and UNAM 5 cores. The fact that the Santa Elena Depression was a distinct sedimentary basin during much of the Paleogene could be explained by any or a combination of the following hypotheses: 1) In spite of being located outside the cenote ring, the Depression is a sub-basin of the larger and deeper Chicxulub Sedimentary Basin and is therefore located within the Chicxulub Impact Crater, 2) the Depression coincides with an impact crater distinct from the Chicxulub Impact Crater, 3) the Depression formed after the Chicxulub bolide impact due to slumping, crater wall failure, or larger-scale tectonic processes. The lack of conclusive evidence for multiple impact breccia layers in the northwestern Yucatan Peninsula, corroborated with the presence on top of the impact breccia from UNAM 5 core of deeper-water limestone similar to that of Late Paleocene-Early Eocene age from Yax-1 core, would be more consistent with either the first or third hypothesis.

  17. Diatremes and craters attributed to natural explosions

    USGS Publications Warehouse

    Shoemaker, Eugene Merle

    1956-01-01

    Diatremes - volcanic pipes attributed to explosion - and craters have been studied to infer the ultimate causes and physical conditions attending natural explosive processes. Initial piercement of diatremes on the Navajo reservation, Arizona was probably along a fracture propagated by a high-pressure aqueous fluid. Gas rising at high velocity along the fracture would become converted to a gas-solid fluidized system by entrainment of wall- rock fragments. The first stages of widening of the vent are probably accomplished mainly by simple abrasion of the high-velocity fluidized system on the walls of the fracture. As the vent widens, its enlargement may be accelerated by inward spalling of the walls. The inferred mechanics of the Navajo-Hopi diatremes is used to illustrate the possibility of diatreme formation over a molten salt mass.

  18. In plain sight: the Chesapeake Bay crater ejecta blanket

    NASA Astrophysics Data System (ADS)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An idealized calculation of the CBIS ejecta-blanket elevation profile minutes after the impact was carried out founded on well established rules for explosion and impact-generated craters. This profile is shown here to match the volume of the upland deposits ≥170 km from the crater center. Closer to the crater, much of the "postdicted" ejecta blanket has clearly been removed by erosion. Nevertheless the Shirley and fossil-free Bacons Castle Formations, located between the upland deposits and the CBIS interior and veneering the present day surface with units ∼10-20 m deep, are respectively identified as curtain- and excavation-phase ejecta. The neritic-fossil-bearing Calvert Formation external to the crater is deduced to be of Eocene age (as opposed to early Miocene as currently believed), preserved by the armoring effects of the overlying CBIS ejecta composed of the (distal) upland deposits and the (proximal) Bacons Castle Formation. The lithofacies of the in-crater Calvert Formation can only have resulted from inward mass wasting of the postdicted ejecta blanket, vestiges of which (i.e. the Bacons Castle and Shirley Formations) still overlap the crater rim and sag into its interior, consistent with this expectation. Because there appear to be a total of ∼10 000 km2 of CBIS ejecta lying on the present-day surface, future research should center the stratigraphic, lithologic, and petrologic properties of these ejecta versus both radial distance from the crater center (to identify ejecta from different ejection stages) and circumferentially at fixed radial distances (to detect possible anisotropies relating the impact angle and direction of approach of the impactor). The geological units described here may comprise the best preserved, and certainly the most accessible, ejecta blanket of a major crater on the Earth's surface and therefore promise to be a boon to the field of impact geology. As a corollary, a major revision of the current stratigraphic column of the M-ACP will be necessary.

  19. The Amorphous Composition of Three Mudstone Samples from Gale Crater: Implications for Weathering and Diagenetic Processes on Mars

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, R. T.; Rampe, E. B.; Morris, R. V.; Bristow, T. F.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Morrison, S. M.; Sutter, B.; hide

    2017-01-01

    The Mars Science Laboratory rover, Curiosity, is exploring the lowermost formation of Gale crater's central mound. Within this formation, three samples named Marimba, Quela, and Sebina have been analyzed by the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS) to determine mineralogy and bulk elemental chemistry, respectively. Marimba and Quela were also analyzed by the SAM (Sample Analysis at Mars) instrument to characterize the type and abundance of volatile phases detected in evolved gas analyses (EGA). CheMin data show similar proportions of plagioclase, hematite, and Ca-sulfates along with a mixture of di- and trioctahedral smectites at abundances of approximately 28, approximately 16, and approximately 18 wt% for Marimba, Quela, and Sebina. Approximately 50 wt% of each mudstone is comprised of X-ray amorphous and trace crystalline phases present below the CheMin detection limit (approximately 1 wt%). APXS measurements reveal a distinct bulk elemental chemistry that cannot be attributed to the clay mineral variation alone indicating a variable amorphous phase assemblage exists among the three mudstones. To explore the amorphous component, the calculated amorphous composition and SAM EGA results are used to identify amorphous phases unique to each mudstone. For example, the amorphous fraction of Marimba has twice the FeO wt% compared to Quela and Sebina yet, SAM EGA data show no evidence for Fe-sulfates. These data imply that Fe must reside in alternate Fe-bearing amorphous phases (e.g., nanophase iron oxides, ferrihydrite, etc.). Constraining the composition, abundances, and proposed identity of the amorphous fraction provides an opportunity to speculate on the past physical, chemical, and/or diagenetic processes which produced such phases in addition to sediment sources, lake chemistry, and the broader geologic history of Gale crater.

  20. Late Pleistocene eruptive history of the Mono Craters rhyolites, eastern California, from U-Th dating of explosive and effusive products

    NASA Astrophysics Data System (ADS)

    Marcaida, M.; Vazquez, J. A.; Calvert, A. T.; Miller, J. S.

    2016-12-01

    During late Pleistocene-Holocene time, repeated explosive and effusive eruptions of high-silica rhyolite magma south of Mono Lake, California, have produced a chain of massive domes known as the Mono Craters and a time-series of tephra deposits preserved in sediments of the Wilson Creek formation of ancestral Mono Lake. The record of late Holocene volcanism at Mono Craters is relatively well constrained by tephrostratigraphy and 14C dating, and the timing of late Pleistocene eruptions is similarly well constrained by tephrochronology and magnetostratigraphy of the Wilson Creek formation. However, the chronology of eruptions for the Mono Craters chain, comprising at least 28 individual domes, has thus far been based on age estimates from hydration rind dating of obsidian that is highly dependent on local calibration. We constrain the timing of late Pleistocene dome emplacement by linking independently dated Wilson Creek tephras to their dome equivalents in the Mono Craters using combined titanomagnetite geochemistry and U-Th geochronology. Ion microprobe 238U-230Th dating of unpolished allanite and zircon rims gives isochron dates of ca. 42 ka, ca. 38 ka, ca. 26 ka, and ca. 20 ka for domes 19, 24, 31 (newly recognized), and 11 of the Mono Craters, respectively. These domes are biotite-bearing rhyolites with titanomagnetites that are compositionally identical to those from several Wilson Creek tephras. Specifically, we correlate Ash 15, Ash 7, and Ash 3 of the Wilson Creek formation to domes 19, 31, and 11 of the Mono Craters, respectively, based on matching titanomagnetite compositions and indistinguishable U-Th ages. 40Ar/39Ar dating of single sanidines from domes 19 and 31 yield mean dates that are 10 k.y. older than their corresponding U-Th dates, likely due to excess argon from melt inclusions and/or incompletely re-equilibrated antecrysts. Based on our new U-Th isochron date of ca. 34 ka for allanite-zircon from Ash 8 pumice and the ca. 26-27 ka age of Ash 7 and its extrusive equivalent dome 31, we infer that the stratigraphic position of the ca. 32 ka Auckland/Mono Lake geomagnetic excursion, if recorded in beds of the Wilson Creek formation, is between Ashes 7 and 8. Accordingly, the prominent geomagnetic excursion bisected by Ash 15 lower in the section is the ca. 41 ka global Laschamp event.

  1. Investigating Weathering of Basaltic Materials in Gale Crater, Mars: A Combined Laboratory, Modeling and Terrestrial Field Approach

    NASA Technical Reports Server (NTRS)

    Hausrath, Elisabeth; Ralston, Stephanie J.; Bamisile, Toluwalope; Ming, Douglas; Peretyazhko, Tanya; Rampe, Elizabeth; Gainey, Seth

    2017-01-01

    Recent observations from Gale Crater, Mars document past aqueous alteration both in the formation of the Stimson sandstone unit, as well as in the formation of altered fractures within that unit. Geochemical and mineralogical data from Curiosity also suggest Fe-rich amorphous weathering products are present in most samples measured to date. Here we interpret conditions of possible past weathering in Gale Crater using a combination of field, laboratory, and modeling work. In order to better understand secondary Fe-rich phases on Mars, we are examining formation of weathering products in high Fe and Mg and low Al serpentine soils in the Klamath Mountains, CA. We have isolated potential weathering products from these soils, and are analyzing them using synchrotron µXRF and µXRD as well as FullPat for a direct comparison to analyses from Gale Crater. In order to interpret the implications of the persistence of potential secondary Fe-containing phases on Mars, we are also measuring the dissolution rates of the secondary weathering products allophane, Fe-rich allophane, and hisingerite. Ongoing dissolution experiments of these materials suggest that they dissolve significantly more rapidly than more crystalline secondary minerals with similar chemical compositions. Finally, to quantify the specific conditions of past aqueous alteration in Gale Crater we are performing reactive transport modeling of a range of possible past environmental conditions. Specifically, we are testing the conditions under which a Stimson unit-like material forms from a parent material similar to Rocknest or Bagnold eolian deposits, and the conditions under which observed altered fracture zones form from a Stimson unit-like parent material. Our modeling results indicate that the formation of the Stimson unit is consistent with leaching of an eolian deposit with a solution of pH = 6-8, and that formation of the altered fracture zones is consistent with leaching with a very acidic (pH = 2-3) high sulfate solution containing Ca. These results suggest circumneutral pH conditions during authigenesis or early diagenesis in the Stimson formation sediments followed by diagenetic alteration by very acidic solutions along fracture zones.

  2. A Massive Central Peak and a Low Peak Ring in Gale Crater - Important Influences on the Formation of Mt. Sharp

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2015-01-01

    The Curiosity rover is exploring 155 km diameter Gale crater and Mt. Sharp, Gale's high central mound. This study addresses the central peak and proposed peak ring, and their influence on the overall morphology of the mountain.

  3. Lunar and Planetary Science XXXV: Mars: Hydrology, Drainage, and Valley Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Analysis of Orientation Dependence of Martian Gullies; 2) A Preliminary Relationship between the Depth of Martian Gullies and the Abundance of Hydrogen on Near-Surface Mars; 3) Water Indicators in Sirenum Terra and around the Argyre Impact Basin, Mars; 4) The Distribution of Gullies and Tounge-shaped Ridges and Their Role in the Degradation of Martian Craters; 5) A Critical Evaluation of Crater Lake Systems in Memnonia Quadrangle, Mars; 6) Impact-generated Hydrothermal Activity at Gusev Crater: Implications for the Spirit Mission; 7) Characterization of the Distributary Fan in Holden NE Crater using Stereo Analysis; 8) Computational Analysis of Drainage Basins on Mars: Appraising the Drainage Density; 9) Hypsometric Analyses of Martian Basins: A Comparison to Terrestrial, Lunar, and Venusian Hypsometry; 10) Morphologic Development of Harmakhis Vallis, Mars; 11) Mangala Valles, Mars: Investigations of the source of Flood Water and Early Stages of Flooding; 12) The Formation of Aromatum Chaos and the Water Discharge Rate at Ravi Vallis; 13) Inferring Hydraulics from Geomorphology for Athabasca Valles, Mars; 14) The Origin and Evolution of Dao Vallis: Formation and Modification of Martian Channels by Structural Collapse and Glaciation; 15) Snowmelt and the Formation of Valley Networks on Martian Volcanoes; 16) Extent of Floating Ice in an Ancient Echus Chasma/Kasei Valley System, Mars.

  4. Deformed barchans under alternating flows: Flume experiments and comparison with barchan dunes within Proctor Crater, Mars

    NASA Astrophysics Data System (ADS)

    Taniguchi, Keisuke; Endo, Noritaka

    2007-10-01

    It is generally considered that barchans, isolated crescentic-shaped dunes, develop where wind is unidirectional and the available sand is insufficient to cover the entire dune field; however, Bishop [Bishop, M.A., 2001. Seasonal variation of crescentic dune morphology and morphometry, Strzelecki Simpson desert, Australia. Earth Surface Process and Landforms 26, 783 791.] observed barchans that developed in areas where winds blow seasonally in opposite directions and described a peculiar deformation feature, the “rear slipface,” that is not found in ordinary barchans. Barchans under such bidirectional flows are poorly understood, and it is necessary to study barchans that formed under many different flow conditions. We conducted flume experiments to investigate the deformation of barchans under alternating water flow, and observed new deformation features in addition to rear slipfaces. We conclude that the deformation of barchans can be categorized into four types, one of which shows morphologies similar to barchans within Proctor Crater, Mars. The deformation type depends on the strength of the reverse flow relative to the forward flow and the absolute velocity of the forward flow. Comparison of our results with barchan dunes within Proctor Crater enable us to qualitatively estimate the wind strength and direction related to dune formation on Mars. These results are in agreement with those of Fenton et al. [Fenton, L.K., Toigo, A.D., Richardson, M.I., 2005. Aeolian processes in Proctor Crater on Mars: Mesoscale modeling of dune-forming winds. Journal of Geophysical Research 110 (E6), E06005.].

  5. Lava heating and loading of ice sheets on early Mars: Predictions for meltwater generation, groundwater recharge, and resulting landforms

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.

    2016-06-01

    Recent modeling studies of the early Mars climate predict a predominantly cold climate, characterized by the formation of regional ice sheets across the highland areas of Mars. Formation of the predicted "icy highlands" ice sheets is coincident with a peak in the volcanic flux of Mars involving the emplacement of the Late Noachian - Early Hesperian ridged plains unit. We explore the relationship between the predicted early Mars "icy highlands" ice sheets, and the extensive early flood volcanism to gain insight into the surface conditions prevalent during the Late Noachian to Early Hesperian transition period. Using Hesperia Planum as a type area, we develop an ice sheet lava heating and loading model. We quantitatively assess the thermal and melting processes involved in the lava heating and loading process following the chronological sequence of lava emplacement. We test a broad range of parameters to thoroughly constrain the lava heating and loading process and outline predictions for the formation of resulting geological features. We apply the theoretical model to a study area within the Hesperia Planum region and assess the observed geology against predictions derived from the ice sheet lava heating and loading model. Due to the highly cratered nature of the Noachian highlands terrain onto which the volcanic plains were emplaced, we predict highly asymmetrical lava loading conditions. Crater interiors are predicted to accumulate greater thicknesses of lava over more rapid timescales, while in the intercrater plains, lava accumulation occurs over longer timescales and does not reach great thicknesses. We find that top-down melting due to conductive heat transfer from supraglacial lava flows is generally limited when the emplaced lava flows are less than ∼10 m thick, but is very significant at lava flow thicknesses of ∼100 m or greater. We find that bottom-up cryosphere and ice sheet melting is most likely to occur within crater interiors where lavas accumulate to a sufficient thickness to raise the ice-melting isotherm to the base of the superposed lavas. In these locations, if lava accumulation occurs rapidly, bottom-up melting of the ice sheet can continue, or begin, after lava accumulation has completed in a process we term "deferred melting". Subsurface mass loss through melting of the buried ice sheets is predicted to cause substantial subsidence in the superposed lavas, leading to the formation of associated collapse features including fracture systems, depressions, surface faulting and folding, wrinkle-ridge formation, and chaos terrain. In addition, if meltwater generated from the lava heating and loading process becomes trapped at the lava flow margins due to the presence of impermeable confining units, large highly pressurized episodic flooding events could occur. Examination of the study area reveals geological features which are generally consistent with those predicted to form as a result of the ice sheet lava heating and loading process, suggesting the presence of surface snow and ice during the Late Noachian to Early Hesperian period.

  6. Lunar and Planetary Science Conference, 15th, Houston, TX, March 12-16, 1984, Proceedings. Part 2

    NASA Technical Reports Server (NTRS)

    Ryder, G. (Editor); Schubert, G. (Editor)

    1985-01-01

    Subjects of lunar petrology are discussed, taking into account Apollo 14 aluminous mare basalts and their possible relationship to KREEP, the petrology and geochemistry of clasts from consortium breccia, the depths of the mare basalt source region, the origin of olivine at Copernicus, a transient heating event in the history of a highlands troctolite from Apollo 12 soil, and the composition and evolution of the lunar crust in the Descartes highlands. Other topics explored are related to early earth and magmatic processes, differentiated meteorites, chondritic meteorites, other planets and remote sensing, and cratering. Attention is given to the gravity field of Venus at constant altitude and comparison with earth, a spectral analog of Martian soil, dark halo craters and the thickness of grooved terrain on Ganymede, the geomorphology of Rhea, a Monte Carlo model of lunar megaregolith development, the scaling of complex craters, crustal radiogenic heat production and the selective survival of ancient continental crust, and the formation of an impact-generated H2O atmosphere and its implications for the early thermal history of the earth.

  7. Experimental impact cratering provides ground truth data for understanding planetary-scale collision processes

    NASA Astrophysics Data System (ADS)

    Poelchau, Michael H.; Deutsch, Alex; Kenkmann, Thomas

    2013-04-01

    Impact cratering is generally accepted as one of the primary processes that shape planetary surfaces in the solar system. While post-impact analysis of craters by remote sensing or field work gives many insights into this process, impact cratering experiments have several advantages for impact research: 1) excavation and ejection processes can be directly observed, 2) physical parameters of the experiment are defined and can be varied, and 3) cratered target material can be analyzed post-impact in an unaltered, uneroded state. The main goal of the MEMIN project is to comprehensively quantify impact processes by conducting a stringently controlled experimental impact cratering campaign on the meso-scale with a multidisciplinary analytical approach. As a unique feature we use two-stage light gas guns capable of producing impact craters in the decimeter size-range in solid rocks that, in turn, allow detailed spatial analysis of petrophysical, structural, and geochemical changes in target rocks and ejecta. In total, we have carried out 24 experiments at the facilities of the Fraunhofer EMI, Freiburg - Germany. Steel, aluminum, and iron meteorite projectiles ranging in diameter from 2.5 to 12 mm were accelerated to velocities ranging from 2.5 to 7.8 km/s. Targets were solid rocks, namely sandstone, quartzite and tuff that were either dry or saturated with water. In the experimental setup, high speed framing cameras monitored the impact process, ultrasound sensors were attached to the target to record the passage of the shock wave, and special particle catchers were positioned opposite of the target surface to capture the ejected target and projectile material. In addition to the cratering experiments, planar shock recovery experiments were performed on the target material, and numerical models of the cratering process were developed. The experiments resulted in craters with diameters up to 40 cm, which is unique in laboratory cratering research. Target porosity exponentially reduces crater volumes and cratering efficiency relative to non-porous rocks, and also yields less steep ejecta angles. Microstructural analysis of the subsurface shows a zone of pervasive grain crushing and pore space reduction. This is in good agreement with new mesoscale numerical models, which are able to quantify localized shock pressure behavior in the target's pore space. Planar shock recovery experiments confirm these local pressure excursions, based on microanalysis of shock metamorphic features in quartz. Saturation of porous target rocks with water counteracts many of the effects of porosity. Post-impact analysis of projectile remnants shows that during mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co. We plan to continue evaluating the experimental results in combination with numerical models. These models help to quantify and evaluate cratering processes, while experimental data serve as benchmarks to validate the improved numerical models, thus helping to "bridge the gap" between experiments and nature. The results confirm and expand current crater scaling laws, and make an application to craters on planetary surfaces possible.

  8. Icy Islands reveal similar volatile behavior on Pluto and Mars

    NASA Astrophysics Data System (ADS)

    Sori, M.; Bapst, J.; Byrne, S.

    2017-12-01

    Ice deposits on planetary surfaces may hold paleoclimate records and elucidate important geologic processes involving volatiles, atmospheres, topography, and climate. Sputnik Planitia on Pluto and the well-studied north and south polar layered deposits (NPLD and SPLD) of Mars are examples. Ice peripheral to these main deposits may be even more sensitive to climatic changes. At northern martian latitudes, 18 outlying H2O ice mounds have previously been mapped within impact craters (Fig. 1a) near the NPLD. Here, we use remote sensing observations from New Horizons and Mars orbital spacecraft to study similar features in craters near Sputnik Planitia and the SPLD. We identify tens of outlying topographic mounds in craters near the SPLD (Fig. 1b) and five bright albedo features in craters near Sputnik Planitia (Fig. 1c). We assess the possibility that these deposits are analogous to the H2O ice mounds at northern martian polar latitudes. The southern martian deposits are physically diverse, but always include convex topography and host craters >15 km in diameter. We interpret at least some of them to be composed of H2O ice like their northern counterparts. The five features on Pluto are located in similarly sized craters and have corresponding spectral detections of N2 ice. One (Fig. 1c) has topography very similar to martian ice mounds, including a convex shape up to 160 m thick. We conclude it is an N2 ice mound, equivalent to Mars' H2O ice mounds in that crater topography provides a favorable microclimate for volatiles. The mound may preserve a paleoclimate record that would be erased in Sputnik Planitia by convection. Using a finite element model, we estimate flow velocities of this N2 ice mound to be 1 cm/yr, implying it may be younger than the other four which could have topography subdued by viscous relaxation. We compare the properties and possible formation mechanisms of these features to test the hypothesis that Pluto's ice cycle is similar to Mars' in certain periods of its orbital history. Figure 1. THEMIS images of ice mounds in the martian craters (a) Louth and (b) Deseado near the NPLD and SPLD, with extracted MOLA topographic profiles. (c) New Horizons base map of the five outlying volatile deposits in craters on Pluto, with extracted topographic profile from crater 3 and corresponding ice flow simulation.

  9. The Lacustrine Upper Brushy Basin Member of the Morrison Formation, Four Corners Region, Usa: a Lithological and Mineralogical Terrestrial Analog for Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Potter-McIntyre, S. L.; Chan, M. A.; McPherson, B. J.

    2013-12-01

    The upper part of the Jurassic Brushy Basin Member of the Morrison Formation is an iron- and clay-rich volcaniclastic shale deposited in an ephemeral alkaline saline lake system. Sedimentary rocks exposed in Gale Crater consist of similar non-acidic clays, possibly of lacustrine origin. Three primary clastic lithofacies are present in both the Brushy Basin Member and at Gale Crater: silt-/claystone, sandstone, and conglomerate. Both the terrestrial and martian silt-/claystone lithofacies are interpreted as lacustrine depositional environments due to features such as parallel laminated and massive sedimentary structures. Vugs are present in the siltstone/claystone facies on both the Colorado Plateau and at Gale Crater. Fluvial features are also observed in both examples such as cross-bedded sandstones and imbricated conglomerates. Concretions are present in both the Colorado Plateau and Gale Crater units. The vugs in the Brushy Basin Member preserve algal forms with cellular elaboration and are interpreted as charophyte molds. Two distinct suites of elements (1. C, Fe, As, P and, 2. C, S, Se, P) are associated with the microbial fossils and may be potential markers for biosignatures. Vugs at Gale Crater are a potential target to investigate the possibility of preserved microbial (algal) life where early analyses show the presence of the elements capable of supporting life. The Brushy Basin Member is composed predominately of quartz, feldspars, zeolites and altered volcanic ash. The abundant clay minerals in both the terrestrial and martian examples are hypothesized to have formed due to partial alteration of volcanic minerals in alkaline fluid. Similarly, concretions present in the terrestrial unit exhibit a diverse range of mineralogies likely due to alkaline fluid chemistries interacting with reactive volcaniclastic sediments. Terrestrial concretion mineralogy is diverse even within an outcrop or stratigraphic horizon which suggests reactants to precipitate concretions are being sourced from diagenetic micorenvironments. Similar diagenetic microenvironments may be preserved at Gale Crater due to the fine-grained, volcaniclastic (reactive) rocks. The Brushy Basin Member is a valuable analog because comparative iron-and clay-rich compositions help to: 1) understand diagenetic processes in a non-acidic, saline lacustrine environment, 2) document specific sedimentary structures and lithofacies associations to interpret depositional environment, 3) document specific biomediated features (e.g., textures, morphologies, chemistries), and 4) demonstrate how these features might persist or respond to diagenesis over time.

  10. The Transition from Complex Crater to Peak-Ring Basin on the Moon: New Observations from the Lunar Orbiter Laser Altimeter (LOLA) Instrument

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.

    2012-01-01

    Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.

  11. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    NASA Astrophysics Data System (ADS)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form craters in a geologic instant. The question examined in this manuscript is how fast these craters erode after their formation. To simplify the problem, we examined craters of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of craters on both bodies that met these criteria. Our results suggest that craters on Mercury become shallower much more quickly than craters on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..131K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..131K"><span>Timing and Distribution of Single-Layered Ejecta Craters Imply Sporadic Preservation of Tropical Subsurface Ice on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirchoff, Michelle R.; Grimm, Robert E.</p> <p>2018-01-01</p> <p>Determining the evolution of tropical subsurface ice is a key component to understanding Mars's climate and geologic history. Study of an intriguing crater type on Mars—layered ejecta craters, which likely form by tapping subsurface ice—may provide constraints on this evolution. Layered ejecta craters have a continuous ejecta deposit with a fluidized-flow appearance. Single-layered ejecta (SLE) craters are the most common and dominate at tropical latitudes and therefore offer the best opportunity to derive new constraints on the temporal evolution of low-latitude subsurface ice. We estimate model formation ages of 54 SLE craters with diameter (<fi>D</fi>) ≥ 5 km using the density of small, superposed craters with <fi>D</fi> < 1 km on their continuous ejecta deposits. These model ages indicate that SLE craters have formed throughout the Amazonian and at a similar rate expected for all Martian craters. This suggests that tropical ice has remained at relatively shallow depths at least where these craters formed. In particular, the presence of equatorial SLE craters with <fi>D</fi> 1 km indicates that ice could be preserved as shallow as 100 m or less at those locations. Finally, there is a striking spatial mixing in an area of highlands near the equator of layered and radial (lunar-like ballistic) ejecta craters; the latter form where there are insufficient concentrations of subsurface ice. This implies strong spatial heterogeneity in the concentration of tropical subsurface ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V31C3107Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V31C3107Y"><span>Similarities Across Mars: Acidic Fluids at Both Meridiani Planum and Gale Crater in the Formation of Magnesium-Nickel Sulfates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yen, A. S.; Ming, D. W.; Gellert, R.; Mittlefehldt, D. W.; Vaniman, D. T.; Thompson, L. M.; Morris, R. V.; Clark, B. C.; Arvidson, R. E.</p> <p>2016-12-01</p> <p>In-situ identification of sulfates at the martian surface by the Mars Exploration Rovers and the Mars Science Laboratory have included calcium sulfates with various states of hydration (gypsum, bassanite, anhydrite), iron sulfates of likely fumarolic origin, massive deposits of iron hydroxysulfates indicative of an acidic history, and minor occurrences of magnesium sulfates. Recent measurements by the Opportunity and Curiosity Alpha Particle X-ray Spectrometers (APXS) have indicated the presence of Ni-substituted Mg-sulfates at the Meridiani Planum and Gale Crater landing sites. The Opportunity rover has traversed nearly 43 km and is currently exploring the impact breccias of the rim of Endeavour crater, near a location where signatures of aqueous alteration have been established from orbit. APXS analyses of subsurface materials excavated by a rover wheel show clear evidence for a Mg(Ni)-sulfate with Mg:Ni 100:1 (molar). On the other side of the planet, Curiosity is continuing its climb up Mount Sharp after driving 13 km since landing. Over the last 4 km of the traverse, there have been multiple chemical analyses of erosionally-resistant nodules and dendritic features in a finely laminated mudstone unit which also indicate Mg(Ni)-sulfate (Mg:Ni 30:1, molar). The geologic settings for the Endeavour rim and the Mount Sharp mudstones are clearly different, but similar formation conditions for these sulfates may be possible. Ni(2+) readily substitutes for Mg(2+) in a variety of geochemical processes due to their comparable ionic radii. The availability of soluble Ni at the time of Mg-sulfate precipitation suggests acidic solutions. The fluids responsible for alteration in the Endeavour rim and for the formation of nodules in Gale mudstones may have had similar chemical characteristics at the time the Mg-sulfates were formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040031718','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040031718"><span>Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Foster, John E.</p> <p>2004-01-01</p> <p>Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987JMatS..22.3361S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987JMatS..22.3361S"><span>Investigation of laser irradiation of WC-Co cemented carbides inside a scanning electron microscope (LASEM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultrich, B.; Wetzig, K.</p> <p>1987-09-01</p> <p>A combination of SEM and laser enables direct observation of structural modifications by a high-energy input. With this new device, melting phenomena and fracture processes in a WC-6 percent Co hard metal were investigated. The first laser pulse leads to melting of a thin surface layer with the formation of blisters and craters. Cracking is induced by the relaxation of compressive surface stresses during the high-temperature stage and the appearance of tensile stresses during cooling. Besides crack formation and extension, complete welding of crack surfaces was observed after repeated laser irradiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034314','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034314"><span>Mars: the evolutionary history of the northern lowlands based on crater counting and geologic mapping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Werner, S.C.; Tanaka, K.L.; Skinner, J.A.</p> <p>2011-01-01</p> <p>The geologic history of planetary surfaces is most effectively determined by joining geologic mapping and crater counting which provides an iterative, qualitative and quantitative method for defining relative ages and absolute model ages. Based on this approach, we present spatial and temporal details regarding the evolution of the Martian northern plains and surrounding regions. The highland–lowland boundary (HLB) formed during the pre-Noachian and was subsequently modified through various processes. The Nepenthes Mensae unit along the northern margins of the cratered highlands, was formed by HLB scarp-erosion, deposition of sedimentary and volcanic materials, and dissection by surface runoff between 3.81 and 3.65 Ga. Ages for giant polygons in Utopia and Acidalia Planitiae are ~ 3.75 Ga and likely reflect the age of buried basement rocks. These buried lowland surfaces are comparable in age to those located closer to the HLB, where a much thinner, post-HLB deposit is mapped. The emplacement of the most extensive lowland surfaces ended between 3.75 and 3.4 Ga, based on densities of craters generally View the MathML source> 3 km in diameter. Results from the polygonal terrain support the existence of a major lowland depocenter shortly after the pre-Noachian formation of the northern lowlands. In general, northern plains surfaces show gradually younger ages at lower elevations, consistent local to regional unit emplacement and resurfacing between 3.6 and 2.6 Ga. Elevation levels and morphology are not necessarily related, and variations in ages within the mapped units are found, especially in units formed and modified by multiple geological processes. Regardless, most of the youngest units in the northern lowlands are considered to be lavas, polar ice, or thick mantle deposits, arguing against the ocean theory during the Amazonian Period (younger than about 3.15 Ga). All ages measured in the closest vicinity of the steep dichotomy escarpment are also 3.7 Ga or older. The formation ages of volcanic flanks at the HLB (e.g., Alba Mons (3.6–3.4 Ga) and the last fan at Apollinaris Mons, 3.71 Ga) may give additional temporal constraint for the possible existence of any kind of Martian ocean before about 3.7 Ga. It seems to reflect the termination of a large-scale, precipitation-based hydrological cycle and major geologic processes related to such cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..305...33K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..305...33K"><span>Usability of small impact craters on small surface areas in crater count dating: Analysing examples from the Harmakhis Vallis outflow channel, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kukkonen, S.; Kostama, V.-P.</p> <p>2018-05-01</p> <p>The availability of very high-resolution images has made it possible to extend crater size-frequency distribution studies to small, deca/hectometer-scale craters. This has enabled the dating of small and young surface units, as well as recent, short-time and small-scale geologic processes that have occurred on the units. Usually, however, the higher the spatial resolution of space images is, the smaller area is covered by the images. Thus the use of single, very high-resolution images in crater count age determination may be debatable if the images do not cover the studied region entirely. Here we compare the crater count results for the floor of the Harmakhis Vallis outflow channel obtained from the images of the ConTeXt camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO). The CTX images enable crater counts for entire units on the Harmakhis Vallis main valley, whereas the coverage of the higher-resolution HiRISE images is limited and thus the images can only be used to date small parts of the units. Our case study shows that the crater count data based on small impact craters and small surface areas mainly correspond with the crater count data based on larger craters and more extensive counting areas on the same unit. If differences between the results were founded, they could usually be explained by the regional geology. Usually, these differences appeared when at least one cratering model age is missing from either of the crater datasets. On the other hand, we found only a few cases in which the cratering model ages were completely different. We conclude that the crater counts using small impact craters on small counting areas provide useful information about the geological processes which have modified the surface. However, it is important to remember that all the crater counts results obtained from a specific counting area always primarily represent the results from the counting area-not the whole unit. On the other hand, together with crater count results from extensive counting areas and lower-resolution images, crater counts on small counting areas but by using very high-resolution images is a very valuable tool for obtaining unique additional information about the local processes on the surface units.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22278348','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22278348"><span>Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mackanos, Mark A; Simanovskii, Dmitrii M; Contag, Christopher H; Kozub, John A; Jansen, E Duco</p> <p>2012-11-01</p> <p>Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues. While this wavelength has shown promise for surgical applications, further advances are limited by the high overhead for FEL use. Alternative mid-infrared sources are needed for further development. We compared the FEL with a 5-μs pulse duration with a Q-switched ZGP-OPO with a 100-ns pulse duration at mid-infrared wavelengths. There were no differences in the ablation threshold of water and mouse dermis with these two sources in spite of the difference in their pulse structures. There was a significant difference in crater depth between the ZGP:OPO and the FEL. At 6.1 μm, the OPO craters are eight times the depth of the FEL craters. The OPO craters at 6.45 and 6.73 μm were six and five times the depth of the FEL craters, respectively. Bright-field (pump-probe) images showed the classic ablation mechanism from formation of a plume through collapse and recoil. The crater formation, ejection, and collapse phases occurred on a faster time-scale with the OPO than with the FEL. This research showed that a ZGP-OPO laser could be a viable alternative to FEL for clinical applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P44B..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P44B..03J"><span>Geomorphological Analysis of Lunar Swirls: Insights from LROC-NAC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jozwiak, L. M.; Blewett, D. T.</p> <p>2017-12-01</p> <p>The enigmatic features known as lunar swirls are a set of high-reflectance, sinuous features observed in both mare and highland settings, and often associated with crustal magnetic anomalies. There are several hypotheses for the formation of swirls, including atypical space weathering resulting from solar wind stand-off, disruption of regolith structure and imposition of a magnetic field associated with recent cometary impacts, and levitation and magnetic sorting of fine-grained dust. Investigations utilizing data from Diviner and Mini-RF suggest that, at the scales sensed by the instruments, regolith in swirl regions is indistinguishable from regolith in non-swirl regions. We have used data from the LRO Camera-Narrow Angle Camera to study the structure of lunar swirls, and explore whether the high-reflectance material associated with lunar swirls represents a discrete deposit. We assessed the populations of impact craters with diameter greater than 1 km on the Reiner Gamma swirl and on a nearby region of lunar mare located on the same lava flow unit, and determined that the crater populations suggest that the presence of the swirl does not affect the background impact crater population. We also investigated whether small (D < 0.5 km) superposed impact craters showed evidence for excavation of material from beneath a hypothetical surficial swirl deposit. Investigating the swirls located at Reiner Gamma, Mare Ingenii, Mare Marginis, and the crater Gerasimovich and adjacent non-swirl regions, we observed high-reflectance ejecta deposits whose morphology and degradation are consistent with space weathering processes. We further observe the relative proportion of these high-reflectance excavations to be greater in the swirl regions, suggesting a qualitatively slower space weathering process in these regions. In all regions, we also observed the excavation of low-reflectance material distributed in the ejecta deposit of superposed craters with a wide range of diameters, and a wide range of distribution patterns. We also observe these dark materials in non-swirl regions, suggesting they are not unique to the swirl environment. Our investigations are consistent with the atypical space weathering hypothesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002037','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002037"><span>Hydrological Modeling of the Jezero Crater Outlet-Forming Flood</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fassett, C. I.; Goudge, T. A.</p> <p>2017-01-01</p> <p>Abundant evidence exists for lakes on Mars both from orbital observations [e.g., 1-3] and in situ exploration [e.g., 4-5]. These lakes can be divided into two classes: those that were hydrologically closed, so their source valley(s) terminated at the basin [3], and those that were hydrologically open, where there was sufficient flow from inlet valley(s) to cause the lake to breach and form an outlet valley [2]. It is easier to be confident from orbital data alone that a standing body of water must have existed in open basins, because there is no other way for their perched outlet valleys to form. The majority of basins fed by valley networks, rather than by isolated inlet valleys, are open [6], with some important exceptions (e.g., Gale Crater). Jezero crater (Fig. 1) is one of the most well-studied open basin paleolakes on Mars, with a breach that re-mains well above the lowest part of the crater floor, and two sedimentary fans at its northwestern margin that are likely deltaic in origin [7-9]. CRISM observations of these sediments indicate they host a variety of alteration minerals [9-11], including smectite and carbonate, and both the mineralogy of the sediments and their settings suggest they have a strong potential for preserving organic materials [10]. As a result, Jezero is a strong candidate landing site for the Mars 2020 rover. Approximate formative discharges have been estimated for its well-preserved western fan (Q approximately 500m3/s) [7], but to our knowledge, no estimates for the dis-charges associated with formation and incision of its outlet valley have been presented. Indeed, only a few studies [e.g., 12-14] have attempted to reconstruct the formation of outlet breaches broadly similar to Jezero anywhere on Mars, despite the apparent commonality of basins with large outlets [e.g., 2]. The outlet valley formed as a dam breach when the lake overflowed. In such an event, the growth and incision of the breach is directly coupled to flood discharge. In the case of Jezero, the discharge through the breach eventually lacked the energy needed to erode through the dam further, preventing complete drainage of the lake. After the initial flood, further incision can take place if additional water flows into, and thus out of, the hydrologically open lake, though the rate of this erosion occurs under more typical fluvial conditions. Despite this qualitative understanding of the process, it is useful to explore numerically what range of model parameters are potentially consistent with obser-vations of the outlet. We ultimately seek to address questions that include: (1) What was the flood hydro-graph?, (2) What sediment transport processes were involved and what can we infer about the erosion process? (3) Can most or all of the Jezero outlet's morphology be explained as a consequence of catastrophic formation, or is additional longer-term erosion required?</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050173952','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050173952"><span>A High-Sensitivity Broad-Band Seismic Sensor for Shallow Seismic Sounding of the Lunar Regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pike, W. Thomas; Standley, Ian M.; Banerdt, W. Bruce</p> <p>2005-01-01</p> <p>The recently undertaken Space Exploration Initiative has prompted a renewed interest in techniques for characterizing the surface and shallow subsurface (0-10s of meters depth) of the Moon. There are several reasons for this: First, there is an intrinsic scientific interest in the subsurface structure. For example the stratigraphy, depth to bedrock, density/porosity, and block size distribution all have implications for the formation of, and geological processes affecting the surface, such as sequential crater ejecta deposition, impact gardening, and seismic settling. In some permanently shadowed craters there may be ice deposits just below the surface. Second, the geotechnical properties of the lunar surface layers are of keen interest to future mission planners. Regolith thickness, strength, density, grain size and compaction will affect construction of exploration infrastructure in terms of foundation strength and stability, ease of excavation, radiation shielding effectiveness, as well as raw material handling and processing techniques for resource extraction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRE..111.2S08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRE..111.2S08G"><span>Crater gradation in Gusev crater and Meridiani Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grant, J. A.; Arvidson, R. E.; Crumpler, L. S.; Golombek, M. P.; Hahn, B.; Haldemann, A. F. C.; Li, R.; Soderblom, L. A.; Squyres, S. W.; Wright, S. P.; Watters, W. A.</p> <p>2006-01-01</p> <p>The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ~400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P33A4026W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P33A4026W"><span>Fresh Shallow Valleys (FSVs) in Northern Arabia Terra, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, S. A.; Howard, A. D.; Moore, J. M.</p> <p>2014-12-01</p> <p>Fresh Shallow Valleys (FSVs) on Mars are part of a growing inventory of post-Noachian landforms that may be related to late, widespread aqueous activity that occurred during a period once thought to be less favorable for precipitation and runoff. Constraining the source, magnitude, timing and duration of FSVs will provide insight into the mechanism and extent of fluvial activity on Mars and the geologic and climatic environments in which they formed. Unlike the older Noachian-Hesperian valleys that are characterized by integrated, dissected and degraded networks that cover large spatial extents, FSVs are typically narrow, short or discontinuous valleys with low drainage densities. They are generally incised no more than a few decameters, slightly degraded at multi-meter scales, and cluster in the mid-latitudes (35-50° in both hemispheres). A high concentration of FSVs occurs in Northern Arabia Terra (~33°N, 8°E), a Noachian-aged landscape characterized by broad, irregular depressions. Many of the FSVs in this region are 150+ km long and some appear to cross depressions that were likely filled with ice or water at the time of formation. Examples of broad, flat floored FSVs with incised channels could either indicate a complex history of a single flow event or multiple flow events. The occurrence of "pollywogs," fairly fresh, small (typically 2-10 km in diameter) craters with a single channel extending from the rim outward, implies overflow of the crater, the presence of a deep lake and the involvement of artesian groundwater flow. Roughly 25% of the FSVs in our northern Arabia Terra study region occur on relatively fresh crater ejecta, which may be related to formation age, topography, surface materials and (or) substrate. Ejecta with dense concentrations of FSVs average 25.5 km in diameter, have more degraded crater interiors, and well developed petal-like ejecta. Ejecta with sparse or no FSVs have radial ejecta with less distinct petals and are associated with smaller craters (16 km and 8 km in diameter, respectively) that have less degraded crater interiors. Crater statistics suggest ejecta with high concentrations of FSVs are relatively older than ejecta with sparse or no FSVs. The crater statistics also suggest the valleys formed in the mid-Hesperian to Early-Amazonian, coeval with the formation of large alluvial fans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995Metic..30..578S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995Metic..30..578S"><span>Impact Crater Identified on the Navajo Nation Near Chinle, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shoemaker, E. M.; Roddy, D. J.; Moore, C. B.; Pfeilsticker, R.; Curley, C. L.; Dunkelman, T.; Kuerzel, K.; Taylor, M.; Shoemaker, C.; Donnelly, P.</p> <p>1995-09-01</p> <p>A small impact crater has been identified about 8 km north of Chinle, Arizona on the Navajo Nation. Preliminary studies show that the crater is elongate in a N-S direction, measuring about 23 by 34 m in diameter, with a depth of about 1.3 m. The impact origin of the crater is identified by its shape, subsurface deformation, and an iron-nickel oxide fragment. We estimate the age to be about 150 to 250 years. The impact site is on the east side of the Chinle Valley at an altitude of 1685 m and is about 2 km east of Chinle Wash. The crater formed on an alluvial surface that slopes gently west toward the Wash. About 2 m of reddish brown alluvial sand and silt of the Jeddito Formation of late Pleistocene age rests on the Petrified Forest Member of the Chinle Formation of late Triassic age. A moderately developed late Pleistocene pedocal soil has developed on the Jeddito. Several thin discontinuous caliche horizons occur at a depth of about 1 m. The caliche horizons provided easily traced markers by which we could delimit the original walls of the crater and recognize deformation along the crater walls. Three trenches were excavated down to the top of the Chinle bedrock: 1) an east- west trench 31 m long across the center of the crater, 2) a north-south trench 13 m long in the north crater rim, and 3) a north-south trench 12 m long in the south crater rim. Excavation width was about 1 m and provided excellent exposures of the subsurface stratigraphy and deformation. The trenches revealed that the original crater was about 23 m wide and 27 m long. The original rim crests have entirely eroded away so that no perceptible raised rim remains. At the center of the crater, the original depth was about 3 m; material washed from the rims now fills the crater floor to a depth of 1.5 m. The crater is symmetrical; however, the deepest part of the original crater lies south of the center and was not reached in the south trench. The east-west trench showed that the initial floor of the crater was scoured down to the Jeddito-Chinle contact across the center of the crater. Some of the Chinle was excavated by impact south of the center, as seen in the trench in the south wall. The original crater walls slope inward about 30 degrees on the east and west sides, about 20 degrees on the north, and about 45 degrees on the south. Beds are dragged up along the east, west, and south walls, but not along the north wall. The deformation is restricted to within about 0.5 m of the wall. From the asymmetry of shape and deformation in the walls, we believe that the impacting body struck at an oblique angle and was traveling from north to south. A small, magnetic, iron oxide fragment, about 1 mm across, was collected from material excavated from the south crater wall area. Analyses of this fragment by electron microprobe detected a significant nickel concentration of 5%. Two senior Navajo women (70-80 year age range) independently remember this crater as being much deeper during their childhood and both suggest that the impact was witnessed 3 to 4 generations ago. Interestingly, many persons in the Navajo community thought that this crater was of impact origin. Additional work is planned, including a broader aerial search for other possible impact sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1893c0007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1893c0007S"><span>Craterlike structures on the laser cut surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shulyatyev, V. B.; Orishich, A. M.</p> <p>2017-10-01</p> <p>Analysis of the laser cut surface morphology remain topical. It is related with the fact that the surface roughness is the main index of the cut quality. The present paper deals with the experimental study of the relatively unstudied type of defects on the laser cut surface, dimples, or craters. According to the measurement results, amount of craters per unit of the laser cut surface area rises as the sheet thickness rises. The crater diameter rises together with the sheet thickness and distance from the upper sheet edge. The obtained data permit concluding that the defects like craters are observed predominantly in the case of thick sheets. The results agree with the hypothesis of crater formation as impact structures resulting from the melt drops getting on the cut channel walls upon separation from the cut front by the gas flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..284..284H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..284..284H"><span>The central uplift of Elorza Crater: Insights into its geology and possible relationships to the Valles Marineris and Tharsis regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopkins, R. T.; Tornabene, L. L.; Osinski, G. R.</p> <p>2017-03-01</p> <p>The majority of hydrated silicate occurrences on Mars are associated with impact craters (Ehlmann et al., 2011; Carter et al., 2013). Three formation mechanisms have been suggested to account for this correlation: (1) aqueous alteration occurred pre-impact, and was subsequently exposed via the impact (pre-impact; Bibring et al., 2006; Ehlmann et al., 2011), (2) heat generated from the impact facilitated the formation of a hydrothermal system, leading to alteration products (syn-impact; e.g. Marzo et al., 2010; Osinski et al., 2013), and/or (3) altered materials were deposited after crater formation, or formed within the crater well after the impact had taken place (post-impact). In this study, we analyze the central uplift of Elorza Crater, a ∼40 km diameter impact crater located ∼300 km north of Valles Marineris. To determine whether hydrated minerals found within the uplift were generated pre-, syn-, or post-impact, we used a data synthesis approach, utilizing High Resolution Imaging Science Experiment (HiRISE), Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Context Camera (CTX), and Thermal Emission Imaging System (THEMIS) imagery. Opaline silica is observed in two locations on the southwestern side of the uplift and is interpreted to have been pre-existing or formed via hydrothermal alteration due to stratigraphic relationships with the overlying impact melt unit. Both Fe/Mg smectite and low-calcium pyroxene (LCP) are found throughout the uplift. Bedrock exposures on the northern wall of Coprates Chasma containing Fe/Mg smectite and LCP suggest an uplifted origin for these units. In all cases, although a pre-existing origin is probable, it is difficult to rule out the possibility of an impact-generated hydrothermal origin. Using the observed stratigraphy exposed in Coprates Chasma and bedrock exposures analyzed in nearby craters, we were able to constrain the pre-impact stratigraphy around Elorza. The near-subsurface consists of Hesperian-aged, discontinuous lava/ash deposits that may be interposed with opaline silica-bearing deposits, overlying Noachian basement consisting of smectite-bearing bedrock and LCP- bearing light-toned fractured bedrock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4407M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4407M"><span>Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John</p> <p>2014-05-01</p> <p>The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016574','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016574"><span>Impact craters on Venus: Initial analysis from Magellan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Phillips, R.J.; Arvidson, R. E.; Boyce, J.M.; Campbell, D.B.; Guest, J.E.; Schaber, G.G.; Soderblom, L.A.</p> <p>1991-01-01</p> <p>Magellan radar images of 15 percent of the planet show 135 craters of probable impact origin. Craters more than 15 km across tend to contain central peaks, multiple central peaks, and peak rings. Many craters smaller than 15 km exhibit multiple floors or appear in clusters; these phenomena are attributed to atmospheric breakup of incoming meteoroids. Additionally, the atmosphere appears to have prevented the formation of primary impact craters smaller than about 3 km and produced a deficiency in the number of craters smaller than about 25 km across. Ejecta is found at greater distances than that predicted by simple ballistic emplacement, and the distal ends of some ejecta deposits are lobate. These characteristics may represent surface flows of material initially entrained in the atmosphere. Many craters are surrounded by zones of low radar albedo whose origin may have been deformation of the surface by the shock or pressure wave associated with the incoming meteoroid. Craters are absent from several large areas such as a 5 million square kilometer region around Sappho Patera, where the most likely explanation for the dearth of craters is volcanic resurfacing, There is apparently a spectrum of surface ages on Venus ranging approximately from 0 to 800 million years, and therefore Venus must be a geologically active planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012230','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012230"><span>Small impact craters in the lunar regolith - Their morphologies, relative ages, and rates of formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, H.J.; Boyce, J.M.; Hahn, D.A.</p> <p>1980-01-01</p> <p>Apparently, there are two types of size-frequency distributions of small lunar craters (???1-100 m across): (1) crater production distributions for which the cumulative frequency of craters is an inverse function of diameter to power near 2.8, and (2) steady-state distributions for which the cumulative frequency of craters is inversely proportional to the square of their diameters. According to theory, cumulative frequencies of craters in each morphologic category within the steady-state should also be an inverse function of the square of their diameters. Some data on frequency distribution of craters by morphologic types are approximately consistent with theory, whereas other data are inconsistent with theory. A flux of crater producing objects can be inferred from size-frequency distributions of small craters on the flanks and ejecta of craters of known age. Crater frequency distributions and data on the craters Tycho, North Ray, Cone, and South Ray, when compared with the flux of objects measured by the Apollo Passive Seismometer, suggest that the flux of objects has been relatively constant over the last 100 m.y. (within 1/3 to 3 times of the flux estimated for Tycho). Steady-state frequency distributions for craters in several morphologic categories formed the basis for estimating the relative ages of craters and surfaces in a system used during the Apollo landing site mapping program of the U.S. Geological Survey. The relative ages in this system are converted to model absolute ages that have a rather broad range of values. The range of values of the absolute ages are between about 1/3 to 3 times the assigned model absolute age. ?? 1980 D. Reidel Publishing Co.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025523','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025523"><span>Possible Juventae Chasma subice volcanic eruptions and Maja Valles ice outburst floods on Mars: Implications of Mars Global surveyor crater densities, geomorphology, and topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chapman, M.G.; Gudmundsson, M.T.; Russell, A.J.; Hare, T.M.</p> <p>2003-01-01</p> <p>This article discusses image, topographic, and spectral data from the Mars Global Surveyor (MGS) mission that provide new information concerning the surface age, geomorphology, and topography of the Juventae Chasma/Maja Valles system. Our study utilizes data from two instruments on board MGS: images from the Mars Orbiter Camera (MOC) and topography from the Mars Orbiter Laser Altimeter (MOLA). Within Maja Valles we can now observe depositional bars with megaripples that unequivocally show catastrophic floods occurred in the channel. Viking impact crater densities indicated the chasma and channel floor areas were all one age (late Hesperian to Amazonian); however, MOC data indicate a marked difference in densities of small craters between Juventae Chasma, Maja Valles, and the channel debouchment area in Chryse Planitia basin. Although other processes may contribute to crater variability, young resurfacing events in the chasma and episodes of recent erosion at Maja Valles channel head may possibly account for the disparate crater densities along the chasma/channel system. Relatively young volcanic eruptions may have contributed to resurfacing; as in Juventae Chasma, a small possible volcanic cone of young dark material is observed. MOC data also indicate previously unknown interior layered deposit mounds in the chasma that indicate at least two periods of mound formation. Finally, MOLA topography shows that the entire floor of the chasma lies at the same elevation as the channel debouchment area in Chryse basin, resulting in a 3-km-high barrier to water flow out of the chasma. Blocked ponded water would rapidly freeze in the current (and likely past) climate of Mars. For catastrophic flow to occur in Maja Valles, some process is required to melt ice and induce floods out of the chasma. We suggest subice volcanic eruption and calculate estimates of water discharges and volumes that these eruptions might have produced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53B1742V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53B1742V"><span>An experimental investigation of the effect of impact generated micro-deformations in Moenkopi and Coconino Sandstone from Meteor Crater, Arizona on subsequent weathering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verma, A.; Bourke, M. C.; Osinski, G.; Viles, H. A.; Blanco, J. D. R.</p> <p>2017-12-01</p> <p>Impact cratering is an important geological process that affects all planetary bodies in our solar system. As rock breakdown plays an important role in the evolution of landforms and sediments, it is important to assess the role of inheritance in the subsequent breakdown of impacted rocks.The shock pressure of several gigapascals generated during the impact can exceed the effective strength of target lithology by three to four orders of magnitude and is responsible for melting, vaporisation, shock metamorphism, fracturing and fragmentation of rocks. Environmental conditions and heterogeneities in rock properties exert an important control in rock breakdown. Similar to other subaerial rocks, impacted rocks are affected by a range of rock breakdown processes. In order to better understand the role of inheritance of the impact on rock breakdown, a rock breakdown experiment was conducted in a simulated environmental cabinet under conditions similar to the arid conditions found at the Meteor Crater site. We sampled Moenkopi and Coconino Sandstone from the Meteor Crater impact site in Arizona. For comparison, samples were also collected at control sites close by that have similar rock formations but did not undergo impact. Several established techniques (X-ray CT, SEM, Equotip, SfM) were used to characterise the rock samples before the environmental cabinet experiments. Our laboratory analysis (XRD, SEM, optical microscopy, X-ray CT) on impacted rock samples from Meteor Crater, show that rock porosity and permeability changes due to compaction and fracturing during impact. There were no high-pressure polymorphs of quartz or glass detected in XRD analysis. We ran the experiments on a total of 28 petrophysically characterised 5x5x5 cm sample blocks of Coconino and Moenkopi Sandstone (24 impacted rocks and 4 non-impacted). The results will be presented at the AGU Fall meeting 2017.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191097','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191097"><span>Fluvial erosion as a mechanism for crater modification on Titan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neish, Catherine D.; Molaro, J. L.; Lora, J. M.; Howard, A.D.; Kirk, Randolph L.; Schenk, P.; Bray, V.J.; Lorenz, R.D.</p> <p>2016-01-01</p> <p>There are few identifiable impact craters on Titan, especially in the polar regions. One explanation for this observation is that the craters are being destroyed through fluvial processes, such as weathering, mass wasting, fluvial incision and deposition. In this work, we use a landscape evolution model to determine whether or not this is a viable mechanism for crater destruction on Titan. We find that fluvial degradation can modify craters to the point where they would be unrecognizable by an orbiting spacecraft such as Cassini, given enough time and a large enough erosion rate. A difference in the erosion rate between the equator and the poles of a factor of a few could explain the latitudinal variation in Titan’s crater population. Fluvial erosion also removes central peaks and fills in central pits, possibly explaining their infrequent occurrence in Titan craters. Although many craters on Titan appear to be modified by aeolian infilling, fluvial modification is necessary to explain the observed impact crater morphologies. Thus, it is an important secondary modification process even in Titan’s drier equatorial regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70128562','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70128562"><span>Characterization of very-long-period seismicity accompanying summit activity at Kīlauea Volcano, Hawai'i: 2007-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dawson, Phillip; Chouet, Bernard</p> <p>2014-01-01</p> <p>Eruptive activity returned to the summit region of Kīlauea Volcano, Hawai'i with the formation of the “Overlook crater” within the Halema'uma'u Crater in March 2008. The new crater continued to grow through episodic collapse of the crater walls and as of late 2013 had grown into an approximately elliptical opening with dimensions of ~ 160 × 215 m extending to a depth of ~ 200 m. Occasional weak explosive events and a persistent gas plume continued to occur through 2013. Lava was first observed in the new crater in September 2008, and through 2009 the lava level remained deep in the crater and was only occasionally observed. Since early 2010 a lava lake with fluctuating level within the Overlook crater has been nearly continuously present, and has reached to within 22 m of the Overlook crater rim. Volcanic activity at Kīlauea Volcano is episodic at all time scales and the characterization of very-long-period seismicity in the band 2–100 s for the years 2007–2013 illuminates a portion of this broad spectrum of volcanic behavior. Three types of very-long-period events have been observed over this time and each is associated with distinct processes. Type 1 events are associated with vigorous degassing and occurred primarily between 2007 and 2009. Type 2 events are associated with rockfalls onto the lava lake and occurred primarily after early 2010. Both of these event types are induced by pressure and momentum changes at the top of the magma column that are transmitted downward to a source centroid ~ 1 km below the northeast corner of the Halema'uma'u Crater where the energy couples to the solid Earth at a geometrical discontinuity in the underlying dike system. Type 3 events are not related to surficial phenomena but are associated with transients in mass transfer that occur within the dike system. Very-long-period tremor has also accompanied the return of eruptive activity, with increasing amplitude associated with hours- to months-long changes in gas emission rates and summit deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012875','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012875"><span>A Comparison of Crater-Size Scaling and Ejection-Speed Scaling During Experimental Impacts in Sand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, J. L. B.; Cintala, M. J.; Johnson, M. K.</p> <p>2014-01-01</p> <p>Non-dimensional scaling relationships are used to understand various cratering processes including final crater sizes and the excavation of material from a growing crater. The principal assumption behind these scaling relationships is that these processes depend on a combination of the projectile's characteristics, namely its diameter, density, and impact speed. This simplifies the impact event into a single point-source. So long as the process of interest is beyond a few projectile radii from the impact point, the point-source assumption holds. These assumptions can be tested through laboratory experiments in which the initial conditions of the impact are controlled and resulting processes measured directly. In this contribution, we continue our exploration of the congruence between crater-size scaling and ejection-speed scaling relationships. In particular, we examine a series of experimental suites in which the projectile diameter and average grain size of the target are varied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760041712&hterms=channels+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dchannels%2Bdistribution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760041712&hterms=channels+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dchannels%2Bdistribution"><span>Distribution of small channels on the Martian surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pieri, D.</p> <p>1976-01-01</p> <p>The distribution of small channels on Mars has been mapped from Mariner 9 images at the 1:5,000,000 scale. The small channels referred to here are small valleys ranging in width from the resolution limit of the Mariner 9 wide-angle images (about 1 km) to about 10 km. The greatest density of small channels occurs in dark cratered terrain. This dark zone forms a broad subequatorial band around the planet. The observed distribution may be the result of decreased small-channel visibility in bright areas due to obscuration by a high albedo dust or sediment mantle. Crater densities within two small-channel segments show crater size-frequency distributions consistent with those of the oldest of the heavily cratered plains units. Such crater densities coupled with the almost exclusive occurrence of small channels in old cratered terrain and the generally degraded appearance of small channels in the high-resolution images (about 100 m) imply a major episode of small-channel formation early in Martian geologic history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001656','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001656"><span>Experimentally Shocked and Altered Basalt: VNIR Spectra of Mars Analog Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, M. S.</p> <p>2017-01-01</p> <p>Major occurrences of hydrous alteration minerals on Mars have been found in Noachian impact craters formed in basaltic targets and detected using visible/near infrared (VNIR) spectroscopy. Until recently phyllosilicates were detected only in craters in the southern hemisphere. However, it has been reported that at least nine craters in the northern plains apparently excavated thick layers of lava and sediment to expose phyllosilicates as well and two Hesperian-aged impact craters, Toro and Majuro, bear evidence of phyllosilicates in the southern highlands. Turner et al. 2015 reported that hydrated minerals were identified in three Amazonian aged complex impact craters, located at 52.42degN, 39.86degE in the Ismenius Lacus quadrangle, at 8.93degN, 141.28degE in Elysium, and within Stokes crater. These discoveries indicate that Mars was globally altered by water throughout its past but do not fully constrain formation conditions for phyllosilicate occurrences which have important implications for the evolution of the surface and biological potential of Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009640','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009640"><span>Brightening and Volatile Distribution Within Shackleton Crater Observed by the LRO Laser Altimeter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, D. E.; Zuber, M. T.; Head, J. W.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Aharonson, O.; Tye, A. R.; Fassett, C. I.; Rosengurg, M. A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120009640'); toggleEditAbsImage('author_20120009640_show'); toggleEditAbsImage('author_20120009640_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120009640_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120009640_hide"></p> <p>2012-01-01</p> <p>Shackleton crater, whose interior lies largely in permanent shadow, is of interest due to its potential to sequester volatiles. Observations from the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter have enabled an unprecedented topographic characterization, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting little floor deposition since crater formation over 3 billion years ago. At 1064 nm the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explainable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a 1-mm-thick layer containing approx 20% surficial ice is an alternative possibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4963536','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4963536"><span>The missing large impact craters on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Marchi, S.; Ermakov, A. I.; Raymond, C. A.; Fu, R. R.; O'Brien, D. P.; Bland, M. T.; Ammannito, E.; De Sanctis, M. C.; Bowling, T.; Schenk, P.; Scully, J. E. C.; Buczkowski, D. L.; Williams, D. A.; Hiesinger, H.; Russell, C. T.</p> <p>2016-01-01</p> <p>Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6–7 such basins. However, Ceres' surface appears devoid of impact craters >∼280 km. Here, we show a significant depletion of cerean craters down to 100–150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing. PMID:27459197</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010045','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010045"><span>Distribution of small channels on the Martian surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pieri, D.</p> <p>1976-01-01</p> <p>The distribution of small channels on Mars has been mapped from Mariner 9 images, at the 1:5 000 000 scale, by the author. The small channels referred to here are small valleys ranging in width from the resolution limit of the Mariner 9 wide-angle images (???1 km) to about 10 km. The greatest density of small band occurs in dark cratered terrain. This dark zone forms a broad subequatorial band around the planet. The observed distribution may be the result of decreased small-channel visibility in bright areas due to obscuration by a high albedo dust or sediment mantle. Crater densities within two small-channel segments show crater size-frequency distributions consistent with those of the oldest of the heavily cratered plains units. Such crater densities coupled with the almost exclusive occurrence of small channels in old cratered terrain and the generally degraded appearance of small channels in the high-resolution images (???100 m) imply a major episode of small-channel formation early in Martian geologic history. ?? 1976.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21908.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21908.html"><span>Axomama Crater on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-10-06</p> <p>This image from NASA's Dawn spacecraft highlights Axomama Crater, the small crater shown to the right of center. It is 3 miles (5 kilometers) in diameter and located just inside the western rim of Dantu Crater. Axomama is one of the newly named craters on Ceres. Its sharp edges indicate recent emplacement by a small impact. This picture also shows details on the floor of Dantu, which comprises most of the image. The many fractures and the central pit (see also PIA20303) are reminiscent of Occator Crater and could point to a similar formation history, involving activity driven by the presence of liquid water in the subsurface. Axomama is named after the Incan goddess of potato, or "Potato-mother." NASA's Dawn spacecraft acquired this picture during its extended mission on July 24, 2016, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 24 degrees north latitude, 131 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21908</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.P12A..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.P12A..06B"><span>One Martian Year of in Situ Chemistry by the APXS on Board the Mars Exploration Rover Opportunity at Meridiani Planum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brueckner, J.; Dreibus, G.; Gellert, R.; Clark, B. C.; Klingelhoefer, G.; Lugmair, G.; Ming, D.; Rieder, R.; Waenke, H.; Yen, A.; Zipfel, J.</p> <p>2005-12-01</p> <p>Two in-situ instruments, the Alpha Particle X-ray Spectrometer (APXS) and the Moessbauer Spectrometer (MB), gathered geochemical and mineralogical data along the traverse of the Mars Exploration Rover Opportunity at Meridiani Planum. Eagle crater, the landing site of the rover, contains undisturbed soils that resemble those at Gusev crater; however, the Fe, Ni, and Cr contents and Fe/Si ratios of Meridiani soils are higher than those of Gusev soils. The enrichment of Fe results from an admixture of the mineral hematite as determined by MB. This mineral occurs as a finely disseminated component of the outcrop rocks as well as in mm- to several mm-sized spherules, nicknamed blueberries, which are spread at the landing site and along the several kilometers traverse to the Erebus crater. The formation of hematite is typically an indicator for aqueous activity under oxidizing conditions. Light-toned layered outcrops were discovered in Eagle crater and later in other craters, as well as along the rover's traverse. Most of these undisturbed rock surfaces have a factor of 2 to 3 higher S concentrations compared to the soils. In Eagle crater, ground rock surfaces (exposed by the Rock Abrasion Tool, or RAT) showed even higher S contents of up to 9.5 weight percent. Assuming all SO3 is bound to Mg and Ca sulfates and, according to MB data, to ferric sulfates, mainly jarosite, these rocks contain about 40 weight percent sulfates. High concentrations of Br were discovered in some soils excavated with the rover wheels and rocks ground with the RAT. The high abundances of S and Br in these rocks point to ancient occurrence of acidified water and the formation of brines, which could have been occasionally evaporated. Small quantities of the hematite-rich spherules (ca. 2 volume percent) were found in the rocks of Eagle crater. The acidic conditions during the formation of the hematitic spherules in the rocks as concretions allowed co-precipitation of Fe2O3 and NiO but no MnO. When the rover was climbing into Endurance crater, a full stratigraphic sequence was measured with APXS and MB. Large enrichments of Cl were not accompanied by Br and S. The major elements varied within small ranges except for lower layers, where Mg is depleted together with S but Si and Al are enriched. Two rocks on the plains, analyzed by APXS and MB, are related to known meteorite classes: 'Bounce Rock' is similar in chemistry and mineralogy to basaltic shergottites, a subgroup of martian meteorites, whereas 'Heat Shield Rock' with high Fe and Ni concentrations is an iron meteorite. On the rover's journey from Endurance crater to Erebus crater, light-toned rocks were encountered whose chemical compositions resemble those of the well-known rocks of Eagle and Endurance craters, indicating that the sulfur-rich deposits occur on a scale exceeding several kilometers, consistent with evidence from orbital spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..298...34S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..298...34S"><span>Relative depths of simple craters and the nature of the lunar regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stopar, Julie D.; Robinson, Mark S.; Barnouin, Olivier S.; McEwen, Alfred S.; Speyerer, Emerson J.; Henriksen, Megan R.; Sutton, Sarah S.</p> <p>2017-12-01</p> <p>We assessed the morphologies of more than 930 simple impact craters (diameters 40 m-10 km) on the Moon using digital terrain models (DTMs) of a variety of terrains in order to characterize the variability of fresh crater morphology as a function of crater diameter. From Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) DTMs, we determined depth-to-diameter (d/D) ratios for an extremely fresh set of these craters with diameters less than 400 m and found that their d/D ratios range from 0.11 to 0.17. Using both NAC and Kaguya Terrain Camera DTMs, we also determined the d/D ratios for the set of fresh simple craters larger than 400 m in diameter. The d/D ratios of these larger craters are typically near 0.21, as expected of gravity-dominated crater excavation. Fresh craters less than ∼400 m in diameter, on the other hand, exhibit significantly lower d/D ratios. Various possible factors affect the morphologies and relative depths (d/D ratios) of small strength-dominated craters, including impactor and target properties (e.g., effective strength, strength contrasts, porosity, pre-existing weaknesses), impact angle and velocity, and degradation state. While impact conditions resulting from secondary impacts can also affect crater morphologies, we found that d/D ratio alone was not a unique discriminator of small secondary craters. To investigate the relative influences of degradation and target properties on the d/D ratios of small strength-dominated craters, we examined a subset of fresh craters located on the geologically young rim deposits of Tycho crater. These craters are deeper and steeper than other craters of similar diameter and degradation state, consistent with their relative freshness and formation in the relatively coherent, melt-rich deposits in this region. The d/D ratios of globally distributed small craters of similar degradation state and size range, on the other hand, are relatively shallow with lower average wall slopes, consistent with crater excavation in a weak or poorly cohesive layer. The widespread predominance of these small, shallow craters is consistent with the pervasive, poorly cohesive upper regolith.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830003740&hterms=mercury+planet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmercury%2Bplanet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830003740&hterms=mercury+planet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmercury%2Bplanet"><span>The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic map analyses: Correlation of geologic and cratering histories. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leake, M. A.</p> <p>1982-01-01</p> <p>Geologic map analyses are expanded, beginning with a discussion of particular regions which may illustrate volcanic and ballistic plains emplacement on Mercury. Major attention is focused on the surface history of Mercury through discussion of the areal distribution of plains and craters and the paleogeologic maps of the first quadrant. A summary of the lunar intercrater plains formation similarly interrelates the information from the Moon's geologic and cratering histories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760061583&hterms=continental+drift&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcontinental%2Bdrift','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760061583&hterms=continental+drift&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcontinental%2Bdrift"><span>The geologic development of Mars - A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mutch, T. A.; Saunders, R. S.</p> <p>1976-01-01</p> <p>The overall view of Mars has changed from earthlike in the prespacecraft era to moonlike following the flyby missions and finally to a planet with intermediate characteristics. There are many impact craters as on the moon, but tectonic and volcanic features resembling structures on earth are also present. However, there is a lack of evidence for the compressional deformation associated with terrestrial plate tectonics and continental drift. Current analyses indicate that Mars has a differentiated interior with a crust and mantle and perhaps a core. Whenever the nature of interior processes, whether overall mantle expansion, plumes, or full-scale convection, the effects at the surface have been predominantly vertical with formation of broad regions of uplift and depression. One of the results is hemispheric asymmetry with cratered terrain in the south and younger uncratered plains in the north.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.U53A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.U53A..03M"><span>Geology of Pluto and Charon Overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, J. M.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.</p> <p>2015-12-01</p> <p>Pluto's surface was found to be remarkably diverse in terms of its range of landforms, terrain ages, and inferred geological processes. There is a latitudinal zonation of albedo. The conspicuous bright albedo heart-shaped feature informally named Tombaugh Regio is comprised of several terrain types. Most striking is Texas-sized Sputnik Planum, which is apparently level, has no observable craters, and is divided by polygons and ovoids bounded by shallow troughs. Small smooth hills are seen in some of the polygon-bounding troughs. These hills could either be extruded or exposed by erosion. Sputnik Planum polygon/ovoid formation hypotheses range from convection to contraction, but convection is currently favored. There is evidence of flow of plains material around obstacles. Mountains, especially those seen south of Sputnik Planum, exhibit too much relief to be made of CH4, CO, or N2, and thus are probably composed of H2O-ice basement material. The north contact of Sputnik Planum abuts a scarp, above which is heavily modified cratered terrain. Pluto's large moon Charon is generally heavily to moderately cratered. There is a mysterious structure in the arctic. Charon's surface is crossed by an extensive system of rift faults and graben. Some regions are smoother and less cratered, reminiscent of lunar maria. On such a plain are large isolated block mountains surrounded by moats. At this conference we will present highlights of the latest observations and analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890001447','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890001447"><span>Crater ejecta morphology and the presence of water on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, P. H.</p> <p>1987-01-01</p> <p>The possible effects of projectile, target, and environment on the cratering process is reviewed. It is suggested that contradictions in interpreting Martian crater ejecta morphologies reflect over simplifying the process as a singular consequence of buried water. It seem entirely possible that most ejecta facies could be produced without the presence of liquid water. However, the combination of extraordinary ejecta fluidity, absence of secondaries, and high ejection angles all would point to the combined effects of atmosphere and fluid rich substrates. Moreover, recent experiments revealing the broad scour zone associated with rapid vapor expansion may account for numerous craters in the circumpolar regions with subtle radial grooving extending 10 crater radii away with faint distal ramparts. Thus certain crater ejecta morphologies may yet provide fundamental clues for the presence of unbound water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA593494','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA593494"><span>Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-01-01</p> <p>DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments 5a...rover mobility [23, 78]. Remote slip prediction will enable safe traversals on large slopes covered with sand, drift material or loose crater ejecta...aqueous processes, e.g., mineral-rich out- crops which imply exposure to water [92] or putative lake formations or shorelines, layered deposits, etc</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030612','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030612"><span>Crater gradation in Gusev crater and Meridiani Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grant, J. A.; Arvidson, R. E.; Crumpler, L.S.; Golombek, M.P.; Hahn, B.; Haldemann, A.F.C.; Li, R.; Soderblom, L.A.; Squyres, S. W.; Wright, S.P.; Watters, W.A.</p> <p>2006-01-01</p> <p>The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ???400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred. Copyright 2006 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P53B2124C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P53B2124C"><span>Morphologic Analysis of Lunar Craters in the Simple-to-Complex Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandnani, M.; Herrick, R. R.; Kramer, G. Y.</p> <p>2015-12-01</p> <p>The diameter range of 15 km to 20 km on the Moon is within the transition from simple to complex impact craters. We examined 207 well preserved craters in this diameter range distributed across the moon using high resolution Lunar Reconnaissance Orbiter Camera Wide Angle Camera Mosaic (WAC) and Narrow Angle Camera (NAC) data. A map of the distribution of the 207 craters on the Moon using the global LROC WAC mosaic has been attahced with the abstract. By examining craters of similar diameter, impact energy is nearly constant, so differences in shape and morphology must be due to either target (e.g., porosity, density, coherence, layering) or impactor (e.g., velocity, density) properties. On the basis of the crater morphology, topographic profiles and depth-diameter ratio, the craters were classified into simple, craters with slumped walls, craters with both slumping and terracing, those containing a central uplift only, those with a central uplift and slumping, and the craters with a central uplift accompanied by both slumping and terracing, as shown in the image. It was observed that simple craters and craters with slumped walls occur predominately on the lunar highlands. The majority of the craters with terraced walls and all classes of central uplifts were observed predominately on the mare. In short, in this size range craters in the highlands were generally simple craters with occasionally some slumped material in the center, and the more developed features (terracing, central peak) were associated with mare craters. This is somewhat counterintuitive, as we expect the highlands to be generally weaker and less consolidated than the mare. We hypothesize that the presence of rheologic layering in the mare may be the cause of the more complex features that we observe. Relatively weak layers in the mare could develop through regolith formation between individual flows, or perhaps by variations within or between the flows themselves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940028685','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940028685"><span>Depth-diameter ratios for Martian impact craters: Implications for target properties and episodes of degradation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, N. G.</p> <p>1993-01-01</p> <p>This study determines crater depth through use of photoclinometric profiles. Random checks of the photoclinometric results are performed using shadow estimation techniques. The images are Viking Orbiter digital format frames; in cases where the digital image is unusable for photoclinometric analysis, shadow estimation is used to determine crater depths. The two techniques provide depth results within 2 percent of each other. Crater diameters are obtained from the photoclinometric profiles and checked against the diameters measured from the hard-copy images using a digitizer. All images used in this analysis are of approximately 40 m/pixel resolution. The sites that have been analyzed to date include areas within Arabia, Maja Valles, Memnonia, Acidalia, and Elysium. Only results for simple craters (craters less than 5 km in diameter) are discussed here because of the low numbers of complex craters presently measured in the analysis. General results indicate that impact craters are deeper than average. A single d/D relationship for fresh impact craters on Mars does not exist due to changes in target properties across the planet's surface. Within regions where target properties are approximately constant, however, d/D ratios for fresh craters can be determined. In these regions, the d/D ratios of nonpristine craters can be compared with the fresh crater d/D relationship to obtain information on relative degrees of crater degradation. This technique reveals that regional episodes of enhanced degradation have occurred. However, the lack of statistically reliable size-frequency distribution data prevents comparison of the relative ages of these events between different regions, and thus determination of a large-scale episode (or perhaps several episodes) cannot be made at this time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..305..314S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..305..314S"><span>Crater relaxation on Titan aided by low thermal conductivity sand infill</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schurmeier, Lauren R.; Dombard, Andrew J.</p> <p>2018-05-01</p> <p>Titan's few impact craters are currently many hundreds of meters shallower than the depths expected. Assuming these craters initially had depths equal to that of similar-size fresh craters on Ganymede and Callisto (moons of similar size, composition, and target lithology), then some process has shallowed them over time. Since nearly all of Titan's recognized craters are located within the arid equatorial sand seas of organic-rich dunes, where rain is infrequent, and atmospheric sedimentation is expected to be low, it has been suggested that aeolian infill plays a major role in shallowing the craters. Topographic relaxation at Titan's current heat flow was previously assumed to be an unimportant process on Titan due to its low surface temperature (94 K). However, our estimate of the thermal conductivity of Titan's organic-rich sand is remarkably low (0.025 W m-1 K-1), and when in thick deposits, will result in a thermal blanketing effect that can aid relaxation. Here, we simulate the relaxation of Titan's craters Afekan, Soi, and Sinlap including thermal effects of various amounts of sand inside and around Titan's craters. We find that the combination of aeolian infill and subsequent relaxation can produce the current crater depths in a geologically reasonable period of time using Titan's current heat flow. Instead of needing to fill completely the missing volume with 100% sand, only ∼62%, ∼71%, and ∼97%, of the volume need be sand at the current basal heat flux for Afekan, Soi, and Sinlap, respectively. We conclude that both processes are likely at work shallowing these craters, and this finding contributes to why Titan overall lacks impact craters in the arid equatorial regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980111118','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980111118"><span>Breccia Formation at a Complex Impact Crater: Slate Islands, Lake Superior, Ontario, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dressler, B. O.; Sharpton, V. L.</p> <p>1997-01-01</p> <p>The Slate Islands impact structure is the eroded remnant of a approximately 30-32 km-diameter complex impact structure located in northern Lake Superior, Ontario, Canada. Target rocks are Archean supracrustal and igneous rocks and Proterozoic metavolcanics, metasediments, and diabase. A wide variety of breccias occurs on the islands, many of which contain fragments exhibiting shock metamorphic features. Aphanitic, narrow and inclusion-poor pseudotachylite veins, commonly with more or less parallel boundaries and apophyses branching off them, represent the earliest breccias formed during the compression stage of the impact process. Coarse-grained, polymictic elastic matrix breccias form small to very large, inclusion-rich dikes and irregularly shaped bodies that may contain altered glass fragments. These breccias have sharp contacts with their host rocks and include a wide range of fragment types some of which were transported over minimum distances of approximately 2 km away from the center of the structure. They cut across pseudotachylite veins and contain inclusions of them. Field and petrographic evidence indicate that these polymictic breccias formed predominantly during the excavation and central uplift stages of the impact process. Monomictic breccias, characterized by angular fragments and transitional contacts with their host rocks, occur in parautochthonous target rocks, mainly on the outlying islands of the Slate Islands archipelago. A few contain fragmented and disrupted, coarse-grained, polymictic clastic matrix breccia dikes. This is an indication that at least some of these monomictic breccias formed late in the impact process and that they are probably related to a late crater modification stage. A small number of relatively large occurrences of glass-poor, suevitic breccias occur at the flanks of the central uplift and along the inner flank of the outer ring of the Slate Islands complex crater. A coarse, glass-free, allogenic breccia, containing shatter-coned fragments derived from Proterozoic target rocks (upper target strata), observed at two locations may be analogous to the 'Bunt Breccia' of the Ries crater in Germany. At one of these locations this breccia lies close to a crater suevite deposit. At the other, it overlies parautochthonous, monomictic breccia. The State Islands impact breccias are superbly exposed, much better than breccias in most other terrestrial impact structures. Observations, including those indicative of multiple and and sequential processes, provide insight on how impact breccias form and how they relate to the various phases of the impact process. Eventually they will lead to an improved understanding of planetary impact processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030675','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030675"><span>Phyllosilicate and sulfate-hematite deposits within Miyamoto crater in Southern Sinus Meridiani, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wiseman, S.M.; Arvidson, R. E.; Andrews-Hanna, J. C.; Clark, R.N.; Lanza, N.L.; des Marais, D.; Marzo, G.A.; Morris, R.V.; Murchie, S.L.; Newsom, Horton E.; Noe Dobrea, E.Z.; Ollila, A.M.; Poulet, F.; Roush, T.L.; Seelos, F.P.; Swayze, G.A.</p> <p>2008-01-01</p> <p>Orbital topographic, image, and spectral data show that sulfate- and hematite-bearing plains deposits similar to those explored by the MER rover Opportunity unconformably overlie the northeastern portion of the 160 km in diameter Miyamoto crater. Crater floor materials exhumed to the west of the contact exhibit CRISM and OMEGA NIR spectral signatures consistent with the presence of Fe/Mg-rich smectite phyllosilicates. Based on superposition relationships, the phyllosilicate-bearing deposits formed either in-situ or were deposited on the floor of Miyamoto crater prior to the formation of the sulfate-rich plains unit. These findings support the hypothesis that neutral pH aqueous conditions transitioned to a ground-water driven acid sulfate system in the Sinus Meridiani region. The presence of both phyllosilicate and sulfate- and hematite-bearing deposits within Miyamoto crater make it an attractive site for exploration by future rover missions. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050201864','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050201864"><span>Characteristics of Impact Craters and Interior Deposits: Analysis of the Spatial and Temporal Distribution of Volatiles in the Highlands of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mest, S. C.</p> <p>2005-01-01</p> <p>The martian southern highlands contain impact craters that display pristine to degraded morphologies, and preserve a record of degradation that can be attributed to fluvial, eolian, mass wasting, volcanic and impact-related processes. However, the relative degree of modification by these processes and the amounts of material contributed to crater interiors are not well constrained. Impact craters (D>10 km) within Terra Cimmeria (0deg-60degS, 190deg-240degW), Terra Tyrrhena (0deg-30degS, 260deg-310degW) and Noachis Terra (20deg-50degS, 310deg-340degW) are being examined to better understand the degradational history and evolution of highland terrains. The following scientific objectives will be accomplished. 1) Determine the geologic processes that modified impact craters (and surrounding highland terrains). 2) Determine the sources (e.g. fluvial, lacustrine, eolian, mass wasting, volcanic, impact melt) and relative amounts of material composing crater interior deposits. 3) Document the relationships between impact crater degradation and highland fluvial systems. 4) Determine the spatial and temporal relationships between degradational processes on local and regional scales. And 5) develop models of impact crater (and highland) degradation that can be applied to these and other areas of the martian highlands. The results of this study will be used to constrain the geologic, hydrologic and climatic evolution of Mars and identify environments in which subsurface water might be present or evidence for biologic activity might be preserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03766&hterms=dry+eyes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddry%2Beyes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03766&hterms=dry+eyes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddry%2Beyes"><span>Medusae Fossae Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>(Released 10 April 2002) The Science This THEMIS visible image was acquired near 7o S, 172o W (188o E) and shows a remarkable martian geologic deposit known as the Medusae Fossae Formation. This Formation, seen here as the raised plateau in the upper two-thirds of the image, is a soft, easily eroded deposit that extends for nearly 1,000 km along the equator of Mars. In this region the deposit has been heavily eroded by the wind to produce a series of linear ridges called yardangs. These parallel ridges point in direction of the prevailing winds that carved them, and demonstrate the power of martian winds to sculpt the dry landscape of Mars. The Medusae Fossae Formation has been completely stripped from the surface in the lower third of the image, revealing a harder layer below that is more resistant to wind erosion. The easily eroded nature of the Medusae Fossae Formation suggests that it is composed of weakly cemented particles, and was most likely formed by the deposition of wind-blown dust or volcanic ash. Several ancient craters that were once completely buried by this deposit are being exposed, or exhumed, as the overlying Medusae Formation is removed. Very few impact craters are visible on this Formation, indicating that the surface seen today is relatively young, and that the processes of erosion are likely to be actively occurring. The Story Medusa of Greek mythology fame, the name-giver to this region, had snaky locks of hair that could turn a person to stone. Wild and unruly, this monster of the underworld could certainly wreak havoc on the world of the human imagination. As scary as she was, Medusa would have no advantage over the fierce, masterful winds blowing across Mars, which once carved the streaky, terrain at the top of this image. Wild and whipping, these winds have slowly eroded away the 'topsoil,' revealing ancient craters and other surface features they once covered. The loosely cemented particles of this 'topsoil' are likely made up of dust or volcanic ash, and are thus more susceptible to windblown erosion. The Martian winds have actually been strong and relentless enough over time to strip the land in the bottom of this image of the material that once covered it, leaving it hard and bare to the eye.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740040073&hterms=Descartes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DDescartes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740040073&hterms=Descartes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DDescartes"><span>Apollo 16 soils - Grain size analyses and petrography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heiken, G. H.; Mckay, D. S.; Fruland, R. M.</p> <p>1973-01-01</p> <p>Soils from South Ray Crater, North Ray Crater, and the interray area of Station 10 have a similar provenance, containing breccia fragments of low to medium metamorphic grade and low light/dark lithic fragment ratios; these appear to be characteristic of the Cayley Formation. The primary difference between soils possibly derived from North Ray and South Ray craters is in the agglutinate content. A soil from Stone Mountain (Station 4) is characterized by breccia fragments of medium to high metamorphic grade and a high light/dark lithic fragment ratio; this soil may be derived from the Descartes Formation. Differences between the selenomorphic units, the Descartes and Cayley formations, may be lithologic as well as structural. The mean grain size varies from 84 to 280 microns, and all of the samples are poorly to very poorly sorted. There appears to be a relation between the sorting, grain size, and agglutinate content, with the finer-grained, better sorted soils containing more than 30% agglutinates. 'Shadowed' soils, collected close to large boulders, are similar in all respects to the 'reference' soils collected at least 5 m from the boulders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28033464','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28033464"><span>An All-Organic Composite System for Resistive Change Memory via the Self-Assembly of Plastic-Crystalline Molecules.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cha, An-Na; Lee, Sang-A; Bae, Sukang; Lee, Sang Hyun; Lee, Dong Su; Wang, Gunuk; Kim, Tae-Wook</p> <p>2017-01-25</p> <p>An all-organic composite system was introduced as an active component for organic resistive memory applications. The active layer was prepared by mixing a highly polar plastic-crystalline organic molecule (succinonitrile, SN) into an insulating polymer (poly(methyl methacrylate), PMMA). As increasing concentrations of SN from 0 to 3.0 wt % were added to solutions of different concentrations of PMMA, we observed distinguishable microscopic surface structures on blended films of SN and PMMA at certain concentrations after the spin-casting process. The structures were organic dormant volcanos composed of micron-scale PMMA craters and disk type SN lava. Atomic force microscopy (AFM), cross-sectional transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometer (EDX) analysis showed that these structures were located in the middle of the film. Self-assembly of the plastic-crystalline molecules resulted in the phase separation of the SN:PMMA mixture during solvent evaporation. The organic craters remained at the surface after the spin-casting process, indicative of the formation of an all-organic composite film. Because one organic crater contains one SN disk, our system has a coplanar monolayer disk composite system, indicative of the simplest composite type of organic memory system. Current-voltage (I-V) characteristics of the composite films with organic craters revealed that our all-organic composite system showed unipolar type resistive switching behavior. From logarithmic I-V characteristics, we found that the current flow was governed by space charge limited current (SCLC). From these results, we believe that a plastic-crystalline molecule-polymer composite system is one of the most reliable ways to develop organic composite systems as potential candidates for the active components of organic resistive memory applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21715755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21715755"><span>From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Norris, Scott A; Brenner, Michael P; Aziz, Michael J</p> <p>2009-06-03</p> <p>We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2734344','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2734344"><span>Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Head, James W.; Marchant, David R.; Kreslavsky, Mikhail A.</p> <p>2008-01-01</p> <p>Features seen in portions of a typical midlatitude Martian impact crater show that gully formation follows a geologically recent period of midlatitude glaciation. Geological evidence indicates that, in the relatively recent past, sufficient snow and ice accumulated on the pole-facing crater wall to cause glacial flow and filling of the crater floor with debris-covered glaciers. As glaciation waned, debris-covered glaciers ceased flowing, accumulation zones lost ice, and newly exposed wall alcoves continued as the location for limited snow/frost deposition, entrapment, and preservation. Analysis of the insolation geometry of this pole-facing crater wall, and similar occurrences in other craters at these latitudes on Mars, shows that they are uniquely favored for accumulation of snow and ice, and a relatively more rapid exposure to warmer summer temperatures. We show that, after the last glaciation, melting of residual snow and ice in alcoves could have formed the fluvial channels and sedimentary fans of the gullies. Recent modeling shows that top-down melting can occur in these microenvironments under conditions similar to those currently observed on Mars, if small amounts of snow or frost accumulate in alcoves and channels. Accumulation and melting is even more favored in the somewhat wetter, relatively recent geological past of Mars, after the period of active glaciation. PMID:18725636</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B23A2053A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B23A2053A"><span>Numerical simulation of turbulent flows over crater-like obstacles: application to Gale crater, landing site of the Curiosity rover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, W.; Day, M. D.</p> <p>2017-12-01</p> <p>Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the dominant mode of landscape variability on the dessicated landscapes of Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater, with the rover journeying across an inner plan and towards Gale's central mound, Aeolus Mons). These mounds are composed of sedimentary fill, and, therefore, they contain rich information on the evolution of climatic conditions on Mars embodied in the stratigraphic "layering" of sediments. Many other craters no longer house a mound, but contain sediment and dust from which dune fields and other features form. Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This insight was gained using three-dimensional datasets (momentum, vorticity, and turbulent stresses) retrieved from LES, and assessment of the relative influence of constituent terms responsible for the sustenance of mean vorticity. The helical, counter-rotating vortices occupy the inner region of the crater, and, therefore, are argued to be of great importance for aeolian morphodynamics in the crater (radial katabatic flows are also important to aeolian processes within the crater).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..256...78K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..256...78K"><span>Dione's resurfacing history as determined from a global impact crater database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirchoff, Michelle R.; Schenk, Paul</p> <p>2015-08-01</p> <p>Saturn's moon Dione has an interesting and unique resurfacing history recorded by the impact craters on its surface. In order to further resolve this history, we compile a crater database that is nearly global for diameters (D) equal to and larger than 4 km using standard techniques and Cassini Imaging Science Subsystem images. From this database, spatial crater density maps for different diameter ranges are generated. These maps, along with the observed surface morphology, have been used to define seven terrain units for Dione, including refinement of the smooth and "wispy" (or faulted) units from Voyager observations. Analysis of the terrains' crater size-frequency distributions (SFDs) indicates that: (1) removal of D ≈ 4-50 km craters in the "wispy" terrain was most likely by the formation of D ≳ 50 km craters, not faulting, and likely occurred over a couple billion of years; (2) resurfacing of the smooth plains was most likely by cryovolcanism at ∼2 Ga; (3) most of Dione's largest craters (D ⩾ 100 km), including Evander (D = 350 km), may have formed quite recently (<2 Ga), but are still relaxed, indicating Dione has been thermally active for at least half its history; and (4) the variation in crater SFDs at D ≈ 4-15 km is plausibly due to different levels of minor resurfacing (mostly subsequent large impacts) within each terrain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890008969','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890008969"><span>Absolute ages from crater statistics: Using radiometric ages of Martian samples for determining the Martian cratering chronology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Neukum, G.</p> <p>1988-01-01</p> <p>In the absence of dates derived from rock samples, impact crater frequencies are commonly used to date Martian surface units. All models for absolute dating rely on the lunar cratering chronology and on the validity of its extrapolation to Martian conditions. Starting from somewhat different lunar chronologies, rather different Martian cratering chronologies are found in the literature. Currently favored models are compared. The differences at old ages are significant, the differences at younger ages are considerable and give absolute ages for the same crater frequencies as different as a factor of 3. The total uncertainty could be much higher, though, since the ratio of lunar to Martian cratering rate which is of basic importance in the models is believed to be known no better than within a factor of 2. Thus, it is of crucial importance for understanding the the evolution of Mars and determining the sequence of events to establish an unambiguous Martian cratering chronology from crater statistics in combination with clean radiometric ages of returned Martian samples. For the dating goal, rocks should be as pristine as possible from a geologically simple area with a one-stage emplacement history of the local formation. A minimum of at least one highland site for old ages, two intermediate-aged sites, and one very young site is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004EOSTr..85..378N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004EOSTr..85..378N"><span>Cratering in Marine Environments and on Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newsom, Horton E.</p> <p>2004-09-01</p> <p>Since the discovery of plate tectonics, impact cratering is arguably the most significant geologic process now recognized as an important process on Earth. Impacts into ice, another main topic covered in this book, may be important on other worlds. Large numbers of impact craters that formed in marine environments on Earth have only been discovered in the last 10 years. Twenty-five craters that formed in marine environments have been documented, according to the first chapter of this book, although none are known that excavated oceanic crust. The papers in Cratering in Marine Environments and on Ice will whet your appetite for the exciting and ambitious range of topics implied by the title, which stems from a conference in Svalbard, Norway, in September 2001. This book provides a flavor of the rapidly advancing and diverse field of impact cratering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870014075','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870014075"><span>Crater ejecta morphology and the presence of water on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Peter H.</p> <p>1987-01-01</p> <p>The purpose of this contribution is to review the possible effects of projectile, target, and environment on the cratering process. The discussion presented suggests that contradictions in interpreting Martian crater ejecta morphologies reflect oversimplifying the process as a singular consequence of buried water. It seem entirely possible that most ejecta facies could be produced without the presence of liquid water. However, the combination of extraordinary ejecta fluidity, absence of secondaries, and high ejection angles all would point to the combined effects of atmosphere and fluid rich substrates. Moreover, recent experiments revealing the broad scour zone associated with rapid vapor expansion may account for numerous craters in the circum-polar regions with subtle radial grooving extending 10 crater radii away with faint distal ramparts. Thus certain crater ejecta morphologies may yet provide fundamental clues for the presence of unbound water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..357....1G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..357....1G"><span>Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graettinger, A. H.</p> <p>2018-05-01</p> <p>A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780060154&hterms=shock+elastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dshock%2Belastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780060154&hterms=shock+elastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dshock%2Belastic"><span>Shatter cones - An outstanding problem in shock mechanics. [geological impact fracture surface in cratering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Milton, D. J.</p> <p>1977-01-01</p> <p>Shatter cone characteristics are surveyed. Shatter cones, a form of rock fracture in impact structures, apparently form as a shock front interacts with inhomogeneities or discontinuities in the rock. Topics discussed include morphology, conditions of formation, shock pressure of formation, and theories of formation. It is thought that shatter cones are produced within a limited range of shock pressures extending from about 20 to perhaps 250 kbar. Apical angles range from less than 70 deg to over 120 deg. Tentative hypotheses concerning the physical process of shock coning are considered. The range in shock pressures which produce shatter cones might correspond to the range in which shock waves decompose into elastic and deformational fronts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870039891&hterms=molten+salt+corrosion&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmolten%2Bsalt%2Bcorrosion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870039891&hterms=molten+salt+corrosion&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmolten%2Bsalt%2Bcorrosion"><span>Corrosion pitting of SiC by molten salts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacobson, N. S.; Smialek, J. L.</p> <p>1986-01-01</p> <p>The corrosion of SiC by thin films of Na2CO3 and Na2SO4 at 1000 C is characterized by a severe pitting attack of the SiC substrate. A range of different Si and SiC substrates were examined to isolate the factors critical to pitting. Two types of pitting attack are identified: attack at structural discontinuities and a crater-like attack. The crater-like pits are correlated with bubble formation during oxidation of the SiC. It appears that bubbles create unprotected regions, which are susceptible to enhanced attack and, hence, pit formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012DPS....4420701R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012DPS....4420701R"><span>Vesta: A Geological Overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ralf, Jaumann; Russell, C. T.; Raymond, C. A.; Pieters, C. M.; Yingst, R. A.; Williams, D. A.; Buczkowski, D. L.; Schenk, P.; Denevi, B.; Krohn, K.; Stephan, K.; Roatsch, T.; Preusker, F.; Otto, K.; Mest, S. C.; Ammannito, E.; Blewett, D.; Carsenty, U.; DeSanctis, C. M.; Garry, W.; Hiesinger, H.; Keller, H. U.; Kersten, E.; Marchi, S.; Matz, K. D.; McCord, T. B.; McSween, H. Y.; Mottola, S.; Nathues, A.; Neukum, G.; O'Brien, D. P.; Schmedemann, N.; Scully, J. E. C.; Sykes, M. V.; Zuber, M. T.</p> <p>2012-10-01</p> <p>The Dawn spacecraft has collected over 28,000 images and a wealth of spectral data providing nearly complete coverage of Vesta’s surface with multiple views. These data enable analysis of Vesta’s diverse geology including impact craters of all sizes and unusual shapes, a variety of ejecta blankets, large troughs extending around the equatorial region, impact basins, enigmatic dark material, and considerable evidence for mass wasting and surface alteration features (1). Two large impact basins, Veneneia (400km) underlying the larger Rheasilvia basin (500km) dominate the south pole (1,2). Rheasilvia exhibits a huge central peak, with total relief of -22km to 19km, and steep scarps with mass wasting features. Vesta’s global tectonic patterns (two distinct sets of large troughs almost parallel to the equator) strongly correlate with the locations of the two south polar impact basins, and were likely created by their formation (1,3). Numerous unusual asymmetric impact craters and ejecta indicate the strong role of topographic slope in cratering processes on Vesta (1). Such very steep topographic slopes are near to the angle of repose; slope failures make resurfacing due to impacts and their associated gravitational slumping and seismic effects an important geologic process on Vesta (1). Outcrops in crater walls indicate reworked crustal material and impact melt in combination with clusters of pits that show thermal surface processes (4). Relatively dark material of still unknown origin is intermixed in the regolith layers and partially excavated by younger impacts yielding dark outcrops, rays and ejecta (1,5). Finally, Vesta’s surface is younger than expected (6). (1) Jaumann, et al., 2012, Science 336, 687-690; (2) Schenk et al., 2012, Science 336, 964-967; (3) Buczkowski, et al., 2012, GRL, submitted; (4) Denevi, et al., 2012, Science, submitted; (5) McCord, et al., 2012, Nature, submitted; (6) Marchi, et al., 2012, Science 336, 690-694.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BVol...79...83M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BVol...79...83M"><span>Hydrothermal activity and subsoil complexity: implication for degassing processes at Solfatara crater, Campi Flegrei caldera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.</p> <p>2017-12-01</p> <p>The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and surficial degassing. A large range of surface temperatures (from 25 up to 95 °C) has been measured across these surfaces, with the hottest spot corresponding to the mud pools, the area of new crust formation, and the crusted hummocks. In the subsoil, the distribution of temperature is more complex and controlled by the presence of coarser, and more permeable, sandy/pebbly levels. These act as preferential pathways for hot hydrothermal fluid circulation. In contrast, low permeability, fine-grained levels act as thermal insulators that remain relatively cold and hinder fluid escape to the surface. Hot gases reach the surface predominantly along (vertical) fractures. When this occurs, mound-like structures can be formed by a cracking and healing process associated with significant degassing. It is anticipated that the results presented here may contribute to an improved understanding of the hazard potential associated with the ongoing hydrothermal activity within the Solfatara crater. At this site the permeability of the near-surface environment and its changes in space and time can affect the spatial and temporal distribution of gas and heat emission. Particularly, in areas where reduction in permeability occurs, it can produce pore pressure augmentation that may result in explosive events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018oeps.book...26I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018oeps.book...26I"><span>The Surface of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, M. A.; Head, J. W.</p> <p>2018-03-01</p> <p>This chapter reviews the conditions under which the basic landforms of Venus formed, interprets their nature, and analyzes their local, regional, and global age relationships. The strong greenhouse effect on Venus causes hyper-dry, almost stagnant near-surface environments. These conditions preclude water-driven, and suppress wind-related, geological processes; thus, the common Earth-like water-generated geological record of sedimentary materials does not currently form on Venus. Three geological processes are important on the planet: volcanism, tectonics, and impact cratering. The small number of impact craters on Venus ( 1,000) indicates that their contribution to resurfacing is minor. Volcanism and tectonics are the principal geological processes operating on Venus during its observable geologic history. Landforms of the volcanic and tectonic nature have specific morphologies, which indicate different modes of formation, and their relationships permit one to establish their relative ages. Analysis of these relationships at the global scale reveals that three distinct regimes of resurfacing comprise the observable geologic history of Venus: (1) the global tectonic regime, (2) the global volcanic regime, and (3) the network rifting-volcanism regime. During the earlier global tectonic regime, tectonic resurfacing dominated. Tectonic deformation at this time caused formation of strongly tectonized terrains such as tessera, and deformational belts. Exposures of these units comprise 20% of the surface of Venus. The apparent beginning of the global tectonic regime is related to the formation of tessera, which is among the oldest units on Venus. The age relationships among the tessera structures indicate that this terrain is the result of crustal shortening. During the global volcanic regime, volcanism overwhelmed tectonic activity and caused formation of vast volcanic plains that compose 60% of the surface of Venus. The plains show a clear stratigraphic sequence from older shield plains to younger regional plains. The distinctly different morphologies of the plains indicate different volcanic formation styles ranging from eruption through broadly distributed local sources of shield plains to the volcanic flooding of regional plains. The density of impact craters on units of the tectonic and volcanic regimes suggests that these regimes characterized about the first one-third of the visible geologic history of Venus. During this time, 80%–85% of the surface of the planet was renovated. The network rifting-volcanism regime characterized the last two-thirds of the visible geologic history of Venus. The major components of the regime include broadly synchronous lobate plains and rift zones. Although the network rifting-volcanism regime characterized 2/3 of the visible geologic history of Venus, only 15%–20% of the surface was resurfaced during this time. This means that the level of endogenous activity during this time has dropped by about an order of magnitude compared with the earlier regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..300..227T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..300..227T"><span>Cratering efficiency on coarse-grain targets: Implications for the dynamical evolution of asteroid 25143 Itokawa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tatsumi, Eri; Sugita, Seiji</p> <p>2018-01-01</p> <p>Remote sensing observations made by the spacecraft Hayabusa provided the first direct evidence of a rubble-pile asteroid: 25143 Itokawa. Itokawa was found to have a surface structure very different from other explored asteroids; covered with coarse pebbles and boulders ranging at least from cm to meter size. The cumulative size distribution of small circular depressions on Itokawa, most of which may be of impact origin, has a significantly shallower slope than that on the Moon; small craters are highly depleted on Itokawa compared to the Moon. This deficiency of small circular depressions and other features, such as clustered fragments and pits on boulders, suggest that the boulders on Itokawa might behave like armor, preventing crater formation: the ;armoring effect;. This might contribute to the low number density of small crater candidates. In this study, the cratering efficiency reduction due to coarse-grained targets was investigated based on impact experiments at velocities ranging from ∼ 70 m/s to ∼ 6 km/s using two vertical gas gun ranges. We propose a scaling law extended for cratering on coarse-grained targets (i.e., target grain size ≳ projectile size). We have found that the crater efficiency reduction is caused by energy dissipation at the collision site where momentum is transferred from the impactor to the first-contact target grain, and that the armoring effect can be classified into three regimes: (1) gravity scaled regime, (2) reduced size crater regime, or (3) no apparent crater regime, depending on the ratio of the impactor size to the target grain size and the ratio of the impactor kinetic energy to the disruption energy of a target grain. We found that the shallow slope of the circular depressions on Itokawa cannot be accounted for by this new scaling law, suggesting that obliteration processes, such as regolith convection and migration, play a greater role in the depletion of circular depressions on Itokawa. Based on the new extended scaling law, we found that the crater retention age on Itokawa is 3-33 Myr in the main belt, which is in good agreement with the cosmic-ray-exposure ages for returned samples from Itokawa which may reflect the age of material a few meters beneath the surface. These ages strongly suggest that the global resurfacing that reset the 1-10 m deep surface layer may have occurred in the main belt long after the possible catastrophic disruption of a rigid parent body of Itokawa suggested by Ar degassing age ( ∼ 1.3 Gyr).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007epsc.conf..667S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007epsc.conf..667S"><span>Stratigraphy and surface ages on Iapetus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmedemann, N.; Denk, T.; Wagner, R.; Neukum, G.</p> <p>2007-08-01</p> <p>Introduction: The examination of the geologic history of Iapetus is a major goal of the Cassini imaging experiment (ISS). Crater counting for the determination of model ages is a powerful tool to understand stratigraphic relationships between different terrain units (e.g., Neukum 1983, Neukum et al. 1998). In the case of Iapetus (Porco et al. 2005), the situation is unusual because this moon has a very large semi-major axis, resulting in unusually low relative velocities of planetocentric impactors. Nevertheless, the surface of Iapetus is heavily cratered, indicating a rather old surface. The shapes of the measured crater-size frequency distributions follow very closely the distribution of Earth's moon (after correction for the different impact conditions) (Neukum et al. 2006), justifying its usage here for model age determinations. Castillo-Rogez et al. (2007) suggest that the formation of Iapetus has occurred very precisely between 4.5622 and 4.5647 Ga ago. Assuming it took roughly 100 Ma for formation of a rigid surface which is able to hold the cratering record, absolute surface (model) ages can be calibrated to these boundary conditions. Stratigraphy: At the time of this writing, four different surface areas were investigated so far for stratigraphic comparison: 1. A small part of the ridge near 96°W longitude; 2. an "average" dark terrain sample north of the ridge; 3. the "landslide" crater (diameter ˜ 120 km; 6°N/36°W) in the south western part of a huge basin, and its surroundings; 4. a large, 420 km diameter basin on the leading side of Iapetus (34°N, 80°W). Following the models of Castillo-Rogez and Neukum, an age of 4.4 Ga is expected for the oldest parts of Iapetus' surface, which is actually found at the equatorial ridge and on the "average" terrain north of the ridge. The "landslide crater" and the landslide partly covering the crater and a neighboring area in the northwest are a few hundred million years younger (˜4.1 Ga). Thus, the idea that the impact event might have triggered the landslide is consistent with the data. The surroundings of the "landslide crater" are covered by its ejecta blankets to different degrees. Further away from the crater, the ejecta blanket is thinner, and the former underlying surface (especially the larger craters) is still visible. This results in a mixed age from the blanket and the former surface. The model age of the investigated basin on the leading side of Iapetus is 4.3 Ga. The crater statistics of the outer part of the basin, which is characterised by multiple ring structures, shows evidence of surviving of larger craters in the course of basin formation. References: Castillo-Rogez J.C., D.L. Matson, C. Sotin, T.V. Johnson, J.I. Lunine, P.C. Thomas (2007): Iapetus' Geophysics: Rotation Rate, Shape, and Equatorial Ridge, Icarus, doi:10.1016/j.icarus.2007.02.018 Neukum, G. (1983): Meteoritenbombardement und Datierung planetarer Oberflächen, Habilitation Dissertation for Faculty Membership, Ludwig-Maximilians Univ. München, Munich, Germany, 186 pp. Neukum, G., R. Wagner, U. Wolf, B.A. Ivanov, J.W. Head, R. T. Pappalardo, J.E. Klemaszewski, R. Greeley, M.J.S. Belton, and Galileo SSI Team (1998): Cratering chronology in the Jovian system and derivation of absolute ages, Lunar Planet. Sci. Conf. 29th, abstr. No. 1742 [CD-Rom] Neukum, G.; Wagner, R.; Wolf, U.; Denk, T. (2006): The Cratering Record and Cratering Chronologies of the Saturnian Satellites and the Origin of Impactors: Results from Cassini ISS Data, European Planetary Science Congress 2006. Berlin, Germany, 18 - 22 September 2006., p.610 Porco, C.C., et al. (2005): Cassini Imaging Science: Initial Results on Phoebe and Iapetus, Science 307, 1237-1242.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035006','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035006"><span>Exploration of Victoria crater by the mars rover opportunity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Squyres, S. W.; Knoll, A.H.; Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Calvin, W.M.; Christensen, P.R.; Clark, B. C.; Cohen, B. A.; De Souza, P.A.; Edgar, L.; Farrand, W. H.; Fleischer, I.; Gellert, Ralf; Golombek, M.P.; Grant, J.; Grotzinger, J.; Hayes, A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.; Klingelhofer, G.; Knudson, A.; Li, R.; McCoy, T.J.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R.V.; Rice, J. W.; Schroder, C.; Sullivan, R.J.; Yen, A.; Yingst, R.A.</p> <p>2009-01-01</p> <p>The Mars rover Opportunity has explored Victoria crater, a ???750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those ???6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19461001','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19461001"><span>Exploration of Victoria crater by the Mars rover Opportunity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Squyres, S W; Knoll, A H; Arvidson, R E; Ashley, J W; Bell, J F; Calvin, W M; Christensen, P R; Clark, B C; Cohen, B A; de Souza, P A; Edgar, L; Farrand, W H; Fleischer, I; Gellert, R; Golombek, M P; Grant, J; Grotzinger, J; Hayes, A; Herkenhoff, K E; Johnson, J R; Jolliff, B; Klingelhöfer, G; Knudson, A; Li, R; McCoy, T J; McLennan, S M; Ming, D W; Mittlefehldt, D W; Morris, R V; Rice, J W; Schröder, C; Sullivan, R J; Yen, A; Yingst, R A</p> <p>2009-05-22</p> <p>The Mars rover Opportunity has explored Victoria crater, an approximately 750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those approximately 6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..SHK.M4002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..SHK.M4002A"><span>Impact Cratering Physics al Large Planetary Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahrens, Thomas J.</p> <p>2007-06-01</p> <p>Present understanding of the physics controlling formation of ˜10^3 km diameter, multi-ringed impact structures on planets were derived from the ideas of Scripps oceanographer, W. Van Dorn, University of London's, W, Murray, and, Caltech's, D. O'Keefe who modeled the vertical oscillations (gravity and elasticity restoring forces) of shock-induced melt and damaged rock within the transient crater immediately after the downward propagating hemispheric shock has processed rock (both lining, and substantially below, the transient cavity crater). The resulting very large surface wave displacements produce the characteristic concentric, multi-ringed basins, as stored energy is radiated away and also dissipated upon inducing further cracking. Initial calculational description, of the above oscillation scenario, has focused upon on properly predicting the resulting density of cracks, and, their orientations. A new numerical version of the Ashby--Sammis crack damage model is coupled to an existing shock hydrodynamics code to predict impact induced damage distributions in a series of 15--70 cm rock targets from high speed impact experiments for a range of impactor type and velocity. These are compared to results of crack damage distributions induced in crustal rocks with small arms impactors and mapped ultrasonically in recent Caltech experiments (Ai and Ahrens, 2006).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V32A..02A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V32A..02A"><span>Simulating maar-diatreme volcanic systems in bench-scale experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrews, R. G.; White, J. D. L.; Dürig, T.; Zimanowski, B.</p> <p>2015-12-01</p> <p>Maar-diatreme eruptions are incompletely understood, and explanations for the processes involved in them have been debated for decades. This study extends bench-scale analogue experiments previously conducted on maar-diatreme systems and attempts to scale the results up to both field-scale experimentation and natural volcanic systems in order to produce a reconstructive toolkit for maar volcanoes. These experimental runs produced via multiple mechanisms complex deposits that match many features seen in natural maar-diatreme deposits. The runs include deeper single blasts, series of descending discrete blasts, and series of ascending blasts. Debris-jet inception and diatreme formation are indicated by this study to involve multiple types of granular fountains within diatreme deposits produced under varying initial conditions. The individual energies of blasts in multiple-blast series are not possible to infer from the final deposits. The depositional record of blast sequences can be ascertained from the proportion of fallback sedimentation versus maar ejecta rim material, the final crater size and the degree of overturning or slumping of accessory strata. Quantitatively, deeper blasts involve a roughly equal partitioning of energy into crater excavation energy versus mass movement of juvenile material, whereas shallower blasts expend a much greater proportion of energy in crater excavation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA12952.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA12952.html"><span>Crater Wall in Van de Graaff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-02-11</p> <p>This image taken NASA Lunar Reconnaissance Orbiter shows the wall of crater Van de Graaff C, where brighter material is exposed by more active processes associated with steeper slopes, recent small craters, and even individual rolling boulders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110013342','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110013342"><span>Space Environmental Erosion of Polar Icy Regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farrell, William M.; Killen, R. M.; Vondrak, R. R.; Hurley, D. M.; Stubbs, T. J.; Delory, G. T.; Halekas, J. S.; Zimmerman, M. I.</p> <p>2011-01-01</p> <p>While regions at the floors of permanently shadowed polar craters are isolated from direct sunlight, these regions are still exposed to the harsh space environment, including the interplanetary Lyman-a background, meteoric impacts, and obstacle-affected solar wind. We demonstrate that each of these processes can act to erode the polar icy regolith located at or near the surface along the crater floor. The Lyman-a background can remove/erode the icy-regolith via photon stimulated desorption [1], meteoric impacts can vaporize the regolith [2], and redirected solar wind ions can sputter the ice-regolith mix [3]. As an example we shall examine in detail the inflow of solar wind ions and electrons into polar craters, One might expect such ions to flow horizontally over the crater top (see Figure). However, we find that plasma ambipolar processes act to deflect passing ions into the craters [3]. We examine this plasma process and determine the ion flux as a function of position across a notional crater floor. We demonstrate that inflowing solar wind ions can indeed create sputtering along the crater floor, effectively eroding the surface. Erosion time scales rrom sputtering will be presented. We shall also consider the effect of impact vaporization on buried icy-regolith regions. There will also be a discussion of solar wind electrons that enter into the PSR, demonstrating that these also have the ability rree surface-bound atoms via electron stimulated desorption processes [l].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992Metic..27R.276P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992Metic..27R.276P"><span>Meteorite Sterlitamak -- A New Crater Forming Fall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petaev, M. I.</p> <p>1992-07-01</p> <p>The Sterlitamak meteorite fell on May 17, 1990 at 23h20m local time (17h20m GMT) and formed a crater in a field 20 km westward of the town of Sterlitamak (Petaev et al., 1991). Many witnesses in South Bashkiria saw a very bright fireball (up to -5 magnitude) moving from south to north at a ~45 degree angle to the horizon. Witnesses located ~2 km from the crater observed the fireball glowing right up to the time of impact, after which several explosions were heard. The crater was found on May 19. From witnesses' reports, the fresh crater was 4.5-5 m in depth and had sheer walls ~3 m in height below which was a conical talus surface with a hole in the center. The crater itself was surrounded by a continuous rim 60-70 cm in thickness and by radial ejecta. Our field team arrived at the crater on May 23, six days after its formation. We found the crater in rather good condition except for partial collapse of the rim, material from which had filled in the crater up to ~3 m from the surface. The western wall of the crater was composed of well-preserved brown loam with shale- like parting dipping 25-30 degrees away from the crater center. A large slip block of autogenic breccia was observed along the eastern crater wall. An allogenic breccia composed of a mixture of brown loam and black soil was traced to the depth of ~5 m from the surface. Outside the rim, the crater ejecta formed an asymmetric continuous blanket and distinct radial rays. The southern rays were shorter and thicker than the northern and eastern rays. About 2 dozen meteorite fragments, from several grams to several hundred grams in weight, were recovered in the crater vicinity. A search for other meteorite fragments or individuals at distances up to 1 km southward from the crater was unsuccessful. Two partly encrusted fragments (3 and 6 kg) with clear Widmanstatten pattern on a broken surface were found at a depth of ~8 m during crater excavation. In May of 1991 a 315-kg partly fragmented individual was recovered at a depth of ~12 m. This sample is a 50 x 45 x 28 cm block with front, rear and two adjoining lateral surfaces covered by regmaglypts and thick (~0.5 mm) fusion crust. The other two surfaces are very rough, contain no regmaglypts, and have a thinner fusion crust. The preimpact shape of the meteorite may be approximately modeled as a slab ~100 x 100 x 28 cm. An estimate of the projectile mass was made based on the crater dimensions. From the relationships between crater diameter and projectile mass determined for the Sikhote-Alin craters, the impact mass of the Sterlitamak meteorite is estimated at ~1 ton (Petaev, 1992). A separate estimate, based on cratering energy, yields a total mass of ~1.5 tons (Ivanov, Petaev, 1992). A comparison of the estimated projectile mass and the weight and morphology of the individual recovered suggests a fragmentation of the projectile in the atmosphere and the formation of the crater by the impact of an agglomeration of individuals. The other fragments of the projectile are still in the crater. REFERENCES Ivanov B.A., Petaev M.I. (1992) Lunar Planet. Sci. (abstract), 23, 573-574. Petaev M.I. (1992) Astron. Vestnik, #4, in press (in Russian) (English translation is named Solar System Research). Petaev M.I., Kisarev Yu.L., Mustafin Sh.A., Shakurov R.K., Pavlov A.V., Ivanov B.A. (1991) Lunar Planet. Sci. (abstract), 22, 1059-1060</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830035018&hterms=clay+viscosity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclay%2Bviscosity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830035018&hterms=clay+viscosity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclay%2Bviscosity"><span>Experimental simulation of impact cratering on icy satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, R.; Fink, J. H.; Gault, D. E.; Guest, J. E.</p> <p>1982-01-01</p> <p>Cratering processes on icy satellites were simulated in a series of 102 laboratory impact experiments involving a wide range of target materials. For impacts into homogeneous clay slurries with impact energies ranging from five million to ten billion ergs, target yield strengths ranged from 100 to 38 Pa, and apparent viscosities ranged from 8 to 200 Pa s. Bowl-shaped craters, flat-floored craters, central peak craters with high or little relief, and craters with no relief were observed. Crater diameters increased steadily as energies were raised. A similar sequence was seen for experiment in which impact energy was held constant but target viscosity and strength progressively decreases. The experiments suggest that the physical properties of the target media relative to the gravitationally induced stresses determined the final crater morphology. Crater palimpsests could form by prompt collapse of large central peak craters formed in low target strength materials. Ages estimated from crater size-frequency distributions that include these large craters may give values that are too high.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..310S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..310S"><span>Multiple Episodes of Recent Gully Activity Indicated by Gully Fan Stratigraphy in Eastern Promethei Terra, Mars.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schon, S.; Head, J.; Fassett, C.</p> <p>2008-09-01</p> <p>Introduction Gullies are considered among the youngest geomorphic features on Mars based upon their stratigraphic relationships, superposition on steep slopes and distinctive morphology in unconsolidated sediment. Multiple formation hypotheses have been proposed, which can be divided into three broad classes: entirely dry mechanisms (e.g., [1,2]), wet mechanisms invoking groundwater or ground ice (e.g., [3,4]) and wet mechanisms invoking surficial meltwater (e.g., [5,6,7,8]). It has been difficult to differentiate between these hypotheses based upon past observations and it remains possible that gullies are polygenetic landforms. This study presents stratigraphic relationships in the depositional fan of a crater wall gully system that suggest: (1) multiple episodes of alluvial fan-style deposition, (2) very recent depositional activity that is younger than a newly recognized rayed crater, and (3) surficial snowmelt as the most likely source of these multiple episodes of recent gully activity. Gully-Fan Stratigraphy In Eastern Promethei Terra an ~5 km-diameter crater is observed with a well-developed gully system (Fig. 1) and several smaller gullies in its northnortheast wall. The large gully system (composed of a small western gully and larger eastern gully) shows evidence for incision into the crater wall country rock and has multiple contributory sub-alcoves and channels. The depositional fan associated with this gully system is bounded on its western side by a small arcuate ridge swell that is not observed on the eastern side of the fan. This ridge is interpreted as a moraine-like structure that may have bounded a glacially-formed depression into which the fan is deposited [8]. Similar depressions with bounding ridges are commonly observed in this latitude band (~30-50°S) in association with deeply incised gully alcoves [9,10,11]. This gully fan is composed of multiple lobes with distinct lobe contacts, incised channels, and cut-andfill deposits - all features similar to those seen in terrestrial alluvial fans [12,13]. The western portion of the fan is contained within the depression, while the younger eastern portion overlies and obscures any potential evidence of the ridge structure. A very striking and unusual feature of this gully fan is the large number of superposed impact craters; due to their density and similar diameter, we interpret these to be secondary craters from a large nearby primary impact crater. The depositional lobes of the fan can be divided into two groups: 1) those that predate the secondary crater population and 2) younger lobes that are superposed on the secondary craters. Numerous secondary craters (~1-25 m-diameter) superpose the lowermost stratigraphic lobe (Fig. 1, A), while at least three younger lobes (Fig. 1, C1, D1, and D2) directly superpose the cratered lobe. The emplacement date of these secondaries provides a robust maximum age for the youngest lobes of this fan, and therefore the most recent fluvial activity of the gully. Most gullies either have no superposed impact craters [3,7] or are too small to date with any certainty using crater counts [14]. Therefore, locating and dating the parent impact crater of these secondaries is critical to constrain the chronology and origin of gully systems. Rayed-Crater Source of the Secondary Craters Regional reconnaissance for the origin of the secondary craters led to the discovery of a previously unidentified rayed crater complex (consisting of an ~18 km-diameter outer crater and an ~7 km-diameter inner crater) approximately 175 km southwest of the gully system. Distinctive rays are observed in THEMIS nighttime thermal inertia data, but are not observable as albedo contrasts in THEMIS visible data, consistent with other identifications of young rayed craters on Mars [15,16]. The rims of both craters are distinct and consistent with the morphology of very young impact craters on Mars. The inner crater has a greater depth to diameter ratio than the outer crater (0.121 compared to 0.073), consistent with young Martian craters [17]. Both the outer and inner craters have classically-defined gullies, preferentially developed on their pole-facing walls. Polygons are observed in gully alcoves of the outer crater, but not in alcoves of the inner crater, implying a difference in substrate or thermal cycling time [18]. The outer crater is floored by ejecta from the inner crater and mantling deposits. There is no evidence of an underlying concentric crater fill deposit or other altered fill unit typical of older Amazonian altered craters [19]. The inner crater is floored by unconsolidated sediment and contains a small collection of dunes. No evidence of pits, hummocky texture or other sublimation features are observed indicating that the crater interior is not a periglacial terrain. We interpret the inner crater as younger than the most recent episode of mantling deposition (~0.4Ma) [20] due to the exposed spur and talus slope development on the equator-facing wall, a slope and orientation that preferentially preserves smooth mantle texture in this latitude regime [21]. One superposed crater (~45 mdiameter) is observed in HiRISE coverage. Using the technique of Hartmann and Quantin-Nataf [22], who dated Gratteri crater by counting small craters superposed on the floor, the inner crater is on the order of 100Ka. Based upon these observations and the relative proximity of secondary craters to the outer crater rim (making it unlikely they originated from the outer crater), the 7 km-diameter inner crater is the likely source of the rays and secondary craters of interest on the gully fan lobe. Acknowledgments: Special thanks to the Mars Recognisance Orbiter and HiRISE teams as well as the Odyssey and THEMIS teams. This research was funded by NASA. Conclusions This study has identified a gully system fan in Eastern Promethei Terra with morphology requiring multiple periods of activity for its construction. At least one lobe of the fan has retained a dense secondary crater population, while at least two episodes of activity post-date emplacement of the secondary craters. Approximately 175 km to the southwest, the likely parent rayed crater was discovered using THEMIS thermal inertia data. This 7 km-diameter crater is located within a morphologically older 18 km-diameter crater. We interpret the source crater as younger than the most recent obliquity-controlled glacial period (~0.4Ma), which is consistent with crater age dating of the floor as well. The multiple episodes of alluvial fan activity mapped in this study imply that gullies are not catastrophic landforms that formed in single events. Rather, multiple episodes of fluvial activity in the gully system are required to deposit and rework the alluvial fan that is observed. The alluvial fan morphology [10, 11] and sedimentary channel structures make dry mass-wasting processes implausible for the formation of this gully system. The multiple episodes of activity required by the fan stratigraphy documented here cast serious doubt on catastrophic groundwater discharge scenarios that are unlikely to generate episodic releases. Small amounts of surficial meltwater derived from snow and ice accumulation is suggested by the insolation geometries of gully systems and most plausibly can account for multiple periods of recent (<0.4Ma) activity required by these observations. This chronology is consistent with other evidence [11] that places gully formation in the waning stages of the ice ages that produced the latiduedependent mantles. References [1] Treiman, A. (2003) JGR 108, doi: 10.1029/2002JE001900. [2] Shinbrot, T. et al. (2004) PNAS 101, doi: 10.1073/mnas.03082511 01. [3] Malin, M. and Edgett, K. (2000) Science 288, doi: 10.1126/ science.288.5475.2330. [4] Heldmann, J. et al. (2007) Icarus 188, doi: 10.1016/j.icarus.2006.12.010. [5] Costard, F. et al. (2001) Science 295, doi: 10.1126/science.1066698. [6] Christensen, P. (2003) Nature 422, doi: 10.1038/nature01436. [7] Dickson, J. et al. (2007) Icarus 188, doi: 10/1016/j.icarus.2006.11.020. [8] Head, J. et al. (2008) Workshop on Martian Gullies: Theories and Tests, LPI #1301. [9] Hartmann, W. et al. (2003) Icarus 162, doi: 10.1016/S00 19-1035(02)00065-9. [10] Berman, D. et al. (2005), Icarus 178, doi: 10.1016/j.icarus.2005.05.011. [11] Head, J. et al. (2008) PNAS, in revision: 16 April 2008. [12] Blissenbach, E. (1954) GSA Bulletin 65, 175-190. [13] Blair, T. and McPherson, J. (1994) JSR 64, (3A) 450-489. [14] Hartmann, W. (2005), Icarus 174, doi: 10.1016/j.icar us.2004.11.023. [15] McEwen, A. et al. (2005) Icarus 176 doi: 10.1016/j.icarus.2005.02.009. [16] Tornabene, L. et al. (2006) JGR 111, doi: 10.1029/2005JE002600. [17] Garvin, J. et al. (2003) 6th International Conference on Mars, Abstract 3277. [18] Levy, J. et al. (2008) LPSC [CD-ROM], XXXIX, abstract 1171. [19] Kreslavsky, M. and Head, J. (2006) Meteoritics & Plan. Sci. 41, 1633-1646. [20] Head, J. et al. (2003) Nature 426, 797-802. [21] Schon, S. et al. (2008) LPSC [CD-ROM], XXXIX, abstract 1873. [22] Hartmann, W. and Quantin-Nataf, C. (2008) LPSC [CD-ROM], XXXIX, abstract 1844.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53B1683B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53B1683B"><span>Block Distribution Analysis of Impact Craters in the Tharsis and Elysium Planitia Regions on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Button, N.; Karunatillake, S.; Diaz, C.; Zadei, S.; Rajora, V.; Barbato, A.; Piorkowski, M.</p> <p>2017-12-01</p> <p>The block distribution pattern of ejecta surrounding impact craters reveals clues about their formation. Using images from High Resolution Imaging Science Experiment (HiRISE) image onboard the Mars Reconnaissance Orbiter (MRO), we indentified two rayed impact craters on Mars with measurable ejecta fields to quantitatively investigate in this study. Impact Crater 1 (HiRISE image PSP_008011_1975) is located in the Tharsis region at 17.41°N, 248.75°E and is 175 m in diameter. Impact Crater 2 (HiRISE image ESP_018352_1805) is located in Elysium Planitia at 0.51°N, 163.14°E and is 320 m in diameter. Our block measurements, used to determine the area, were conducted using HiView. Employing methods similar to Krishna and Kumar (2016), we compared block size and axis ratio to block distance from the center of the crater, impact angle, and direction. Preliminary analysis of sixteen radial sectors around Impact Crater 1 revealed that in sectors containing mostly small blocks (less than 10 m2), the small blocks were ejected up to three times the diameter of the crater from the center of the crater. These small block-dominated sectors lacked blocks larger than 10 m2. Contrastingly, in large block-dominated sectors (larger than 30 m2) blocks rarely traveled farther than 200 m from the center of the crater. We also seek to determine the impact angle and direction. Krishna and Kumar (2016) calculate the b-value (N(a) = Ca-b; "N(a) equals the number of fragments or craters with a size greater than a, C is a constant, and -b is a power index") as a method to determine the impact direction. Our preliminary results for Impact Crater 1 did not clearly indicate the impact angle. With improved measurements and the assessment of Impact Crater 2, we will compare Impact Crater 1 to Impact Crater 2 as well as assess the impact angle and direction in order to determine if the craters are secondary craters. Hood, D. and Karunatillake, S. (2017), LPSC, Abstract #2640 Krishna, N., and P. S. Kumar (2016), Icarus, 264, 274-299</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940028728','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940028728"><span>The Martian sources of the SNC meteorites (two, not one), and what can and can't be learned from the SNC meteorites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Treiman, A. H.</p> <p>1993-01-01</p> <p>The SNC meteorites, which almost certainly originate in the Martian crust, have been inferred to come from a single impact crater site, but no known crater fits all criteria. Formation at two separate sites (S from one, NC from the other) is more consistent with the sum of petrologic, geochronologic, and cosmochronologic data. If the source craters for the SNC meteorites can be located, Mars science will advance considerably. However, many significant questions cannot be answered by the SNC meteorites. These questions await a returned sample.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870015822','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870015822"><span>Advances in Planetary Geology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grant, John A., III; Nedell, Susan S.</p> <p>1987-01-01</p> <p>The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..300...72H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..300...72H"><span>Impacts into porous asteroids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Housen, Kevin R.; Sweet, William J.; Holsapple, Keith A.</p> <p>2018-01-01</p> <p>Many small bodies in the solar system have bulk density well below the solid density of the constituent mineral grains in their meteorite counterparts. Those low-density bodies undoubtedly have significant porosity, which is a key factor that affects the formation of impact craters. This paper summarizes the results of lab experiments in which materials with porosity ranging from 43% to 96% were impacted at ∼1800 m/s. The experiments were performed on a geotechnical centrifuge, in order to reproduce the lithostatic overburden stress and ejecta ballistics that occur in large-scale cratering events on asteroids or planetary satellites. Experiments performed at various accelerations, up to 514G, simulate the outcomes of impacts at size scales up to several tens of km in diameter. Our experiments show that an impact into a highly porous cohesionless material generates a large ovoid-shaped cavity, due to crushing by the outgoing shock. The cavity opens up to form a transient crater that grows until the material flow is arrested by gravity. The cavity then collapses to form the final crater. During collapse, finely crushed material that lines the cavity wall is carried down and collected in a localized region below the final crater floor. At large simulated sizes (high accelerations), most of the crater volume is formed by compaction, because growth of the transient crater is quickly arrested. Nearly all ejected material falls back into the crater, leaving the crater without an ejecta blanket. We find that such compaction cratering and suppression of the ejecta blankets occur for large craters on porous bodies when the ratio of the lithostatic stress at one crater depth to the crush strength of the target exceeds ∼0.005. The results are used to identify small solar system bodies on which compaction cratering likely occurs. A model is developed that gives the crater size and ejecta mass that would result for a specified impact into a porous object.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..273..164K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..273..164K"><span>Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krüger, T.; van der Bogert, C. H.; Hiesinger, H.</p> <p>2016-07-01</p> <p>Using SELENE/Kaguya Terrain Camera and Lunar Reconnaissance Orbiter Camera (LROC) data, we produced a new, high-resolution (10 m/pixel), geomorphological and impact melt distribution map for the lunar crater Tycho. The distal ejecta blanket and crater rays were investigated using LROC wide-angle camera (WAC) data (100 m/pixel), while the fine-scale morphologies of individual units were documented using high resolution (∼0.5 m/pixel) LROC narrow-angle camera (NAC) frames. In particular, Tycho shows a large coherent melt sheet on the crater floor, melt pools and flows along the terraced walls, and melt pools on the continuous ejecta blanket. The crater floor of Tycho exhibits three distinct units, distinguishable by their elevation and hummocky surface morphology. The distribution of impact melt pools and ejecta, as well as topographic asymmetries, support the formation of Tycho as an oblique impact from the W-SW. The asymmetric ejecta blanket, significantly reduced melt emplacement uprange, and the depressed uprange crater rim at Tycho suggest an impact angle of ∼25-45°.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1304809','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1304809"><span>Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lanza, Nina L.; Wiens, Roger C.; Arvidson, Raymond E.</p> <p></p> <p>We report that the Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. In conclusion, based on the strong association between Mn-oxide depositionmore » and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940017197','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940017197"><span>Fluvial valleys in the heavily cratered terrains of Mars: Evidence for paleoclimatic change?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gulick, V. C.; Baker, V. R.</p> <p>1993-01-01</p> <p>Whether the formation of the Martian valley networks provides unequivocal evidence for drastically different climatic conditions remains debatable. Recent theoretical climate modeling precludes the existence of a temperate climate early in Mars' geological history. An alternative hypothesis suggests that Mars had a globally higher heat flow early in its geological history, bringing water tables to within 350 m of the surface. While a globally higher heat flow would initiate ground water circulation at depth, the valley networks probably required water tables to be even closer to the surface. Additionally, it was previously reported that the clustered distribution of the valley networks within terrain types, particularly in the heavily cratered highlands, suggests regional hydrological processes were important. The case for localized hydrothermal systems is summarized and estimates of both erosion volumes and of the implied water volumes for several Martian valley systems are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1304809-oxidation-manganese-ancient-aquifer-kimberley-formation-gale-crater-mars','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1304809-oxidation-manganese-ancient-aquifer-kimberley-formation-gale-crater-mars"><span>Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lanza, Nina L.; Wiens, Roger C.; Arvidson, Raymond E.; ...</p> <p>2016-07-28</p> <p>We report that the Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. In conclusion, based on the strong association between Mn-oxide depositionmore » and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910016752&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbarlow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910016752&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbarlow"><span>Martian impact crater ejecta morphologies and their potential as indicators of subsurface volatile distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, Nadine G.</p> <p>1991-01-01</p> <p>Many martian impact craters ejecta morphologies suggestive of fluidization during ejecta emplacement. Impact into subsurface volatile reserviors (i.e., water, ice, CO2, etc.) is the mechanism favored by many scientists, although acceptance of this mechanism is not unanimous. In recent years, a number of studies were undertaken to better understand possible relationships between ejecta morphology and latitude, longitude, crater diameter, and terrain. These results suggest that subsurface volatiles do influence the formation of specific ejecta morphologies and may provide clues to the vertical and horizontal distribution of volatiles in more localized regions of Mars. The location of these volatile reservoirs will be important to humans exploring and settling Mars in the future. Qualitative descriptions of ejecta morphology and quantitative analyses of ejecta sinuosity and ejecta lobe areal extent from the basis of the studies. Ejecta morphology studies indicate that morphology is correlated with crater diameter and latitude, and, using depth-diameter relationships, these correlations strongly suggest that changes in morphology are related to transition among subsurface layers with varying amounts of volatiles. Ejecta sinuosity studies reveal correlations between degree of sinuosity (lobateness) and crater morphology, diameter, latitude, and terrain. Lobateness, together with variations in areal extent of the lobate ejecta blanket with morphology and latitude, probably depends most directly on the ejecta emplacement process. The physical parameters measured here can be compared with those predicted by existing ejecta emplacement models. Some of these parameters are best reproduced by models requiring incorporation of volatiles within the ejecta. However, inconsistencies between other parameters and the models indicate that more detailed modeling is necessary before the location of volatile reservoirs can be confidently predicted based on ejecta morphology studies alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790055292&hterms=gravity+anomaly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgravity%2Banomaly','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790055292&hterms=gravity+anomaly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgravity%2Banomaly"><span>Lunar Bouguer gravity anomalies - Imbrian age craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dvorak, J.; Phillips, R. J.</p> <p>1978-01-01</p> <p>The Bouguer gravity of mass anomalies associated with four Imbrian age craters, analyzed in the present paper, are found to differ considerably from the values of the mass anomalies associated with some young lunar craters. Of the Imbrian age craters, only Piccolomini exhibits a negative gravity anomaly (i.e., a low density region) which is characteristic of the young craters studied. The Bouguer gravity anomalies are zero for each of the remaining Imbrian age craters. Since, Piccolomini is younger, or at least less modified, than the other Imbrian age craters, it is suggested that the processes responsible for the post-impact modification of the Imbrian age craters may also be responsible for removing the negative mass anomalies initially associated with these features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA08395.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA08395.html"><span>A Nine Kilometer Impact Crater and Its Central Peak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-02-08</p> <p>found across the Martian surface. Each impact crater on Mars possesses a unique origin and composition, which makes the HiRISE team very interested in sampling as many of them as possible! Like the impact of a droplet into fluid, once an impact has occurred on the surface of Mars, an ejecta curtain forms immediately after, contributing to the raised rim visible at the top of the crater's walls. After the formation of the initial crater, if it is large enough, then a central peak appears as the surface rebounds. These central peaks can expose rocks that were previously deeply buried beneath the Martian surface. The blue and red colors in this enhanced-contrast image reflect the effects of post-impact sedimentation and weathering over time. http://photojournal.jpl.nasa.gov/catalog/PIA08395</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29564199','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29564199"><span>Dune-Yardang Interactions in Becquerel Crater, Mars.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Urso, Anna; Chojnacki, Matthew; Vaz, David A</p> <p>2018-01-01</p> <p>Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr -1 ) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5857962','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5857962"><span>Dune-Yardang Interactions in Becquerel Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Urso, Anna; Chojnacki, Matthew; Vaz, David A.</p> <p>2018-01-01</p> <p>Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars’ recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16–40 μm yr−1) would yield a formation time of 1.8–4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars. PMID:29564199</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..353U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..353U"><span>Dune-Yardang Interactions in Becquerel Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urso, Anna; Chojnacki, Matthew; Vaz, David A.</p> <p>2018-02-01</p> <p>Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr-1) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........92B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........92B"><span>The geophysical evolution of impact basins and volcanic structures on Mercury and the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blair, David Michael</p> <p></p> <p>The geologic histories of most terrestrial bodies are dominated by two major processes: meteorite bombardment and volcanism. The forms that the resulting impact craters and volcanic structures take can tell us a great deal about the ways in which these processes occur and about the environment of the host body at the time of their formation. The surfaces of bodies like Mercury and the Moon are old, however, and most such features formed more than a billion years in the past. Impact craters and volcanic structures are thus generally not visible in their original states, but instead in a form which has evolved over geologic time. In this work, I combine observations of planetary surfaces from spacecraft like MESSENGER and GRAIL with modern numerical modeling techniques in order to explore the various ways in which the long-term geophysical evolution of impact craters and volcanic structures can reveal information about the subsurface environment. I find that the pattern of fractures on the floors of the Rachmaninoff, Raditladi, and Mozart peak-ring impact basins on Mercury reveals the contours of the underlying terrain; that the present-day gravitational and topographic signatures over Orientale Basin emerged due to a combination of syn- and post-impact processes which can help to constrain both the parameters of the impact and the rheology of the lunar mantle; and that the tremendous sizes at which lunar lava tubes can be stable open up both new ways of interpreting GRAIL observations of the lunar gravity field and new possibilities for human exploration of the Moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032614','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032614"><span>The Sculptured Hills of the Taurus Highlands: Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Spudis, P.D.; Wilhelms, D.E.; Robinson, M.S.</p> <p>2011-01-01</p> <p>New images from the Lunar Reconnaissance Orbiter Camera show the distribution and geological relations of the Sculptured Hills, a geological unit widespread in the highlands between the Serenitatis and Crisium basins. The Sculptured Hills shows knobby, undulating, radially textured, and plains-like morphologies and in many places is indistinguishable from the similarly knobby Alpes Formation, a facies of ejecta from the Imbrium basin. The new LROC image data show that the Sculptured Hills in the Taurus highlands is Imbrium ejecta and not directly related to the formation of the Serenitatis basin. This occurrence and the geological relations of this unit suggests that the Apollo 17 impact melts may not be not samples of the Serenitatis basin-forming impact, leaving their provenance undetermined and origin unexplained. If the Apollo 17 melt rocks are Serenitatis impact melt, up to half of the basin and large crater population of the Moon was created within a 30 Ma interval around 3.8 Ga in a global impact "cataclysm." Either interpretation significantly changes our view of the impact process and history of the Earth-Moon system. Copyright 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA05573&hterms=fine+dust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfine%2Bdust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA05573&hterms=fine+dust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfine%2Bdust"><span>Drifts of Dust or Something Else?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>While the interior and far walls of the crater dubbed 'Bonneville' can be seen in the background, the dominant foreground features in this 180-degree navigation camera mosaic are the wind-deposited drifts of dust or sand. NASA's Mars Exploration Rover Spirit completed this mosaic on sol 71, March 15, 2004, from its newest location at the rim of 'Bonneville' crater. <p/> Scientists are interested in these formations in part because they might give insight into the processes that formed some of the material within the crater. Thermal emission measurements by the rover indicate that the dark material just below the far rim of this crater is spectrally similar to rocks that scientists have analyzed along their journey to this location. They want to know why this soil-like material has a spectrum that more closely resembles rocks rather than other soils examined so far. The drifts seen in the foreground of this mosaic might have the answer. Scientists hypothesize that these drifts might consist of wind-deposited particles that are the same as the dark material found against the back wall of the crater. If so, Spirit may spend time studying the material and help scientists understand why it is different from other fine-grained material seen at Gusev. <p/> The drifts appear to be lighter in color than the dark material deposited on the back wall of the crater. They might be covered by a thin deposit of martian dust, or perhaps the drift is like other drifts seen during Spirit's journey and is just a collection of martian dust. <p/> To find out, Spirit will spend some of sol 72 digging its wheels into the drift to uncover its interior. After backing up a bit, Spirit will use the panoramic camera and miniature thermal emission spectrometer to analyze the scuffed area. If the interior material has a similar spectrum to the dark deposit in the crater, then Spirit will most likely stay here a little longer to study the drift with the instruments on its robotic arm. If the material is uniform - that is, dusty all the way down, Spirit will most likely move off to another target.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3079/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3079/"><span>Geologic Map of MTM 35337, 40337, and 45337 Quadrangles, Deuteronilus Mensae Region of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chuang, Frank C.; Crown, David A.</p> <p>2009-01-01</p> <p>Deuteronilus Mensae, first defined as an albedo feature at lat 35.0 deg N., long 5.0 deg E., by U.S. Geological Survey (USGS) and International Astronomical Union (IAU) nomenclature, is a gradational zone along the dichotomy boundary in the northern mid-latitudes of Mars. The boundary in this location includes the transition from the rugged cratered highlands of Arabia Terra to the northern lowland plains of Acidalia Planitia. Within Deuteronilus Mensae, polygonal mesas are prominent along with features diagnostic of Martian fretted terrain, including lobate debris aprons, lineated valley fill, and concentric crater fill. Lobate debris aprons, as well as the valley and crater fill deposits, are geomorphic indicators of ground ice, and their concentration in Deuteronilus Mensae is of great interest because of their potential association with Martian climate change. The paucity of impact craters on the surfaces of debris aprons and the presence of ice-cemented mantle material imply young (for example, Amazonian) surface ages that are consistent with recent climate change in this region of Mars. North of Deuteronilus Mensae are the northern lowlands, a potential depositional sink that may have had large standing bodies of water or an ocean in the past. The northern lowlands have elevations that are several kilometers below the ancient cratered highlands with significantly younger surface ages. The morphologic and topographic characteristics of the Deuteronilus Mensae region record a diverse geologic history, including significant modification of the ancient highland plateau and resurfacing of low-lying regions. Previous studies of this region have interpreted a complex array of geologic processes, including eolian, fluvial and glacial activity, coastal erosion, marine deposition, mass wasting, tectonic faulting, effusive volcanism, and hydrovolcanism. The origin and age of the Martian crustal dichotomy boundary are fundamental questions that remain unresolved at the present time. Several scenarios for its formation, including single and multiple large impact events, have been proposed and debated in the literature. Endogenic processes whereby crust is thinned by internal mantle convection and tectonic processes have also been proposed. Planetary accretion models and isotopic data from Martian meteorites suggest that the crust formed very early in Martian history. Using populations of quasi-circular depressions extracted from the topography of Mars, other studies suggest that the age difference between the highlands and lowlands could be ~100 m.y.. Furthermore, understanding the origin and age of the dichotomy boundary has been made more complicated due to significant erosion and deposition that have modified the boundary and its adjacent regions. The resulting diversity of terrains and features is likely a combined result of ancient and recent events. Detailed geologic analyses of dichotomy boundary zones are important for understanding the spatial and temporal variations in highland evolution. This information, and comparisons to other highland regions, can help elucidate the scale of potential environmental changes. Previous geomorphic and geologic mapping investigations of the Deuteronilus Mensae region have been completed at local to global scales. The regional geology was first mapped by Lucchitta (1978) at 1:5,000,000 scale using Mariner 9 data. This study concluded that high crater flux early in Martian history formed overlapping craters and basins that were later filled by voluminous lava flows that buried the impacted surface, creating the highlands. After this period of heavy bombardment, fluvial erosion of the highlands formed the canyons and valleys, followed by dissection that created the small mesas and buttes, and later, formation of the steep escarpment marking the present-day northern highland margin. After valley dissection, mass wasting and eolian processes caused lateral retreat of mesas and buttes</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Icar..243..337S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Icar..243..337S"><span>Occurrence and mechanisms of impact melt emplacement at small lunar craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stopar, Julie D.; Hawke, B. Ray; Robinson, Mark S.; Denevi, Brett W.; Giguere, Thomas A.; Koeber, Steven D.</p> <p>2014-11-01</p> <p>Using observations from the Lunar Reconnaissance Orbiter Camera (LROC), we assess the frequency and occurrence of impact melt at simple craters less than 5 km in diameter. Nine-hundred-and-fifty fresh, randomly distributed impact craters were identified for study based on their maturity, albedo, and preservation state. The occurrence, frequency, and distribution of impact melt deposits associated with these craters, particularly ponded melt and lobate flows, are diagnostic of melt emplacement mechanisms. Like larger craters, those smaller than a few kilometers in diameter often exhibit ponded melt on the crater floor as well as lobate flows near the crater rim crest. The morphologies of these deposits suggest gravity-driven flow while the melt was molten. Impact melt deposits emplaced as veneers and ;sprays;, thin layers of ejecta that drape other crater materials, indicate deposition late in the cratering process; the deposits of fine sprays are particularly sensitive to degradation. Exterior melt deposits found near the rims of a few dozen craters are distributed asymmetrically around the crater and are rare at craters less than 2 km in diameter. Pre-existing topography plays a role in the occurrence and distribution of these melt deposits, particularly for craters smaller than 1 km in diameter, but does not account for all observed asymmetries in impact melt distribution. The observed relative abundance and frequency of ponded melt and flows in and around simple lunar craters increases with crater diameter, as was previously predicted from models. However, impact melt deposits are found more commonly at simple lunar craters (i.e., those less than a few kilometers in diameter) than previously expected. Ponded melt deposits are observed in roughly 15% of fresh craters smaller than 300 m in diameter and 80% of fresh craters between 600 m and 5 km in diameter. Furthermore, melt deposits are observed at roughly twice as many non-mare craters than at mare craters. We infer that the distributions and occurrences of impact melt are strongly influenced by impact velocity and angle, target porosity, pre-existing topography, and degradation. Additionally, areally small and volumetrically thin melt deposits are sensitive to mixing with solid debris and/or burial during the modification stage of impact cratering as well as post-cratering degradation. Thus, the production of melt at craters less than ∼800 m in diameter is likely greater than inferred from the present occurrence of melt deposits, which is rapidly affected by ongoing degradation processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914865C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914865C"><span>Lava flow hazard at the new South-East Crater of Etna volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cappello, Annalisa; Ganci, Gaetana; Bilotta, Giuseppe; Hérault, Alexis; Zago, Vito; Del Negro, Ciro</p> <p>2017-04-01</p> <p>The summit area of Mount Etna has frequently undergone major morphological changes due to its persistent eruptive activity. Since its creation during the 1971 eruption, the Southeast Crater (SEC) has been the most active of the summit craters of Etna. At first, it was a degassing pit located close to the southeast base of the Central Crater cone. During the first 40 years of activity, SEC erupted quite frequently producing almost one hundred of lava flows. Between 2011 and 2016, more than 50 lava fountains occurred, leading to the formation of a new pyroclastic cone (NSEC) on the eastern flank of the SEC. All SEC eruptions are likely to give rise to lava flow, which is the greatest hazard presented to the tourist facilities on the south flank of Etna. For this reason, in 2011 we produced a lava flow hazard map for SEC eruptions using the 2005 DEM as topographic base, where the NSEC was not yet formed. Here we present the new 1-m DEM of Etna updated to 18 December 2015 obtained from high resolution stereo Pléiades images (0.5 m). Processing of Pléiades data was performed by using the DEM Extraction Module of ENVI through three steps: epipolar image creation, image matching, and DEM geocoding. This DEM was used as the new topographic base to produce the first hazard map from lava flow inundation in the NSEC area allowing key at-risk zones to be rapidly and appropriately identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRE..122.2623O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRE..122.2623O"><span>APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J.</p> <p>2017-12-01</p> <p>We present Alpha-Particle X-ray Spectrometer (APXS) data for the active Bagnold dune field within the Gale impact crater (Mars Science Laboratory (MSL) mission). We derive an APXS-based average basaltic soil (ABS) composition for Mars based on past and recent data from the MSL and Mars Exploration Rover (MER) missions. This represents an update to the Taylor and McLennan (2009) average Martian soil and facilitates comparison across Martian data sets. The active Bagnold dune field is compositionally distinct from the ABS, with elevated Mg, Ni, and Fe, suggesting mafic mineral enrichment and uniformly low levels of S, Cl, and Zn, indicating only a minimal dust component. A relationship between decreasing grain size and increasing felsic content is revealed. The Bagnold sands possess the lowest S/Cl of all Martian unconsolidated materials. Gale soils exhibit relatively uniform major element compositions, similar to Meridiani Planum and Gusev Crater basaltic soils (MER missions). However, they show minor enrichments in K, Cr, Mn, and Fe, which may signify a local contribution. The lithified eolian Stimson Formation within the Gale impact crater is compositionally similar to the ABS and Bagnold sands, which provide a modern analogue for these ancient eolian deposits. Compilation of APXS-derived soil data reveals a generally homogenous global composition for Martian soils but one that can be locally modified due to past or extant geologic processes that are limited in both space and time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021037','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021037"><span>Geology of Pluto and Charon Overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Jeffrey Morgan</p> <p>2015-01-01</p> <p>Pluto's surface was found to be remarkably diverse in terms of its range of landforms, terrain ages, and inferred geological processes. There is a latitudinal zonation of albedo. The conspicuous bright albedo heart-shaped feature informally named Tombaugh Regio is comprised of several terrain types. Most striking is Texas-sized Sputnik Planum, which is apparently level, has no observable craters, and is divided by polygons and ovoids bounded by shallow troughs. Small smooth hills are seen in some of the polygon-bounding troughs. These hills could either be extruded or exposed by erosion. Sputnik Planum polygon/ovoid formation hypotheses range from convection to contraction, but convection is currently favored. There is evidence of flow of plains material around obstacles. Mountains, especially those seen south of Sputnik Planum, exhibit too much relief to be made of CH4, CO, or N2, and thus are probably composed of H2O-ice basement material. The north contact of Sputnik Planum abuts a scarp, above which is heavily modified cratered terrain. Pluto's large moon Charon is generally heavily to moderately cratered. There is a mysterious structure in the arctic. Charon's surface is crossed by an extensive system of rift faults and graben. Some regions are smoother and less cratered, reminiscent of lunar maria. On such a plain are large isolated block mountains surrounded by moats. At this conference we will present highlights of the latest observations and analysis. This work was supported by NASA's New Horizons project</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9655H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9655H"><span>How old is Autolycus crater?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hiesinger, Harald; Pasckert, Jan Henrik; van der Bogert, Carolyn H.; Robinson, Mark S.</p> <p>2016-04-01</p> <p>Accurately determining the lunar cratering chronology is prerequisite for deriving absolute model ages (AMAs) across the lunar surface and throughout the Solar System [e.g., 1]. However, the lunar chronology is only constrained by a few data points over the last 1 Ga and there are no calibration data available between 1 and 3 Ga and beyond 3.9 Ga [2]. Rays from Autolycus and Aristillus cross the Apollo 15 landing site and presumably transported material to this location [3]. [4] proposed that at the Apollo 15 landing site about 32% of any exotic material would come from Autolycus crater and 25% would come from Aristillus crater. [5,6] proposed that the 39Ar-40Ar age of 2.1 Ga derived from three petrologically distinct, shocked Apollo 15 KREEP basalt samples, date Autolycus crater. Grier et al. [7] reported that the optical maturity (OMAT) characteristics of these craters are indistinguishable from the background values despite the fact that both craters exhibit rays that were used to infer relatively young, i.e., Copernican ages [8,9]. Thus, both OMAT characteristics and radiometric ages of 2.1 Ga and 1.29 Ga for Autolycus and Aristillus, respectively, suggest that these two craters are not Copernican in age. [10] interpreted newer U-Pb ages of 1.4 and 1.9 Ga from sample 15405 as the formation ages of Aristillus and Autolycus. If Autolycus is indeed the source of the dated exotic material collected at the Apollo 15 landing site, than performing crater size frequency distribution (CSFD) measurements for Autolycus offers the possibility to add a new calibration point to the lunar chronology, particularly in an age range that was previously unconstrained. We used calibrated and map-projected LRO NAC images to perform CSFD measurements within ArcGIS, using CraterTools [11]. CSFDs were then plotted with CraterStats [12], using the production and chronology functions of [13]. We determined ages of 3.72 and 3.85 Ga for the interior (Ai1) and ejecta area Ae3, which we reject because our CSFDs show evidence of secondary craters. Areas Ae1 and Ae2 show very young AMAs (<˜0.5-0.6 Ga), which are too young, considering the fact that Aristillus superposes Autolycus and the results of OMAT studies [7]. Areas Ae4 and Ae5 yielded ages of 3.20 and 3.45 Ga, respectively. Although these ages are least affected by secondaries from Aristillus, they are much older than the 2.1 Ga sample ages that were linked to the formation of Autolycus crater [5,6]. This either implies that the dated samples are not related to Autolycus or that the CSFD measurements are so heavily affected by resurfacing and secondary cratering from Aristillus that they do not represent the formation age of Autolycus. In either case, because of these uncertainties Autolycus can not currently be used as a calibration point for the lunar chronology function. A dedicated mission to either sample terrains with ages of 1-3 Ga or in situ dating such surfaces is of high priority to further constrain the lunar chronology. [1] Hiesinger et al. (2012) JGR 117; [2] Stöffler and Ryder (2001) Chronology and Evolution of Mars; [3] Wilhelms (1987) USGS Spec. Pub. 1348; [4] Schultz (1986) Tech. Rep. 86-03; [5] Ryder et al. (1991) Geology 19; [6] Bogard et al. (1990) Geochim. Cosmochim. Acta 54; [7] Grier et al. (1999) LPSC 30; [8] Hackman (1966) USGS I-463; [9] Page (1970) USGS I-666; [10] Grange et al. (2013) JGR 118; [11] Kneissl et al. (2012) PSS 59; [12] Michael and Neukum, (2010) EPSL 294; [13] Neukum et al. (2001) SSR 96.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750061683&hterms=gardening&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgardening','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750061683&hterms=gardening&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgardening"><span>A Monte Carlo model for the gardening of the lunar regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arnold, J. R.</p> <p>1975-01-01</p> <p>The processes of movement and turnover of the lunar regolith are described by a Monte Carlo model. The movement of material by the direct cratering process is the dominant mode, but slumping is also included for angles exceeding the static angle of repose. Using a group of interrelated computer programs, a large number of properties are calculated, including topography, formation of layers, depth of the disturbed layer, nuclear-track distributions, and cosmogenic nuclides. In the most complex program, the history of a 36-point square array is followed for times up to 400 million years. The histories generated are complex and exhibit great variety. Because a crater covers much less area than its ejecta blanket, there is a tendency for the height change at a test point to exhibit periods of slow accumulation followed by sudden excavation. In general, the agreement with experiment and observation seems good, but two areas of disagreement stand out. First, the calculated surface is rougher than that observed. Second, the observed bombardment ages, of the order 400 million are shorter than expected (by perhaps a factor of 5).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160011484','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160011484"><span>Mineralogy of Mudstone at Gale Crater, Mars: Evidence for Dynamic Lacustrine Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rampe, E. B.; Ming, D. W.; Grotzinger, J. P.; Morris, R. V.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Yen, A. S.; Chipera, S. J.; Morrison, S. M.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160011484'); toggleEditAbsImage('author_20160011484_show'); toggleEditAbsImage('author_20160011484_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160011484_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160011484_hide"></p> <p>2016-01-01</p> <p>The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to assess the habitability of sedimentary deposits that show orbital evidence for diverse ancient aqueous environments. Gale crater contains a 5 km high mound of layered sedimentary rocks in its center, informally named Mount Sharp. The lowermost rocks of Mount Sharp contain minerals that are consistent with a dramatic climate change during Mars' early history. During the rover's traverse across the Gale crater plains to the base of Mount Sharp, Curiosity discovered sedimentary rocks consistent with a fluviolacustrine sequence. Curiosity studied ancient lacustrine deposits at Yellowknife Bay on the plains of Gale crater and continues to study ancient lacustrine deposits in the Murray formation, the lowermost unit of Mount Sharp. These investigations include drilling into the mudstone and delivering the sieved less than 150 micrometers fraction to the CheMin XRD/XRF instrument inside the rover. Rietveld refinement of XRD patterns measured by CheMin generates mineral abundances with a detection limit of 1-2 wt.% and refined unit-cell parameters of minerals present in abundances greater than approximately 5 wt.%. FULLPAT analyses of CheMin XRD patterns provide the abundance of X-ray amorphous materials and constrain the identity of these phases (e.g., opal-A vs. opal-CT). At the time of writing, CheMin has analyzed 14 samples, seven of which were drilled from lacustrine deposits. The mineralogy from CheMin, combined with in-situ geochemical measurements and sedimentological observations, suggest an evolution in the lake waters through time, including changes in pH and salinity and transitions between oxic and anoxic conditions. In addition to a geochemically dynamic lake environment, the igneous minerals discovered in the lake sediments indicate changes in source region through time, with input from mafic and silicic igneous sources. The Murray formation is predominantly comprised of lacustrine mudstone and is 150-200 m thick, suggesting long history of lake environments in Gale crater. Curiosity has traversed through the lowermost approximately 30 m of the Murray formation, and each additional sample provides clues about the climate on early Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990028625&hterms=images+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dimages%2Bmars','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990028625&hterms=images+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dimages%2Bmars"><span>Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.</p> <p>1998-01-01</p> <p>One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009Icar..203..310Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009Icar..203..310Y"><span>An empirical model for transient crater growth in granular targets based on direct observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, Satoru; Barnouin-Jha, Olivier S.; Toriumi, Takashi; Sugita, Seiji; Matsui, Takafumi</p> <p>2009-09-01</p> <p>The present paper describes observations of crater growth up to the time of transient crater formation and presents a new empirical model for transient crater growth as a function of time. Polycarbonate projectiles were impacted vertically into soda-lime glass sphere targets using a single-stage light-gas gun. Using a new technique with a laser sheet illuminating the target [Barnouin-Jha, O.S., Yamamoto, S., Toriumi, T., Sugita, S., Matsui, T., 2007. Non-intrusive measurements of the crater growth. Icarus, 188, 506-521], we measured the temporal change in diameter of crater cavities (diameter growth). The rate of increase in diameter at early times follows a power law relation, but the data at later times (before the end of transient crater formation) deviates from the power law relation. In addition, the power law exponent at early times and the degree of deviation from a power law at later times depend on the target. In order to interpret these features, we proposed to modify Maxwell's Z-model under the assumption that the strength of the excavation flow field decreases exponentially with time. We also derived a diameter growth model as: d(t)∝[1-exp(-βt)]γ, where d(t) is the apparent diameter of the crater cavity at time t after impact, and β and γ are constants. We demonstrated that the diameter growth model could represent well the experimental data for various targets with different target material properties, such as porosity or angle of repose. We also investigated the diameter growth for a dry sand target, which has been used to formulate previous scaling relations. The obtained results showed that the dry sand target has larger degree of deviation from a power law, indicating that the target material properties of the dry sand target have a significant effect on diameter growth, especially at later times. This may suggest that the previously reported scaling relations should be reexamined in order to account for the late-stage behavior with the effect of target material properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22040.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22040.html"><span>Ripples and Dunes in Proctor Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-10-09</p> <p>NASA's Mars Reconnaissance Rover (MRO) has observed two types of wind (aeolian) features in Proctor Crater: large, dark features that are sand dunes, made up of basaltic particles, and smaller, light-toned ripples that we call "TAR," or "transverse aeolian ridges." The origin of the TARs is a mystery. They might be dust deposits, or perhaps coarse grained ripples that are coated in bright dust. These TARs are less than 10 meters tall, and are much smaller than the sand dunes that reach impressive heights of over 130 meters. In other places on Mars, TARs are generally older than sand dunes, but here in Proctor Crater, it is not so obvious. How can we tell which came first, the TARs or the dunes? The dunes are situated on top of the TARs, and with this information, we can say the dunes are clearly the younger formations here in Proctor Crater. Fortunately, HiRISE has a tool that can solve this riddle. By taking stereo images of the same region from two different locations, we can estimate the topography of the region by measuring the displacement of surface features from one picture to the other. The result is a quantitative estimate of the local surface topography, called a digital terrain model. The dunes are situated on top of the TARs, and with this information, we can say the dunes are clearly the younger formations here in Proctor Crater. https://photojournal.jpl.nasa.gov/catalog/PIA22040</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4910003B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4910003B"><span>What Really Happened to Earth's Older Craters?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bottke, William; Mazrouei, Sara; Ghent, Rebecca; Parker, Alex</p> <p>2017-10-01</p> <p>Most assume the Earth’s crater record is heavily biased, with erosion/tectonics destroying older craters. This matches expectations, but is it actually true? To test this idea, we compared Earth’s crater record, where nearly all D ≥ 20 km craters are < 650 Myr old, to the Moon’s. Here lunar crater ages were computed using a new method employing LRO-Diviner temperature data. Large lunar rocks have high thermal inertia and remain warm through the night relative to the regolith. Analysis shows young craters with numerous meter-sized fragments are easy to pick out from older craters with eroded fragments. Moreover, an inverse relationship between rock abundance (RA) and crater age exists. Using measured RA values, we computed ages for 111 rocky craters with D ≥ 10 km that formed between 80°N and 80°S over the last 1 Gyr.We found several surprising results. First, the production rate of D ≥ 10 km lunar craters increased by a factor of 2.2 [-0.9, +4.4; 95% confidence limits] over the past 250 Myr compared to the previous 750 Myr. Thus, the NEO population is higher now than it has been for the last billion years. Second, the size and age distributions of lunar and terrestrial craters for D ≥ 20 km over the last 650 Myr have similar shapes. This implies that crater erasure must be limited on stable terrestrial terrains; in an average sense, for a given region, the Earth either keeps all or loses all of its D ≥ 20 craters at the same rate, independent of size. It also implies the observed deficit of large terrestrial craters between 250-650 Myr is not preservation bias but rather reflects a distinctly lower impact flux. We predict 355 ± 86 D ≥ 20 km craters formed on Earth over the last 650 Myr. Only 38 ± 6 are known, so the ratio, 10.7 ± 3.1%, is a measure of the Earth’s surface that is reasonably stable to large crater formation over 650 Myr. If erosion had dominated, the age distribution of terrestrial craters would be strongly skewed toward younger ages, which is not observed. We predict Chicxulub-type impacts were rare over the last Gyr, with the event 66 Ma a probable byproduct of the current high terrestrial impact flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS21A1093F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS21A1093F"><span>Gasometric anomalies in bottom sediments of the Barents Sea as instrument of Modern Petroleum System study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fokina, A.; Akhmanov, G.; Andreassen, K.; Yurchenko, A.</p> <p>2014-12-01</p> <p>In 2011-2013 four research cruises in the Barents Sea were organized by UNESCO-MSU Centre for Marine Geology and Geophysics (Russia) and University of Tromso (Norway) and were carried out onboard the RV "Akademik N. Strakhov" and RV "Helmer Hanssen". The cruises were devoted to finding and studying hydrocarbon seeps (e.g. pockmarks, crater-like structures), evaluating neo-tectonic activity and focusing on some problems in the field of modern geological and geochemical processes in the Arctic region. This topic is focused on identification of the gas anomalies related to the possible cold seep structures, study of the molecular and isotopic composition and origin of the hydrocarbon gases from the bottom sediments. During this research the interpretation of geochemical survey data was carried out within the different structures of the Barents region: 1) The area of distribution of craters, 2) Storfjordrenna and Storfiordbanken, 3) Nordkap and Tiddly basins, Fedynskii high, North-Kildinsk field. 1) In the Central Barents Sea in the area of distribution of craters residual discharge of gas from the Triassic sandstones has occurred and manifested through the activity of gas flares and elevated concentrations of methane. Values of gas coefficients indicate the possible existence of thermogenic gas in the sample. The active unloading of gas and formation of craters associated with the disintegration of gas hydrates. 2) Discovered gas flares, pockmarks and abnormal high concentrations of methane are the first statement about the presence of active gas discharge in the NW Barents Sea. HC gases are formed as a result of microbial processing of thermogenic gas. In the area there is an increased microbial activity resulting in authigenic carbonate formation. Unloading of gas is observed in the edges parts of the large glacial moraine along the base of which the lateral migration of gas occurs. Reservoirs can be Lower-Middle and Lower-Middle Triassic sandstones. 3) In the Southern Barents Sea no gas anomalies were detected: low gas concentrations, the gas is of biogenic origin. Geochemical survey within North- Kildinsk field and Fedynskii high were unsuccessful. Petroleum system in the surface geochemical field practically do not manifest due to the low permeability of dense clay silts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7201E..1BG','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7201E..1BG"><span>Ablation of aluminum nitride films by nanosecond and femtosecond laser pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gruzdev, Vitaly; Tzou, Robert; Salakhutdinov, Ildar; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory</p> <p>2009-02-01</p> <p>We present results of comparative study of laser-induced ablation of AlN films with variable content of oxygen as a surface-doping element. The films deposited on sapphire substrate were ablated by a single nanosecond pulse at wavelength 248 nm, and by a single femtosecond pulse at wavelength 775 nm in air at normal pressure. Ablation craters were inspected by AFM and Nomarski high-resolution microscope. Irradiation by nanosecond pulses leads to a significant removal of material accompanied by extensive thermal effects, chemical modification of the films around the ablation craters and formation of specific defect structures next to the craters. Remarkable feature of the nanosecond experiments was total absence of thermo-mechanical fracturing near the edges of ablation craters. The femtosecond pulses produced very gentle ablation removing sub-micrometer layers of the films. No remarkable signs of thermal, thermo-mechanical or chemical effects were found on the films after the femtosecond ablation. We discuss mechanisms responsible for the specific ablation effects and morphology of the ablation craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMED51B0527C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMED51B0527C"><span>An Impact Cratering Interactive Website Used for Outreach and in Professional Development Workshops for Middle School Science Teachers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Croft, S. K.; Pierazzo, E.; Canizo, T.; Lebofsky, L. A.</p> <p>2009-12-01</p> <p>Impact cratering is one of the fundamental geologic processes affecting all planetary and asteroidal bodies in the Solar System. With few exceptions, all bodies with solid surfaces explored so far show the presence of impact craters - from the less than 200 known craters on Earth to the many thousands seen on the Moon, Mercury, and other bodies. Indeed, the study of crater populations is one of the principal tools for understanding the geologic history of planetary surfaces. In recent years, impact cratering has gained public notoriety through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: “How often do impacts occur?” “How do scientists learn about impact cratering?” and “What information do impact craters provide in understanding the evolution planetary surfaces?” On our website: “Explorer’s Guide to Impact Craters,” we answer those questions in a fun, informative and interactive way. The website provides the interested public with an opportunity to: 1) experience how scientists explore known terrestrial craters through a virtual fieldtrips; 2) learn more about the dynamics of impact cratering using numerical simulations of various impacts; and 3) investigate how impact cratering affects rocks via images and descriptions of field samples of impact rocks. This learning tool has been a popular outreach endeavor (recently reaching 100,000 hits), and it has recently been incorporated in the Impact Cratering Workshop developed by scientists and EPO specialists at the Planetary Science Institute. The workshop provides middle school science teachers with an inquiry-based understanding of the process of impact cratering and how it affects the solar system. Participants are instructed via standards-based multimedia presentations, analysis of planetary images, hands-on experience with geologic samples from terrestrial impact craters, and first-hand experience forming impact craters. Through the “Explorer’s Guide to Impact Craters,” participants are able to virtually explore three terrestrial impact craters, while examining, first-hand, samples of rocks collected at the three impact sites by real field geologists. The rock samples are included in our Impact Rock Kits that are available for check-out by teachers desiring to involve their students in the study of impact craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ehst.book....1H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ehst.book....1H"><span>Comet and meteorite traditions of Aboriginal Australians</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamacher, Duane W.</p> <p>2014-06-01</p> <p>This research contributes to the disciplines of cultural astronomy (the academic study of how past and present cultures understand and utilise celestial objects and phenomena) and geomythology (the study of geological events and the formation of geological features described in oral traditions). Of the hundreds of distinct Aboriginal cultures of Australia, many have oral traditions rich in descriptions and explanations of comets, meteors, meteorites, airbursts, impact events, and impact craters. These views generally attribute these phenomena to spirits, death, and bad omens. There are also many traditions that describe the formation of meteorite craters as well as impact events that are not known to Western science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22217937-pump-probe-imaging-laser-induced-periodic-surface-structures-after-ultrafast-irradiation-si','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22217937-pump-probe-imaging-laser-induced-periodic-surface-structures-after-ultrafast-irradiation-si"><span>Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Murphy, Ryan D.; Torralva, Ben; Adams, David P.</p> <p>2013-09-30</p> <p>Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ∼50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993Metic..28Q.402M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993Metic..28Q.402M"><span>New Occurrence of Shocked Graphite Aggregates at Barringer Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miura, Y.; Noma, Y.; Iancu, O. G.</p> <p>1993-07-01</p> <p>High-pressure carbon minera]s are considered to be formed by solid-solid transformation under static or impact high-pressure condition, but shocked quartz aggregates of impact craters are considered to be formed by quenched accretion of various aggregates by dynamic impact process [1-3]. The main purpose of this study is to elucidate new findings and occurrences of shocked graphite (SG) aggregates [2,3] at the Barringer meteorite crater. The graphite nodule block of Barringer Crater used in this study is collected near the rim. The sample is compared with standard graphite samples of Korea, Madagascar, and artificial impact graphites. There are four different mineral aggregates of the Barringer graphite nodule sample: (1) shocked graphite-1, (2) shocked graphite-2 and hexagonal diamond in the vein, (3) shocked quartz-1 (with kamacite) in the rim, and (4) calcite in the rim (Table 1). X-ray diffraction peaks of shocked graphite reveal low X-ray intensity, high Bragg-angle shift of X-ray diffraction peak, and multiple splitting of X-ray diffraction peaks. X-ray calculated density (rho) has been determined by X-ray diffractometer by the equation of density deviation Delta rho (%) = 100 x {(rho-rho(sub)0)/rho(sub)0}, where standard density rho(sub)0 is 2.255 g/cm^3 in Korean graphite [2,3]. The high-density value of shocked graphite grain obtained in Barringer is Delta rho = +0.6 +/- 0.1%. Shocked hexagonal diamonds (chaoite) show a high value of Delta rho = +0.6 +/- 0.9%. Analytical electron microscopy data reveal three different aggregates in the graphite nodule samples (Table 1): (1) shocked graphite-1 in the matrix, which contains uniformly Fe and Ca elements formed under gas state; (2) shocked graphite-2 in the vein, where crystallized shocked graphites and hexagonal diamonds are surrounded by kamacite-rich metals formed under gas-melt states of mixed compositions from iron meteorite and target rocks; and (3) shocked quartz-1 and kamacite in the rim, where coexisted elements are supplied from kamacite, sandstone, and limestone. The shocked quartz-1 grains with high density contain Fe and Ca elements that are different from the shocked quartz-2 of pure silica [1] formed at the final stage from the Coconino sandstone. (4) Limestone in the rim is attached from Kaibab limestone. The present shocked graphites with high density are the same as artificial fine-grained shocked graphites (Delta rho = +0.7%). Table 1, which appears here in the hard copy, shows formation stages with two shocked graphites in the Barringer Crater. Formation of shocked aggregates with chemical contamination indicate dynamic accretion processes of quenching and depression at impact. The existence of two shocked graphites indicates the two formation stages of the first gas-state and the second gas-melt states with quenching processes. The origin of carbon in the shocked graphites is considered in this study to be from Kaibab limestone. References: [1] Miura Y. (1991) Shock Waves, 1, 35-41. [2] Miura Y. (1992) Proc. Shock Waves (Japan), 2, 54-57. [3] Miura Y. et al. (1993) Symp. NIPR Antarctic Meteorite (Tokyo), in press. [4] Foote A. E. (1891) Am. J. Sci., 42, 413-417. [5] Hannemann R. E. et al. (1967) Science, 155, 995-997.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27789836','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27789836"><span>Formation of the Orientale lunar multiring basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Johnson, Brandon C; Blair, David M; Collins, Gareth S; Melosh, H Jay; Freed, Andrew M; Taylor, G Jeffrey; Head, James W; Wieczorek, Mark A; Andrews-Hanna, Jeffrey C; Nimmo, Francis; Keane, James T; Miljković, Katarina; Soderblom, Jason M; Zuber, Maria T</p> <p>2016-10-28</p> <p>Multiring basins, large impact craters characterized by multiple concentric topographic rings, dominate the stratigraphy, tectonics, and crustal structure of the Moon. Using a hydrocode, we simulated the formation of the Orientale multiring basin, producing a subsurface structure consistent with high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. The simulated impact produced a transient crater, ~390 kilometers in diameter, that was not maintained because of subsequent gravitational collapse. Our simulations indicate that the flow of warm weak material at depth was crucial to the formation of the basin's outer rings, which are large normal faults that formed at different times during the collapse stage. The key parameters controlling ring location and spacing are impactor diameter and lunar thermal gradients. Copyright © 2016, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190499','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190499"><span>Viscous relaxation of Ganymede's impact craters: Constraints on heat flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.</p> <p>2017-01-01</p> <p>Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite’s history. For craters with diameter ≥ 10 km, heat fluxes of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “heat pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event caused both Ganymede’s tectonic deformation and its crater relaxation. Future observations should permit more robust determination of the relative timing of the heating event that caused viscous relaxation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..296..275B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..296..275B"><span>Viscous relaxation of Ganymede's impact craters: Constraints on heat flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.</p> <p>2017-11-01</p> <p>Measurement of crater depths in Ganymede's dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite's history. For craters with diameter ≥ 10 km, heat fluxes of 40-50 mW m-2 can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived "heat pulses" with magnitudes of ∼100 mW m-2 and timescales of 10-100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2 are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede's middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event caused both Ganymede's tectonic deformation and its crater relaxation. Future observations should permit more robust determination of the relative timing of the heating event that caused viscous relaxation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GGG.....9.7018S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GGG.....9.7018S"><span>The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaefer, Janet R.; Scott, William E.; Evans, William C.; Jorgenson, Janet; McGimsey, Robert G.; Wang, Bronwen</p> <p>2008-07-01</p> <p>A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8 × 106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfur content. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetation-damaging acidic aerosols accompanying drainage of an acidic crater lake has important implications for the study of hazards associated with active volcanic crater lakes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035624','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035624"><span>The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.</p> <p>2008-01-01</p> <p>A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater lake has important implications for the study of hazards associated with active volcanic crater lakes. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991S%26W....30..226F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991S%26W....30..226F"><span>The unveiling of Venus - Magellan's synthesis radar penetrates the cloud cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, Daniel</p> <p>1991-04-01</p> <p>The revelation of the surface of Venus by the Magellan synthetic radar is discussed. The highlights of the discoveries are shown and described, including the long strips called 'noodles', the complex geological formation called the Phoebe region, the mountainous Lakshmi region which contains evidence of plate tectonics, and the Themis Regio highland region, which may have formed by processes analogous to those which made the Hawaiian islands. Mysterious phenomena, like the apparent youth of many of the craters, are addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050172168','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050172168"><span>Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.</p> <p>2005-01-01</p> <p>The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPSC...10..284O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPSC...10..284O"><span>Polygonal Craters on Dwarf-Planet Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otto, K. A.; Jaumann, R.; Krohn, K.; Buczkowski, D. L.; von der Gathen, I.; Kersten, E.; Mest, S. C.; Preusker, F.; Roatsch, T.; Schenk, P. M.; Schröder, S.; Schulzeck, F.; Scully, J. E. C.; Stepahn, K.; Wagner, R.; Williams, D. A.; Raymond, C. A.; Russell, C. T.</p> <p>2015-10-01</p> <p>With approximately 950 km diameter and a mass of #1/3 of the total mass of the asteroid belt, (1) Ceres is the largest and most massive object in the Main Asteroid Belt. As an intact proto-planet, Ceres is key to understanding the origin and evolution of the terrestrialplanets [1]. In particular, the role of water during planet formation is of interest, because the differentiated dwarf-planet is thought to possess a water rich mantle overlying a rocky core [2]. The Dawn space craft arrived at Ceres in March this year after completing its mission at (4) Vesta. At Ceres, the on-board Framing Camera (FC) collected image data which revealed a large variety of impact crater morphologies including polygonal craters (Figure 1). Polygonal craters show straight rim sections aligned to form an angular shape. They are commonly associated with fractures in the target material. Simple polygonal craters develop during the excavation stage when the excavation flow propagates faster along preexisting fractures [3, 5]. Complex polygonal craters adopt their shape during the modification stage when slumping along fractures is favoured [3]. Polygonal craters are known from a variety of planetary bodies including Earth [e.g. 4], the Moon [e.g. 5], Mars [e.g. 6], Mercury [e.g. 7], Venus [e.g. 8] and outer Solar System icy satellites [e.g. 9].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........29W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........29W"><span>Breaking Ground on the Moon and Mars: Reconstructing Lunar Tectonic Evolution and Martian Central Pit Crater Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Nathan Robert</p> <p></p> <p>Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon's surface in unprecedented detail and show many previously unidentified tectonic landforms, forcing a re-assessment of our views of lunar tectonism. I mapped lobate scarps, wrinkle ridges, and graben across Mare Frigoris -- selected as a type area due to its excellent imaging conditions, abundance of tectonic landforms, and range of inferred structural controls. The distribution, morphology, and crosscutting relationships of these newly identified populations of tectonic landforms imply a more complex and longer-lasting history of deformation that continues to today. I also performed additional numerical modeling of lobate scarp structures that indicates the upper kilometer of the lunar surface has experienced 3.5-18.6 MPa of differential stress in the recent past, likely due to global compression from radial thermal contraction. Central pit craters on Mars are another instance of intriguing structures that probe subsurface physical properties. These kilometer-scale pits are nested in the centers of many impact craters on Mars as well as on icy satellites. They are inferred to form in the presence of a water-ice rich substrate; however, the process(es) responsible for their formation is still debated. Previous models invoke origins by either explosive excavation of potentially water-bearing crustal material, or by subsurface drainage of meltwater and/or collapse. I assessed radial trends in grain size around central pits using thermal inertias calculated from Thermal Emission Imaging System (THEMIS) thermal infrared images. Average grain size decreases with radial distance from pit rims -- consistent with pit-derived ejecta but not expected for collapse models. I present a melt-contact model that might enable a delayed explosion, in which a central uplift brings ice-bearing substrate into contact with impact melt to generate steam explosions and excavate central pits during the impact modification stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeCoA.180...33F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeCoA.180...33F"><span>Target-projectile interaction during impact melting at Kamil Crater, Egypt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fazio, Agnese; D'Orazio, Massimo; Cordier, Carole; Folco, Luigi</p> <p>2016-05-01</p> <p>In small meteorite impacts, the projectile may survive through fragmentation; in addition, it may melt, and chemically and physically interact with both shocked and melted target rocks. However, the mixing/mingling between projectile and target melts is a process still not completely understood. Kamil Crater (45 m in diameter; Egypt), generated by the hypervelocity impact of the Gebel Kamil Ni-rich ataxite on sandstone target, allows to study the target-projectile interaction in a simple and fresh geological setting. We conducted a petrographic and geochemical study of macroscopic impact melt lapilli and bombs ejected from the crater, which were collected during our geophysical campaign in February 2010. Two types of glasses constitute the impact melt lapilli and bombs: a white glass and a dark glass. The white glass is mostly made of SiO2 and it is devoid of inclusions. Its negligible Ni and Co contents suggest derivation from the target rocks without interaction with the projectile (<0.1 wt% of projectile contamination). The dark glass is a silicate melt with variable contents of Al2O3 (0.84-18.7 wt%), FeOT (1.83-61.5 wt%), and NiO (<0.01-10.2 wt%). The dark glass typically includes fragments (from few μm to several mm in size) of shocked sandstone, diaplectic glass, lechatelierite, and Ni-Fe metal blebs. The metal blebs are enriched in Ni compared to the Gebel Kamil meteorite. The dark glass is thus a mixture of target and projectile melts (11-12 wt% of projectile contamination). Based on recently proposed models for target-projectile interaction and for impact glass formation, we suggest a scenario for the glass formation at Kamil. During the transition from the contact and compression stage and the excavation stage, projectile and target liquids formed at their interface and chemically interact in a restricted zone. Projectile contamination affected only a shallow portion of the target rocks. The SiO2 melt that eventually solidified as white glass behaved as an immiscible liquid and did not interact with the projectile. During the excavation stage dark glass melt engulfed and coated the white glass melt, target fragments, and got stuck to iron meteorite shrapnel fragments. This model could also explain the common formation of white and dark glasses in small impact craters generated by iron bodies (e.g., Wabar).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010044933&hterms=Xxxii&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DXxxii','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010044933&hterms=Xxxii&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DXxxii"><span>Counting Craters on MOC Images: Production Functions and Other Complications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plaut, J. J.</p> <p>2001-01-01</p> <p>New crater counts on MOC images and associated Viking Orbiter images are used to address the issue of the crater production function at Mars, and to infer aspects of resurfacing processes. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008P%26SS...56.1992S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008P%26SS...56.1992S"><span>GT-57633 catalogue of Martian impact craters developed for evaluation of crater detection algorithms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salamunićcar, Goran; Lončarić, Sven</p> <p>2008-12-01</p> <p>Crater detection algorithms (CDAs) are an important subject of the recent scientific research. A ground truth (GT) catalogue, which contains the locations and sizes of known craters, is important for the evaluation of CDAs in a wide range of CDA applications. Unfortunately, previous catalogues of craters by other authors cannot be easily used as GT. In this paper, we propose a method for integration of several existing catalogues to obtain a new craters catalogue. The methods developed and used during this work on the GT catalogue are: (1) initial screening of used catalogues; (2) evaluation of self-consistency of used catalogues; (3) initial registration from three different catalogues; (4) cross-evaluation of used catalogues; (5) additional registrations and registrations from additional catalogues; and (6) fine-tuning and registration with additional data-sets. During this process, all craters from all major currently available manually assembled catalogues were processed, including catalogues by Barlow, Rodionova, Boyce, Kuzmin, and our previous work. Each crater from the GT catalogue contains references to crater(s) that are used for its registration. This provides direct access to all properties assigned to craters from the used catalogues, which can be of interest even to those scientists that are not directly interested in CDAs. Having all these craters in a single catalogue also provides a good starting point for searching for craters still not catalogued manually, which is also expected to be one of the challenges of CDAs. The resulting new GT catalogue contains 57,633 craters, significantly more than any previous catalogue. From this point of view, GT-57633 catalogue is currently the most complete catalogue of large Martian impact craters. Additionally, each crater from the resulting GT-57633 catalogue is aligned with MOLA topography and, during the final review phase, additionally registered/aligned with 1/256° THEMIS-DIR, 1/256° MDIM and 1/256° MOC data-sets. Accordingly, the resulting GT-57633 catalogue can successfully be used as a part of the framework for evaluation of CDAs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010avh..confE..55U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010avh..confE..55U"><span>The Chicxulub Multiring Impact Crater and the Cretaceous/Paleogene Boundary: Results From Geophysical Surveys and Drilling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urrutia-Fucugauchi, J.; Perez-Cruz, Ligia</p> <p>2010-03-01</p> <p>The Chicxulub crater has attracted considerable attention as one of the three largest terrestrial impact structures and its association with the Cretaceous/Paleogene boundary (K/Pg). Chicxulub is a 200 km-diameter multi-ring structure formed 65.5 Ma ago in the Yucatan carbonate platform in the southern Gulf of Mexico and which has since been buried by Paleogene and Neogene carbonates. Chicxulub is one of few large craters with preserved ejecta deposits, which include the world-wide K/Pg boundary clay layer. The impact has been related to the global major environmental and climatic effects and the organism mass extinction that mark the K/Pg boundary, which affected more than 70 % of organisms, including the dinosaurs, marine and flying reptiles, ammonites and a large part of the marine microorganisms. The impact and crater formation occur instantaneously, with excavation of the crust down to 25 km depths in fractions of second and lower crust uplift and crater formation in a few hundreds of seconds. Energy released by impact and crustal deformation generates seismic waves traveling the whole Earth, and resulting in intense fracturing and deformation at the target site. Understanding of the physics of impacts on planetary surfaces and modeling of processes of crustal deformation, rheological behavior of materials at high temperatures and pressures remain a major challenge in geosciences. Study of the Chicxulub crater and the global effects and mass extinction requires inter- and multidisciplinary approaches, with researchers from many diverse fields beyond the geosciences. With no surface exposures, geophysical surveys and drilling are required to study the crater. Differential compaction between the impact breccias and the surrounding carbonate rocks has produced a ring-fracture structure that at the surface reflects in a small topographic depression and the karstic cenote ring. The crater structure, located half offshore and half on-land, has been imaged by different geophysical aerial, land and marine methods including gravity, magnetics, electromagnetics and seismic refraction and reflection. The impact lithologies and carbonate sequence have been cored as part of several drilling projects. Here we analyze the stratigraphy of Chicxulub from borehole logging data and core analyses, with particular reference to studies on CSDP Yaxcopoil-1 and UNAM Santa Elena boreholes. Analyses of core samples have examined the stratigraphy of the cover carbonate sequence, impact breccia contact and implications for impact age, K/Pg global correlations and paleoenvironmental conditions following impact. The K/Pg age for Chicxulub has been supported from different studies, including Ar/Ar dating, magnetic polarity stratigraphy, geochemistry and biostratigraphy. A Late Maastrichtian age has also been proposed for Chicxulub from studies in Yaxcopoil-1 basal Paleocene carbonates, with impact occurring 300 ka earlier predating the K/Pg boundary. This proposal calls attention to the temporal resolution of stratigraphic and chronological methods, and the need for further detailed analyses of the basal carbonate sections in existing boreholes and new drilling/coring projects. Stratigraphy of impact ejecta and basal sediments in Yaxcopoil-1 and UNAM boreholes indicates a hiatus in the basal sequence. Modeling of post- impact processes suggest erosion effects due to seawater back surge, block slumping and partial rim collapse of post-impact crater modification. Analyses of stable isotopes and magnetostratigraphic data for the Paleocene carbonate sequences in Yaxcopoil-1 and Santa Elena boreholes permit to investigate the post- impact processes, depositional conditions and age of basal sediments. Correlation of stable isotopes with the global pattern for marine carbonate sediments provides a stratigraphic framework for the basal Paleocene carbonates. The analyses confirm a K/Pg boundary age for the Chicxulub impact. References: Collins et al, 2008. Earth Planetary Science Letters 270, 221-230; Gulick et al, 2008. Nature Geoscience 1, 131-135; Hildebrand et al, 1991. Geology 19: 867-871; Hildebrand, A.R. et al, 1998. Geological Society Sp. Publ 140, 153-173; Kring et al., 2004. Meteoritics Planetary Science 39, 879-897; Sharpton et al, 1992. Nature 359: 819-821; Urrutia Fucugauchi et al, 2004. Meteoritics Planetary Science 39: 787-790; Urrutia Fucugauchi et al, 2008. Comptes Rendus Geosciences 341, 801-810; Urrutia Fucugauchi & Perez Cruz, 2009. International Geology Review 51, doi: 10.1080/00206810902867161.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA11750&hterms=getting+things+done&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgetting%2Bthings%2Bdone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA11750&hterms=getting+things+done&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgetting%2Bthings%2Bdone"><span>Places to Go, Things to See</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2009-01-01</p> <p><p/> Since leaving 'Victoria Crater,' Opportunity has picked up the pace of driving. In the 90 sols (Martian days) since exiting the crater, Opportunity has driven more than 1,800 meters (1.1 miles), three times the distance that was required for the original prime mission. Scientists expect to encounter younger rocks the farther south the rover travels. They also expect to find small rocks ejected onto the landscape during formation of nearby craters. To reach these things, the rover must avoid sand traps as much as possible. <p/> Opportunity acquired this mosaic with the navigation camera on the rover's 1,683rd Martian day, or sol (Oct. 18, 2008), of exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940017191','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940017191"><span>Mars: Noachian hydrology by its statistics and topology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cabrol, N. A.; Grin, E. A.</p> <p>1993-01-01</p> <p>Discrimination between fluvial features generated by surface drainage and subsurface aquifer discharges will provide clues to the understanding of early Mars' climatic history. Our approach is to define the process of formation of the oldest fluvial valleys by statistical and topological analyses. Formation of fluvial valley systems reached its highest statistical concentration during the Noachian Period. Nevertheless, they are a scarce phenomenom in Martian history, localized on the craterized upland, and subject to latitudinal distribution. They occur sparsely on Noachian geological units with a weak distribution density, and appear in reduced isolated surface (around 5 x 10(exp 3)(sq km)), filled by short streams (100-300 km length). Topological analysis of the internal organization of 71 surveyed Noachian fluvial valley networks also provides information on the mechanisms of formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160010622','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160010622"><span>Similarities Across Mars: Acidic Fluids at Both Meridiani Planum and Gale Crater in the Formation of Magnesium-Nickel Sulfates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yen, Albert S.; Ming, Douglas W.; Gellert, Ralf; Mittlefehldt, David W.; Vaniman, David T.; Thompson, Lucy M.; Morris, Richard V.; Clark, Benton C.; Arvidson, Raymond</p> <p>2016-01-01</p> <p>In-situ identification of sulfates at the martian surface by the Mars Exploration Rovers and the Mars Science Laboratory have included calcium sulfates with various states of hydration (gypsum, bassanite, anhydrite), iron sulfates of likely fumarolic origin, massive deposits of iron hydroxysulfates indicative of an acidic history, and minor occurrences of magnesium sulfates. Recent measurements by the Opportunity and Curiosity Alpha Particle X-ray Spectrometers (APXS) have indicated the presence of Ni-substituted Mg-sulfates at the Meridiani Planum and Gale Crater landing sites. The Opportunity rover has traversed nearly 43 km and is currently exploring the impact breccias of the rim of Endeavour crater, near a location where signatures of aqueous alteration have been established from orbit. APXS analyses of subsurface materials excavated by a rover wheel show clear evidence for a Mg(Ni)-sulfate with Mg:Ni (is) approximately 100:1 (molar). On the other side of the planet, Curiosity is continuing its climb up Mount Sharp after driving (is) approximately 13 km since landing. Over the last 4 km of the traverse, there have been multiple chemical analyses of erosionally-resistant nodules and dendritic features in a finely laminated mudstone unit which also indicate Mg(Ni)-sulfate (Mg:Ni (is) approximately 30:1, molar). The geologic settings for the Endeavour rim and the Mount Sharp mudstones are clearly different, but similar formation conditions for these sulfates may be possible. Ni(2+) readily substitutes for Mg(2+) in a variety of geochemical processes due to their comparable ionic radii. The availability of soluble Ni at the time of Mg-sulfate precipitation suggests acidic solutions. The fluids responsible for alteration in the Endeavour rim and for the formation of nodules in Gale mudstones may have had similar chemical characteristics at the time the Mg-sulfates were formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100024077','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100024077"><span>An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Swift, Wesley R.; Moser, D.E.; Suggs, Robb M.; Cooke, W.J.</p> <p>2010-01-01</p> <p>The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, Eta is a unique function of velocity with an extremely large variation in the laboratory range of under 8 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from laboratory impacts and from astronomical determinations and scaling factors are estimated. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016594','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016594"><span>An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Swift, W. R.; Moser, D. E.; Suggs, R. M.; Cooke, W. J.</p> <p>2011-01-01</p> <p>The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, eta, is a unique function of velocity with an extremely large variation in the laboratory range of under 6 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from both laboratory impacts and from lunar impact observations. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors. Keywords hypervelocity impact impact flash luminous efficiency lunar impact meteoroid 1</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003icbg.conf...15C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003icbg.conf...15C"><span>Cratering on Small Bodies: Lessons from Eros</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chapman, C. R.</p> <p>2003-01-01</p> <p>Cratering and regolith processes on small bodies happen continuously as interplanetary debris rains down on asteroids, comets, and planetary satellites. Butthey are very poorly observed and not well understood. On the one hand, we have laboratory experimentation at small scales and we have examination of large impact craters (e.g. Meteor Crater on Earth and imaging of abundant craters on terrestrial planets and outer planet moons). Understanding cratering on bodies of intermediate scales, tens of meters to hundreds of km in size, involves either extrapolation from our understanding of cratering phenomena at very different scales or reliance on very preliminary, incomplete examination of the observational data we now have for a few small bodies. I review the latter information here. It has been generally understood that the role of gravity is greatly diminished for smaller bodies, so a lot of cratering phenomena studied for larger bodies is less applicable. But it would be a mistake to imagine that laboratory experiments on gravitationless rocks (usually at 1 g) are directly applicable, except perhaps to those monolithic Near Earth Asteroids (NEAs) some tens of meters in size that spin very rapidly and can be assumed to be "large bare rocks" with "negative gravity". Whereas it had once been assumed that asteroids smaller than some tens of km diameter would retain little regolith, it is increasingly apparent that regolith and megoregolith processes extend down to bodies only hundreds of meters in size, perhaps smaller. Yet these processes are very different from those that pertain to the Moon, which is our chief prototype of regolith processes. The NEAR Shoemaker spacecraft's studies of Eros provide the best evidence to date about small-body cratering processes, as well as a warning that our theoretical understanding requires anchoring by direct observations. Eros: "Ponds", Paucity of Small Craters, and Other Mysteries. Although Eros is currently largely detached from interactions with main-belt asteroids in its Earth-approaching orbit, almost all of its cratering history must have occurred in the main belt, where it almost certainly lived for a long time and where the impact rate is orders-of-magnitude greater than in its present environment. Thus NEAR Shoemaker's year-long orbital studies of Eros should be representative of asteroidal cratering processes for medium-small (tens of km) asteroids generally - with the caveat that small bodies are made of many different materials, ranging from metal to whatever comets are made of, and we already have indications from NEAR Shoemaker's flyby of Mathilde that responses to impacts on such bodies may be very different from what is observed on rocky Eros. As viewed from a distance, the saturated crater fields on Eros look similar to those on Ida and, indeed, on the Moon itself. It is at smaller scales, never before studied for asteroids, where Eros# appearance diverted dramatically from expectations based on modest extrapolations from our lunar experience. Flat, level "ponds" are common on Eros and were certainly not expected. Most striking, however, is the virtual absence of small-scale (cm to meters) craters and the dominance of rocks and boulders on the surface. Apparently many of the larger boulders were distributed about Eros by the comparatively recent impact that produced the Shoemaker crater, providing insight to ejecta processes on small bodies. But, assuming that Shoemaker didn't form practically "yesterday", the dearth of small craters is extremely puzzling. Some researchers have attempted to explain the shortage by traditional geological processes; I will explain why these fail and we are being forced to turn to explanations involving shortages of small projectiles in the asteroid belt (e.g. due to the Yarkovsky Effect). Even if projectile shortages help to explain the data, other non-lunar processes must be at work, as well. Mass-wasting processes are evident on large crater walls and the ponds reflect a still-not-understood deposition or sedimentation process. The boulder-strewn surface itself also serves to "armour" the surface against impacts. The role of seismic shaking on small bodies also must play a major role, relatively unfamiliar for larger bodies. I will summarize the observations of Eros that shed light on these various processes. Even Smaller Bodies. An interest in sub-km scale bodies has developed in the context of imagining how a potentially dangerous NEA might be diverted. Meanwhile, observational evidence concerning their general geophysical configurations has grown rapidly. A significant proportion of these bodies (approx. 20%) appear to have satellites or be binary in nature, and most of the remainder exhibit properties consistent with being "rubble piles" of one form or another. Eros, with less than a millionth the mass of the Moon, turned out to be extremely non-lunar-like in its small-scale responses to impact cratering. NEAs of the size being analyzed as prototypes for deflection are a millionth the mass of Eros. We should not expect our insights from Eros, therefore, to be directly applicable to them. And as we learn more about small asteroids and comets, we must expect to be surprised.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005Icar..174...46S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005Icar..174...46S"><span>Meteoritic and other constraints on the internal structure and impact history of small asteroids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scott, Edward R. D.; Wilson, Lionel</p> <p>2005-03-01</p> <p>Studies of the internal structure of asteroids, which are crucial for understanding their impact history and for hazard mitigation, appear to be in conflict for the S-type asteroids, Eros, Gaspra, and Ida. Spacecraft images and geophysical data show that they are fractured, coherent bodies, whereas models of catastrophic asteroidal impacts, family and satellite formation, and studies of asteroid spin rates, and other diverse properties of asteroids and planetary craters suggest that such asteroids are gravitationally bound aggregates of rubble. These conflicting views may be reconciled if 10-50 km S-type asteroids formed as rubble piles, but were later consolidated into coherent bodies. Many meteorites are breccias that testify to a long history of impact fragmentation and consolidation by alteration, metamorphism, igneous and impact processes. Ordinary chondrites, which are the best analogs for S asteroids, are commonly breccias. Some may have formed in cratering events, but many appear to have formed during disruption and reaccretion of their parent asteroids. Some breccias were lithified during metamorphism, and a few were lithified by injected impact melt, but most are regolith and fragmental breccias that were lithified by mild or moderate shock, like their lunar analogs. Shock experiments show that porous chondritic powders can be consolidated during mild shock by small amounts of silicate melt that glues grains together, and by friction and pressure welding of silicate and metallic Fe,Ni grains. We suggest that the same processes that converted impact debris into meteorite breccias also consolidated asteroidal rubble. Internal voids would be partly filled with regolith by impact-induced seismic shaking. Consolidation of this material beneath large craters would lithify asteroidal rubble to form a more coherent body. Fractures on Ida that were created by antipodal impacts and are concentrated in and near large craters, and small positive gravity anomalies associated with the Psyche and Himeros craters on Eros, are consistent with this concept. Spin data suggest that smaller asteroids 0.6-6 km in size are unconsolidated rubble piles. C-type asteroids, which are more porous than S-types, and their analogs, the volatile-rich carbonaceous chondrites, were probably not lithified by shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..302..386B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..302..386B"><span>Clastic polygonal networks around Lyot crater, Mars: Possible formation mechanisms from morphometric analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brooker, L. M.; Balme, M. R.; Conway, S. J.; Hagermann, A.; Barrett, A. M.; Collins, G. S.; Soare, R. J.</p> <p>2018-03-01</p> <p>Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (>100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V23B2068F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V23B2068F"><span>Palaeomagnetic Emplacement Temperature Determinations of Pyroclastic and Volcaniclastic Deposits in Southern African Kimberlite Pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fontana, G.; Mac Niocaill, C.; Brown, R.; Sparks, R. S.; Matthew, F.; Gernon, T. M.</p> <p>2009-12-01</p> <p>Kimberlites are complex, ultramafic and diamond-bearing volcanic rocks preserved in volcanic pipes, dykes and craters. The formation of kimberlite pipes is a strongly debated issue and two principal theories have been proposed to explain pipe formation: (1) the explosive degassing of magma, and (2) the interaction of rising magma with groundwater (phreatomagmatism). Progressive thermal demagnetization studies are a powerful tool for determining the emplacement temperatures of ancient volcanic deposits and we present the first application of such techniques to kimberlite deposits. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater-fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The results provide important constraints on kimberlite emplacement mechanisms and eruption dynamics. Emplacement temperatures of >590°C for pipe-filling pyroclastic deposits are consistent with volatile-driven eruptions, and suggest phreatomagmatism did not play a major role in the generation of the deposits. The discovery of an extraneous pyroclastic flow deposit within the Orapa A/K1 epiclastic crater, which was erupted from another vent, suggests kimberlite eruptions are capable of producing sustained eruption columns and thick pyroclastic deposits involving significant transport away from source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P33C2885O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P33C2885O"><span>The role of impact events play in redistributing and sequestering water on Early Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osinski, G.; Tornabene, L. L.</p> <p>2017-12-01</p> <p>Impact cratering is one of the most fundamental geological process in the Solar System. Several workers have considered the effect that impact events may have had on the climate of Early Mars. The proposed effects range from impact-induced precipitation to the production of runaway stable climates to the impact delivery of climatically active gases. The role of impact events in forming hydrated minerals has been touched upon but remains debated. In this contribution, we focus on the role that impact events may have played in redistributing and sequestering water on Early Mars; a record that may still be preserved in the Noachian crust. It has been previously proposed that the sequestration of significant quantities of water may have occurred within various hydrated minerals, in particular clays, in the martian crust. There is undoubtedly no single origin for clay-bearing rocks on Mars and the purpose of this contribution is not to review all the possible formation mechanisms. What we do propose, however, is that it is theoretically possible for impact events to create all known occurrences of clays on Mars. We show that clays can form within and around impact craters in two main ways: through the solid-state devitrification of hydrous impact melts and/or impact-generated hydrothermal alteration. Neither of these mechanisms requires a warmer or wetter climate scenario on Early Mars. Notwithstanding the original origin of clays, any clays may be widely redistributed over the Martian surface in the ejecta deposits of large impact craters. However, ejecta deposits are much more complex than commonly thought, with evidence in many instances for two different types of ejecta deposits around martian craters. The first is a ballistic ejecta layer that is low-shock, melt-poor and low-temperature; it will likely not induce the formation of new clays through the mechanisms described above, but could redistribute pre-impact clays over 100's and 1000's of km over the martian surface. Overlying ballistic ejecta deposits is a second ejecta type that is more melt-rich and higher temperature and that has been shown (on Earth) to form new primary clays and other hydrated minerals. This potential to form clays in situ many 100's of km away from the source crater in melt-rich ejecta deposits should be considered in any study of the Noachian crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..280...37D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..280...37D"><span>Observations of an aeolian landscape: From surface to orbit in Gale Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, Mackenzie; Kocurek, Gary</p> <p>2016-12-01</p> <p>Landscapes derived solely from aeolian processes are rare on Earth because of the dominance of subaqueous processes. In contrast, aeolian-derived landscapes should typify Mars because of the absence of liquid water, the long exposure times of surfaces, and the presence of wind as the default geomorphic agent. Using the full range of available orbital and Mars Science Laboratory rover Curiosity images, wind-formed features in Gale Crater were cataloged and analyzed in order to characterize the aeolian landscape and to derive the evolution of the crater wind regime over time. Inferred wind directions show a dominance of regional northerly winds over geologic time-scales, but a dominance of topography-driven katabatic winds in modern times. Landscapes in Gale Crater show a preponderance of aeolian features at all spatial scales. Interpreted processes forming these features include first-cycle aeolian abrasion of bedrock, pervasive deflation, organization of available sand into bedforms, abundant cratering, and gravity-driven wasting, all of which occur over a background of slow physical weathering. The observed landscapes are proposed to represent a spectrum of progressive surface denudation from fractured bedrock, to retreating bedrock-capped mesas, to remnant hills capped by bedrock rubble, to desert pavement plains. This model of landscape evolution provides the mechanism by which northerly winds acting over ∼3 Ga excavated tens of thousands of cubic kilometers of material from the once sediment-filled crater, thus carving the intra-crater moat and exhuming Mount Sharp (Aeolis Mons). The current crater surface is relatively sand-starved, indicating that potential sediment deflation from the crater is greater than sediment production, and that most exhumation of Mount Sharp occurred in the ancient geologic past.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.3427H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.3427H"><span>Laboratory experiments of crater formation on ice-rock mixture targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hiraoka, K.; Arakawa, M.; Yoshikawa, K.; Nakamura, A. M.</p> <p></p> <p>Surfaces of ice-rock mixture are common among planetary bodies in outer solar system, such as the satellites of the giant planets, comet nuclei, and so on. In order to study the effect of the presence of volatiles in crater formation on these bodies, we performed impact experiments using a two-stage light-gas gun and a gas gun at Hokkaido University. The targets were ice-rock mixtures (diameter = 10 or 30cm, height = 5cm) with 0 wt.% to 50 wt.% rock. Projectiles were ice cylinders (diameter = 15mm, height = 10mm) or corn-shaped nylon ones and the impact velocities were varied from about 300m/s to 3500m/s. We will show an anti-correlation between the crater volume and the rock content, and will make a comparison with previous works (Lange and Ahrens 1982; Koschny and Grun 2001). Ejecta size and velocity measured on high-speed video images will be presented and will be discussed by a comparison with a spallation model (Melosh 1984).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060024707','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060024707"><span>Bombardment History of the Moon: What We Think We Know and What We Don't Know</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bogard, Donald</p> <p>2006-01-01</p> <p>The absolute impace history of the moon and inner solar system can in principle be derived from the statistics of radiometric ages of shock-heated planetary samples (lunar or meteoritic), from the formation ages of specific impact craters on the moon or Earth; and from agedating samples representing geologic surface units on the moon (or Mars) for which crater densities have been determined. This impact history, however, is still poorly defined. The heavily cratered surface of the moon is a testimony to the importance of impact events in the evolution of terrestrial planets and satellites. Lunar impacts range in scale from an early intense flux of large objects that defined the surface geology of the moon, down to recent, smaller impacts that continually generate and rework the lunar regolith. Densities of larger craters on lunar surface units of dated age define a projectile flux over time that serves as the basis for estimating surface ages on other solid bodies, particularly Mars. The lunar cratering history may address aspects of Earth s evolution, such as the possible role of early intense impacts on the atmosphere and early life and possible periodicity in large impact events in the more recent past. But, much about the lunar impact history remains unknown.. On Earth approximately 172 impact craters up to 300 km in diameter and up to 2 Gyr in age are recognized. Although these data suggest greater relative numbers of younger craters, possibly suggesting a recent increase in projectile flux, both the diameters and especially the ages of most terrestrial crates are so poorly known that the differential terrestrial impact flux over time is uncertain. For the moon, densities of craters on some mare surfaces and crater ejecta deposits, for which we have measured or estimated formation ages, suggest an approximately constant lunar impact rate of larger projectiles over the past 3.5 Gyr. However, the data are cumulative in nature and limited. Questions exist as to how accurately dated samples correlate with surfaces having measured crater densities. Studies of ages of many tiny impact-melt beads from Apollos 12 and 14 soils show a decrease in the number of beads with age from 4 Gyr ago to 0.4 Gyr ago, followed by a significant increase in beads with age <0.4 Gyr (2). These authors concluded that the projectile flux had decreased over time, followed by a significant flux increase more recently.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4822304M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4822304M"><span>Quantifying Slope Effects and Variations in Crater Density across a Single Geologic Unit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Heather; Mahanti, Prasun; Robinson, Mark; Povilaitis, Reinhold</p> <p>2016-10-01</p> <p>Steep underlying slopes (>~5°) significantly increase the rate of degradation of craters [1-3]. As a result, the density of craters is less on steeper slopes for terrains of the same age [2, 4]. Thus, when age-dating a planetary surface, an area encompassing one geologic unit of constant low slope is chosen. However, many key geologic units, such as ejecta blankets, lack sufficient area of constant slope to derive robust age estimates. Therefore, accurate age-dating of such units requires an accurate understanding of the effects of slope on age estimates. This work seeks to determine if the observed trend of decreasing crater density with increasing slopes [2] holds for craters >1 km and to quantify the effect of slope for craters of this size, focusing on the effect of slopes over the kilometer scale. Our study focuses on the continuous ejecta of Orientale basin, where we measure craters >1 km excluding secondaries that occur as chains or clusters. Age-dating via crater density measurements relies on uniform cratering across a single geologic unit. In the case of ejecta blankets and other impact related surfaces, this assumption may not hold due to the formation of auto- secondary craters. As such, we use LRO WAC mosaics [5], crater size-frequency distributions, absolute age estimates, a 3 km slope map derived from the WAC GLD100 [6], and density maps for various crater size ranges to look for evidence of non-uniform cratering across the continuous ejecta of Orientale and to determine the effect of slope on crater density. Preliminary results suggest that crater density does decrease with increasing slope for craters >1 km in diameter though at a slower rate than for smaller craters.References: [1] Trask N. J. and Rowan L. C. (1967) Science 158, 1529-1535. [2] Basilevsky (1976) Proc. Lunar Sci. Conf. 7th, p. 1005-1020. [3] Pohn and Offield (1970) USGS Prof. Pap., 153-162. [4] Xiao et al. (2013) Earth and Planet. Sci. Lett., 376, pgs. 1-11. doi:10.1016/j.epsl.2013.06.015. [5] Robinson M. S. et al. (2010) Space Sci. Rev. 150, 81 -124. [6] Scholten F. et al. (2011), JGR, 117, doi:10.1029/2011JE003926</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100005365','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100005365"><span>Exploring Martian Impact Craters: Why They are Important for the Search for Life</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schwenzer, S. P.; Abramov, O.; Allen, C. C.; Clifford, S.; Filiberto, J.; Kring, D. A.; Lasue, J.; McGovern, P. J.; Newsom, H. E.; Treiman, A. H.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20100005365'); toggleEditAbsImage('author_20100005365_show'); toggleEditAbsImage('author_20100005365_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20100005365_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20100005365_hide"></p> <p>2010-01-01</p> <p>Fluvial features and evidence for aqueous alteration indicate that Mars was wet, at least partially and/or periodically, in the Noachian. Also, impact cratering appears to have been the dominant geological process [1] during that epoch. Thus, investigation of Noachian craters will further our understanding of this geologic process, its effects on the water-bearing Martian crust, and any life that may have been present at the time. Impact events disturbed and heated the water- and/or ice-bearing crust, likely initiated long-lived hydrothermal systems [2-4], and formed crater lakes [5], creating environments suitable for life [6]. Thus, Noachian impact craters are particularly important exploration targets because they provide a window into warm, water-rich environments of the past which were possibly conducive to life. In addition to the presence of lake deposits, assessment of the presence of hydrothermal deposits in the walls, floors and uplifts of craters is important in the search for life on Mars. Impact craters are also important for astrobiological exploration in other ways. For example, smaller craters can be used as natural excavation pits, and so can provide information and samples that would otherwise be inaccessible (e.g., [7]). In addition, larger (> 75 km) craters can excavate material from a potentially habitable region, even on present-day Mars, located beneath a >5-km deep cryosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033890','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033890"><span>Distribution and interplay of geologic processes on Titan from Cassini radar data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.</p> <p>2010-01-01</p> <p>The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ???350 m to ???2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30??), with no dunes being present above 60??. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30?? and 60?? north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient. ?? 2009 Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.sciencedirect.com/science/article/pii/S0019103509003546','USGSPUBS'); return false;" href="http://www.sciencedirect.com/science/article/pii/S0019103509003546"><span>Disribution and interplay of geologic processes on Titan from Cassini radar data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.</p> <p>2010-01-01</p> <p>The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ~350 m to ~2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30 degrees and 60 degrees north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1042379','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1042379"><span>Inclement Weather Crater Repair Tool Kit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-11-30</p> <p>Force’s Rapid Airfield Damage Repair (RADR) Program developed technologies to return bomb -damaged runways and taxiways to full operational sortie...ERDC/GSL TR-17-26 3 2 Inclement Weather Crater Repair Research This chapter gives an overview of the bomb -crater repair process and presents</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988KIzND.......80G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988KIzND.......80G"><span>Metallic particles from the Macha meteorite crater and several placer deposits in Iakutiia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurov, E. P.; Kolesov, G. M.; Kudinova, L. A.; Rakitskaia, R. B.; Samoilovich, L. G.</p> <p></p> <p>The composition of metallic particles from the Macha crater in Iakutiia is shown to be close to the composition of cosmogenic particles from the region of the Tungusk meteorite as well as Ukrainian placer deposits. A description is given of cosmogenic particles from placer deposits of northern Iakutiia, whose formation may be connected with a large impact event in the northeastern part of the USSR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910081N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910081N"><span>Polygonal Impact Craters on selected Minor Bodies: Rhea, Dione, Tethys, Ceres, and Vesta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neidhart, Tanja; Leitner, Johannes; Firneis, Maria</p> <p>2017-04-01</p> <p>A polygonal impact crater (PIC) is a crater that does not have a full circular shape in plane view but consists of straight crater rim segments. PICs are common on all objects in our solar system that show a cratered surface. Previous studies showed that PICs make up about 10-25% of craters on Mercury, Venus, Mars, and the Moon [1, 2, 3, 4]. Although there have been several studies on PICs on the terrestrial planets, and the Moon there are only very few investigations on PICs on minor bodies, even though there exist surface maps of Rhea, Tethys, Dione, Ceres, and Vesta that have an appropriate resolution. The aim of this study is to get more information about the abundance and characteristics of PICs on these objects. We analysed all approved craters on Rhea, Dione, Tethys, Ceres, and Vesta using images provided by the IAU/NASA/USGS Planetary Database [5]. For the classification of PICs the definition by [2] was used which states that a crater is polygonal if it consists of at least two straight crater rim segments having a discernable angle. In total 417 impact craters were examined and 227 of them were classified as polygonal. On Rhea about 48% of the approved craters are PICs, on Dione 59%, on Tethys 34%, on Ceres 74%, and on Vesta 56%. The comparison with studies on PICs on terrestrial planets, and the Moon conducted by [1, 2, 3, 4] showed that the percentage of PICs found in this study is much higher. Most of the PICs have two or three straight rim segments and only few PICs are hexagonal or pentagonal. The mean angle between the straight rims yields 121° for Rhea, 124° for Dione, 123° for Tethys, 133° for Ceres, and 134° for Vesta. These angles are well in accordance to an average angle of 112° on Mercury [1]. Also the size distribution of PICs is in accordance to results by [4] who proved that PICs seem to favor small to middle size diameters. The largest diameters of non-polygonal craters on Vesta range from 0.6 km to 450 km while the diameters of PICs only range from 3.1 km to 53.2 km [5]. The study proves that a large number of polygonal impact craters on Rhea, Dione, Tethys, Ceres, and Vesta exist but it is still unclear why the fraction of PICs on these bodies is much higher than for terrestrial planets and the Moon. One possible solution could be the different composition of the surfaces of these bodies in comparison to the terrestrial planets but for definite answers to this question further understanding of the formation process of PICs, which is still unclear, is necessary. References: [1] Weihs G. T. et al. (2015) Planet. Space Sci., 111, 77-82. [2] Aittola M. et al. (2010) Icarus, 205, 356-363. [3] Öhman et al. (2008) Meteoritics & Planet. Sci., 43, 1605-1628. [4] Öhman et al. (2010) Geol. Soc. Spec. Pap., 465, 51-65. [5] IAU/NASA/USGS Planetary Database. (2016), http://planetarynames.wr.usgs.gov/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NIMPB.405...22L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NIMPB.405...22L"><span>A molecular dynamics simulation study of irradiation induced defects in gold nanowire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Wenqiang; Chen, Piheng; Qiu, Ruizhi; Khan, Maaz; Liu, Jie; Hou, Mingdong; Duan, Jinglai</p> <p>2017-08-01</p> <p>Displacement cascade in gold nanowires was studied using molecular dynamics computer simulations. Primary knock-on atoms (PKAs) with different kinetic energies were initiated either at the surface or at the center of the nanowires. We found three kinds of defects that were induced by the cascade, including point defects, stacking faults and crater at the surface. The starting points of PKAs influence the number of residual point defects, and this consequently affect the boundary of anti-radiation window which was proposed by calculation of diffusion of point defects to the free surface of nanowires. Formation of stacking faults that expanded the whole cross-section of gold nanowires was observed when the PKA's kinetic energy was higher than 5 keV. Increasing the PKA's kinetic energy up to more than 10 keV may lead to the formation of crater at the surface of nanowires due to microexplosion of hot atoms. At this energy, PKAs started from the center of nanowires can also result in the creation of crater because length of cascade region is comparable to diameter of nanowires. Both the two factors, namely initial positions of PKAs as well as the craters induced by higher energy irradiation, would influence the ability of radiation resistance of metal nanowires.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014acm..conf...88C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014acm..conf...88C"><span>Cratering statistics on asteroids: Methods and perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chapman, C.</p> <p>2014-07-01</p> <p>Crater size-frequency distributions (SFDs) on the surfaces of solid-surfaced bodies in the solar system have provided valuable insights about planetary surface processes and about impactor populations since the first spacecraft images were obtained in the 1960s. They can be used to determine relative age differences between surficial units, to obtain absolute model ages if the impactor flux and scaling laws are understood, to assess various endogenic planetary or asteroidal processes that degrade craters or resurface units, as well as assess changes in impactor populations across the solar system and/or with time. The first asteroid SFDs were measured from Galileo images of Gaspra and Ida (cf., Chapman 2002). Despite the superficial simplicity of these studies, they are fraught with many difficulties, including confusion by secondary and/or endogenic cratering and poorly understood aspects of varying target properties (including regoliths, ejecta blankets, and nearly-zero-g rubble piles), widely varying attributes of impactors, and a host of methodological problems including recognizability of degraded craters, which is affected by illumination angle and by the ''personal equations'' of analysts. Indeed, controlled studies (Robbins et al. 2014) demonstrate crater-density differences of a factor of two or more between experienced crater counters. These inherent difficulties have been especially apparent in divergent results for Vesta from different members of the Dawn Science Team (cf. Russell et al. 2013). Indeed, they have been exacerbated by misuse of a widely available tool (Craterstats: hrscview.fu- berlin.de/craterstats.html), which incorrectly computes error bars for proper interpretation of cumulative SFDs, resulting in derived model ages specified to three significant figures and interpretations of statistically insignificant kinks. They are further exacerbated, and for other small-body crater SFDs analyzed by the Berlin group, by stubbornly adopting certain assumptions about issues that should be left as open questions (e.g., the shapes of impactor SFDs are assumed to be identical throughout the solar system and throughout all epochs, the decay rate of the impactor flux in the asteroid belt is assumed to be the same as in the Earth-Moon system, and all kinks in SFDs are interpreted as ''resurfacings'' rather than due to layering of targets or due to other kinds of crater creation and degradation processes). In fact, we know that there are different mixes of comets and asteroids in different parts of the solar system, that size distributions differ in different parts of the asteroid belt, that SFDs of asteroid families evolve, that kinks in SFDs can be produced by layering (e.g., on the Moon), and that small-scale crater populations on asteroids like Itokawa and Eros are dramatically affected by processes of lesser importance to large-scale cratering (e.g., because of bouldery substrates, seismic shaking, etc.). Identification of homogeneous geological units for crater counting is particularly critical. Crater ejecta blankets, which are useful units on planetary-scale bodies, become problematic on smaller bodies where ejecta travel farther and are even ejected at greater than escape velocity resulting in thin, patchy ejecta blankets inappropriate for displaying a useful post-deposition crater population. As we anticipate studying still more cratered small-body surfaces from future spacecraft and even radar imaging of asteroids, comet nuclei, and small satellites, non-specialists and crater-counters alike should be suspicious of crater SFDs obtained through production-line application of black-box routines like Craterstats. Crater SFDs can still be a very useful tool, so long as there is rigorous, statistically robust, open-minded interpretation that takes account of the real unknowns concerning geological and interplanetary contexts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..292...54B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..292...54B"><span>GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.</p> <p>2017-08-01</p> <p>High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168407','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168407"><span>A chemostratigraphic method to determine the end of impact-related sedimentation at marine-target impact craters (Chesapeake Bay, Lockne, Tvären)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ormö, Jens; Hill, Andrew C.; Self-Trail, Jean M.</p> <p>2010-01-01</p> <p>To better understand the impact cratering process and its environmental consequences at the local to global scale, it is important to know when in the geological record of an impact crater the impact-related processes cease. In many instances, this occurs with the end of early crater modification, leaving an obvious sedimentological boundary between impactites and secular sediments. However, in marine-target craters the transition from early crater collapse (i.e., water resurge) to postimpact sedimentation can appear gradual. With the a priori assumption that the reworked target materials of the resurge deposits have a different chemical composition to the secular sediments we use chemostratigraphy (δ13Ccarb, %Corg, major elements) of sediments from the Chesapeake Bay, Lockne, and Tvären craters, to define this boundary. We show that the end of impact-related sedimentation in these cases is fairly rapid, and does not necessarily coincide with a visual boundary (e.g., grain size shift). Therefore, in some cases, the boundary is more precisely determined by chemostratigraphy, especially carbonate carbon isotope variations, rather than by visual inspection. It is also shown how chemostratigraphy can confirm the age of marine-target craters that were previously determined by biostratigraphy; by comparing postimpact carbon isotope trends with established regional trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.4016S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.4016S"><span>The first new application of the mathematical theory of stochastic processes to lunar and planetary science: topography profile diagrams of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salamuniccar, G.</p> <p></p> <p>The Mathematical Statistics Theory (MST) and the Mathematical Theory of Stochastic Processes (MTSP) are different branches of the more general Mathematical Probability Theory (MPT) that represents different aspects of some physical processes we can analyze using mathematics. Each model of a stochastic process according to MTSP can provide one or more interpretations in MST domain. Large body of work on the impact crater statistics according to MST was already done many years ago, for e.g., where Cratering Chronology Diagrams (CCD) were shown in log/log scale, showing Cum. Crater Frequency [N km-2] that is the function of Age [years] for some particular crater diameter. However, all this is only one possible representation in MST domain, of the bombardment of the planetary surface modeled as stochastic process according to MTSP. The idea that other representations in MST domain of the same stochastic process from MTSP are possible was recently presented [G. Salamuniæcar, Adv. Space Res. in press]. The importance of the approach is that each such interpretation can provide large amount of new information. Topography Profile Diagrams (TPDs) are one example, that with MOLA data provide us with large amount of new information regarding history of Mars. TPDs consists of [34thLPS #1403]: (1) Topography-Profile Curve (TPC) that is representation of the planet topography, (2) Density-of-Craters Curve (DCC) that represents density of craters, (3) Filtered-DCC (FDCC) that represents DCC filtered by a low-pass filter included with the purpose of reducing the noise and (4) Level-of-Substance-Over-Time Curve (LSOTC). While definition of TPC uniquely corresponds to way we will compute it, the same is not also the case with DCC and FDCC. While DCC depends on algorithms for computing crater altitude according to the topography, center coordinates and radius of impact crater [34thLPS #1409], FDCC depends on the architecture of the custom designed low-pass filter for filtering DCC [34thLPS #1415]. However all variations of DCC and FDCC including the different input craters data-sets confirmed correlation between density of craters and topographic altitude over 70˜ 80% of the planet surface. For the assumption that ocean primarily caused noted correlation, LSOTC additionally for the first time offers mathematical approach how to compute how level of ocean was changing over time [6thMars #3187]. Accordingly, conclusion is that TPDs are the first new practical application of MTSP to the Lunar and Planetary Science (LPS).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7749K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7749K"><span>Geological Mapping of the Ac-H-3 Dantu Quadrangle of Ceres from NASA's Dawn Mission.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kneissl, Thomas; Schmedemann, Nico; Neesemann, Adrian; Williams, David A.; Crown, David A.; Mest, Scott C.; Buczkowski, Debra L.; Scully, Jennifer E. C.; Frigeri, Allessandro; Ruesch, Ottaviano; Hiesinger, Harald; Walter, Sebastian H. G.; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Kersten, Elke; Naß, Andrea; Nathues, Andreas; Platz, Thomas; Russell, Chistopher T.</p> <p>2016-04-01</p> <p>The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-3 Dantu Quadrangle. The current map is based on a Framing Camera (FC) clear-filter image mosaic from HAMO data (~140 m/px) as well as a digital terrain model (DTM) derived from imagery of the Survey phase [3]. Albedo variations were identified and mapped using a mosaic of photometrically corrected HAMO images provided by DLR. FC color images provided further context for map unit identification. LAMO images (35m/pixel), which have just become available at the time of writing, will be used to update the map to be presented as a poster. The quadrangle is located between 21-66°N and 90-180°E in a large-scale depression north of the impact basin Kerwan. The northern and southeastern parts of the quadrangle are characterized by cratered terrain while the south and southwest are dominated by the partially smooth ejecta blankets of craters Dantu and Gaue. East-west oriented pit/crater chains in the southern half of the quadrangle might be related to tectonic processes [4,5]. Dantu crater (d=~126 km) is a complex impact crater showing slump terraces and a partially smooth crater floor with concentric and radial fractures. Furthermore, Dantu shows a central pit structure with pitted terrain on its floor as well as several bright spots in the interior and exterior of the crater. High-resolution measurements of crater size-frequency distributions (CSFDs) superposed on Dantu indicate a formation/modification age of ~200 - 700 Ma. Most of the ejecta appear to be relatively bright and correspond to parts of the #2 high albedo region observed with the Hubble Space Telescope [6]. However, the southwestern portion of the ejecta blanket is characterized by relatively dark ejecta material. The albedo variations and differences in color data indicate materials of different compositions in the subsurface. Interestingly, Dantu is located in a longitude range where the Herschel space telescope might have observed the release of water vapor [7]. In the course of the mission, analyses of LAMO imagery as well as VIR spectral data will help to identify potential water sources, constrain the compositional variations, and the overall geologic history of the Dantu crater region. Further CSFD measurements we will help to determine the formation ages of other impact structures in the quadrangle. Acknowledgements: We acknowledge the support of M. Hoffmann, M. Schaefer, M.C. De Sanctis, C.A. Raymond, and the Dawn Instrument, Operations, and Science Teams. This work is partly supported by the German Space Agency (DLR), grant 50 OW 1101. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23. [3] Preusker, F. et al. (2016), LPSC abstract. [4] Scully, J.E.C. et al. (2016), this meeting. [5] Buczkowski D. L. et al. (2015), AGU abstract #P44B-05. [6] Li, J-Y. et al. (2006), Icarus, 182, 143-160. [7] Küppers, M., et al. (2014), Nature, v. 505, 525-527.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SoSyR..49..367I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SoSyR..49..367I"><span>Crater Boguslawsky on the moon: Geological structure and an estimate of the degree of rockiness of the floor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, M. A.; Basilevsky, A. T.; Abdrakhimov, A. M.; Karachevtseva, I. P.; Kokhanov, A. A.; Head, J. W.</p> <p>2015-11-01</p> <p>The paper considers the results of a study of the geological structure of the floor of the crater Boguslawsky selected as a primary target for the Luna-Glob mission. The deplanate floor of the crater is covered by the material ejected from remote craters and the crater Boguslawsky-D on the eastern inner slope of the crater Boguslawsky. It is highly probable that the sampling of the crater Boguslawsky-D ejecta will provide the unique possibility to detect and analyze the material that predates the formation of the largest and most ancient currently known basin on the Moon—the South Pole-Aitken basin. The rockiness degree of the Boguslawsky crater floor has been estimated from the radar data and the manual boulder counts in the superresolution images (0.5 m/pixel obtained with the Narrow Angle Camera from the Lunar Reconnaissance Orbiter). Comparison of the radar data to the results of the photo-geological analysis shows that the main contributor to the radar signal is the rock debris located in the subsurface layer sounded by radar (1-1.5 m), while there are practically no boulders on the surface. The two most rocky regions on the crater Boguslawsky floor are associated with the relatively fresh impact craters 300-400 m in diameter. The spatial density of boulders near the craters suggests that one of them is 30-50 Myr older than the other. For both of these craters, the spatial density of boulders drops with the distance from their rims. The rate of the decrease in the boulder spatial density is the same for both craters, which points to the constant-in-time intensity of the fragmentation of boulders. The size distribution of boulders versus the distance from a rim of the older crater is approximated by the curve with a slope of-0.02, while the curve slope for the younger crater is-0.05. The gentler curve slope for the older crater is obviously connected with the equalization of sizes of the rock debris with time. The size-frequency distribution of all rock fragments for the both craters, regardless of the distance from the rim, shows that mainly large boulders first crumble away as the surface age increases. Some large boulders near the young crater demonstrate the traces of rolling, while such traces are absent for the boulders near the older crater. This allows us to estimate the intensity of the reworking of a thin surface layer at 0.01 m/Myr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000010632&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmass%2Bwasting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000010632&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmass%2Bwasting"><span>Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Jeffrey M.; Asphaug, Erik; Morrison, David; Spencer, John R.; Chapman, Clark R.; Bierhaus, Beau; Sullivan, Robert J.; Chuang, Frank C.; Klemaszewski, James E.; Greeley, Ronald</p> <p>1999-01-01</p> <p>The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on the icy Galilean satellites of Jupiter. Weakening of surface materials coupled with mass movement reduces the topographic relief of landforms by moving surface materials down-slope. Throughout the Galileo orbiter nominal mission we have studied all known forms of mass movement and landform degradation of the icy galilean satellites, of which Callisto, by far, displays the most degraded surface. Callisto exhibits discrete mass movements that are larger and apparently more common than seen elsewhere. Most degradation on Ganymede appears consistent with sliding or slumping, impact erosion, and regolith evolution. Sliding or slumping is also observed at very small (100 m) scale on Europa. Sputter ablation, while probably playing some role in the evolution of Ganymede's and Callisto's debris layers, appears to be less important than other processes. Sputter ablation might play a significant role on Europa only if that satellite's surface is significantly older than 10(exp 8) years, far older than crater statistics indicate. Impact erosion and regolith formation on Europa are probably minimal, as implied by the low density of small craters there. Impact erosion and regolith formation may be important on the dark terrains of Ganymede, though some surfaces on this satellite may be modified by sublimation-degradation. While impact erosion and regolith formation are expected to operate with the same vigor on Callisto as on Ganymede, most of the areas examined at high resolution on Callisto have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. The extent of surface degradation ascribed to sublimation on the outer two Galilean satellites implies that an ice more volatile than H2O is probably involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..322L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..322L"><span>Distribution and Characteristics of Boulder Halos at High Latitudes on Mars: Ground Ice and Surface Processes Drive Surface Reworking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, J. S.; Fassett, C. I.; Rader, L. X.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; Russell, A. T.; Dyar, M. D.</p> <p>2018-02-01</p> <p>Boulder halos are circular arrangements of clasts present at Martian middle to high latitudes. Boulder halos are thought to result from impacts into a boulder-poor surficial unit that is rich in ground ice and/or sediments and that is underlain by a competent substrate. In this model, boulders are excavated by impacts and remain at the surface as the crater degrades. To determine the distribution of boulder halos and to evaluate mechanisms for their formation, we searched for boulder halos over 4,188 High Resolution Imaging Science Experiment images located between 50-80° north and 50-80° south latitude. We evaluate geological and climatological parameters at halo sites. Boulder halos are about three times more common in the northern hemisphere than in the southern hemisphere (19% versus 6% of images) and have size-frequency distributions suggesting recent Amazonian formation (tens to hundreds of millions of years). In the north, boulder halo sites are characterized by abundant shallow subsurface ice and high thermal inertia. Spatial patterns of halo distribution indicate that excavation of boulders from beneath nonboulder-bearing substrates is necessary for the formation of boulder halos, but that alone is not sufficient. Rather, surface processes either promote boulder halo preservation in the north or destroy boulder halos in the south. Notably, boulder halos predate the most recent period of near-surface ice emplacement on Mars and persist at the surface atop mobile regolith. The lifetime of observed boulders at the Martian surface is greater than the lifetime of the craters that excavated them. Finally, larger minimum boulder halo sizes in the north indicate thicker icy soil layers on average throughout climate variations driven by spin/orbit changes during the last tens to hundreds of millions of years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..286...15W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..286...15W"><span>The role of strength defects in shaping impact crater planforms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watters, W. A.; Geiger, L. M.; Fendrock, M.; Gibson, R.; Hundal, C. B.</p> <p>2017-04-01</p> <p>High-resolution imagery and digital elevation models (DEMs) were used to measure the planimetric shapes of well-preserved impact craters. These measurements were used to characterize the size-dependent scaling of the departure from circular symmetry, which provides useful insights into the processes of crater growth and modification. For example, we characterized the dependence of the standard deviation of radius (σR) on crater diameter (D) as σR ∼ Dm. For complex craters on the Moon and Mars, m ranges from 0.9 to 1.2 among strong and weak target materials. For the martian simple craters in our data set, m varies from 0.5 to 0.8. The value of m tends toward larger values in weak materials and modified craters, and toward smaller values in relatively unmodified craters as well as craters in high-strength targets, such as young lava plains. We hypothesize that m ≈ 1 for planforms shaped by modification processes (slumping and collapse), whereas m tends toward ∼ 1/2 for planforms shaped by an excavation flow that was influenced by strength anisotropies. Additional morphometric parameters were computed to characterize the following planform properties: the planform aspect ratio or ellipticity, the deviation from a fitted ellipse, and the deviation from a convex shape. We also measured the distribution of crater shapes using Fourier decomposition of the planform, finding a similar distribution for simple and complex craters. By comparing the strength of small and large circular harmonics, we confirmed that lunar and martian complex craters are more polygonal at small sizes. Finally, we have used physical and geometrical principles to motivate scaling arguments and simple Monte Carlo models for generating synthetic planforms, which depend on a characteristic length scale of target strength defects. One of these models can be used to generate populations of synthetic planforms which are very similar to the measured population of well-preserved simple craters on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870037740&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmass%2Bwasting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870037740&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmass%2Bwasting"><span>Lunar and Venusian radar bright rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, T. W.; Saunders, R. S.; Weissman, D. E.</p> <p>1986-01-01</p> <p>Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. It is proposed that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters. The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post-impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance. It is proposed that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..346..180C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..346..180C"><span>Hydrological evolution and chemical structure of a hyper-acidic spring-lake system on Whakaari/White Island, NZ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christenson, B. W.; White, S.; Britten, K.; Scott, B. J.</p> <p>2017-10-01</p> <p>White Island has a long and varied history of acid spring discharge and shallow ephemeral lake formation on its main crater floor. In the 12 months prior to the onset of the 1976-2000 eruptive episode, mass discharge from the spring system increased ca. 10-fold, pointing to a strong coupling of the hydrothermal environment to the evolving magmatic system. Between 1976 and 1978, the formation of numerous eruption vents to 200 m depth in the Western Sub-crater abruptly changed the hydraulic gradients in the volcano, resulting in the reversal of groundwater flow in the massif towards the newly-formed crater(s). This affected not only the style of volcanic activity (leading to phreatic-phreatomagmatic-magmatic eruption cycles), but also led to the demise of the spring system, with discharge from the main crater declining by a factor > 100 by 1979. Eruptive activity ended shortly after a moderate Strombolian eruption in mid-2000, after which ephemeral lakes started to form in the eruption crater complex. Between 2003 and 2015 there were three complete lake filling and evaporative cycles, reflecting varying heat flow through the conduit system beneath the lake. Over these cycles, lake water concentrations of Cl and SO4 varied between ca. 35-150 and 5-45 g/L respectively, with pH values temporally ranging from + 1.5 to - 1. Springs appeared on the Main Crater floor in 2004, and their discharges varied with lake level, pointing to the lake level being a primary control over the piezometric surface in the crater area. Springs closest to the crater complex show direct evidence of crater lake water infiltration into the crater floor aquifer, whereas distal spring discharges show compositional variations reflecting vertical displacement of the interface between shallow, dilute condensate and underlying acidic brine fluids. Source components for the spring fluids include magmatic vapour, dissolved andesitic host rocks, seawater and meteoric water. Lake waters, on the other hand, consist predominantly of magmatic vapour, meteoric water and solutes derived from host andesites and their altered derivatives. δ2H and δ18O signatures of the enclosing acid brine fluids, indicate they are predominantly seawater which have been affected by both vapour loss, but also mixing with arc-type vapour. An interesting finding of this study is that crater floor deformation correlates directly to both lake level and volatile emissions, in an apparent poroelastic response to the establishment of a hydrostatic water column in the eruption crater complex, and a net decrease in permeability owing to hydrothermal mineralization in the conduit (predominantly elemental sulfur and sulfate minerals). The hydrostatic pressurization of the vent environment also leads to increased gas pressures and flows through fumarolic channels, and consequent expansion of fumarolic areas on the main crater floor. A period of unrest, which commenced in August 2012 and lasted until October 2013, included the extrusion of a small dome into the eruption crater complex. This activity, and related high heat flow, led once again to evaporation of the lake, and ongoing phreatic eruption activity which has provided interesting insights into the role which elemental sulfur, associated hydrothermal alteration minerals and of course water play in regulating pressures in the magmatic-hydrothermal environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016LPICo1912.2084B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016LPICo1912.2084B"><span>Pizza or Pancake? Formation Models of Gas Escape Biosignatures in Terrestrial and Martian Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonaccorsi, R.; Fairen, A. G.; Baker, L.; McKay, C. P.; Willson, D.</p> <p>2016-05-01</p> <p>Fine-grained sedimentary hollowed structures were imaged in Gale Crater, but no biomarkers identified to support biology. Our observation-based (gas escape) terrestrial model could inform on possible martian paleoenvironments at time of formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1022e/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1022e/report.pdf"><span>Origin, distribution, and rapid removal of hydrothermally formed clay at Mount Baker, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Frank, David</p> <p>1983-01-01</p> <p>Clay minerals are locally abundant in two hydrothermal areas at Mount Baker-Sherman Crater and the Dorr Fumarole Field. The silt- and clay-size fractions of volcanic debris that is undergoing alteration at and near the ground surface around areas of current fumarolic activity in Sherman Crater are largely dominated by alunite and a silica phase, either opal or cristobalite, but contain some kaolinite and smectite. Correspondingly, the chemistry of solutions at the surface of the crater, as represented by the crater lake, favors the formation of alunite over kaolinite. In contrast, vent-filling debris that was ejected to the surface from fumaroles in 1975 contains more than 20 percent clay-size material in which kaolinite and smectite are dominant. The youngest eruptive deposit (probably 19th century) on the crater rim was also altered prior to ejection and contains as much as 27 percent clay-size material in which kaolinite, smectite, pyrophyllite, and mixed-layer illitesmectite are abundant. The hydrothermal products, kaolinite and alunite, are present in significant amounts in five large Holocene mudflows that originated at the upper cone of Mount Baker. The distribution of kaolinite in crater and valley deposits indicates that, with the passage of time, increasingly greater amounts of this clay mineral have been incorporated into large mass movements from the upper cone. Either erosion has cut into more kaolinitic parts of the core of Sherman Crater, or the amount of kaolinite has increased through time in Sherman Crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011907','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011907"><span>Tectonic resurfacing of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Malin, Michael C.; Grimm, Robert E.; Herrick, Robert R.</p> <p>1993-01-01</p> <p>Impact crater distributions and morphologies have traditionally played an important role in unraveling the geologic histories of terrestrial objects, and Venus has proved no exception. The key observations are: mean crater retention age about 500 Ma; apparently random spatial distribution; modest proportion (17 percent) of modified craters; and preferential association of modified craters with areas of low crater density. The simplest interpretation of these data alone is that Venus experienced global resurfacing (assumed to be largely volcanic) prior to 500 Ma, after which time resurfacing rates decreased dramatically. This scenario does not totally exclude present geological activity: some resurfacing and crater obliteration is occurring on part of the planet, but at rates much smaller than on Earth. An alternative endmember model holds that resurfacing is also spatially randomly distributed. Resurfacing of about 1 sq km/yr eliminates craters such that a typical portion of the surface has an age of 500 Ma, but actual ages range from zero to about 1000 Ma. Monte Carlo simulation indicates that the typical resurfacing 'patch' cannot exceed about 500 km in diameter without producing a crater distribution more heterogeneous than observed. Volcanic or tectonic processes within these patches must be locally intense to be able to obliterate craters completely and leave few modified. In this abstract, we describe how global geologic mapping may be used to test resurfacing hypotheses. We present preliminary evidence that the dominant mode of resurfacing on Venus is tectonism, not volcanism, and that this process must be ongoing today. Lastly, we outline a conceptual model in which to understand the relationship between global tectonics and crater distribution and preservation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013M%26PS...48.1236P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013M%26PS...48.1236P"><span>Petrography of impact glasses and melt breccias from the El'gygytgyn impact structure, Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pittarello, Lidia; Koeberl, Christian</p> <p>2013-07-01</p> <p>The El'gygytgyn impact structure, 18 km in diameter and 3.6 Ma old, in Arctic Siberia, Russia, is the only impact structure on Earth mostly excavated in acidic volcanic rocks. The Late Cretaceous volcanic target includes lavas, tuffs, and ignimbrites of rhyolitic, dacitic, and andesitic composition, and local occurrence of basalt. Although the ejecta blanket around the crater is nearly completely eroded, bomb-shaped impact glasses, redeposited after the impact event, occur in lacustrine terraces within the crater. Here we present detailed petrographic descriptions of newly collected impact glass-bearing samples. The observed features contribute to constrain the formation of the melt and its cooling history within the framework of the impact process. The collected samples can be grouped into two types, characterized by specific features: (1) "pure" glasses, containing very few clasts or new crystals and which were likely formed during the early stages of cratering and (2) a second type, which represents composite samples with impact melt breccia lenses embedded in silicate glass. These mixed samples probably resulted from inclusion of unmelted impact debris during ejection and deposition. After deposition the glassy portions continued to deform, whereas the impact melt breccia inclusions that probably had already cooled down behaved as rigid bodies in the flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001957','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001957"><span>Oxychlorine Species on Mars: The Gale Crater Story</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Morris, R. V.; Clark, B. C.; Mahaffy, P. H.; Wray, J. J.; Fairen, A. G.; Gellert, R.; Yen, A. S.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150001957'); toggleEditAbsImage('author_20150001957_show'); toggleEditAbsImage('author_20150001957_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150001957_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150001957_hide"></p> <p>2015-01-01</p> <p>Comparing data from the Alpha- Particle X-Ray Spectrometer (APXS) and the Sample Analysis at Mars (SAM) instruments on MSL reveals a strong linear correlation between chlorine and oxygen, further demonstrating the presence of oxychlorine species in Gale Crater and, very likely, globally on Mars. Perchlorate was first discovered on Mars by the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on the Phoenix lander in 2008. Current hypotheses suggest that the formation of oxychlorine species such as perchlorate or chlorate is a global process and that these species should be globally distributed on Mars [e.g. 2-4]. To date, the SAM and Chemistry and Mineralogy (CheMin) instruments on MSL have analyzed one scooped sample of aeolian material (Rocknest [RN]), and four drilled samples (John Klein [JK], Cumberland [CB], Windjana [WJ], and Confidence Hills [CH]). The APXS instrument has also investigated the same or very similar samples. Although not definitively identified, oxychlorine species have been proposed to explain releases of O2, HCl, and chlorinated hydrocarbon species detected by evolved gas analysis (EGA) with the SAM instrument. We report a strong linear correlation between wt. % Cl detected by APXS and moles O2 detected by SAM during pyrolysis, indicating the presence of oxychlorine species in Gale Crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DPS....4641310H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DPS....4641310H"><span>Modeling the Provenance of Crater Ejecta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Ya-Huei; Minton, David A.</p> <p>2014-11-01</p> <p>The cratering history of the Moon provides a way to study the violent early history of our early solar system. Nevertheless, we are still limited in our ability to interpret the lunar cratering history because the complex process of generation and subsequent transportation and destruction of impact melt products is relatively poorly understood. Here we describe a preliminary model for the transport of datable impact melt products by craters over Gy timescales on the lunar surface. We use a numerical model based on the Maxwell Z-model to model the exhumation and transport of ejecta material from within the excavation flow of a transient crater. We describe our algorithm for rapidly estimating the provenance of ejecta material for use in a Monte Carlo cratering code capable of simulating lunar cratering over Gy timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P34C..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P34C..01M"><span>Impact melt-bearing breccias of the Mistastin Lake impact structure: A unique planetary analogue for ground-truthing proximal ejecta emplacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mader, M. M.; Osinski, G. R.</p> <p>2013-12-01</p> <p>Impact craters are the dominant geological landform on rocky planetary surfaces; however, relationships between specific craters and their ejecta are typically poorly constrained. With limited planetary samples, scientists look to terrestrial craters as analogues. Impact ejecta is defined here as any target material, regardless of its physical state, that is transported beyond the rim of the transient cavity [1]. The original transient cavity reaches its maximum size during the excavation stage of crater formation, before rim collapse begins in the modification stage [2]. In complex craters, during the modification stage, rocks around the periphery of the bowl-shaped transient crater collapse downward and inward to form a series of terraces along the outer margin of the crater structure [3]. Proximal impact ejecta, can therefore be found on the terraces of the modified rim of a complex crater, interior to the final crater rim [1]. Although typically poorly preserved on Earth due to post-impact erosional processes, impact ejecta have been identified in the terraced rim region of the Mistastin Lake impact structure, located in northern Labrador, Canada (55°53'N; 63°18'W) [4]. The Mistastin Lake impact structure is an intermediate-size, complex crater (28 km apparent crater diameter) formed by a meteorite impact ~36 Ma in crystalline target rocks. The original crater has been differentially eroded; however, a terraced rim and distinct central uplift are still observed [5]. The inner portion of the structure is covered by the Mistastin Lake and the surrounding area is locally covered by soil/glacial deposits and vegetation. Locally, allochthonous impactites overlying fractured target rocks are exposed along the lakeshore and along banks of radially cutting streams. They define a consistent stratigraphy, including, from bottom to top: monomict, lithic breccias, allochthonous polymict lithic breccias, and allochthonous impact melt rocks. Mistastin impact breccias range in matrix content, melt-fragment concentration, and contact relationships with adjacent impactites. Initial findings suggest differing origins for impact melt-bearing breccias from a single impact event. Three examples are highlighted: 1) Impact melt-bearing breccias, on an inner terrace, formed in boundary zones where hot impact melt flowed over cooler, ballistically emplaced polymict impact breccias. 2) Locally, a dyke of impact melt-bearing breccia suggests that this unit originated as hot lithic flow that moved laterally along the ground and then intruded as a fracture fill into target rocks. 3) A m-scale lens of melt-bearing breccia within the middle of a thick, 80m impact melt rock unit situated on an inner terrace, suggests that this lens may have originated from the crater floor and been incorporated into the melt pond during emplacement (i.e. movement of the melt from the crater floor to terrace shelf). In summary, the Mistastin Lake impact structure displays a multiple layered ejecta sequence that is consistent with, and requires, a multi-stage ejecta emplacement model as proposed by [1]. References: [1] Osinski et al. (2011) EPSL (310:167-181. [2] Melosh (1989) Oxford Univ. 245 pp. [3] French B. M. (1998) LPI Contribution 954,120pp. [4] Mader et al. (2011) 42nd LPSC, No.1608. [5] Mader et al. (2013) 43rd LPSC, No. 2517.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760016035','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760016035"><span>Volcanology and morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bryan, W. B.</p> <p>1976-01-01</p> <p>Apollo 15 photographs of the southern parts of Serenitatis and Imbrium were used for a study of the morphology and distribution of wrinkle ridges. Volcanic and structural features along the south margin of Serenitatis were also studied, including the Dawes basalt cinder cones. Volcanic and structural features in crater Aitken were investigated as well. Study of crater Goclenius showed a close relationship between morphology of the impact crater and grabens which tend to parallel directions of the lunar grid. Similar trends were observed in the walls of crater Tsiolkovsky and other linear structures. Small craters of possible volcanic origin were also studied. Possible cinder cones were found associated with the Dawes basalt and in the floor of craters Aitken and Goclenius. Small pit craters were observed in the floors of these craters. Attempts were made to obtain contour maps of specific small features and to compare Orbiter and Apollo photographs to determine short term changes associated with other processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009LPI....40.1204H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009LPI....40.1204H"><span>Ice Flow in Debris Aprons and Central Peaks, and the Application of Crater Counts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartmann, W. K.; Quantin, C.; Werner, S. C.; Popova, O.</p> <p>2009-03-01</p> <p>We apply studies of decameter-scale craters to studies of probable ice-flow-related features on Mars, to interpret both chronometry and geological processes among the features. We find losses of decameter-scale craters relative to nearby plains, probably due to sublimation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020573','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020573"><span>Erosional valleys in the Thaumasia region of Mars: Hydrothermal and seismic origins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tanaka, K.L.; Dohm, J.M.; Lias, J.H.; Hare, T.M.</p> <p>1998-01-01</p> <p>Analysis of erosional valleys, geologic materials and features, and topography through time in the Thaumasia region of Mars using co-registered digital spatial data sets reveals significant associations that relate to valley origin. Valleys tend to originate (1) on Noachian to Early Hesperian (stages 1 and 2) large volcanoes, (2) within 50-100 km of stages 1 and 2 rift systems, and (3) within 100 km of Noachian (stage 1) impact craters >50 km in diameter. These geologic preferences explain observations of higher valley-source densities (VSDs) in areas of higher elevations and regional slopes (>1??) because the volcanoes, rifts, and craters form high, steep topography or occur in terrain of high relief. Other stage 1 and stage 2 high, steep terrains, however, do not show high VSDs. The tendency for valleys to concentrate near geologic features and the overall low drainage densities in Thaumasia compared to terrestrial surfaces rule out widespread precipitation as a major factor in valley formation (as is proposed in wann, wet climate scenarios) except perhaps during the Early Noachian, for which much of the geologic record has been obliterated. Instead, volcanoes and rifts may indicate the presence of shallow crustal intrusions that could lead to local hydrothermal circulation, melting of ground ice and snow, and groundwater sapping. However, impact-crater melt would provide a heat source at the surface that might drive away water, forming valleys in the process. Post-stage 1 craters mostly have low nearby VSDs, which, for valleys incised in older rocks, suggests burial by e??jecta and, for . younger valleys, may indicate desiccation of near-surface water and deepening of the cryosphere. Later Hesperian and Amazonian (stages 3 and 4) valleys originate within 100-200 km of three young, large impact craters and near rifts systems at Warrego Valle??s and the southern part of Coprates rise. These valleys likely developed when the cryosphere was a couple kilometers or more thick, inhibiting valley development by hydrothermal circulation. However, eruption of groundwater may have occurred from impact-induced fracturing and lateral and perhaps minor upward transport of water due to seismic pumping. The two smaller craters formed along the plateau margin where the highest potential hydraulic head would occur in aquifers beneath the plateau. In the case of the larger crater (Lowell, 200 km in diameter), potential aquifers would likely be at depths of kilometers below the cryosphere. Seismic energy generated by the Lowell impactor would have been much greater, pumping both groundwater and perhaps fluidized slurry to the surface from beneath the cryosphere to form the young valleys and flow deposit. Along the margin of Thaumasia, tectonic pressurization of groundwater also may have contributed to valley formation. Dissection of rim materials of the Argyre impact may relate to tectonic activity and the unconsolidated state of basin e??jecta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830040097&hterms=originals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doriginals','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830040097&hterms=originals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doriginals"><span>The Manicouagan impact structure - An analysis of its original dimensions and form</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grieve, R. A. F.; Head, J. W., III</p> <p>1983-01-01</p> <p>A reanalysis of the preerosional geology of the Canadian impact crater, Manicouagan, is presented. Although most of the current features of the annular moat are primarily a result of erosional processes, the original dimensions of the cavity have been determined to include a transient cavity 60 km in diam. The final floor of the crater was studied and found to be an impact melt-covered inner plateau 55 km in diam. Comparisons with similar crater bottoms on the moon are used to estimate a final crater rim diameter of 85-95 km. The inner plateau and relatively smooth deposits on the crater floor are noted to be most similar to the lunar crater Copernicus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.295...76N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.295...76N"><span>The preservation of the Agoudal impact crater, Morocco, under a landslide: Indication of a genetic link between shatter cones and meteorite fragments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nachit, Hassane; Abia, El Hassan; Bonadiman, Costanza; Di Martino, Mario; Vaccaro, Carmela</p> <p>2017-10-01</p> <p>Geological studies and tomographic profiles of a locality nearby the Agoudal village (Morocco) showed the presence of a single impact crater, 500-600 m diameter, largely hidden by a limestone block, 220 m long and 40 m deep. The site was interpreted as a landslide that followed the fall of a cosmic body. The Agoudal impact crater was not affected by intense erosion. The lack of an evident impact structure, as well as the sporadic distribution of impactites and their limited occurrence, can be explained by a complex geological framework and by recent tectonics. The latter is the result of the sliding of limestone block, which hides almost two-thirds of the crater's depression, and the oblique fall of the meteoroid on sloping ground. In addition, some impact breccia dikes sharply cut the host rock in the Agoudal impact structure. They do not show any genetic relationship with tectonics or hydrothermal activity, nor are they related to any karst or calcrete formations. Altogether, the overlapping of the meteorite strewn field (11 km long and 3 km wide) with the area of occurrence of shatter cones and impact breccias, together with the presence of meteorite fragments (shrapnel) ejected from the crater, the presence of shatter cones contaminated by products of iron meteorites and the presence of impact breccias that contain meteorite fragments of the same chemical composition of the Agoudal meteorite indicate that the fall of this meteorite can be responsible for the formation of the impact structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70004575','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70004575"><span>Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, Ralf; Golombek, M.P.; Grotzinger, J.P.; Guinness, E.A.; Haberle, R.M.; Herkenhoff, K. E.; Herman, J.A.; Iagnemma, K.D.; Jolliff, B.L.; Johnson, J. R.; Klingelhofer, G.; Knoll, A.H.; Knudson, A.T.; Li, R.; McLennan, S.M.; Mittlefehldt, D. W.; Morris, R.V.; Parker, T.J.; Rice, M.S.; Schroder, C.; Soderblom, L.A.; Squyres, S. W.; Sullivan, R.J.; Wolff, M.J.</p> <p>2011-01-01</p> <p>Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036107','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036107"><span>Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, Ralf; Golombek, M.P.; Grotzinger, J.P.; Guinness, E.A.; Haberle, R.M.; Herkenhoff, K. E.; Herman, J.A.; Iagnemma, K.D.; Jolliff, B.L.; Johnson, J. R.; Klingelhofer, G.; Knoll, A.H.; Knudson, A.T.; Li, R.; McLennan, S.M.; Mittlefehldt, D. W.; Morris, R.V.; Parker, T.J.; Rice, M.S.; Schroder, C.; Soderblom, L.A.; Squyres, S. W.; Sullivan, R.J.; Wolff, M.J.</p> <p>2011-01-01</p> <p>Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date. Copyright 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38..453H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38..453H"><span>Age of large volcanism to originate the Vallis Schroteri on the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Honda, Chikatoshi; Toguchi, Masashi; Morota, Tomokatsu; Hirata, Naru; Demura, Hirohide; Asada, Noriaki; Kitazato, Kohei; Ogawa, Yoshiko; Terazono, Jun-Ya; Haruyama, Junichi</p> <p></p> <p>The Vallis Schrüteri on the Aristarchus Plateau of the Moon is a meandering negative depres-o sion, as called a sinuous rille. The sinuous rille is located at 26.2 N deg. in latitude and 50.8 W deg. in longitude. This is the largest sinuous rille on the moon, which is 168 km in length, 6 km in width, and 500 m on average in depth (less than 1 km) [Honda et al., 2009]. The sinuous rille has been suggested that the negative depression was produced by an ancient huge lava flow which eroded into the substrate ground. The volume of lava flow to produce the negative depression seemed to be the largest among volcanisms on the Moon. However, an age of this volcanic event is not estimated yet. Therefore, it is important to estimate the formation age of the Vallis Schrüteri for understanding of thermal evolution of the Moon. We utilize the crater chronology method using the crater size-frequency distribution for the age estimation of the sinuous rille, because the ability of suitable high resolution images of Kaguya/TC lead us to measure an accurate diameter of small craters in the sinuous rille. We should remove secondary craters from our measurements to acquire more accurate age estimation. There is the Aristarchus crater, 40 km in diameter, nearby the Vallis Schrüteri, so we eliminated the area blanketed by ejecta from the crater by using the Clementine and Kaguya/MI data and carefully remove the secondary craters showing the herringbone, cluster, chains, and elongated characteristics. We examined areas of the floor of the Vallis Schrüteri, and of southwestern outside of the Aristarchus Plateau which is suspected as the lava pond to produce the Vallis Schrüteri by spectral data. If these areas are originated by same lava flow, no difference of the results of age estimation among the areas. As a result, we estimated the formation age of the floor part of the Vallis Schrüteri, as 2.5 (+0.4, -0.4) Ga, and the age of the lava pond, as 3.1 (+0.3, -0.7) Ga. The results show us that the possibility of lava pond to originate the Vallis Schrüteri suspicious. And, the formation age of the Vallis Schrüteri lead us to know an occurrence of large volcanism in the Eratosthenian which is fade-out period of more active volcanisms (Imbrian) on the Moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001553','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001553"><span>Role of artesian groundwater in forming Martian permafrost features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Howard, Alan D.</p> <p>1991-01-01</p> <p>Various landforms possibly related to formation (growth), movement, or decay of ground ice have been identified on Mars, including fretted terrain (ft) and associated lobate debris aprons (lda), the chaotic terrain, concentric crater fills (ccf), polygonal ground, softened terrain, small domes that are possibly pingos, and curvilinear (fingerprint) features (cuf). Glaciers may also have been present. Some of these may involve ice derived from artesian groundwater. Topical areas of discussion are: Mars groundwater and the location of permafrost features; the ft, lda, ccf, and cuf; role of artesian groundwater in formation of fretted terrain, lobate debris blankets, and concentric crater fills; sources of glacial ice; and pingos and other pseudovolcanic structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CRGeo.346...82I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CRGeo.346...82I"><span>Tectonic-karstic origin of the alleged "impact crater" of Lake Isli (Imilchil district, High Atlas, Morocco)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ibouh, Hassan; Michard, André; Charrière, André; Benkaddour, Abdelfattah; Rhoujjati, Ali</p> <p>2014-03-01</p> <p>The scenic lakes Tislit and Isli of the Imilchil area in the central High Atlas of Morocco have been recently promoted to the rank of "dual impact crater" by a group of geoscientists. This was promptly denied by a group of meteorite specialists, but the first team reiterated their impact crater interpretation, now restricted to Lake Isli. This alleged 40-kyr-old impact crater would be associated with the Agoudal meteorite recognized further in the southeast. Here, we show that the lake formed during the Lowe-Middle Pleistocene in a small Pliocene (?) pull-apart basin through additional collapsing due to karst phenomena in the underlying limestones. This compares with the formation of a number of lakes of the Atlas Mountains. None of the "proofs" produced in support of a meteoritic origin of Lake Isli coincides with the geology of the area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002566','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002566"><span>Hydrological Modeling of the Jezero Crater Outlet-Forming Flood</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fassett, Caleb I.; Goudge, Timothy A.</p> <p>2017-01-01</p> <p>Jezero crater is a site of prime scientific interest because it was a lake early in Mars history. Preserved clay- and carbonate-bearing sedimentary fans on Jezero's western and northwestern margin (Fig. 2) are accessible to future exploration. Geologic context [1] and stratigraphic analysis of the western fan strongly support the interpretation that these fans were deposited as deltas into the lake. This has helped establish Jezero as one of the final candidate landing sites for Mars 2020. The high level of certainty that Jezero was a lake results from the existence of its outlet valley, which required filling of the crater to form [e.g., 1,4]. Here, we specifically focus on how this outlet valley was carved by the dam breach flood that eroded the eastern crater rim. We have completed preliminary modeling in both 1D and 2D of the outlet's formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Geo....36..227B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Geo....36..227B"><span>Upheaval Dome, Utah, USA: Impact origin confirmed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buchner, Elmar; Kenkmann, Thomas</p> <p>2008-03-01</p> <p>Upheaval Dome is a unique circular structure on the ColoradoPlateau in SE Utah, the origin of which has been controversiallydiscussed for decades. It has been interpreted as a crypto volcanicfeature, a salt diapir, a pinched-off salt diapir, and an erodedimpact crater. While recent structural mapping, modeling, andanalyses of deformation mechanisms strongly support an impactorigin, ultimate proof, namely the documentation of unambiguousshock features, has yet to be successfully provided. In thisstudy, we document, for the first time, shocked quartz grainsfrom this crater in sandstones of the Jurassic Kayenta Formation.The investigated grains contain multiple sets of decorated planardeformation features. Transmission electron microscopy (TEM)reveals that the amorphous lamellae are annealed and exhibitdense tangles of dislocations as well as trails of fluid inclusions.The shocked quartz grains were found in the periphery of thecentral uplift in the northeastern sector of the crater, whichmost likely represents the cross range crater sector.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>