Sample records for crater forms measuring

  1. Operation Sun Beam, Shot Small Boy. Project Officers report. Project 1. 9. Crater measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooke, A.D.; Davis, L.K.; Strange, J.N.

    1985-09-01

    The objectives of Project 1.9 were to obtain the dimensions of the apparent and true craters formed by the Small Boy event and to measure the permanent earth deformation occurring beyond the true crater boundary. Measurements were made of the apparent crater by aerial stereophotography and ground survey and of the true crater and subsurface zones of residual deformation by the excavation and mapping of an array of vertical, colored sand columns which were placed along one crater diameter prior to the shot. The results of the crater exploration are discussed, particularly the permanent compression of the medium beneath themore » true crater which was responsible for the major portion of the apparent and true crater volumes. Apparent and true crater dimensions are compared with those of previous cratering events.« less

  2. Application of X-ray computed microtomography to soil craters formed by raindrop splash

    NASA Astrophysics Data System (ADS)

    Beczek, Michał; Ryżak, Magdalena; Lamorski, Krzysztof; Sochan, Agata; Mazur, Rafał; Bieganowski, Andrzej

    2018-02-01

    The creation of craters on the soil surface is part of splash erosion. Due to the small size of these craters, they are difficult to study. The main aim of this paper was to test X-ray computed microtomography to investigate craters formed by raindrop impacts. Measurements were made on soil samples moistened to three different levels corresponding with soil water potentials of 0.1, 3.16 and 16 kPa. Using images obtained by X-ray microtomography, geometric parameters of the craters were recorded and analysed. X-ray computed microtomography proved to be a useful and efficient tool for the investigation of craters formed on the soil surface after the impact of water drops. The parameters of the craters changed with the energy of the water drops and were dependent on the initial moisture content of the soil. Crater depth is more dependent on the increased energy of the water drop than crater diameter.

  3. Improved Measurement of Ejection Velocities From Craters Formed in Sand

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.

    2014-01-01

    A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.

  4. High Resolution Digital Elevation Models of Pristine Explosion Craters

    NASA Technical Reports Server (NTRS)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements, correlation of ejecta size and composition with radar and visible-thermal IR remote sensing signatures, and comparison of these results with similar measurements of Mars. The final DEMs, ancillary data sets, and derived data products will be made available to the community.

  5. Physical properties of lunar craters

    NASA Astrophysics Data System (ADS)

    Joshi, Maitri P.; Bhatt, Kushal P.; Jain, Rajmal

    2017-02-01

    The surface of the Moon is highly cratered due to impacts of meteorites, asteroids, comets and other celestial objects. The origin, size, structure, age and composition vary among craters. We study a total of 339 craters observed by the Lunar Reconnaissance Orbiter Camera (LROC). Out of these 339 craters, 214 craters are known (named craters included in the IAU Gazetteer of Planetary Nomenclature) and 125 craters are unknown (craters that are not named and objects that are absent in the IAU Gazetteer). We employ images taken by LROC at the North and South Poles and near side of the Moon. We report for the first time the study of unknown craters, while we also review the study of known craters conducted earlier by previous researchers. Our study is focused on measurements of diameter, depth, latitude and longitude of each crater for both known and unknown craters. The diameter measurements are based on considering the Moon to be a spherical body. The LROC website also provides a plot which enables us to measure the depth and diameter. We found that out of 214 known craters, 161 craters follow a linear relationship between depth (d) and diameter (D), but 53 craters do not follow this linear relationship. We study physical dimensions of these 53 craters and found that either the depth does not change significantly with diameter or the depths are extremely high relative to diameter (conical). Similarly, out of 125 unknown craters, 78 craters follow the linear relationship between depth (d) and diameter (D) but 47 craters do not follow the linear relationship. We propose that the craters following the scaling law of depth and diameter, also popularly known as the linear relationship between d and D, are formed by the impact of meteorites having heavy metals with larger dimension, while those with larger diameter but less depth are formed by meteorites/celestial objects having low density material but larger diameter. The craters with very high depth and with very small diameter are perhaps formed by the impact of meteorites that have very high density but small diameter with a conical shape. Based on analysis of the data selected for the current investigation, we further found that out of 339 craters, 100 (29.5%) craters exist near the equator, 131 (38.6%) are in the northern hemisphere and 108 (31.80%) are in the southern hemisphere. This suggests the Moon is heavily cratered at higher latitudes and near the equatorial zone.

  6. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    NASA Astrophysics Data System (ADS)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form craters in a geologic instant. The question examined in this manuscript is how fast these craters erode after their formation. To simplify the problem, we examined craters of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of craters on both bodies that met these criteria. Our results suggest that craters on Mercury become shallower much more quickly than craters on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3297/downloads/sim3297_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3297/downloads/sim3297_pamphlet.pdf"><span>Geologic map of Tooting crater, Amazonis Planitia region of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mouginis-Mark, Peter J.</p> <p>2015-01-01</p> <p>Tooting crater has a diameter of 27.2 km, and formed on virtually flat lava flows within Amazonis Planitia ~1,300 km west of the summit of Olympus Mons volcano, where there appear to have been no other major topographic features prior to the impact. The crater formed in an area ~185 x 135 km that is at an elevation between −3,870 m and −3,874 m relative to the Mars Orbiter Laser Altimeter (MOLA) Mars datum. This fortuitous situation (for example, a bland, horizontal target) allows the geometry of the crater and the thickness of the ejecta blanket to be accurately determined by subtracting the appropriate elevation of the surrounding landscape (−3,872 m) from the individual MOLA measurements across the crater. Thus, for the first time, it is possible to determine the radial decrease of ejecta thickness as a function of distance away from the rim crest. On the basis of the four discrete ejecta layers surrounding the crater cavity, Tooting crater is classified as a Multiple-Layered Ejecta (MLE) crater. By virtue of the asymmetric distribution of secondary craters and the greater thickness of ejecta to the northeast, Morris and others (2010) proposed that Tooting crater formed by an oblique impact from the southwest. The maximum range of blocks that produced identifiable secondary craters is ~500 km (~36.0 crater radii) from the northeast rim crest. In contrast, secondary craters are only identifiable ~215 km (15.8 radii) to the southeast and 225 km (16.5 radii) to the west.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015M%26PS...50.1378C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015M%26PS...50.1378C"><span>Survival of refractory presolar grain analogs during Stardust-like impact into Al foils: Implications for Wild 2 presolar grain abundances and study of the cometary fine fraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Croat, T. K.; Floss, C.; Haas, B. A.; Burchell, M. J.; Kearsley, A. T.</p> <p>2015-08-01</p> <p>We present results of FIB-TEM studies of 12 Stardust analog Al foil craters which were created by firing refractory Si and Ti carbide and nitride grains into Al foils at 6.05 km s-1 with a light-gas gun to simulate capture of cometary grains by the Stardust mission. These foils were prepared primarily to understand the low presolar grain abundances (both SiC and silicates) measured by SIMS in Stardust Al foil samples. Our results demonstrate the intact survival of submicron SiC, TiC, TiN, and less-refractory Si3N4 grains. In small (<2 μm) craters that are formed by single grain impacts, the entire impacting crystalline grain is often preserved intact with minimal modification. While they also survive in crystalline form, grains at the bottom of larger craters (>5 μm) are typically fragmented and are somewhat flattened in the direction of impact due to partial melting and/or plastic deformation. The low presolar grain abundance estimates derived from SIMS measurements of large craters (mostly >50 μm) likely result from greater modification of these impactors (i.e., melting and isotopic dilution), due to higher peak temperatures/pressures in these crater impacts. The better survivability of grains in smaller craters suggests that more accurate presolar grain estimates may be achievable through measurement of such craters. It also suggests small craters can provide a complementary method of study of the Wild 2 fine fraction, especially for refractory CAI-like minerals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA01147.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA01147.html"><span>Craters on Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2006-10-10</p> <p>Several craters were formed on the rim of this large crater. The movement of material downhill toward the floor of the large crater has formed interesting patterns on the floors of the smaller craters</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P51B2582K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P51B2582K"><span>The Effects of Terrain Properties on Determining Crater Model Ages of Lunar Surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirchoff, M. R.; Marchi, S.</p> <p>2017-12-01</p> <p>Analyzing crater size-frequency distributions (SFDs) and using them to determine model ages of surfaces is an important technique for understanding the Moon's geologic history and evolution. Small craters with diameters (D) < 1 km are frequently used, especially given the very high resolution imaging now available from Lunar Reconnaissance Orbiter Narrow and Wide Angle Cameras (LROC-NAC/WAC) and the Selene Terrain Camera. However, for these diameters, final crater sizes and shapes are affected by the properties of the terrains on which they are formed [1], which alters crater SFD shapes [2]. We use the Model Production Function (MPF; [2]), which includes terrain properties in computing crater production functions, to explore how incorporating terrain properties affects the estimation of crater model ages. First, crater SFDs are compiled utilizing LROC-WAC/NAC images to measure craters with diameters from 10 m up to 20 km (size of largest crater measured depends on the terrain). A nested technique is used to obtain this wide diameter range: D ≥ 0.5 km craters are measured in the largest area, D = 0.09-0.5 km craters are measured in a smaller area within the largest area, and D = 0.01-0.1 km craters are measured in the smallest area located in both of the larger areas. Then, we quantitatively fit the crater SFD with distinct MPFs that use broadly different terrain properties. Terrain properties are varied through coarsely altering the parameters in the crater scaling law [1] that represent material type (consolidated, unconsolidated, porous), material tensile strength, and material density (for further details see [2]). We also discuss the effect of changing terrain properties with depth (i.e., layering). Finally, fits are used to compute the D = 1 km crater model ages for the terrains. We discuss the new constraints on how terrain properties affect crater model ages from our analyses of a variety of lunar terrains from highlands to mare and impact melt to continuous ejecta deposits. References: [1] Holsapple, K. A & Housen, K. R., Icarus 187, 345-356, 2007. [2] Marchi, S., et al., AJ 137, 4936-4948, 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188371','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188371"><span>Subsurface volatile content of martian double-layer ejecta (DLE) craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Viola, Donna; McEwen, Alfred S.; Dundas, Colin M.; Byrne, Shane</p> <p>2017-01-01</p> <p>Excess ice is widespread throughout the martian mid-latitudes, particularly in Arcadia Planitia, where double-layer ejecta (DLE) craters also tend to be abundant. In this region, we observe the presence of thermokarstically-expanded secondary craters that likely form from impacts that destabilize a subsurface layer of excess ice, which subsequently sublimates. The presence of these expanded craters shows that excess ice is still preserved within the adjacent terrain. Here, we focus on a 15-km DLE crater that contains abundant superposed expanded craters in order to study the distribution of subsurface volatiles both at the time when the secondary craters formed and, by extension, remaining today. To do this, we measure the size distribution of the superposed expanded craters and use topographic data to calculate crater volumes as a proxy for the volumes of ice lost to sublimation during the expansion process. The inner ejecta layer contains craters that appear to have undergone more expansion, suggesting that excess ice was most abundant in that region. However, both of the ejecta layers had more expanded craters than the surrounding terrain. We extrapolate that the total volume of ice remaining within the entire ejecta deposit is as much as 74 km3 or more. The variation in ice content between the ejecta layers could be the result of (1) volatile preservation from the formation of the DLE crater, (2) post-impact deposition in the form of ice lenses; or (3) preferential accumulation or preservation of subsequent snowfall. We have ruled out (2) as the primary mode for ice deposition in this location based on inconsistencies with our observations, though it may operate in concert with other processes. Although none of the existing DLE formation hypotheses are completely consistent with our observations, which may merit a new or modified mechanism, we can conclude that DLE craters contain a significant quantity of excess ice today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4910003B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4910003B"><span>What Really Happened to Earth's Older Craters?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bottke, William; Mazrouei, Sara; Ghent, Rebecca; Parker, Alex</p> <p>2017-10-01</p> <p>Most assume the Earth’s crater record is heavily biased, with erosion/tectonics destroying older craters. This matches expectations, but is it actually true? To test this idea, we compared Earth’s crater record, where nearly all D ≥ 20 km craters are < 650 Myr old, to the Moon’s. Here lunar crater ages were computed using a new method employing LRO-Diviner temperature data. Large lunar rocks have high thermal inertia and remain warm through the night relative to the regolith. Analysis shows young craters with numerous meter-sized fragments are easy to pick out from older craters with eroded fragments. Moreover, an inverse relationship between rock abundance (RA) and crater age exists. Using measured RA values, we computed ages for 111 rocky craters with D ≥ 10 km that formed between 80°N and 80°S over the last 1 Gyr.We found several surprising results. First, the production rate of D ≥ 10 km lunar craters increased by a factor of 2.2 [-0.9, +4.4; 95% confidence limits] over the past 250 Myr compared to the previous 750 Myr. Thus, the NEO population is higher now than it has been for the last billion years. Second, the size and age distributions of lunar and terrestrial craters for D ≥ 20 km over the last 650 Myr have similar shapes. This implies that crater erasure must be limited on stable terrestrial terrains; in an average sense, for a given region, the Earth either keeps all or loses all of its D ≥ 20 craters at the same rate, independent of size. It also implies the observed deficit of large terrestrial craters between 250-650 Myr is not preservation bias but rather reflects a distinctly lower impact flux. We predict 355 ± 86 D ≥ 20 km craters formed on Earth over the last 650 Myr. Only 38 ± 6 are known, so the ratio, 10.7 ± 3.1%, is a measure of the Earth’s surface that is reasonably stable to large crater formation over 650 Myr. If erosion had dominated, the age distribution of terrestrial craters would be strongly skewed toward younger ages, which is not observed. We predict Chicxulub-type impacts were rare over the last Gyr, with the event 66 Ma a probable byproduct of the current high terrestrial impact flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017P%26SS..144...32S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017P%26SS..144...32S"><span>Geomorphic investigation of craters in Alba Mons, Mars: Implications for Late Amazonian glacial activity in the region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinha, Rishitosh K.; Vijayan, S.</p> <p>2017-09-01</p> <p>Evidence for mid-high latitude glacial episodes existing within the Late Amazonian history of Mars has been reported from analysis of variety of glacial/periglacial landforms and their stratigraphic relationships. In this study, using the Context Camera (CTX) images, we have surveyed the interior of craters within the Alba Mons region of Mars (30°-60°N; 80°-140°W) to decipher the presence of ice-related flow features. The primary goals of this study are to (1) suggest from observations that the flow features identified in the interior of Alba Mons craters have flow characteristic possibly different from concentric crater fill (CCF) landforms and (2) interpret the extent of glacial activity that led to formation of flow features with respect to previously described mid-latitude ice-related landforms. Our geomorphic investigation revealed evidence for the presence of tongue-like or lobate shaped ice-related flow feature from the interior of ∼346 craters in the study region. The presence of ring-mold crater morphologies and brain-terrain texture preserved on the surface of flow features suggests that they are possibly formed of near-surface ice-rich bodies. We found that these flow features tend to form inside both the smaller (<5 km) and larger (>5 km) diameter craters emplaced at a wide range of elevation (from ∼ -3.3 km to 6.1 km). The measurement of overall length and flow direction of flow features is suggestive that they are similar to pole-facing small-scale lobate debris apron (LDA) formed inside craters. Crater size-frequency distribution of these small-scale LDAs reveals a model age of ∼10-100 Ma. Together with topographic and geomorphic observations, orientation measurements, and distribution within the study region, we suggest that the flow features (identified as pole-facing small-scale LDAs in the interior of craters) have flow characteristic possibly different from CCF landforms. Our observations and findings support the results of previous analyses that suggests Mars to have preserved records of multiple debris-covered glacial episodes occurred in the Late Amazonian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21915.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21915.html"><span>Kokopelli Crater on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-14</p> <p>This image obtained by NASA's Dawn spacecraft shows a field of small craters next to Kokopelli Crater, seen at bottom right in this image, on dwarf planet Ceres. The small craters overlay a smooth, wavy material that represents ejecta from nearby Dantu Crater. The small craters were formed by blocks ejected in the Dantu impact event, and likely from the Kokopelli impact as well. Kokopelli is named after the fertility deity who presides over agriculture in the tradition of the Pueblo people from the southwestern United States. The crater measures 21 miles (34 kilometers) in diameter. Dawn took this image during its first extended mission on August 11, 2016, from its low-altitude mapping orbit, at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 20 degrees north latitude, 123 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21915</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..271..180S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..271..180S"><span>Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Susorney, Hannah C. M.; Barnouin, Olivier S.; Ernst, Carolyn M.; Johnson, Catherine L.</p> <p>2016-06-01</p> <p>Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry of many of the impact craters in Mercury's northern hemisphere in detail for the first time. The combination of topographic and imaging data permit a systematic evaluation of impact crater morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with increasing diameter from simple to complex forms, and an exploration of the role of target properties and impact velocity on final crater size and shape. Measurements of impact crater depth on Mercury confirm results from previous studies, with the exception that the depths of large complex craters are typically shallower at a given diameter than reported from Mariner 10 data. Secondary craters on Mercury are generally shallower than primary craters of the same diameter. No significant differences are observed between the depths of craters within heavily cratered terrain and those of craters within smooth plains. The morphological attributes of craters that reflect the transition from simple to complex craters do not appear at the same diameter; instead flat floors first appear with increasing diameter in craters at the smallest diameters, followed with increasing diameter by reduced crater depth and rim height, and then collapse and terracing of crater walls. Differences reported by others in Dt between Mercury and Mars (despite the similar surface gravitational acceleration on the two bodies) are confirmed in this study. The variations in Dt between Mercury and Mars cannot be adequately attributed to differences in either surface properties or mean projectile velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031393','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031393"><span>Geology of five small Australian impact craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shoemaker, E.M.; Macdonald, F.A.; Shoemaker, C.S.</p> <p>2005-01-01</p> <p>Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga craters. Liverpool crater and Wolfe Creek Meteorite Crater are classic bowlshaped, Barringer-type craters, Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the crater's brecciated wall rocks. Wolfe Creek Meteorite Crater displays many striking features, including well-bedded ejecta units, crater-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite Crater, Veevers Meteorite Crater and Dalgaranga crater are smaller, Odessa-type craters without fully developed, steep, overturned rims. Boxhole and Dalgaranga craters are developed in highly follated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the craters, and may have influenced target deformation during impact. Veevers Meteorite Crater is formed in Cenozoic laterites, and is one of the best-preserved impact craters on Earth. The craters discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact craters. ?? Geological Society of Australia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03843&hterms=slump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dslump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03843&hterms=slump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dslump"><span>Amazonis Planitia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>[figure removed for brevity, see original site] (Released 5 July 2002) This is an image of a crater within part of Amazonis Planitia, located at 22.9N, 152.5W. This image features a number of common features exhibited by Martian craters. The crater is sufficiently large to exhibit a central peak that is seen in the upper right hand corner if the image. Also apparent is the slump blocks on the inside of the crater walls. When the crater was first formed, the crater walls were unstable and subsequently formed a series of landslides over time that formed the hummocky terrain just inside the present crater wall. While these cratering features are common to craters formed on other planetary bodies, such as the moon, the ejecta blanket surrounding the crater displays a morphology that is more unique to Mars. The lobate morphology implies that the ejecta blanket was emplaced in an almost fluid fashion rather than the traditional ballistic ejecta emplacement. This crater morphology occurs on Mars where water ice is suspected to be present just beneath the surface. The impact that created the crater would have enough energy to melt large amounts of water that could form the mud or debris flows that characterize the ejecta morphology that is seen in this image.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930062613&hterms=neither+deep+shallow&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dneither%2Bdeep%2Bshallow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930062613&hterms=neither+deep+shallow&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dneither%2Bdeep%2Bshallow"><span>Shallow and deep fresh impact craters in Hesperia Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mouginis-Mark, Peter J.; Hayashi, Joan N.</p> <p>1993-01-01</p> <p>The depths of 109 impact craters about 2-16 km in diameter, located on the ridged plains materials of Hesperia Planum, Mars, have been measured from their shadow lengths using digital Viking Orbiter images (orbit numbers 417S-419S) and the PICS computer software. On the basis of their pristine morphology (very fresh lobate ejecta blankets, well preserved rim crests, and lack of superposed impact craters), 57 of these craters have been selected for detailed analysis of their spatial distribution and geometry. We find that south of 30 deg S, craters less than 6.0 km in diameter are markedly shallower than similar-sized craters equatorward of this latitude. No comparable relationship is observed for morphologically fresh craters greater than 6.0 km diameter. We also find that two populations exist for older craters less than 6.0 km diameter. When craters that lack ejecta blankets are grouped on the basis of depth/diameter ratio, the deeper craters also typically lie equatorward of 30 S. We interpret the spatial variation in crater depth/diameter ratios as most likely due to a poleward increase in volatiles within the top 400 m of the surface at the times these craters were formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA10947&hterms=slump&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dslump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA10947&hterms=slump&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dslump"><span>Oudemans Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2008-01-01</p> <p><p/> This image of the interior of Oudemans Crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1800 UTC (1:00 p.m. EDT) on October 2, 2006, near 9.8 degrees south latitude, 268.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. <p/> Oudemans Crater is located at the extreme western end of Valles Marineris in the Sinai Planum region of Mars. The crater measures some 124 kilometers (77 miles) across and sports a large central peak. <p/> Complex craters like Oudemans are formed when an object, such as an asteroid or comet, impacts the planet. The size, speed and angle at which the object hits all determine the type of crater that forms. The initial impact creates a bowl-shaped crater and flings material (known as ejecta) out in all directions along and beyond the margins of the bowl forming an ejecta blanket. As the initial crater cavity succumbs to gravity, it rebounds to form a central peak while material along the bowl's rim slumps back into the crater forming terraces along the inner wall. If the force of the impact is strong enough, a central peak forms and begins to collapse back into the crater basin, forming a central peak ring. <p/> The uppermost image in the montage above shows the location of CRISM data on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data was taken inside the crater, on the northeast slope of the central peak. <p/> The lower left image is an infrared false-color image that reveals several distinctive deposits. The center of the image holds a ruddy-brown deposit that appears to correlates with a ridge running southwest to northeast. Lighter, buff-colored deposits occupy low areas interspersed within the ruddy-brown deposit. The southeast corner holds small hills that form part of the central peak complex. <p/> The lower right image shows spectral indicators of different materials, and reveals the composition of the crater floor and its central peak. Rocks rich in the volcanic mineral pyroxene, shown in blue, dominate the north-central part of the image. There is an enhanced content of the volcanic mineral olivine (shown in greens and yellows) in those parts of the images that appear ruddy brown in false color. The low-lying parts of the image that appear buff in false color are covered in dust, and shown in red. This view provides insight into the relationships of deposits beneath Oudemans Crater. The impact excavated the underlying olivine that that is enriched in the crater's central peak. Pyroxene-rich material covered the crater's floor, and later, low-lying areas filled with dust. <p/> CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P43B3985H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P43B3985H"><span>The Global Contribution of Secondary Craters on the Icy Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoogenboom, T.; Johnson, K. E.; Schenk, P.</p> <p>2014-12-01</p> <p>At present, surface ages of bodies in the Outer Solar System are determined only from crater size-frequency distributions (a method dependent on an understanding of the projectile populations responsible for impact craters in these planetary systems). To derive accurate ages using impact craters, the impactor population must be understood. Impact craters in the Outer Solar System can be primary, secondary or sesquinary. The contribution of secondary craters to the overall population has recently become a "topic of interest." Our objective is to better understand the contribution of dispersed secondary craters to the small crater populations, and ultimately that of small comets to the projectile flux on icy satellites in general. We measure the diameters of obvious secondary craters (determined by e.g. irregular crater shape, small size, clustering) formed by all primary craters on Ganymede for which we have sufficiently high resolution data to map secondary craters. Primary craters mapped range from approximately 40 km to 210 km. Image resolution ranges from 45 to 440 m/pixel. Bright terrain on Ganymede is our primary focus. These resurfaced terrains have relatively low crater densities and serve as a basis for characterizing secondary populations as a function of primary size on an icy body for the first time. Although focusing on Ganymede, we also investigate secondary crater size, frequency, distribution, and formation, as well as secondary crater chain formation on icy satellites throughout the Saturnian and Jovian systems principally Rhea. We compare our results to similar studies of secondary cratering on the Moon and Mercury. Using Galileo and Voyager data, we have identified approximately 3,400 secondary craters on Ganymede. In some cases, we measured crater density as a function of distance from a primary crater. Because of the limitations of the Galileo data, it is necessary to extrapolate from small data sets to the global population of secondary craters. Nonetheless, we confirm that secondary craters on Ganymede have narrow size-frequency distributions and that they correlate with primary crater diameter. From these data we will evaluate the contribution of secondary craters over a range of crater diameters.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780060127&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTNT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780060127&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTNT"><span>Tabular comparisons of the Flynn Creek impact crater, United States, Steinheim impact crater, Germany and Snowball explosion crater, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roddy, D. J.</p> <p>1977-01-01</p> <p>A tabular outline of comparative data is presented for 340 basic dimensional, morphological, and structural parameters and related aspects for three craters of the flat-floored, central uplift type, two of which are natural terrestrial impact craters and one is a large-scale experimental explosion crater. The three craters are part of a general class, in terms of their morphology and structural deformation that is represented on each of the terrestrial planets including the moon. One of the considered craters, the Flynn Creek Crater, was formed by a hypervelocity impact event approximately 360 m.y. ago in what is now north central Tennessee. The impacting body appears to have been a carbonaceous chondrite or a cometary mass. The second crater, the Steinheim Crater, was formed by an impact event approximately 14.7 m.y. ago in what is now southwestern Germany. The Snowball Crater was formed by the detonation of a 500-ton TNT hemisphere on flat-lying, unconsolidated alluvium in Alberta, Canada.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P24C..01F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P24C..01F"><span>Using Measurements of Topography to Infer Rates of Crater Degradation and Surface Evolution on the Moon and Mercury</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fassett, C.; Crowley, M. C.; Leight, C.; Dyar, M. D.; Minton, D.; Hirabayashi, M.; Thomson, B. J.; Watters, W. A.</p> <p>2017-12-01</p> <p>Observations of how the topography of impact craters vary with age enable estimates for how fast the surface of airless bodies evolve. Fresh simple craters form with a depth/diameter (d/D) ratio of 0.21, sharp rims, and steep interior slopes. These fresh craters then are eroded and infilled, reducing d/D, and topographically muting their appearance. On the Moon and Mercury, the dominant mechanism responsible for this erosion likely includes the cumulative effects of numerous later small primary and secondary impact craters. The resulting topographic evolution can be modeled as a diffusive process, similar to how hillslopes evolve on Earth. However, the topographic diffusivity (κ) forced by impact cratering is dependent on both scale and time, so diffusion is anomalous, rather than classical. A key finding of this study is how the diffusivity and hence erosion rate is different on the Moon and Mercury. On the Moon, based on measurements of >13000 craters in the 800 m ≤ D ≤ 5 km size range on the lunar maria, the average diffusivity at 1 km scale is estimated as 5.5m2/Myr. With this diffusivity, D 1 km craters are reduced to 52% of their original depth over 3 Ga. Larger craters have relative depths that are much less reduced over an equivalent period, and smaller craters are much more eroded, even accounting for some scale-dependence of diffusivity (κ ∝ D0.9). In fact, the smallest craters are sufficiently degraded to become unrecognizable. The rate of topographic diffusion is the critical control on how a crater population reaches saturation equilibrium. On Mercury, d/D for 204 craters with 2.5 km ≤ D ≤ 5 km on the smooth plains were measured with MDIS stereo topography and MLA data. For these craters, the median d/D was 0.13. Craters in this same size range on the lunar maria are much less modified than those on Mercury when measured with the same techniques on data resampled to a resolution equivalent to the Mercury data, and their d/D is nearly indistinguishable from the fresh crater value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have average ages that are comparable ( 3.3-3.8 Ga), if not identical. These results imply crater degradation is faster by a factor of at least two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..113S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..113S"><span>Crater Mound Formation by Wind Erosion on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steele, L. J.; Kite, E. S.; Michaels, T. I.</p> <p>2018-01-01</p> <p>Most of Mars' ancient sedimentary rocks by volume are in wind-eroded sedimentary mounds within impact craters and canyons, but the connections between mound form and wind erosion are unclear. We perform mesoscale simulations of different crater and mound morphologies to understand the formation of sedimentary mounds. As crater depth increases, slope winds produce increased erosion near the base of the crater wall, forming mounds. Peak erosion rates occur when the crater depth is ˜2 km. Mound evolution depends on the size of the host crater. In smaller craters mounds preferentially erode at the top, becoming more squat, while in larger craters mounds become steeper sided. This agrees with observations where smaller craters tend to have proportionally shorter mounds and larger craters have mounds encircled by moats. If a large-scale sedimentary layer blankets a crater, then as the layer recedes across the crater it will erode more toward the edges of the crater, resulting in a crescent-shaped moat. When a 160 km diameter mound-hosting crater is subject to a prevailing wind, the surface wind stress is stronger on the leeward side than on the windward side. This results in the center of the mound appearing to "march upwind" over time and forming a "bat-wing" shape, as is observed for Mount Sharp in Gale crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027122','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027122"><span>Marine-target craters on Mars? An assessment study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ormo, J.; Dohm, J.M.; Ferris, J.C.; Lepinette, A.; Fairen, A.G.</p> <p>2004-01-01</p> <p>Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine-target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within "contacts 1 and 2," cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long-lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller "contact 2" with a duration of 100,000 yr and the low present crater formation rate, only ???1-2 detectable marine-target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger "contact 1-Meridiani," with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine-target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine-target craters. The implications regarding the discovery of marine-target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions. ?? Meteoritical Society, 2004.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10329E..4IG','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10329E..4IG"><span>Evaluation of laser ablation crater relief by white light micro interferometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurov, Igor; Volkov, Mikhail; Zhukova, Ekaterina; Ivanov, Nikita; Margaryants, Nikita; Potemkin, Andrey; Samokhvalov, Andrey; Shelygina, Svetlana</p> <p>2017-06-01</p> <p>A multi-view scanning method is suggested to assess a complicated surface relief by white light interferometer. Peculiarities of the method are demonstrated on a special object in the form of quadrangular pyramid cavity, which is formed at measurement of micro-hardness of materials using a hardness gauge. An algorithm of the joint processing of multi-view scanning results is developed that allows recovering correct relief values. Laser ablation craters were studied experimentally, and their relief was recovered using the developed method. It is shown that the multi-view scanning reduces ambiguity when determining the local depth of the laser ablation craters micro relief. Results of experimental studies of the multi-view scanning method and data processing algorithm are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160002385','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160002385"><span>VNIR Multispectral Observations of Rocks at Spirit of St. Louis Crater and Marathon Valley on Th Rim of Endeavour Crater Made by the Opportunity Rover Pancam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D.W.</p> <p>2016-01-01</p> <p>The Mars Exploration Rover Opportunity has been exploring the western rim of the 22 km diameter Endeavour crater since August, 2011. Recently, Opportunity has reached a break in the Endeavour rim that the rover team has named Mara-thon Valley. This is the site where orbital observations from the MRO CRISM imaging spectrometer indicated the presence of iron smectites. On the outer western portion of Marathon Valley, Opportunity explored the crater-form feature dubbed Spirit of St. Louis (SoSL) crater. This presentation describes the 430 to 1009 nm (VNIR) reflectance, measured by the rover's Pancam, of rock units present both at Spirit of St. Louis and within Marathon Valley.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA09195&hterms=fingerprints&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfingerprints','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA09195&hterms=fingerprints&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfingerprints"><span>A Fresh Crater Drills to Tharsis Bedrock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2007-01-01</p> <p><p/> The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) took this image of a newly formed impact crater in the Tharsis region of Mars at 1316 UTC (8:16 a.m. EST) on Jan. 13, 2007, near 17.0 degrees north latitude, 246.4 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered by the image is just over 10 kilometers (6 miles) wide at its narrowest point. <p/> The Tharsis region is a high volcanic plateau that stands about 5 kilometers (3 miles) above the surrounding plains. The rocks forming Tharsis are younger than in most parts of mars, as evidenced by their low density of craters. The best estimate of their age is comparable to the age of Shergotty-class meteorites thought to originate from Mars. However, Tharsis is covered by a nearly unbroken, meters-thick layer of dust that has frustrated all attempts to measure its bedrock composition remotely, and to determine if it matches the composition of Shergotty-class meteorites. <p/> The recent discovery of dark, newly formed impact craters on Mars has provided the CRISM team a chance, finally, to measure the rocks that make up Tharsis. Over the lifetime of the Mars Global Surveyor mission, its high-resolution Mars Orbiter Camera monitored the surface and documented the very recent formation of some two dozen small impact craters. Several of them are in Tharsis and pierce the plateau's dust blanket to expose bedrock. MRO's instruments have been trained on these 'drill holes' into Mars' volcanic crust, including the crater shown here. <p/> The top image was constructed from three infrared wavelengths that usually highlight compositional variations. This image shows the impact crater, a ring of dark, excavated rock (inset), and a surrounding system of rays. Crater rays are common around young impact craters, and they form when ejected boulders reimpact the surface and stir up the local rock and soil. The colors are bland because the scene is dominated by dust except for the dark crater and the ejecta immediately surrounding it. <p/> The bottom image is a spectral map constructed using measurements of the 544-color spectra that separate dust and rock. The bright, deep orange areas are undisturbed dust. The crater rays' chocolate color in this rendition shows that they are slightly darker, more packed-down soil that was exposed by reimpacting boulders. The bright green color immediately around the new crater (inset) is where mafic rock (rock rich in the iron- and magnesium-containing minerals pyroxene and olivine) have been exposed. <p/> CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate. <p/> The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P54B..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P54B..02M"><span>Terrestrial Analogs for Surface Properties Associated with Impact Cratering on the Moon - Self-secondary Impact Features at Kings Bowl, Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matiella Novak, M. A.; Zanetti, M.; Neish, C.; Kukko, A.; Fan, K.; Heldmann, J.; Hughes, S. S.</p> <p>2017-12-01</p> <p>The Kings Bowl (KB) eruptive fissure and lava field, located in the southern end of Craters of the Moon National Monument, Idaho, is an ideal location for planetary analogue field studies of surface properties related to volcanic and impact processes. Here we look at possible impact features present in the KB lava field near the main vent that resulted in squeeze-ups of molten lava from beneath a semi-solid lava lake crust. These may have been caused by the ejection of blocks during the phreatic eruption that formed the Kings Bowl pit, and their subsequent impact into a partially solidified lava pond. We compare and contrast these features with analogous self-secondary impact features, such as irregular, rimless secondary craters ("splash craters") observed in lunar impact melt deposits, to better understand how self-secondary impacts determine the surface properties of volcanic and impact crater terrains. We do this by analyzing field measurements of these features, as well as high-resolution DEM data collected through the Kinematic LiDAR System (KLS), both of which give us feature dimensions and distributions. We then compare these data with self-secondary impact features on the Moon and related surface roughness constrained through Lunar Reconnaissance Orbiter observations (Mini-RF and LROC NACs). Possible self-secondary impact features can be found in association with many lunar impact craters. These are formed when ballistic ejecta from the crater falls onto the ejecta blanket and melt surrounding the newly formed crater. Self-secondary impact features involving impact melt deposits are particularly useful to study because the visibly smooth melt texture serves to highlight the impact points in spacecraft imagery. The unusual morphology of some of these features imply that they formed when the melt had not yet completely solidified, strongly suggesting a source of impactors from the primary crater itself. We will also discuss ongoing efforts to integrate field and LiDAR data collected at KB with virtual reality environments as another technique for advancing exploration efforts through analogue field studies of impact features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014acm..conf..519T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014acm..conf..519T"><span>Scaling law deduced from impact-cratering experiments on basalt targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takagi, Y.; Hasegawa, S.; Suzuki, A.</p> <p>2014-07-01</p> <p>Since impact-cratering phenomena on planetary bodies were the key process which modified the surface topography and formed regolith layers, many experiments on non-cohesive materials (sand, glass beads) were performed. On the other hand, experiments on natural rocks were limited. Especially, experiments on basalt targets are rare, although basalt is the most common rocky material on planetary surfaces. The reason may be the difficulties of obtaining basalt samples suitable for cratering experiments. Recently, we obtained homogenous and crackless large basalt blocks. We performed systematic cratering experiments using the basalt targets. Experimental Procedure: Impact experiments were performed using a double stage light-gas (hydrogen) gun on the JAXA Sagamihara campus. Spherical projectiles of nylon, aluminum, stainless steel, and tungsten carbide were launched at velocities between 2400 and 6100 m/sec. The projectiles were 1.0 to 7.1 mm in diameter and 0.004 to 0.22 g in mass. The incidence angle was fixed at 90 degrees. The targets were rectangular blocks of Ukrainian basalt. The impact plane was a square with 20-cm sides. The thickness was 9 cm. Samples were cut out from a columnar block so that the impact plane might become perpendicular to the axis of the columnar joint. The mass was about 10.5 kg. The density was 2920 ± 10 kg/m^3 . Twenty eight shots were performed. Three-dimensional shapes of craters were measured by an X-Y stage with a laser displacement sensor (Keyence LK-H150). The interval between the measurement points was 200 micrometer. The volume, depth, and aperture area of the crater were calculated from the 3-D data using analytical software. Since the shapes of the formed craters are markedly asymmetrical, the diameter of the circle whose area is equal to the aperture area was taken as the crater diameter. Results: The diameter, depth, and the volume of the formed craters are normalized by the π parameters. Experimental conditions are also expressed by the π parameters. The figure shows the relation of the normalized volume and the π_3 parameter. A clear dependency on the projectile density is shown in the figure. Multiple regression analyses yield the relation π_V ∝ π_3^{-1.04 ± 0.14} π_4^{0.45 ± 0.18} . Other results and comparisons with those of previous studies are presented in the paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026526','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026526"><span>Morphology correlation of craters formed by hypervelocity impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crawford, Gary D.; Rose, M. Frank; Zee, Ralph H.</p> <p>1993-01-01</p> <p>Dust-sized olivine particles were fired at a copper plate using the Space Power Institute hypervelocity facility, simulating micrometeoroid damage from natural debris to spacecraft in low-Earth orbit (LEO). Techniques were developed for measuring crater volume, particle volume, and particle velocity, with the particle velocities ranging from 5.6 to 8.7 km/s. A roughly linear correlation was found between crater volume and particle energy which suggested that micrometeoroids follow standard hypervelocity relationships. The residual debris analysis showed that for olivine impacts of up to 8.7 km/s, particle residue is found in the crater. By using the Space Power Institute hypervelocity facility, micrometeoroid damage to satellites can be accurately modeled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AdSpR..57.1978V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AdSpR..57.1978V"><span>An object-based classification method for automatic detection of lunar impact craters from topographic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vamshi, Gasiganti T.; Martha, Tapas R.; Vinod Kumar, K.</p> <p>2016-05-01</p> <p>Identification of impact craters is a primary requirement to study past geological processes such as impact history. They are also used as proxies for measuring relative ages of various planetary or satellite bodies and help to understand the evolution of planetary surfaces. In this paper, we present a new method using object-based image analysis (OBIA) technique to detect impact craters of wide range of sizes from topographic data. Multiresolution image segmentation of digital terrain models (DTMs) available from the NASA's LRO mission was carried out to create objects. Subsequently, objects were classified into impact craters using shape and morphometric criteria resulting in 95% detection accuracy. The methodology developed in a training area in parts of Mare Imbrium in the form of a knowledge-based ruleset when applied in another area, detected impact craters with 90% accuracy. The minimum and maximum sizes (diameters) of impact craters detected in parts of Mare Imbrium by our method are 29 m and 1.5 km, respectively. Diameters of automatically detected impact craters show good correlation (R2 > 0.85) with the diameters of manually detected impact craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020046818','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020046818"><span>Experimental Simulations of Large-Scale Collisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Housen, Kevin R.</p> <p>2002-01-01</p> <p>This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.7424X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.7424X"><span>The self-secondary crater population of the Hokusai crater on Mercury</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Zhiyong; Prieur, Nils C.; Werner, Stephanie C.</p> <p>2016-07-01</p> <p>Whether or not self-secondaries dominate small crater populations on continuous ejecta deposits and floors of fresh impact craters has long been a controversy. This issue potentially affects the age determination technique using crater statistics. Here the self-secondary crater population on the continuous ejecta deposits of the Hokusai crater on Mercury is unambiguously recognized. Superposition relationships show that this population was emplaced after both the ballistic sedimentation of excavation flows and the subsequent veneering of impact melt, but it predated the settlement and solidification of melt pools on the crater floor. Fragments that formed self-secondaries were launched via impact spallation with large angles. Complex craters on the Moon, Mercury, and Mars probably all have formed self-secondaries populations. Dating young craters using crater statistics on their continuous ejecta deposits can be misleading. Impact melt pools are less affected by self-secondaries. Overprint by subsequent crater populations with time reduces the predominance of self-secondaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730050944&hterms=ghosts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dghosts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730050944&hterms=ghosts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dghosts"><span>Moon - 'Ghost' craters formed during Mare filling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cruikshank, D. P.; Hartmann, W. K.; Wood, C. A.</p> <p>1973-01-01</p> <p>This paper discusses formation of 'pathological' cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D less than 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..131K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..131K"><span>Timing and Distribution of Single-Layered Ejecta Craters Imply Sporadic Preservation of Tropical Subsurface Ice on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirchoff, Michelle R.; Grimm, Robert E.</p> <p>2018-01-01</p> <p>Determining the evolution of tropical subsurface ice is a key component to understanding Mars's climate and geologic history. Study of an intriguing crater type on Mars—layered ejecta craters, which likely form by tapping subsurface ice—may provide constraints on this evolution. Layered ejecta craters have a continuous ejecta deposit with a fluidized-flow appearance. Single-layered ejecta (SLE) craters are the most common and dominate at tropical latitudes and therefore offer the best opportunity to derive new constraints on the temporal evolution of low-latitude subsurface ice. We estimate model formation ages of 54 SLE craters with diameter (<fi>D</fi>) ≥ 5 km using the density of small, superposed craters with <fi>D</fi> < 1 km on their continuous ejecta deposits. These model ages indicate that SLE craters have formed throughout the Amazonian and at a similar rate expected for all Martian craters. This suggests that tropical ice has remained at relatively shallow depths at least where these craters formed. In particular, the presence of equatorial SLE craters with <fi>D</fi> 1 km indicates that ice could be preserved as shallow as 100 m or less at those locations. Finally, there is a striking spatial mixing in an area of highlands near the equator of layered and radial (lunar-like ballistic) ejecta craters; the latter form where there are insufficient concentrations of subsurface ice. This implies strong spatial heterogeneity in the concentration of tropical subsurface ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050167756&hterms=lithology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dlithology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050167756&hterms=lithology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dlithology"><span>Visible-Near Infrared Imaging Spectrometer Data of Explosion Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farr, T. G.</p> <p>2005-01-01</p> <p>In a continuing study to capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained new high resolution visible-near infrared images of several explosion craters at the Nevada Test Site. We used the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to obtain images in 224 spectral bands from 0.4-2.5 microns [1]. The main craters that were imaged were Sedan, Scooter, Schooner, Buggy, and Danny Boy [2]. The 390 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of the detonation of a 104 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a "simple" crater [2]. Sedan was formed in alluvium of mixed lithology [3] and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also imaged by AVIRIS. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m, Fig. 1) craters were also important targets for AVIRIS as they were excavated in hard welded tuff and basaltic andesite, respectively [3, 4]. This variation in targets will allow the study of ejecta patterns, compositional modifications due to the explosions, and the role of craters as subsurface probes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A53D..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A53D..04M"><span>Nocturnal Air Seiches in the Arizona Meteor Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muschinski, A.; Fritts, D. C.; Zhong, S.; Oncley, S. P.</p> <p>2011-12-01</p> <p>The Arizona Meteor Crater near Winslow, AZ is 170 m deep, has a diameter of 1.2 km, and it has a nearly circular shape. The motivation of the Meteor Crater Experiment (METCRAX), conducted in October 2006, was to use the Meteor Crater as a natural laboratory to study atmospheric phenomena that are typical for small basins. Among other observations, high-resolution wind, temperature and pressure measurements were collected with sonics and microbarometers, respectively, during the entire month. The sensors were mounted between 0.5 m and 8.5 m AGL on seven portable towers, five of which were located within the crater and two on the crater rim. Here we report observations of nocturnal air seiches, that is, standing gravity waves associated with the time-harmonic sloshing of the cold-air pool that forms at the bottom of the crater due to radiative cooling at night. We present time series, spectra, and spectrograms of temperature, wind and pressure fluctuations that characterize those air seiches. Typical seiche periods were 15 min. We compare the observations with the time-harmonic solutions of the shallow-water equation and with numerical simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V33B3105S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V33B3105S"><span>What Dominates a Craters Size, the Largest Single Explosion of the Formation Process or the Cumulative Energy of Many? Results of Multiblast Crater Evolution Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sonder, I.; Graettinger, A. H.; Valentine, G. A.</p> <p>2015-12-01</p> <p>Craters of explosive volcanic eruptions are products of many explosions. Such craters are different than products of single events such as meteorite impacts or those produced by military testing because they typically result from multiple, rather than single, explosions. We analyzed the evolution of experimental craters that were created by several detonations of chemical explosives in layered aggregates. A method to calculate an effective explosion depth for non-flat topography (e.g. for explosions below existing craters) is derived, showing how multi-blast crater sizes differ from the single blast case. It is shown that sizes of natural caters (radii, volumes) are not characteristic of the number of explosions, and therefore not characteristic for the total acting energy, that formed a crater. Also the crater size is not simply related to the largest explosion in a sequence, but depends upon that explosion and the energy of that single blast and on the cumulative energy of all blasts that formed the crater. The two energies can be combined to form an effective number of explosions that is characteristic for the crater evolution. The multi-blast crater size evolution implies that it is not correct to estimate explosion energy of volcanic events from crater size using previously published relationships that were derived for single blast cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830035018&hterms=clay+viscosity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclay%2Bviscosity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830035018&hterms=clay+viscosity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclay%2Bviscosity"><span>Experimental simulation of impact cratering on icy satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, R.; Fink, J. H.; Gault, D. E.; Guest, J. E.</p> <p>1982-01-01</p> <p>Cratering processes on icy satellites were simulated in a series of 102 laboratory impact experiments involving a wide range of target materials. For impacts into homogeneous clay slurries with impact energies ranging from five million to ten billion ergs, target yield strengths ranged from 100 to 38 Pa, and apparent viscosities ranged from 8 to 200 Pa s. Bowl-shaped craters, flat-floored craters, central peak craters with high or little relief, and craters with no relief were observed. Crater diameters increased steadily as energies were raised. A similar sequence was seen for experiment in which impact energy was held constant but target viscosity and strength progressively decreases. The experiments suggest that the physical properties of the target media relative to the gravitationally induced stresses determined the final crater morphology. Crater palimpsests could form by prompt collapse of large central peak craters formed in low target strength materials. Ages estimated from crater size-frequency distributions that include these large craters may give values that are too high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA13078.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA13078.html"><span>Well-Preserved Impact Ejecta and Impact Melt-Rich Deposits in Terra Sabaea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-01-12</p> <p>This image of a well-preserved unnamed elliptical crater in Terra Sabaea, is illustrative of the complexity of ejecta deposits forming as a by-product of the impact process that shapes much of the surface of Mars. Here we see a portion of the western ejecta deposits emanating from a 10-kilometer impact crater that occurs within the wall of a larger, 60-kilometer-wide crater. In the central part is a lobe-shaped portion of the ejecta blanket from the smaller crater. The crater is elliptical not because of an angled (oblique) impact, but because it occurred on the steep slopes of the wall of a larger crater. This caused it to be truncated along the slope and elongated perpendicular to the slope. As a result, any impact melt from the smaller crater would have preferentially deposited down slope and towards the floor of the larger crater (towards the west). Within this deposit, we can see fine-scale morphological features in the form of a dense network of small ridges and pits. These crater-related pitted materials are consistent with volatile-rich impact melt-bearing deposits seen in some of the best-preserved craters on Mars (e.g., Zumba, Zunil, etc.). These deposits formed immediately after the impact event, and their discernible presence relate to the preservation state of the crater. This image is an attempt to visualize the complex formation and emplacement history of these enigmatic deposits formed by this elliptical crater and to understand its degradation history. http://photojournal.jpl.nasa.gov/catalog/PIA13078</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04678&hterms=under+armor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dunder%2Barmor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04678&hterms=under+armor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dunder%2Barmor"><span>Pedestal Crater and Yardangs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>MGS MOC Release No. MOC2-444, 6 August 2003<p/>This April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small meteor impact crater that has been modified by wind erosion. Two things happened after the crater formed. First, the upper few meters of surface material into which the meteor impacted was later eroded away by wind. The crater ejecta formed a protective armor that kept the material under the ejecta from been blown away. This caused the crater and ejecta to appear as if standing upon a raised platform--a feature that Mars geologists call a <i>pedestal crater.</i> Next, the pedestal crater was buried beneath several meters of new sediment, and then this material was eroded away by wind to form the array of sharp ridges that run across the pedestal crater's surface. These small ridges are known as <i>yardangs</i>. This picture is illuminated by sunlight from the upper left; it is located in west Daedalia Planum near 14.6oS, 131.9oW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21454.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21454.html"><span>A Dragonfly-Shaped Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-02-10</p> <p>The broader scene for this image is the fluidized ejecta from Bakhuysen Crater to the southwest, but there's something very interesting going on here on a much smaller scale. A small impact crater, about 25 meters in diameter, with a gouged-out trench extends to the south. The ejecta (rocky material ejected from the crater) mostly extends to the east and west of the crater. This "butterfly" ejecta is very common for craters formed at low impact angles. Taken together, these observations suggest that the crater-forming impactor came in at a low angle from the north, hit the ground and ejected material to the sides. The top of the impactor may have sheared off ("decapitating" the impactor) and continued downrange, forming the trench. We can't prove that's what happened, but this explanation is consistent with the observations. Regardless of how it formed, it's quite an interesting-looking "dragonfly" crater. The map is projected here at a scale of 50 centimeters (19.69 inches) per pixel. [The original image scale is 55.7 centimeters (21.92 inches) per pixel (with 2 x 2 binning); objects on the order of 167 centimeters (65.7 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21454</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA12328.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA12328.html"><span>Crater with Exposed Layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-01-17</p> <p>On Earth, geologists can dig holes and pull up core samples to find out what lies beneath the surface. On Mars, geologists cannot dig holes very easily themselves, but a process has been occurring for billions of years that has been digging holes for them: impact cratering. Impact craters form when an asteroid, meteoroid, or comet crashes into a planet's surface, causing an explosion. The energy of the explosion, and the resulting size of the impact crater, depends on the size and density of the impactor, as well as the properties of the surface it hits. In general, the larger and denser the impactor, the larger the crater it will form. The impact crater in this image is a little less than 3 kilometers in diameter. The impact revealed layers when it excavated the Martian surface. Layers can form in a variety of different ways. Multiple lava flows in one area can form stacked sequences, as can deposits from rivers or lakes. Understanding the geology around impact craters and searching for mineralogical data within their layers can help scientists on Earth better understand what the walls of impact craters on Mars expose. http://photojournal.jpl.nasa.gov/catalog/PIA12328</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA07041&hterms=tale&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtale','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA07041&hterms=tale&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtale"><span>A Tale of 3 Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p><p/> 11 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image captures some of the complexity of the martian upper crust. Mars does not simply have an impact-cratered surface, it's upper crust is a cratered volume. Over time, older craters on Mars have been eroded, filled, buried, and in some cases exhumed and re-exposed at the martian surface. The crust of Mars is layered to depths of 10 or more kilometers, and mixed in with the layered bedrock are a variety of ancient craters with diameters ranging from a few tens of meters (a few tens of yards) to several hundred kilometers (more than one or two hundred miles). <p/> The picture shown here captures some of the essence of the layered, cratered volume of the upper crust of Mars in a very simple form. The image shows three distinct circular features. The smallest, in the lower right quarter of the image, is a meteor crater surrounded by a mound of material. This small crater formed within a layer of bedrock that once covered the entire scene, but today is found only in this small remnant adjacent to the crater. The intermediate-sized crater, west (left) of the small one, formed either in the next layer down--that is, below the layer in which the small crater formed--or it formed in some layers that are now removed, but was big enough to penetrate deeply into the rock that is near the surface today. The largest circular feature in the image, in the upper right quarter of the image, is still largely buried. It formed in layers of rock that are below the present surface. Erosion has brought traces of its rim back to the surface of Mars. This picture is located near 50.0oS, 77.8oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this October 2004 image from the upper left.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20192.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20192.html"><span>Kupalo Crater from LAMO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-01-12</p> <p>This image from NASA's Dawn spacecraft shows Kupalo Crater, one of the youngest craters on Ceres. The crater has bright material exposed on its rim and walls, which could be salts. Its flat floor likely formed from impact melt and debris. Kupalo, which measures 16 miles (26 kilometers) across and is located at southern mid-latitudes, is named for the Slavic god of vegetation and harvest. Kupalo was imaged earlier in Dawn's science mission at Ceres -- during Survey orbit (see PIA19624) and from the high altitude mapping orbit, or HAMO (see PIA20124). Dawn took this image on Dec. 21 from its low-altitude mapping orbit (LAMO) at an approximate altitude of 240 miles (385 kilometers) above Ceres. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20192</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740047045&hterms=genetic+data+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgenetic%2Bdata%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740047045&hterms=genetic+data+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgenetic%2Bdata%2Banalysis"><span>Multivariate analyses of crater parameters and the classification of craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegal, B. S.; Griffiths, J. C.</p> <p>1974-01-01</p> <p>Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRB..120.6141S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRB..120.6141S"><span>Scaling multiblast craters: General approach and application to volcanic craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sonder, I.; Graettinger, A. H.; Valentine, G. A.</p> <p>2015-09-01</p> <p>Most volcanic explosions leave a crater in the surface around the center of the explosions. Such craters differ from products of single events like meteorite impacts or those produced by military testing because they typically result from multiple, rather than single, explosions. Here we analyze the evolution of experimental craters that were created by several detonations of chemical explosives in layered aggregates. An empirical relationship for the scaled crater radius as a function of scaled explosion depth for single blasts in flat test beds is derived from experimental data, which differs from existing relations and has better applicability for deep blasts. A method to calculate an effective explosion depth for nonflat topography (e.g., for explosions below existing craters) is derived, showing how multiblast crater sizes differ from the single-blast case: Sizes of natural caters (radii and volumes) are not characteristic of the number of explosions, nor therefore of the total acting energy, that formed a crater. Also, the crater size is not simply related to the largest explosion in a sequence but depends upon that explosion and the energy of that single blast and on the cumulative energy of all blasts that formed a crater. The two energies can be combined to form an effective number of explosions that is characteristic for the crater evolution. The multiblast crater size evolution has implications on the estimates of volcanic eruption energies, indicating that it is not correct to estimate explosion energy from crater size using previously published relationships that were derived for single-blast cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P53G..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P53G..02B"><span>Exploring Tectonic Activity on Vesta and Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.</p> <p>2017-12-01</p> <p>Images of Vesta and Ceres taken by the Dawn spacecraft revealed large-scale linear structural features on both asteroids. We evaluate their morphology to determine 1) what processes caused them to form and 2) what implications this has for the history of Vesta and Ceres as planetary bodies. The Divalia Fossae are wide troughs bounded by steep scarps that encircle Vesta roughly aligned with the equator. Fault plane analysis suggests that their formation was triggered by the impact event that formed the Rheasilvia basin. The Saturnalia Fossae extend from Divalia to the northern polar region; fault plane analysis ties their formation to the Veneneia basin impact event. Also, it has been suggested that the elongate hill Brumalia Tholus could have been formed as a magmatic intrusion utilizing the subsurface Albalonga fracture as a conduit to the surface, intruding into and deforming the rock above it. Kilometer-scale linear structures cross much of the eastern hemisphere of Ceres. Many structures appear to be radial to the large craters Urvara and Yalode, and likely formed due to impact processes. However, the Samhain Catenae do not have any obvious relationship to a crater and the lack of raised rims makes it unlikely that these are secondary impacts; they are also crosscut by linear features radial to Urvara and Yalode, indicating they are not fractures formed during those impact events. Instead, the morphology of these structures more closely resembles that of pit crater chains (buried normal faults), and show en echelon orientation and S-shaped linkages. Polygonal craters, which form where there is pervasive subsurface fracturing, are widespread on Ceres, and those polygonal craters proximal to the Samhain Catenae have straight crater rims aligned with the structures. Several craters on Ceres have fractured floors, similar to lunar floor-fractured craters (FFCs), which are theorized to form from floor uplift due to magmatic intrusion. Large (>50 km) Ceres FFCs can have both radial and concentric fractures at the crater center, and/or concentric fractures near the crater wall. Smaller craters have a v-shaped moat separating the wall scarp from the crater interior, but different interior morphologies. A depth vs. diameter analysis shows that the Ceres FFCs are unusually shallow, consistent with the magmatic intrusion models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006cosp...36..693G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006cosp...36..693G"><span>Climate change from wet to dry at the Mars Exploration Rover landing sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golombek, M.; Athena Science Team</p> <p></p> <p>Sedimentary dirty evaporites in Meridiani Planum were deposited in salt-water playas or sabkhas in the Noachian and highly water altered rocks in the Columbia Hills of Gusev crater formed at a time when a variety of geomorphic indicators on Mars valley networks degraded craters highly eroded terrain and layered sedimentary deposits indicate a possible early warmer and wetter environment In contrast the cratered plains of Gusev that Spirit has traversed exclusive of the Columbia Hills have been dominated by impact and eolian processes and a gradation history that argues for a dry and desiccating environment since the Late Hesperian The Late Hesperian Early Amazonian cratered plains of Gusev crater are generally low relief moderately rocky plains dominated by hollows which appear to be craters filled with soil Rocks are generally angular basalt fragments in an unconsolidated 10 m thick regolith of likely impact origin Eolian bedforms appear to be presently inactive ripples and no active sand dunes have been identified Moderate localized surface deflation of 5 to 25 cm is indicated by two-toned rocks with a redder patination along the base ventifacts that originate from a common horizon above the soil suggesting that the lower part of the rock was shielded rocks that appear to be perched on top of other rocks and some undercut rocks in which the soil has been removed from their bases The observed gradation and deflation of ejected fines and deposition in craters to form hollows thus provides a measure of the rate of erosion average vertical removal</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..339...41A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..339...41A"><span>Compound maar crater and co-eruptive scoria cone in the Lunar Crater Volcanic Field (Nevada, USA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amin, Jamal; Valentine, Greg A.</p> <p>2017-06-01</p> <p>Bea's Crater (Lunar Crater Volcanic Field, Nevada, USA) consists of two coalesced maar craters with diameters of 440 m and 1050 m, combined with a co-eruptive scoria cone that straddles the northeast rim of the larger crater. The two craters and the cone form an alignment that parallels many local and regional structures such as normal faults, and is interpreted to represent the orientation of the feeder dyke near the surface. The maar formed among a dense cluster of scoria cones; the cone-cluster topography resulted in crater rim that has a variable elevation. These older cones are composed of variably welded agglomerate and scoria with differing competence that subsequently affected the shape of Bea's Crater. Tephra ring deposits associated with phreatomagmatic maar-forming eruptions are rich in basaltic lithics derived from < 250 m depth, with variable contents of deeper-seated ignimbrite lithic clasts, consistent with ejection from relatively shallow explosions although a diatreme might extend to deeper levels beneath the maar. Interbedding of deposits on the northeastern cone and in the tephra ring record variations in the magmatic volatile driven and phreatomagmatic eruption styles in both space and time along a feeder dike.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012230','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012230"><span>Small impact craters in the lunar regolith - Their morphologies, relative ages, and rates of formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, H.J.; Boyce, J.M.; Hahn, D.A.</p> <p>1980-01-01</p> <p>Apparently, there are two types of size-frequency distributions of small lunar craters (???1-100 m across): (1) crater production distributions for which the cumulative frequency of craters is an inverse function of diameter to power near 2.8, and (2) steady-state distributions for which the cumulative frequency of craters is inversely proportional to the square of their diameters. According to theory, cumulative frequencies of craters in each morphologic category within the steady-state should also be an inverse function of the square of their diameters. Some data on frequency distribution of craters by morphologic types are approximately consistent with theory, whereas other data are inconsistent with theory. A flux of crater producing objects can be inferred from size-frequency distributions of small craters on the flanks and ejecta of craters of known age. Crater frequency distributions and data on the craters Tycho, North Ray, Cone, and South Ray, when compared with the flux of objects measured by the Apollo Passive Seismometer, suggest that the flux of objects has been relatively constant over the last 100 m.y. (within 1/3 to 3 times of the flux estimated for Tycho). Steady-state frequency distributions for craters in several morphologic categories formed the basis for estimating the relative ages of craters and surfaces in a system used during the Apollo landing site mapping program of the U.S. Geological Survey. The relative ages in this system are converted to model absolute ages that have a rather broad range of values. The range of values of the absolute ages are between about 1/3 to 3 times the assigned model absolute age. ?? 1980 D. Reidel Publishing Co.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080041020','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080041020"><span>Geologic Mapping of the Martian Impact Crater Tooting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mouginis-Mark, Peter; Boyce, Joseph M.</p> <p>2008-01-01</p> <p>Tooting crater is approximately 29 km in diameters, is located at 23.4 deg N, 207.5 deg E and is classified as a multi-layered ejecta crater. Tooting crater is a very young crater, with an estimated age of 700,000 to 2M years. The crater formed on virtually flat lava flows within Amazonis Planitia where there appears to have been no major topographic features prior to the impact, so that we can measure ejecta thickness and cavity volume. In the past 12 months, the authors have: published their first detailed analysis of the geometry of the crater cavity and the distribution of the ejecta layers; refined the geologic map of the interior of Tooting crater through mapping of the cavity at a scale of 1:1100K; and continued the analysis of an increasing number of high resolution images obtained by the CTX and HiRISE instruments. Currently the authors seek to resolve several science issues that have been identified during this mapping, including: what is the origin of the lobate flows on the NW and SW rims of the crater?; how did the ejecta curtain break apart during the formation of the crater, and how uniform was the emplacement process for the ejecta layers; and, can we infer physical characteristics about the ejecta? Future study plans include the completion of a draft geologic map of Tooting crater and submission of it to the U.S. Geological survey for a preliminary review, publishing a second research paper on the detailed geology of the crater cavity and the distribution of the flows on the crater rim, and completing the map text for the 1:100K geologic map description of units at Tooting crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711624Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711624Z"><span>The Structure of the Kaali Impact Crater (Estonia) based on 3D Laser Scanning, Photogrammetric Modelling and Strike and Dip Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zanetti, Michael; Wilk, Jakob; Joeleht, Argo; Välja, Rudolf; Losiak, Anna; Wisniowski, Tomek; Huber, Matthew; Pavel, Kristiina; Kriiska, Aivar; Plado, Jüri; Geppert, Wolf Dietrich; Kukko, Antero; Kaartinen, Harri</p> <p>2015-04-01</p> <p>Introduction: The Kaali Impact Crater on the island of Saaremaa, Estonia (58.37° N, 22.67° E) is part of a crater-strewn-field consisting of nine identified craters, ranging in size from 110m (Kaali Main) to a few meters in diameter [1-3]. The strewn field was formed by the breakup of an IAB iron meteorite during atmospheric entry [4]. The main crater is due to its size an important crater to study the effects of small asteroidal impacts on terrestrial planets. Despite some anthropomorphic changes, the crater is well preserved. During a scientific expedition in August 2014, we mapped the crater in unprecedented detail using 3D laser scanning tools and made detailed strike and dip measurements of all outcrops. Additional measurements using ground-penetrating radar and electro-resistivity tomography we also conducted to further refine the subsurface crater morphology. The results include a high resolution topographic map of the crater, previously unreported observations of overturned ejecta, and refined morphometric estimates of the crater. Additionally, research conducted as part of the expedition has provided a new, best-estimate for the formation of the crater (3200a +/- 30 BP) based on 14C AMS dating of charcoal from within the ejecta blanket [Losiak et al., 2015, this conference]. Structural Mapping: Although Kaali Main has been the subject of previous investigation (e.g. [2,5,6]), most of the structural descriptions of the crater pre-date modern crater investigations. Strongly inclined blocks were previously considered being affected by erosion and slope processes, our new observations show that most high dip-angle features fit well with overall dip-angle systematics. The existence of the overturned flap can be demonstrated in at least four areas around the crater. 3D Laser Scanning: A point cloud containing 16 million data points was created using 43 individual scans from a tripod mounted Faro 3D 330x laser scanner. Scans were processed using Trimble Realworks software. A DEM, Hillshade, Slope Map and Contour Map were created in ESRI ArcScene software. Photogrammetry: Photogrammetric techniques from images of key outcrops were used to create texture, photorealistic 3D representations using Agisoft PhotoScan software. Acknowledgements: We extend our sincerest gratitude to the Estonian National Heritage Board for permission to dig and make measurements at the crater. References: [1] I.Kolkun (1922) Üldine geologia. Tallin, 170. [2] J. A.Reinwald (1933) Publications of the Geological Institution of the University of Tartu, 30:1-20. [3] J.A.Reinwald (1928) thesis; Univ of Tartu [4] L.J.Spencer (1938) Miner. Mag., 25:75-80. [5] A.Aaloe (1959) ENSV TA Geoloogia Instituudi Uurimused, 2:105-117. [6] A.Raukas et al. (2002) Impact Studies 2005, 341-355.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014acm..conf..357M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014acm..conf..357M"><span>Asteroid families from cratering: Detection and models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milani, A.; Cellino, A.; Knežević, Z.; Novaković, B.; Spoto, F.; Paolicchi, P.</p> <p>2014-07-01</p> <p>A new asteroid families classification, more efficient in the inclusion of smaller family members, shows how relevant the cratering impacts are on large asteroids. These do not disrupt the target, but just form families with the ejecta from large craters. Of the 12 largest asteroids, 8 have cratering families: number (2), (4), (5), (10), (87), (15), (3), and (31). At least another 7 cratering families can be identified. Of the cratering families identified so far, 7 have >1000 members. This imposes a remarkable change from the focus on fragmentation families of previous classifications. Such a large dataset of asteroids believed to be crater ejecta opens a new challenge: to model the crater and family forming event(s) generating them. The first problem is to identify which cratering families, found by the similarity of proper elements, can be formed at once, with a single collision. We have identified as a likely outcome of multiple collisions the families of (4), (10), (15), and (20). Of the ejecta generated by cratering, only a fraction reaches the escape velocity from the surviving parent body. The distribution of velocities at infinity, giving to the resulting family an initial position and shape in the proper elements space, is highly asymmetric with respect to the parent body. This shape is deformed by the Yarkovsky effect and by the interaction with resonances. All the largest asteroids have been subjected to large cratering events, thus the lack of a family needs to be interpreted. The most interesting case is (1) Ceres, which is not the parent body of the nearby family of (93). Two possible interpretations of the low family forming efficiency are based on either the composition of Ceres with a significant fraction of ice, protected by a thin crust, or with the larger escape velocity of ~500 m/s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V51H..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V51H..06B"><span>Crater Floor and Lava Lake Dynamics Measured with T-LIDAR at Pu`u`O`o Crater, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brooks, B. A.; Kauahikaua, J. P.; Foster, J. H.; Poland, M. P.</p> <p>2007-12-01</p> <p>We used a near-infrared (1.2 micron wavelength) tripod-based scanning LiDAR system (T-LIDAR) to capture crater floor and lava lake dynamics in unprecedented detail at P`u`u `O`o crater on Kilauea volcano, Hawai`i. In the ~40 days following the June 17-19 intrusion/eruption, Pu`u `O`o crater experienced substantial deformation comprising 2 collapse events bracketing rapid filling of the crater by a lava lake. We surveyed the crater floor with centimeter-scale spot-spacings from 3 different vantage points on July 13 and from one vantage point on July 24. Data return was excellent despite heavy fume on July 24 that obscured nearly all of the crater features, including the walls and floor. We formed displacement fields by aligning identical features from different acquisition times in zones on the relatively stable crater walls. From July 13, over a period of several hours, we imaged ~2 m of differential lava lake surface topography from the upwelling (eastern) to downstream (western) portion of the flowing lava lake. From July 13 to July 24, the lava lake level dropped by as much as 20 meters in a zone confined by flanking levees. Our results confirm the utility of T-LiDAR as a new tool for detailed volcano geodesy studies and suggest potential applications in volcano hazards monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA04448.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA04448.html"><span>Cydonia Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-03-22</p> <p>In this image from NASA Mars Odyssey, eroded mesas and secondary craters dot the landscape in an area of Cydonia Mensae. The single oval-shaped crater displays a butterfly ejecta pattern, indicating that the crater formed from a low-angle impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P31E..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P31E..05G"><span>IODP/ICDP Expedition 364-Drilling the Cretaceous-Paleogene Chicxulub impact crater: Insights into large craters formation and their effect on life.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gulick, S. P. S.; Morgan, J. V.; Fucugauchi, J. U.; Bralower, T. J.; Chenot, É.; Christeson, G. L.; Claeys, P.; Cockell, C. S.; Collins, G. S.; Coolen, M.; Gebhardt, C.; Goto, K.; Kring, D. A.; Xiao, L.; Lowery, C.; Mellett, C.; Ocampo-Torres, R.; Osinski, G. R.; Perez-Cruz, L. L.; Pickersgill, A.; Poelchau, M.; Rae, A.; Rasmussen, C.; Rebolledo-Vieyra, M.; Riller, U. P.; Sato, H.; Schmitt, D. R.; Smit, J.; Tikoo, S.; Tomioka, N.; Whalen, M. T.; Zylberman, W.; Jones, H.; Gareth, C.; Wittmann, A.; Lofi, J.; Yamaguchi, K. E.; Ferrière, L.</p> <p>2016-12-01</p> <p>An international project to drill the Chicxulub impact crater was conducted in April and May, 2016 as Expedition 364 of the International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Project (ICDP). Site M0077 is located offshore Yucatan in the southern Gulf of Mexico. The target was to core the only pristine terrestrial peak ring and to measure physical properties of the entire borehole. Specific questions included: What rocks comprise a topographic peak ring? How are peak rings formed? How are rocks weakened during large impacts to allow them to collapse and form relatively wide, flat craters? What insights arise from biologic recovery in the Paleogene within a potentially "toxic" ocean basin? Are impact craters (including peak rings) habitats for life? Coring occurred from 503 - 1334.7 mbsf with nearly 100% recovery. Wireline logs were collected from ultra slimline tools to total depth including gamma ray, magnetic susceptibility, sonic, borehole fluid temperature and conductivity, resistivity data, borehole images, and a finely spaced vertical seismic profile. Stratigraphy cored included 110 m of Eocene and Paleocene carbonates, 130 m of allochthonous impactites, and 590 m of crustal basement with dikes. All cores were measured using a shipboard core logger (density, gamma ray, magnetic susceptibility and resistivity) and shorebased dual energy, 0.3 mm resolution CT scanner. These data allow us to: 1) refine numerical models of the formation of the Chicxulub impact structure; 2) place constraints on environmental perturbations that led to the K-Pg mass extinction; 3) improve simulations of impact craters on other planetary bodies; 4) examine deformation mechanisms for insights into how rocks weaken during impacts; 5) study impact generated hydrothermal systems and 6) understand the effects of impacts on the deep biosphere including as a habitat for microbial life with implications for evolution on Earth and astrobiology. Key results are that the Chicxulub peak ring is formed from fractured basement rocks that may host a subsurface biosphere. The impactite layer overlying the peak ring in turn provides insight into resurge and tsunami processes, while the Paleogene sediments contain the record of the recovery of life after the mass extinction event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRE..11410001K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRE..11410001K"><span>Latitude dependence of Martian pedestal craters: Evidence for a sublimation-driven formation mechanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kadish, Seth J.; Barlow, Nadine G.; Head, James W.</p> <p>2009-10-01</p> <p>We report on the results of a survey to document and characterize pedestal craters on Mars equatorward of ˜60°N and 65°S latitude. The identification of 2696 pedestal craters reveals a strong latitude dependence, with the vast majority found poleward of 33°N and 40°S. This latitudinal extent is correlated with many climate indicators consistent with the presence of an ice-rich substrate and with climate model predictions of where ice is deposited during periods of higher obliquity in the Amazonian. We have measured key physical attributes of pedestal craters, including the farthest radial extents of the pedestals, pedestal heights, and the circularity of the pedestal margins. In conjunction with the geographic distribution, our measurements strongly support a sublimation-related formation mechanism. This is in contrast to previous hypotheses, which have relied on eolian deflation to produce the elevated plateaus. The identification of marginal pits on the scarps of some pedestal craters, interpreted to be sublimation pits, provide direct evidence for the presence of ice-rich material underlying the armored surface of pedestal craters. On the basis of our findings, we propose a formation mechanism whereby projectiles impact into a volatile-rich dust/snow/ice substrate tens to hundreds of meters thick overlying a dominantly fragmental silicate regolith. The area surrounding the resulting crater becomes armored. Pedestals extend to a distance of multiple crater radii, farther than typical ejecta deposits, necessitating an armoring mechanism that is capable of indurating the surface to a distance greater than the reach of the ejecta. Return to low obliquity causes sublimation of the volatile-rich layer from the intercrater plains, lowering the elevation of the regional terrain. This yields generally circular pedestal craters elevated above the surrounding plains. As a result, the armored surfaces of pedestal craters have preserved a significant record of Amazonian climate history in the form of ice-rich deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeoRL..3523206K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeoRL..3523206K"><span>Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: Evidence for subsurface glacial ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kress, Ailish M.; Head, James W.</p> <p>2008-12-01</p> <p>Ring-mold craters (RMCs), concentric crater forms shaped like a truncated torus and named for their similarity to the cooking implement, are abundant in lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern mid-latitudes on Mars, but are not seen in surrounding terrain. LDA and LVF have been interpreted to form by flow of debris, but uncertainty remains concerning the mechanism of flow, with hypotheses ranging from pore-ice-assisted creep of talus to debris-covered glaciers. RMCs average less than a few hundred meters in diameter and occur in association with normal bowl-shaped impact craters whose average diameters are commonly less than RMCs. On the basis of their morphologic similarities to laboratory impact craters formed in ice and the physics of impact cratering into layered material, we interpret the unusual morphology of RMCs to be the result of impact into a relatively pure ice substrate below a thin regolith, with strength-contrast properties, spallation, viscous flow and sublimation being factors in the development of the ring-mold shape. Associated smaller bowl-shaped craters are interpreted to have formed within a layer of regolith-like sublimation till overlying the ice substrate. Estimates of crater depths of excavation between populations of bowl-shaped and ring-mold craters suggest that the debris layer is relatively thin. These results support the hypothesis that LDA and LVF formed as debris-covered glaciers and predict that many hundreds of meters of ice remain today in LDA and LVF deposits, beneath a veneer of sublimation till. RMCs can be used in other parts of Mars to predict and assess the presence of ancient ice-related deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA15121.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA15121.html"><span>Vesta Cratered Landscape: Double Crater and Craters with Bright Ejecta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-11-23</p> <p>This image from NASA Dawn spacecraft is dominated by a double crater which may have been formed by the simultaneous impact of a binary asteroid. Binary asteroids are asteroids that orbit their mutual center of mass.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053362&hterms=population+variations&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpopulation%2Bvariations','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053362&hterms=population+variations&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpopulation%2Bvariations"><span>Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Herrick, Robert R.; Phillips, Roger J.</p> <p>1994-01-01</p> <p>The dense atmosphere on Venus prevents craters smaller than about 2 km in daimater from forming and also causes formation of several crater fields and multiple-floored craters (collectively referred to as multiple impacts). A model has been constructed that simulates the behavior of a meteoroid in a dense planetary atmosphere. This model was then combined with an assumed flux of incoming meteoroids in an effort to reproduce the size-frequency distribution of impact craters and several aspects of the population of the crater fields and multiple-floored craters on Venus. The modeling indicates that it is plausible that the observed rollover in the size-frequency curve for Venus is due entirely to atmospheric effects on incoming meteoroids. However, there must be substantial variation in the density and behavior of incoming meteoroids in the atmosphere. Lower-density meteoroids must be less likely to survive atmospheric passage than simple density differences can account for. Consequently, it is likely that the percentage of craters formed by high-density meteoroids is very high at small crater diameters, and this percentage decreases substantially with increasing crater diameter. Overall, high-density meteoroids created a disproportionately large percentage of the impact craters on Venus. Also, our results indicate that a process such as meteoroid flattening or atmospheric explosion of meteoroids must be invoked to prevent craters smaller than the observed minimum diameter (2 km) from forming. In terms of using the size-frequency distribution to age-date the surface, the model indicates that the observed population has at least 75% of the craters over 32 km in diameter that would be expected on an atmosphereless Venus; thus, this part of the curve is most suitable for comparison with calibrated curves for the Moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012Icar..221..646Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012Icar..221..646Y"><span>In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasui, Minami; Arakawa, Masahiko; Hasegawa, Sunao; Fujita, Yukihiro; Kadono, Toshihiko</p> <p>2012-11-01</p> <p>Recent studies of impact craters formed on low-density asteroids led to the proposal of a new crater formation mechanism dominated by pore collapse and compaction. Thus, it is important to study the crater formation process associated with the projectile penetration on porous cohesive targets. Laboratory impact experiments were conducted for a porous gypsum target with porosity of 50%, and flash X-rays were used to visualize the interior of the target for in situ observation of crater formation and projectile penetration. Spherical projectiles made of three different materials, stainless steel, aluminum, and nylon were impacted at 1.9-2.4 km/s (low-velocity impact) and 5.6-6.4 km/s (high-velocity impact) by using a two-stage light-gas gun. Two imaging plates were used to take two X-ray images at a different delay time from the impact moment for one shot. Two types of crater cavity shape were found on the porous gypsum target, that is, penetration holes or hemispherical cavities, depending on the projectile size and density, and the impact velocity. The drag coefficient of a projectile was determined by measuring the penetration depth changing with time, and we found that it was closely related to the crater cavity shape: it was about 0.9 for a penetration hole, while it was 2.3-3.9 for a hemispherical cavity. This large value for a hemispherical cavity could have been caused by the deformation or the disruption of the projectile. The cratering efficiency, ρtVcr(t)/mp, was found to have a power law relationship to the scaling time for crater growth, πt = vit/rp, where vi is the impact velocity, rp is the projectile radius, and t is the time after the impact, and all data for stainless steel and aluminum projectiles merged completely and could be fitted by a power-law equation of ρtVcr(t)/mp=2.69×10-1πt1.10. Furthermore, the scaled crater volume, πV = Vcr_finalρt/mp, where Vcr_final is the final crater cavity volume, ρt is the target density, and mp is the projectile mass, was successfully fitted by a power law equation when another scaling parameter was used for the crater formation in strength regime, πY=Yt/ρtvi2, where Yt is the target material strength, as follows: πV=1.69×10-1πY-0.51. As a result, the crater formed on porous gypsum was revealed to be more than one order of magnitude smaller than that formed on basalt. Based on our experimental results, which visualize how crater cavities on porous cohesive materials grow with projectile penetration, we are able to discuss compression and excavation processes during crater formation quantitatively. This observation enables us to investigate and revise numerical models and crater scaling laws for high-velocity impacts into porous cohesive materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750028411&hterms=Descartes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DDescartes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750028411&hterms=Descartes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DDescartes"><span>Stratigraphy of the Descartes region /Apollo 16/ - Implications for the origin of samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Head, J. W.</p> <p>1974-01-01</p> <p>Analysis of terrain in the Apollo 16 Descartes landing region shows a series of features that form a stratigraphic sequence which dominates the history and petrogenesis at the site. An ancient 150-km diam crater centered on the Apollo 16 site is one of the earliest recognizable major structures. Nectaris ejecta was concentrated in a regional low at the base of the back slope of the Nectaris basin to form the Descartes Mountains. Subsequently, a 60-km diam crater formed in the Descartes Mountains centered about 25 km to the west of the site. This crater dominates the geology and petrogenetic history of the site. Stone and Smoky Mountains represent the degraded terraced crater walls, and the dark matrix breccias and metaclastic rocks derived from North and South Ray craters represent floor fallback breccias from this cratering event. The interpretation is developed that the stratigraphy of the Cayley and Descartes, and thus the historical record of the Apollo 16 region, documents the complex interaction of deposits and morphology of local and regional impact cratering events. Large local 60- to 150-km diam craters have had a dramatic and previously unrecognized effect on the history and petrology of the Apollo 16 site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B23A2051E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B23A2051E"><span>Relating sedimentary processes in the Bagnold Dunes to the development of crater basin aeolian stratification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M. D.; Stein, N.; Rubin, D. M.; Sullivan, R. J., Jr.; Banham, S.; Thomas, N. M.; Lamb, M. P.; Gupta, S.; Fischer, W. W.</p> <p>2017-12-01</p> <p>Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under martian conditions. Exploration of the Bagnold Dunes by the Curiosity Rover in Gale Crater, Mars provided the first opportunity to make in situ observations of martian dunes from the grain-to-dune scale. We used the suite of cameras on Curiosity, including Navigation Camera, Mast Camera, and Mars Hand Lens Imager. We measured grainsize and identified sedimentary processes similar to processes on terrestrial dunes, such as grainfall, grainflow, and impact ripples. Impact ripple grainsize had a median of 0.103 mm. Measurements of grainflow slopes indicate a relaxation angle of 29° and grainfall slopes indicate critical angles of at least 32°. Dissimilar to terrestrial dunes, large, meter-scale ripples form on all slopes of the dunes. The ripples form both sinuous and linear crestlines, have symmetric and asymmetric profiles, range in height between 12cm and 28cm, and host grainfall, grainflow, and impact ripples. The largest ripples are interpreted to integrate the annual wind cycle within the crater, whereas smaller large ripples and impact ripples form or reorient to shorter term wind cycling. Assessment of sedimentary processes in combination with dune type across the Bagnold Dunes shows that dune-field pattern development in response to a complex crater-basin wind regime dictates the distribution of geomorphic processes. From a stratigraphic perspective, zones of highest potential accumulation correlate with zones of wind convergence, which produce complex winds and dune field patterns thereby limiting the potential distribution of types of aeolian stratification preserved within crater basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010027','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010027"><span>Limited-interval definitions of the photometric functions of lunar crater walls by photography from orbiting Apollo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wildey, R.L.</p> <p>1971-01-01</p> <p>By the use of only relative photometry (intraframe) it is shown that the photometric functions of material reposed on the inner walls of some of the ypunger lunar craters photographed on the far side of the Moon from the Apollo 11 Command Module are not of a form which can be reduced to a dependence on phase angle and brightness-longitude (g, ??) alone. Some other dependence on the completely general degrees of freedom described by phase angle, angle of incidence, and angle of emergence (g, i, ??{lunate}) seems to be required. In addition, however, it has been found that a dependence of g and ?? is more closely approached for the crater, in the group observed, which is obviously the oldest by virtue of the roundedness of the rim crest and the mass-wasting which has occured on its inner walls. The possibility thus arises of crater age-dating by making a brightness ratio measurement together with some image geometry measurements. It is at least evident that more than one type of geologic material has been encountered. ?? 1971.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70...46S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70...46S"><span>Salt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko</p> <p>2018-03-01</p> <p>A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001895','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001895"><span>Pyroclastic Deposits in Floor-Fractured Craters: A Unique Style or Lunar Basaltic Volcanism?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, Carlton C.; DonaldsonHanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.</p> <p>2013-01-01</p> <p>The lunar maria were formed by effusive fissure flows of low-viscosity basalt. Regional pyroclastic deposits were formed by deep-sourced fire-fountain eruptions dominated by basaltic glass. Basaltic material is also erupted from small vents within floor-fractured impact craters. These craters are characterized by shallow, flat floors cut by radial, concentric and/or polygonal fractures. Schultz [1] identified and classified over 200 examples. Low albedo pyroclastic deposits originate from depressions along the fractures in many of these craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010942','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010942"><span>Mineral-produced high-pressure striae and clay polish: Key evidence for nonballistic transport of ejecta from Ries crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chao, E.C.T.</p> <p>1976-01-01</p> <p>Recently discovered mineral-produced, deeply incised striae and mirror-like polish on broken surfaces of limestone fragments from the sedimentary ejecta of the Ries impact crater of southern Germany are described. The striae and polish were produced under high confining pressures during high-velocity nonballistic transport of the ejecta mass within the time span of the cratering event (measured in terms of seconds). The striae on these fragments were produced by scouring by small mineral grains embedded in the surrounding clay matrix, and the polish was formed under the same condition, by movements of relatively fragment-free clay against the fragment surfaces. The occurrence of these striae and polish is key evidence for estimating the distribution and determining the relative importance of nonballistic and ballistic transport of ejecta from the shallow Ries stony meteorite impact crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0113&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0113&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0113</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>JET PROPULSION LABORATORY, CALIF. At Ball Aerospace in Boulder, Colo., the infrared (IR) spectrometer for the Deep Impact flyby spacecraft is inspected in the instrument assembly area in the Fisher Assembly building clean room. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The spectrometer is part of the High Resolution Instrument in the spacecraft. This imager will be aimed at the ejected matter as the crater forms, and an infrared 'fingerprint' of the material from inside of the comet's nucleus will be taken. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920003687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920003687"><span>Degradation studies of Martian impact craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, N. G.</p> <p>1991-01-01</p> <p>The amount of obliteration suffered by Martian impact craters is quantified by comparing measurable attributes of the current crater shape to those values expected for a fresh crater of identical size. Crater diameters are measured from profiles obtained using photoclinometry across the structure. The relationship between the diameter of a fresh crater and a crater depth, floor width, rim height, central peak height, etc. was determined by empirical studies performed on fresh Martian impact craters. We utilized the changes in crater depth and rim height to judge the degree of obliteration suffered by Martian impact craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01039&hterms=water+meter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwater%2Bmeter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01039&hterms=water+meter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwater%2Bmeter"><span>Evidence for Recent Liquid Water on Mars: Channeled Aprons in a Small Crater within Newton Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p>[figure removed for brevity, see original site] <p/>Newton Crater is a large basin formed by an asteroid impact that probably occurred more than 3 billion years ago. It is approximately 287 kilometers (178 miles) across. The picture shown here (top) highlights the north wall of a specific, smaller crater located in the southwestern quarter of Newton Crater (above). The crater of interest was also formed by an impact; it is about 7 km (4.4 mi) across, which is about 7 times bigger than the famous Meteor Crater in northern Arizona in North America.<p/>The north wall of the small crater has many narrow gullies eroded into it. These are hypothesized to have been formed by flowing water and debris flows. Debris transported with the water created lobed and finger-like deposits at the base of the crater wall where it intersects the floor (bottom center top image). Many of the finger-like deposits have small channels indicating that a liquid--most likely water--flowed in these areas. Hundreds of individual water and debris flow events might have occurred to create the scene shown here. Each outburst of water from higher upon the crater slopes would have constituted a competition between evaporation, freezing, and gravity.<p/>The individual deposits at the ends of channels in this MOC image mosaic were used to get a rough estimate of the minimum amount of water that might be involved in each flow event. This is done first by assuming that the deposits are like debris flows on Earth. In a debris flow, no less than about 10% (and no more than 30%) of their volume is water. Second, the volume of an apron deposit is estimated by measuring the area covered in the MOC image and multiplying it by a conservative estimate of thickness, 2 meters (6.5 feet). For a flow containing only 10% water, these estimates conservatively suggest that about 2.5 million liters (660,000 gallons) of water are involved in each event; this is enough to fill about 7 community-sized swimming pools or enough to supply 20 people with their water needs for a year.<p/>The MOC high resolution view is located near 41.1oS, 159.8oW and is a mosaic of three different pictures acquired between January and May 2000. The MOC scene is illuminated from the left; north is up. The context picture was acquired in 1977 by the Viking 1 orbiter and is illuminated from the upper right.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..300...72H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..300...72H"><span>Impacts into porous asteroids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Housen, Kevin R.; Sweet, William J.; Holsapple, Keith A.</p> <p>2018-01-01</p> <p>Many small bodies in the solar system have bulk density well below the solid density of the constituent mineral grains in their meteorite counterparts. Those low-density bodies undoubtedly have significant porosity, which is a key factor that affects the formation of impact craters. This paper summarizes the results of lab experiments in which materials with porosity ranging from 43% to 96% were impacted at ∼1800 m/s. The experiments were performed on a geotechnical centrifuge, in order to reproduce the lithostatic overburden stress and ejecta ballistics that occur in large-scale cratering events on asteroids or planetary satellites. Experiments performed at various accelerations, up to 514G, simulate the outcomes of impacts at size scales up to several tens of km in diameter. Our experiments show that an impact into a highly porous cohesionless material generates a large ovoid-shaped cavity, due to crushing by the outgoing shock. The cavity opens up to form a transient crater that grows until the material flow is arrested by gravity. The cavity then collapses to form the final crater. During collapse, finely crushed material that lines the cavity wall is carried down and collected in a localized region below the final crater floor. At large simulated sizes (high accelerations), most of the crater volume is formed by compaction, because growth of the transient crater is quickly arrested. Nearly all ejected material falls back into the crater, leaving the crater without an ejecta blanket. We find that such compaction cratering and suppression of the ejecta blankets occur for large craters on porous bodies when the ratio of the lithostatic stress at one crater depth to the crush strength of the target exceeds ∼0.005. The results are used to identify small solar system bodies on which compaction cratering likely occurs. A model is developed that gives the crater size and ejecta mass that would result for a specified impact into a porous object.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040065784&hterms=migration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmigration','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040065784&hterms=migration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmigration"><span>Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.</p> <p>2004-01-01</p> <p>Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20340.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20340.html"><span>A Young, Fresh Crater in Hellespontus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-01-14</p> <p>This image from NASA Mars Reconnaissance Orbiter spacecraft is of a morphologically fresh and simple impact crater in the Hellespontus region. At 1.3 kilometers in diameter, this unnamed crater is only slightly larger than Arizona's Barringer (aka Meteor) Crater, by about 200 meters. Note the simple bowl shape and the raised crater rim. Rock and soil excavated out of the crater by the impacting meteor -- called ejecta -- forms the ejecta deposit. It is continuous for about one crater radius away from the rim and is likely composed of about 90 percent ejecta and 10 percent in-place material that was re-worked by both the impact and the subsequently sliding ejecta. The discontinuous ejecta deposit extends from about one crater radius outward. Here, high velocity ejecta that was launched from close to the impact point -- and got the biggest kick -- flew a long way, landed, rolled, slid, and scoured the ground, forming long tendrils of ejecta and v-shaped ridges. http://photojournal.jpl.nasa.gov/catalog/PIA20340</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA11180.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA11180.html"><span>Raining Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-02-01</p> <p>Impact ejecta is material that is thrown up and out of the surface of a planet as a result of the impact of an meteorite, asteroid or comet. The material that was originally beneath the surface of the planet then rains down onto the environs of the newly formed impact crater. Some of this material is deposited close to the crater, folding over itself to form the crater rim, visible here as a yellowish ring. Other material is ejected faster and falls down further from the crater rim creating two types of ejecta: a "continuous ejecta blanket" and "discontinuous ejecta." Both are shown in this image. The blocky area at the center of the image close to the yellowish crater rim is the "continuous" ejecta. The discontinuous ejecta is further from the crater rim, streaking away from the crater like spokes on a bicycle. (Note: North is to the right.) http://photojournal.jpl.nasa.gov/catalog/PIA11180</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850047911&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850047911&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology"><span>The geomorphology of Rhea - Implications for geologic history and surface processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, J. M.; Horner, V. M.; Greeley, R.</p> <p>1985-01-01</p> <p>Morphological analyses of landforms on Rhea are used to define three physiographic provinces: cratered terrain 1 undifferentiated; cratered terrain 1 lineated; and cratered terrain 2. The important statigraphic relationships between the different provinces are examined with respect to major impact basins and tectonic features. It is shown that the formation of multiringed basins may have caused, or at least controlled the locations of major resurfacing and mantling events. The diameters of the central peaks relative to the impact crater diameters are found to be significantly larger than those within the craters of the moon or Mercury. Both cratered and noncrater lineaments have regional orientations which do not fit current global or regional stress models. On the basis of the morphological analysis, a chronological order is established for the origin of the three provinces: the cratered terrain 1 province was formed first; and cratered terrain 1 lineated and cratered terrain 2 were formed second, and last, respectively. It is shown that the chronological order is generally consistent with current theoretical models of the evolution of Rhea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRE..111.2S08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRE..111.2S08G"><span>Crater gradation in Gusev crater and Meridiani Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grant, J. A.; Arvidson, R. E.; Crumpler, L. S.; Golombek, M. P.; Hahn, B.; Haldemann, A. F. C.; Li, R.; Soderblom, L. A.; Squyres, S. W.; Wright, S. P.; Watters, W. A.</p> <p>2006-01-01</p> <p>The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ~400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70001158','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70001158"><span>Crater dimensions from apollo data and supplemental sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pike, R.J.</p> <p>1976-01-01</p> <p>A catalog of crater dimensions that were compiled mostly from the new Apollo-based Lunar Topographic Orthophotomaps is presented in its entirety. Values of crater diameter, depth, rim height, flank width, circularity, and floor diameter (where applicable) are tabulated for a sample of 484 craters on the Moon and 22 craters on Earth. Systematic techniques of mensuration are detailed. The lunar craters range in size from 400 m to 300 km across and include primary impact craters of the main sequence, secondary impact craters, craterlets atop domes and cones, and dark-halo craters. The terrestrial craters are between 10 m and 22.5 km in diameter and were formed by meteorite impact. ?? 1976 D. Reidel Publishing Company.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780060124&hterms=Nuclear+explosion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DNuclear%2Bexplosion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780060124&hterms=Nuclear+explosion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DNuclear%2Bexplosion"><span>Application of high explosion cratering data to planetary problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oberbeck, V. R.</p> <p>1977-01-01</p> <p>The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AsUAI...1...26M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AsUAI...1...26M"><span>Plato crater, first observative session: not any "hook" but a shark fin? (Italian Title: La 1° Campagna Osservativa del cratere Plato: non un "uncino" ma una "pinna di squalo"?)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mercatali, A.</p> <p>2018-01-01</p> <p>On 1st March 2012 an observative session of Moon's Plato crater was made. The purpose of these observations was to check the presence of one shadow with "hook" form at the inner of Plato crater already reported by H. Percy Wilkins, 3th April 21:30 UT, 1952. The results obtained by us have not shown any shadow with an hook form, but a shadow like a shark fin.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA14450.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA14450.html"><span>Secondary Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-12-21</p> <p>This image of a southern mid-latitude crater was intended to investigate the lineated material on the crater floor. At the higher resolution of HiRISE, the image reveals a landscape peppered by small impact craters. These craters range from about 30 meters in diameter down to the resolution limit (about 2 meter diameter in this image acquired by averaging 2x2 picture elements). Such dense clusters of small craters are frequently formed by secondary craters, caused by the impact of material that was excavated and ejected from the surface of Mars during the creation of a larger nearby crater by the impact of a comet or an asteroid. Secondary impact craters are both interesting and vexing. They are interesting because they show the trajectories of the material that was ejected from the primary impact with the greatest speeds, typically material from near the surface of the blast zone. Secondary craters are often found along the traces of crater rays, linear features that extend radially from fresh impact craters and can reach many crater diameters in length. Secondary craters can be useful when crater rays are visible and the small craters can be associated with a particular primary impact crater. They can be used to constrain the age of the surface where they fell, since the surface must be older than the impact event. The age of the crater can be approximately estimated from the probability of an impact that produced a crater of such a size within a given area of Mars over a given time period. But these secondary craters can also be perplexing when no crater rays are preserved and a source crater is not easily identifiable, as is the case here. The impact that formed these secondary craters took place long enough ago that their association with a particular crater has been erased. They do not appear along the trace of a crater ray that is still apparent in visible or thermal infrared observations. These secondary craters complicate the task of estimating the age of the lineated material on the crater floor. It is necessary to distinguish secondary craters from the primary impacts that we rely upon to estimate the ages of Martian surfaces. The large number of small craters clustered together here is typical of crater rays elsewhere on Mars and suggests that these are indeed, secondary impact craters. http://photojournal.jpl.nasa.gov/catalog/PIA14450</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028103','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028103"><span>Chesapeake Bay impact structure: Morphology, crater fill, and relevance for impact structures on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Horton, J. Wright; Ormo, J.; Powars, D.S.; Gohn, G.S.</p> <p>2006-01-01</p> <p>The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best-preserved "wet-target" craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile-rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ???85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the "inverted sombrero" morphology observed at some craters in layered targets. The distribution of crater-fill materials i n the CBIS is related to the morphology. Suevitic breccia, including pre-resurge fallback deposits, is found in the central crater. Impact-modified sediments, formed by fluidization and collapse of water-saturated sand and silt-clay, occur in the annular trough. Allogenic sediment-clast breccia, interpreted as ocean-resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat-floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar-sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles. ?? The Meteoritical Society, 2006.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019214','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019214"><span>The phanerozoic impact cratering rate: Evidence from the farside of the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McEwen, A.S.; Moore, Johnnie N.; Shoemaker, E.M.</p> <p>1997-01-01</p> <p>The relatively recent (< 1 b.y.) flux of asteroids and comets forming large craters on the Earth and Moon may be accurately recorded by craters with bright rays on the Moon's farside. Many previously unknown farside rayed craters are clearly distinguished in the low-phase-angle images returned by the Clementine spacecraft. Some large rayed craters on the lunar nearside are probably significantly older than 1 Ga; rays remain visible over the maria due to compositional contrasts long after soils have reached optical maturity. Most of the farside crust has a more homogeneous composition and only immature rays are visible. The size-frequency distribution of farside rayed craters is similar to that measured for Eratosthenian craters (up to 3.2 b.y.) at diameters larger than 15 km. The areal density of farside rayed craters matches that of a corrected tabulation of nearside Copernican craters. Hence the presence of bright rays due to immature soils around large craters provides a consistent time-stratigraphic basis for defining the base of the Copernican System. The density of large craters less than ???3.2 b.y. old is ???3.2 times higher than that of large farside rayed craters alone. This observation can be interpreted in two ways: (1) the average cratering rate has been constant over the past 3.2 b.y. and the base of the Copernican is ???1 Ga, or (2) the cratering rate has increased in recent geologic time and the base of the Copernican is less than 1 Ga. We favor the latter interpretation because the rays of Copernicus (800-850 m.y. old) appear to be very close to optical maturity, suggesting that the average Copernican cratering rate was ???35% higher than the average Eratosthenian rate. Other lines of evidence for an increase in the Phanerozoic (545 Ga) cratering rate are (1) the densities of small craters superimposed on Copernicus and Apollo landing sites, (2) the rates estimated from well-dated terrestrial craters (??? 120 m.y.) and from present-day astronomical observations, and (3) the Proterozoic rate suggested by the crater record of Australia. The hypothesis most consistent with several key observations is that the cratering rate has increased by ???2x during the past ???300 m.y. Copyright 1997 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGP41E..08F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGP41E..08F"><span>Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.</p> <p>2013-12-01</p> <p>Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact age, cratering, target-impactite stratigraphy, ejecta, impact dynamics, hydrothermal alterations and post-impact processes are presented. The challenges and perspectives of drilling studies of impact craters are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014P%26SS...96...71M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014P%26SS...96...71M"><span>Impact cratering experiments in brittle targets with variable thickness: Implications for deep pit craters on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.</p> <p>2014-06-01</p> <p>High-resolution images reveal that numerous pit craters exist on the surface of Mars. For some pit craters, the depth-to-diameter ratios are much greater than for ordinary craters. Such deep pit craters are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit crater might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact cratering into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the crater formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. Craters are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when craters on the opposite sides of the target connect with each other. In this case, the cross section of crater somehow attains a flat hourglass-like shape. We also find that the crater diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the crater on the opposite side than from the crater on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit craters lack a raised rim and have the ejecta deposit on their floor instead. Craters are formed on the opposite impact side even when no penetration occurs. Penetration is achieved when craters of both sides are connected. Crater diameter on the opposite side is larger than that on the impact side. More fragments are ejected from the opposite side than from the impact side. We present a qualitative explanation for the shapes of Martian deep pit craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA04454.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA04454.html"><span>Flooded Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-04-04</p> <p>This image from NASA Mars Odyssey spacecraft shows a flooded crater in Amazonis Planitia. This crater has been either flooded with mud and or lava. The fluid then ponded up, dried and formed the surface textures we see today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004EOSTr..85..378N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004EOSTr..85..378N"><span>Cratering in Marine Environments and on Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newsom, Horton E.</p> <p>2004-09-01</p> <p>Since the discovery of plate tectonics, impact cratering is arguably the most significant geologic process now recognized as an important process on Earth. Impacts into ice, another main topic covered in this book, may be important on other worlds. Large numbers of impact craters that formed in marine environments on Earth have only been discovered in the last 10 years. Twenty-five craters that formed in marine environments have been documented, according to the first chapter of this book, although none are known that excavated oceanic crust. The papers in Cratering in Marine Environments and on Ice will whet your appetite for the exciting and ambitious range of topics implied by the title, which stems from a conference in Svalbard, Norway, in September 2001. This book provides a flavor of the rapidly advancing and diverse field of impact cratering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22144.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22144.html"><span>Investigating Mars: Rabe Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-18</p> <p>The majority of the dune field in Rabe Crater consists of a sand sheet with dune forms on the surface. The sand sheet is where a thick layer of sand has been concentrated. As continued winds blow across the sand surface it creates dune forms. The depth of the sand sheet prevents excavation to the crater floor and the dune forms all appear connected. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 58024 Latitude: -43.6954 Longitude: 34.8236 Instrument: VIS Captured: 2015-01-12 09:48 https://photojournal.jpl.nasa.gov/catalog/PIA22144</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19276.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19276.html"><span>Pits and Scarps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-08</p> <p>Lessing crater can be seen in the lower left of this image. Instead of the typical central peak found in a complex crater on Mercury, Lessing sports a central pit, likely formed by volcanic activity. A large tectonic scarp that formed when the planet's interior cooled and contracted can be seen running through a crater near the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA19276</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168946','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168946"><span>High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Arvidson, Raymond E.; Squyres, Steven W.; Morris, Richard V.; Knoll, Andrew H.; Gellert, Ralf; Clark, Benton C.; Catalano, Jeffrey G.; Jolliff, Bradley L.; McLennan, Scott M.; Herkenhoff, Kenneth E.; VanBommel, Scott; Mittelfehldt, David W.; Grotzinger, John P.; Guinness, Edward A.; Johnson, Jeffrey R.; Bell, James F.; Farrand, William H.; Stein, Nathan; Fox, Valerie K.; Golombek, Matthew P.; Hinkle, Margaret A. G.; Calvin, Wendy M.; de Souza, Paulo A.</p> <p>2016-01-01</p> <p>Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the ~22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. Fractures have also propagated upward into the overlying Burns formation sandstones. Opportunity’s observations show that the western crater rim segment, called Murray Ridge, is composed of impact breccias with basaltic compositions, as well as occasional fracture-filling calcium sulfate veins. Cook Haven, a gentle depression on Murray Ridge, and the site where Opportunity spent its sixth winter, exposes highly fractured, recessive outcrops that have relatively high concentrations of S and Cl, consistent with modest aqueous alteration. Opportunity’s rover wheels serendipitously excavated and overturned several small rocks from a Cook Haven fracture zone. Extensive measurement campaigns were conducted on two of them: Pinnacle Island and Stuart Island. These rocks have the highest concentrations of Mn and S measured to date by Opportunity and occur as a relatively bright sulfate-rich coating on basaltic rock, capped by a thin deposit of one or more dark Mn oxide phases intermixed with sulfate minerals. We infer from these unique Pinnacle Island and Stuart Island rock measurements that subsurface precipitation of sulfate-dominated coatings was followed by an interval of partial dissolution and reaction with one or more strong oxidants (e.g., O2) to produce the Mn oxide mineral(s) intermixed with sulfate-rich salt coatings. In contrast to arid regions on Earth, where Mn oxides are widely incorporated into coatings on surface rocks, our results demonstrate that on Mars the most likely place to deposit and preserve Mn oxides was in fracture zones where migrating fluids intersected surface oxidants, forming precipitates shielded from subsequent physical erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..299...68T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..299...68T"><span>A depth versus diameter scaling relationship for the best-preserved melt-bearing complex craters on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tornabene, Livio L.; Watters, Wesley A.; Osinski, Gordon R.; Boyce, Joseph M.; Harrison, Tanya N.; Ling, Victor; McEwen, Alfred S.</p> <p>2018-01-01</p> <p>We use topographic data to show that impact craters with pitted floor deposits are among the deepest on Mars. This is consistent with the interpretation of pitted materials as primary crater-fill impactite deposits emplaced during crater formation. Our database consists of 224 pitted material craters ranging in size from ∼1 to 150 km in diameter. Our measurements are based on topographic data from the Mars Orbiter Laser Altimeter (MOLA) and the High-Resolution Stereo Camera (HRSC). We have used these craters to measure the relationship between crater diameter and the initial post-formation depth. Depth was measured as maximum rim-to-floor depth, (dr), but we also report the depth measured using other definitions. The database was down-selected by refining or removing elevation measurements from ;problematic; craters affected by processes and conditions that influenced their dr/D, such as pre-impact slopes/topography and later overprinting craters. We report a maximum (deepest) and mean scaling relationship of dr = (0.347 ± 0.021)D0.537 ± 0.017 and dr = (0.323 ± 0.017)D0.538 ± 0.016, respectively. Our results suggest that significant variations between previously-reported MOLA-based dr vs. D relationships may result from the inclusion of craters that: 1) are influenced by atypical processes (e.g., highly oblique impact), 2) are significantly degraded, 3) reside within high-strength regions, and 4) are transitional (partially collapsed). By taking such issues into consideration and only measuring craters with primary floor materials, we present the best estimate to date of a MOLA-based relationship of dr vs. D for the least-degraded complex craters on Mars. This can be applied to crater degradation studies and provides a useful constraint for models of complex crater formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013801','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013801"><span>Cratering history of Miranda: Implications for geologic processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Plescia, J.B.</p> <p>1988-01-01</p> <p>Miranda's surface is divisible into cratered terrain and coronae. The cratered terrain is the most heavily cratered of the terrains and presumably is the oldest. The frequency of craters in the cratered terrain is variable and related to position on the satellite. The coronae are also variably cratered. Elsinore and Arden Coronae have similar crater frequencies and may have formed simultaneously. They are of intermediate agompared to the cratered terrain and to Inverness Corona, which is the youngest major terrain. Graben formation appears to have occured both before and after the formation of the coronae reflecting periods of global expansion. Miranda's surfaces are, in general, the least cratered and therefore inferred to be the youngest within the Uranian system. ?? 1988.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21769.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21769.html"><span>Escape from Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-07-10</p> <p>This image from NASA's Mars Reconnaissance Orbiter shows one of millions of small (10s of meters in diameter) craters and their ejecta material that dot the Elysium Planitia region of Mars. The small craters were likely formed when high-speed blocks of rock were thrown out by a much larger impact (about 10-kilometers in diameter) and fell back to the ground. Some of these blocks may actually escape Mars, which is how we get samples in the form of meteorites that fall to Earth. Other ejected blocks have insufficient velocity, or the wrong trajectory, to escape the Red Planet. As such, when one of these high-speed blocks impacts the surface, it makes what is called a "secondary" crater. These secondaries can form dense "chains" or "rays," which are radial to the crater that formed them. https://photojournal.jpl.nasa.gov/catalog/PIA21769</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030612','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030612"><span>Crater gradation in Gusev crater and Meridiani Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grant, J. A.; Arvidson, R. E.; Crumpler, L.S.; Golombek, M.P.; Hahn, B.; Haldemann, A.F.C.; Li, R.; Soderblom, L.A.; Squyres, S. W.; Wright, S.P.; Watters, W.A.</p> <p>2006-01-01</p> <p>The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ???400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred. Copyright 2006 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780057835&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTNT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780057835&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTNT"><span>Cratering motions and structural deformation in the rim of the Prairie Flat multiring explosion crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roddy, D. J.; Ullrich, G. W.; Sauer, F. M.; Jones, G. H. S.</p> <p>1977-01-01</p> <p>Cratering motions and structural deformation are described for the rim of the Prairie Flat multiring crater, 85.5 m across and 5.3 m deep, which was formed by the detonation of a 500-ton TNT surface-tangent sphere. The terminal displacement and motion data are derived from marker cans and velocity gages emplaced in drill holes in a three-dimensional matrix radial to the crater. The integration of this data with a detailed geologic cross section, mapped from deep trench excavations through the rim, provides a composite view of the general sequence of motions that formed a transiently uplifted rim, overturned flap, inverted stratigraphy, downfolded rim, and deformed strata in the crater walls. Preliminary comparisons with laboratory experimental cratering and with numerical simulations indicate that explosion craters of the Prairie Flat-type generated by surface and near-surface energy sources tend to follow predictable motion sequences and produce comparable structural deformation. More specifically, central uplift and multiring impact craters with morphologies and structures comparable to Prairie Flat are inferred to have experienced similar deformational histories of the rim, such as uplift, overturning, terracing, and downfolding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00472&hterms=created+halo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcreated%2Bhalo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00472&hterms=created+halo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcreated%2Bhalo"><span>Venus - Impact Crater 'Jeanne</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>This Magellan full-resolution image shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA13738.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA13738.html"><span>Doublet Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-12-22</p> <p>This image from NASA Mars Odyssey is of a doublet crater located in Utopia Planitia, near the Elysium Volcanic region. Doublet craters are formed by simultaneous impact of a meteor that broke into two pieces prior to hitting the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950028413&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbarlow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950028413&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbarlow"><span>Sinuosity of Martian rampart ejecta deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, Nadine G.</p> <p>1994-01-01</p> <p>The sinuosities of 2213 Martian rampart ejecta craters are quantified through measurement of the ejecta flow front perimeter and ejecta area. This quantity, called lobateness, was computed for each complete lobe of the 1582 single lobe (SL), 251 double lobe (DL), and 380 multiple lobe (ML) craters included in this study. A lobateness value of 1 indicates a circular ejecta blanket, whereas more sinuous ejecta perimeters have lobateness values greater than 1. Although resolution does have an effect on the absolute values of lobateness, the general relationships between lobateness and morphology exist regardless of resolution. Evaluation of the lobateness values reveals that the outer lobes of DL and ML craters have higher median lobateness values (i.e., are more sinuous) than the inner lobes. The outermost lobe of ML craters displays higher lobateness values than the outer lobe of DL craters or the single lobe of SL craters. Previous reports of lobateness-diameter, lobateness-latitude, and lobateness-terrain relationships for rampart craters are not supported by this study. Many of the differences between the results of this study and the previous lobateness analyses can be attributed to the inclusion of resolution effects and the distinction between different ejecta morphologies in this study. The results of this study taken together with a previous analysis of the distribution and diameter dependence of different ejecta morphologies are most consistent with the theory that Martian lobate ejecta morphologies form from impact into subsurface volatiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980211540','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980211540"><span>Surficial Geology of the Chicxulub Impact Crater, Yucatan, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.</p> <p>1993-01-01</p> <p>The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approx. 240 km in diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950048318&hterms=costa+rica+geology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcosta%2Brica%2Bgeology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950048318&hterms=costa+rica+geology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcosta%2Brica%2Bgeology"><span>Surficial geology of the Chicxulub impact crater, Yucatan, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.</p> <p>1993-01-01</p> <p>The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approximately 240 km in diameter.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA13181.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA13181.html"><span>Muddy Ejecta Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-01-10</p> <p>This small 2 kilometer-wide crater was sitting around, minding its own business when a meteoroid struck the ground just to the west and created a new, larger crater almost 10 kilometers in diameter (not pictured). The ejecta spraying out of the new crater landed back on the ground and then continued to flow away from the new crater, and the smaller crater was in the way of that muddy flow. You can see where much of the muddy material flowed around the crater's uplifted rim and forms a squiggly ridge, but you can also see where the mud flow slid over the rim and ponded down in the bottom of the crater. One question we don't know the answer to is: "how wet was the muddy ejecta?" Ongoing observations like this and laboratory-based experiments are trying to find the answer to that question. This image also illustrates a common theme in geology, namely, the law of superposition. Because the crater has been affected by ejecta from the larger crater to the west, the small crater had to be there first and then the second, larger crater and its ejecta had to form. This allows planetary geologists to decipher the relative ages of different landforms. Because a central goal of geology is to understand past events from present-day clues, geology is sometimes compared to forensic science. http://photojournal.jpl.nasa.gov/catalog/PIA13181</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030110948&hterms=Preservation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPreservation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030110948&hterms=Preservation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPreservation"><span>Impact Craters of Venus with D Greater Than 5 km Classified Based on Degree of Preservation of the Associated Radar-Dark Deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Basilevsky, A. T.; Head, J. W.; Setyaeva, I. V.</p> <p>2003-01-01</p> <p>This is a further continuation of work, which studied craters greater than or equal to 30 km in diameter. That work subdivided craters based on character of the associated radar dark deposits. It was suggested and then confirmed that the most pristine deposits of that sort are radar-dark parabolas. Non-parabolic radar-dark halos represent the next stage of the deposit evolution and then with time they disappear. So presence and character of crater-associated dark deposit can be used for estimates of the crater age and then for dating other features. Previous work classified craters into: 1) craters with dark parabola (DP), 2) with clear dark halo (CH), 3) with faint halo (FH) and 4) with no dark halo (NH). It was found that abundances of craters superposed on regional plains (whose mean age is close to the planet mean surface age T) and belonging to DP, CH, FH and NH classes were correspondingly 15, 30, 30 and 25%. From that it was concluded that DP craters are not older than 0.1-0.15T; CH craters formed during the time interval from approx. 0.5T until 0.1-0.15T ago, and the FH and NH craters formed prior to approx. 0.5T ago. It was shown that the DP, CH, FH and NH percentages show only slight apparent dependence on the crater geographic latitudes and no noticeable dependence on the crater size. The present study analyzes a much larger population (all D greater than or equal to 5 km craters) to investigate better the latitude effect and to study if within this larger crater population the size effect exists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850015295&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850015295&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology"><span>The Geomorphology of Rhea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, J. M.; Horner, V. M.; Greeley, R.</p> <p>1985-01-01</p> <p>Rhea was imaged to a resolution of approximately 1 km/lp by the Voyager spacecraft, providing the most detailed view of any Saturnian satellite. A preliminary study of Rhea divided the northern hemisphere into population 1 cratered terrain (between 20 deg and 120 deg) and population 2 cratered terrain (between 300 deg and 360 deg). Population 1 includes craters that are 40 km and were formed before the termination of population 2 bombardment, which formed craters primarily 40 km. Several geomorphic features on Rhea are classified and interpreted including three physiographic provinces, multiringed basins, craters, megascarps, ridges and scarps, and troughs and coalescing pit chains. A generalized chronology for Rhea is constructed from an analysis of the superposition relationships among the landforms and physiographic provinces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPSC...10..810B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPSC...10..810B"><span>Preliminary grid mapping of fluvial, glacial and periglacial landforms in and around Lyot crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brooker, LM; Balme, MR; Conway; Hagermann, A.; Collins, GS</p> <p>2015-10-01</p> <p>Lyot crater, a 215km dia meter, Hesperian-aged ma rtian impact crater, contains many landforms that appear to have formed by glac ial, perig lacia l and fluvia l processes [1-3]. Around Lyot are large channels potentially formed by groundwater release during the impact event[1,3]. Hence, the landscape of Lyot crater appears to record the act ion of both ancient water sourced fro m underground, and more recent water sourced fro m the at mosphere. We have used a grid mapping approach [5] to describe the distribution of these landf orms and landscapes in and around Lyot crater.These data are presented here and potential avenues of future work discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.P23B1374K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.P23B1374K"><span>Cataloging of Craters on Enceladus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karpes, B. A.; Stoddard, P. R.</p> <p>2008-12-01</p> <p>The surface of Saturn's satellite Enceladus is unique in terms of the amount of geologic activity that is taking place on what many had once assumed would be a cold and dead icy moon. Instead of a cold, cratered surface we have found a surface scarred with signs of tectonic activity in the form of numerous long rifts and fractures and we have seen cryovolcanic activity emanating from the south polar region. Using mostly Cassini images (a few of the map images are from Voyager), we are currently in the process of creating a comprehensive catalog of craters that, we believe, will be an invaluable tool in aiding our understanding of this enigmatic moon. The catalog will give the location of all craters measuring at least one-half degree (~2.2 km) in diameter. In addition to location and size, the catalog will also note deformation of the craters, both in terms of rifting and ellipticity. The deformations can give us insight to the tectonic history (i.e. many of the craters show post impact rifting) as well as giving us a further tool to study tectonic stresses across the surface. Areas of differing resolution are highlighted as they are an important limiting factor in determining crater densities. It is for this reason that crater sizes of one-half degree were chosen as they are more identifiable in lower resolution areas than craters that are much smaller. We intend to study crater distribution and have so far noted high crater densities between 216° W and 144° W and between 10° S and 10° N approximately centered around 180° longitude (the antipode to the sub-Saturnian point). In addition to our study of crater distribution we believe this catalog, upon completion, will be useful in the study of surface processes and surface heating of Enceladus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006epsc.conf..625P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006epsc.conf..625P"><span>An assessment of crater erosional histories on the Earth and Mars using digital terrain models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paul, R. L.; Muller, J.-P.; Murray, J. B.</p> <p></p> <p>The research will examine quantitatively the geomorphology of both Terrestrial and Martian craters. The erosional and sub-surface processes will be investigated to understand how these affect a crater's morphology. For example, the Barringer crater in Arizona has an unusual shape. The Earth has a very high percentage of water both in the atmosphere as clouds or rain and under the surface. The presence of water will therefore affect a crater's formation and its subsequent erosional modification. On Mars there is little or no water present currently, though recent observations suggest there may be near-surface ice in some areas. How do craters formed in the Martian environment therefore differ from Terrestrial ones? How has the structure of Martian craters changed in areas of possible fluvial activity? How does the surface material affect crater formation? How does the Earth's fluvial activity affect a crater's evolution? At present, four measurements of circularity have been used to describe a crater (Murray & Guest, 1972). These parameters will be re-examined to see how effectively they describe Terrestrial and Martian craters using high resolution DTMs which were not available at the time of the original study. The model described by Forsberg-Taylor et al. 2004, and others will also be applied to results obtained from the chosen craters to assess how effectively these craters are described. Both hypsometric curves and hydrological analysis will be used to assess crater evolution. A suitable criterion for the selection of Terrestrial and Martian craters is essential for this type of research. Terrestrial craters have been selected in arid or semi-arid terrain with crater diameters larger than one kilometre. Craters less than five million years old would be ideal. However, this was too restrictive and so a variety of crater ages have had to be used. Eight terrestrial craters have been selected in arid or semi-arid areas for study, using the Earth Impact Database and ICEDS. These are: Barringer, Arizona, U.S.A; Goat Paddock, West Australia; Ouarkziz, Algeria; Roter Kamm, Namibia; Talemzane, Algeria; Tenoumer, Mauritania; Tswaing, South Africa 1 and Upheaval Dome, Utah, U.S.A. Comparable Martian craters are in the process of being chosen using the USGS PIGWAD database and the Morphological Catalogue of the Craters of Mars. Digital Terrain Models of each crater using SRTM DEMs and data from the recent Mars Express HRSC will be used at various resolutions (30m upwards) to provide three dimensional models to assess the capabilities of measuring erosional effects. There is also available ASTER DEMs and ASTER Level 1A for terrestrial craters and MOLA tracks for Martian craters. Both laboratory and theoretical models of crater shape and erosion features will provide a better understanding of the processes observed. This will enable us to develop a better explanation of why craters are the shape they are. References. Barlow N., 1987, Crater Size-Frequency Distribution and a Revised Martian Relative Chronology, Icarus, 75, 285-305. Barlow, N., 1995, The degradation of impact craters in Maja Valles and Arabia Mars, Journal GeoPhys. Res., 100, 23307-23316. Earth Impact Database http://www.unb.ca/passc/ImpactDatabase/ Earth PIGWAD database http://webgis.wr.usgs.gov/website/mars%5Fcrater%5Fhtml/viewer.htm ICEDS http://iceds.ge.ucl.ac.uk/ Morphology Catalogue of the Craters of Mars http://selena.sai.msu.ru/Home/Mars_Cat/Mars_Cat.htm Murray J.B, Guest J.E, 1970, Circularities of craters and related structures on Earth and Moon, Modern Geology, 1, 149-159. Forsberg-Taylor N., Howard A.D., 2004, Crater degradation in the Martian Highlands: Morphometric Analysis of the Sinus Sabaeus region and simulation modelling suggest fluvial processes, Journal GeoPhys Res., 109, E05002. 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA08457.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA08457.html"><span>Filled Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2006-05-11</p> <p>This MOC image shows adjacent impact craters located north-northwest of the Acheron Fossae region of Mars. The two craters are of similar size and formed by meteor impacts. However, one is much more filled than the other, indicating that it is older</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA15351.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA15351.html"><span>Vesta Surface at High Resolution: Dominated by Impact Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-02-13</p> <p>This image from NASA Dawn spacecraft shows a large number of craters, formed by collisions into the surface of asteroid Vesta. The relatively large circular depressions in this image are older, heavily degraded impact craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Icar..244..120K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Icar..244..120K"><span>Mass movement on Vesta at steep scarps and crater rims</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.</p> <p>2014-12-01</p> <p>The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001338','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001338"><span>Mass Movement on Vesta at Steep Scarps and Crater Rims</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150001338'); toggleEditAbsImage('author_20150001338_show'); toggleEditAbsImage('author_20150001338_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150001338_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150001338_hide"></p> <p>2014-01-01</p> <p>The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671B&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671B&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2671B</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. A worker at Astrotech Space Operations in Titusville, Fla., begins fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2669&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2669&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2669</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., suit up before fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2668&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2668&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2668</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., suit up before fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671A&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671A&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2671A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. A worker at Astrotech Space Operations in Titusville, Fla., begins fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA04263.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA04263.html"><span>Western Arcadia Planitia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-03-13</p> <p>This is a Mars Odyssey visible color image of an unnamed crater in western Arcadia Planitia (near 39 degrees N, 179 degrees E). The crater shows a number of interesting internal and external features that suggest that it has undergone substantial modification since it formed. These features include concentric layers and radial streaks of brighter, redder materials inside the crater, and a heavily degraded rim and ejecta blanket. The patterns inside the crater suggest that material has flowed or slumped towards the center. Other craters with features like this have been seen at both northern and southern mid latitudes The distribution of these kinds of craters suggests the possible influence of surface or subsurface ice in the formation of these enigmatic features. The image was taken on September 29, 2002 during late northern spring. This is an approximate true color image, generated from a long strip of visible red (654 nm), green (540 nm), and blue (425 nm) filter images that were calibrated using a combination of pre-flight measurements and Hubble images of Mars. The colors appear perhaps a bit darker than one might expect; this is most likely because the images were acquired in late afternoon (roughly 4:40 p.m. local solar time) and the low Sun angle results in an overall darker surface. http://photojournal.jpl.nasa.gov/catalog/PIA04263</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...594A..52W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...594A..52W"><span>Analytical formulation of lunar cratering asymmetries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Nan; Zhou, Ji-Lin</p> <p>2016-10-01</p> <p>Context. The cratering asymmetry of a bombarded satellite is related to both its orbit and impactors. The inner solar system impactor populations, that is, the main-belt asteroids (MBAs) and the near-Earth objects (NEOs), have dominated during the late heavy bombardment (LHB) and ever since, respectively. Aims: We formulate the lunar cratering distribution and verify the cratering asymmetries generated by the MBAs as well as the NEOs. Methods: Based on a planar model that excludes the terrestrial and lunar gravitations on the impactors and assuming the impactor encounter speed with Earth venc is higher than the lunar orbital speed vM, we rigorously integrated the lunar cratering distribution, and derived its approximation to the first order of vM/venc. Numerical simulations of lunar bombardment by the MBAs during the LHB were performed with an Earth-Moon distance aM = 20-60 Earth radii in five cases. Results: The analytical model directly proves the existence of a leading/trailing asymmetry and the absence of near/far asymmetry. The approximate form of the leading/trailing asymmetry is (1 + A1cosβ), which decreases as the apex distance β increases. The numerical simulations show evidence of a pole/equator asymmetry as well as the leading/trailing asymmetry, and the former is empirically described as (1 + A2cos2ϕ), which decreases as the latitude modulus | ϕ | increases. The amplitudes A1,2 are reliable measurements of asymmetries. Our analysis explicitly indicates the quantitative relations between cratering distribution and bombardment conditions (impactor properties and the lunar orbital status) like A1 ∝ vM/venc, resulting in a method for reproducing the bombardment conditions through measuring the asymmetry. Mutual confirmation between analytical model and numerical simulations is found in terms of the cratering distribution and its variation with aM. Estimates of A1 for crater density distributions generated by the MBAs and the NEOs are 0.101-0.159 and 0.117, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..300..145N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..300..145N"><span>Sesquinary reimpacts dominate surface characteristics on Phobos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nayak, Michael</p> <p>2018-01-01</p> <p>We use topographic data to show that impact craters with pitted floor deposits are among the deepest on Mars. This is consistent with the interpretation of pitted materials as primary crater-fill impactite deposits emplaced during crater formation. Our database consists of 224 pitted material craters ranging in size from ˜1 to 150 km in diameter. Our measurements are based on topographic data from the Mars Orbiter Laser Altimeter (MOLA) and the High-Resolution Stereo Camera (HRSC). We have used these craters to measure the relationship between crater diameter and the initial post-formation depth. Depth was measured as maximum rim-to-floor depth, (dr), but we also report the depth measured using other definitions. The database was down-selected by refining or removing elevation measurements from "problematic" craters affected by processes and conditions that influenced their dr/D, such as pre-impact slopes/topography and later overprinting craters. We report a maximum (deepest) and mean scaling relationship of dr = (0.347±0.021)D0.537±0.017 and dr = (0.323±0.017)D0.538±0.016, respectively. Our results suggest that significant variations between previously-reported MOLA-based dr vs. D relationships may result from the inclusion of craters that: 1) are influenced by atypical processes (e.g., highly oblique impact), 2) are significantly degraded, 3) reside within high-strength regions, and 4) are transitional (partially collapsed). By taking such issues into consideration and only measuring craters with primary floor materials, we present the best estimate to date of a MOLA-based relationship of dr vs. D for the least-degraded complex craters on Mars. This can be applied to crater degradation studies and provides a useful constraint for models of complex crater formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ARC-1990-A90-3003.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ARC-1990-A90-3003.html"><span>ARC-1990-A90-3003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1990-08-24</p> <p>This Magellan image mosaic shows the impact crater Golubkina, first identified in Soviet Venera 15/16 data. The crater is names after Anna Golubkina (1864-1927), a Soviet sculptor. The crater is about 34 km (20.4 mi.) across, similar to the size of the West Clearwater impact structure in Canada. The crater Golubkina is located at about 60.5 degrees north latitude, 286.7 degrees est longitude. Magellan data reveal that Golubkina has many characteristics typical of craters formed by a mereorite impact including terraced inner walls, a central peak, and radar-bright rough ejecta surrounding the crater. The extreme darkness of the crater floor indicates a smooth surface, perhaps formed by the ponding of lava flows in the crater floor as seen in may lunar impact craters. The radar-bright ejecta surrounding the crater indicates a relatively fresh or young crater. Craters with centeral peaks in the Soviet data range in size from about 10-60 km (6-36 mi.) across. The largest crater identifed in the Soviet Venera data is 140 km (84 mi) in diameter. This Magellan image strip in approx. 100 km (62 mi.) long. The image is a mosaic of two orbits obtained in the first Magellan radar test and played back to Earth to the Deep Space Network stations near Goldstone, CA and Canberra, Australia, respectively. The resolution of this image is approximately 120 meters (400 feet). The see-saw margins result from the offset of individual radar frames obtained along the orbit. The spacecraft moved from the north (top) to the south, looking to the left.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..283...92W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..283...92W"><span>Coordinates of anthropogenic features on the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer, E. J.; Mazarico, E.</p> <p>2017-02-01</p> <p>High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates (<12 m) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160009148&hterms=moon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmoon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160009148&hterms=moon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmoon"><span>Coordinates of Anthropogenic Features on the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer , E. J.; Mazarico, E.</p> <p>2016-01-01</p> <p>High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates ( less than 12 meters) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004LPI....35.1453B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004LPI....35.1453B"><span>A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bourke, M. C.; Balme, M.; Zimbelman, J.</p> <p>2004-03-01</p> <p>Contrasting wind, sediment and frost precipitation regimes contribute to different dune scale and form on Mars. Isolated barchans in the NPSS are smaller but assume a classic barchan form. Intra-crater barchans are larger and more variable in form.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22262.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22262.html"><span>Investigating Mars: Kaiser Crater Dunes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-30</p> <p>At the top of this VIS image crescent shaped dunes are visible. As the dunes approach a break in elevation the forms change to connect the crescents together forming long aligned dune forms. Kaiser Crater is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser Crater is just one of several large craters with extensive dune fields on the crater floor. Other nearby dune filled craters are Proctor, Russell, and Rabe. Kaiser Crater is 207 km (129 miles) in diameter. The dunes are located in the southern part of the crater floor. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 34157 Latitude: -46.9336 Longitude: 18.9272 Instrument: VIS Captured: 2009-08-26 18:49 https://photojournal.jpl.nasa.gov/catalog/PIA22262</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA04093.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA04093.html"><span>Concentric Crater Fill</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-01-24</p> <p>The bizarre patterns on the floor of this crater in Nilosyrtis Mensae imaged by NASA Mars Odyssey defy an easy explanation. It is possible that some form of periglacial process combined with the vaporization of ground ice to form these patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014883','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014883"><span>The Morphology of Craters on Mercury: Results from MESSENGER Flybys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.</p> <p>2012-01-01</p> <p>Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA03785.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA03785.html"><span>Cratered terrain in Terra Meridiani</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2002-05-23</p> <p>This region of Terra Meridiani, imaged by NASA Mars Odyssey, shows an old, heavily degraded channel that appears to terminate abruptly at the rim of a 10 km diameter crater, suggesting that the impact crater was created after the channel was formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2045.2013B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2045.2013B"><span>Are Floor-Fractured Craters on Ceres Formed by Cryomagmatism?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buczkowski, D. L.; Sizemore, H. G.; Bland, M. T.; Scully, J. E. C.; Quick, L. C.; Hughson, K. H. G.; Park, R. S.; Preusker, F.; Raymond, C. A.; Russell, C. T.</p> <p>2018-06-01</p> <p>Several of the impact craters on Ceres have sets of fractures on their floors, morphologically similar lunar Floor-Fractured Craters. We present a geomorphic and topographic analysis of the cerean FFCs and propose hypotheses for their formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA14132.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA14132.html"><span>Opportunity Beside a Small, Young Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-06-02</p> <p>NASA Mars Exploration Rover Opportunity captured this view of a wee crater, informally named Skylab, along the rover route. Based on the estimated age of the area sand ripples, the crater was likely formed within the past 100,000 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035006','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035006"><span>Exploration of Victoria crater by the mars rover opportunity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Squyres, S. W.; Knoll, A.H.; Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Calvin, W.M.; Christensen, P.R.; Clark, B. C.; Cohen, B. A.; De Souza, P.A.; Edgar, L.; Farrand, W. H.; Fleischer, I.; Gellert, Ralf; Golombek, M.P.; Grant, J.; Grotzinger, J.; Hayes, A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.; Klingelhofer, G.; Knudson, A.; Li, R.; McCoy, T.J.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R.V.; Rice, J. W.; Schroder, C.; Sullivan, R.J.; Yen, A.; Yingst, R.A.</p> <p>2009-01-01</p> <p>The Mars rover Opportunity has explored Victoria crater, a ???750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those ???6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19461001','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19461001"><span>Exploration of Victoria crater by the Mars rover Opportunity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Squyres, S W; Knoll, A H; Arvidson, R E; Ashley, J W; Bell, J F; Calvin, W M; Christensen, P R; Clark, B C; Cohen, B A; de Souza, P A; Edgar, L; Farrand, W H; Fleischer, I; Gellert, R; Golombek, M P; Grant, J; Grotzinger, J; Hayes, A; Herkenhoff, K E; Johnson, J R; Jolliff, B; Klingelhöfer, G; Knudson, A; Li, R; McCoy, T J; McLennan, S M; Ming, D W; Mittlefehldt, D W; Morris, R V; Rice, J W; Schröder, C; Sullivan, R J; Yen, A; Yingst, R A</p> <p>2009-05-22</p> <p>The Mars rover Opportunity has explored Victoria crater, an approximately 750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those approximately 6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830003746&hterms=mathematical+statistics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmathematical%2Bstatistics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830003746&hterms=mathematical+statistics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmathematical%2Bstatistics"><span>The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Measurement and errors of crater statistics. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leake, M. A.</p> <p>1982-01-01</p> <p>Planetary imagery techniques, errors in measurement or degradation assignment, and statistical formulas are presented with respect to cratering data. Base map photograph preparation, measurement of crater diameters and sampled area, and instruments used are discussed. Possible uncertainties, such as Sun angle, scale factors, degradation classification, and biases in crater recognition are discussed. The mathematical formulas used in crater statistics are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......257K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......257K"><span>Hydrocode modeling of oblique impacts into terrestrial planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendall, Jordan D.</p> <p></p> <p>The abundance of moderately siderophile elements ("iron-loving"; e.g., Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. I have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments sink through the magma ocean and settle deeper into the planet. My results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean. The largest known impact on the Moon formed the South Pole-Aitken (SP-A) basin and excavated material as deep as the mantle. Here I suggest that large impacts eject enough material to cover the farside of the Moon. During the impact process, ejecta leave the crater and travel well beyond the transient crater. Ejecta blankets depend on impactor size and angle. I use iSALE, an impact hydrocode, to determine the ejecta distribution, volume, and thickness. I calculate the trajectory of ejecta that leave the crater and return to the lunar surface. In these simulations, an ejecta blanket forms, with a thickness of kilometers, over the lunar farside. The ejecta blanket thicknesses are comparable to the difference between nearside and farside crustal thickness. Previous studies suggest other possible mechanisms for the lunar farside-nearside dichotomy. However, the impact that formed SP-A basin was large enough to eject material onto the farside. I also suggest a differentiated impactor's core would disperse downrange of the impact point underneath the basin. Doublet craters form within crater rays on terrestrial bodies. The near simultaneous impact of two projectiles results in overlapping craters. This process results in modified crater morphologies and ejecta morphologies. I modeled the impact of two identical projectiles and vary the angle, timing, and initial separation distance. In this work, I identified projectiles with a separation distance of four times their initial diameter will form distinct craters, but the ejecta from the uprange crater will overfill the downrange crater and result in a smaller crater depth. This result implies the direction of the impactor may be inferred from the crater depths. Also, I found impacts that form closer together result in elliptical or dumbbell craters depending upon the impact parameters. The ejecta curtains interact in each simulation and result in structures similar to the V-shaped ridges or "herringbone" patterns traversing clusters of secondary craters in observations. The ejecta that lands within the ridges comes from a depth that is 100 to 125 m for a 500 m impactor traveling at 1 km/s. This is less deep than the maximum excavation depth of 125 to 150 m, depending upon the impact angle. This work represents a first step towards a more comprehensive method for not only determining how doublet craters form and how aberrant craters form, such as Messier A on the Moon, but also determining how the regolith changes and the ejecta blanket forms for such impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00472.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00472.html"><span>Venus - Impact Crater Jeanne</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-11-20</p> <p>This full-resolution image from NASA Magellan spacecraft shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt. http://photojournal.jpl.nasa.gov/catalog/PIA00472</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032256','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032256"><span>A newly discovered impact crater in Titan's Senkyo: Cassini VIMS observations and comparison with other impact features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buratti, B.J.; Sotin, Christophe; Lawrence, K.; Brown, R.H.; Le, Mouelic S.; Soderblom, J.M.; Barnes, J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.</p> <p>2012-01-01</p> <p>Senkyo is an equatorial plain on Titan filled with dunes and surrounded by hummocky plateaus. During the Titan targeted flyby T61 on August 25, 2009, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed a circular feature, centered at 5.4?? N and 341??W, that superimposes the dune fields and a bright plateau. This circular feature, which has been named Paxsi by the International Astronomical Union, is 120??10 km in diameter (measured from the outer edge of the crater rim) and exhibits a central bright area that can be interpreted as the central peak or pit of an impact crater. Although there are only a handful of certain impact craters on Titan, there are two other craters that are of similar size to this newly discovered feature and that have been studied by VIMS: Sinlap (Le Mou??lic et al, 2008) and Selk (Soderblom et al, 2010). Sinlap is associated with a large downwind, fan-like feature that may have been formed from an impact plume that rapidly expanded and deposited icy particles onto the surface. Although much of the surrounding region is covered with dunes, the plume region is devoid of dunes. The formation process of Selk also appears to have removed (or covered up) dunes from parts of the adjacent dune-filled terrain. The circular feature on Senkyo is quite different: there is no evidence of an ejecta blanket and the crater itself appears to be infilled with dune material. The rim of the crater appears to be eroded by fluvial processes; at one point the rim is breached. The rim is unusually narrow, which may be due to mass wasting on its inside and subsequent infill by dunes. Based on these observations, we interpret this newly discovered feature to be a more eroded crater than both Sinlap and Selk. Paxsi may have formed during a period when Titan was warmer and more ductile than it is currently. ?? 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991Icar...89..384F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991Icar...89..384F"><span>Stickney-forming impact on PHOBOS - Crater shape and induced stress distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujiwara, A.</p> <p>1991-02-01</p> <p>The results of the present simplified modeling of the size and rim shape of the Phobos crater Stickney, together with the impact-generated stress patterns on the surface of the crater, account for the general features observed and suggest, on the basis of some of the P-waves' surface stress pattern, that a region of higher tensile stress may have occurred in the vicinity of 0 deg latitude and 270 deg W. The correlation of this pattern with the focusing of groove patterns that occurs on the trailing side of Phobos is suggested to demonstrate a connection between these grooves and the Stickney crater-forming impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04198&hterms=mena&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmena','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04198&hterms=mena&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmena"><span>Cut By Troughs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p><p/> 1 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an impact crater cut by troughs which formed after the crater formed. The crater and troughs have large windblown ripples on their floors. The ripples, troughs, craters, and other surfaces in this scene have all been mantled by dust. Dark streaks on slopes indicate areas where avalanches of dry dust have occurred. These features are located on Sacra Mena, a large mesa in the Kasei Valles region. <p/> <i>Location near</i>: 25.4oN, 66.8oW <i>Image width</i>: width: 3 km (1.9 mi) <i>Illumination from</i>: lower left <i>Season</i>: Northern Autumn</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70182225','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70182225"><span>Fluidized-sediment pipes in Gale crater, Mars, and possible Earth analogs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rubin, David M.; Fairen, A.G.; Frydenvang, J.; Gasnault, O.; Gelfenbaum, Guy R.; Goetz, W.; Grotzinger, J.P.; Le Mouélic, S.; Mangold, N.; Newsom, H.; Oehler, D. Z.; Rapin, W.; Schieber, J.; Wiens, R.C.</p> <p>2017-01-01</p> <p>Since landing in Gale crater, the Mars Science Laboratory rover Curiosity has traversed fluvial, lacustrine, and eolian sedimentary rocks that were deposited within the crater ∼3.6 to 3.2 b.y. ago. Here we describe structures interpreted to be pipes formed by vertical movement of fluidized sediment. Like many pipes on Earth, those in Gale crater are more resistant to erosion than the host rock; they form near other pipes, dikes, or deformed sediment; and some contain internal concentric or eccentric layering. These structures provide new evidence of the importance of subsurface aqueous processes in shaping the near-surface geology of Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03772&hterms=DIRT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DDIRT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03772&hterms=DIRT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DDIRT"><span>Bosporus Planum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>(Released 18 April 2002) The Science This THEMIS image is of Bosporus Planum, located in a region of smooth plains that appear to have formed from lava flows. A crater, 7 km in diameter, on the left edge of the image has produced an ejecta blanket that can be seen radiating from the crater. Lobes of ejecta such as those seen close to the crater rim are not formed at most typical craters and may indicate that there was a ice component in the sub-surface material when the impact occurred. A linear depression trending from the northwest to southeast along the top of the image is about 1 to 2 km wide. This may be a tectonic feature, known as a graben, that forms when a region is under stresses that are pulling it apart. There are numerous small bright dunes or ripples along the margins of the floor of this linear feature that have formed perpendicular to the sides of the graben. This pattern of ripples suggests that the wind was blowing down the graben canyon. Similar small bright dunes can be faintly seen on top of the crater ejecta along ridges (most apparent directly to the east of the crater) and along the southern margin of the interior deposits in the crater. Bright wind streaks are also apparent in this area to the west (right) of several large craters. These streaks likely formed when very small particle size materials (like dust) is deposited on the surface and then protected from removal by the wind shadow produced by the crater's rim. Shorter dark streaks, possible deposits of dark sand, have formed to the east side of the smaller craters. These streaks on opposite sides of craters may indicate that there have been different wind patterns in the area, blowing in opposite directions. Subtle ridges near the south end of the image hint that there may have been other graben that have been nearly filled in. Many of the craters in this image have a subdued, buried appearance and may have been partially filled by lava flows or mantled by dust. A short geologic history of the area in this image can be created using the basic principles of geology, such as the principle of superposition (deposits that lie on top of other materials are younger). The linear depression must have formed after the deposition of the lava plains since it is a feature that would not have been otherwise preserved. Ejecta from the large crater has been deposited inside and over the edges of the linear depression, thus the crater must have formed after the linear depression. Finally, the bright dunes and dust streaks formed last because they have been deposited on top of all of these different features. The Story Splat! Take a look at the lumpy edge of the large crater half (left-hand side of the image) and compare it to the much neater rims of other craters in the region. Why is there such a difference? Scientists believe that when something hit the surface of Mars long ago, ice may have been present in the subsurface and was 'regurgitated' upward into the Martian air along with dirt and rock, 'splooshing' outward. When that happened, the mixed-up, ejected material created a wavering, batter-like edge that is not typical for most (ice-free) craters. More ejected material from this same impact radiates much farther out from the crater, giving it a vague, sun-like appearance. Many of the small craters in this image appear much fainter and more subdued than the others. Their ghostly appearance may be due to a lava flow that smoothed out most of the terrain in this image, partially burying them . . . . Or???? Maybe it was a layer of dust that settled in this region to accomplish the same concealed look. And what about that scar-like trek that cuts through the upper third of the image? It's an elongated fault created when a crust-breaking, tectonic force ripped apart the Martian terrain, leaving a long depression on the surface. This feature is called a graben, and we find them on Earth too (think of Death Valley, the lowest dry land in the United States, or the Jordan Dead Sea depression). The graben's rumpled, scar-like appearance is only enhanced by the stitchy-looking sand dunes that run down its sides. This dune pattern shows that the Martian wind probably blew down through the graben canyon to create their ruffled appearance. The wind doesn't have its way everywhere, though. The brighter surface material on the western side of the two diagonally positioned smaller craters is probably a layer of dust that has been shielded from removal by the craters' higher rims. Dark streaks (possibly dark sand) on the opposite side of these craters reveal that the wind has been blowing to no avail in the opposite direction too. So, think that explains everything in this image? Here's a quick geology quiz! Which features happened first? The dunes, the lava plains, the big crater, or the linear depression called a graben? To find out if you're right, check out the last paragraph in The Science caption. Hint! Whatever happened later has to be on top of whatever came before.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03767&hterms=DIRT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DDIRT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03767&hterms=DIRT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DDIRT"><span>Southern rim of Isidis Planitia basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>(Released 11 April 2002) The Science This image, crossing the southern rim of the Isidis Planitia basin, displays the contrasting morphologies of the relatively rough highland terrain (in the lower portion of the image) and the relatively smooth materials of the basin (at top). Upon closer viewing, the basin materials display an extensive record of cratering, including a small cluster of craters just north and west of the two prominent craters in the upper part of the image. This cluster of craters may represent what are called 'secondary' craters, which are craters that form as a result of the ejection of debris from a nearby impact. Alternatively, these craters may have formed simultaneously by the impact of many pieces of a larger meteoroid that broke up upon entry into Mars' atmosphere. The large craters in the image are approximately 800 meters (875 yards) in diameter. Also visible in the image are dark streaks on the east-facing side of the north-south trending ridge. These streaks are likely the result of debris movement down slope. A dark patch of material is visible at the left of the image; dark materials are typically mobile sands, and linear dune forms are apparent within the dark patch. The Story Battered and beaten up, the surface of Mars reads like a history book to geologists, who want to study what has happened to the red planet over its geological history. Look for two larger craters diagonal from one another in the northern part of this image, and then for the smattering of tinier craters near them. How did these smaller craters come to be? Did a large meteoroid streak in through the Martian atmosphere and get broken up as it passed through, pummeling Mars moments later with its smaller, scattered pieces? Or were rocks and dirt blasted off the surface when the two larger craters were formed, only to rain down again on Mars shortly afterwards? No one quite knows for sure.... Another enigmatic-looking feature is near the left center of this image. Dark and shadowy-seeming, it looks something like an exclamation point with the small crater just below it. Look closely, and you'll see dunes within the large, dark, blurry patch, which is itself probably composed of moving sands. Dark, streaky features also appear on the eastern side of the ridge that runs down the right side of the image, showing how debris once tumbled down its steepened slopes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0019&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DVantage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0019&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DVantage"><span>KSC-05PD-0019</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. From a vantage point above, a worker observes the Deep Impact spacecraft exposed after removal of the canister and protective cover. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0075&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0075&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0075</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0079&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0079&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0079</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the partly enclosed Deep Impact spacecraft (background) waits while the second half of the fairing (foreground left) moves toward it. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0076&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0076&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0076</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved toward the Deep Impact spacecraft for installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0078&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0078&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0078</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved into place around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0074&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0074&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0074</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0077&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0077&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0077</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved into place around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0073&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0073&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0073</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0080&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0080&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0080</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., workers attach the two halves of the fairing around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03829&hterms=DIRT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DDIRT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03829&hterms=DIRT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DDIRT"><span>Impact Crater with Peak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>(Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one above are common in large, fresh craters on both Mars and the Moon. In many older Martian craters, however, the central peak has either been eroded or was buried by later deposits of sand, dust, and 'dirt' on the terrain. With the pronounced, non-eroded peak in this crater, you can tell that it hasn't been around for a long time. Its youth is also apparent because of the ejected material around the crater that spreads out from it in an almost flame-or petal-like pattern with little evidence of erosion. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that central peaks contain material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study what the interior of Mars is made of. In addition to providing images of Mars like the one above, the THEMIS camera system has the capability to analyze the mineral composition of the surface. That means it will be able to look at this area and 'see' both the composition of the top surface, as well as the exposed interior that is uplifted in the central peak. Stay tuned for more news later from this crater! Until then, take a closer look at the walls of this crater. Particularly on the western side, you can see how whole portions of the wall have slid or 'slumped' downward, probably sometime during the impact event. Since then, smaller amounts of material have slid downslope as well, forming small chutes and gullies that streak down the inner crater wall. On the floor of the crater, you can also see small, mobile mega-ripples that extend up to a football field in length. (Look for the tiny, bright, white ripples especially to the north of the crater floor.) These ripples were probably created from material coming down from the wall of the crater or alternatively from dust and 'dirt' that was blown into the crater by the wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA16710.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA16710.html"><span>Layers with Carbonate Content Inside McLaughlin Crater on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-01-20</p> <p>This view of layered rocks on the floor of McLaughlin Crater shows sedimentary rocks that contain spectroscopic evidence for minerals formed through interaction with water. A combination of clues suggests this crater once held a lake fed by groundwater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800039557&hterms=depression+mexico&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddepression%2Bmexico','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800039557&hterms=depression+mexico&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddepression%2Bmexico"><span>Endogenic craters on basaltic lava flows - Size frequency distributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, R.; Gault, D. E.</p> <p>1979-01-01</p> <p>Circular crater forms, termed collapse depressions, which occur on many basalt flows on the earth have also been detected on the moon and Mars and possibly on Mercury and Io. The admixture of collapse craters with impact craters would affect age determinations of planetary surface units based on impact crater statistics by making them appear anomalously old. In the work described in the present paper, the techniques conventionally used in planetary crater counting were applied to the determination of the size range and size frequency distribution of collapse craters on lava flows in Idaho, California, and New Mexico. Collapse depressions range in size from 3 to 80 m in diameter; their cumulative size distributions are similar to those of small impact craters on the moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998P%26SS...46..323G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998P%26SS...46..323G"><span>The group of Macha craters in western Yakutia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurov, E. P.; Gurova, E. P.</p> <p>1998-02-01</p> <p>The group of Macha impact craters in western Yakutia is represented by five crateriform structures from 60 to 300 m in diameter. The craters were formed in sandy strata of the Quaternary period and in underlying sedimentary rocks of Late Proterozoic ages. Shock metamorphic effects including planar features in quartz were established in the rocks from the craters. The age of the craters is 7315 ± 80 yr. The nature of the projectiles is not totally clear, although they might be iron meteoritic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss020e026195.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss020e026195.html"><span>Earth observation taken by the Expedition 20 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-07-25</p> <p>ISS020-E-026195 (25 July 2009) --- Aorounga Impact Crater is featured in this image photographed by an Expedition 20 crew member on the International Space Station. Aorounga Impact Crater is located in the Sahara Desert of north-central Chad and is one of the best preserved impact structures in the world. According to scientists, the crater is thought to be middle or upper Devonian to lower Mississippian (approximately 345 ? 370 million years old) based on the age of the sedimentary rocks deformed by the impact. Spaceborne Imaging Radar (SIR) data collected in 1994 suggests that Aorounga is one of a set of three craters formed by the same impact event. The other two suggested impact structures are buried by sand deposits. The concentric ring structure of the Aorounga crater ? renamed Aorounga South in the multiple-crater interpretation of SIR data ? is clearly visible in this detailed photograph. The central highland, or peak, of the crater is surrounded by a small sand-filled trough; this in turn is surrounded by a larger circular trough. Linear rock ridges alternating with light orange sand deposits cross the image from upper left to lower right; these are called yardangs by geomorphologists. Yardangs form by wind erosion of exposed rock layers in a unidirectional wind field. The wind blows from the northeast at Aorounga, and sand dunes formed between the yardangs are actively migrating to the southwest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA05640&hterms=blueberry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dblueberry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA05640&hterms=blueberry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dblueberry"><span>Keepers of the Hematite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>This figure shows spectra taken by the Mars Exploration Rover Opportunity's Moessbauer spectrometer at various spots in 'Eagle Crater.' From top to bottom, the spectra represent soil measurements taken from the center of the crater and out to the rim. The top spectrum taken on sol 56 near the center of the crater shows a basaltic mineral composition and only minor amounts of hematite. Basalts are volcanic minerals and hematite is an iron-bearing mineral often formed in water. Moving closer to the rim, the spectra show increasing amounts of hematite with the 'Punaluu' site containing the highest amounts seen to date on Mars. Only minor basaltic components are seen in this sample. <p/> The corresponding microscopic image of Punaluu shows a high density of 'blueberries,' indicating that these sphere-like grains are responsible for the observed high levels of hematite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0133&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0133&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret"><span>KSC-05PD-0133</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. From the nearby Press Site at Cape Canaveral Air Force Station, Fla., photographers capture the exciting launch of the Deep Impact spacecraft at 1:47 p.m. EST. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0134&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0134&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret"><span>KSC-05PD-0134</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0131&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0131&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0131</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0135&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0135&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0135</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0136&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0136&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0136</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Engulfed by flames and smoke, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0130&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0130&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0130</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. With a burst of flames, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100028855&hterms=AGEs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DAGEs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100028855&hterms=AGEs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DAGEs"><span>Icy Satellites of Saturn: Impact Cratering and Age Determination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dones, L.; Chapman, C. R.; McKinnon, William B.; Melosh, H. J.; Kirchoff, M. R.; Neukum, G.; Zahnle, K. J.</p> <p>2009-01-01</p> <p>Saturn is the first giant planet to be visited by an orbiting spacecraft that can transmit large amounts of data to Earth. Crater counts on satellites from Phoebe inward to the regular satellites and ring moons are providing unprecedented insights into the origin and time histories of the impacting populations. Many Voyager-era scientists concluded that the satellites had been struck by at least two populations of impactors. In this view, the Population I impactors, which were generally judged to be comets orbiting the Sun, formed most of the larger and older craters, while Population II impactors, interpreted as Saturn-orbiting ejecta from impacts on satellites, produced most of the smaller and younger craters. Voyager data also implied that all of the ring moons, and probably some of the midsized classical moons, had been catastrophically disrupted and reaccreted since they formed. We examine models of the primary impactor populations in the Saturn system. At the present time, ecliptic comets, which likely originate in the Kuiper belt/scattered disk, are predicted to dominate impacts on the regular satellites and ring moons, but the models require extrapolations in size (from the observed Kuiper belt objects to the much smaller bodies that produce the craters) or in distance (from the known active Jupiter family comets to 9.5 AU). Phoebe, Iapetus, and perhaps even moons closer to Saturn have been struck by irregular satellites as well. We describe the Nice model, which provides a plausible mechanism by which the entire Solar System might have experienced an era of heavy bombardment long after the planets formed. We then discuss the three cratering chronologies, including one based upon the Nice model, that have been used to infer surface ages from crater densities on the saturnian satellites. After reviewing scaling relations between the properties of impactors and the craters they produce, we provide model estimates of the present-day rate at which comets impact, and catastrophically disrupt, the saturnian moons. Finally, we present crater counts on the satellites from two different groups. Many of the heavily cratered terrains appear to be nearly saturated, so it is difficult to infer the provenance of the impactors from crater counts alone. More large craters have been found on Iapetus than on any other satellite. Enceladus displays an enormous range of surface ages, ranging from the old mid-latitude plains to the extremely young South Polar Terrain. Cassini images provide some evidence for the reality of Population II. Most of the observed craters may have formed in one or more cataclysms, but more work is needed to determine the roles of heliocentric and planetocentric bodies in creating the craters.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.306..128X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.306..128X"><span>Hailar crater - A possible impact structure in Inner Mongolia, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Zhiyong; Chen, Zhaoxu; Pu, Jiang; Xiao, Xiao; Wang, Yichen; Huang, Jun</p> <p>2018-04-01</p> <p>Hailar crater, a probable impact structure, is a circular depression about 300 m diameter in Inner Mongolia, northeast China. With broad elevated rims, the present rim-to-floor depth is 8-20 m. Regional geological background and geomorphological comparison suggest that this feature is likely not formed by surface processes such as salt diapir, karst, aeolian, glacial, or volcanic activity. Its unique occurrence in this region and well-preserved morphology are most consistent with it being a Cenozoic impact crater. Two field expeditions in 2016 and 2017 investigated the origin of this structure, recognizing that (1) no additional craters were identified around Hailar crater in the centimeter-scale digital topography models that were constructed using a drone imaging system and stereo photogrammetry; (2) no bedrock exposures are visible within or adjacent to the crater because of thick regolith coverage, and only small pieces of angular unconsolidated rocks are present on the crater wall and the gently-sloped crater rim, suggesting recent energetic formation of the crater; (3) most samples collected from the crater have identical lithology and petrographic characteristics with the background terrain, but some crater samples contain more abundant clasts and silicate hydrothermal veins, indicating that rocks from depths have been exposed by the crater; (4) no shock metamorphic features were found in the samples after thin section examinations; and (5) a systematic sample survey and iron detector scan within and outside of the crater found no iron-rich meteorites larger than 2 cm in size in a depth of 30 cm. Although no conclusive evidence for an impact origin is found yet, Hailar crater was most likely formed by an impact based on its unique occurrence and comparative geomorphologic study. We suggest that drilling in the crater center is required to verify the impact origin, where hypothesized melt-bearing impactites may be encountered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001030.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001030.html"><span>A Colorful Look at the Birt E Crater on the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-07-17</p> <p>This false color image of Birt E crater shows the topography of the moon and it is thought to be the source region for lava that carved out Rima Birt, a rille in Mare Nubium. This mare is older than 3.4 billion years, and so is this vent! LROC NAC M1144849711L/R with the a color DTM overlaid; North is up. Download high res: lroc.sese.asu.edu/posts/794 Credit: NASA/GSFC/Arizona State University More info: Birt E crater was not created like most craters on the Moon; there was no meteorite impact. Lava sputtered out of this pyroclastic vent in Mare Nubium over 3.4 billion years ago, dispersing lava onto the surface and leaving the crater we see today. How can we tell it is a volcanic vent and not an impact crater? Impact craters and volcanic vents can be differentiated because vents often have an irregular or elongated shape (as with Birt E). Impact craters are usually circular in shape, created by the shockwave during an impact event. Also, the vee-shape of this crater is likely a product of the formation mechanism. Vee-shaped vents are thought to be formed from a pyroclastic eruption. Gasses fractionating out of the liquid rock create violent events during eruptions. Explosive eruptions created the shape that we see today, but Birt E could have had a complex history with effusive eruptions forming Rima Birt, a rille flowing from Birt E to the SE. Over long enough time scales Birt E will be filled in with ejecta from newly formed craters around Mare Nubium or by mass wasting of the walls into the crater. Let’s enjoy this ancient crater today while we still can! NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........28V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........28V"><span>Expanded Craters on Mars: Implications for Shallow, Mid-latitude Excess Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viola, Donna</p> <p></p> <p>Understanding the age and distribution of shallow ice on Mars is valuable for interpreting past and present climate conditions, and has implications on habitability and future in situ resource utilization. Many ice-related features, such as lobate debris aprons and concentric crater fill, have been studied using a range of remote sensing techniques. Here, I explore the distribution of expanded craters, a form of sublimation thermokarst where shallow, excess ice has been destabilized and sublimated following an impact event. This leads to the collapse of the overlying dry regolith to produce the appearance of diameter widening. The modern presence of these features suggests that excess ice has remained preserved in the terrain immediately surrounding the craters since the time of their formation in order to maintain the surface. High-resolution imagery is ideal for observing thermokarst features, and much of the work described here will utilize data from the Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO). Expanded craters tend to be found in clusters that emanate radially from at least four primary craters in Arcadia Planitia, and are interpreted as secondary craters that formed nearly simultaneously with their primaries. Crater age dates of the primaries indicate that the expanded secondaries, as well as the ice layer into which they impacted, must be at least tens of millions of years old. Older double-layer ejecta craters in Arcadia Planitia commonly have expanded craters superposed on their ejecta - and they tend to be more expanded (with larger diameters) in the inner ejecta layer. This has implications on the formation mechanisms for craters with this unique ejecta morphology. Finally, I explore the distribution of expanded craters south of Arcadia Planitia and across the southern mid-latitudes, along with scalloped depressions (another form of sublimation thermokarst), in order to identify the modern excess ice boundary in this region and any longitudinal variations. This study identifies some potential low-latitude locations with patchy excess ice, possibly preserved during a past climate. Through these studies, I will infer regions that contain abundant ice today and consider the implications that this ice has on both the martian climate and future exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19263.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19263.html"><span>Crumpled Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-03-30</p> <p>It is no secret that Mercury's surface is scarred by abundant tectonic deformation, the vast majority of which is due to the planet's history of cooling and contraction through time. Yet Mercury is also heavily cratered, and hosts widespread volcanic plains. So it's perhaps unsurprising that these three types of landform often intersect-literally-as shown in this scene. Here, an unnamed crater, about 7.5 km (4.7 mi.) in diameter was covered, and almost fully buried, by lava. At some point after, compression of the surface formed scarps and ridges in the area that, when they reached the buried crater, came to describe its curved outline. Many arcuate ridges on Mercury formed this way. In this high-resolution view, we can also see the younger, later population of smaller craters that pock-mark the surface. http://photojournal.jpl.nasa.gov/catalog/PIA19263</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840035671&hterms=pit+final&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpit%2Bfinal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840035671&hterms=pit+final&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpit%2Bfinal"><span>A proposed origin for palimpsests and anomalous pit craters on Ganymede and Callisto</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Croft, S. K.</p> <p>1983-01-01</p> <p>The hypothesis that palimpsests and anomalous pit craters are essentially pristine crater forms derived from high-velocity impacts and/or impacts into an ice crust with preimpact temperatures near melting is explored. The observational data are briefly reviewed, and an impact model is proposed for the direct formation of a palimpsest from an impact when the modification flow which produces the final crater is dominated by 'wet' fluid flow, as opposed to the 'dry' granular flow which produces normal craters. Conditions of 'wet' modification occur when the volume of impact melt remaining in the transient crater attains a volume comparable to the transient crater. The normal crater-palimpsest transition is found to occur for sufficiently large impacts or sufficiently fast impactors. The range of crater diameters and morphological characteristics inferred from the impact model is consistent with the observed characteristics of palimpsests and anomalous pit craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002466','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002466"><span>Evolution of Circular Polarization Ratio (CPR) Profiles of Kilometer-scale Craters on the Lunar Maria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, I. R.; Fassett, C. I.; Thomson, B. J.; Minton, D. A.; Watters, W. A.</p> <p>2017-01-01</p> <p>When sufficiently large impact craters form on the Moon, rocks and unweathered materials are excavated from beneath the regolith and deposited into their blocky ejecta. This enhances the rockiness and roughness of the proximal ejecta surrounding fresh impact craters. The interior of fresh craters are typically also rough, due to blocks, breccia, and impact melt. Thus, both the interior and proximal ejecta of fresh craters are usually radar bright and have high circular polarization ratios (CPR). Beyond the proximal ejecta, radar-dark halos are observed around some fresh craters, suggesting that distal ejecta is finer-grained than background regolith. The radar signatures of craters fade with time as the regolith grows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6593K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6593K"><span>Calculation of ejecta thickness and structural uplift for Lunar and Martian complex crater rims.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krüger, Tim; Sturm, Sebastian; Kenkmann, Thomas</p> <p>2014-05-01</p> <p>Crater rims of simple and complex craters have an elevation that is formed during the excavation stage of crater formation. For simple crater rims it is believed that the elevation is due to the sum of two equal parts, the thickness of the most proximal impact ejecta blanket (overturned flap) plus the thickness that results from plastic deformation including injection [1, 2, 3]. We intend to measure and quantify the kinematics of mass movements, especially concerning the question why complex impact craters have elevated crater rims like simple craters and precisely constrain the ejecta thickness and structural uplift of Lunar and Martian crater rims to understand what the main contributor to the elevated rim is [4]. We investigated a pristine 16 km-diameter unnamed Martian complex crater (21.52°N, 184.35°) and the lunar complex craters Bessel (21.8°N, 17.9°E) 16 km in diameter and Euler (23.3°N, 29.2°W) 28 km in diameter [5, 6]. In the crater walls of these craters we found columnar lavas on Mars and basaltic layering on the Moon. We used the uppermost layers of these exposed outcrops along the crater wall to determine the dip of the target rocks (Mars) and to distinguish between the bedrock and the overlying ejecta. We precisely measured the structural uplift and ejecta thickness of these complex craters. The unnamed crater on Mars has a mean rim height of 375.75 m, with a structural uplift of 233.88 m (57.44%), exposed as columnar lavas and the superposing ejecta has a height of 141.87 m (43.56%). For the Lunar complex crater Euler the mean total rim height is 790 ± 100 m, with a minimal structural uplift of 475 ± 100 m (60 ± 10 %), exposed as basaltic layers [e.g., 7, 8] and a maximum ejecta thickness of 315 ± 100 m (40 ± 10%). The Lunar complex crater Bessel has a total rim height of 430 ± 15 m , with a minimal structural uplift of 290 ± 15 m (67 ± 3 %), exposed as basaltic layers and a maximum ejecta thickness of 140 ± 115 m (33 ± 3%). For the Martian crater, the calculated structural uplift has a value of 215.83 m [9]. For Euler and Bessel crater calculated values for the structural uplift are 310.76 m and 262.8 m, respectively [10]. The structural uplift of the crater rim only by dike injection and plastic deformation in the underlying target material seems unlikely at distances ~1 km beyond the transient crater cavity. Other mechanisms, like reverse faulting, beginning in the excavation stage of crater formation, could be responsible for additional structural uplift of the crater rim. Nevertheless, our results show that structural uplift is a more dominant effect than ejecta emplacement for complex impact craters. References: [1] Melosh H.J. (1989) Oxford monographs on geology and geophysics, 11, Impact cratering: a geologic process. [2] Poelchau M.H. et al. (2009) JGR, 114, E01006. [3] Shoemaker E. M. (1963) The Solar System, 4, 301-336. [4] Settle M., and Head J.W. (1977) Icarus, v. 31, p. 123. [5] Sturm, S. et al. (2014) LPSC 45, #1801. [6] Krüger T. et al. (2014) LPSC 45, #1834. [7] Hiesinger H. et al. (2002) GRL, 29. [8] Enns A.C. (2013) LPSC XLIV, #2751. [9] Steward S. T. and Valiant G. J. (2006) Meteoritics & Planet. Sci., 41, 1509-1537. [10] Pike R. J. (1974) EPSL, 23, 265-274. [11]Turtle, E. et al. (2005) GSA-SP. 384, 1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840037450&hterms=mobile+entrapment&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmobile%2Bentrapment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840037450&hterms=mobile+entrapment&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmobile%2Bentrapment"><span>Eolian intracrater deposits on Mars - Physical properties and global distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christensen, P. R.</p> <p>1983-01-01</p> <p>It is noted that more than one-fourth of all craters larger than 25 km in diameter between -50 deg S and 50 deg N have localized deposits of coarse material on the floor which are associated with the dark 'splotches' that are seen visually. If homogeneous, unconsolidated materials are assumed, the measured thermal inertias of these deposits imply effective grain sizes that range from 0.1 mm to 1 cm, with a modal value of 0.9 mm. Even though these deposits are coarser and darker than the surrounding terrains and the greater part of the Martian surface, they are not compositionally distinct from materials with similar albedos. It is thought most likely that these features were formed by entrapment of marginally mobile material that can be transported into, but not out of, crater depressions by the wind. Most of the 'splotch' deposits are coarser than the dune-forming materials occurring in the north polar region and inside extreme southern latitude craters; they probably form low, broad zibar dunes or lag deposits. The distribution of intracrater deposits is seen as suggesting that the intracrater features have been buried in the interior of Arabia and that the dust deposit is less extensive at the margins and may currently be expanding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21410.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21410.html"><span>Yalode Crater on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-06-28</p> <p>Yalode crater is so large -- at 162 miles, 260 kilometers in diameter -- that a variety of vantage points is necessary to understand its geological context. This view of the northern portion of Yalode is one of many images NASA's Dawn spacecraft has taken of this crater. The large impact that formed the crater likely involved a lot of heat, which explains the relatively smooth crater floor punctuated by smaller craters. A couple of larger craters in Yalode have polygonal shapes. This type of crater shape is frequently found on Ceres and may be indicative of extensive underground fractures. The larger crater to the right of center in this image is called Lono (12 miles, 20 kilometers in diameter) and the one below it is called Besua (11 miles, 17 kilometers). Some of the small craters are accompanied by ejecta blankets that are more reflective than their surroundings. The strange Nar Sulcus fractures can be seen in the bottom left corner of the picture. Linear features seen throughout the image may have formed when material collapsed above empty spaces underground. These linear features include linear chains of craters called catenae. Dawn took this image on September 27, 2015, from 915 miles (1,470 kilometers) altitude. The center coordinates of this image are 32 degrees south latitude and 300 degrees east longitude. Yalode gets its name from a goddess worshipped by women at the harvest rites in the Dahomey culture of western Africa. Besua takes its name from the Egyptian grain god, and Lono from the Hawaiian god of agriculture. https://photojournal.jpl.nasa.gov/catalog/PIA21410</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss018e006051.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss018e006051.html"><span>Earth Observations taken by the Expedition 18 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2008-10-29</p> <p>ISS018-E-006051 (29 Oct. 2008) --- Deriba Caldera in Sudan is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Deriba Caldera is a geologically young volcanic structure located at the top of the Marra Mountains of western Sudan. The Marra Mountains are part of a large geologic feature known as the Darfur Dome -- this structure is thought to be the result of a mantle plume heating the crust from below, leading to uplift of the crust and providing a magma source for the extensive volcanism observed in the region. According to scientists, the five-kilometers-wide Deriba Caldera was formed by explosive eruption of the Jebel Marra volcano approximately 3,500 years ago. The volcano is considered dormant, as hot springs and fumaroles (gas and steam vents) are still present. The caldera presents a classic crater morphology, formed as overlying rock and soil collapsed into the magma chamber after it was emptied by powerful eruptions -- shadows in this image throw the steep southern wall of the outer crater into sharp relief. Following the formation of the main outer crater a second inner crater (center) formed, most likely due to later uplift and eruption of fresh magma moving towards the surface. This inner crater is filled with water -- however, as its outer walls are higher than the adjacent caldera floor, precipitation flowing inwards from the outer crater walls do not enter the inner crater lake. White stream bed sediments (center) show the water pathway around the inner crater to a second lake located along the northeast wall of the outer crater. While Jebel Marra is high enough (3,042 meters) to have a temperate climate and high precipitation, these lakes may also be fed by hot springs. The inner crater lake has a mottled appearance caused by sunglint.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910013673','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910013673"><span>Martian impact craters: Continuing analysis of lobate ejecta sinuosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, Nadine G.</p> <p>1990-01-01</p> <p>The lobate ejecta morphology surrounding most fresh Martian impact craters can be quantitatively analyzed to determine variations in ejecta sinuosity with diameter, latitude, longitude, and terrain. The results of such studies provide another clue to the question of how these morphologies formed: are they the results of vaporization of subsurface volatiles or caused by ejecta entrainment in atmospheric gases. Kargel provided a simple expression to determine the degree of non-circularity of an ejecta blanket. This measure of sinuosity, called 'lobateness', is given by the ratio of the ejecta perimeter to the perimeter of a circle with the same area as that of the ejecta. The Kargel study of 538 rampart craters in selected areas of Mars led to the suggestion that lobateness increased with increasing diameter, decreased at higher latitude, and showed no dependence on elevation or geologic unit. Major problems with the Kargel analysis are the limited size and distribution of the data set and the lack of discrimination among the different types of lobate ejecta morphologies. Bridges and Barlow undertook a new lobateness study of 1582 single lobe (SL) and 251 double lobe (DL) craters. The results are summarized. These results agree with the finding of Kargel that lobateness increases with increasing diameter, but found no indication of a latitude dependence for SL craters. The Bridges and Barlow study has now been extended to multiple lobe (ML) craters. Three hundred and eighty ML craters located across the entire Martian surface were studied. ML craters provide more complications to lobateness studies than do SL and DL craters - in particular, the ejecta lobes surrounding the crater are often incomplete. Since the lobateness formula compares the perimeter of the ejecta lobe to that of a circle, the analysis was restricted only to complete lobes. The lobes are defined sequentially starting with the outermost lobe and moving inward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940023803','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940023803"><span>Some implications of large impact craters and basins on Venus for terrestrial ringed craters and planetary evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mckinnon, W. B.; Alexopoulos, J. S.</p> <p>1994-01-01</p> <p>Approximately 950 impact craters have been identified on the surface of Venus, mainly in Magellan radar images. From a combination of Earth-based Arecibo, Venera 15/1, and Magellan radar images, we have interpreted 72 as unequivocal peak-ring craters and four as multiringed basins. The morphological and structural preservation of these craters is high owing to the low level of geologic activity on the venusian surface (which is in some ways similar to the terrestrial benthic environment). Thus these craters should prove crucial to understanding the mechanics of ringed crater formation. They are also the most direct analogs for craters formed on the Earth in Phanerozoic time, such as Chicxulub. We summarize our findings to date concerning these structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P11E..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P11E..01M"><span>Topographic Analysis of the Asymmetric Ejecta of Zunil Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mouginis-Mark, P. J.; Sharpton, V. L.</p> <p>2016-12-01</p> <p>The 10.1 km diameter crater Zunil (7.7oN, 166.2oE) has many of the attributes of a fresh impact crater on Mars, including pitted material on the crater floor, an extensive field of secondary craters, as well as thermally-distinct crater rays. But unlike most craters of this size and location, Zunil crater displays a striking azimuthal variation in ejecta deposits with both fluidized and ballistic ejecta. Here we investigate the geometric attributes of the crater cavity and rim to try to identify the cause of this ejecta asymmetry, as well as the possible explanation for the formation of the ballistic ejecta. To accomplish this, we have created a digital elevation model (DEM) from stereo Context Camera (CTX) images, using the Ames Stereo Pipeline software. We used CTX frames F06_038250_1877 and G05_020211_1877 to produce a DEM with a nominal spatial resolution of 24 m/pixel, and use this DEM to conduct a detailed morphometric analysis of the crater in order to ascertain the nature of this "lobate-ballistic ejecta dichotomy", as well as derive new information on local target properties and the nature of the impact process itself. Measuring the rim height and radius at one-degree increments of azimuth, we find there are numerous places on the rim crest that are both higher and wider, or lower and narrower, than is typical for Zunil crater. There are places where rim height and radius are both close to average, while in other places both the rim height and radius are larger or smaller than the average. There is also a lack of consistency between the geometry of the crater and the type of ejecta; namely no direct correlation between rim height, crater radius, and ejecta type, but a slight negative correlation between radius and rim height for parts of the crater which possess ballistic ejecta. We find good circumstantial evidence that some of the target rock within which Zunil crater formed may have been dry at the time of impact compared to other craters of this size, latitude and elevation. We speculate that this lack of volatiles most likely arose from the drainage of water to depths greater than the excavation depth of Zunil crater. The asymmetric nature of the ejecta blanket argues strongly against the notion that the Martian atmosphere was partially responsible for ejecta fluidization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJAsB..16..286B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJAsB..16..286B"><span>Raman spectroscopy of shocked gypsum from a meteorite impact crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brolly, Connor; Parnell, John; Bowden, Stephen</p> <p>2017-07-01</p> <p>Impact craters and associated hydrothermal systems are regarded as sites within which life could originate on Earth, and on Mars. The Haughton impact crater, one of the most well preserved craters on Earth, is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basement rocks, which have been shocked, are more abundant in endolithic organisms, when compared with un-shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopy and results show no significant statistical difference between gypsum that has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This shows that Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020051084','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020051084"><span>Impact Cratering Calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahrens, Thomas J.</p> <p>2002-01-01</p> <p>Many Martian craters are surrounded by ejecta blankets which appear to have been fluidized forming lobate and layered deposits terminated by one or more continuous distal scarps, or ramparts. One of the first hypotheses for the formation of so-called rampart ejecta features was shock-melting of subsurface ice, entrainment of liquid water into the ejecta blanket, and subsequent fluidized flow. Our work quantifies this concept. Rampart ejecta found on all but the youngest volcanic and polar regions, and the different rampart ejecta morphologies are correlated with crater size and terrain. In addition, the minimum diameter of craters with rampart features decreases with increasing latitude indicating that ice laden crust resides closer to the surface as one goes poleward on Mars. Our second goal in was to determine what strength model(s) reproduce the faults and complex features found in large scale gravity driven craters. Collapse features found in large scale craters require that the rock strength weaken as a result of the shock processing of rock and the later cratering shear flows. In addition to the presence of molten silicate in the intensely shocked region, the presence of water, either ambient, or the result of shock melting of ice weakens rock. There are several other mechanisms for the reduction of strength in geologic materials including dynamic tensile and shear induced fracturing. Fracturing is a mechanism for large reductions in strength. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting in the atmosphere produce final crater profiles having the major features found in the field measurements (central uplifts, inner ring, terracing and faulting). This was accomplished with undamaged surface strengths (0.1 GPa) and in depth strengths (1.0 GPa).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030110975&hterms=chaos&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dchaos','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030110975&hterms=chaos&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dchaos"><span>Comparison Between Terrestrial Explosion Crater Morphology in Floating Ice and Europan Chaos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Billings, S. E.; Kattenhorn, S. A.</p> <p>2003-01-01</p> <p>Craters created by explosives have been found to serve as valuable analogs to impact craters, within limits. Explosion craters have been created in floating terrestrial ice in experiments related to clearing ice from waterways. Features called chaos occur on the surface of Europa s floating ice shell. Chaos is defined as a region in which the background plains have been disrupted. Common features of chaos include rafted blocks of pre-existing terrain suspended in a matrix of smooth or hummocky material; low surface albedo; and structural control on chaos outline shape by pre-existing lineaments. All published models of chaos formation call on endogenic processes whereby chaos forms through thermal processes. Nonetheless, we note morphological similarities between terrestrial explosion craters and Europan chaos at a range of scales and consider whether some chaos may have formed by impact. We explore these similarities through geologic and morphologic mapping.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21244.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21244.html"><span>Dawn XMO2 Image 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-12-13</p> <p>This view from NASA's Dawn spacecraft shows part of the southwestern rim of Yalode Crater on Ceres. Yalode is one of the largest impact basins on Ceres, with a diameter of 160 miles (260 kilometers). The scene shows hummocky terrain where an impact formed a 14-mile (22-kilometer) wide crater with a central peak, seen at left. A great deal of material has slumped down the walls of the crater -- a phenomenon called mass wasting. The crater's impact ejecta forms a smooth blanket around its rim, which takes on a streaky texture leading away from the crater toward lower right. Dawn took this image on Oct. 22, 2016, from its second extended-mission science orbit (XMO2), at a distance of about 920 miles (1,480 kilometers) above the surface. The image resolution is about 460 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21244</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1348/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1348/report.pdf"><span>The geologic history of the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilhelms, Don E.; with sections by McCauley, John F.; Trask, Newell J.</p> <p>1987-01-01</p> <p>More than two decades of study have established the major features of lunar geologic style and history. The most numerous and significant landforms belong to a size-morphology series of simple craters, complex craters, and ringed basins that were formed by impacts. Each crater and basin is the source of primary ejecta and secondary craters that, collectively, cover the entire terra. The largest impacts thinned, weakened, and redistributed feldspathic terracrustal material averaging about 75 km in thickness. Relatively small volumes of basalt, generated by partial remelting of mantle material, were erupted through the thin subbasin and subcrater crust to form the maria that cover 16 percent of the lunar surface. Tectonism has modified the various stratigraphic deposits relatively little; most structures are confined to basins and large craters. This general geologic style, basically simple though complex in detail, has persisted longer than 4 aeons (1 aeon = 109 yr). Impacts began to leave a visible record about 4.2 aeons ago, after the crust and mantle had differentiated and the crust had solidified. At least 30 basins and 100 times that many craters larger than 30 km in diameter were formed before a massive impact created the Nectaris basin about 3.92 aeons ago. Impacts continued during the ensuing Nectarian Period at a lesser rate, whereas volcanism left more traces than during pre-Nectarian time. The latest basin-forming impacts created the giant and still-conspicuous Imbrium and Orientale basins during the Early Imbrian Epoch, between 3.85 and 3.80 aeons ago. The rate of crater-forming impacts continued to decline during the Imbrian Period. Beginning in the Late Imbrian Epoch, mare-basalt flows remained exposed because they were no longer obscured by many large impacts. The Eratosthenian Period (3.2-1.1 aeons ago) and the Copernican Period (1.1 aeons ago to present) were times of lesser volcanism and a still lower, probably constant impact rate. Copernican impacts created craters whose surfaces have remained brighter and topographically crisper than those of the more ancient lunar features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..309..187J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..309..187J"><span>Transient post-glacial processes on Mars: Geomorphologic evidence for a paraglacial period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jawin, Erica R.; Head, James W.; Marchant, David R.</p> <p>2018-07-01</p> <p>On Earth a transitional phase between glacial and interglacial periods is referred to as the paraglacial period. This period immediately postdates glacial retreat and is characterized by ice removal, glacial unloading, and the exposure of steep slopes and large sediment stores. These responses led to the development of a suite of morphologic units (e.g., talus cones, gullies, sackungen, and polygons) which, when observed together, are indicative of the paraglacial period. A similar period of transitional climate and deglaciation is identified on Mars in the Late Amazonian, characterized by the association of features in a glaciated 10.6 km diameter mid-latitude crater. This crater contains concentric crater fill (CCF) formed by debris-covered glaciers, as well as a suite of stratigraphically younger geomorphic units (e.g., spatulate depressions, washboard terrain, gullies, and polygonal terrain) that are all indicative of the local environmental response to deglaciation. These features are interpreted to represent a geologically recent martian paraglacial period within this crater. The morphology and relative stratigraphic relationships among these paraglacial features are described in order to assess the processes operating during deglaciation and to document the recent history of glaciation on Mars: spatulate depressions formed by the differential sublimation of pure glacial ice near the base of the crater wall; subsequently, due to the loss of basal support and steepened slopes, remnant ice on the crater wall began to flow downhill, and formed transverse crevasses that created washboard terrain. Continuous thermal cycling of sediment-mantled ice on crater walls created fractures that formed polygonal terrain. During this time and after, gullies formed by the transport of sediment downslope from crater rim alcoves. Analyses of modeled obliquity variations suggest that the paraglacial period could have operated within the last ∼5 Myr and may still be ongoing, suggesting that the current martian paraglacial period is much longer in duration than typical paraglacial periods on Earth. Understanding the nature and sequence of paraglacial activity can help to identify variations in climate in recent Mars history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820048255&hterms=clay+viscosity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dclay%2Bviscosity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820048255&hterms=clay+viscosity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dclay%2Bviscosity"><span>Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fink, J. H.; Greeley, R.; Gault, D. E.</p> <p>1982-01-01</p> <p>Results from a series of laboratory impacts into clay slurry targets are compared with photographs of impact craters on Mars and Ganymede. The interior and ejecta lobe morphology of rampart-type craters, as well as the progression of crater forms seen with increasing diameter on both Mars and Ganymede, are equalitatively explained by a model for impact into Bingham materials. For increasing impact energies and constant target rheology, laboratory craters exhibit a morphologic progression from bowl-shaped forms that are typical of dry planetary surfaces to craters with ejecta flow lobes and decreasing interior relief, characteristic of more volatile-rich planets. A similar sequence is seen for uniform impact energy in slurries of decreasing yield strength. The planetary progressions are explained by assuming that volatile-rich or icy planetary surfaces behave locally in the same way as Bingham materials and produce ejecta slurries with yield strenghs and viscosities comparable to terrestrial debris flows. Hypothetical impact into Mars and Ganymede are compared, and it is concluded that less ejecta would be produced on Ganymede owing to its lower gravitational acceleration, surface temperature, and density of surface materials.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017M%26PS...52..493H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017M%26PS...52..493H"><span>Martian cratering 11. Utilizing decameter scale crater populations to study Martian history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartmann, W. K.; Daubar, I. J.</p> <p>2017-03-01</p> <p>New information has been obtained in recent years regarding formation rates and the production size-frequency distribution (PSFD) of decameter-scale primary Martian craters formed during recent orbiter missions. Here we compare the PSFD of the currently forming small primaries (P) with new data on the PSFD of the total small crater population that includes primaries and field secondaries (P + fS), which represents an average over longer time periods. The two data sets, if used in a combined manner, have extraordinary potential for clarifying not only the evolutionary history and resurfacing episodes of small Martian geological formations (as small as one or few km2) but also possible episodes of recent climatic change. In response to recent discussions of statistical methodologies, we point out that crater counts do not produce idealized statistics, and that inherent uncertainties limit improvements that can be made by more sophisticated statistical analyses. We propose three mutually supportive procedures for interpreting crater counts of small craters in this context. Applications of these procedures support suggestions that topographic features in upper meters of mid-latitude ice-rich areas date only from the last few periods of extreme Martian obliquity, and associated predicted climate excursions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001565','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001565"><span>Gradational evolution of young, simple impact craters on the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grant, J. A.; Schultz, P. H.</p> <p>1991-01-01</p> <p>From these three craters, a first order gradational evolutionary sequence can be proposed. As crater rims are reduced by backwasting and downwasting through fluvial and mass wasting processes, craters are enlarged by approx. 10 pct. Enlargement of drainages inside the crater eventually forms rim breaches, thereby capturing headward portions of exterior drainages. At the same time, the relative importance of gradational processes may reverse on the ejecta: aeolian activity may supersede fluvial incisement and fan formation at late stages of modification. Despite actual high drainage densities on the crater exterior during early stages of gradation, the subtle scale of these systems results in low density estimates from air photos and satellite images. Because signatures developed on surfaces around all three craters appear to be mostly gradient dependent, they may not be unique to simple crater morphologies. Similar signatures may develop on portions of complex craters as well; however, important differences may also occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171435','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171435"><span>Recharge from a subsidence crater at the Nevada test site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilson, G. V.; Ely, D.M.; Hokett, S. L.; Gillespie, D. R.</p> <p>2000-01-01</p> <p>Current recharge through the alluvial fans of the Nevada Test Site (NTS) is considered to be negligible, but the impact of more than 400 nuclear subsidence craters on recharge is uncertain. Many of the craters contain a playa region, but the impact of these playas has not been addressed. It was hypothesized that a crater playa would focus infiltration through the surrounding coarser-grained material, thereby increasing recharge. Crater U5a was selected because it represented a worst case for runoff into craters. A borehole was instrumented for neutron logging beneath the playa center and immediately outside the crater. Physical and hydraulic properties were measured along a transect in the crater and outside the crater. Particle-size analysis of the 14.6 m of sediment in the crater and morphological features of the crater suggest that a large ponding event of ≈63000 m3 had occurred since crater formation. Water flow simulations with HYDRUS-2D, which were corroborated by the measured water contents, suggest that the wetting front advanced initially by as much as 30 m yr−1 with a recharge rate 32 yr after the event of 2.5 m yr−1Simulations based on the measured properties of the sediments suggest that infiltration will occur preferentially around the playa perimeter. However, these sediments were shown to effectively restrict future recharge by storing water until removal by evapotranspiration (ET). This work demonstrated that subsidence craters may be self-healing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3371K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3371K"><span>Results of the first field visit to Antipayutinsky gas-emission crater (AntGEC) on Gydan Peninsula, Russia in 2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khomutov, Artem; Leibman, Marina; Dvornikov, Yury; Aref'ev, Stanislav</p> <p>2017-04-01</p> <p>Deep craters in the North of West Siberia are specific objects in permafrost zone first observed in 2014 and later detected on satellite images to form in 2013. Their origin is under discussion yet. Authors hypothesize their formation from gas accumulation and later sudden emission. Scientific community was informed of Antipayutinskiy gas-emission crater (AntGEC) soon after first Yamal crater was found in 2014. Despite this knowledge, a real opportunity to visit AntGEC with true coordinates and logistic support appeared only in 2016 field campaign. Our field study of AntGEC included a description of the surrounding area and visible geological section, GPS-survey of GEC settings and related surface disturbances, measuring the depth of seasonal thaw, the internal lake bathymetry and water sampling from internal lake and other "knocked out" ponds. We also looked for traces of the initial mound preceding the GEC formation. We collected the willow branches for tree-ring dating of the events preceding the "eruption" using a specially developed technique, tested on willows, collected from Yamal gas-emission crater (GEC-1). Based on measurements of the depth, bathymetric map of AntGEC was compiled. The maximum measured depth at the crater center was 3.6 meters. Depth distribution was uniform in plan. The estimated volume of lake water was 1642.6 m3. Water samples were taken at different depths. The water temperature at the time of measurement was 8.8˚ C near the surface and 7.8˚ C at a depth of 3 meters. Preliminary dendrochronological analysis of AntGEC willow from the ejected block with turf showed the age of about 90 years. Annual growth rate of willow on AntGEC location was low (˜0.1 mm) in 1918-1947. An elevated growth rate (0.45 mm) is registered in 1948. This increase is chronologically correlated with previously defined increase of willow growth rate on first Yamal crater location. A significant difference between Gydan AntGEC and 3 known Yamal GEC is observed. While Yamal GECs are located on gentle concave slopes, overgrown with a more or less dense willow thickets, predominantly in loamy soils, the AntGEC is located almost on the watershed, although near the drainage hollow, in mostly sandy deposits, one of the walls exposes a hilltop sandy section, with windblown sandy depressions. Shrubs even in the bottom of the hollow form separate groups. Only tabular ground ice close to the surface unites Yamal and Gydan GECs. With these new data we need to adjust our understanding of landscape indicators of terrains potentially dangerous in relation to the GEC formation so far based on Yamal GEC study. This research is supported by Russian Science Foundation Grant 16-17-10203.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996M%26PS...31..433C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996M%26PS...31..433C"><span>Discovering research value in the Campo del Cielo, Argentina, meteorite craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cassidy, William A.; Renard, Marc L.</p> <p>1996-07-01</p> <p>The Campo del Cielo meteorite crater field in Argentina contains at least 20 small meteorite craters, but a recent review of the field data and a remote sensing study suggest that there may be more. The fall occurred ˜4000 years ago into a uniform loessy soil, and the craters are well enough preserved so that some of their parameters of impact can be determined after excavation. The craters were formed by multi-ton fragments of a type IA meteoroid with abundant silicate inclusions. Relative to the horizontal, the angle of infall was ˜9°. Reflecting the low angle of infall, the crater field is elongated with apparent dimensions of 3 × 18.5 km. The largest craters are near the center of this ellipse. This suggests that when the parent meteoroid broke apart, the resulting fragments diverged from the original trajectory in inverse relation to their masses and did not undergo size sorting due to atmospheric deceleration. The major axis of the crater field as we know it extends along N63°E, but the azimuths of infall determined by excavation of Craters 9 and 10 are N83.5°E and N75.5°E, respectively. This suggests that the major axis of the crater field is not yet well determined. The three or four largest craters appear to have been formed by impacts that disrupted the projectiles, scattering fragments around the outsides of the craters and leaving no large masses within them; these are relatively symmetrical in shape. Other craters are elongated features with multi-ton masses preserved within them and no fragmentation products outside. There are two ways in which field research on the Campo del Cielo crater field is found to be useful. (1) Studies exist that have been used to interpret impact craters on planetary surfaces other than the Earth. This occurrence of a swarm of projectiles impacting at known angles and similar velocities into a uniform target material provides an excellent field site at which to test the applicability of those studies. (2) Individual craters at Campo del Cielo can yield the masses of the projectiles that formed them and their velocities, angles and azimuths of impact. From these data, there is a possibility to estimate parameters for the parent meteoroid at entry and, thus, learn enough about its orbit to judge whether or not it was compatible with an asteroidal origin. Preliminary indications are that it was. Campo del Cielo is a IA iron meteorite and Sikhote-Alin, an observed fall, is a IIB iron meteorite in Wasson's classification. The Sterlitamak iron, also an observed fall, is a medium octahedrite in the Prior-Hey classification. It would be interesting to compare their orbital parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000449','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000449"><span>Surface albedo observations at Gusev Crater and Meridiani Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bell, J.F.; Rice, M.S.; Johnson, J. R.; Hare, T.M.</p> <p>2008-01-01</p> <p>During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739??338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum. (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albodo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRE..113.6S18B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRE..113.6S18B"><span>Surface albedo observations at Gusev Crater and Meridiani Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, J. F.; Rice, M. S.; Johnson, J. R.; Hare, T. M.</p> <p>2008-05-01</p> <p>During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739 +/- 338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albedo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2670&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2670&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2670</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., get ready to begin fueling the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2673&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2673&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2673</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., begin fueling operations of the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2674&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2674&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2674</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., begin fueling operations of the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PP-0138&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PP-0138&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PP-0138</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Emerging through the smoke and steam, the Boeing Delta II rocket carrying NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0137&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0137&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0137</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. After a perfect liftoff at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket with Deep Impact spacecraft aboard soars through the clear blue sky. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0128&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0128&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0128</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft stands out against an early dawn sky. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0124&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0124&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0124</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft is bathed in light waiting for tower rollback before launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2671</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., get ready to begin fueling the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0132&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0132&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0132</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Guests of NASA gather near the launch site at Cape Canaveral Air Force Station, Fla., to watch the Deep Impact spacecraft as it speeds through the air after a perfect launch at 1:47 p.m. EST. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2460&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2460&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets"><span>KSC-04PD-2460</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Boeing Delta II rocket arrives at the top of the mobile service tower. The element will be mated to the Delta II, which will launch NASAs Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing an impactor on a course to hit the comets sunlit side, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measure the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determine the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22261.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22261.html"><span>Investigating Mars: Kaiser Crater Dunes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-29</p> <p>This VIS image of Kaiser Crater shows a region of the dunes with varied appearances. The different dune forms developed due to different amounts of available sand, different wind directions, and the texture of the crater floor. The dune forms change from the bottom to the top of the image - large long connected dunes, to large individual dunes, to the very small individual dunes at the top of the image. Kaiser Crater is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser Crater is just one of several large craters with extensive dune fields on the crater floor. Other nearby dune filled craters are Proctor, Russell, and Rabe. Kaiser Crater is 207 km (129 miles) in diameter. The dunes are located in the southern part of the crater floor. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17686 Latitude: -46.6956 Longitude: 19.8394 Instrument: VIS Captured: 2005-12-09 13:25 https://photojournal.jpl.nasa.gov/catalog/PIA22261</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22173.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22173.html"><span>Investigating Mars: Kaiser Crater Dunes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-24</p> <p>This VIS image of Kaiser Crater shows individual dunes and where the dunes have coalesced into longer dune forms. The addition of sand makes the dunes larger and the intra-dune areas go from sand-free to complete coverage of the hard surface of the crater floor. With a continued influx of sand the region will transition from individual dunes to a sand sheet with surface dune forms. Kaiser Crater is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser Crater is just one of several large craters with extensive dune fields on the crater floor. Other nearby dune filled craters are Proctor, Russell, and Rabe. Kaiser Crater is 207 km (129 miles) in diameter. The dunes are located in the southern part of the crater floor. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 1423 Latitude: -46.9573 Longitude: 18.6192 Instrument: VIS Captured: 2002-04-10 16:44 https://photojournal.jpl.nasa.gov/catalog/PIA22173</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800067530&hterms=factoring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfactoring','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800067530&hterms=factoring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfactoring"><span>Ganymede - A relationship between thermal history and crater statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phillips, R. J.; Malin, M. C.</p> <p>1980-01-01</p> <p>An approach for factoring the effects of a planetary thermal history into a predicted set of crater statistics for an icy satellite is developed and forms the basis for subsequent data inversion studies. The key parameter is a thermal evolution-dependent critical time for which craters of a particular size forming earlier do not contribute to present-day statistics. An example is given for the satellite Ganymede and the effect of the thermal history is easily seen in the resulting predicted crater statistics. A preliminary comparison with the data, subject to the uncertainties in ice rheology and impact flux history, suggests a surface age of 3.8 x 10 to the 9th years and a radionuclide abundance of 0.3 times the chondritic value.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21455.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21455.html"><span>Better Preserved on Mars than on Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-02-13</p> <p>In many ways, Mars bears remarkable similarities to Earth, but in some ways it is drastically different. Scientists often use Earth as an example, or analog, to help us to understand the geologic history of the Red Planet. As we continue to study Mars, it is vitally important to remember in what ways it differs from Earth. One very apparent way, readily observed from orbit, has to do with its preservation of numerous craters of all sizes, which are densest in its Southern hemisphere. Earth has comparatively little preserved craters -- about 1,000 to 1,500 times fewer -- due to very active geologic processes, especially involving water. When it comes to impact craters, there are some things that can no longer be observed on Earth, but can be observed on Mars. This color composite shows one such example. It covers a portion of the northern central peak of an unnamed, 20-kilometer crater that contains abundant fragmental bedrock called "breccia." The geological relationships here suggest that these breccias include ones formed by the host crater, and others formed from numerous impacts in the distant past. Because there are fewer craters preserved on Earth, terrestrial central uplifts do not expose bedrock formed by previous craters. It may have been the case in the past, but such craters were destroyed over geologic time. The map is projected here at a scale of 25 centimeters (9.9 inches) per pixel. [The original image scale is 28 centimeters (11 inches) per pixel (with 1 x 1 binning); objects on the order of 82 centimeters (32 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21455</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4266K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4266K"><span>Double-layered ejecta craters on Mars: morphology, formation, and a comparison with the Ries ejecta blanket</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kenkmann, Thomas; Wulf, Gerwin; Sturm, Sebastian; Pietrek, Alexa</p> <p>2015-04-01</p> <p>The ejecta blankets of impact craters in volatile-rich environments often show characteristic layered ejecta morphologies. The so-called double-layer ejecta (DLE) craters are probably the most confusing crater types showing two ejecta layers with distinct morphologies. A phenomenological ejecta excavation and emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim - a textbook like, pristine DLE crater - and studies of other DLE craters [1]. The observations show that DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice. The deposits of the ejecta curtain are wet in the distal part and dryer in composition in the proximal part. As a result, the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a fluid saturated debris flow mode after landing overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits. This slide overruns and superimposes parts of the outer ejecta layer. Basal melting of the ice components of the ejecta volumes at the transient crater rim is induced by frictional heating and the enhanced pressure at depth. The results indicate similar processes also for other planetary bodies with volatile-rich environments, such as Ganymede, Europa or the Earth. The Ries crater on Earth has a similar ejecta thickness distribution as DLE craters on Mars [2]. Here basal sliding and fluidization of the ejecta increases outward by the entrainment of locally derived Tertiary sands and clays, that are saturated with groundwater. References: [1] Wulf, G. & Kenkmann, T. (2015) Met. Planet. Sci. (in press); [2] Sturm, S., Wulf. G., Jung, D. & Kenkmann, T. (2013) Geology 41, 531-534.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P23B3983G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P23B3983G"><span>Gravimetric 3D Subsurface Modelling of the Cerro Do Jarau Structure, Rio Grande Do Sul, Brazil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giacomini, B. B.</p> <p>2014-12-01</p> <p>Although common in other bodies of the solar system, impact craters formed in basaltic terrains are rare on Earth and only a few examples are known. Two of these craters are located south of Brazil, the Vargeão and Vista Alegre impact craters. The Cerro do Jarau structure is not confirmed, but is a possible third Brazilian basaltic crater, formed above the Serra Geral basalt floods of the Paraná Basin like the other two. Cerro do Jarau is a 13 km circular landform that rises over 200 meters above the plains of the "pampas" in southern Brazil. The name, meaning "Jarau hills", is given after the crests of silicified and deformed Botucatu sandstones, which form a semiring of elevated hills in the northern part of the structure. This work focused on the construction of a 3D subsurface geological model that could explain a new set of ground gravimetric data. Bouguer anomalies were calculated from gravity acceleration measured at 313 stations irregularly distributed on the area of the impact structure. A regional component represented by a polynomial trend surface was extracted from the total Bouguer anomalies. The residual Bouguer map (fig. 1) shows a strong positive anomaly with a NE-SW trend, located in the northeastern part of the structure. This gravity feature is not common in other impact structures, being possibly related to a dike intrusion. However, the negative anomaly present in the center of the structure and the circular positive anomaly surrounding the central part of the structure could be related to an impact structure. The positive circular anomaly is not spatially coincident with the edges of the structure, a feature that is also observed at the Vargeão and Vista Alegre impact structures. Density values of basalts, sandstones and breccias were measured from rock samples and each average value were used as constraints for the 3D model developed with the Geosoft® VOXI Earth modelling.This model provided a better understanding of the subsurface design of the structure. The impact crater hypothesis still remain the best hypothesis, but our results suggest that there was a post-impact dike intrusion and deep erosion processes that removed most of the impact breccia and a possible central uplift. The remaining of the uplifted rocks is observed as the silicified sandstone that forms the crests of the Jarau hills.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP42A..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP42A..01D"><span>Landscape evolution on Mars - A model of aeolian denudation in Gale Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, M. D.; Kocurek, G.; Grotzinger, J. P.</p> <p>2015-12-01</p> <p>Aeolian erosion has been the dominant geomorphic agent to shape the surface of Mars for the past ~3.5 billion years. Although individual geomorphic features evidencing aeolian activity are well understood (e.g., yardangs, dune fields, and wind streaks), landscapes formed by aeolian erosion remain poorly characterized. Intra-crater sedimentary mounds are hypothesized to have formed by wind deflation of craters once filled with flat-lying strata, and, therefore, should be surrounded by landscapes formed by aeolian erosion. Here we present a landscape evolution model that provides both an initial characterization of aeolian landscapes, and a mechanism for large-scale excavation. Wind excavation of Gale Crater to form the 5 km high Mount Sharp would require removal of 6.4 x 104 km3 of sediment. Imagery in Gale Crater from satellites and the Mars Science Laboratory rover Curiosity shows a surface characterized by first-cycle aeolian erosion of bedrock. The overall landscape is interpreted to represent stages in a cycle of aeolian deflation and excavation, enhanced by physical weathering (e.g., thermal fracturing, cratering). Initial wind erosion of bedrock is enhanced along fractures, producing retreating scarps. Underlying less resistant layers then erode faster than the armoring cap rock, increasing relief in scarps to form retreating mesas. As scarp retreat continues, boulders from the armoring cap unit break away and cover the hillslopes of less resistant material below the scarps. Eventually all material from the capping unit is eroded away and a boulder-capped hill remains. Winnowing of fine material flattens hillslope topography, leaving behind a desert pavement. Over long enough time, this pavement is breached and the cycle begins anew. This cycle of landscape denudation by the wind is similar to that of water, but lacks characteristic subaqueous features such as dendritic drainage networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017P%26SS..149....5N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017P%26SS..149....5N"><span>Impact cratering on porous targets in the strength regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, Akiko M.</p> <p>2017-12-01</p> <p>Cratering on small bodies is crucial for the collision cascade and also contributes to the ejection of dust particles into interplanetary space. A crater cavity forms against the mechanical strength of the surface, gravitational acceleration, or both. The formation of moderately sized craters that are sufficiently larger than the thickness of the regolith on small bodies, in which mechanical strength plays the dominant role rather than gravitational acceleration, is in the strength regime. The formation of microcraters on blocks on the surface is also within the strength regime. On the other hand, the formation of a crater of a size comparable to the thickness of the regolith is affected by both gravitational acceleration and cohesion between regolith particles. In this short review, we compile data from the literature pertaining to impact cratering experiments on porous targets, and summarize the ratio of spall diameter to pit diameter, the depth, diameter, and volume of the crater cavity, and the ratio of depth to diameter. Among targets with various porosities studied in the laboratory to date, based on conventional scaling laws (Holsapple and Schmidt, J. Geophys. Res., 87, 1849-1870, 1982) the cratering efficiency obtained for porous sedimentary rocks (Suzuki et al., J. Geophys. Res. 117, E08012, 2012) is intermediate. A comparison with microcraters formed on a glass target with impact velocities up to 14 km s-1 indicates a different dependence of cratering efficiency and depth-to-diameter ratio on impact velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770022098','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770022098"><span>Investigations of primary and secondary impact structures on the moon and laboratory experiments to study the ejecta of secondary particles. Ph.D. Thesis - Ruprecht Karl Univ.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koenig, B.</p> <p>1977-01-01</p> <p>Young lunar impact structures were investigated by using lunar orbiter, Apollo Metric and panorama photographs. Measurements on particularly homogeneous areas low in secondary craters made possible an expansion of primary crater distribution to small diameters. This is now sure for a range between 20m or = D or = 20km and this indicates that the size and velocity distribution of the impacting bodies in the last 3 billion years has been constant. A numerical approximation in the form of a 7th degree polynomial was obtained for the distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730035074&hterms=age+grouping&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dage%2Bgrouping','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730035074&hterms=age+grouping&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dage%2Bgrouping"><span>Solar flare and galactic cosmic ray studies of Apollo 14 and 15 samples.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crozaz, G.; Drozd, R.; Hohenberg, C. M.; Hoyt, H. P., Jr.; Ragan, D.; Walker, R. M.; Yuhas, D.</p> <p>1972-01-01</p> <p>Thermoluminescence (TL) measurements in rock 14310 show a strong depth dependence consistent with that expected from solar flares. This effect should prove useful in studying solar flare fluctuations in the time interval of 100 to 100,000 years. Rare gas spallation ages for rock 14301, 14306, and 14311 are respectively 102 plus or minus 30, 25 plus or minus 2, and 661 plus or minus 72 m.y. The 14306 value supports the idea that Cone Crater was formed 25 million years ago. Groupings of exposure ages suggest the dates of other major cratering events. Galactic track data in 14310 show little depth dependence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010404','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010404"><span>Moon-Mercury: Relative preservation states of secondary craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scott, D.H.</p> <p>1977-01-01</p> <p>Geologic mapping of the Kuiper quadrangle of Mercury and other geologic studies of the planet indicate that secondary craters are much better preserved than those on the moon around primary craters of similar size and morphology. Among the oldest recognized secondary craters on the moon associated with craters 100 km across or less are those of Posidonius, Atlas and Plato; these craters have been dated as middle to late Imbrian in age. Many craters on Mercury with dimensions, morphologies and superposed crater densities similar to these lunar craters have fields and clusters of fresher appearing secondary craters. The apparent differences between secondary-crater morphology and parent crater may be due in part to: (1) rapid isostatic adjustment of the parent crater; (2) different impact fluxes between the two planets; and (or) (3) to the greater concentration of Mercurian secondaries around impact areas, thereby accentuating crater forms. Another factor which may contribute to the better state of preservation of Mercurian secondaries relative to the moon is the difference in crater ejecta velocities on both bodies. These velocities have been calculated for fields of secondary craters at about equal ranges from lunar and Mercurian parent craters. Results show that ejection velocities of material producing most of the secondary craters are rather low (<1 km/s) but velocities on Mercury are about 50% greater than those on the moon for equivalent ranges. Higher velocities may produce morphologically enhanced secondary craters which may account for their better preservation with time. ?? 1977.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7848K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7848K"><span>Geologic Mapping of the Ac-H-6 Quadrangle of Ceres from Nasa's Dawn Mission: Compositional Changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krohn, Katrin; Jaumann, Ralf; Tosi, Federico; Nass, Andrea; Otto, Katharina A.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland J.; Williams, David A.; Buczkowski, Debra L.; Mest, Scott C.; Scully, Jennifer E. C.; von der Gathen, Isabel; Kersten, Elke; Matz, Klaus-Dieter; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; De Sanctis, Maria Cristina; Zambon, Francesca</p> <p>2016-04-01</p> <p>Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the source of impact melt flows is diffusely distributed but many of the observed flows originate from district sources in the crater interior and the flows, however, are well defined. The compositional differences derived from the color ratio and possible time variable effects related to cryo-processes either volcanic or glacial [1,2]. Furthermore, the suggestion of an occurrence ice within the Cerean crust [5] as well as possible salts incorporated into a regolith layer [4,5,6] indicates similar geological processes as seen on other icy bodies. Some lobate flow-like deposits on Ganymede such as at Sippar Sulcus are suggested to be formed by volcanic eruptions creating a channel and flow, and cutting down into the surface forming a depression. Thus, an endogenic formation process cannot be excluded. References: [1] Jaumann R. et al. (2015) EPSC X, Abstract #2015-83. [2] Jaumann R. et al. (2015) AGU, Abstract #P42A-05. [3] Krohn K. et al. (2016) LPSC XLVII, this issue. [4] Jaumann R. et al. (2016) LPSC XLVII, this issue. [5] McCord T.B. and Sotin C. (2005) J. Geophys. Res., 110, E05009. [6] Castillo-Rogez J.C. and McCord T.B. (2010) Icarus 203, 443-459.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7967K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7967K"><span>Morphology of Cryogenic Flows and Channels on Dwarf Planet Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krohn, Katrin; Jaumann, Ralf; Otto, Katharina A.; von der Gathen, Isabel; Matz, Klaus-Dieter; Buczkowski, Debra L.; Williams, David A.; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Stephan, Katrin; Wagner, Roland J.; Russell, Christopher T.; Raymond, Carol A.</p> <p>2016-04-01</p> <p>Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the source of impact melt flows is diffusely distributed but many of the observed flows originate from district sources in the crater interior and the flows, however, are well defined. The compositional differences derived from the color ratio and possible time variable effects related to cryo-processes either volcanic or glacial [1,2]. Furthermore, the suggestion of an occurrence ice within the Cerean crust [5] as well as possible salts incorporated into a regolith layer [4,5,6] indicates similar geological processes as seen on other icy bodies. Some lobate flow-like deposits on Ganymede such as at Sippar Sulcus are suggested to be formed by volcanic eruptions creating a channel and flow, and cutting down into the surface forming a depression. Thus, an endogenic formation process cannot be excluded. References: [1] Jaumann R. et al. (2015) EPSC X, Abstract #2015-83. [2] Jaumann R. et al. (2015) AGU, Abstract #P42A-05. [3] Krohn K. et al. (2016) LPSC XLVII, this issue. [4] Jaumann R. et al. (2016) LPSC XLVII, this issue. [5] McCord T.B. and Sotin C. (2005) J. Geophys. Res., 110, E05009. [6] Castillo-Rogez J.C. and McCord T.B. (2010) Icarus 203, 443-459.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850015222&hterms=centrifuge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcentrifuge','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850015222&hterms=centrifuge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcentrifuge"><span>Centrifuge Impact Cratering Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.</p> <p>1985-01-01</p> <p>The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830040097&hterms=originals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doriginals','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830040097&hterms=originals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doriginals"><span>The Manicouagan impact structure - An analysis of its original dimensions and form</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grieve, R. A. F.; Head, J. W., III</p> <p>1983-01-01</p> <p>A reanalysis of the preerosional geology of the Canadian impact crater, Manicouagan, is presented. Although most of the current features of the annular moat are primarily a result of erosional processes, the original dimensions of the cavity have been determined to include a transient cavity 60 km in diam. The final floor of the crater was studied and found to be an impact melt-covered inner plateau 55 km in diam. Comparisons with similar crater bottoms on the moon are used to estimate a final crater rim diameter of 85-95 km. The inner plateau and relatively smooth deposits on the crater floor are noted to be most similar to the lunar crater Copernicus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0013&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0013&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft is lifted from its transporter into the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0010&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0010&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret"><span>KSC-05PD-0010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., the Deep Impact spacecraft is secure in the canister for its move to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0012&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0012&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret"><span>KSC-05PD-0012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft arrives before dawn at the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. The spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0017&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0017&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0017</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers stand by as the canister is lifted away from the Deep Impact spacecraft. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0018&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0018&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0018</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers watch as the protective cover surrounding the Deep Impact spacecraft is lifted away. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0015&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0015&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers begin lowering the Deep Impact spacecraft toward the second stage of the Boeing Delta II launch vehicle below for mating. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0016&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0016&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers attach the third stage motor, connected to the Deep Impact spacecraft, to the spin table on the second stage of the Boeing Delta II launch vehicle below. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0014&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0014&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets"><span>KSC-05PD-0014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft is lifted into the top of the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P11A2500F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P11A2500F"><span>The curious history of Tethys as evidenced by irregular craters and variable tectonism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferguson, S. N.; Rhoden, A.; Nayak, M.; Asphaug, E. I.</p> <p>2017-12-01</p> <p>At first glance, the surface of Saturn's moon Tethys appears dominated by craters and its large canyon system, Ithaca Chasma. However, high-resolution Cassini imagery reveals a surface rife with curious geologic features, perhaps indicative of non-heliocentric impact populations and, potentially, a history of tectonic activity. We mapped three regions on Tethys to survey the diversity of features present on the surface, determine crater counts for each region, map and analyze fracture patterns, and identify constraints on the impactor populations. One study region is just south and west of the Odysseus impact basin (R1), and the other two regions sit slightly west of Ithaca Chasma (R2 and R3). The regions were imaged at average resolutions of 200m/pix, which is adequate to identify craters down to D=1km. Of 1200 total craters counted, we have identified 195 elliptical craters and 28 polygonal craters. Elliptical craters likely form from slow, oblique impacts, whereas polygonal craters are indicative of underlying tectonic structure. We identified 605 small craters, D=1-2km, across the three regions; we find that R1 has many more 1-10 km craters than R2 and R3. We also mapped 367 linear features. The median and range of orientations of the linear features vary across the regions. Despite their proximity, the orientations of lineations in R2 and R3 are not consistent with the orientation of Ithaca Chasma. This could be suggestive of different epochs of tectonic activity on Tethys. When compared with R2 and R3, R1 has more small craters, more lineations, and a preferred orientation of lineations that is distinct from the other two regions. Possible causes for a larger population of small craters in R1 include secondary craters from Odysseus and oblique impacts from debris ejected from Tethys' co-orbital moons, which should create many more 1km craters in R1 than the other regions. Due to the oblique impact angles predicted for incoming co-orbital debris, these impacts may have also produced some of the lineations observed in R1. Oblique impacts can also form elliptical craters, but that would imply much larger debris than expected from the craters presently observed on the co-orbitals. We discuss additional analysis and implications of Tethys' curious geologic features on its bombardment and tectonic history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186309','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186309"><span>Impact crater outflows on Venus: Morphology and emplacement mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chadwick, D. John; Schaber, Gerald G.</p> <p>1993-01-01</p> <p>Many of the 932 impact craters discovered by the Magellan spacecraft at Venus are associated with lobate flows that originate at or near the crater rim. They extend for several to several hundred kilometers from the crater, and they commonly have a strong radar backscatter. A morphologic study of all identifiable crater outflows on Venus has revealed that many individual flows each consist of two areas, defined by distinct morphologic features. These two areas appear to represent two stages of deposition for each flow. The part of the flow that is generally deposited closest to the crater tends to be on the downrange side of the crater, flows in the downrange direction, and it is interpreted to be a late-stage ejecta. In many cases, this proximal part of the flow is too thin to completely bury the large blocks in subjacent ejecta deposits. Dendritic channels, present in many proximal flows, appear to have drained liquid from the proximal part in the downhill direction, and they debouch to feed the outer part of the flows. This distal part flows downhill, fills small grabens, and is ponded by ridges, behavior that mimics that of volcanic lava flows. The meandering and dendritic channels and the relation of the distal flows to topography strongly suggest that the distal portion is the result of coalescence and slow drainage of impact melt from the proximal portion. Impact melt forms a lining to the transient crater and mixes turbulently with solid clasts, and part of this mixture may be ejected to form the proximal part of the flow during the excavation stage of crater development. A statistical study of the Venusian craters has revealed that, in general, large craters produced by impacts with relatively low incidence angles to the surface are more likely to produce flows than small craters produced by higher-angle impacts. The greater flow production and downrange focusing of the proximal flows with decreasing incidence angle indicate a strong control of the flows by the impactor flight direction, and a high downrange velocity imparted to the proximal flow material in lower angle impacts. On the Moon, small flows interpreted to be composed of impact melt are observed atop the ejecta of large, fresh craters; on Earth, melt-rich suevite deposits form the uppermost layer of ejecta of some fresh craters. These features, albeit much smaller, may be analogous to the flows on Venus. Numerical models have predicted that larger volumes of impact melt would be produced on Venus than on the cooler terrestrial bodies due to high atmospheric and target temperatures, perhaps 3 times the volume produced on the Moon for a given crater diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090014052&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmass%2Bwasting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090014052&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmass%2Bwasting"><span>Degradation of Victoria Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Sharon A.; Grant, John A.; Cohen, Barbara A.; Golombek, Mathew P.; Geissler, Paul E.; Sullivan, Robert J.; Kirk, Randolph L.; Parker, Timothy J.</p> <p>2008-01-01</p> <p>The $\\sim$750 m diameter and $\\sim$75 m deep Victoria crater in Meridiani Planum, Mars, presents evidence for significant degradation including a low, serrated, raised rim characterized by alternating alcoves and promontories, a surrounding low relief annulus, and a floor partially covered by dunes. The amount and processes of degradation responsible for the modified appearance of Victoria crater were evaluated using images obtained in situ by the Mars Exploration Rover Opportunity in concert with a digital elevation model created using orbital HiRISE images. Opportunity traversed along the north and northwest rim and annulus, but sufficiently characterized features visible in the DEM to enable detailed measurements of rim relief, ejecta thickness, and wall slopes around the entire degraded, primary impact structure. Victoria retains a 5 m raised rim consisting of 1-2 m of uplifted rocks overlain by 3 m of ejecta at the rim crest. The rim is $\\sim$120 to 220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500 to 750 m across indicate the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by approximately 150 m and infilled by about 50 m of sediments. Eolian processes are responsible for modification at Victoria, but lesser contributions from mass wasting or other processes cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for $\\sim$50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is $\\sim$20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when $\\sim$1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped darker, regional basaltic sands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70137247','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70137247"><span>Expanded secondary craters in the Arcadia Planitia region, Mars: evidence for tens of Myr-old shallow subsurface ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Viola, Donna; McEwen, Alfred S.; Dundas, Colin M.; Byrne, Shane</p> <p>2015-01-01</p> <p>A range of observations indicates widespread subsurface ice throughout the mid and high latitudes of Mars in the form of both pore-filling and excess ice. It is generally thought that this ice was recently emplaced and is not older than a hundred thousand to a few millions of years old based on ice stability and orbital-induced climate change. We analyze the distribution of subsurface ice in Arcadia Planitia, located in the northern mid latitudes, by mapping thermokarstically expanded secondary craters, providing additional evidence for extensive excess ice down to fairly low latitudes (less than 40°N). We further infer the minimum age of this subsurface ice based on the ages of the four primary craters that are thought to be the source of a large portion of these secondaries, which yields estimates on the order of tens of millions of years old – much more ancient than anticipated. This estimated ancient age suggests that ice can be preserved in the shallow subsurface for long periods of time, at least in some parts of Arcadia Planitia where expanded secondary craters are especially abundant. We estimate the amount of ice lost to sublimation during crater expansion based on measurements of expanded secondary craters in HiRISE Digital Terrain Models. The loss is equivalent to a volume of ice between ∼140 and 360 km3, which would correspond to a global layer of 1–2.5 mm thick. We further argue that much more ice (at least 6000 km3) is likely preserved beneath the un-cratered regions of Arcadia Planitia since significant loss of this excess ice would have caused extensive terrain dissection and the removal of the expanded secondary craters. Both the loss of ice due to secondary crater expansion and the presence of this ice today have implications for the martian climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38..532S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38..532S"><span>Method for evaluation of laboratory craters using crater detection algorithm for digital topography data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salamunićcar, Goran; Vinković, Dejan; Lončarić, Sven; Vučina, Damir; Pehnec, Igor; Vojković, Marin; Gomerčić, Mladen; Hercigonja, Tomislav</p> <p></p> <p>In our previous work the following has been done: (1) the crater detection algorithm (CDA) based on digital elevation model (DEM) has been developed and the GT-115225 catalog has been assembled [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]; and (2) the results of comparison between explosion-induced laboratory craters in stone powder surfaces and GT-115225 have been presented using depth/diameter measurements [41stLPSC, Abstract #1428]. The next step achievable using the available technology is to create 3D scans of such labo-ratory craters, in order to compare different properties with simple Martian craters. In this work, we propose a formal method for evaluation of laboratory craters, in order to provide objective, measurable and reproducible estimation of the level of achieved similarity between these laboratory and real impact craters. In the first step, the section of MOLA data for Mars (or SELENE LALT for Moon) is replaced with one or several 3D-scans of laboratory craters. Once embedment was done, the CDA can be used to find out whether this laboratory crater is similar enough to real craters, as to be recognized as a crater by the CDA. The CDA evaluation using ROC' curve represents how true detection rate (TDR=TP/(TP+FN)=TP/GT) depends on the false detection rate (FDR=FP/(TP+FP)). Using this curve, it is now possible to define the measure of similarity between laboratory and real impact craters, as TDR or FDR value, or as a distance from the bottom-right origin of the ROC' curve. With such an approach, the reproducible (formally described) method for evaluation of laboratory craters is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.geoscienceworld.org/books/book/542/chapter/3801888/Eastern-rim-of-the-Chesapeake-Bay-impact-crater?redirectedFrom=PDF','USGSPUBS'); return false;" href="https://pubs.geoscienceworld.org/books/book/542/chapter/3801888/Eastern-rim-of-the-Chesapeake-Bay-impact-crater?redirectedFrom=PDF"><span>Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poag, C.W.</p> <p>2005-01-01</p> <p>This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P24C..04A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P24C..04A"><span>Stratigraphic Mapping of Intra-Crater Layered Deposits in Arabia Terra from High-Resolution Imaging and Stereo Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Annex, A. M.; Lewis, K. W.; Edwards, C. S.</p> <p>2017-12-01</p> <p>The Arabia Terra region of Mars, located in the mid-latitudes, hosts a number of crater basins with exposed sedimentary layers and buttes. Our work builds upon previous studies of these sites that suggest that the layers are formed of weakly lithified aeolian material with quasi-periodic expressions explained by changes in planetary orbital elements during formation (Lewis and Aharonson, 2014; Cadieux and Kah, 2015; Stack et al., 2013). In an effort to better understand differences in lateral continuity of these layers, both between and within basins, an extensive mapping effort was conducted on several sites in Arabia Terra with HiRISE stereo targets. Digital terrain models produced using the Ames Stereo Pipeline were mapped to derive bedding plane positions and orientations for each stratum using linear regression. Bed thicknesses were derived from differences in dip-corrected elevation between successive strata. Our study includes additional independent mapping within craters analyzed in previous studies, and expands mapping of these deposits to several new craters in the region unique to this effort. Our sample size in this study is large, including over 700 individually measured strata from multiple sections within each crater. Although bed thicknesses are generally tightly distributed around 12 meters, any changes within a sequence could represent variations in either the dominant forcing factors controlling deposition and/or changes in sedimentation rate. If craters contain correlative sequences, these types of changes could serve as marker horizons across the region with further mapping.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770038698&hterms=relationship+form&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drelationship%2Bform','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770038698&hterms=relationship+form&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drelationship%2Bform"><span>Landform degradation on Mercury, the moon, and Mars - Evidence from crater depth/diameter relationships</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Malin, M. C.; Dzurisin, D.</p> <p>1977-01-01</p> <p>Craters on Mercury, the moon, and Mars were classified into two groups, namely, fresh and degraded craters, on the basis of qualitative visual degradation as revealed by degree of rim crispness, terraced interior walls, slumping from crater walls, etc., and the depth/diameter relationship of craters was studied. Lunar and Mercurian crater populations indicate the existence of terrain-correlated degradational phenomena. The depth/diameter relations for Mercury and the moon display remarkably similar forms, suggesting similar degrees of landform degradation. Depth/diameter curves display a break in slope, dividing two distinct crater populations. Mars craters show few of the trends of those of Mercury and the moon. The depth/diameter curve has no definite break in slope, though there is considerable depth variation. The role of nonballistic degradation in connection with the early formation of large expanses of intercrater plains is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820055515&hterms=divided+attention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddivided%2Battention','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820055515&hterms=divided+attention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddivided%2Battention"><span>The excavation stage of basin formation - A qualitative model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Croft, S. K.</p> <p>1981-01-01</p> <p>One of the most complex problems in planetary geology and geophysics is the determination of the nature of the impact cratering processes at scales of tens to thousands of kilometers that produce the complex morphological structures of multiring basins. The cratering process is frequently considered to be divided into three stages, including a short high-pressure stage of initial contact between the projectile and the planetary crust, a longer excavation or cratering flow stage culminating in the formation of a transient crater, and a still longer modification stage during which the transient crater is modified into the observed final geologic form. The transient crater may be considered as the initial boundary condition of the modification stage. In the present investigation, the nature of the transient crater is indicated by the cratering flow field determined from numerical simulations of the excavation stage. Attention is given to empirical and theoretical scaling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA09077&hterms=blueberry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dblueberry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA09077&hterms=blueberry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dblueberry"><span>Big Spherules near 'Victoria'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> This frame from the microscopic imager on NASA's Mars Exploration Rover Opportunity shows spherules up to about 5 millimeters (one-fifth of an inch) in diameter. The camera took this image during the 924th Martian day, or sol, of Opportunity's Mars-surface mission (Aug. 30, 2006), when the rover was about 200 meters (650 feet) north of 'Victoria Crater.' <p/> Opportunity discovered spherules like these, nicknamed 'blueberries,' at its landing site in 'Eagle Crater,' and investigations determined them to be iron-rich concretions that formed inside deposits soaked with groundwater. However, such concretions were much smaller or absent at the ground surface along much of the rover's trek of more than 5 kilometers (3 miles) southward to Victoria. The big ones showed up again when Opportunity got to the ring, or annulus, of material excavated and thrown outward by the impact that created Victoria Crater. Researchers hypothesize that some layer beneath the surface in Victoria's vicinity was once soaked with water long enough to form the concretions, that the crater-forming impact dispersed some material from that layer, and that Opportunity might encounter that layer in place if the rover drives down into the crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04436&hterms=block+chain&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dblock%2Bchain','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04436&hterms=block+chain&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dblock%2Bchain"><span>Crater Chains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p><p/> [figure removed for brevity, see original site] <p/>The large crater at the top of this THEMIS visible image has several other craters inside of it. Most noticeable are the craters that form a 'chain' on the southern wall of the large crater. These craters are a wonderful example of secondary impacts. They were formed when large blocks of ejecta from an impact crashed back down onto the surface of Mars. Secondaries often form radial patterns around the impact crater that generated them, allowing researchers to trace them back to their origin.<p/>Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.<p/>NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.<p/>Image information: VIS instrument. Latitude 19.3, Longitude 347.5 East (12.5 West). 19 meter/pixel resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20133.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20133.html"><span>Dawn HAMO Image 70</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-12-04</p> <p>This view from NASA's Dawn spacecraft shows different types of terrain located side by side on Ceres: a smooth terrain at right with numerous small impact craters, and a less-cratered, hummocky terrain at left. A huge crater chain crosses the scene diagonally from upper left to lower right. The smooth terrain, which is in the western part of Yalode impact basin, is interrupted by a set of roughly parallel furrows and ridges at upper right. These linear features are perpendicular to another set of smaller, fainter linear markings, which appear just below them. An impact into the hummocky terrain formed a crater, seen at left, 14 miles (22 kilometers) in diameter with a central peak. A great deal of material has slumped down the walls of the crater -- a phenomenon called mass wasting. The crater's impact ejecta forms a smooth blanket around its rim, which takes on a streaky texture leading away from the crater toward lower right. The image was taken during in Dawn's High Altitude Mapping Orbit (HAMO) phase from an altitude of 911 miles (1,466 kilometers) on Oct. 6, 2015. Image resolution is 394 feet (120 meters) per pixel. The image is centered at 37 degrees south latitude, 279 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA20133</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/59904','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/59904"><span>Map showing the Elko crater field, Elko County, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ketner, Keith B.; Roddy, David J.</p> <p>1980-01-01</p> <p>The Elko crater field consists of two arrays of rimmed craters in the valleys of Dorsey, Susie, and McClellan Creeks, 30 to 50 km north of Elko, Nevada. In the principal array, more the 165 craters are scattered irregularly in an area 3 km wide and 20 km long. Most of the the craters are circular but some, formed by overlap, are oval or irregular. They range from 5 m to 250 m in diameter and the relief of the largest ones, from the sedimentary floor of the cater to the top of the rim, is at least 6 m. The surficial material of the rims is principally gravel similar to that in the surrounding terrane. The surficial material inside the craters is primarily silt, probably blown in by the wind, and pebbles, apparently washed in from the rims. There is also a later of volcanic ash at a depth of about 2 m. This ash was identified by its physical and mineralogical composition as the Mazama ash (R. E. Wilcox, oral commun., 1976), a ±6600 year old ash bed also present in the alluvium of Dorsey and Susie Creeks. The craters are presently interpreted as having been formed by a meteor shower although no meteor material has been discovered. Investigation is continuing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0003869&hterms=soil+liquefaction&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsoil%2Bliquefaction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0003869&hterms=soil+liquefaction&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsoil%2Bliquefaction"><span>Lunar Crater Slumping Caused by Soil Grain Motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1966-01-01</p> <p>Lunar Orbiter 2 oblique northward view towards Copernicus crater on the Moon shows crater wall slumping caused by soil liquefaction following the impact that formed the crater. The crater is about 100 km in diameter. The central peaks are visible towards the top of the image, rising about 400 m above the crater floor, and stretching for about 15 km. The northern wall of the crater is in the background. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..286...15W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..286...15W"><span>The role of strength defects in shaping impact crater planforms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watters, W. A.; Geiger, L. M.; Fendrock, M.; Gibson, R.; Hundal, C. B.</p> <p>2017-04-01</p> <p>High-resolution imagery and digital elevation models (DEMs) were used to measure the planimetric shapes of well-preserved impact craters. These measurements were used to characterize the size-dependent scaling of the departure from circular symmetry, which provides useful insights into the processes of crater growth and modification. For example, we characterized the dependence of the standard deviation of radius (σR) on crater diameter (D) as σR ∼ Dm. For complex craters on the Moon and Mars, m ranges from 0.9 to 1.2 among strong and weak target materials. For the martian simple craters in our data set, m varies from 0.5 to 0.8. The value of m tends toward larger values in weak materials and modified craters, and toward smaller values in relatively unmodified craters as well as craters in high-strength targets, such as young lava plains. We hypothesize that m ≈ 1 for planforms shaped by modification processes (slumping and collapse), whereas m tends toward ∼ 1/2 for planforms shaped by an excavation flow that was influenced by strength anisotropies. Additional morphometric parameters were computed to characterize the following planform properties: the planform aspect ratio or ellipticity, the deviation from a fitted ellipse, and the deviation from a convex shape. We also measured the distribution of crater shapes using Fourier decomposition of the planform, finding a similar distribution for simple and complex craters. By comparing the strength of small and large circular harmonics, we confirmed that lunar and martian complex craters are more polygonal at small sizes. Finally, we have used physical and geometrical principles to motivate scaling arguments and simple Monte Carlo models for generating synthetic planforms, which depend on a characteristic length scale of target strength defects. One of these models can be used to generate populations of synthetic planforms which are very similar to the measured population of well-preserved simple craters on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03900&hterms=different+types+volcanoes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddifferent%2Btypes%2Bvolcanoes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03900&hterms=different+types+volcanoes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddifferent%2Btypes%2Bvolcanoes"><span>Ulysses Patera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>[figure removed for brevity, see original site] (Released 18 July 2002) It is helpful to look at the context for this THEMIS image, which covers a large area over the summit of Ulysses Patera. Ulysses Patera is one of the many volcanoes that make up the giant Tharsis volcanic province, although Ulysses itself is fairly small in comparison to the other volcanoes in this area. In the context image, there are 3 circular features near the top of the volcano. The large, central feature is called a 'caldera', and is the result of volcanic activity at Ulysses. The other two circular features are impact craters. The THEMIS image primarily spans across the central caldera, but also covers a portion of the northernmost impact crater. We know that the large central caldera must have formed earlier than the two craters, because its circular form has been cut by the smaller crater rims. In the THEMIS image, there are stair-stepping plateaus in the northern portion of the image. These are part of the rim of the northern crater, and are caused by collapse or subsidence after the impact event. Just to the south of this crater, 'rayed' patterns can be seen on part of the caldera floor. The rayed pattern is most likely due to a landslide of material down the crater rim slope. Another possibility is that the impact that formed the northern crater caused material to be ejected radially, and then parts of the ejecta have either been buried or eroded away. Other signs of mass movement events in this image are dark streaks, caused by dust avalanches, visible in the caldera's northern wall. In the central portion of the image, there are two lobe-shaped features-one overlaps the other-that appear to have flowed westward. It is likely that these features are ejecta lobes, because they are located adjacent to the southeastern crater (see context image). The fluidized appearance of these ejecta lobes is probably due to a significant amount of ice or water being present in the soil at the time of impact. We know that the southeastern crater must have formed after the northern crater, because the fluidized ejecta lobe overlies the rayed pattern. A close-up look at the fluidized ejecta lobes reveals a different surface 'texture' than the surrounding caldera floor. This could be due to compressional features that formed during the lobe emplacement, or to contrasting surface properties that cause the flows to be eroded differently than the caldera floor. In the lower portion of the image, there is a cluster of small circular features in the southernmost part of the central caldera. These features may be layered material that has since been eroded into circular plateaus, or they may be degraded volcanic cones, which would indicate a later stage of smaller-scale volcanism within the caldera. Volcanic cones are common in many calderas on Earth, and are formed after the initial stage of volcanic activity in that caldera. Finally, in the southern wall of the caldera, there is classic 'spur-and-gully' morphology. This type of morphology is often formed on steep slopes, where variations in wall resistance cause the surface to be eroded more easily in some areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-chappy-oblique_26137996935_o.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-chappy-oblique_26137996935_o.html"><span>Chappy Oblique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-03-30</p> <p>Looking east to west across the rim and down into Chaplygin crater reveals this beautiful example of a fresh young crater and its perfectly preserved ejecta blanket. The delicate patterns of flow across, over, and down local topography clearly show that ejecta traveled as a ground hugging flow for great distances, rather than simply being tossed out on a ballistic trajectory. Very near the rim lies a dark, lacy, discontinuous crust of now frozen impact melt. Clearly this dark material is on top of the bright material so it was the very last material ejected from the crater. The melt was formed as the tremendous energy of impact was converted to heat and the lunar crust was melted at the impact point. As the crater rebounded and material sloughed down the walls of the deforming crater the melt was splashed out over the rim and froze. Its low reflectance is mostly due to a high percentage of glass because the melt cooled so quickly that minerals did not have time to crystallize. The fact that the delicate splash patterns are so well preserved testifies to the very young age of this crater. But how young? For comparison "Chappy" (informal name) is 200 m larger than Meteor crater (1200 m diameter) in Arizona, which is about 50,000 years old. Craters of this size form every 100,000 years or so on the Moon and the Earth. Since there are very few superposed craters on Chappy, and its ejecta is so perfectly preserved it may be much younger than Meteor crater. However, we can't know the true true absolute age of "Chappy" until we can obtain a sample of its impact melt for radiometric age dating. Credit: NASA/Goddard/Arizona State University/LRO/LROC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000391.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000391.html"><span>Chappy Oblique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Looking east to west across the rim and down into Chaplygin crater reveals this beautiful example of a fresh young crater and its perfectly preserved ejecta blanket. The delicate patterns of flow across, over, and down local topography clearly show that ejecta traveled as a ground hugging flow for great distances, rather than simply being tossed out on a ballistic trajectory. Very near the rim lies a dark, lacy, discontinuous crust of now frozen impact melt. Clearly this dark material is on top of the bright material so it was the very last material ejected from the crater. The melt was formed as the tremendous energy of impact was converted to heat and the lunar crust was melted at the impact point. As the crater rebounded and material sloughed down the walls of the deforming crater the melt was splashed out over the rim and froze. Its low reflectance is mostly due to a high percentage of glass because the melt cooled so quickly that minerals did not have time to crystallize. The fact that the delicate splash patterns are so well preserved testifies to the very young age of this crater. But how young? For comparison "Chappy" (informal name) is 200 m larger than Meteor crater (1200 m diameter) in Arizona, which is about 50,000 years old. Craters of this size form every 100,000 years or so on the Moon and the Earth. Since there are very few superposed craters on Chappy, and its ejecta is so perfectly preserved it may be much younger than Meteor crater. However, we can't know the true true absolute age of "Chappy" until we can obtain a sample of its impact melt for radiometric age dating. Investigate all of Chappy's ejecta, at full resolution: lroc.sese.asu.edu/posts/901 Credit: NASA/Goddard/Arizona State University/LRO/LROC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900003119','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900003119"><span>Radar scattering mechanisms within the meteor crater ejecta blanket: Geologic implications and relevance to Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garvin, J. B.; Campbell, B. A.; Zisk, S. H.; Schaber, Gerald G.; Evans, C.</p> <p>1989-01-01</p> <p>Simple impact craters are known to occur on all of the terrestrial planets and the morphologic expression of their ejecta blankets is a reliable indicator of their relative ages on the Moon, Mars, Mercury, and most recently for Venus. It will be crucial for the interpretation of the geology of Venus to develop a reliable means of distinguishing smaller impact landforms from volcanic collapse and explosion craters, and further to use the observed SAR characteristics of crater ejecta blankets (CEB) as a means of relative age estimation. With these concepts in mind, a study was initiated of the quantitative SAR textural characteristics of the ejecta blanket preserved at Meteor Crater, Arizona, the well studied 1.2 km diameter simple crater that formed approx. 49,000 years ago from the impact of an octahedrite bolide. While Meteor Crater was formed as the result of an impact into wind and water lain sediments and has undergone recognizable water and wind related erosion, it nonetheless represents the only well studied simple impact crater on Earth with a reasonably preserved CEB. Whether the scattering behavior of the CEB can provide an independent perspective on its preservation state and style of erosion is explored. Finally, airborne laser altimeter profiles of the microtopography of the Meteor Crater CEB were used to further quantify the subradar pizel scale topographic slopes and RMS height variations for comparisons with the scattering mechanisms computed from SAR polarimetry. A preliminary assessment was summarized of the L-band radar scattering mechanisms within the Meteor Crater CEB as derived from a NASA/JPL DC-8 SAR Polarimetry dataset acquired in 1988, and the dominant scattering behavior was compared with microtopographic data (laser altimeter profiles and 1:10,000 scale topographic maps).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoSyR..52....1I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoSyR..52....1I"><span>Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, B. A.</p> <p>2018-01-01</p> <p>The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D < 1 km) lunar impact craters aging (degradation). Comparative analysis of available data on the areal cratering density and on the crater degradation state for selected craters, dated with returned Apollo samples, in the first approximation confirms Neukum's chronological model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21215.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21215.html"><span>Cracks in a Crater Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-12-07</p> <p>Many impact craters on Mars were filled with ice in past climates. Sometimes this ice flows or slumps down the crater walls into the center and acquires concentric wrinkles as a result. This image shows an example of this. There are other ways that scientists know the material in the crater is icy. Surface cracks that form polygonal shapes cover the material in the crater. They are easy to see in this spring-time image because seasonal frost hides inside the cracks, outlining them in bright white. These cracks form because ice within the ground expands and contracts a lot as it warms and cools. Scientists can see similar cracks in icy areas of the Earth and other icy locations on Mars. If you look closely, you'll see small polygons inside larger ones. The small polygons are younger and the cracks shallower while the large ones are outlined with cracks that penetrate more deeply. http://photojournal.jpl.nasa.gov/catalog/PIA21215</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19303.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19303.html"><span>A Possible Landing Site for the 2020 Mission: Jezero Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-03-04</p> <p>This image shows a possible landing site for the 2020 Mission: Jezero Crater, as seen by NASA Mars Reconnaissance Orbiter. It's not only when trying to find a scientifically interesting place to land that the high-resolution images from HiRISE come in handy: it's also to identify potential hazards within a landing ellipse. This is one of the trickier aspects of selecting landing sites on Mars: a place to do good science but also where the risks of landing are low. Jezero Crater is an ancient crater where clay minerals have been detected, and with a delta deposit indicating that water was once flowing into a lake. Since clays form the in presence of water, this crater would be a very good candidate for a lander to explore and build on what we've learned from the Mars Science Laboratory. Could some form of ancient life have existed here and for how long? http://photojournal.jpl.nasa.gov/catalog/PIA19303</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002981','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002981"><span>Modeling the Geologic History of Mt. Sharp</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pascuzzo, A.; Allen, C.</p> <p>2015-01-01</p> <p>Gale is an approximately 155 km diameter crater located on the martian dichotomy boundary (5 deg S 138 deg E). Gale is estimated to have formed 3.8 - 3.5 Gya, in the late Noachian or early Hesperian. Mt. Sharp, at the center of Gale Crater, is a crescent shaped sedimentary mound that rises 5.2 km above the crater floor. Gale is one of the few craters that has a peak reaching higher than the rim of the crater wall. The Curiosity rover is currently fighting to find its way across a dune field at the northwest base of the mound searching for evidence of habitability. This study used orbital images and topographic data to refine models for the geologic history of Mt. Sharp by analyzing its morphological features. In addition, it assessed the possibility of a peak ring in Gale. The presence of a peak ring can offer important information to how Mt. Sharp was formed and eroded early in Gale's history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19138.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19138.html"><span>Triple-Crater in Elysium Planitia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-01-22</p> <p>This image from NASA Mars Mars Reconnaissance Orbiter shows a triple impact crater in Elysium Planitia near Tartarus Montes, which probably formed when a binary-or even triple-asteroid struck the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70003716','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70003716"><span>Columbia Hills, Mars: aeolian features seen from the ground and orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Greeley, Ronald; Whelley, Patrick L.; Neakrase, Lynn D.V.; Arvidson, Raymond E.; Bridges, Nathan T.; Cabrol, Nathalie A.; Christensen, Philip R.; Di, Kaichang; Foley, Daniel J.; Golombek, Matthew P.; Herkenhoff, Kenneth; Knudson, Amy; Kuzmin, Ruslan O.; Li, Ron; Michaels, Timothy; Squyres, Steven W.; Sullivan, Robert; Thompson, Shane D.</p> <p>2008-01-01</p> <p>Abundant wind-related features occur along Spirit's traverse into the Columbia Hills over the basaltic plains of Gusev Crater. Most of the windblown sands are probably derived from weathering of rocks within the crater, and possibly from deposits associated with Ma'adim Vallis. Windblown particles act as agents of abrasion, forming ventifacts, and are organized in places into various bed forms. Wind-related features seen from orbit, results from atmospheric models, and considerations of topography suggest that the general wind patterns and transport pathways involve: (1) winter nighttime winds that carry sediments from the mouth of Ma'adim Vallis into the landing site area of Spirit, where they are mixed with locally derived sediments, and (2) winter daytime winds that transport the sediments from the landing site southeast toward Husband Hill; similar patterns occur in the summer but with weaker winds. Reversals of daytime flow out of Gusev Crater and nighttime wind flow into the crater can account for the symmetry of the bed forms and bimodal orientations of some ventifacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss030e005456.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss030e005456.html"><span>Earth Observations taken by Expedition 30 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-11-26</p> <p>ISS030-E-005456 (26 Nov. 2011) --- Emi Koussi Volcano and Aorounga Impact Crater, Chad are featured in this image photographed by an Expedition 30 crew member on the International Space Station. This striking photograph features two examples of circular landscape features?labeled as craters?that were produced by very different geological processes. At left, the broad grey-green shield volcano of Emi Koussi is visible. The volcano is marked by three overlapping calderas formed by eruptions; these form a large oblong depression at the 3,415 meter ASL summit of the volcano. A smaller crater sits within the larger caldera depression. While volcanic activity has not been observed, nor is mentioned in the historical record, an active thermal area is located on the southern flank. The circular Aorounga Impact Crater is located approximately 110 kilometers to the southeast of Emi Koussi and has its origin in forces from above rather than eruptions from below. According to scientists, the Aorounga structure is thought to record a meteor impact approximately 345-370 million years ago. The circular feature visible at upper right may be only one of three impact craters formed by the same event ? the other two are buried by sand deposits. The linear features (lower right) that arc around Emi Koussi and overprint Aorounga and the surrounding bedrock are known as yardangs; these are rock ridges formed by wind erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..306..214S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..306..214S"><span>Relaxed impact craters on Ganymede: Regional variation and high heat flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.</p> <p>2018-05-01</p> <p>Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows-in excess of 30-40 mW m-2 over 2 Gyr, with many small (<10 km in diameter) relaxed craters indicating even higher heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196308','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196308"><span>Relaxed impact craters on Ganymede: Regional variation and high heat flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.</p> <p>2018-01-01</p> <p>Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows—in excess of 30–40 mW m−2 over 2 Gyr, with many small (<10 km in diameter) relaxed craters indicating even higher heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21151.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21151.html"><span>Daedalia Planum Windstreak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-10-26</p> <p>The "tail" behind the crater at the top of this VIS image is called a windstreak. This feature is formed by winds blowing over/in and around the crater. Turbulence in the wind will erode or deposit fine materials, creating the windstreak. Windstreaks form on the down wind side of the crater, and indicate winds from the ESE. The small hills below the windstreak are small volcanic constructs. This image is located in the extensive lava plains called Daedalia Planum. Orbit Number: 65310 Latitude: -10.2729 Longitude: 226.476 Instrument: VIS Captured: 2016-09-03 11:24 http://photojournal.jpl.nasa.gov/catalog/PIA21151</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21591.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21591.html"><span>Secondary Craters in Bas Relief</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-04-17</p> <p>NASA's Mars Reconnaissance Orbiter (MRO) captured this region of Mars, sprayed with secondary craters from 10-kilometer Zunil Crater to the northwest. Secondary craters form from rocks ejected at high speed from the primary crater, which then impact the ground at sufficiently high speed to make huge numbers of much smaller craters over a large region. In this scene, however, the secondary crater ejecta has an unusual raised-relief appearance like bas-relief sculpture. How did that happen? One idea is that the region was covered with a layer of fine-grained materials like dust or pyroclastics about 1 to 2 meters thick when the Zunil impact occurred (about a million years ago), and the ejecta served to harden or otherwise protect the fine-grained layer from later erosion by the wind. https://photojournal.jpl.nasa.gov/catalog/PIA21591</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170010304','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170010304"><span>Investigating Weathering of Basaltic Materials in Gale Crater, Mars: A Combined Laboratory, Modeling and Terrestrial Field Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hausrath, Elisabeth; Ralston, Stephanie J.; Bamisile, Toluwalope; Ming, Douglas; Peretyazhko, Tanya; Rampe, Elizabeth; Gainey, Seth</p> <p>2017-01-01</p> <p>Recent observations from Gale Crater, Mars document past aqueous alteration both in the formation of the Stimson sandstone unit, as well as in the formation of altered fractures within that unit. Geochemical and mineralogical data from Curiosity also suggest Fe-rich amorphous weathering products are present in most samples measured to date. Here we interpret conditions of possible past weathering in Gale Crater using a combination of field, laboratory, and modeling work. In order to better understand secondary Fe-rich phases on Mars, we are examining formation of weathering products in high Fe and Mg and low Al serpentine soils in the Klamath Mountains, CA. We have isolated potential weathering products from these soils, and are analyzing them using synchrotron µXRF and µXRD as well as FullPat for a direct comparison to analyses from Gale Crater. In order to interpret the implications of the persistence of potential secondary Fe-containing phases on Mars, we are also measuring the dissolution rates of the secondary weathering products allophane, Fe-rich allophane, and hisingerite. Ongoing dissolution experiments of these materials suggest that they dissolve significantly more rapidly than more crystalline secondary minerals with similar chemical compositions. Finally, to quantify the specific conditions of past aqueous alteration in Gale Crater we are performing reactive transport modeling of a range of possible past environmental conditions. Specifically, we are testing the conditions under which a Stimson unit-like material forms from a parent material similar to Rocknest or Bagnold eolian deposits, and the conditions under which observed altered fracture zones form from a Stimson unit-like parent material. Our modeling results indicate that the formation of the Stimson unit is consistent with leaching of an eolian deposit with a solution of pH = 6-8, and that formation of the altered fracture zones is consistent with leaching with a very acidic (pH = 2-3) high sulfate solution containing Ca. These results suggest circumneutral pH conditions during authigenesis or early diagenesis in the Stimson formation sediments followed by diagenetic alteration by very acidic solutions along fracture zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA15750.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA15750.html"><span>Maja Valles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-07-19</p> <p>The streamlined island in this image from NASA 2001 Mars Odyssey spacecraft formed within the channel of Maja Valles. The flow of water was deflected by the crater leaving material in the lee of the crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024988','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024988"><span>Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fenton, L.K.; Bandfield, J.L.; Ward, A.W.</p> <p>2003-01-01</p> <p>Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation, rather than by the passage of dust devils. Spectral deconvolution indicates that the dark dunes have infrared spectra consistent with basalt-like materials. The average thermal inertia calculated from Thermal Emission Spectrometer bolometric temperatures is 277 ?? 17 J m-2 s-0.5 K-1, leading to an effective grain size of 740 ?? 170 ??m, which is consistent with coarse sand and within the range expected for Martian sand. The coarse sand that composes the large dune field may have originated from outside the crater, saltating in from the southwest. Most of the transport pathway that delivered this sand to the dune field has since been eroded away or buried. The sand was transported to the east center of the crater floor, where beneath the present-day dunes a 50 m high mound of sand has accumulated. Dune slip faces indicate a wind regime consisting of three opposing winds. Some of these wind directions are correlated with the orientations of dust devil tracks and bright bed forms. The combination of a tall mound of sand and three opposing winds is consistent with a convergent wind regime, which produces the large reversing transverse and star dunes that dominate the dune field. The dark dunes have both active slip faces and seemingly inactive slip faces, suggesting that the dunes vary spatially in their relative activity. Nevertheless, the aeolian activity that has dominated the history of Proctor Crater still continues today. Copyright 2003 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920021981&hterms=Earth+space&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEarth%2Bspace','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920021981&hterms=Earth+space&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEarth%2Bspace"><span>Environment modelling in near Earth space: Preliminary LDEF results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coombs, C. R.; Atkinson, D. R.; Wagner, J. D.; Crowell, L. B.; Allbrooks, M.; Watts, A. J.</p> <p>1992-01-01</p> <p>Hypervelocity impacts by space debris cause not only local cratering or penetrations, but also cause large areas of damage in coated, painted or laminated surfaces. Features examined in these analyses display interesting morphological characteristics, commonly exhibiting a concentric ringed appearance. Virtually all features greater than 0.2 mm in diameter possess a spall zone in which all of the paint was removed from the aluminum surface. These spall zones vary in size from approximately 2 - 5 crater diameters. The actual craters in the aluminum substrate vary from central pits without raised rims, to morphologies more typical of craters formed in aluminum under hypervelocity laboratory conditions for the larger features. Most features also possess what is referred to as a 'shock zone' as well. These zones vary in size from approximately 1 - 20 crater diameters. In most cases, only the outer-most layer of paint was affected by this impact related phenomenon. Several impacts possess ridge-like structures encircling the area in which this outer-most paint layer was removed. In many ways, such features resemble the lunar impact basins, but on an extremely reduced scale. Overall, there were no noticeable penetrations, bulges or spallation features on the backside of the tray. On Row 12, approximately 85 degrees from the leading edge (RAM direction), there was approximately one impact per 15 cm(exp 2). On the trailing edge, there was approximately one impact per 72 cm(exp 2). Currently, craters on four aluminum experiment trays from Bay E09, directly on the leading edge are being measured and analyzed. Preliminary results have produced more than 2200 craters on approximately 1500 cm(exp 2) - or approximately 1 impact per 0.7 cm(exp 2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4852303S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4852303S"><span>Numerical modeling of Stickney crater and its aftermath</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwartz, Stephen R.; Michel, Patrick; Bruck Syal, Megan; Owen, J. Michael; Miller, Paul L.; Richardson, Derek C.; Zhang, Yun</p> <p>2016-10-01</p> <p>Phobos is characterized by a large crater called Stickney. Its collisional formation and its aftermath have important implications on the final structure, morphology, and surface properties of Phobos that still need further clarification. This is particularly important in the current environment, with space mission concepts to Phobos under active study by several space agencies. SPH hydrocode simulations of the impact that formed Stickney crater [1] have been performed. Using the Soft-Sphere Discrete Element Method (SSDEM) collisional routine of the N-body code pkdgrav [2], we take the outcome of SPH simulations as inputs and model the ensuing phase of the crater formation process and its ejecta evolution under the gravitational influence of Phobos and Mars. In our simulations, about 9 million particles comprise Phobos' shape [3], and the evolution of particles that are expected to form or leave the crater is followed using multiple plausible orbits for Phobos around Mars. We track the immediate fate of low-speed ejecta (~3-8 m/s), allowing us to test an hypothesis [4] that they may scour certain groove marks that have been observed on Phobos' surface and to quantify the amounts and locations of re-impacting ejecta. We also compute the orbital fate of ejecta whose speed is below the system escape speed (about 3 km/s). This allows us to estimate the thickness and distribution of the final ejecta blanket and to check whether crater chains may form. Finally, particles forming the crater walls are followed until achieving stability, allowing us to estimate the final crater depth and diameter. We will show examples of these simulations from a set of SPH initial conditions and over a range of parameters (e.g., material friction coefficients). Work ongoing to cover a larger range of plausible impact conditions, allowing us to explore different scenarios to explain Phobos' observed properties and to infer more, giving useful constraints to space mission studies. [1] Bruck Syal, M. et al. (this meeting); [2] Schwartz, S.R. et al. 2012, Granul. Matter 14, 363; [3] Willner, K. et al. 2010, E. Earth Planet. Sci. Lett. 294, 541; [4] Wilson, L. & Head, J.W. 2015, Planet. Space Sci. 105, 26.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.7702S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.7702S"><span>Comparison of Impact Crater Size-Frequency Distributions (SFD) on Saturnian Satellites with Other Solar-System Bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmedemann, N.; Neukum, G.; Denk, T.; Wagner, R.; Hartmann, O.</p> <p>2009-04-01</p> <p>The examination of the geologic history of the saturnian satellites is a major goal of the Cassini imaging experiment (ISS) [5]. The study of the impact crater-SFD is necessary to derive ages of the saturnian satellite surface units. Furthermore it can be used for resolving the main impactor source and the impactor orbital characteristics for understanding the nature of the bombardment. While large and old areas are suited to measure the branch of large crater sizes, smaller craters can be found in a state of production only at relatively young areas on the saturnian satellites. The impact-crater SFD is derived only from such crater populations which are in production. Hence the measurement of the whole production function in one specific area is impossible. Therefore we have to measure it piece-wise in crater size range in a number of suitable areas. On Iapetus the production function has been measured in seven crater size range pieces, covering a crater size range from 0.15 km to 700 km. At the same crater size, these areas have somewhat different crater frequencies, since they are of different ages. The crater frequency differences of the respective pieces to each other have to be taken out, in order to obtain continuous curves. We have achieved that by normalizing the frequencies measured on the older surface units at the respective smallest crater sizes to the tail ends of the crater frequencies for the largest craters on the younger surface units. The resulting continuous curves give us a reliable production SFD over the whole accessible range. Doing so, we assumed that the production SFD has not changed over time in the parts of the SFD not directly accessible by measurement. Hence the resulting SFD curve is a consequence of a compilation of measurements taken in different areas. Intensive analyses of the crater diameter SFD of the lunar surface have revealed a characteristic W-shaped curve, when it is R-plotted. Crater counting on other planetary surfaces such as Mercury, Venus, Mars, Gaspra, Callisto, Ganymede and Mimas have revealed similarly shaped crater diameter SFDs e.g. [4]. While those SFD curves are equally shaped, the whole curves with their characteristic W-shapes appear to be shifted along the diameter axis. Most likely, this shift is primarily the result of different impact velocities. Other factors of scaling relationships between crater diameter and projectile diameter such as density and gravity on different target bodies are of secondary importance. The measurements of the crater diameter SFD on the saturnian satellites Tethys, Dione, Rhea, and Iapetus also show high similarities to the lunar W-shaped curve. The most complete and statistically valid data set was generated in the case of Iapetus. We have been able to measure crater sizes over four orders of magnitude. The most likely impactor source for the craters in the inner solar system is the asteroid belt orbiting the sun between Mars and Jupiter e.g. [3],[4]. The asteroid body diameter SFD has more recently been analyzed by [2] using the latest discoveries and the absolute geometric albedo of the asteroids. Those albedo values have been converted to asteroid-body diameters using the method of [1]. The body SFD of the asteroid belt in the range from its inner border out to the 5:2 resonance gap gives a very good match to the lunar SFD. The same W-shape characteristics is found at the jovian and saturnian satellite SFD curves as mentioned earlier. Based on these observations and similarities, it is reasonable to suspect asteroids as the major contribution for the outer solar system bombardment in the range of Saturn as well. References: [1]Fowler & Chillemi (1992) in "The IRAS minor planet survey" [2]Ivanov at al. (2002) in „Asteroids III"; The University of Arizona Press: 89-101 [3]Neukum (1983) Habilitation Thesis, "Meteoritenbombardement und Datierung planetarer Oberflächen"; Ludwig-Maximilians-University of Munich. [4]Neukum & Ivanov (1994) in "Hazards due to comets & Asteroids"; The University of Arizona Press: 359-416 [5]Porco et al. (2004) Space Science Reviews 115: 363-497</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000110334&hterms=assessment+impact&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dthe%2Bassessment%2Bimpact','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000110334&hterms=assessment+impact&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dthe%2Bassessment%2Bimpact"><span>Global Geometric Properties of Martian Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garvin, J. B.; Sakimoto, S. E. H.; Schnetzler, C.; Frawley, J. J.</p> <p>1999-01-01</p> <p>Impact craters on Mars have been used to provide fundamental insights into the properties of the martian crust, the role of volatiles, the relative age of the surface, and on the physics of impact cratering in the Solar System. Before the three-dimensional information provided by the Mars Orbiter Laser Altimeter (MOLA) instrument which is currently operating in Mars orbit aboard the Mars Global Surveyor (MGS), impact features were characterized morphologically using orbital images from Mariner 9 and Viking. Fresh-appearing craters were identified and measurements of their geometric properties were derived from various image-based methods. MOLA measurements can now provide a global sample of topographic cross-sections of martian impact features as small as approx. 2 km in diameter, to basin-scale features. We have previously examined MOLA cross-sections of Northern Hemisphere and North Polar Region impact features, but were unable to consider the global characteristics of these ubiquitous landforms. Here we present our preliminary assessment of the geometric properties of a globally-distributed sample of martian impact craters, most of which were sampled during the initial stages of the MGS mapping mission (i.e., the first 600 orbits). Our aim is to develop a framework for reconsidering theories concerning impact cratering in the martian environment. This first global analysis is focused upon topographically-fresh impact craters, defined here on the basis of MOLA topographic profiles that cross the central cavities of craters that can be observed in Viking-based MDIM global image mosaics. We have considered crater depths, rim heights, ejecta topologies, cross-sectional "shapes", and simple physical models for ejecta emplacement. To date (May, 1999), we have measured the geometric properties of over 1300 impact craters in the 2 to 350 km diameter size interval. A large fraction of these measured craters were sampled with cavity-center cross-sections during the first two months of MGS mapping. Many of these craters are included in Nadine Barlow's Catalogue of Martian Impact Craters, although we have treated simple craters smaller than about 7 km in greater detail than all previous investigations. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047182','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047182"><span>Ancient impact and aqueous processes at Endeavour Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Calef, F.J.; Clark, B. C.; Cohen, B. A.; Crumpler, L.A.; de Souza, P. A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Herkenhoff, K. E.; Hurowitz, J.A.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.J.; Paulsen, G.; Rice, M.S.; Ruff, S.W.; Schröder, C.; Yen, A. S.; Zacny, K.</p> <p>2012-01-01</p> <p>The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53B1683B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53B1683B"><span>Block Distribution Analysis of Impact Craters in the Tharsis and Elysium Planitia Regions on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Button, N.; Karunatillake, S.; Diaz, C.; Zadei, S.; Rajora, V.; Barbato, A.; Piorkowski, M.</p> <p>2017-12-01</p> <p>The block distribution pattern of ejecta surrounding impact craters reveals clues about their formation. Using images from High Resolution Imaging Science Experiment (HiRISE) image onboard the Mars Reconnaissance Orbiter (MRO), we indentified two rayed impact craters on Mars with measurable ejecta fields to quantitatively investigate in this study. Impact Crater 1 (HiRISE image PSP_008011_1975) is located in the Tharsis region at 17.41°N, 248.75°E and is 175 m in diameter. Impact Crater 2 (HiRISE image ESP_018352_1805) is located in Elysium Planitia at 0.51°N, 163.14°E and is 320 m in diameter. Our block measurements, used to determine the area, were conducted using HiView. Employing methods similar to Krishna and Kumar (2016), we compared block size and axis ratio to block distance from the center of the crater, impact angle, and direction. Preliminary analysis of sixteen radial sectors around Impact Crater 1 revealed that in sectors containing mostly small blocks (less than 10 m2), the small blocks were ejected up to three times the diameter of the crater from the center of the crater. These small block-dominated sectors lacked blocks larger than 10 m2. Contrastingly, in large block-dominated sectors (larger than 30 m2) blocks rarely traveled farther than 200 m from the center of the crater. We also seek to determine the impact angle and direction. Krishna and Kumar (2016) calculate the b-value (N(a) = Ca-b; "N(a) equals the number of fragments or craters with a size greater than a, C is a constant, and -b is a power index") as a method to determine the impact direction. Our preliminary results for Impact Crater 1 did not clearly indicate the impact angle. With improved measurements and the assessment of Impact Crater 2, we will compare Impact Crater 1 to Impact Crater 2 as well as assess the impact angle and direction in order to determine if the craters are secondary craters. Hood, D. and Karunatillake, S. (2017), LPSC, Abstract #2640 Krishna, N., and P. S. Kumar (2016), Icarus, 264, 274-299</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol3/pdf/CFR-2012-title33-vol3-sec334-1380.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol3/pdf/CFR-2012-title33-vol3-sec334-1380.pdf"><span>33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... Peninsula and the three seaward points forming an arc with a 3.8 nautical-mile radius at its center (Point B...), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons Training Range; danger zone. 334.1380 Section... Bay, Island of Oahu, Hawaii—Ulupau Crater Weapons Training Range; danger zone. (a) The danger zone...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol3/pdf/CFR-2013-title33-vol3-sec334-1380.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol3/pdf/CFR-2013-title33-vol3-sec334-1380.pdf"><span>33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... Peninsula and the three seaward points forming an arc with a 3.8 nautical-mile radius at its center (Point B...), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons Training Range; danger zone. 334.1380 Section... Bay, Island of Oahu, Hawaii—Ulupau Crater Weapons Training Range; danger zone. (a) The danger zone...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol3/pdf/CFR-2011-title33-vol3-sec334-1380.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol3/pdf/CFR-2011-title33-vol3-sec334-1380.pdf"><span>33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... Peninsula and the three seaward points forming an arc with a 3.8 nautical-mile radius at its center (Point B...), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons Training Range; danger zone. 334.1380 Section... Bay, Island of Oahu, Hawaii—Ulupau Crater Weapons Training Range; danger zone. (a) The danger zone...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-1380.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-1380.pdf"><span>33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... Peninsula and the three seaward points forming an arc with a 3.8 nautical-mile radius at its center (Point B...), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons Training Range; danger zone. 334.1380 Section... Bay, Island of Oahu, Hawaii—Ulupau Crater Weapons Training Range; danger zone. (a) The danger zone...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol3/pdf/CFR-2010-title33-vol3-sec334-1380.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol3/pdf/CFR-2010-title33-vol3-sec334-1380.pdf"><span>33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... Peninsula and the three seaward points forming an arc with a 3.8 nautical-mile radius at its center (Point B...), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons Training Range; danger zone. 334.1380 Section... Bay, Island of Oahu, Hawaii—Ulupau Crater Weapons Training Range; danger zone. (a) The danger zone...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003icbg.conf...20D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003icbg.conf...20D"><span>WIRGO in TIC's? [What (on Earth) is Really Going On in Terrestrial Impact Craters?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dence, Michael R.</p> <p>2003-02-01</p> <p>Canada is well endowed with impact craters formed in crystalline rocks with relatively homogeneous physical properties. They exhibit all the main morphological-structural variations with crater size seen in craters on other rocky planets, from small simple bowl to large peak and ring forms. Lacking stratigraphy, analysis is based on the imprint of shock melting and metamorphism, the position of the GPL (limit of initial Grady-Kipp fracturing due to shock wave reverberations) relative to shock level, the geometry of late stage shears and breccias and the volume of shocked material beyond the GPL. Simple craters, exemplified by Brent (D = 3.7 km) allow direct comparison with models and experimental data. Results of interest include: 1. The central pool of impact melt and underlying breccia at the base of the crater fill is interpreted as the remnant of the transient crater lining; 2. The overlying main mass of breccias filling the final apparent crater results from latestage slumping of large slabs bounded by a primary shear surface that conforms to a sphere segment of radius, rs approx. = 2dtc, where dtc is the transient crater depth; 3. The foot of the primary shear intersects above the GPL at the centre of the melt pool and the rapid emplacement of slumped slabs produces further brecciation while suppressing any tendency for the centre to rise. In the autochthonous breccias below the melt and in the underlying para-allochthone below the GPL, shock metamorphism weakens with depth. The apparent attenuation of the shock pulse can be compared with experimentally derived rates of attenuation to give a measure of displacements down axis and estimates of the size of a nominal bolide of given velocity, the volume of impact melt and the energy released on impact. In larger complex craters (e.g. Charlevoix, D = 52 km) apparent shock attenuation is low near the centre but is higher towards the margin. The inflection point marks the change from uplift of deep material in the centre to subsidence of near-surface material at the margins. From the observed general relationship PGPL = 3.5 D0.5, where PGPL (in GPa) is the estimated level of shock metamorphism at the Grady-Kipp fracture limit, it is apparent that the differential stress due to shock wave reflections weakens at about twice the attenuation rate of the initial shock pulse. Thus, with increasing size, compression of the para-authochthone below the GPL plays an increasingly larger role in controlling the depth of the transient crater and hence the radius of the primary shear. It follows that, where the rate of relaxation of the para-authochthone is more rapid than the propagation of the primary shear from the rim towards the centre, the shear surface intersects below the GPL and central uplift occurs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03842&hterms=disintegration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddisintegration','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03842&hterms=disintegration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddisintegration"><span>Hephaestus Fossae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>[figure removed for brevity, see original site] (Released 3 July 2002) Off the western flank of Elysium are the Hephaestus Fossae, including linear arrangements of small, round pits. These features are commonly called 'pit chains' and most likely represent the collapse of lava tubes. Lava tubes allow molten rock to move long distances underground. When the lava drains out it leaves unsupported tunnels, which can collapse and form pits. These particular pit chains are unusual because they change direction abruptly. In the lower portion of the image, pits have collapsed at the bends and allow us to observe the sharp, nearly right angle corners. These direction changes are most likely due to some sort of structural control during the emplacement of the lava tubes. There is an extraordinarily high concentration of small, degraded craters on the plains surface. The size range of these craters is fairly consistent and they all appear to be of similar age. It is unlikely that these were caused by primary impacts (impacts of meteors onto the surface) because both the size and timing distributions of primary impactors vary tremendously. However, the craters in the image could have been created from secondary impacts. Secondaries are impacts of material that is excavated during a large cratering event nearby or from the disintegration of a primary meteor in the atmosphere into many smaller parts that rain onto the surface. In contrast to these older, small craters, there is a relatively young crater in the center of the image. A hummocky ejecta blanket is visible around the crater and has covered some of the smaller craters on the plain around it. The edges of the crater are sharp, formed by rocky material in the crater rim. This material is visible as the layer of rough, grooved material at the top of the inside walls. Small dust avalanches have left dark streaks down the inside walls of the crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037266','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037266"><span>Geology of the Selk crater region on Titan from Cassini VIMS observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Soderblom, J.M.; Brown, R.H.; Soderblom, L.A.; Barnes, J.W.; Jaumann, R.; Le Mouélic, Stéphane; Sotin, Christophe; Stephan, K.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.</p> <p>2010-01-01</p> <p>Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ???800. km north-northwest of the Huygens landing site. The crater rim-crest diameter is ???90. km; its floor diameter is ???60. km. A central pit/peak, 20-30. km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15. km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21?? and 122?? east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk "bench." Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk's ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest. ?? 2010 Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780060155&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTNT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780060155&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTNT"><span>Shatter cones formed in large-scale experimental explosion craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roddy, D. J.; Davis, L. K.</p> <p>1977-01-01</p> <p>In 1968, a series of 0.5-ton and 100-ton TNT explosion experiments were conducted in granitic rock near Cedar City, Utah, as part of a basic research program on cratering and shock wave propagation. Of special interest was the formation of an important type of shock metamorphic feature, shatter cones. A description is presented of the first reported occurrence of shatter cones in high explosion trials. A background to shatter cone studies is presented and attention is given to the test program, geology and physical properties of the test medium, the observed cratering, and the formational pressures for shatter cones. The high explosion trials conducted demonstrate beyond any doubt, that shatter cones can be formed by shock wave processes during cratering and that average formational pressures in these crystalline rocks are in the 20-60 kb range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss030e254011.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss030e254011.html"><span>Earth Observations taken by Expedition 30 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-04-21</p> <p>ISS030-E-254011 (21 April 2012) --- The Ouarkziz Impact Crater is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Ouarkziz Impact Crater is located in northwestern Algeria close to the border with Morocco. According to scientists, the crater was formed by a meteor impact less than 70 million years ago during the late Cretaceous Period of the Mesozoic Era or “Age of Dinosaurs”. Originally called Tindouf, the 3.5-kilometer in diameter impact crater (center) has been heavily eroded since its formation; however its circular morphology is highlighted by exposures of older sedimentary rock layers that form roughly northwest-to-southeast-trending ridgelines to the north and south. From the vantage point of a crew member onboard the space station, the impact crater is clearly visible with a magnifying camera lens. A geologist interpreting this image to build a working geological history of the region would conclude that the Ouarkziz impact crater is younger than the sedimentary rocks, as the rock layers had to be already present for the meteor to hit them. Likewise, a stream channel is visible cutting across the center of the impact structure (center), indicating that the channel formed after the impact had occurred. This Principal of Cross-Cutting Relationships, usually attributed to the famous 19th century geologist Charles Lyell, is a basic logic tool used by geologists to build relative sequence and history of events when investigating a region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007psrd.reptE.114M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007psrd.reptE.114M"><span>Did Martian Meteorites Come From These Sources?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martel, L. M. V.</p> <p>2007-01-01</p> <p>Large rayed craters on Mars, not immediately obvious in visible light, have been identified in thermal infrared data obtained from the Thermal Emission Imaging System (THEMIS) onboard Mars Odyssey. Livio Tornabene (previously at the University of Tennessee, Knoxville and now at the University of Arizona, Tucson) and colleagues have mapped rayed craters primarily within young (Amazonian) volcanic plains in or near Elysium Planitia. They found that rays consist of numerous chains of secondary craters, their overlapping ejecta, and possibly primary ejecta from the source crater. Their work also suggests rayed craters may have formed preferentially in volatile-rich targets by oblique impacts. The physical details of the rayed craters and the target surfaces combined with current models of Martian meteorite delivery and cosmochemical analyses of Martian meteorites lead Tornabene and coauthors to conclude that these large rayed craters are plausible source regions for Martian meteorites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992Metic..27R.276P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992Metic..27R.276P"><span>Meteorite Sterlitamak -- A New Crater Forming Fall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petaev, M. I.</p> <p>1992-07-01</p> <p>The Sterlitamak meteorite fell on May 17, 1990 at 23h20m local time (17h20m GMT) and formed a crater in a field 20 km westward of the town of Sterlitamak (Petaev et al., 1991). Many witnesses in South Bashkiria saw a very bright fireball (up to -5 magnitude) moving from south to north at a ~45 degree angle to the horizon. Witnesses located ~2 km from the crater observed the fireball glowing right up to the time of impact, after which several explosions were heard. The crater was found on May 19. From witnesses' reports, the fresh crater was 4.5-5 m in depth and had sheer walls ~3 m in height below which was a conical talus surface with a hole in the center. The crater itself was surrounded by a continuous rim 60-70 cm in thickness and by radial ejecta. Our field team arrived at the crater on May 23, six days after its formation. We found the crater in rather good condition except for partial collapse of the rim, material from which had filled in the crater up to ~3 m from the surface. The western wall of the crater was composed of well-preserved brown loam with shale- like parting dipping 25-30 degrees away from the crater center. A large slip block of autogenic breccia was observed along the eastern crater wall. An allogenic breccia composed of a mixture of brown loam and black soil was traced to the depth of ~5 m from the surface. Outside the rim, the crater ejecta formed an asymmetric continuous blanket and distinct radial rays. The southern rays were shorter and thicker than the northern and eastern rays. About 2 dozen meteorite fragments, from several grams to several hundred grams in weight, were recovered in the crater vicinity. A search for other meteorite fragments or individuals at distances up to 1 km southward from the crater was unsuccessful. Two partly encrusted fragments (3 and 6 kg) with clear Widmanstatten pattern on a broken surface were found at a depth of ~8 m during crater excavation. In May of 1991 a 315-kg partly fragmented individual was recovered at a depth of ~12 m. This sample is a 50 x 45 x 28 cm block with front, rear and two adjoining lateral surfaces covered by regmaglypts and thick (~0.5 mm) fusion crust. The other two surfaces are very rough, contain no regmaglypts, and have a thinner fusion crust. The preimpact shape of the meteorite may be approximately modeled as a slab ~100 x 100 x 28 cm. An estimate of the projectile mass was made based on the crater dimensions. From the relationships between crater diameter and projectile mass determined for the Sikhote-Alin craters, the impact mass of the Sterlitamak meteorite is estimated at ~1 ton (Petaev, 1992). A separate estimate, based on cratering energy, yields a total mass of ~1.5 tons (Ivanov, Petaev, 1992). A comparison of the estimated projectile mass and the weight and morphology of the individual recovered suggests a fragmentation of the projectile in the atmosphere and the formation of the crater by the impact of an agglomeration of individuals. The other fragments of the projectile are still in the crater. REFERENCES Ivanov B.A., Petaev M.I. (1992) Lunar Planet. Sci. (abstract), 23, 573-574. Petaev M.I. (1992) Astron. Vestnik, #4, in press (in Russian) (English translation is named Solar System Research). Petaev M.I., Kisarev Yu.L., Mustafin Sh.A., Shakurov R.K., Pavlov A.V., Ivanov B.A. (1991) Lunar Planet. Sci. (abstract), 22, 1059-1060</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018P%26SS..153..120B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018P%26SS..153..120B"><span>Rock spatial densities on the rims of the Tycho secondary craters in Mare Nectaris</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basilevsky, A. T.; Michael, G. G.; Kozlova, N. A.</p> <p>2018-04-01</p> <p>The aim of this work is to check whether the technique of estimation of age of small lunar craters based on spatial density of rock boulders on their rims described in Basilevsky et al. (2013, 2015b) and Li et al. (2017) for the craters < 1 km in diameter is applicable to the larger craters. The work presents the rock counts on the rims of four craters having diameters 1000, 1100, 1240 and 1400 m located in Mare Nectaris. These craters are secondaries of the primary crater Tycho, whose age was found to be 109 ± 4 Ma (Stoffler and Ryder, 2001) so this may be taken as the age of the four craters, too. Using the dependence of the rock spatial densities at the crater rims on the crater age for the case of mare craters (Li et al., 2017) our measured rock densities correspond to ages from ∼100 to 130 Ma. These estimates are reasonably close to the given age of the primary crater Tycho. This, in turn, suggests that this technique of crater age estimation is applicable to craters up to ∼1.5 km in diameter. For the four considered craters we also measured their depth/diameter ratios and the maximum angles of the crater inner slopes. For the considered craters it was found that with increasing crater diameter, the depth/diameter ratios and maximum angles of internal slopes increase, but the values of these parameters for specific craters may deviate significantly from the general trends. The deviations probably result from some dissimilarities in the primary crater geometries, that may be due to crater to crater differences in characteristics of impactors (e.g., in their bulk densities) and/or differences in the mechanical properties of the target. It may be possible to find secondaries of crater Tycho in the South pole area and, if so, they may be studied to check the specifics and rates of the rock boulder degradation in the lunar polar environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040065767&hterms=Eocene&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DEocene','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040065767&hterms=Eocene&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DEocene"><span>Hydrocode Simulations of the Chesapeake Bay Impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collins, G. S.; Melosh, H. J.</p> <p>2004-01-01</p> <p>The Chesapeake Bay Impact Crater (CBIC) formed about 35 million years ago (late Eocene), in a shallow marine environment (400-600 m water depth). The crater is complex and developed in a multi-layer, rheologically-variable target that comprised 400-1000 meters of soft, water-saturated sediments overlying crystalline basement. Seismic reflection data illustrates that the Chesapeake Bay crater morphology - often described as an "inverted sombrero" - is similar to other marine-target impact craters. It consists of a approx. 1 - 1.5-km deep, highly disturbed central crater, surrounded by a shallower, less deformed basin. The inner crater has a diameter of approx. 40 km; the edge of the outer basin extends to 85-km diameter. The morphological divide between the inner and outer crater is termed the inner ring or peak ring. Little is known about the nature of the inner ring. Seismic reflection data show that the underlying basement is modestly uplifted; however, it is unclear whether the pristine surface expression of the inner ring was elevated above the floor of the outer crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780031470&hterms=Astronaut+training&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DAstronaut%2Btraining','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780031470&hterms=Astronaut+training&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DAstronaut%2Btraining"><span>Nevada Test Site craters used for astronaut training</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, H. J.</p> <p>1977-01-01</p> <p>Craters produced by chemical and nuclear explosives at the Nevada Test Site were used to train astronauts before their lunar missions. The craters have characteristics suitable for reconnaissance-type field investigations. The Schooner test produced a crater about 300 m across and excavated more than 72 m of stratigraphic section deposited in a fairly regular fashion so that systematic observations yield systematic results. Other features common on the moon, such as secondary craters and glass-coated rocks, are present at Schooner crater. Smaller explosive tests on Buckboard Mesa excavated rocks from three horizontal alteration zones within basalt flows so that the original sequence of the zones could be determined. One crater illustrated the characteristics of craters formed across vertical boundaries between rock units. Although the exercises at the Nevada Test Site were only a small part of the training of the astronauts, voice transcripts of Apollo missions 14, 16, and 17 show that the exercises contributed to astronaut performance on the moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850047917&hterms=dg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddg','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850047917&hterms=dg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddg"><span>The scaling of complex craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Croft, S. K.</p> <p>1985-01-01</p> <p>The empirical relation between the transient crater diameter (Dg) and final crater diameter (Dr) of complex craters and basins is estimated using cumulative terrace widths, central uplift diameters, continuous ejecta radii, and transient crater reconstructions determined from lunar and terrestrial impact structures. The ratio Dg/Dr is a power law function of Dr, decreasing uniformly from unity at the diameter of the simple-complex crater morphology transition to about 0.5 for large multiring basins like Imbrium on the moon. The empirical constants in the Dg/Dr relation are interpreted physically to mean that the position of the final rim relative to the transient crater, and hence the extent of collapse, is controlled or greatly influenced by the properties of the zone of dissociated material produced by the impact shock. The continuity of the Dg/Dr relation over the entire spectrum of morphologic types from complex craters to multiring basins implies that the rims of all these structures form in the same tectonic environment despite morphologic differences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04904&hterms=Northeast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DNortheast','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04904&hterms=Northeast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DNortheast"><span>Exhuming Crater in Northeast Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>MGS MOC Release No. MOC2-563, 3 December 2003<p/>The upper crust of Mars is layered, and interbedded with these layers are old, filled and buried meteor impact craters. In a few places on Mars, such as Arabia Terra, erosion has re-exposed some of the filled and buried craters. This October 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example. The larger circular feature was once a meteor crater. It was filled with sediment, then buried beneath younger rocks. The smaller circular feature is a younger impact crater that formed in the surface above the rocks that buried the large crater. Later, erosion removed all of the material that covered the larger, buried crater, except in the location of the small crater. This pair of martian landforms is located near 17.6oN, 312.8oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050166963','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050166963"><span>Martian Impact Craters as Revealed by MGS and Odyssey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, N. G.</p> <p>2005-01-01</p> <p>A variety of ejecta and interior morphologies were revealed for martian impact craters by Viking imagery. Numerous studies have classified these ejecta and interior morphologies and looked at how these morphologies correlate with crater diameter, latitude, terrain, and elevation [1, 2, 3, 4]. Many of these features, particularly the layered (fluidized) ejecta morphologies and central pits, have been proposed to result when the crater formed in target material containing high concentrations of volatiles. The Catalog of Large Martian Impact Craters was originally derived from the Viking 1:2,000,000 photomosaics and contains information on 42,283 impact craters 5-km diameter distributed across the entire martian surface. The information in this Catalog has been used to study the distributions of craters displaying specific ejecta and interior morphologies in an attempt to understand the environmental conditions which give rise to these features and to estimate the areal and vertical extents of subsurface volatile reservoirs [4, 5]. The Catalog is currently undergoing revision utilizing Mars Global Surveyor (MGS) and Mars Odyssey data [6]. The higher resolution multispectral imagery is resulting in numerous revisions to the original classifications and the addition of new elemental, thermophysical, and topographic data is allowing new insights into the environmental conditions under which these features form. A few of the new results from analysis of data in the revised Catalog are discussed below.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20339.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20339.html"><span>Erosion and Deposition in Schaeberle Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-01-14</p> <p>Schaeberle Crater is a large, heavily-infilled crater with many interesting features. This image NASA Mars Reconnaissance Orbiter spacecraft shows a window into the crater fill deposit, showcasing eroding bedrock and aeolian landforms. This pit is located near the geometric center of our image, making it a central pit crater. Central pit craters are thought to form from impact melt draining through subsurface cracks in the deepest part of the crater shortly following impact. A closeup image shows light-toned bedrock and a small cliff that appears to be weathering away. Below the cliff there are several different types of aeolian features, including ripples and transverse aeolian ridges (TAR). The sand that forms the small, bluish ripples may be weathering out of the cliff face, in contrast to the larger, light-toned TAR which are thought to be currently inactive. More of the TAR are visible in another closeup image. In this case, they are clearly covered by a dark, ripple-covered sand sheet. We have only imaged this location once, so it is impossible to determine whether or not the sand sheet is blowing in the wind. But due to repeated HiRISE imaging in other areas, active dunes are now known to be common across Mars and we can reasonably speculate that these dunes are moving, too. http://photojournal.jpl.nasa.gov/catalog/PIA20339</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMTB...48.2114W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMTB...48.2114W"><span>Jet Mixing in Direct-Chill Casting of Aluminum: Crater Effects and its Consequence on Centerline Segregation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagstaff, Samuel R.; Allanore, Antoine</p> <p>2017-08-01</p> <p>Recent reports have demonstrated the possibility of mitigating macrosegregation during the Direct-Chill casting of rolling slab ingots using an impinging jet. Herein, an analytical model is presented to predict the shape of the crater formed due to the impact of the jet on the slurry region. The model takes into account alloy composition, physical dimension, and casting speed on the distribution of forces and crater shape. The calculated shape of the crater profile is used to explain the centerline depletion in the impingement region previously reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03797&hterms=DIRT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DDIRT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03797&hterms=DIRT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DDIRT"><span>Hesperia Planum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>(Released 16 May 2002) The Science This THEMIS visible image shows a close-up view of the ridged plains in Hesperia Planum. This region is the classic locality for martian surfaces that formed in the 'middle ages' of martian history. The absolute age of these surfaces is not well known. However, using the abundance of impact craters, it is possible to determine that the Hesperian plains are younger than the ancient cratered terrains that dominate the southern hemisphere, and are older than low-lying plains of the northern hemisphere. In this image it is possible to see that this surface has a large number of 1-3 km diameter craters, indicating that this region is indeed very old and has subjected to a long period of bombardment. A large (80 km diameter) crater occurs just to the north (above) this image. The material that was thrown out onto the surface when the crater was formed ('crater ejecta') can be seen at the top of the THEMIS image. This ejecta material has been heavily eroded and modified since its formation, but there are hints of lobate flow features within the ejecta. Lobate ejecta deposits are thought to indicate that ice was present beneath the surface when the crater was formed, leading to these unusual lobate features. Many of the Hesperian plains are characterized by ridged surfaces. These ridges can be easily seen in the MOLA context image, and several can be seen cutting across the lower portion of the THEMIS image. These 'wrinkle' ridges are thought to be the result of compression (squeezing) of the lavas that form these plains. The Story The rough-and-tumble terrain at the top of this image is made of material that was thrown out onto the surface when the massive, almost 50-mile-wide crater in the context image (see right) was blasted out of the surface. This ejected material shows longtime signs of erosion, but what's intriguing to geologists are residual signs of a curved, rounded flow pattern. Seeming to drip down the surface like a very thick, layered candle wax, the appearance of these lobes might mean that ice was present beneath the surface when the crater was formed. If dry dirt and rock alone had been ejected, we probably wouldn't see these flow-like features. Note how tiny craters polka-dot the surface below this ejecta blanket. Most of them have very ragged, eroded edges. This terrain is clearly very old, and has been subjected to a whole lot of bombardment in its time. How old is it? Well, to understand, you need to know a little about the way planets form and evolve. After a new star is formed, there's a lot of leftover dust and gas around it. Eventually, all of this material runs into each other and clumps together due to gravitational attraction. Eventually, these clumps of material grow so large that they become young planets. In a young solar system, there are many pieces of 'stuff' still orbiting out there in space, and when they run into a rocky planet, they blast away at the surface, forming craters. Eventually, these leftover orbiting bodies have mostly all impacted. It's a good thing we're in an age where there's relatively little material left to run into our planet, though of course it still happens sometimes. By looking at this surface in the Hesperian plains of Mars, we can see that it's old, but maybe not so ancient as the heavily cratered terrain dominating the southern hemisphere of Mars. . . and yet not so young as the low-lying plains in the northern hemisphere, which were smoothed over at some point late enough in Martian history to be almost crater-free thereafter. That puts the terrain in this image in the so-called 'middle ages' of Martian history. By comparing all of the differently aged surfaces they can observe, geologists can piece together a record of Mars' geologic history. Geologists can also make another comparison to understand how planets commonly form and evolve. You can see some ridges that cut across the bottom of the image (seen more clearly in the context image to the right). These 'wrinkle' ridges are probably created when the lava that formed these plains was squeezed and compressed. Wrinkle ridges are found not only on Mars, but also on the moon, so that tells us it is not a unique process occurring in only one place in the solar system.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000455','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000455"><span>Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCoy, T.J.; Sims, M.; Schmidt, M.E.; Edwards, L.; Tornabene, L.L.; Crumpler, L.S.; Cohen, B. A.; Soderblom, L.A.; Blaney, D.L.; Squyres, S. W.; Arvidson, R. E.; Rica, J.W.; Treguier, E.; d'Uston, C.; Grant, J. A.; McSween, H.Y.; Golombek, M.P.; Haldemann, A.F.C.; de Souza, P.A.</p> <p>2008-01-01</p> <p>The strike and dip of lithologic units imaged in stereo by the Spirit rover in the Columbia Hills using three-dimensional imaging software shows that measured dips (15-32??) for bedding on the main edifice of the Columbia Hill are steeper than local topography (???8-10??). Outcrops measured on West Spur are conformable in strike with shallower dips (7-15??) than observed on Husband Hill. Dips are consistent with observed strata draping the Columbia Hills. Initial uplift was likely related either to the formation of the Gusev Crater central peak or ring or through mutual interference of overlapping crater rims. Uplift was followed by subsequent draping by a series of impact and volcaniclastic materials that experienced temporally and spatially variable aqueous infiltration, cementation, and alteration episodically during or after deposition. West Spur likely represents a spatially isolated depositional event. Erosion by a variety of processes, including mass wasting, removed tens of meters of materials and formed the Tennessee Valley primarily after deposition. This was followed by eruption of the Adirondack-class plains basalt lava flows which embayed the Columbia Hills. Minor erosion, impact, and aeolian processes have subsequently modified the Columbia Hills. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16237437','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16237437"><span>Secondary craters on Europa and implications for cratered surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bierhaus, Edward B; Chapman, Clark R; Merline, William J</p> <p>2005-10-20</p> <p>For several decades, most planetary researchers have regarded the impact crater populations on solid-surfaced planets and smaller bodies as predominantly reflecting the direct ('primary') impacts of asteroids and comets. Estimates of the relative and absolute ages of geological units on these objects have been based on this assumption. Here we present an analysis of the comparatively sparse crater population on Jupiter's icy moon Europa and suggest that this assumption is incorrect for small craters. We find that 'secondaries' (craters formed by material ejected from large primary impact craters) comprise about 95 per cent of the small craters (diameters less than 1 km) on Europa. We therefore conclude that large primary impacts into a solid surface (for example, ice or rock) produce far more secondaries than previously believed, implying that the small crater populations on the Moon, Mars and other large bodies must be dominated by secondaries. Moreover, our results indicate that there have been few small comets (less than 100 m diameter) passing through the jovian system in recent times, consistent with dynamical simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850015292&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850015292&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology"><span>Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parker, T. J.; Pieri, D. C.</p> <p>1985-01-01</p> <p>Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..280...37D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..280...37D"><span>Observations of an aeolian landscape: From surface to orbit in Gale Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, Mackenzie; Kocurek, Gary</p> <p>2016-12-01</p> <p>Landscapes derived solely from aeolian processes are rare on Earth because of the dominance of subaqueous processes. In contrast, aeolian-derived landscapes should typify Mars because of the absence of liquid water, the long exposure times of surfaces, and the presence of wind as the default geomorphic agent. Using the full range of available orbital and Mars Science Laboratory rover Curiosity images, wind-formed features in Gale Crater were cataloged and analyzed in order to characterize the aeolian landscape and to derive the evolution of the crater wind regime over time. Inferred wind directions show a dominance of regional northerly winds over geologic time-scales, but a dominance of topography-driven katabatic winds in modern times. Landscapes in Gale Crater show a preponderance of aeolian features at all spatial scales. Interpreted processes forming these features include first-cycle aeolian abrasion of bedrock, pervasive deflation, organization of available sand into bedforms, abundant cratering, and gravity-driven wasting, all of which occur over a background of slow physical weathering. The observed landscapes are proposed to represent a spectrum of progressive surface denudation from fractured bedrock, to retreating bedrock-capped mesas, to remnant hills capped by bedrock rubble, to desert pavement plains. This model of landscape evolution provides the mechanism by which northerly winds acting over ∼3 Ga excavated tens of thousands of cubic kilometers of material from the once sediment-filled crater, thus carving the intra-crater moat and exhuming Mount Sharp (Aeolis Mons). The current crater surface is relatively sand-starved, indicating that potential sediment deflation from the crater is greater than sediment production, and that most exhumation of Mount Sharp occurred in the ancient geologic past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70147358','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70147358"><span>Atypical pit craters on Mars: new insights from THEMIS, CTX and HiRISE observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cushing, Glen; Okubo, Chris H.; Titus, Timothy N.</p> <p>2015-01-01</p> <p>More than 100 pit craters in the Tharsis region of Mars exhibit morphologies, diameters and thermal behaviors that diverge from the much larger bowl-shaped pit craters that occur in most regions across Mars. These Atypical Pit Craters (APCs) generally have sharp and distinct rims, vertical or overhanging walls that extend down to their floors, surface diameters of ~50-350 m, and high depth-to-diameter (d/D) ratios that are usually greater than 0.3 (which is an upper-range value for impacts and bowl-shaped pit craters), and can exceed values of 1.8. Observations by the Mars Odyssey THermal Emission Imaging System (THEMIS) show that APC floor temperatures are warmer at night, and fluctuate with much lower diurnal amplitudes than nearby surfaces or adjacent bowl-shaped pit craters. Kīlauea volcano, Hawai'i, hosts pit craters that formed through subsurface collapse into active volcanic dikes, resulting in pits that can appear morphologically analogous to either APCs or bowl-shaped pit craters. Partially-drained dikes are sometimes exposed within the lower walls and floors of these terrestrial APC analogs and can form extensive cave systems with unique microclimates. Similar caves in martian pit craters are of great interest for astrobiology. This study uses new observations by the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) to refine previous work where seven APCs were described from lower-resolution THEMIS visible-wavelength (VIS) observations. Here, we identify locations of 115 APCs, map their distribution across the Tharsis region, characterize their internal morphologies with high-resolution observations, and discuss possible formation mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014824','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014824"><span>Computer simulations of large asteroid impacts into oceanic and continental sites--preliminary results on atmospheric, cratering and ejecta dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Roddy, D.J.; Schuster, S.H.; Rosenblatt, M.; Grant, L.B.; Hassig, P.J.; Kreyenhagen, K.N.</p> <p>1987-01-01</p> <p>Computer simulations have been completed that describe passage of a 10-km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics caused by impact of the asteroid into both oceanic and continental sites. The asteroid was modeled as a spherical body moving vertically at 20 km/s with a kinetic energy of 2.6 ?? 1030 ergs (6.2 ?? 107 Mt ). Detailed material modeling of the asteroid, ocean, crustal units, sedimentary unit, and mantle included effects of strength and fracturing, generic asteroid and rock properties, porosity, saturation, lithostatic stresses, and geothermal contributions, each selected to simulate impact and geologic conditions that were as realistic as possible. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock wave followed by a highly shock compressed and heated air mass. Rapid expansion of this shocked air created a large low-density region that also expanded away from the impact area. Shock temperatures in air reached ???20,000 K near the surface of the uplifting crater rim and were as high as ???2000 K at more than 30 km range and 10 km altitude. Calculations to 30 s showed that the shock fronts in the air and in most of the expanding shocked air mass preceded the formation of the crater, ejecta, and rim uplift and did not interact with them. As cratering developed, uplifted rim and target material were ejected into the very low density, shock-heated air immediately above the forming crater, and complex interactions could be expected. Calculations of the impact events showed equally dramatic effects on the oceanic and continental targets through an interval of 120 s. Despite geologic differences in the targets, both cratering events developed comparable dynamic flow fields and by ???29 s had formed similar-sized transient craters ???39 km deep and ???62 km across. Transient-rim uplift of ocean and crust reached a maximum altitude of nearly 40 km at ???30 s and began to decay at velocities of 500 m/s to develop large-tsunami conditions. After ???30 s, strong gravitational rebound drove both craters toward broad flat-floored shapes. At 120 s, transient crater diameters were ???80 km (continental) and ???105 km (oceanic) and transient depths were ???27 km; crater floors consisting of melted and fragmented hot rock were rebounding rapidly upward. By 60 s, the continental crater had ejected ???2 ?? 1014 t, about twice the mass ejected from the oceanic crater. By 120 s, ???70,000 km3 (continental) and ???90,000 km3 (oceanic) target material were excavated (no mantle) and massive ejecta blankets were formed around the craters. We estimate that in excess of ???70% of the ejecta would finally lie within ???3 crater diameters of the impact, and the remaining ejecta (???1013 t), including the vaporized asteroid, would be ejected into the atmosphere to altitudes as high as the ionosphere. Effects of secondary volcanism and return of the ocean over hot oceanic crater floor could also be expected to contribute substantial material to the atmosphere. ?? 1987.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720013162','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720013162"><span>Microcraters formed in glass by low density projectiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mandeville, J.-C.; Vedder, J. F.</p> <p>1971-01-01</p> <p>Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene with masses between 0.7 and 62 picograms and velocities between 2 and 14 kilometers per second. The morphology of the craters depends on the velocity and angle of incidence of the projectiles. The transitions in morphology of the craters formed by polystyrene spheres occur at higher velocities than they do for more dense projectiles. For oblique impact, the craters are elongated and shallow with the spallation threshold occuring at higher velocity. For normal incidence, the total displaced mass of the target material per unit of projectile kinetic energy increases slowly with the energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20122.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20122.html"><span>Dawn HAMO Image 60</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-11-16</p> <p>Dantu crater on Ceres, seen here at left, reveals structures hinting at tectonic processes that formed the dwarf planet's surface. Linear structures are spread over the crater floor. Outside the crater's rim, the occurrence of linear structures continues the in form of scarps (linear, cliff-like slopes) and ridges. Dantu's diameter is 78 miles (125 kilometers). The image was taken by NASA's Dawn spacecraft on Oct. 3, 2015, from an altitude of 915 miles (1,470 kilometers). It has a resolution of 450 feet (140 meters) per pixel. The image is located at 31 degrees north latitude, 149 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA20122</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P34C..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P34C..02P"><span>Methods of Estimating Initial Crater Depths on Icy Satellites using Stereo Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Persaud, D. M.; Phillips, C. B.</p> <p>2014-12-01</p> <p>Stereo topography, combined with models of viscous relaxation of impact craters, allows for the study of the rheology and thermal history of icy satellites. An important step in calculating relaxation of craters is determining the initial depths of craters before viscous relaxation. Two methods for estimating initial crater depths on the icy satellites of Saturn have been previously discussed. White and Schenk (2013) present the craters of Iapetus as relatively unrelaxed in modeling the relaxation of craters of Rhea. Phillips et al. (2013) assume that Herschel crater on Saturn's satellite Mimas is unrelaxed in relaxation calculations and models of Rhea and Dione. In the second method, the depth of Herschel crater is scaled based on the different crater diameters and the difference in surface gravity on the large moons to predict the initial crater depths for Rhea and Dione. In the first method, since Iapetus is of similar size to Dione and Rhea, no gravity scaling is necessary; craters of similar size on Iapetus were chosen and their depths measured to determine the appropriate initial crater depths for Rhea. We test these methods by first extracting topographic profiles of impact craters on Iapetus from digital elevation models (DEMs) constructed from stereo images from the Cassini ISS instrument. We determined depths from these profiles and used them to calculate initial crater depths and relaxation percentages for Rhea and Dione craters using the methods described above. We first assumed that craters on Iapetus were relaxed, and compared the results to previously calculated relaxation percentages for Rhea and Dione relative to Herschel crater (with appropriate scaling for gravity and crater diameter). We then tested the assumption that craters on Iapetus were unrelaxed and used our new measurements of crater depth to determine relaxation percentages for Dione and Rhea. We will present results and conclusions from both methods and discuss their efficacy for determining initial crater depth. References: Phillips, C.B., et al. (2013). Lunar Planet Sci. XLIV, abstract 2766. White, O.L., and P.L. Schenk. Icarus 23, 699-709, 2013. This work was supported by the NASA Outer Planets Research Program grant NNX10AQ09G and by the NSF REU Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017M%26PS...52.1505H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017M%26PS...52.1505H"><span>Hypervelocity impacts into ice-topped layered targets: Investigating the effects of ice crust thickness and subsurface density on crater morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harriss, Kathryn H.; Burchell, Mark J.</p> <p>2017-07-01</p> <p>Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8-5.3 km s-1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3-30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi-infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well-consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s-1) is effectively semi-infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7-15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well-consolidated basalt, no crater forms in the exposed subsurface layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43A2871F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43A2871F"><span>Investigations of Ceres's Craters with Straightened Rim</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Raponi, A.; Formisano, M.; Ciarniello, M.; Magni, G.; Combe, J. P.; Marchi, S.; Raymond, C. A.; Schwartz, S. J.</p> <p>2017-12-01</p> <p>Dwarf planet Ceres hosts some geological features that are unique in the solar system because its composition, rich in aqueously-altered silicates, is usually found on full-size planets, whereas its mean radius is smaller than most natural satellites in the solar system. For example, the local high-albedo, carbonate-rich areas or faculaeare specific to Ceres; also, the absence of big impact crater structures is key to understand the overall mechanical behaviour of the Cerean crust. After the first findings of water ice occurring in the shadowed areas of craters on Ceres by the NASA/Dawn mission (1, 2), we analyzed the morphology of craters looking for features similar to the ones where the water ice composition has been detected analyzing the data from the VIR spectrometer (3). These craters fall outside of the family of polygonal craters which are mainly related to regional or global scale tectonics (4). We analyzed the morphology on the base of the global mosaic, the digital terrain model derived by using the stereo photogrammetry method and the single data frames of the Framing Camera. Our investigation started from crater Juling, which is characterized by a portion of the rim which forms a straight segment instead of a portion of a circle. This linear crater wall is also steep enough that it forms a cliff that is in the shadowed area in all images acquired by Dawn. Very smooth and bright deposits lay at the foot of this crater-wall cliff. Then, we identified several other craters, relatively fresh, with radius of 2 to 10 kilometers, showing one or two sectors of the crater-rim being truncated by a mass-wasting process, probably a rockfall. Our first analysis show that in the selected craters, the truncated sectors are always in the north-eastern sector of the rim for the craters in the southern hemisphere. Conversely, the craters on the northern hemisphere exhibit a truncated rim in their south-eastern sector. Although a more detailed analysis is mandatory, these first observation are particularly intriguing as they would correlate the mechanical behaviour of the Cerean cust with the presence of ground-ice and the illumination conditions. (1) Platz et al., 2016, Nature Communications. (2) Raponi et al. submitted to Science Advances. (3) Combe et al., submitted to Icarus. (4) Otto et al., LPSC 2017</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2413&hterms=cranes+lifting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcranes%2Blifting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2413&hterms=cranes+lifting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcranes%2Blifting"><span>KSC-04PD-2413</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., a crane begins lifting the third in a set of three Solid Rocket Boosters (SRBs). The SRBs will be hoisted up the mobile service tower and join three others already mated to the Boeing Delta II rocket that will launch the Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing an impactor on a course to hit the comets sunlit side, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measure the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determine the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0126&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0126&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0126</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., shadows paint the Boeing Delta II rocket carrying the Deep Impact spacecraft as the mobile service tower at left is rolled back before launch.Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0125&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0125&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0125</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft looms into the night sky as the mobile service tower at right is rolled back before launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0127&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0127&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret"><span>KSC-05PD-0127</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II carrying the Deep Impact spacecraft rocket shines under spotlights in the early dawn hours as it waits for launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0129&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0129&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0129</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The sun rises behind Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., where the Boeing Delta II rocket carrying the Deep Impact spacecraft waits for launch. Gray clouds above the horizon belie the favorable weather forecast for the afternoon launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2664&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2664&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets"><span>KSC-04PD-2664</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. This view from inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, shows the Boeing Delta II second stage as it reaches the top. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2662&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2662&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets"><span>KSC-04PD-2662</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Launch Pad 17-B, Cape Canaveral Air Force Station, the Boeing Delta II second stage reaches the top of the mobile service tower. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2663&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2663&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets"><span>KSC-04PD-2663</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. This view from inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, shows the Boeing Delta II second stage as it reaches the top. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApPhL.112u1103A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApPhL.112u1103A"><span>Simple method for the characterization of intense Laguerre-Gauss vector vortex beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.</p> <p>2018-05-01</p> <p>We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21870.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21870.html"><span>Crater Rim Layers, Rubble, and Gullies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-08-07</p> <p>This observation from NASA's Mars Reconnaissance Orbiter shows a close view of the rim and upper wall of an impact crater on the Martian surface. The layers in enhanced color are exposed subsurface strata that are relatively resistant to erosion. Boulder-like rubble beyond the crater rim is scattered down the wall of the crater (down-slope is toward the lower left of the image). Another feature of interest to Mars scientists is a large gully roughly 100 meters across. These gullies may have formed when water from melted ice on the crater walls, or from groundwater within the walls, assisted in transporting eroding material downslope. https://photojournal.jpl.nasa.gov/catalog/PIA21870</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.P31D..04E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.P31D..04E"><span>MRO Context Camera (CTX) Investigation Primary Mission Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edgett, K. S.; Malin, M. C.; Science; Operations Teams, M.</p> <p>2008-12-01</p> <p>The Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) acquires panchromatic images of Mars at ~6 m/pixel; the majority cover areas 30 km wide by 43 to 313 km long. As of 31 August 2008, 36% of Mars was imaged at 6 m/pixel and 10.8% was covered more than once. Areas imaged multiple times include stereopairs and locations covered repeatedly to monitor dust-raising events, seasonal frost patterns, or landforms and albedo features known or anticipated to change. CTX provides context for data acquired by other MRO science instruments, as well. Using our knowledge of imaging performance as a function of seasonal atmospheric, frost, and insolation conditions from the 4 Mars-year Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) investigation, we undertook several time-dependent campaigns to create 6 m/pixel mosaics of regions such as Hellas Planitia, the south polar residual cap (covered in spring and in summer), and the north polar region. In addition, we obtained 6 m/pixel mosaics of the Valles Marineris, Sinus Meridiani, Marte Valles, Athabasca Valles, portions of the northern plains, fretted terrain and chaotic terrain, large volcanoes, yardang-forming materials in Amazonis and Aeolis, the small volcanoes and platy flows south of Cerberus, and many other regions. We monitored thousands of mid-latitude gullies, and we used our MOC experience to target dust-raising events that repeat every year at the same locations. Retreat of cliffs formed in layers of CO2 ice in the south polar cap was observed for the 5th southern summer since 1999. Dozens of new impact craters and crater clusters were observed; all formed since 1999 and some formed during the MRO Primary Mission. We routinely re-targeted the new impact sites to see how they change and alert other MRO instrument teams so they could observe them. CTX images of the cratered highlands emphasize the view that the upper crust of Mars is layered with interbedded filled and buried valleys, fluvial channels, and impact craters ranging in diameter from meters to hundreds of kilometers. CTX observations reiterate a critical MOC result regarding small, sub-kilometer diameter craters: the substrates most resistant to erosion retain the most small craters (and the boulders produced by the impacts). CTX images provide many examples in which a younger, harder substrate (e.g., a lava flow) is more heavily cratered (with < 1 km diameter craters) than subjacent, older rock units. One example occurs in the form of lava flows located immediately west of Meridiani Planum; similar flows underlie the hematite-bearing, plains- forming rock in nearby Miyamoto Crater. Northern Meridiani also exhibits exhumed, low-order streams (of the scale of hillslope rills and creeks); these were filled, buried, lithified, and later returned to the surface by erosion-some of them in inverted form. Terrain immediately west of Juventae Chasma exhibits similar inverted streams and rills that were first documented by MOC and provide key evidence for rainfall and hillslope runoff. CTX data show that there are many hundreds of inverted fluvial channels, of a variety of sizes, all over the planet, especially in Arabia Terra, Solis Planum, and Thaumasia. We also used CTX to map a small, unnamed outflow channel system west of Bond Crater, and we have been documenting all of the small Martian volcanoes, typically < 30 km across, including those occurring in the Labyrinthus Noctis. CTX data are widely available, as they are archived with the NASA Planetary Data System on a rolling basis every 6 months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4850605B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4850605B"><span>Floor-fractured craters on Ceres and implications for interior processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buczkowski, Debra; Schenk, Paul M.; Scully, Jennifer E. C.; Park, Ryan; Preusker, Frank; Raymond, Carol; Russell, Christopher T.</p> <p>2016-10-01</p> <p>Several of the impact craters on Ceres have patterns of fractures on their floors. These fractures appear similar to those found within a class of lunar craters referred to as Floor-Fractured Craters (FFCs) [Schultz, 1976].Lunar FFCs are characterized by anomalously shallow floors cut by radial, concentric, and/or polygonal fractures, and have been classified into crater classes, Types 1 through 6, based on their morphometric properties [Schultz, 1976; Jozwiak et al, 2012, 2015]. Models for their formation have included both floor uplift due to magmatic intrusion below the crater or floor shallowing due to viscous relaxation. However, the observation that the depth versus diameter (d/D) relationship of the FFCs is distinctly shallower than the same association for other lunar craters supports the hypotheses that the floor fractures form due to shallow magmatic intrusion under the crater [Jozwiak et al, 2012, 2015].FFCs have also been identified on Mars [Bamberg et al., 2014]. Martian FFCs exhibit morphological characteristics similar to the lunar FFCs, and analyses suggest that the Martian FCCs also formed due to volcanic activity, although heavily influenced by interactions with groundwater and/or ice.We have cataloged the Ceres FFCs according to the classification scheme designed for the Moon. Large (>50 km) Ceres FFCs are most consistent with Type 1 lunar FFCs, having deep floors, central peaks, wall terraces, and radial and/or concentric fractures. Smaller craters on Ceres are more consistent with Type 4 lunar FFCs, having less-pronounced floor fractures and a v-shaped moats separating the wall scarp from the crater interior.An analysis of the d/D ratio for Ceres craters shows that, like lunar FFCs, the Ceres FFCs are anomalously shallow. This suggests that the fractures on the floor of Ceres FFCs may be due the intrusion of a low-density material below the craters that is uplifting their floors. While on the Moon and Mars the intrusive material is hypothesized to be silicate magma, this is unlikely for Ceres. However, a cryovolcanic extrusive edifice has been identified on Ceres [Ruesch et al., 2016], suggesting that cryomagmatic intrusions could be responsible for the formation of the Ceres FFCs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024839','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024839"><span>Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.</p> <p>2002-01-01</p> <p>Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains concentric faults and compression ridges formed in rocks of the crystalline basement. The Chesapeake Bay crater is distinguished further by its cluster of at least 23 adjacent secondary craters. The North American tektite strewn field, a widespread deposit of distal ejecta, is thought to be derived from the Chesapeake Bay impact, perhaps with a small contribution from the Toms Canyon impact. No ejecta field is known to be associated with the Montagnais impact. No immediate major extinction event is directly linked to any of these three impacts. There is evidence, however, that the Chesapeake Bay and Toms Canyon impacts helped initiate a long-term pulse of warm global climate, whose eventual dissipation coincided with an early Oligocene mass extinction event, 2 Ma after the impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0001&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0001&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret"><span>KSC-05PD-0001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits at Astrotech Space Operations in Titusville, Fla., for placement of a protective cover before the canister is installed around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0004&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0004&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret"><span>KSC-05PD-0004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians place the lower segments of a protective canister around the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0007&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0007&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret"><span>KSC-05PD-0007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians lower the upper canister toward the Deep Impact spacecraft. It will be attached to the lower segments already surrounding the spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0005&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0005&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret"><span>KSC-05PD-0005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians roll the Deep Impact spacecraft into another area where the upper canister can be lowered around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0002&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0002&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret"><span>KSC-05PD-0002</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., a protective cover is being lowered over the Deep Impact spacecraft to protect it before the canister is installed around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0011&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0011&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft leaves Astrotech Space Operations in Titusville, Fla., in the pre-dawn hours on a journey to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0003&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0003&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret"><span>KSC-05PD-0003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians lower a protective cover over the Deep Impact spacecraft to protect it before the canister is installed around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3- foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0006&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0006&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret"><span>KSC-05PD-0006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians install a crane onto the upper canister before lifting it to install around the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0009&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0009&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsecret"><span>KSC-05PD-0009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians attach the upper canister with the lower segments surrounding the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0008&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0008&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret"><span>KSC-05PD-0008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians lower the upper canister toward the Deep Impact spacecraft. It will be attached to the lower segments already surrounding the spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21654.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21654.html"><span>Gullies and Craters and Dunes, Oh My!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-06-02</p> <p>This unnamed, approximately 30-kilometer diameter crater, formed in the Southern highlands of Mars. This image from NASA's Mars Reconnaissance Orbiter shows regions of geologic diversity within, making this an interesting spot for scientists to study how different Martian processes interact with each other. Gullies, or channels formed by fluids such as water or lava, cut into the rim and sides of this crater. The presence of gullies can reveal clues about the ancient history of Mars, such as the amount of flowing fluid needed to form them and roughly how long ago that happened. This crater may also host features actively changing on the surface of Mars known as "recurring slope lineae" (RSL). Manifesting as dark streaks on steep slopes such as the walls of craters, scientists posit briny flows of small volumes of water as a possible RSL formation method. Studying the behavior of RSL further may provide evidence for the presence of water on Mars today. Moving toward the crater floor, one can observe patterns indicative of dunes. Dunes arise from the breakdown of exposed rocks by wind and subsequent manipulation of the eroded sand particles into wave-like structures. The presence of dust devil tracks provides additional evidence for significant wind activity at this location. These dunes are very dusty and so likely haven't been active (moved) in some time. HiRISE also captured a small, relatively fresh crater on the floor near the dunes. One of the most ubiquitous processes in the solar system, impact cratering can drastically change the surface of a planetary body. As such, craters provide sources of comparison between planets, moons, and other bodies across the solar system. Impacts still occur today, helping scientists find relative ages of different areas of a planet and discover materials buried under the surface. All of these processes have altered the surface of Mars in the past and continue to do so today. Since gully formation, wind erosion, and impact cratering could have interacted with each other for many years, planetary scientists find it difficult to work backwards and make definitive statements about ancient Martian history. However, HiRISE imagery has aided in closing these gaps in our scientific knowledge. https://photojournal.jpl.nasa.gov/catalog/PIA21654</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22141.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22141.html"><span>Investigating Mars: Rabe Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-13</p> <p>Dunes cover the majority of this image of Rabe Crater. As the dunes are created by wind action the forms of the dunes record the wind direction. Dunes will have a long low angle component and a short high angle side. The steep side is called the slip face. The wind blows up the long side of the dune. In this VIS image the slip faces are illuminated more than the longer side. In this part of the crater the winds were generally moving from the lower right corner of the image towards the upper left. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 35105 Latitude: -43.8533 Longitude: 34.8802 Instrument: VIS Captured: 2009-11-12 19:59 https://photojournal.jpl.nasa.gov/catalog/PIA22141</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940031652','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940031652"><span>Morphology of meteoroid and space debris craters on LDEF metal targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.</p> <p>1994-01-01</p> <p>We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P41D2864R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P41D2864R"><span>Impact Craters: Size-Dependent Degration Rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ravi, S.; Mahanti, P.; Meyer, H. M.; Robinson, M. S.</p> <p>2017-12-01</p> <p>From superposition relations, Shoemaker and Hackman (1) devised the lunar geologic timescale with Copernican and Eratosthenian as the most recent periods. Classifying craters into the two periods is key to understanding impactor flux and regolith maturation rates over the last 3 Ga. Both Copernican and Eratosthenian craters exhibit crisp morphologies (sharp rims, steep slopes), however, only the former exhibit high reflectance rays and ejecta (1). Based on the Optical Maturity Parameter (OMAT; 2), Grier et al. (3) classified 50 fresh craters (D >20 km) into 3 categories - young (OMAT >0.22), intermediate, and old (OMAT <0.16). In our previous work, Copernican craters (D > 10) were identified (4) from a catalogue of 11,875 craters (5). In this work; we compare two size ranges (D: 5 km - 10 km and 10 km to 15 km) of 177 Copernican craters based on the average OMAT, measured near the crater rim (3). OMAT is measured at the crater rim (as opposed to further away from the crater) to minimize the influence of spatial variation of OMAT (6) in our investigation. We found that OMAT values are typically lower for smaller craters (5km < D < 10km) in comparison to larger craters (10km < D < 15km). However, when compared against morphological freshness (as determined by d/D for simpler craters), the smaller craters were fresher (higher d/D value). Since the OMAT value decreases with age, craters with higher d/D value (morphologically fresher) should have higher OMAT, but this is not the case. We propose that quicker loss of OMAT (over time) for smaller craters compared to decrease in d/D with crater ageing, is responsible for the observed decreased OMAT for smaller craters. (1) Shoemaker and Hackman, 1962 (2) Lucey et al., 2000 (3) Grier et al., 2001 (4) Ravi et al., 2016 (5) Reinhold et al., 2015 (6) Mahanti et al., 2016</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/2790/pdf/i2790.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/2790/pdf/i2790.pdf"><span>Crater Lake revealed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ramsey, David W.; Dartnell, Peter; Bacon, Charles R.; Robinson, Joel E.; Gardner, James V.</p> <p>2003-01-01</p> <p>Around 500,000 people each year visit Crater Lake National Park in the Cascade Range of southern Oregon. Volcanic peaks, evergreen forests, and Crater Lake’s incredibly blue water are the park’s main attractions. Crater Lake partially fills the caldera that formed approximately 7,700 years ago by the eruption and subsequent collapse of a 12,000-foot volcano called Mount Mazama. The caldera-forming or climactic eruption of Mount Mazama drastically changed the landscape all around the volcano and spread a blanket of volcanic ash at least as far away as southern Canada.Prior to the climactic event, Mount Mazama had a 400,000 year history of cone building activity like that of other Cascade volcanoes such as Mount Shasta. Since the climactic eruption, there have been several less violent, smaller postcaldera eruptions within the caldera itself. However, relatively little was known about the specifics of these eruptions because their products were obscured beneath Crater Lake’s surface. As the Crater Lake region is still potentially volcanically active, understanding past eruptive events is important to understanding future eruptions, which could threaten facilities and people at Crater Lake National Park and the major transportation corridor east of the Cascades.Recently, the lake bottom was mapped with a high-resolution multibeam echo sounder. The new bathymetric survey provides a 2m/pixel view of the lake floor from its deepest basins virtually to the shoreline. Using Geographic Information Systems (GIS) applications, the bathymetry data can be visualized and analyzed to shed light on the geology, geomorphology, and geologic history of Crater Lake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ARC-1989-A89-7048.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ARC-1989-A89-7048.html"><span>ARC-1989-A89-7048</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1989-08-27</p> <p>P-34713 This Voyager image of Triton reveals two kinds of mid-latitude terrain. Near the center and the lower half of the frame is a gently rolling terrain pock-marked with a modest number of impact craters. The density of impact craters is somewhat similiar to that found on the mare surface of Earth's moon. Crossing this rolling surface are narrow rifts, one of which grades into a chain of craters that probably are of collapse origin. In the upper right part of the frame is a smooth terrain with very sparse impact craters. This terrain evidently has been formed by flooding of the surface by low-viscosity fluids rather late in geologic time. One of the vents from which these fluids erupted probably is represented by a deep, elongate crater near the middle of the right side of the image. Two slightly dark regions underlain by late eruptive material also occur in the left half of the image. Apparent vents for these eruptions are marked by shallow depressiions, which may have been formed by drain back of material at the end of the eruptive episode.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA12068.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA12068.html"><span>Fading Away</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-06-09</p> <p>This NAC image from MESSENGER’s second Mercury flyby shows a crater with a set of light-colored rays radiating outward from it. Such rays are formed when an impact excavates material from below the surface and throws it outward from the crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA02447.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA02447.html"><span>Scarps Confined to Crater Floors - High Resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2000-01-18</p> <p>This image was taken by NASA Mariner 10 during it first encounter with Mercury in 1974. The scarp forms a broad lobe whose southern end abuts against and follows closely the irregular contour of the crater wall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21517.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21517.html"><span>Russell Crater Dunes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-03-27</p> <p>Today's VIS image shows part of the large dune form on the floor of Russell Crater. Orbit Number: 67151 Latitude: -54.3002 Longitude: 13.0603 Instrument: VIS Captured: 2017-02-02 03:15 http://photojournal.jpl.nasa.gov/catalog/PIA21517</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002566','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002566"><span>Hydrological Modeling of the Jezero Crater Outlet-Forming Flood</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fassett, Caleb I.; Goudge, Timothy A.</p> <p>2017-01-01</p> <p>Jezero crater is a site of prime scientific interest because it was a lake early in Mars history. Preserved clay- and carbonate-bearing sedimentary fans on Jezero's western and northwestern margin (Fig. 2) are accessible to future exploration. Geologic context [1] and stratigraphic analysis of the western fan strongly support the interpretation that these fans were deposited as deltas into the lake. This has helped establish Jezero as one of the final candidate landing sites for Mars 2020. The high level of certainty that Jezero was a lake results from the existence of its outlet valley, which required filling of the crater to form [e.g., 1,4]. Here, we specifically focus on how this outlet valley was carved by the dam breach flood that eroded the eastern crater rim. We have completed preliminary modeling in both 1D and 2D of the outlet's formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000450','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000450"><span>Columbia Hills, Mars: Aeolian features seen from the ground and orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Greeley, R.; Whelley, P.L.; Neakrase, L.D.V.; Arvidson, R. E.; Bridges, N.T.; Cabrol, N.A.; Christensen, P.R.; Di, K.; Foley, D.J.; Golombek, M.P.; Herkenhoff, K.; Knudson, A.; Kuzmin, R.O.; Li, R.; Michaels, T.; Squyres, S. W.; Sullivan, R.; Thompson, S.D.</p> <p>2008-01-01</p> <p>Abundant wind-related features occur along Spirit's traverse into the Columbia Hills over the basaltic plains of Gusev Crater. Most of the windblown sands are probably derived from weathering of rocks within the crater, and possibly from deposits associated with Ma'adim Vallis. Windblown particles act as agents of abrasion, forming ventifacts, and are organized in places, into various bed forms. Wind-related features seen from orbit, results from atmospheric models, and considerations of topography suggest that the general wind patterns and transport pathways involve: (1) winter nighttime winds that carry sediments from the mouth of Ma'adim. Vallis into the landing site area of Spirit, where they are mixed with locally derived sediments, and (2) winter daytime winds that transport the sediments from the landing site southeast toward Husband Hill; similar patterns occur in the summer but with weaker winds. Reversals of daytime flow out of Gusev Crater and nighttime wind flow into the crater can account for the symmetry of the bed forms and bimodal orientations of some ventifacts. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050170016','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050170016"><span>Martian Central Pit Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hillman, E.; Barlow, N. G.</p> <p>2005-01-01</p> <p>Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..237K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..237K"><span>Young populations of small craters on Mars: A case study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kreslavsky, M.</p> <p>2008-09-01</p> <p>Introduction The HiRISE camera imaged the Mars surface at scales that had never been studied before. Beside a host of other fascinating features, these images revealed small (diameter D down to 1 m) impact craters. In planetary geology, impact craters and properties of their populations have been used as valuable sources of information about surface history and geological processes. Small craters on Mars can potentially give essential information about young terrains on this planet, resurfacing rates at small scales and the most recent events in the geological history, first of all, the most recent climate changes. Very young crater populations are thought to be unaffected by distal secondary craters, because they are formed after the most recent secondary-forming event. However, extracting this information is not simple or straightforward. Here I illustrate these difficulties and ways of overcoming them using a population of small craters on ejecta of crater Zunil as an example. Population of small craters on Zunil ejecta Terrain I used HiRISE images PSP_001764_1880 and PSP_002397_1880. In these images I outlined an area (totally 52.8 km2) to NE, NW and SW of the crater limited by the toes of the outer walls of Zunil and the image boundaries. Terrain texture within the area is diverse; however, the area is entirely within the proximal ejecta lobes. The ejecta material was obviously emplaced as a result of the Zunil-forming impact and has a uniform age. The morphology of the surface indicates later resurfacing of steep slopes (over a small total area) and minor eolian modification of the terrain; some sub-areas might be modified by the post-impact hydrothermal activity. Crater population I registered diameters and positions of all impact craters in the area, a total of 1025 craters with D > 1.5 m. The largest of them has D = 20 m. Craters usually have no visible ejecta, which indicates some minor (perhaps, eolian) modification of the surface. Almost all craters have flat floors due to infill with loose material (only a few craters have pristine bowl-shaped floors). Thus, the most prominent process of crater modification is deposition of loose wind-transported material (sand and dust). However, the total number of recognisable craters with partly buried rims is small; it looks like the accumulation of sand and dust effectively fills depressions only, while the total accumulation is modest. This suggests that the number of obliterated craters is small, especially among larger craters. Clustering due to atmospheric break-up Some craters in the population form more or less tight clusters. These clusters are formed due to the break-up of projectiles in the atmosphere [1]. The morphology of overlapping craters is perfectly consistent with simultaneous impacts of fragments of the same projectile. The largest cluster contains 44 craters and reaches ~400 m in size, which is noticeably greater than predicted for the atmospheric break-up in [1] (~50 m) and observed for 20 impacts that have occurred during the last decade [2] (<100 m, [1]). The largest cluster(s) can be a superposition of two clusters formed by different projectiles, or the separation of the fragments can be greater due to periods of higher atmospheric pressure in the recent past. For the purposes of age estimates each cluster should be considered as a single impact event. I ran a "clustering" algorithm, which repeatedly searches for the tightest pair of craters and replaces it with an "effective" crater with diameter Deff = (D1 3+D2 3)1/3 located between the original craters. The process was stopped when the separation between craters in the tightest pair reached 40 m. This limit was consistently deduced from: (1) visual comparison of plots of frequency distributions of the nearest-neighbourdistance for the actual population and simulated purely random spatial scattering; (2) application of the "clustering" algorithm to purely random simulations and comparison of the frequency distributions of the nearest-neighbour-distance with the result for the actual population; (3) results of modelling of atmospheric break-up [1]. The "clustering" algorithm resulted in a population of 698 craters and "effective" craters representing clusters. For some clusters the 40 m separation limit is insufficient; for example, the largest cluster after applying the "clustering" algorithm is reduced to 3 "effective" craters and 1 single crater. On the other hand, comparison with the purely random simulations shows that several pairs in the population are merged erroneously (they have a small separation just by chance). The error in the total number of independent impact events, however, is well below 10%. For denser populations of small craters (for older terrains) the overlap of clusters produced by different projectiles would preclude identification of individual impact events; this would bring much greater uncertainty in the age considerations. The majority of the craters after the "clustering" procedure remain single. Among clusters identified by the "clustering" algorithm, pairs dominate. Only 23 formally identified clusters contain 5 or more craters. Among 19 craters with Deff > 10 m, 12 are "effective" craters representing pairs or multiple craters. This proportion is lower than observed for the latest impacts [1]; in the latter case craters smaller than 1.5 m are identifiable [1]; this explains the discrepancy. Spatial randomness To test spatial randomness I compared some statistics of the actual population and a set of simulated purely random populations, all having undergone the "clustering" algorithm. In particular, I used the standard deviation of the nearest neighbour distance and the interquartile amplitude of the adjacent area (see [3] for details). These tests do not reject spatial randomness of the actual population. Size-frequency distribution I applied the technique from [4] to find simultaneously the maximum-likelihood power-law fit for the cumulative size-frequency distribution (SFD) (after "clustering") and its low-diameter cut-off Dmin. This technique gave a rather good fit for Dmin = 4.85 - 4.95 m and power-law exponent α = 3.16 - 3.20. The latter values coincide perfectly with the typical slope of the Neukum production function (NPF) for Mars [5] for the smallest diameters D < 100 m (the NPF has been defined only for D > 10 m). Thus, my observations give grounds for power-law extrapolation of the NPF down to D = 5 m. For D < 5 m the observed SFD is progressively gentler, which can be caused by difficulty in identification of small craters in rough terrains and possible obliteration (burial) of small craters. Age constraints from the crater population The density of craters larger than D N(D) has been widely used to establish stratigraphic relationships between terrains and to estimate absolute ages. Such inferences assume that crater emplacement can be considered as a Poisson process with a known rate R(D) per unit area. The use of N(D), however, is not straightforward; many additional considerations are necessary for meaningful and reliable inferences. Crater obliteration. N(D) gives an estimate of the crater retention age. We can identify this age with the terrain age, if we have reasons to neglect obliteration of craters. A steep SFD is a good reason for such an assumption: the crater obliteration rate is higher for smaller craters, and if the obliteration is significant, one should expect the resulting SFD to be gentler than the production function. For the case of Zunil ejecta, the SFD suggests the use of N(D=5m). Morphological observations (see above) also suggest minor crater obliteration; nevertheless, some crater rims can be buried, and it is probable that N(D=5m) underestimates the terrain age. My subjective guess based on the morphology is that this bias is less than ~20-30%. Formal statistical error. The observed number of craters M(D) = A N(D) in an area A can be used to obtain a confidence interval for the average crater retention age T: 1(1- ; ) < ṡ ṡ < -1( ; +1) Γ - FΓ p M T A R F p M , where R is the cratering rate (assumed to be known), p is the confidence level, for example, 0.9 or 0.95 or 0.99, and -1(ṡ ; ṡ) FΓ is the inverse cumulative gamma distribution. For a large number of craters, practically, for M > 10, this confidence interval is well approximated by the traditionally used M error bars: M - Fn-1( p) M < T ṡ Aṡ R < M + Fn-1( p) M , where -1(ṡ) Fn is the inverse cumulative standard normal distribution. For the case of the Zunil ejecta, M = 175 (D > 5m), and the age "error bar" is ±12%, assuming p = 0.95. This formal statistical error is comparable or smaller than the possible bias due to crater obliteration. Cratering rate variations. The magnitude and time scales of cratering rate variations are unknown and produce the main uncertainty in stratigraphic inferences from crater populations. If compact meteorite swarms contribute significantly to the rate, significant temporal and spatial variations of the rate could occur. Thus, such inferences are "meaningful with caution". Absolute rate and age. R(D=5m) is unknown, but can be estimated in two ways. Extrapolation of the NPF with the power law (α = 3.2) gives R(5m) = 19 km-2Ma-1, which gives Zunil impact age TZ = 180 ka. Note that rescaling of the NPF from the Moon to Mars is accurate only within a factor of 2 [5], and the use of the NPF actually means a far extrapolation from the 100s Ma scale down to the ~100s ka scale. On the other hand, R(10 m) can be estimated from the new craters formed during the last decade [2] with a correction needed for spatial randomness [3]. Extrapolation of this rate with the power law (α = 3.2) gives R(5m) > 6 km-2Ma-1 with > ±30% formal statistical uncertainty, which gives TZ < 540 ka. Note that this constraint actually means a far extrapolation from the ~10 a scale down to the ~100s ka scale. Given all the uncertainties, the two extrapolations of R(5m) are wonderfully consistent. In addition, the inferred age is perfectly consistent with Zunil being the youngest (or, less probable, the 2nd youngest) crater with D > 10 km on the planet. References [1] Ivanov, B. et al. (2008) LPS XXXIX, #1221. [2] Malin, M. et al. (2006) Science, 314, 1573-1577. [3] Kreslavsky, M. (2007) 7th Mars Conf., #3325. [4] Clauset, A. (2007) arXiv:0706.1062v1. [5] Ivanov, B. (2001) Space Sci. Rev., 96, 87-104.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995Metic..30..578S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995Metic..30..578S"><span>Impact Crater Identified on the Navajo Nation Near Chinle, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shoemaker, E. M.; Roddy, D. J.; Moore, C. B.; Pfeilsticker, R.; Curley, C. L.; Dunkelman, T.; Kuerzel, K.; Taylor, M.; Shoemaker, C.; Donnelly, P.</p> <p>1995-09-01</p> <p>A small impact crater has been identified about 8 km north of Chinle, Arizona on the Navajo Nation. Preliminary studies show that the crater is elongate in a N-S direction, measuring about 23 by 34 m in diameter, with a depth of about 1.3 m. The impact origin of the crater is identified by its shape, subsurface deformation, and an iron-nickel oxide fragment. We estimate the age to be about 150 to 250 years. The impact site is on the east side of the Chinle Valley at an altitude of 1685 m and is about 2 km east of Chinle Wash. The crater formed on an alluvial surface that slopes gently west toward the Wash. About 2 m of reddish brown alluvial sand and silt of the Jeddito Formation of late Pleistocene age rests on the Petrified Forest Member of the Chinle Formation of late Triassic age. A moderately developed late Pleistocene pedocal soil has developed on the Jeddito. Several thin discontinuous caliche horizons occur at a depth of about 1 m. The caliche horizons provided easily traced markers by which we could delimit the original walls of the crater and recognize deformation along the crater walls. Three trenches were excavated down to the top of the Chinle bedrock: 1) an east- west trench 31 m long across the center of the crater, 2) a north-south trench 13 m long in the north crater rim, and 3) a north-south trench 12 m long in the south crater rim. Excavation width was about 1 m and provided excellent exposures of the subsurface stratigraphy and deformation. The trenches revealed that the original crater was about 23 m wide and 27 m long. The original rim crests have entirely eroded away so that no perceptible raised rim remains. At the center of the crater, the original depth was about 3 m; material washed from the rims now fills the crater floor to a depth of 1.5 m. The crater is symmetrical; however, the deepest part of the original crater lies south of the center and was not reached in the south trench. The east-west trench showed that the initial floor of the crater was scoured down to the Jeddito-Chinle contact across the center of the crater. Some of the Chinle was excavated by impact south of the center, as seen in the trench in the south wall. The original crater walls slope inward about 30 degrees on the east and west sides, about 20 degrees on the north, and about 45 degrees on the south. Beds are dragged up along the east, west, and south walls, but not along the north wall. The deformation is restricted to within about 0.5 m of the wall. From the asymmetry of shape and deformation in the walls, we believe that the impacting body struck at an oblique angle and was traveling from north to south. A small, magnetic, iron oxide fragment, about 1 mm across, was collected from material excavated from the south crater wall area. Analyses of this fragment by electron microprobe detected a significant nickel concentration of 5%. Two senior Navajo women (70-80 year age range) independently remember this crater as being much deeper during their childhood and both suggest that the impact was witnessed 3 to 4 generations ago. Interestingly, many persons in the Navajo community thought that this crater was of impact origin. Additional work is planned, including a broader aerial search for other possible impact sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1959/0108/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1959/0108/report.pdf"><span>Impact mechanics at Meteor Crater, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shoemaker, Eugene Merle</p> <p>1959-01-01</p> <p>Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04747&hterms=landslide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlandslide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04747&hterms=landslide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlandslide"><span>Landslide!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>MGS MOC Release No. MOC2-486, 17 September 2003<p/>This August 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows part of a deposit created by a landslide off the wall of a crater near 12.3oN, 21.3oW. The crater wall is not shown; it is several kilometers to the left of this picture. The debris that slid from the crater wall came from the left/upper left (northwest) and moved toward the lower right (southeast). The crater floor onto which the debris was deposited has more small meteor craters on it than does the landslide material; this indicates that there was a considerable interval between the time when the crater floor formed, and when the landslide occurred. This picture covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA11176.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA11176.html"><span>A Recent Cluster of Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-02-07</p> <p>The dark spots in this enhanced-color infrared image are the recent impact craters that occurred in the Tharsis region between 2008 and 2014. These impact craters were first discovered by the Mars Context Camera (or CTX, also onboard the Mars Reconnaissance Orbiter) as a cluster of dark spots. The meteoroid that formed these craters must have broken up upon atmospheric entry and fragmented into two larger masses along with several smaller fragments, spawning at least twenty or so smaller impact craters. The dark halos around the resulting impact craters are a combination of the light-toned dust being cleared from the impact event and the deposition of the underlying dark toned materials as crater ejecta. The distribution and the pattern of the rayed ejecta suggests that the meteoroid most-likely struck from the south. http://photojournal.jpl.nasa.gov/catalog/PIA11176</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016584','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016584"><span>Plasma Wake Simulations and Object Charging in a Shadowed Lunar Crater During a Solar Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zimmerman, Michael I.; Jackson, T. L.; Farrell, W. W.; Stubbs, T. J.</p> <p>2012-01-01</p> <p>Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a plasma wake that electrostatically diverts ions toward the crater floor and generates a surface potential that can reach kilovolts. In the present work kinetic plasma simulations are employed to investigate the morphology of a lunar crater wake during passage of a solar storm. Results are cast in terms of leading dimensionless ratios including the ion Mach number, ratio of crater depth to plasma Debye length, peak secondary electron yield, and electron temperature vs. electron impact energy at peak secondary yield. This small set of ratios allows generalization to a much wider range of scenarios. The kinetic simulation results are fed forward into an equivalent-circuit model of a roving astronaut. In very low-plasma-current environments triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, simulated ion fluxes are used to explore sputtering and implantation processes within an idealized crater. It is suggested that the physics of plasma mini-wakes formed in the vicinity of permanently shadowed topography may play a critical role in modulating the enigmatic spatial distribution of volatiles at the lunar poles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRE..117.0K03Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRE..117.0K03Z"><span>Plasma wake simulations and object charging in a shadowed lunar crater during a solar storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zimmerman, M. I.; Jackson, T. L.; Farrell, W. M.; Stubbs, T. J.</p> <p>2012-08-01</p> <p>Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a plasma wake that electrostatically diverts ions toward the crater floor and generates a surface potential that can reach kilovolts. In the present work kinetic plasma simulations are employed to investigate the morphology of a lunar crater wake during passage of a solar storm. Results are cast in terms of leading dimensionless ratios including the ion Mach number, ratio of crater depth to plasma Debye length, peak secondary electron yield, and electron temperature versus electron impact energy at peak secondary yield. This small set of ratios allows generalization to a much wider range of scenarios. The kinetic simulation results are fed forward into an equivalent-circuit model of a roving astronaut. In very low-plasma-current environments triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, simulated ion fluxes are used to explore sputtering and implantation processes within an idealized crater. It is suggested that the physics of plasma miniwakes formed in the vicinity of permanently shadowed topography may play a critical role in modulating the enigmatic spatial distribution of volatiles at the lunar poles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-0003869.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-0003869.html"><span>Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1966-11-24</p> <p>Lunar Orbiter 2 oblique northward view towards Copernicus crater on the Moon shows crater wall slumping caused by soil liquefaction following the impact that formed the crater. The crater is about 100 km in diameter. The central peaks are visible towards the top of the image, rising about 400 m above the crater floor, and stretching for about 15 km. The northern wall of the crater is in the background. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..259L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..259L"><span>Gas-emission crater in Central Yamal, West Siberia, Russia, a new permafrost feature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Streletskaya, Irina; Gubarkov, Anatoly</p> <p>2016-04-01</p> <p>The Yamal crater is a hole funnel-shaped on top and cylinder-shaped down to the bottom, surrounded by a parapet. Field study of the crater included size measurements, photo- video-documentation of the feature and the surrounding environment, and geochemical sampling. The upper part of the geological section within the crater consisted of stratified icy sediments, underlain by almost pure stratified ice of nearly vertical orientation of the layers. The volume of discharged material (volume of the void of the crater) was 6 times larger than the volume of material in the parapet. The difference was due to a significant amount of ice exposed in the walls of the crater, emitted to the surface and melted there. Remote sensing data was processes and validated by field observations to reveal the date of crater formation, previous state of the surface, evolution of the crater and environmental conditions of the surrounding area. Crater formed between 9 October and 1 November 2013. The initial size derived from Digital Elevation Model (DEM) had diameter of the vegetated rim 25-29 m. It turned through a sharp bend into a cylinder with close to vertical sides and diameter 15-16 m. Depth of the hole was impossible to estimate from DEM because of no light reaching walls in the narrow hole. By the time of initial observation in July 2014, water was found at the depth exceeding 50 m below the rim. In November 2014 this depth was 26 m. By September 2015 almost all the crater was flooded, with water surface about 5 m below the rim. The plan dimensions of the crater increased dramatically from initial 25-29 to 47-54 m in 2015. Thus, it took two warm seasons to almost entirely fill in the crater. We suppose that during the next 1-2 years parapet will be entirely destroyed, and as a result the crater will look like an ordinary tundra lake. Excluding impossible and improbable versions of the crater's development, the authors conclude that the origin of this crater can be attributed to the air temperature warming trend along with the extreme of 2012. The increased ground temperature and amount of unfrozen water in the permafrost, expanding of cryopegs, formation of a pingo-like mound and its outburst due to high pressure produced by gas hydrate decomposition within permafrost are the main controls. Similar temperature anomalies may increase in number in the future decades, presenting risks for human activities in the region. This conclusion is supported by recent studies of gas-hydrate behavior in the upper permafrost as well as by subsea processes in gas-bearing provinces where analogue mechanism is known to produce pockmarks - subsea depressions. As the crater is surrounded by the parapet, thus is resulting from expulsion of ice and rocks from beneath to the surface and should not be treated as a "sinkhole", "thermokarst" or "collapse".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P32A..01E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P32A..01E"><span>Curiosity's field site in Gale Crater, Mars, in context</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edgett, K. S.; Malin, M. C.</p> <p>2011-12-01</p> <p>NASA's Mars rover, Curiosity, is anticipated to land in Gale Crater in August 2012. Gale is a 155 km-diameter impact crater adjacent to the ancient crustal "north-south dichotomy boundary." It contains a mound of layered rock (of yet-unknown proportions of clastic sediment, tephra, and chemical precipitates) ˜5 km-high that was eroded by fluvial, eolian, and mass-movement processes. The stratigraphy includes erosional unconformities representing periods when new impact craters formed and streams cut canyons into layered rock. The majority of known impact sites on Earth are craters that were filled and buried in sediment; examples occur under the Chesapeake Bay and beneath the Chicago O'Hare Airport. The upper crust of Mars, with its relative lack of tectonism, is almost entirely a layered, cratered volume of filled, buried, and complexly-interbedded craters and fluvial systems. Some of these have been exhumed or partly exhumed; some, like Gale, were once filled with extensive rock layers that were eroded to form mounds or mesas. Landforms all across Arabia Terra show that similar materials were also deposited between craters. Gale is of the family of Mars craters that were filled and buried (or nearly so). The highest elevation on the Gale mound exceeds the crater's north rim by ˜2 km and is within 500 m of the highest point on the south rim. Many similar craters occur in Arabia Terra; these are instructive as some contain mounds, others have mesas or buttes or other erosional expressions. Craters within 10s to a few 100s of km of each other typically contain very different materials, as exhibited by varied erosional expression, bedding style, and layer thickness. This suggests that the depositional environments, sources, and physical properties of the deposited material differed from place to place and time to time, even in neighboring settings. The Curiosity site in Gale has the potential to illuminate processes that acted locally and globally on early Mars. In addition, Gale occurs southwest of a region of volcanic flows and small edifices that have the youngest crater retention ages (< 100 Ma; doi:10.1016/j.icarus.2009.06.032) for high strength igneous rock on Mars. Nearby terrain includes yardang-forming materials in which were buried ancient streams, some of them now inverted. Gale is down-slope from Herschel and the Terra Cimmeria highlands; some of its secondary craters superpose neighboring craters Lasswitz and Wien. The field site on the floor of Gale is at an elevation (-4.5 km) lower than almost anywhere outside Hellas and the northern plains. Because water runs downhill, the low elevation and sedimentary record make Gale attractive to those seeking evidence of habitable ancient Mars environments. With a record of fluvial erosion in the lower part of the mound, and a lack of fluvial features higher on the mound, the strata in Gale might also record the transition of Mars itself from early, wet conditions to the hyper-arid setting of today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001341','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001341"><span>Geologic Mapping of Vesta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150001341'); toggleEditAbsImage('author_20150001341_show'); toggleEditAbsImage('author_20150001341_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150001341_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150001341_hide"></p> <p>2014-01-01</p> <p>We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100004496&hterms=anticipation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Danticipation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100004496&hterms=anticipation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Danticipation"><span>Data Collected During the Post-Flight Survey of Micrometeoroid and Orbital Debris Impact Features on the Hubble Wide Field Planetary Camera 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Opiela, J. N.; Liou, J.-C.; Anz-Meador, P. D.</p> <p>2010-01-01</p> <p>Over a period of five weeks during the summer of 2009, personnel from the NASA's Orbital Debris Program Office and Meteoroid Environment Office performed a post-flight examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator. The objective was to record details about all micrometeoroid and orbital debris (MMOD) impact features with diameters of 300 micron and larger. The WFPC-2 was located in a clean room at NASA's Goddard Space Flight Center. Using a digital microscope, the team examined and recorded position, diameter, and depth information for each of 685 craters. Taking advantage of the digital microscope's data storage and analysis features, the actual measurements were extracted later from the recorded images, in an office environment at the Johnson Space Center. Measurements of the crater include depth and diameter. The depth was measured from the undisturbed paint surface to the deepest point within the crater. Where features penetrate into the metal, both the depth in metal and the paint thickness were measured. In anticipation of hypervelocity tests and simulations, several diameter measurements were taken: the spall area, the area of any bare metal, the area of any discolored ("burned") metal, and the lips of the central crater. In the largest craters, the diameter of the crater at the surface of the metal was also measured. The location of each crater was recorded at the time of inspection. This paper presents the methods and results of the crater measurement effort, including the size and spatial distributions of the impact features. This effort will be followed by taking the same measurements from hypervelocity impact targets simulating the WFPC-2 radiator. Both data sets, combined with hydrocode simulation, will help validate or improve the MMOD environment in low Earth orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA14298.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA14298.html"><span>Rock Types in Gale Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-07-22</p> <p>This oblique view of the mound in Gale crater shows several different rock types of interest to the Mars Science Laboratory mission. The Mars Science Laboratory rover, Curiosity, will use its full instrument suite to study these minerals and how they form</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15571745','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15571745"><span>Methane production and consumption in an active volcanic environment of Southern Italy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castaldi, Simona; Tedesco, Dario</p> <p>2005-01-01</p> <p>Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992Metic..27...21M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992Metic..27...21M"><span>Impact craters - Are they useful?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Masaitis, V. L.</p> <p>1992-03-01</p> <p>Terrestrial impact craters are important geological and geomorphological objects that are significant not only for scientific research but for industrial and commercial purposes. The structures may contain commercial minerals produced directly by thermodynamic transformation of target rocks (including primary forming ores) controlled by some morphological, structural or lithological factors and exposed in the crater. Iron and uranium ores, nonferrous metals, diamonds, coals, oil shales, hydrocarbons, mineral waters and other raw materials occur in impact craters. Impact morphostructures may be used for underground storage of gases or liquid waste material. Surface craters may serve as reservoirs for hydropower. These ring structures may be of value to society in other ways. Scientific investigation of them is especially important in comparative planetology, terrestrial geology and in other divisions of the natural sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRE..119.2620D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRE..119.2620D"><span>The morphology of small fresh craters on Mars and the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daubar, Ingrid J.; Atwood-Stone, C.; Byrne, S.; McEwen, A. S.; Russell, P. S.</p> <p>2014-12-01</p> <p>The depth/diameter ratio for new meter- to decameter-scale Martian craters formed in the last ~20 years averages 0.23, only slightly deeper than that expected for simple primary craters on rocky surfaces. Large variations in depth/diameter (d/D) between impact sites indicate that differences between the sites such as target material properties, impact velocity, angle, and physical state of the bolide(s) are important in determining the depth of small craters in the strength regime. On the Moon, the d/D of random fresh small craters with similar diameters averages only 0.10, indicating that either the majority of them are unrecognized secondaries or some proportion are degraded primaries. Older craters such as these may be shallower due to erosional infilling, which is probably not linear over time but more effective over recently disturbed and steeper surfaces, processes that are not yet acting on the new Martian craters. Brand new meter- to decameter-scale craters such as the Martian ones studied here are statistically easily distinguishable as primaries, but the origins of older craters of the same size, such as the lunar ones in this study, are ambiguous.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800039547&hterms=lead+history&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dlead%2Bhistory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800039547&hterms=lead+history&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dlead%2Bhistory"><span>Impact melting early in lunar history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lange, M. A.; Ahrens, T. J.</p> <p>1979-01-01</p> <p>The total amount of impact melt produced during early lunar history is examined in light of theoretically and experimentally determined relations between crater diameter (D) and impact melt volume. The time dependence of the melt production is given by the time dependent impact rate as derived from cratering statistics for two different crater-size classes. Results show that small scale cratering (D less than or equal to 30 km) leads to melt volumes which fit selected observations specifying the amount of impact melt contained in the lunar regolith and in craters with diameters less than 10 km. Larger craters (D greater than 30 km) are capable of forming the abundant impact melt breccias found on the lunar surface. The group of large craters (D greater than 30 km) produces nearly 10 times as much impact melt as all the smaller craters, and thus, the large impacts dominate the modification of the lunar surface. A contradiction between the distribution of radiometric rock ages and a model of exponentially decreasing cratering rate going back to 4.5 b.y. is reflected in uncertainty in the distribution of impact melt as a function of time on the moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS42A..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS42A..01A"><span>Giant seafloor craters formed by hydrate-controlled large-scale methane expulsion from the Arctic seafloor after ice sheet retreat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreassen, K.; Hubbard, A.; Patton, H.; Vadakkepuliyambatta, S.; Winsborrow, M.; Plaza-Faverola, A. A.; Serov, P.</p> <p>2017-12-01</p> <p>Large-scale methane releases from thawing Arctic gas hydrates is a major concern, yet the processes and fluxes involved remain elusive. We present geophysical data indicating two contrasting processes of natural methane emissions from the seafloor of the northern Barents Sea, Polar North Atlantic. Abundant gas flares, acoustically imaged in the water column reveal slow, gradual release of methane bubbles, a process that is commonly documented from nearby areas, elsewhere in the Arctic and along continental margins worldwide. Conversely, giant craters across the study area indicate a very different process. We propose that these are blow-out craters, formed through large-scale, abrupt methane expulsion induced when gas hydrates destabilized after the Barents Sea Ice Sheet retreated from the area. The data reveal over 100 giant seafloor craters within an area of 440 km2. These are up to 1000 m in diameter, 30 m deep and with a semi-circular to elliptical shape. We also identified numerous large seafloor mounds, which we infer to have formed by the expansion of gas hydrate accumulations within the shallow subsurface, so-called gas hydrate pingos. These are up to 1100 m wide and 20 m high. Smaller craters and mounds < 200 m wide and with varying relief are abundant across the study site. The empirical observations and analyses are combined with numerical modelling of ice sheet, isostatic and gas hydrate evolution and indicate that during glaciation, natural gas migrating from underlying hydrocarbon reservoirs was stored as subglacial gas hydrates. On ice sheet retreat, methane from these hydrate reservoirs and underlying free gas built up and abruptly released, forming the giant mounds and craters observed in the study area today. Petroleum basins are abundant beneath formerly and presently glaciated regions. We infer that episodes of subglacial sequestration of gas hydrates and underlying free gas and subsequent abrupt expulsions were common and widespread throughout Quaternary glacial cycles. The presented conceptual model for the evolution of giant craters can also serve as an analogue for future destabilization of glacially influenced hydrate reservoirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870046817&hterms=Workers+india&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DWorkers%2Bindia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870046817&hterms=Workers+india&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DWorkers%2Bindia"><span>Tektite-like bodies at Lonar Crater, India - Implications for the origin of tektites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murali, A. V.; Zolensky, M. E.; Blanchard, D. P.</p> <p>1987-01-01</p> <p>Homogeneous dense glass bodies (both irregular and splash form) with high silica contents (about 67 pct SiO2) occur in the vicinity of Lonar Crater, India. Their lack of microlites and mineral remnants and their uniform chemical composition virtually preclude a volcanic origin. They are similar to tektites reported in the literature. While such a close association of tektite-like bodies with impact craters is already known (Aouelloul Crater, Mauritania; Zhamanshin Crater, U.S.S.R.), the tektite-like bodies at Lonar Crater are unique in that they occur in an essentially basaltic terrain. Present geochemical data are consistent with these high silica glass bodies being impact melt products of two-thirds basalt and one-third local intertrappean sediment (chert). The tektite-like bodies of the impact craters Lonar, Zhamanshin, and Aouelloul are generally similar. Strong terrestrial geochemical signatures reflect the target rock REE patterns and abundance ratios and demonstrate their terrestrial origin resulting from meteorite impact, as has been suggested by earlier workers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050167035','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050167035"><span>Effect of Cover Thickness on the Relationship of Surface Relief to Diameter of Northern Lowland QCDs on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Buczkowski, D. L.; Frey, H. V.; McGill, G. E.</p> <p>2005-01-01</p> <p>Previous work has established that there is a relationship of surface relief to diameter for quasi-circular depressions (QCDs) around the Utopia Basin [1]. This relationship has been used to support the contention that the QCDs represent impact craters buried beneath a differentially compacting cover material. For any given regional cover thickness, total cover thickness is greater over the centers of completely buried craters than over their rims; thus total compaction is greater over the center of craters than their rims and topographic depressions will form. Since large craters are deeper than small craters, differential compaction models also predict that surface relief will be proportional to the diameter of the buried crater [2]. It is highly unlikely, however, that the material covering the QCD impact craters is a consistent thickness throughout the entire northern lowlands of Mars. We explore the effects that changes in cover thickness would have on the surface relief vs. diameter relationship of QCDs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002327&hterms=bouguer&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbouguer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002327&hterms=bouguer&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbouguer"><span>Observational Constraints on the Identification of Shallow Lunar Magmatism: Insights from Floor-Fractured Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jozwiak, L. M.; Head, J. W., III; Neumann, G. A.; Wilson, L.</p> <p>2016-01-01</p> <p>Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity solution from GRAIL and also a degree 100-600 band-filtered Bouguer gravity solution. The low-magnitude of anomalies arising from shallow magmatic intrusions makes identification using unfiltered Bouguer gravity solutions inconclusive. The observed anomalies in the degree 100-600 Bouguer gravity solution are spatially heterogeneous, although there is spatial correlation between volcanic surface morphologies and positive Bouguer anomalies. We interpret these observations to mean that the spatial heterogeneity observed in the Bouguer signal is the result of variable degrees of magmatic degassing within the intrusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730023014','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730023014"><span>Wind tunnel studies of Martian aeolian processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, R.; Iversen, J. D.; Pollack, J. B.; Udovich, N.; White, B.</p> <p>1973-01-01</p> <p>Preliminary results are reported of an investigation which involves wind tunnel simulations, geologic field studies, theoretical model studies, and analyses of Mariner 9 imagery. Threshold speed experiments were conducted for particles ranging in specific gravity from 1.3 to 11.35 and diameter from 10.2 micron to 1290 micron to verify and better define Bagnold's (1941) expressions for grain movement, particularly for low particle Reynolds numbers and to study the effects of aerodynamic lift and surface roughness. Wind tunnel simulations were conducted to determine the flow field over raised rim craters and associated zones of deposition and erosion. A horseshoe vortex forms around the crater, resulting in two axial velocity maxima in the lee of the crater which cause a zone of preferential erosion in the wake of the crater. Reverse flow direction occurs on the floor of the crater. The result is a distinct pattern of erosion and deposition which is similar to some martian craters and which indicates that some dark zones around Martian craters are erosional and some light zones are depositional.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..246..165B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..246..165B"><span>Craters and ejecta on Pluto and Charon: Anticipated results from the New Horizons flyby</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bierhaus, Edward B.; Dones, Luke</p> <p>2015-01-01</p> <p>We examine the flux of bodies striking Pluto and Charon, and the nature of the crater populations that will form as a result of these impacts. Assuming impact speeds of 2 km/s and an impact angle of 45 ° , a 1 km impactor will form a 4.2 km diameter transient crater on Pluto, and a ∼5.0 km crater on Charon, as compared with 8-13 km for several mid-sized saturnian satellites and 8-10 km for the icy Galilean satellites. We predict that secondary craters will be present in the crater size-frequency distribution (SFD) for Pluto and Charon at sizes less than a few km, at spatial densities comparable to the range seen on the mid-sized saturnian satellites and distinctly less than seen on the icy Galilean satellites. Pluto should have more secondary craters formed per primary impact than Charon, so if neither crater population on these bodies is in saturation, Charon's crater SFD should be the "cleanest" reflection of the primary, impacting SFD. Ejecta from Pluto and Charon escape more efficiently from the combined system, relative to ejecta from a satellite in orbit around a giant planet, due to the absence of a large central body. We estimate that Kuiper Belt Objects (KBOs) with diameters larger than 1 km should strike Pluto and Charon on (nominal) timescales of 2.2 and 10 million years, respectively. These estimates are uncertain because the numbers of small KBOs are poorly constrained. Our estimated rates are smaller than earlier predictions of impact rates, primarily because we assume a KBO size distribution that is shallower overall than previous studies did. The impact rate, combined with the observed crater SFD, will enable estimates of relative and absolute age of different geologic units, should different geologic units exist. We explore two scenarios in regards to the crater population: (1) a shallow (differential power-law index of p ∼ 2 , i.e. for dN / dD ∝D-p), based on the crater SFD observed on young terrains of Galilean and saturnian satellites; and (2) a slightly steeper SFD (p ∼ 3), based on extrapolations of larger (∼100 km) KBOs from ground-based surveys. If the observed primary crater SFD, at diameters less than a few tens of km, is consistent with a differential power-law index p ∼ 2 , that will confirm that KBOs are deficient in small bodies relative to extrapolations from known ∼100 km KBOs, consistent with expectations derived from examination of crater populations in young terrains on the Galilean and saturnian satellites. If the crater SFD has p ⩾ 3 over all observed sizes, then that power-law index applies across the KBO population over at least two orders of magnitude (1 km to100 km objects), and there must be some process that erodes the small KBOs when they migrate to the Jupiter-Saturn region of the Solar System. Whatever SFD is observed, the primary crater population on Pluto and Charon will provide the strongest constraint on the SFD of small KBOs, which will be beyond the observational reach of ground- and space-based telescopes for years to come. This, in turn, will provide a fundamental constraint for further understanding of the evolution of this distant and compelling population of bodies beyond Neptune.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110002777','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110002777"><span>The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mouginis-Mark, P.; Boyce, J.</p> <p>2010-01-01</p> <p>We are producing a 1:200K geologic map of Tooting crater, Mars. This work has shown that an incredible amount of information can be gleaned from mapping at even larger scales (1:10K 1:25K) using CTX and HiRISE data. We have produced two new science papers (Morris et al., 2010; Mouginis-Mark and Boyce, 2010) from this mapping, and additional science questions continue to arise from our on-going analysis of Tooting crater: 1) What was the interplay of impact melt and volatile-rich sediments that, presumably, were created during the impact? Kieffer and Simonds [1980] predicted that melt would have been destroyed during impacts on Mars because of the volatiles present within the target we seek to understand if this is indeed the case at Tooting crater. We have identified pitted and fractured terrain that formed during crater modification, but the timing of the formation of these materials in different parts of the crater remains to be resolved. Stratigraphic relationships between these units and the central peak may reveal deformation features as well as overlapping relationships. 2) Morris et al. [2010] identified several lobate flows on the inner and outer walls of Tooting crater. It is not yet clear what the physical characteristics of the source areas of these flows really are; e.g., what are the sizes of the source areas, what elevations are they located at relative to the floor of the crater, are they interconnected, and are they on horizontal or tilted surfaces? 3) What were the details of dewatering of the inner wall of Tooting crater (Fig. 1)? We find evidence within Tooting crater of channels carved by water release, and the remobilization of sediment (which is inferred to have formed during the impact event). Sapping can be identified along the crest of unit 8 near the floor of the crater (Fig. 2a, 2b). This unit displays amphitheater-headed canyons that elsewhere on Mars are typically attributed to water leaking from the substrate [Laity and Malin, 1985; Malin and Edgett, 2000].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185026','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185026"><span>Open Access Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ehlmann, Bethany L.; Swayze, Gregg A.; Milliken, Ralph E.; Mustard, John F.; Clark, Roger N.; Murchie, Scott L.; Breit, George N.; Wray, James J.; Gondet, Brigitte; Poulet, Francois; Carter, John; Calvin, Wendy M.; Benzel, William M.; Seelos, Kimberly D.</p> <p>2016-01-01</p> <p>Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la Minéralogie, L’Eau, les Glaces et l’Activitié (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km × 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H2S- and/or SO2-bearing) waters in contact with a magmatic source, upwelling steam or fluids through fracture zones. The unique, highly aluminous nature of the Cross crater deposits relative to other martian acid sulfate deposits indicates acid waters, high water throughput during alteration, atypically glassy and/or felsic materials, or a combination of these conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22147.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22147.html"><span>Investigating Mars: Rabe Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-21</p> <p>This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. This VIS image crosses the entire crater and demonstrates how extensive the dunes are on the floor of Rabe Crater. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 67013 Latitude: -43.2572 Longitude: 34.5875 Instrument: VIS Captured: 2017-01-21 18:25 https://photojournal.jpl.nasa.gov/catalog/PIA22147</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920033269&hterms=slump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dslump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920033269&hterms=slump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dslump"><span>Terrace width variations in complex Mercurian craters and the transient strength of cratered Mercurian and lunar crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leith, Andrew C.; Mckinnon, William B.</p> <p>1991-01-01</p> <p>The effective cohesion of the cratered region during crater collapse is determined via the widths of slump terraces of complex craters. Terrace widths are measured for complex craters on Mercury; these generally increase outward toward the rim for a given crater, and the width of the outermost major terrace is generally an increasing function of crater diameter. The terrace widths on Mercury and a gravity-driven slump model are used to estimate the strength of the cratered region immediately after impact (about 1-2 MPa). A comparison with the previous study of lunar complex craters by Pearce and Melosh (1986) indicates that the transient strength of cratered Mercurian crust is no greater than that of the moon. The strength estimates vary only slightly with the geometric model used to restore the outermost major terrace to its precollapse configuration and are consistent with independent strength estimates from the simple-to-complex crater depth/diameter transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915964S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915964S"><span>Crater Age and Hydrogen Content in Lunar Regolith from LEND Neutron Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanin, Anton; Starr, Richard; Litvak, Maxim; Petro, Noah; Mitrofanov, Igor</p> <p>2017-04-01</p> <p>We are presenting an analysis of Lunar Exploration Neutron Detector (LEND) epithermal neutron count rates for a large set of mid-latitude craters. Epithermal neutron count rates for crater interiors measured by the LEND Sensor for Epithermal Neutrons (SETN) were compared to crater exteriors for 322 craters. An increase in relative count rate at about 9-sigma confidence level was found, consistent with a lower hydrogen content. A smaller subset of 31 craters, all located near three Copernican era craters, Jackson, Tycho, and Necho, also shows a significant increase in Optical Maturity parameter implying an immature regolith. The increase in SETN count rate for these craters is greater than the increase for the full set of craters by more than a factor of two.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180000744&hterms=content+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcontent%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180000744&hterms=content+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcontent%2Banalysis"><span>Crater Age and Hydrogen Content in Lunar Regolith from LEND Neutron Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Starr, Richard D.; Litvak, Maxim L.; Petro, Noah E.; Mitrofanov, Igor G.; Boynton, William V.; Chin, Gordon; Livengood, Timothy A.; McClanahan, Timothy P.; Sanin, Anton B.; Sagdeev, Roald Z.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20180000744'); toggleEditAbsImage('author_20180000744_show'); toggleEditAbsImage('author_20180000744_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20180000744_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20180000744_hide"></p> <p>2017-01-01</p> <p>Analysis of Lunar Exploration Neutron Detector (LEND) neutron count rates for a large set of mid-latitude craters provides evidence for lower hydrogen content in the crater interiors compared to typical highland values. Epithermal neutron count rates for crater interiors measured by the LEND Sensor for Epithermal Neutrons (SETN) were compared to crater exteriors for 301 craters and displayed an increase in mean count rate at the approx. 9-sigma confidence level, consistent with a lower hydrogen content. A smaller subset of 31 craters also shows a significant increase in Optical Maturity parameter implying an immature regolith. The increase in SETN count rate for these craters is greater than the increase for the full set of craters by more than a factor of two.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA07829&hterms=bedding&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbedding','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA07829&hterms=bedding&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbedding"><span>Scientists Contemplate Tilting of Rock Layers on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p><p/> Gazing across the landscape of the 'Columbia Hills' in Gusev Crater on Mars, scientists working with NASA's Mars Exploration Rover Spirit think they have been seeing hints of tilted rock layers across the area traversed by the rover. At 'Larry's Lookout,' pictured here, ridges of rock are stacked atop each other and tilted. Similar rock ridges are visible in the distance across the 'Tennessee Valley.' One possible explanation for these ridges is that they were formed by tilted layers of sediment that were more resistant to erosion and now stand in relief above the surrounding surface. Scientists hope to better understand the structure of the hills and perhaps determine how they were formed by observing how the orientation of layers in these outcrops changes throughout the region. Hypotheses include that the Columbia Hills are the remains of an ancient volcano, a remnant of an old impact crater formed by an asteroid or comet, or delta deposits formed where water flowed into Gusev Crater early in its history. Each of these hypotheses leads to a different prediction regarding bedding orientation and structure. <p/> Hills on the distant horizon may be the rim of a large impact crater many miles to the east of the Columbia Hills. Spirit took this image with its navigation camera on martian day, or sol, 438 (March 27, 2005).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21537.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21537.html"><span>Matara Crater Dunes - False Color</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-04-20</p> <p>The THEMIS camera contains 5 filters. Data from different filters can be combined in many ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows the sand sheet with surface dune forms on the floor of Matara Crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..298...49V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..298...49V"><span>Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Bogert, C. H.; Hiesinger, H.; Dundas, C. M.; Krüger, T.; McEwen, A. S.; Zanetti, M.; Robinson, M. S.</p> <p>2017-12-01</p> <p>Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the characteristics of the target. For example, the transition diameter from strength- to gravity-scaling could provide a tool for investigating the relative strengths of different geologic units. The magnitude of the offset between the impact melt and ejecta isochrons may also provide information about the relative target properties and/or exposure/degradation ages of the two units. Robotic or human sampling of coeval units on the Moon could provide a direct test of the importance and magnitude of target property effects on CSFDs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193218','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193218"><span>Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Van der Bogert, Carolyn H.; Hiesinger, Harald; Dundas, Colin M.; Kruger, T.; McEwen, Alfred S.; Zanetti, Michael; Robinson, Mark S.</p> <p>2017-01-01</p> <p>Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the characteristics of the target. For example, the transition diameter from strength- to gravity-scaling could provide a tool for investigating the relative strengths of different geologic units. The magnitude of the offset between the impact melt and ejecta isochrons may also provide information about the relative target properties and/or exposure/degradation ages of the two units. Robotic or human sampling of coeval units on the Moon could provide a direct test of the importance and magnitude of target property effects on CSFDs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JMiMi..23f5019C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JMiMi..23f5019C"><span>Polymer dispensing and embossing technology for the lens type LED packaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chien, Chien-Lin Chang; Huang, Yu-Che; Hu, Syue-Fong; Chang, Chung-Min; Yip, Ming-Chuen; Fang, Weileun</p> <p>2013-06-01</p> <p>This study presents a ring-type micro-structure design on the substrate and its corresponding micro fabrication processes for a lens-type light-emitting diode (LED) package. The dome-type or crater-type silicone lenses are achieved by a dispensing and embossing process rather than a molding process. Silicone with a high viscosity and thixotropy index is used as the encapsulant material. The ring-type micro structure is adopted to confine the dispensed silicone encapsulant so as to form the packaged lens. With the architecture and process described, this LED package technology herein has three merits: (1) the flexibility of lens-type LED package designs is enhanced; (2) a dome-type package design is used to enhance the intensity; (3) a crater-type package design is used to enhance the view angle. Measurement results show the ratio between the lens height and lens radius can vary from 0.4 to 1 by changing the volume of dispensed silicone. The view angles of dome-type and crater-type packages can reach 155° ± 5° and 175° ± 5°, respectively. As compared with the commercial plastic leaded chip carrier-type package, the luminous flux of a monochromatic blue light LED is improved by 15% by the dome-type package (improved by 7% by the crater-type package) and the luminous flux of a white light LED is improved by 25% by the dome-type package (improved by 13% by the crater-type package). The luminous flux of monochromatic blue light LED and white light LED are respectively improved by 8% and 12% by the dome-type package as compare with the crater-type package.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890023538&hterms=fracturing&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfracturing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890023538&hterms=fracturing&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfracturing"><span>Ages of fracturing and resurfacing in the Amenthes region, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maxwell, Ted A.; Mcgill, George E.</p> <p>1988-01-01</p> <p>An attempt is made to determine whether there is any tectonic evidence in the relatively recent history of the boundary zone that will place contraints on the origin of the Martian dichotomy. It is found that the timing of resurfacing events and structural modification of outlier plateaus and mesas in the Martian eastern hemisphere provides a contraint on the history of tectonic events along the cratered terrain-northern plains boundary. The circumferential grabens surrounding the Isidis basin ceased forming before the final emplacement of ridged plains on the adjacent northern lowlands. The cratered plateau east of the Isidis basin includes two crater populations; stripping of the rims of craters was complete before downfalling of the transition zone between the cratered terrain and the northern plains, and a young population of craters on the plateau records the same age as the ridged plains units north of the boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27459197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27459197"><span>The missing large impact craters on Ceres.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marchi, S; Ermakov, A I; Raymond, C A; Fu, R R; O'Brien, D P; Bland, M T; Ammannito, E; De Sanctis, M C; Bowling, T; Schenk, P; Scully, J E C; Buczkowski, D L; Williams, D A; Hiesinger, H; Russell, C T</p> <p>2016-07-26</p> <p>Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10-15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6-7 such basins. However, Ceres' surface appears devoid of impact craters >∼280 km. Here, we show a significant depletion of cerean craters down to 100-150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..245..263B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..245..263B"><span>Origin of the outer layer of martian low-aspect ratio layered ejecta craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boyce, Joseph M.; Wilson, Lionel; Barlow, Nadine G.</p> <p>2015-01-01</p> <p>Low-aspect ratio layered ejecta (LARLE) craters are one of the most enigmatic types of martian layered ejecta craters. We propose that the extensive outer layer of these craters is produced through the same base surge mechanism as that which produced the base surge deposits generated by near-surface, buried nuclear and high-explosive detonations. However, the LARLE layers have higher aspect ratios compared with base surge deposits from explosion craters, a result of differences in thicknesses of these layers. This characteristics is probably caused by the addition of large amounts of small particles of dust and ice derived from climate-related mantles of snow, ice and dust in the areas where LARLE craters form. These deposits are likely to be quickly stabilized (order of a few days to a few years) from eolian erosion by formation of duricrust produced by diffusion of water vapor out of the deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175237','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175237"><span>The missing large impact craters on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Marchi, S.; Ermakov, A.; Raymond, C.A.; Fu, R.R.; O'Brien, D.P.; Bland, Michael T.; Ammannito, E.; De Sanctis, M.C.; Bowling, Tim; Schenk, P.; Scully, J.E.C.; Buczkowski, D.L.; Williams, D.A.; Hiesinger, H.; Russell, C.T.</p> <p>2016-01-01</p> <p>Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6–7 such basins. However, Ceres’ surface appears devoid of impact craters >~280 km. Here, we show a significant depletion of cerean craters down to 100–150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050167036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050167036"><span>Hematite on the Surface of Meridiani Planum and Gusev Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brueckner, J.; Dreibus, G.; Jagoutz, E.; Gellert, R.; Lugmair, G.; Rieder, R.; Waenke, H.; Zipfel, J.; Klingelhoefer, G.; Clark, B. C.</p> <p>2005-01-01</p> <p>Meridiani Planum was selected as a landing side for the Rover Opportunity because of an indication of hematite observed from orbit. Meridiani Planum consists of sorted sands with aeolian features like ripples and desert pavements. In impact craters, a high-albedo layered bedrock is exposed. The soil is a mixture of: (i) fine sand material in the size ranges of 50 to 150 m, (ii) sub-angular, irregular particles of 0.5 to 5 mm size with submillimeter circular voids that are most likely vesicular basaltic fragments, and (iii) spherules with a restricted grain size between 4 and 6 mm. The Mini-TES on board the rover Opportunity identified a hematite signature at distance resulting from mm-sized spherules as determined by the Moussbauer Spectrometer. Small quantities of similar spherules (2 vol. %) were found in rock exposures in Eagle crater and were interpreted as concretions that formed by precipitation from aqueous fluids inside sedimentary rocks. At Gusev crater no hematite was observed until sol 90 except for layering on a rock. Our investigations of hematite bearing materials, measured by the Alpha Particle X-ray Spectrometer (APXS), Moussbauer Spectrometer (MB), and Microscopic Imager (MI), provide a more integrated view of different occurrences of hematite on the martian surface. Chemistry of soils and rocks: Chemical compositions</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0114&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0114&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0114</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>the Fischer Assembly building at Ball Aerospace in Boulder, Colo. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3- foot projectile (impactor) to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The impactor will separate from the flyby spacecraft 24 hours before it impacts the surface of Tempel 1's nucleus. The impactor delivers 19 Gigajoules (that's 4.8 tons of TNT) of kinetic energy to excavate the crater. This kinetic energy is generated by the combination of the mass of the impactor and its velocity when it impacts. To accomplish this feat, the impactor uses a high-precision star tracker, the Impactor Target Sensor (ITS), and Auto-Navigation algorithms developed by Jet Propulsion Laboratory to guide it to the target. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880033068&hterms=keefe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dkeefe','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880033068&hterms=keefe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dkeefe"><span>The size distributions of fragments ejected at a given velocity from impact craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>O'Keefe, John D.; Ahrens, Thomas J.</p> <p>1987-01-01</p> <p>The mass distribution of fragments that are ejected at a given velocity for impact craters is modeled to allow extrapolation of laboratory, field, and numerical results to large scale planetary events. The model is semi-empirical in nature and is derived from: (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter, (4) measurements and theory of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad, e.g., 68 percent of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. The broad distribution suggests that in impact processes, additional comminution of ejecta occurs after the upward initial shock has passed in the process of the ejecta velocity vector rotating from an initially downward orientation. This additional comminution produces the broader size distribution in impact ejecta as compared to that obtained in simple brittle failure experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970022199','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970022199"><span>Cometary Nuclei and Tidal Disruption: The Geologic Record of Crater Chains on Callisto and Ganymede</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schenk, Paul M.; Asphaug, Erik; McKinnon, William B.; Melosh, H. J.; Weissman, Paul R.</p> <p>1996-01-01</p> <p>Prominent crater chains on Ganymede and Callisto are most likely the impact scars of comets tidally disrupted by Jupiter and are not secondary crater chains. We have examined the morphology of these chains in detail in order to place constraints on the properties of the comets that formed them and the disruption process. In these chains, intercrater spacing varies by no more than a factor of 2 and the craters within a given chain show almost no deviation from linearity (although the chains themselves are on gently curved small circles). All of these crater chains occur on or very near the Jupiter-facing hemisphere. For a given chain, the estimated masses of the fragments that formed each crater vary by no more than an order of magnitude. The mean fragment masses for all the chains vary by over four orders of magnitude (W. B. McKinnon and P. M. Schenk 1995, Geophys. Res. Lett. 13, 1829-1832), however. The mass of the parent comet for each crater chain is not correlated with the number of fragments produced during disruption but is correlated with the mean mass of the fragments produced in a given disruption event. Also, the larger fragments are located near the center of each chain. All of these characteristics are consistent with those predicted by disruption simulations based on the rubble pile cometary nucleus model (in which nuclei are composed on numerous small fragments weakly bound by self-gravity), and with those observed in Comet D/Shoemaker-Levy 9. Similar crater chains have not been found on the other icy satellites, but the impact record of disrupted comets on Callisto and Ganymede indicates that disruption events occur within the Jupiter system roughly once every 200 to 400 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1223/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1223/"><span>Digital Data for Volcano Hazards in the Crater Lake Region, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.</p> <p>2008-01-01</p> <p>Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22139.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22139.html"><span>Investigating Mars: Rabe Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-11</p> <p>Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. In this VIS image the rim of the pit is visible near the top of the image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17074 Latitude: -43.6954 Longitude: 34.66 Instrument: VIS Captured: 2005-10-20 04:05 https://photojournal.jpl.nasa.gov/catalog/PIA22139</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B23A2053A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B23A2053A"><span>Numerical simulation of turbulent flows over crater-like obstacles: application to Gale crater, landing site of the Curiosity rover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, W.; Day, M. D.</p> <p>2017-12-01</p> <p>Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the dominant mode of landscape variability on the dessicated landscapes of Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater, with the rover journeying across an inner plan and towards Gale's central mound, Aeolus Mons). These mounds are composed of sedimentary fill, and, therefore, they contain rich information on the evolution of climatic conditions on Mars embodied in the stratigraphic "layering" of sediments. Many other craters no longer house a mound, but contain sediment and dust from which dune fields and other features form. Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This insight was gained using three-dimensional datasets (momentum, vorticity, and turbulent stresses) retrieved from LES, and assessment of the relative influence of constituent terms responsible for the sustenance of mean vorticity. The helical, counter-rotating vortices occupy the inner region of the crater, and, therefore, are argued to be of great importance for aeolian morphodynamics in the crater (radial katabatic flows are also important to aeolian processes within the crater).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001966','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001966"><span>Using Reactive Transport Modeling to Understand Formation of the Stimson Sedimentary Unit and Altered Fracture Zones at Gale Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hausrath, E. M.; Ming, D. W.; Peretyazhko, T.; Rampe, E. B.</p> <p>2017-01-01</p> <p>Water flowing through sediments at Gale Crater, Mars created environments that were likely habitable, and sampled basin-wide hydrological systems. However, many questions remain about these environments and the fluids that generated them. Measurements taken by the Mars Science Laboratory Curiosity of multiple fracture zones can help constrain the environments that formed them because they can be compared to nearby associated parent material (Figure 1). For example, measurements of altered fracture zones from the target Greenhorn in the Stimson sandstone can be compared to parent material measured in the nearby Big Sky target, allowing constraints to be placed on the alteration conditions that formed the Greenhorn target from the Big Sky target. Similarly, CheMin measurements of the powdered < 150 micron fraction from the drillhole at Big Sky and sample from the Rocknest eolian deposit indicate that the mineralogies are strikingly similar. The main differences are the presence of olivine in the Rocknest eolian deposit, which is absent in the Big Sky target, and the presence of far more abundant Fe oxides in the Big Sky target. Quantifying the changes between the Big Sky target and the Rocknest eolian deposit can therefore help us understand the diagenetic changes that occurred forming the Stimson sedimentary unit. In order to interpret these aqueous changes, we performed reactive transport modeling of 1) the formation of the Big Sky target from a Rocknest eolian deposit-like parent material, and 2) the formation of the Greenhorn target from the Big Sky target. This work allows us to test the relationships between the targets and the characteristics of the aqueous conditions that formed the Greenhorn target from the Big Sky target, and the Big Sky target from a Rocknest eolian deposit-like parent material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5011M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5011M"><span>Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher</p> <p>2016-04-01</p> <p>The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact crater chains - have been mapped. The Toharu Quadrangle predominantly displays impact craters that exhibit a range of sizes - from the limits of resolution to part of the Kerwan basin (280 km diameter) - and preservation styles. The quad also contains a number large (>20 km across) depressions that are only observable in the topographic data. Smaller craters (<40 km) generally appear morphologically "fresh", and their rims are nearly circular and raised above the surrounding terrain. Larger craters, such as Toharu, appear more degraded, exhibiting irregularly shaped, sometimes scalloped, rim structures, and debris lobes on their floors. Numerous craters (> 20 km) contain central mounds; at current FC resolution, it is difficult to discern if these are primary structures (i.e., central peaks) or secondary features. Support of the Dawn Instrument, Operations, & Science Teams is acknowledged. This work is supported by grants from NASA, DLR and MPG. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950042090&hterms=block+chain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dblock%2Bchain','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950042090&hterms=block+chain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dblock%2Bchain"><span>Asteroid 243 IDA and its satellite. [Abstract only</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chapman, C. R.; Klaasen, K.; Belton, M. J. S.; Veverka, J.</p> <p>1994-01-01</p> <p>A high-resolution mosaic of Ida shows a highly irregular body (roughly 56 km long), heavily covered with craters, with many interesting geological features, including grooves, blocks, chutes, dark-floored craters, and crater chains. A satellite of Ida, with a preliminary designation of 1993 (243) 1, was discovered in orbit around Ida. It is approximately 1.5 km in diameter, has an albedo and spectral reflectance not grossly different from Ida, and orbits Ida in a prograde direction with a period of roughly 20 hr. No other comparable-sized satellites have been found near Ida. New pictures of the opposite side of Ida reveal an irregular, dog-bone shape, with a prominent gouge that seems to separate Ida into two chief components. A V-shaped valley, well shown in the highest-resolution view of Ida returned in April, may mark a modest expression on the September face of the more dramatic feature on the back side. Ida's dense population of craters shows a wide diversity of morphologies, consistent with the surface having been subjected to saturated bombardment by smaller projectiles. Assuming the same projectile flux applies to Ida was used in deriving Gaspra's cratering age of about 200 m.y., and assuming that Gaspra and Ida both have the same impact strength, then the age of Ida's surface is calculated to be 1-2 b.y. This is considerably older than expected from other evidence concerning the Koronis family. Our favored explanation of Ida's satellite is that it (or a precursor satellite from which the present satellite was derived) formed during the catastrophic disruption event that formed Ida itself and formed the Koronis family of asteroids. Perhaps, instead, the satellite is a block ejected from a cratering impact. In any case, smaller blocks visible on some parts of Ida are more certain to be crater ejecta, whether or not they were ever temporary satellites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940028685','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940028685"><span>Depth-diameter ratios for Martian impact craters: Implications for target properties and episodes of degradation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, N. G.</p> <p>1993-01-01</p> <p>This study determines crater depth through use of photoclinometric profiles. Random checks of the photoclinometric results are performed using shadow estimation techniques. The images are Viking Orbiter digital format frames; in cases where the digital image is unusable for photoclinometric analysis, shadow estimation is used to determine crater depths. The two techniques provide depth results within 2 percent of each other. Crater diameters are obtained from the photoclinometric profiles and checked against the diameters measured from the hard-copy images using a digitizer. All images used in this analysis are of approximately 40 m/pixel resolution. The sites that have been analyzed to date include areas within Arabia, Maja Valles, Memnonia, Acidalia, and Elysium. Only results for simple craters (craters less than 5 km in diameter) are discussed here because of the low numbers of complex craters presently measured in the analysis. General results indicate that impact craters are deeper than average. A single d/D relationship for fresh impact craters on Mars does not exist due to changes in target properties across the planet's surface. Within regions where target properties are approximately constant, however, d/D ratios for fresh craters can be determined. In these regions, the d/D ratios of nonpristine craters can be compared with the fresh crater d/D relationship to obtain information on relative degrees of crater degradation. This technique reveals that regional episodes of enhanced degradation have occurred. However, the lack of statistically reliable size-frequency distribution data prevents comparison of the relative ages of these events between different regions, and thus determination of a large-scale episode (or perhaps several episodes) cannot be made at this time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.hq.nasa.gov/alsj/a17/a17psr.html','USGSPUBS'); return false;" href="http://www.hq.nasa.gov/alsj/a17/a17psr.html"><span>Crater studies: Part A: lunar crater morphometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pike, Richard J.</p> <p>1973-01-01</p> <p>Morphometry, the quantitative study of shape, complements the visual observation and photointerpretation in analyzing the most outstanding landforms of the Moon, its craters (refs. 32-1 and 32-2). All three of these interpretative tools, which were developed throughout the long history of telescopic lunar study preceding the Apollo Program, will continue to be applicable to crater analysis until detailed field work becomes possible. Although no large (>17.5 km diameter) craters were examined in situ on any of the Apollo landings, the photographs acquired from the command modules will markedly strengthen results of less direct investigations of the craters. For morphometry, the most useful materials are the orbital metric and panoramic photographs from the final three Apollo missions. These photographs permit preparation of contour maps, topographic profiles, and other numerical data that accurately portray for the first time the surface geometry of lunar craters of all sizes. Interpretations of craters no longer need be compromised by inadequate topographic data. In the pre-Apollo era, hypotheses for the genesis of lunar craters usually were constructed without any numerical descriptive data. Such speculations will have little credibility unless supported by accurate, quantitative data, especially those generated from Apollo orbital photographs. This paper presents a general study of the surface geometry of 25 far-side craters and a more detailed study of rim-crest evenness for 15 near-side and far-side craters. Analysis of this preliminary sample of Apollo 15 and 17 data, which includes craters between 1.5 and 275 km in diameter, suggests that most genetic interpretations of craters made from pre-Apollo topographic measurements may require no drastic revision. All measurements were made from topographic profiles generated on a stereoplotter at the Photogrammetric Unit of the U.S. Geological Survey, Center of Astrogeology, Flagstaff, Arizona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMED51A0004P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMED51A0004P"><span>The Explorer's Guide to Impact Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pierazzo, E.; Osinski, G.; Chuang, F.</p> <p>2004-12-01</p> <p>Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017LPICo1987.6061S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017LPICo1987.6061S"><span>Tin Bider Crater (Algeria): New Field Data and Metamorphism Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahoui, R.; Belhai, D.</p> <p>2017-07-01</p> <p>Tin Bider is a 6 km diameter crater emplaced on a sedimentary mixed target rock including sandstones, limestones, shales, gypsum...It is formed by a central pick and two circular rings; where shock effects are defined, as to kinds of breccias.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000031463&hterms=cold+chain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcold%2Bchain','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000031463&hterms=cold+chain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcold%2Bchain"><span>Cratering on Titan: A Pre-Cassini Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lorenz, R. D.</p> <p>1997-01-01</p> <p>The NASA-ESA Cassini mission, comprising a formidably instrumented orbiter and parachute-borne probe to be launched this October, promises to reveal a crater population on Titan that has been heretofore hidden by atmospheric haze. This population on the largest remaining unexplored surface in the solar system will be invaluable in comparative planetological studies, since it introduces evidence of the atmospheric effects of cratering on an icy satellite. Here, I highlight some impact features we may hope to find and could devote some modeling effort toward. Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s Atmosphere -94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface.Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s; Atmosphere about 94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface. Titan is comparable to Callisto and Ganymede for strength/gravity, Mars/Earth/Venus for atmospheric interaction, and Hyperion, Rhea, and Iapetus for impactor distribution. The leading/trailing asymmetry of crater density from heliocentric impactors is expected to be about 5-6, in the absence of resurfacing. Any Saturnocentric impactor population is likely to alter this. In particular the impact disruption of Hyperion is noted; because of the 3:4 orbital resonance with Titan, fragments from the proto-Hyperion breakup would have rapidly accreted onto Titan. Titan's resurfacing history is of course unknown. The disruption of impactors into fragments that individually create small craters is expected to occur. A crude estimate suggests a maximum separation of about 2 km (compared with 4 km on Venus, or 0.5 km on Earth). Crater chains are unlikely on Titan, since impactors must pass close enough to Saturn to be tidally disrupted; as a result, they would suffer aerodynamic disruption. Crater counting on adjacent satellites gives densities of about 200 per 10 (exp 6) square km for 20-km-diameter craters. However, the presence of a thick atmosphere leads to atmospheric shielding, depleting the relative abundance of small craters. This has been evaluated by models, and the relative abundance of small craters may be due to a diagnostic atmospheric collapse. A number of radar-dark "splotches" have been detected on Venus; these have been attributed to the interaction of the surface with the atmospheric shockwave produced by the Tunguska-like explosion of a bolide in the atmosphere. Simple analogy suggests that similar features might occur on Titan, but the shocked mass density (which controls the momentum coupling between the surface and the shockwave) of Titan's cold N2 atmosphere is about 20x smaller than that of Venus's hot CO2 atmosphere. Unless ice is much more easily turned to rubble than is rock, such features seem less probable on Titan. When the energy deposited by an impact forms a fireball with an equilibrate greater than one scale height, the fireball expands upward and can distribute ejecta. on ballistic exoatmospheric trajectories. On Venus this process is believed to be responsible for the parabolic features; the interaction of various-sized particles falling through the atmosphere with the zonal wind field winnows the particles to form a parabolic deposit. Although such a process is possible on Titan, the large scale height at higher altitudes would make it more difficult. Comparison with craters on other icy satellites suggests that craters on Titan will be fairly shallow (depth/diameter about 0.1) and craters greater than 10 km in diameter will have central peaks or domed bases, perhaps with central pits. The formation of ejecta. blankets may involve the atmosphere in a significant way, both by restraining the expansion of the ejecta cloud and by influencing the thermal history of the ejecta. Compared with Venus, Titan's atmosphere will chill an impact melt somewhat quickly, so the long ejecta flows seen on Venus seem less likely, detailed modeling needs to be performed to determine the impact melt production. Crater topography on Titan may be highlighted by the influence of liquids forming crater lakes. Craters with central peaks will typically form ring-shaped lakes, although horseshoe-shaped takes may be common; domed craters with central pits may even form bullseye lakes with islands with central ponds. If liquids have covered a substantial part of Titan's surface for a substantial period, hydroblemes and tsunami deposits may be common.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997LPICo.922...31L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997LPICo.922...31L"><span>Cratering on Titan: A Pre-Cassini Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorenz, R. D.</p> <p>1997-01-01</p> <p>The NASA-ESA Cassini mission, comprising a formidably instrumented orbiter and parachute-borne probe to be launched this October, promises to reveal a crater population on Titan that has been heretofore hidden by atmospheric haze. This population on the largest remaining unexplored surface in the solar system will be invaluable in comparative planetological studies, since it introduces evidence of the atmospheric effects of cratering on an icy satellite. Here, I highlight some impact features we may hope to find and could devote some modeling effort toward. Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s Atmosphere -94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface.Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s; Atmosphere about 94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface. Titan is comparable to Callisto and Ganymede for strength/gravity, Mars/Earth/Venus for atmospheric interaction, and Hyperion, Rhea, and Iapetus for impactor distribution. The leading/trailing asymmetry of crater density from heliocentric impactors is expected to be about 5-6, in the absence of resurfacing. Any Saturnocentric impactor population is likely to alter this. In particular the impact disruption of Hyperion is noted; because of the 3:4 orbital resonance with Titan, fragments from the proto-Hyperion breakup would have rapidly accreted onto Titan. Titan's resurfacing history is of course unknown. The disruption of impactors into fragments that individually create small craters is expected to occur. A crude estimate suggests a maximum separation of about 2 km (compared with 4 km on Venus, or 0.5 km on Earth). Crater chains are unlikely on Titan, since impactors must pass close enough to Saturn to be tidally disrupted; as a result, they would suffer aerodynamic disruption. Crater counting on adjacent satellites gives densities of about 200 per 10 6 square km for 20-km-diameter craters. However, the presence of a thick atmosphere leads to atmospheric shielding, depleting the relative abundance of small craters. This has been evaluated by models, and the relative abundance of small craters may be due to a diagnostic atmospheric collapse. A number of radar-dark "splotches" have been detected on Venus; these have been attributed to the interaction of the surface with the atmospheric shockwave produced by the Tunguska-like explosion of a bolide in the atmosphere. Simple analogy suggests that similar features might occur on Titan, but the shocked mass density (which controls the momentum coupling between the surface and the shockwave) of Titan's cold N2 atmosphere is about 20x smaller than that of Venus's hot CO2 atmosphere. Unless ice is much more easily turned to rubble than is rock, such features seem less probable on Titan. When the energy deposited by an impact forms a fireball with an equilibrate greater than one scale height, the fireball expands upward and can distribute ejecta. on ballistic exoatmospheric trajectories. On Venus this process is believed to be responsible for the parabolic features; the interaction of various-sized particles falling through the atmosphere with the zonal wind field winnows the particles to form a parabolic deposit. Although such a process is possible on Titan, the large scale height at higher altitudes would make it more difficult. Comparison with craters on other icy satellites suggests that craters on Titan will be fairly shallow (depth/diameter about 0.1) and craters greater than 10 km in diameter will have central peaks or domed bases, perhaps with central pits. The formation of ejecta. blankets may involve the atmosphere in a significant way, both by restraining the expansion of the ejecta cloud and by influencing the thermal history of the ejecta. Compared with Venus, Titan's atmosphere will chill an impact melt somewhat quickly, so the long ejecta flows seen on Venus seem less likely, detailed modeling needs to be performed to determine the impact melt production. Crater topography on Titan may be highlighted by the influence of liquids forming crater lakes. Craters with central peaks will typically form ring-shaped lakes, although horseshoe-shaped takes may be common; domed craters with central pits may even form bullseye lakes with islands with central ponds. If liquids have covered a substantial part of Titan's surface for a substantial period, hydroblemes and tsunami deposits may be common.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA05483&hterms=trails&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtrails','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA05483&hterms=trails&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtrails"><span>A Trail of Salts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>This graph shows the relative abundances of sulfur (in the form of sulfur tri-oxide) and chlorine at three Meridiani Planum sites: soil measured in the small crater where Opportunity landed; the rock dubbed 'McKittrick' in the outcrop lining the inner edge of the crater; and the rock nicknamed 'Guadalupe,' also in the outcrop. The 'McKittrick' data shown here were taken both before and after the rover finished grinding the rock with its rock abrasion tool to expose fresh rock underneath. The 'Guadalupe' data were taken after the rover grounded the rock. After grinding both rocks, the sulfur abundance rose to high levels, nearly five times higher than that of the soil. This very high sulfur concentration reflects the heavy presence of sulfate salts (approximately 30 percent by weight) in the rocks. Chloride and bromide salts are also indicated. Such high levels of salts strongly suggest the rocks contain evaporite deposits, which form when water evaporates or ice sublimes into the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040062311&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbarlow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040062311&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbarlow"><span>Searching for Terrain Softening near Mercury's North Pole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cobian, P. S.; Vilas, F.; Lederer, S. M.; Barlow, N. G.</p> <p>2004-01-01</p> <p>In 1999, following the initial discovery of radar bright craters near both poles of Mercury measured the depth-todiameter (d/D) ratios of 170 impact craters in Mariner 10 images covering four different regions on Mercury s surface. Rapid softening of crater structure, indicated by lower d/D ratios, could indicate the possibility of subsurface water ice in Mercury's terrain originating from an internal source in the planet. Their study included 3 specific radar bright craters suggested to contain ice. They concluded that no terrain softening was apparent, and a rapidly emplaced exogenic water source was the most likely source for the proposed ice in these craters. Recent radar observations of the Mercurian North pole have pinpointed many additional radar bright areas with a resolution 10x better than previous radar measurements, and which correlate with craters imaged by Mariner 10. These craters are correlated with regions that are permanently shaded from direct sunlight, and are consistent with observations of clean water ice. We have expanded the initial study by Barlow et al. to include d/D measurements of 12 craters newly identified as radar bright at latitudes poleward of +80o. The radar reflectivity resemblances to Mars south polar cap and echoes from three icy Galilean satellites suggest that these craters too may have polar ice on Mercury. The effect of subsurface H20 on impact craters is a decrease in its d/D ratio, and softening of crater rims over a period of time. The study of Barlow et al., focused on determining the d/D ratios of 170 impact craters in the Borealis (north polar), Tolstoj (equatorial), Kuiper (equatorial), and Bach (south polar) quadrangles. This work focuses on the newly discovered radar bright craters, investigating their d/D ratios as an expansion of the earlier work..We compare our results to the statistical results from Barlow et al. here. With the upcoming Messenger spacecraft mission to Mercury, this is an especially timely study whose result could potentially help the Messenger team as they develop a mission strategy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940033483&hterms=under+armor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dunder%2Barmor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940033483&hterms=under+armor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dunder%2Barmor"><span>Erosion of ejecta at Meteor Crater, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grant, John A.; Schultz, Peter H.</p> <p>1993-01-01</p> <p>New methods for estimating erosion at Meteor Crater, Arizona, indicate that continuous ejecta deposits beyond 1/4-1/2 crater radii from the rim have been lowered less than 1 m on the average. This conclusion is based on the results of two approaches: coarsening of unweathered ejecta into surface lag deposits and calculation of the sediment budget within a drainage basin on the ejecta. Preserved ejecta morphologies beneath thin alluvium revealed by ground-penetrating radar provide qualitative support for the derived estimates. Although slightly greater erosion of less resistant ejecta locally has occurred, such deposits were limited in extent, particularly beyond 0.25R-0.5R from the present rim. Subtle but preserved primary ejecta features further support our estimate of minimal erosion of ejecta since the crater formed about 50,000 years ago. Unconsolidated deposits formed during other sudden extreme events exhibit similarly low erosion over the same time frame; the common factor is the presence of large fragments or large fragments in a matrix of finer debris. At Meteor Crater, fluvial and eolian processes remove surrounding fines leaving behind a surface lag of coarse-grained ejecta fragments that armor surfaces and slow vertical lowering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL12004N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL12004N"><span>Dynamics of yield-stress droplets: Morphology of impact craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neufeld, Jerome; Sohr, David; Ferrari, Leo; Dalziel, Stuart</p> <p>2017-11-01</p> <p>Yield strength can play an important role for the dynamics of droplets impacting on surfaces, whether at the industrial or planetary scale, and can capture a zoo of impact crater morphologies, from simple parabolic craters, to more complex forms with forms with, for example, multiple rings, central peaks. Here we show that the morphology of planetary impact craters can be reproduced in the laboratory using carbopol, a transparent yield-stress fluid, as both impactor and bulk fluid. Using high-speed video photography, we characterise the universal, transient initial excavation stage of impact and show the dependence of the subsequent relaxation to final crater morphology on impactor size, impact speed and yield stress. To further interrogate our laboratory impacts, we dye our impactor to map its final distribution and use particle tracking to determine the flow fields during impact and the maximal extent of the yield surface. We characterise the flow-fields induced during impact, and the maximal extent of the yield surface, by tracking particles within the bulk fluid and map the distribution of impactor and bulk by tracing the final distribution of dyed impactor. The results of laboratory impact droplets are used to infer the properties of planetary impactors, and aid in inter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009M%26PS...44.1967T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009M%26PS...44.1967T"><span>A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tancredi, G.; Ishitsuka, J.; Schultz, P. H.; Harris, R. S.; Brown, P.; Revelle, D. O.; Antier, K.; Le Pichon, A.; Rosales, D.; Vidal, E.; Varela, M. E.; Sánchez, L.; Benavente, S.; Bojorquez, J.; Cabezas, D.; Dalmau, A.</p> <p>2009-01-01</p> <p>On September 15, 2007, a bright fireball was observed and a big explosion was heard by many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater-forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth’s atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3223/sim3223.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3223/sim3223.pdf"><span>Under trees and water at Crater Lake National Park, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Robinson, Joel E.; Bacon, Charles R.; Wayne, Chris</p> <p>2012-01-01</p> <p>Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-ft-high volcano known as Mount Mazama. The caldera-forming, or climactic, eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000-year history of volcanic activity similar to other large Cascade volcanoes such as Mounts Shasta, Hood, and Rainier. Since the caldera formed, many smaller, less violent eruptions occurred at volcanic vents below Crater Lake's surface, including Wizard Island. A survey of Crater Lake National Park with airborne LiDAR (Light Detection And Ranging) resulted in a digital elevation map of the ground surface beneath the forest canopy. The average resolution is 1.6 laser returns per square meter yielding vertical and horizontal accuracies of ±5 cm. The map of the floor beneath the surface of the 1,947-ft-deep (593-m-deep) Crater Lake was developed from a multibeam sonar bathymetric survey and was added to the map to provide a continuous view of the landscape from the highest peak on Mount Scott to the deepest part of Crater Lake. Four enlarged shaded-relief views provide a sampling of features that illustrate the resolution of the LiDAR survey and illustrate its utility in revealing volcanic landforms and subtle features of the climactic eruption deposits. LiDAR's high precision and ability to "see" through the forest canopy reveal features that may not be easily recognized-even when walked over-because their full extent is hidden by vegetation, such as the 1-m-tall arcuate scarp near Castle Creek.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013393','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013393"><span>Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Casadevall, Thomas J.; De la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.</p> <p>1984-01-01</p> <p>Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4085L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4085L"><span>Are pre-crater mounds gas-inflated?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Babkina, Elena; Arefiev, Stanislav; Khairullin, Rustam</p> <p>2017-04-01</p> <p>Gas-emission craters (GEC) on Yamal peninsula, which occupied minds of researches for the last couple of years since first discovered in 2014, appeared to form on the place of specifically shaped mounds. There was a number of hypotheses involving pingo as an origin of these mounds. This arouse an interest in mapping pingo thus marking the areas of GEC formation risk. Our field research allows us to suggest that remote-sensing-based mapping of pingo may result in mix up of mounds of various origin. Thus, we started with classification of the mounds based on remote-sensing, field observations and survey from helicopter. Then we compared indicators of mounds of various classes to the properties of pre-crater mounds to conclude on their origin. Summarizing field experience, there are three main mound types on Yamal. (1) Outliers (remnant hills), separated from the main geomorphic landform by erosion. Often these mounds comprise polygonal blocks, kind of "baydzherakh". Their indicators are asymmetry (short gentle slope towards the main landform, and steep slope often descending into a small pond of thermokarst-nivation origin), often quadrangle or conic shape, and large size. (2) Pingo, appear within the khasyrei (drain lake basin); often are characterized by open cracks resulting from expansion of polygonal network formed when re-freezing of lake talik prior to pingo formation; old pingo may bear traces of collapse on the top, with depression which differs from the GEC by absence of parapet. (3) Frost-heave mounds (excluding pingo) may form on deep active layer, reducing due to moss-peat formation and forming ice lenses from an active layer water, usually they appear in the drainage hollows, valley bottoms, drain-lake basins periphery. These features are smaller than the first two types of mounds. Their tops as a rule are well vegetated. We were unable to find a single or a set of indicators unequivocally defining any specific mound type, thus indicators of pre-crater mounds are still debatable. Our hypothesis initially does not involve pingo origin of pre-crater mounds for several reasons, among which were the initial depth (70 m) and width (18 m) of the crater void, frozen walls and bottom, no traces of sub-lake talik, an important control for pingo formation, and more. Pre-crater mounds are closer to frost-heave mounds in size (4-7 m high and 30-60 m in diameter). Yet frost-heave mounds like palsa or lithalsa have segregated ice lenses closer to the surface, total thickness of these lenses is equal to the height of the mound. Pre-crater mounds have at least 20 m of tabular ground ice in the section that has no manifestation in the mound height or diameter. All above-mentioned leads to the conclusion that pre-crater mounds form because of gas inflation rather than regular frost heave process involving moisture migration towards the freezing front. This research is supported by Russian Science Foundation Grant 16-17-10203.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JVGR...94..283W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JVGR...94..283W"><span>Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>White, James D. L.; Schmincke, Hans-Ulrich</p> <p>1999-12-01</p> <p>In 1949, a 5-week-long magmatic and phreatomagmatic eruption took place along the active volcanic ridge of La Palma (Canary Islands). Two vents, Duraznero and Hoyo Negro, produced significant pyroclastic deposits. The eruption began from Duraznero vent, which produced a series of deposits with an upward decrease in accidental fragments and increase in fluidal ash and spatter, together inferred to indicate decreasing phreatomagmatic interaction. Hoyo Negro erupted over a 2-week period, producing a variety of pyroclastic density currents and ballistic blocks and bombs. Hoyo Negro erupted within and modified an older crater having high walls on the northern to southeastern edges. Southwestern to western margins of the crater lay 50 to 100 m lower. Strongly contrasting deposits in the different sectors (N-SE vs. SW-W) were formed as a result of interaction between topography, weak eruptive columns and stratified pyroclastic density currents. Tephra ring deposits are thicker and coarser-grained than upper rim deposits formed along the higher edges of the crater, and beyond the crater margin, valley-confined deposits are thicker than more thinly bedded mantling deposits on higher topography. These differences indicate that the impact zone for the bulk of the collapsing, tephra-laden column lay within the crater and that the high crater walls inhibited escape of pyroclastic density currents to the north and east. The impact zone lay outside the low SW-W rims, however, thus allowing stratified pyroclastic density currents to move freely away from the crater in those directions, depositing thin sections (<30 cm) of well-bedded ash (mantling deposits) on ridges and thicker sections (1-3 m) of structureless ash beds in valleys and small basins. Such segregation of dense pyroclastic currents from more dilute ones at the crater wall is likely to be common for small eruptions from pre-existing craters and is an important factor to be taken into account in volcanic hazards assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22146.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22146.html"><span>Investigating Mars: Rabe Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-20</p> <p>This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 52231 Latitude: -43.6665 Longitude: 34.2627 Instrument: VIS Captured: 2013-09-22 14:29 https://photojournal.jpl.nasa.gov/catalog/PIA22146</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22148.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22148.html"><span>Investigating Mars: Rabe Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-22</p> <p>This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 67144 Latitude: -43.5512 Longitude: 34.5951 Instrument: VIS Captured: 2017-02-01 12:57 https://photojournal.jpl.nasa.gov/catalog/PIA22148</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22145.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22145.html"><span>Investigating Mars: Rabe Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-19</p> <p>This is a false color image of Rabe Crater. In this combination of filters "blue" typically means basaltic sand. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 51157 Latitude: -43.6787 Longitude: 34.3985 Instrument: VIS Captured: 2013-06-26 05:33 https://photojournal.jpl.nasa.gov/catalog/PIA22145</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22140.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22140.html"><span>Investigating Mars: Rabe Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-12</p> <p>In this VIS image of the floor of Rabe Crater the step down into the pit is visible in the sinuous ridges on the left side of the image. The appearance of the exposed side of the cliffs does not look like a volcanic, difficult to erode material, but rather an easy to erode material such as layered sediments. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 34456 Latitude: -43.7164 Longitude: 34.4056 Instrument: VIS Captured: 2009-09-20 09:38 https://photojournal.jpl.nasa.gov/catalog/PIA22140</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188637','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188637"><span>Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Povilaitis, R Z; Robinson, M S; van der Bogert, C H; Hiesinger, Harald; Meyer, H M; Ostrach, Lillian</p> <p>2017-01-01</p> <p>The global population of lunar craters >20 km in diameter was analyzed by Head et al., (2010) to correlate crater distribution with resurfacing events and multiple impactor populations. The work presented here extends the global crater distribution analysis to smaller craters (5–20 km diameters, n = 22,746). Smaller craters form at a higher rate than larger craters and thus add granularity to age estimates of larger units and can reveal smaller and younger areas of resurfacing. An areal density difference map generated by comparing the new dataset with that of Head et al., (2010) shows local deficiencies of 5–20 km diameter craters, which we interpret to be caused by a combination of resurfacing by the Orientale basin, infilling of intercrater plains within the nearside highlands, and partial mare flooding of the Australe region. Chains of 5–30 km diameter secondaries northwest of Orientale and possible 8–22 km diameter basin secondaries within the farside highlands are also distinguishable. Analysis of the new database indicates that craters 57–160 km in diameter across much of the lunar highlands are at or exceed relative crater densities of R = 0.3 or 10% geometric saturation, but nonetheless appear to fit the lunar production function. Combined with the observation that small craters on old surfaces can reach saturation equilibrium at 1% geometric saturation (Xiao and Werner, 2015), this suggests that saturation equilibrium is a size-dependent process, where large craters persist because of their resistance to destruction, degradation, and resurfacing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRE..122.2685S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRE..122.2685S"><span>Impact Crater Morphology and the Structure of Europa's Ice Shell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silber, Elizabeth A.; Johnson, Brandon C.</p> <p>2017-12-01</p> <p>We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11..307L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11..307L"><span>An age of both Ilumetsa structures - support of their impact origin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Losiak, A.; Plado, J.; Jõeleht, A.; Szyszka, M.; Wild, E. M.; Bronikowska, M.; Belcher, C.; Steier, P.</p> <p>2017-09-01</p> <p>Two Ilumetsa craters are listed as a proven meteorite impact site in the Earth Impact Database, but neither remnants of the projectile nor other identification criteria (e.g., PDFs) have been found up to this point [1]. Also, until now, the temporal relation between two Ilumetsa craters has not been established, as only larger structure was dated by determining 14C age of gyttja (containing charcoal and silty sand) present within it [2]. In the present study we have established an age of both Ilumetsa craters by the 14C dating of charcoal present within their ejecta blankets (similar method was used recently to date Kaali crater [3]). Both craters were formed between 7170 and 7000 cal. BP. Such temporal relation supports impact origin of those features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JAHH...16..295H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JAHH...16..295H"><span>Aboriginal oral traditions of Australian impact craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamacher, Duane W.; Goldsmith, John</p> <p>2013-11-01</p> <p>In this paper we explore Aboriginal oral traditions that relate to Australian meteorite craters. Using the literature, first-hand ethnographic records and field trip data, we identify oral traditions and artworks associated with four impact sites: Gosses Bluff, Henbury, Liverpool and Wolfe Creek. Oral traditions describe impact origins for Gosses Bluff, Henbury and Wolfe Creek Craters, and non-impact origins for Liverpool Crater, with Henbury and Wolfe Creek stories having both impact and non-impact origins. Three impact sites that are believed to have been formed during human habitation of Australia -- Dalgaranga, Veevers, and Boxhole -- do not have associated oral traditions that are reported in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.9055S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.9055S"><span>Cratering on 4 Vesta - Comparison of Crater Retention Ages and Ar-Ar Ages of HED Meteorites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmedemann, N.; Kneissl, T.; Michael, G.; Neukum, G.; Nathues, A.; Sierks, H.; Wagner, R.; Krohn, K.; Reddy, V.; Hiesinger, H.; Jaumann, R.; Raymond, C. A.; Russell, C. T.</p> <p>2012-04-01</p> <p>In July 2011 the Dawn spacecraft entered orbit around the Main Belt asteroid 4 Vesta utilizing three different instruments to map the asteroid [1]. The Main Belt is the source region of most impactors in the inner solar system [2]. We compare the obtained crater size-frequency distribution (CSFD) of Vesta with that of the Moon and other Main Belt asteroids such as 951 Gaspra, 243 Ida, and 21 Lutetia. We also compare our results of crater counting on Vesta with K/Ar-Ar reset ages of HED meteorites, which most likely originated from Vesta [3]. To properly compare the lunar CSFD with that of the asteroids we applied scaling laws [4] to account for various impact velocities, surface gravities as well as material properties between the investigated bodies. We found well defined lunar-like CSFDs of impact craters on all four asteroids. The CSFD of Vesta and Lutetia had to be constructed from several individual measurements following [5]. We were able to derive lunar-like chronologies for each asteroid utilizing intrinsic collision probabilities [6], lunar-like CSFDs and the ground truth-derived lunar chronology. Since the Moon and the Main Belt asteroids share the same main impactor source, it is straightforward to also assume a very similar time-dependent impact rate over the solar system history. Alternative chronologies, which are based on computer models of the LHB [7], result in surface ages >4.5 Ga, which are highly unlikely for Vesta. Our lunar-like chronology for Vesta is able to match three out of four peaks in age probabilities of HED meteorites [3]. We measured the age of the Rheasilvia basin with 3.70 +/-0.02 Ga, which coincides with a wide-spread resurfacing age on Vesta. An underlying older basin, partially obliterated by the Rheasilvia impact was formed 3.81 +/-0.05 Ga ago. Finally the large basins and craters >150 km in diameter and the densest cratered areas on Vesta indicate a global resurfacing event 4.00 +/-0.02 Ga ago. This represents the oldest age we can infer from Vesta by this technique. Acknowledgement: This work has been supported by the German Space Agency (DLR) on behalf of the Federal Ministry of Economics and Technology, grant 50 OW 1101.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006611','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006611"><span>Crater Topography on Titan: Implications for Landscape Evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Neish, Catherine D.; Kirk, R.L.; Lorenz, R. D.; Bray, V. J.; Schenk, P.; Stiles, B. W.; Turtle, E.; Mitchell, K.; Hayes, A.</p> <p>2013-01-01</p> <p>We present a comprehensive review of available crater topography measurements for Saturn's moon Titan. In general, the depths of Titan's craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede's average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 +/- 0.0003 (for the largest crater studied, Menrva, D approximately 425 km) and 0.017 +/- 0.004 (for the smallest crater studied, Ksa, D approximately 39 km). When we evaluate the Anderson-Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan's craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close 'airless' analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan's surface, the only body in the outer Solar System with extensive surface-atmosphere exchange.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780005021','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780005021"><span>Microcraters on lunar samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fechtig, H.; Gentner, W.; Hartung, J. B.; Nagel, K.; Neukum, G.; Schneider, E.; Storzer, D.</p> <p>1977-01-01</p> <p>The lunar microcrater phenomenology is described. The morphology of the lunar craters is in almost all aspects simulated in laboratory experiments in the diameter range from less than 1 nu to several millimeters and up to 60 km/s impact velocity. An empirically derived formula is given for the conversion of crater diameters into projectile diameters and masses for given impact velocities and projectile and target densities. The production size frequency distribution for lunar craters in the crater size range from approximately 1 nu to several millimeters in diameter is derived from various microcrater measurements within a factor of up to 5. Particle track exposure age measurements for a variety of lunar samples have been performed. They allow the conversion of the lunar crater size frequency production distributions into particle fluxes. The development of crater populations on lunar rocks under self-destruction by subsequent meteoroid impacts and crater overlap is discussed and theoretically described. Erosion rates on lunar rocks on the order of several millimeters per 10 yr are calculated. Chemical investigations of the glass linings of lunar craters yield clear evidence of admixture of projectile material only in one case, where the remnants of an iron-nickel micrometeorite have been identified.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016LPICo1921.6391B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016LPICo1921.6391B"><span>Basalt-Trachybasalt Fractionation in Gale Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bridges, J. C.; Edwards, P. H.; Filiberto, J.; Schwenzer, S. P.; Gasda, P.; Wiens, R.</p> <p>2016-08-01</p> <p>A set of igneous float rocks in Gale Crater have been analysed by ChemCam. They are basalt-trachybasalts, 47 to 53 ± 5 wt% SiO2 and formed by ol-dominated crystal fractionation from an Adirondack type basalt, in magmatism with tholeiitic affinities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150022303','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150022303"><span>Clays and Carbonates in a Groundwater-Fed 3.8 Ga Martian Lake: Insights to Subsurface Habitability on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Michalski, Joseph; Niles, Paul</p> <p>2015-01-01</p> <p>On Earth, the deep biosphere remains a largely unexplored, but clearly important carbon reservoir. Results from some uplifted central peaks in craters on Mars indicate that substantial carbon was also present at depth and might have helped sustain a deep biosphere. In fact, many factors relevant to deep biosphere habitability are more favorable on Mars than on Earth (e.g. porosity of the crust, geothermal gradient). Future exploration of Mars should include landing sites where materials have been exhumed from depth by meteor impact or basins where subsurface fluids have emerged, carrying clues to subsurface habitability. One of the most astrobiologically interesting sites on Mars McLaughlin Crater, a 93 km-diameter impact crater that formed approximately 4 b.y. ago. On the floor of the crater is a stratigraphic section of subhorizontal, layered sedimentary rocks with strong spectroscopic evidence for Fe-rich clay minerals and Mg-rich carbonates, which we interpret as ancient lacustrine deposits. The fluids that formed these materials likely originated in the subsurface, based on the paucity of channels leading into the crater basin and the fact that this is one of the deepest basins on Mars - a good candidate to have experienced upwelling of subsurface fluids. Therefore, the deposits within McLaughlin crater provide insight into subsurface processes on Mars. In this presentation, we will discuss the habitability of the martian subsurface as well as the geology of McLaughlin Crater and the possibility to detect biomarkers at that site with a future landed mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050174689','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050174689"><span>Abundance and Speciation of Water and Sulfate at Gusev Crater and Meridiani Planum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ming, D. W.; Clark, B. C.; Klingelhoefer, G.; Gellert, R.; Rodionov, D.; Schroeder, C.; deSouza, P.; Yen, A.</p> <p>2005-01-01</p> <p>A major science goal of the Mars Exploration Rover (MER) mission is to search for evidence of water activity, and direct mineralogical evidence for aqueous activity has been reported for Meridiani Planum in the form of the iron sulfate hydroxide mineral jarosite and at Gusev crater in the form of goethite. The Spirit and Opportunity rovers have each collected 110+ Moessbauer (MB) and 75+ Alpha Particle X-Ray Spectrometer (APXS) spectra from Gusev crater and Meridiani Planum [1 - 4]. In this abstract, we use mineralogical and elemental data, primarily from the Moessbauer and APXS instruments, to infer the speciation and estimate the abundance of sulfate and water (as either the H2O molecule or the hydroxyl anion) at Gusev crater and Meridiani Planum. Throughout the abstract, we adopt a format for mineral formulas that shows water explicitly rather than the usual practice of structure-based formulas (e.g., for goethite we write Fe2O3xH2O instead of FeOOH).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870043241&hterms=Mexico+sonora&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMexico%2Bsonora','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870043241&hterms=Mexico+sonora&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMexico%2Bsonora"><span>Radar characteristics of small craters - Implications for Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, Ronald; Christensen, Philip R.; Mchone, John F.</p> <p>1987-01-01</p> <p>Shuttle radar images (SIR-A) of volcanic and impact craters were examined to assess their appearance on radar images. Radar characteristics were determined for (1) nine maarlikie craters in the Pinacate volcanic field, Sonora, Mexico; (2) the caldera of Cerro Volcan Quemado, in the Bolivian Andes; (3) Talemzane impact crater, Algeria; and (4) Al Umchaimin, a possible impact structure in Iraq. SIR-A images were compared with conventional photographs and with results from field studies. Consideration was then given to radar images available for Venus, or anticipated from the Magellan mission. Of the criteria ordinarily used to identify impact craters, some can be assessed with radar images and others cannot be used; planimetric form, expressed as circularity, and ejecta-block distribution can be assessed on radar images, but rim and floor elevations relative to the surrounding plain and disposition of rim strata are difficult or impossible to determine. It is concluded that it will be difficult to separate small impact craters from small volcanic craters on Venus using radar images and is suggested that it will be necessary to understand the geological setting of the areas containing the craters in order to determine their origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00462.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00462.html"><span>Venus - Multiple-Floored, Irregular Impact Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-09-26</p> <p>NASA' sMagellan imaged this multiple-floored, irregular impact crater at latitude 16.4 degrees north, longitude 352.1 degrees east, during orbits 481 and 482 on 27 September 1990. This crater, about 9.2 kilometers in maximum diameter, was formed on what appears to be a slightly fractured, radar-dark (smooth) plain. The abundant, low viscosity flows associated with this cratering event have, however, filled local, fault-controlled troughs (called graben). These shallow graben are well portrayed on this Magellan image but would be unrecognizable but for their coincidental infilling by the radar-bright crater flows. This fortuitous enhancement by the crater flows of fault structures that are below the resolution of the Magellan synthetic aperture radar is providing the Magellan Science Team with valuable geologic information. The flow deposits from the craters are thought to consist primarily of shock melted rock and fragmented debris resulting from the nearly simultaneous impacts of two projectile fragments into the hot (800 degrees Fahrenheit) surface rocks of Venus. The presence of the various floors of this irregular crater is interpreted to be the result of crushing, fragmentation, and eventual aerodynamic dispersion of a single entry projectile during passage through the dense Venusian atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA00462</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032716','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032716"><span>Degradation of Victoria crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grant, J. A.; Wilson, S.A.; Cohen, B. A.; Golombek, M.P.; Geissler, P.E.; Sullivan, R.J.; Kirk, R.L.; Parker, T.J.</p> <p>2008-01-01</p> <p>The ???750 m diameter and ???75 m deep Victoria crater in Meridiani Planum, Mars, is a degraded primary impact structure retaining a ???5 m raised rim consisting of 1-2 m of uplifted rocks overlain by ???3 m of ejecta at the rim crest. The rim is 120-220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500-750 m across indicates that the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by ???150 m and infilled by ???50 m of sediments. Eolian processes are responsible for most crater modification, but lesser mass wasting or gully activity contributions cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for ???50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is ???20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when ???1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped <10-20 cm of darker, regional basaltic sands. Greater relief along the rim enabled meters of erosion. Comparison between Victoria and regional craters leads to definition of a crater degradation sequence dominated by eolian erosion and infilling over time. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.P11D..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.P11D..01S"><span>Sagan Lecture: Spirit, Opportunity, and the Exploration of the Red Planet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Squyres, S.</p> <p>2005-12-01</p> <p>In January of 2004, twin robotic explorers named Spirit and Opportunity landed on Mars. Expected to last for 90 days, the two rovers have now been exploring the martian surface for more than a year and a half. Their objective is to search for evidence of past water on Mars, and to determine if Mars ever had conditions that would have been suitable for life. Spirit landed in Gusev Crater, a large impact crater in the southern highlands of Mars. Finding only basaltic lava on the crater floor, Spirit drove almost three kilometers to the base of the Columbia Hills, a small mountain range to the east of the landing site. There Spirit has ascended Husband Hill, the highest summit in the range, and has found strong evidence that the rocks there were modified long ago by water. Opportunity landed on Meridiani Planum, a smooth plateau near the martian equator, coming to rest in a small impact feature named Eagle Crater. Within Eagle Crater, Opportunity found compelling evidence for long-ago water on Mars. This evidence included 'blueberries': small concretions rich in hematite that precipitated from liquid water. It also included rocks that are made largely of sulfate salts, deposited when water evaporated away, and rocks that preserve ancient ripples that formed billions of years ago as water flowed over sand on Mars. The conditions long ago at Eagle Crater may have been suitable for some simple forms of life. Whether life could have developed there, however, is a much more difficult question. After leaving Eagle Crater, Opportunity drove eastward to Endurance Crater, a much larger crater that allowed access to deeper and older rocks which also proved to be blueberry-laden sulfate-rich sediments. Since leaving Endurance Crater, Opportunity has explored southward, driving more than five kilometers across the martian surface. The talk will provide an up-to-date summary of the mission of Spirit and Opportunity, from their initial conception through their launch, landing, and operations on the surface of Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P31A2802H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P31A2802H"><span>Between Two Lakes: Opportunities for the Inception of Life in Gale Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heydari, E.; Calef, F.; Schroeder, J.; van Beek, J.; Parker, T. J.; Rowland, S. K.; Fairén, A. G.; Hallet, B.</p> <p>2017-12-01</p> <p>Many lakes may have existed in Gale crater, Mars. Five years of investigations by the Curiosity Rover has revealed clear sedimentological evidence for the presence of at least two in the rover's landing ellipse. They are here named the first lake and the last lake. The first lake formed soon after the formation of the crater and was previously introduced by Grotzinger et al. (2015). Water rushed into the crater from its northern rim inundating the crater quickly. Physical evidence for the presence of the first lake includes 300 m of mudstone of the Murray formation exposed in the foothills of Mt. Sharp. Abundance of fine-grained lithologies, dominance of laminations, absence of features suggestive of sedimentation in shallow-waters, and the lack of indicators of an ice-covered lake, all suggest that the Murray formation was deposited at the bottom of a lake that was kilometers deep and was not frozen. The first lake eventually dried up and about 3 km of sediments whose characteristics are known only from orbital images filled Gale crater (Malin and Edgett, 2000). A sediment-filled Gale crater was later exhumed from its margins, leading to the emergence of Mt. Sharp at the crater center. Afterwards, water flowed into the crater, this time from the south, forming a100 m - 200 m deep lake in the vicinity of the landing ellipse: the last lake. The evidence for the last lake is sedimentological record of two to three river deltas preserved in the Rugged Terrain Unit. These deltas prograded rapidly from south to north depositing a 5 m-thick layer over all previously deposited strata. The first lake established the potential conditions for life to begin in Gale crater. They continued until the last lake dried up and Mars became permanently cold. The duration is not well known, but it may have endured for millions of years. Sedimentological evidence provided by the Curiosity rover suggests that multitude of opportunities existed for the inception of life between the two lakes. These include diverse shallow- and deep-water environments hospitable to life, abundant supply of liquid waters of varied geochemical characteristics, and favorable climate conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..335..128F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..335..128F"><span>Eruptive history of the Ubehebe Crater cluster, Death Valley, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fierstein, Judy; Hildreth, Wes</p> <p>2017-04-01</p> <p>A sequence of late Holocene eruptions from the Ubehebe Crater cluster in Death Valley was short-lived, emplacing several phreatomagmatic and magmatic deposits. Seven craters form the main group, which erupted along a north-south alignment 1.5 km long. At least five more make a 500-m east-west alignment west of the main crater group. One more is an isolated shallow crater 400 m south of that alignment. All erupted through Miocene fanglomerate and sandstone, which are now distributed as comminuted matrix and lithic clasts in all Ubehebe deposits. Stratigraphic evidence showing that all Ubehebe strata were emplaced within a short time interval includes: (1) deposits from the many Ubehebe vents make a multi-package sequence that conformably drapes paleo-basement topography with no erosive gullying between emplacement units; (2) several crater rims that formed early in the eruptive sequence are draped smoothly by subsequent deposits; and (3) tack-welded to agglutinated spatter and bombs that erupted at various times through the sequence remained hot enough to oxidize the overlying youngest emplacement package. In addition, all deposits sufficiently consolidated to be drilled yield reliable paleomagnetic directions, with site mean directions showing no evidence of geomagnetic secular variation. Chemical analyses of juvenile components representing every eruptive package yield a narrow range in major elements [SiO2 (48.65-50.11); MgO (4.98-6.23); K2O (2.24-2.39)] and trace elements [Rb (28-33); Sr (1513-1588); Zr (373-404)]. Despite lithologic similarities, individual fall units can be traced outward from vent by recording layer thicknesses, maximum scoria and lithic sizes, and juvenile clast textural variations. This permits reconstruction of the eruptive sequence, which produced a variety of eruptive styles. The largest and northernmost of the craters, Ubehebe Crater, is the youngest of the group. Its largely phreatomagmatic deposits drape all of the others, thicken in paleogullies and thin over several newly created crater rims. Evidence in-hand virtually requires that the Ubehebe cluster of craters erupted over a brief time interval, not protracted over centuries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P53E2187S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P53E2187S"><span>Geomorphological Evidence for Pervasive Ground Ice on Ceres from Dawn Observations of Craters and Flows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, B. E.; Chilton, H.; Hughson, K.; Scully, J. E. C.; Russell, C. T.; Sizemore, H. G.; Nathues, A.; Platz, T.; Bland, M. T.; Schenk, P.; Hiesinger, H.; Jaumann, R.; Byrne, S.; Schorghofer, N.; Ammannito, E.; Marchi, S.; O'Brien, D. P.; Sykes, M. V.; Le Corre, L.; Capria, M. T.; Reddy, V.; Raymond, C. A.; Mest, S. C.; Feldman, W. C.</p> <p>2015-12-01</p> <p>Five decades of observations of Ceres' albedo, surface composition, shape and density suggest that Ceres is comprised of both silicates and tens of percent of ice. Historical suggestions of surficial hydrated silicates and evidence for water emission, coupled with its bulk density of ~2100 kg/m3 and Dawn observations of young craters containing high albedo spots support this conclusion. We report geomorphological evidence from survey data demonstrating that evaporative and fluid-flow processes within silicate-ice mixtures are prevalent on Ceres, and indicate that its surface materials contain significant water ice. Here we highlight three classes of features that possess strong evidence for ground ice. First, ubiquitous scalloped and "breached" craters are characterized by mass wasting and by the recession of crater walls in asymmetric patterns; these appear analogous to scalloped terrain on Mars and protalus lobes formed by mass wasting in terrestrial glaciated regions. The degradation of crater walls appears to be responsible for the nearly complete removal of some craters, particularly at low latitudes. Second, several high latitude, high elevation craters feature lobed flows that emanate from cirque-shaped head walls and bear strikingly similar morphology to terrestrial rock glaciers. These similarities include lobate toes and indications of furrows and ridges consistent with ice-cored or ice-cemented material. Other lobed flows persist at the base of crater walls and mass wasting features. Many flow features evidently terminate at ramparts. Third, there are frequent irregular domes, peaks and mounds within crater floors that depart from traditional crater central peaks or peak complexes. In some cases the irregular domes show evidence for high albedo or activity, and thus given other evidence for ice, these could be due to local melt and extrusion via hydrologic gradients, forming domes similar to pingos. The global distribution of these classes of features, combined with latitudinal variation in their abundance and/or appearance, suggests that ground ice is a key controller of geology on Ceres, and that ice content within the surface and subsurface is spatially varied and/or activated by energetic events. Dawn high altitude mapping orbit (HAMO) data will provide better views.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22142.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22142.html"><span>Investigating Mars: Rabe Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-14</p> <p>This VIS image of Rabe Crater is dominated by the extensive dunes that cover the crater floor. To the top of the image part of the pit is visible, as well as a small peninsula that has been eroded into the upper level floor materials. On the upper elevation on the side left of the peninsula the dunes cascade onto the lower pit elevation. There is also a slight arc to the dunes on the pit floor due to how the peninsula changed the wind pattern. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 52206 Latitude: -43.6573 Longitude: 34.9551 Instrument: VIS Captured: 2013-09-20 13:07 https://photojournal.jpl.nasa.gov/catalog/PIA22142</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA06318&hterms=reading&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dreading','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA06318&hterms=reading&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dreading"><span>Reading 'Endurance Crater'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>[figure removed for brevity, see original site] Figure 1 <p/> This image shows the area inside 'Endurance Crater' that the Mars Exploration Rover Opportunity has been examining. The rover is investigating the distinct layers of rock that make up this region. Each layer is defined by subtle color and texture variations and represents a separate chapter in Mars' history. The deeper the layer, the further back in time the rocks were formed. Scientists are 'reading' this history book by systematically studying each layer with the rover's scientific instruments. So far, data from the rover indicate that the top layers are sulfate-rich, like the rocks observed in 'Eagle Crater.' This implies that water processes were involved in forming the materials that make up these rocks. <p/> In figure 1, the layer labeled 'A' in this picture contains broken-up rocks that most closely resemble those of 'Eagle Crater.' Layers 'B,C and D' appear less broken up and more finely laminated. Layer 'E,' on the other hand, looks more like 'A.' At present, the rover is examining layer 'D.' <p/> So far, data from the rover indicates that the first four layers consist of sulfate-rich, jarosite-containing rocks like those observed in Eagle Crater. This implies that water processes were involved in forming the materials that make up these rocks, though the materials themselves may have been laid down by wind. <p/> This image was taken by Opportunity's navigation camera on sol 134 (June 9, 2004).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032023','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032023"><span>Survey of TES high albedo events in Mars' northern polar craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Armstrong, J.C.; Nielson, S.K.; Titus, T.N.</p> <p>2007-01-01</p> <p>Following the work exploring Korolev Crater (Armstrong et al., 2005) for evidence of crater interior ice deposits, we have conducted a survey of Thermal Emission Spectroscopy (TES) temperature and albedo measurements for Mars' northern polar craters larger than 10 km. Specifically, we identify a class of craters that exhibits brightening in their interiors during a solar longitude, Ls, of 60 to 120 degrees, roughly depending on latitude. These craters vary in size, latitude, and morphology, but appear to have a specific regional association on the surface that correlates with the distribution of subsurface hydrogen (interpreted as water ice) previously observed on Mars. We suggest that these craters, like Korolev, exhibit seasonal high albedo frost events that indicate subsurface water ice within the craters. A detailed study of these craters may provide insight in the geographical distribution of the ice and context for future polar missions. Copyright 2007 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007LPICo1353.3040O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007LPICo1353.3040O"><span>Strength and Deformability of Light-toned Layered Deposits Observed by MER Opportunity: Eagle to Erebus Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Okubo, C. H.; Schultz, R. A.; Nahm, A. L.</p> <p>2007-07-01</p> <p>The strength and deformability of light-toned layered deposits are estimated based on measurements of porosity from Microscopic Imager data acquired by MER Opportunity during its traverse from Eagle Crater to Erebus Crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2404&hterms=crash+2004&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcrash%2B2004','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2404&hterms=crash+2004&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcrash%2B2004"><span>KSC-04PD-2404</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., a second Solid Rocket Booster (SRB) is raised off a transporter to be lifted up the mobile service tower. It will be attached to the Boeing Delta II launch vehicle for launch of the Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact project management is handled by the Jet Propulsion Laboratory in Pasadena, Calif. The spacecraft is scheduled to launch Dec. 30, 2004.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2180&hterms=brackets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbrackets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2180&hterms=brackets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbrackets"><span>KSC-04PD-2180</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Joe Galamback mounts a bracket on a solar panel on the Deep Impact spacecraft. Galamback is a lead mechanic technician with Ball Aerospace and Technologies Corp. in Boulder, Colo. The spacecraft is undergoing verification testing after its long road trip from Colorado.A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3- foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. The spacecraft is scheduled to launch Dec. 30, 2004, aboard a Boeing Delta II rocket from Launch Complex 17 at Cape Canaveral Air Force Station, Fla.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2699&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2699&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret"><span>KSC-04PD-2699</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., the Deep Impact spacecraft is mated to the Boeing Delta II third stage. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2693&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2693&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret"><span>KSC-04PD-2693</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Boeing technicians at Astrotech Space Operations in Titusville, Fla., prepare the third stage of a Delta II rocket for mating with the Deep Impact spacecraft. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21023.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21023.html"><span>Ancient Streamlined Islands of the Palos Outflow Channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-08-24</p> <p>This image shows the northern terminus of an outflow channel located in the volcanic terrains of Amenthes Planum. The channel sources from the Palos impact crater to the south, where water flowed into the crater from Tinto Vallis and eventually formed a paleo lake. As rising lake levels breached through the crater's rim and inundated the plains to the north, the resulting high velocity, large discharge floods plucked out and eroded the volcanic plains scouring out the "Palos Outflow Channel" and the streamlined mesa-islands on its floor. These streamlined forms are the eroded remnants of plains material sculpted by catastrophic floods and are not sediment deposits emplaced by lower magnitude stream flows. Both the fluvial channel floor and the volcanic island surfaces are densely cratered by impacts suggesting that both the surfaces and the flood events are ancient. The morphology (shape) of the channel system and its islands have been preserved through the eons, but water has long been absent from this drainage system. Since then, winds have transported light-toned sediments across this terrain forming extensive dune fields within the channel system, on the floors of impact craters, and in other protected locations in the Palos Outflow Channel region. A closer look shows chevron, or fish-bone shaped, light-toned dunes located near the top of the image where numerous smaller channels have cut through the landscape. These dunes likely started out as Transverse Aeolian Ridges (TAR) that form perpendicular to the prevailing wind direction where the wind-blown sediment supply is scarce. This intriguing morphology likely reflects changes in the prevailing wind environment over time. http://photojournal.jpl.nasa.gov/catalog/PIA21023</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110022397','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110022397"><span>Effects of Solar Wind Conditions on the Plasma Wake Within a Polar Crater: Preliminary Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.</p> <p>2011-01-01</p> <p>As the solar wind sweeps horizontally past a shadowed lunar crater it simultaneously diffuses toward the surface through an ambipolar process, forming a plasma wake (e.g., Figure 1). Importantly, the resulting electric field structure diverts solar wind protons toward the cold crater floor where they may represent a source of surficial hydrogen. We present a handful of two-dimensional kinetic simulations exploring the range of wake structures and surface particle fluxes possible under various background plasma conditions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22303.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22303.html"><span>Yuty Crater Ejecta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-03-26</p> <p>Off the image to the right is Yuty Crater, located between Simud and Tiu Valles. The crater ejcta forms the large lobes along the right side of this VIS image. This type of ejecta was created by surface flow rather than air fall. It is thought that the near surface materials contained volatiles (like water) which mixed with the ejecta at the time of the impact. Orbit Number: 68736 Latitude: 22.247 Longitude: 325.213 Instrument: VIS Captured: 2017-06-12 17:57 https://photojournal.jpl.nasa.gov/catalog/PIA22303</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EPSC....8..111F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EPSC....8..111F"><span>Estimating the volume of glacial ice on Mars: Geographic and geometric constraints on concentric crater fill, lineated valley fill, and lobate debris aprons along the Martian dichotomy boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fassett, C.; Levy, J.; Head, J.</p> <p>2013-09-01</p> <p>Landforms inferred to have formed from glacial processes are abundant on Mars and include features such as concentric crater fill (CCF), lobate debris aprons (LDA), and lineated valley fill (LVF). Here, we present new mapping of the spatial extent of these landforms derived from CTX and THEMIS VIS image data, and new geometric constraints on the volume of glaciogenic fill material present in concentric crater fill deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011213','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011213"><span>Eruption-triggered avalanche, flood, and lahar at Mount St. Helens - Effects of winter snowpack</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waitt, R.B.; Pierson, T.C.; MacLeod, N.S.; Janda, R.J.; Voight, B.; Holcomb, R.T.</p> <p>1983-01-01</p> <p>An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194928','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194928"><span>Seismic expression of the Chesapeake Bay impact crater: Structural and morphologic refinements based on new seismic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poag, C. Wylie; Hutchinson, Deborah R.; Colman, Steve M.; Lee, Myung W.; Dressler, B.O.; Sharpton, V.L.</p> <p>1999-01-01</p> <p>This work refines previous interpretations of the structure and morphology of the Chesapeake Bay impact crater on the basis of more than 1,200 km of multichannel and single-channel seismic reflection profiles collected in the bay and on the adjacent continental shelf. The outer rim, formed in sedimentary rocks, is irregularly circular, with an average diameter of ~85 km. A 20–25-km-wide annular trough separates the outer rim from an ovate, crystalline peak ring of ~200 m of maximum relief. The inner basin is 35–40 km in diameter, and at least 1.26 km deep. A crystalline(?) central peak, approximately 1 km high, is faintly imaged on three profiles, and also is indicated by a small positive Bouguer gravity anomaly. These features classify the crater as a complex peak-ring/central peak crater. Chesapeake Bay Crater is most comparable to the Ries and Popigai Craters on Earth; to protobasins on Mars, Mercury, and the Moon; and to type D craters on Venus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03907&hterms=pluton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpluton','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03907&hterms=pluton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpluton"><span>Pandora Fretum Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>[figure removed for brevity, see original site] (Released 26 July 2002) Another in a series of craters with unusual interior deposits, this THEMIS image shows an unnamed crater in the southern hemisphere Pandora Fretum region near the Hellas Basin. Craters with eroded layered deposits are quite common on Mars but the crusty textured domes in the center of the image make this crater more unusual. Looking vaguely like granitic intrusions, there erosional style is distinct from the rest of the interior deposit which shows a very obvious layered morphology. While it is unlikely that the domes are granite plutons, it is possible that they do represent some other shallowly emplaced magmatic intrusion. More likely still is that variations in induration of the layered deposit allow for variations in the erosional morphology. Note how the surface of the crater floor in the northernmost portion of the image has a texture similar to that of the domes. This may represent an incipient form of the erosion that has produced the domes but has not progressed as far. An analysis of other craters in the area may shed light on the origin of the domes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=foam&id=EJ834618','ERIC'); return false;" href="https://eric.ed.gov/?q=foam&id=EJ834618"><span>Impact Crater Experiments for Introductory Physics and Astronomy Laboratories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Claycomb, J. R.</p> <p>2009-01-01</p> <p>Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196532','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196532"><span>Measuring impact crater depth throughout the solar system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Robbins, Stuart J.; Watters, Wesley A.; Chappelow, John E.; Bray, Veronica J.; Daubar, Ingrid J.; Craddock, Robert A.; Beyer, Ross A.; Landis, Margaret E.; Ostrach, Lillian; Tornabene, Livio L.; Riggs, Jamie D.; Weaver, Brian P.</p> <p>2018-01-01</p> <p>One important, almost ubiquitous, tool for understanding the surfaces of solid bodies throughout the solar system is the study of impact craters. While measuring a distribution of crater diameters and locations is an important tool for a wide variety of studies, so too is measuring a crater's “depth.” Depth can inform numerous studies including the strength of a surface and modification rates in the local environment. There is, however, no standard data set, definition, or technique to perform this data‐gathering task, and the abundance of different definitions of “depth” and methods for estimating that quantity can lead to misunderstandings in and of the literature. In this review, we describe a wide variety of data sets and methods to analyze those data sets that have been, are currently, or could be used to derive different types of crater depth measurements. We also recommend certain nomenclature in doing so to help standardize practice in the field. We present a review section of all crater depths that have been published on different solar system bodies which shows how the field has evolved through time and how some common assumptions might not be wholly accurate. We conclude with several recommendations for researchers which could help different data sets to be more easily understood and compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002467','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002467"><span>Crater Morphometry and Crater Degradation on Mercury: Mercury Laser Altimeter (MLA) Measurements and Comparison to Stereo-DTM Derived Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leight, C.; Fassett, C. I.; Crowley, M. C.; Dyar, M. D.</p> <p>2017-01-01</p> <p>Two types of measurements of Mercury's surface topography were obtained by the MESSENGER (MErcury Surface Space ENvironment, GEochemisty and Ranging) spacecraft: laser ranging data from Mercury Laser Altimeter (MLA) [1], and stereo imagery from the Mercury Dual Imaging System (MDIS) camera [e.g., 2, 3]. MLA data provide precise and accurate elevation meaurements, but with sparse spatial sampling except at the highest northern latitudes. Digital terrain models (DTMs) from MDIS have superior resolution but with less vertical accuracy, limited approximately to the pixel resolution of the original images (in the case of [3], 15-75 m). Last year [4], we reported topographic measurements of craters in the D=2.5 to 5 km diameter range from stereo images and suggested that craters on Mercury degrade more quickly than on the Moon (by a factor of up to approximately 10×). However, we listed several alternative explanations for this finding, including the hypothesis that the lower depth/diameter ratios we observe might be a result of the resolution and accuracy of the stereo DTMs. Thus, additional measurements were undertaken using MLA data to examine the morphometry of craters in this diameter range and assess whether the faster crater degradation rates proposed to occur on Mercury is robust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA08486&hterms=trails&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtrails','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA08486&hterms=trails&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtrails"><span>Breaking Trail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> 25 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies in the north wall of a crater south of Proctor Crater in Noachis Terra. To form, the gullies might have required liquid water. Dark streaks cutting across the scene were formed by passing dust devils. <p/> <i>Location near</i>: 51.4oS, 331.4oW <i>Image width</i>: 3 km (1.9 mi) <i>Illumination from</i>: upper left <i>Season</i>: Southern Summer</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRE..121.1900F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRE..121.1900F"><span>Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fassett, Caleb I.</p> <p>2016-10-01</p> <p>Analyzing the density of impact craters on planetary surfaces is the only known technique for learning their ages remotely. As a result, crater statistics have been widely analyzed on the terrestrial planets, since the timing and rates of activity are critical to understanding geologic process and history. On the Moon, the samples obtained by the Apollo and Luna missions provide critical calibration points for cratering chronology. On Mercury, Venus, and Mars, there are no similarly firm anchors for cratering rates, but chronology models have been established by extrapolating from the lunar record or by estimating their impactor fluxes in other ways. This review provides a current perspective on crater population measurements and their chronological interpretation. Emphasis is placed on how ages derived from crater statistics may be contingent on assumptions that need to be considered critically. In addition, ages estimated from crater populations are somewhat different than ages from more familiar geochronology tools (e.g., radiometric dating). Resurfacing processes that remove craters from the observed population are particularly challenging to account for, since they can introduce geologic uncertainty into results or destroy information about the formation age of a surface. Regardless of these challenges, crater statistics measurements have resulted in successful predictions later verified by other techniques, including the age of the lunar maria, the existence of a period of heavy bombardment in the Moon's first billion years, and young volcanism on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022928','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022928"><span>Leakage of active crater lake brine through the north flank at Rincon de la Vieja volcano, northwest Costa Rica, and implications for crater collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kempter, K.A.; Rowe, G.L.</p> <p>2000-01-01</p> <p>The Active Crater at Rincon de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincon de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams. Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincon de la Vieja volcano: acid chloride-sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH ~ 0) chloride-sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2-1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincon de la Vieja. The distribution of thermal water types at Rincon de la Vieja strongly indicates that formation of the north-flank ACS waters is not due to mixing of shallow, steam-heated AS water with deep-seated NC water. More likely, hyper-acidic brines formed in the Active Crater area are migrating through permeable zones in the volcanic strata that make up the Active Crater's north flank. Dissolution and shallow subsurface alteration of north-flank volcanoclastic material by interaction with acidic lake brine, particularly in the more permeable tephra units, could weaken the already oversteepened north flank of the Active Crater. Sector collapse of the Active Crater, with or without a volcanic eruption, represents a potential threat to human lives, property, and ecosystems at Rincon de la Vieja volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70009804','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70009804"><span>Moon-Mercury: Large impact structures, isostasy and average crustal viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schaber, G.G.; Boyce, J.M.; Trask, N.J.</p> <p>1977-01-01</p> <p>Thirty-five craters and basins larger than 200 km in diameter are recognized on the imaged portion (45%) of Mercury. If the unimaged portion of the planet is similarly cratered, a total of 78 such impact features may be present. Sixty-two craters and basins 200 km in diameter are recognized on the moon, a body with only half the cross-sectional area of Mercury. If surface areas are considered, however, Mercury is cratered only 70% as densely as the moon. The density of impact craters with diameters greater than 400 km on Mercury is only 30% of that on the moon, and for craters with diameters between 400 and 700 km, the density on Mercury is only 21% of the lunar crater density. The size-frequency distribution curve for the large Mercurian craters follows the same cumulative -2 slope as the lunar curve but lies well below the 10% surface saturation level characteristic of the lunar curve. This is taken as evidence that the old heavily cratered terrain on Mercury is, at least presently, not in a state of cratering equilibrium. The reduced density of large craters and basins on Mercury relative to the moon could be either a function of the crater-production rates on these bodies or an effect of different crustal histories. Resurfacing of the planet after the basin-forming period is ruled out by the presence of 54 craters and basins 100 km in diameter and larger (on the imaged portion of Mercury) that have either well-defined or poorly-defined secondary-crater fields. Total isostatic compensation of impact craters ???800 km in diameter indicates that the average viscosity of the Mercurian crust over the past 4+ aeons was the same as that for the moon (???1026.5 P). This calculated viscosity and the distribution of large craters and basins suggest that either the very early crustal viscosity on Mercury was less than that of the moon and the present viscosity greater, or the differences in large crater populations on the two bodies is indeed the result of variations in rates of crater production. ?? 1977.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020046331&hterms=Molas&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DMolas','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020046331&hterms=Molas&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DMolas"><span>MOLA Topography and Morphometry of Rampart and Pedestal Craters, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mitchell, D. E.; Sakimoto, S. E. H.; Garvin, J. B.</p> <p>2002-01-01</p> <p>Martian rampart and pedestal craters have characteristic geometric parameter ranges that are significantly different than fresh craters. Combined MOLA geometric measurements and MOC analyses can be used to constrain their modification. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006M%26PS...41.1509S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006M%26PS...41.1509S"><span>Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, Sarah T.; Valiant, Gregory J.</p> <p>2006-10-01</p> <p>The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3-50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5-2.0 times deeper (≥5σo difference) with >50% larger cavities (≥2σo) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45-70% of their transient cavity volumes, while highland craters preserve only 25-50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9-12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ˜1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA04930.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA04930.html"><span>Clouds Near Mie Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-12-13</p> <p>Mie Crater, a large basin formed by asteroid or comet impact in Utopia Planitia, lies at the center of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle image. The crater is approximately 104 km (65 mi) across. To the east and southeast (toward the lower right) of Mie, in this 5 December 2003 view, are clouds of dust and water ice kicked up by local dust storm activity. It is mid-winter in the northern hemisphere of Mars, a time when passing storms are common on the northern plains of the red planet. Sunlight illuminates this image from the lower left; Mie Crater is located at 48.5°N, 220.3°W. Viking 2 landed west/southwest of Mie Crater, off the left edge of this image, in September 1976. http://photojournal.jpl.nasa.gov/catalog/PIA04930</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P34C..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P34C..01M"><span>Impact melt-bearing breccias of the Mistastin Lake impact structure: A unique planetary analogue for ground-truthing proximal ejecta emplacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mader, M. M.; Osinski, G. R.</p> <p>2013-12-01</p> <p>Impact craters are the dominant geological landform on rocky planetary surfaces; however, relationships between specific craters and their ejecta are typically poorly constrained. With limited planetary samples, scientists look to terrestrial craters as analogues. Impact ejecta is defined here as any target material, regardless of its physical state, that is transported beyond the rim of the transient cavity [1]. The original transient cavity reaches its maximum size during the excavation stage of crater formation, before rim collapse begins in the modification stage [2]. In complex craters, during the modification stage, rocks around the periphery of the bowl-shaped transient crater collapse downward and inward to form a series of terraces along the outer margin of the crater structure [3]. Proximal impact ejecta, can therefore be found on the terraces of the modified rim of a complex crater, interior to the final crater rim [1]. Although typically poorly preserved on Earth due to post-impact erosional processes, impact ejecta have been identified in the terraced rim region of the Mistastin Lake impact structure, located in northern Labrador, Canada (55°53'N; 63°18'W) [4]. The Mistastin Lake impact structure is an intermediate-size, complex crater (28 km apparent crater diameter) formed by a meteorite impact ~36 Ma in crystalline target rocks. The original crater has been differentially eroded; however, a terraced rim and distinct central uplift are still observed [5]. The inner portion of the structure is covered by the Mistastin Lake and the surrounding area is locally covered by soil/glacial deposits and vegetation. Locally, allochthonous impactites overlying fractured target rocks are exposed along the lakeshore and along banks of radially cutting streams. They define a consistent stratigraphy, including, from bottom to top: monomict, lithic breccias, allochthonous polymict lithic breccias, and allochthonous impact melt rocks. Mistastin impact breccias range in matrix content, melt-fragment concentration, and contact relationships with adjacent impactites. Initial findings suggest differing origins for impact melt-bearing breccias from a single impact event. Three examples are highlighted: 1) Impact melt-bearing breccias, on an inner terrace, formed in boundary zones where hot impact melt flowed over cooler, ballistically emplaced polymict impact breccias. 2) Locally, a dyke of impact melt-bearing breccia suggests that this unit originated as hot lithic flow that moved laterally along the ground and then intruded as a fracture fill into target rocks. 3) A m-scale lens of melt-bearing breccia within the middle of a thick, 80m impact melt rock unit situated on an inner terrace, suggests that this lens may have originated from the crater floor and been incorporated into the melt pond during emplacement (i.e. movement of the melt from the crater floor to terrace shelf). In summary, the Mistastin Lake impact structure displays a multiple layered ejecta sequence that is consistent with, and requires, a multi-stage ejecta emplacement model as proposed by [1]. References: [1] Osinski et al. (2011) EPSL (310:167-181. [2] Melosh (1989) Oxford Univ. 245 pp. [3] French B. M. (1998) LPI Contribution 954,120pp. [4] Mader et al. (2011) 42nd LPSC, No.1608. [5] Mader et al. (2013) 43rd LPSC, No. 2517.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920018014&hterms=anodizing+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Danodizing%2Btime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920018014&hterms=anodizing+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Danodizing%2Btime"><span>Compositional analysis of projectile residues on LDEF instrument AO187-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bernhard, Ronald P.; Horz, F.</p> <p>1992-01-01</p> <p>Impact craters greater than 30 microns and associated projectile residues were analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDXA). Objectives were to analyze a statistically significant number of projectiles to evaluate their chemical variability and possible clustering into discrete particle types. Bay A11 exposed six collector surfaces of anodized 1100-T4 (greater than 99 percent pure) aluminum sheets, 0.32 cm thick, yielding an exposed surface area of 1.1 sq. m. Four of the six panels have been retained at JSC, and were optically scanned, one (A11E00E) was prepared for SEM/EDX analysis. Bay A03 was occupied by high purity (99.99 percent) gold sheets, 0.5 mm thick, yielding an exposed surface area of 0.85 sq. m. Sample processing included the optical scanning (6X), labeling, and dislodging (by a punch-die device) of each individual impact greater than 75 microns for the aluminum and 30 microns for the gold. The 209 craters were dislodged form A11E00E, having crater diameters up to 3500 microns. Optical examination of the gold surfaces detected 238 craters, 198 of which were retained at JSC and analyzed via SEM/EDX. The analytical procedures included maximizing the geometric efficiency (take-off angles), using relatively long count times (500-1000 sec) and sufficiently high accelerating currents (25-30Kev). Despite diligent examination, a large number of craters did not exhibit measurable signals above background. Detectable resides were classified as either micrometeoritic or as man-made debris.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150019437','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150019437"><span>The Degradational History of Endeavour Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grant, J. A.; Parker, T. J.; Crumpler, L. S.; Wilson, S. A.; Golombek, M. P.; Mittlefehldt, D. W.</p> <p>2015-01-01</p> <p>Endeavour crater (2.28 deg S, 354.77 deg E) is a Noachian-aged 22 km-diameter impact structure of complex morphology in Meridiani Planum. The degradation state of the crater has been studied using Mars Reconnaissance Orbiter and Opportunity rover data. Exposed rim segments rise approximately 10 m to approximately 100 m above the level of the embaying Burns Formation and the crater is 200-500 m deep with the southern interior wall exposing over approximately 300 m relief. Both pre-impact rocks (Matijevic Formation) and Endeavour impact ejecta (Shoemaker Formation) are present at Cape York, but only the Shoemaker crops out (up to approximately 140 m) along the rim segment from Murray Ridge to Cape Tribulation. Study of pristine complex craters Bopolu and Tooting, and morphometry of other martian complex craters, enables us to approximate Endeavour's pristine form. The original rim likely averaged 410 m (+/-)200 m in elevation and a 250-275 m section of ejecta ((+/-)50-60 m) would have composed a significant fraction of the rim height. The original crater depth was likely between 1.5 km and 2.2 km. Comparison between the predicted original and current form of Endeavour suggests approximately 100-200 m rim lowering that removed most ejecta in some locales (e.g., Cape York) while thick sections remain elsewhere (e.g., Cape Tribulation). Almost complete removal of ejecta at Cape York and minimal observable offset across fractures indicates current differences in rim relief are not solely due to original rim relief. Rim segments are embayed by approximately 100-200 m thickness of plains rocks outside the crater, but thicker deposits lie inside the crater. Ventifact textures confirm ongoing eolian erosion with the overall extent difficult to estimate. Analogy with degraded Noachian-aged craters south of Endeavour, however, suggests fluvial erosion dominated rim degradation in the Noachian and was likely followed by approximately 10s of meters modification by alternate processes. Such degradation is consistent with 1) the interpretation of a pediment on the rim flanks of Endeavour, 2) the formation of features such as Marathon Valley, 3) the nearly complete removal of ejecta at Cape York, 4) preservation of a thicker section of ejecta at Cape Tribulation and perhaps, 5) the origin of some gaps in the rim around the crater. A paucity of debris shed from the rim indicates most degradation occurred prior to embayment by the plains rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20289.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20289.html"><span>A Frost Enhanced Landscape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-12-23</p> <p>The arc of hills in this image from NASA Mars Reconnaissance Orbiter spacecraft is the rim of an old and infilled impact crater. The sediments that were deposited within the crater have since formed polygonal cracks due to repeated cycles of freezing and thawing. The process of polygon formation is common at these polar latitudes, but polygons are not always as striking as they are here. In this image, the polygons have been highlighted by persistent frost in the cracks. The crater rim constrains the polygon formation within the crater close to the rim, creating a spoke and ring pattern of cracks. This leads to more rectangular polygons than those near the center of the crater. The polygons close to the center of the crater display a more typical pattern. A closer look shows some of these central polygons, which have smaller polygons within them, and smaller polygons within those smaller polygons, which makes for a natural fractal. http://photojournal.jpl.nasa.gov/catalog/PIA20289</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760041712&hterms=channels+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dchannels%2Bdistribution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760041712&hterms=channels+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dchannels%2Bdistribution"><span>Distribution of small channels on the Martian surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pieri, D.</p> <p>1976-01-01</p> <p>The distribution of small channels on Mars has been mapped from Mariner 9 images at the 1:5,000,000 scale. The small channels referred to here are small valleys ranging in width from the resolution limit of the Mariner 9 wide-angle images (about 1 km) to about 10 km. The greatest density of small channels occurs in dark cratered terrain. This dark zone forms a broad subequatorial band around the planet. The observed distribution may be the result of decreased small-channel visibility in bright areas due to obscuration by a high albedo dust or sediment mantle. Crater densities within two small-channel segments show crater size-frequency distributions consistent with those of the oldest of the heavily cratered plains units. Such crater densities coupled with the almost exclusive occurrence of small channels in old cratered terrain and the generally degraded appearance of small channels in the high-resolution images (about 100 m) imply a major episode of small-channel formation early in Martian geologic history.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001656','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001656"><span>Experimentally Shocked and Altered Basalt: VNIR Spectra of Mars Analog Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, M. S.</p> <p>2017-01-01</p> <p>Major occurrences of hydrous alteration minerals on Mars have been found in Noachian impact craters formed in basaltic targets and detected using visible/near infrared (VNIR) spectroscopy. Until recently phyllosilicates were detected only in craters in the southern hemisphere. However, it has been reported that at least nine craters in the northern plains apparently excavated thick layers of lava and sediment to expose phyllosilicates as well and two Hesperian-aged impact craters, Toro and Majuro, bear evidence of phyllosilicates in the southern highlands. Turner et al. 2015 reported that hydrated minerals were identified in three Amazonian aged complex impact craters, located at 52.42degN, 39.86degE in the Ismenius Lacus quadrangle, at 8.93degN, 141.28degE in Elysium, and within Stokes crater. These discoveries indicate that Mars was globally altered by water throughout its past but do not fully constrain formation conditions for phyllosilicate occurrences which have important implications for the evolution of the surface and biological potential of Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950017419','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950017419"><span>The effect of impact angle on craters formed by hypervelocity particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hill, David C.; Rose, M. Frank; Best, Steve R.; Crumpler, Michael S.; Crawford, Gary D.; Zee, Ralph H.-C.; Bozack, Michael J.</p> <p>1995-01-01</p> <p>The Space Power Institute (SPI) at Auburn University has conducted experiments on the effects of impact angle on crater morphology and impactor residue retention for hypervelocity impacts. Copper target plates were set at angles of 30 deg, 45 deg, 60 deg, and 75 deg from the particle flight path. For the 30 deg and 45 deg impacts, in the velocity regime greater than 8 km s(exp -1) the resultant craters are almost identical to normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg and 75 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution in the same velocity regime. Impactor residue shock fractionation effects have been quantified in first-order. It is concluded that a combination of analysis techniques can yield further information on impact velocity, direction, and angle of incidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..289..157S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..289..157S"><span>Detection and characterization of buried lunar craters with GRAIL data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sood, Rohan; Chappaz, Loic; Melosh, Henry J.; Howell, Kathleen C.; Milbury, Colleen; Blair, David M.; Zuber, Maria T.</p> <p>2017-06-01</p> <p>We used gravity mapping observations from NASA's Gravity Recovery and Interior Laboratory (GRAIL) to detect, characterize and validate the presence of large impact craters buried beneath the lunar maria. In this paper we focus on two prominent anomalies detected in the GRAIL data using the gravity gradiometry technique. Our detection strategy is applied to both free-air and Bouguer gravity field observations to identify gravitational signatures that are similar to those observed over buried craters. The presence of buried craters is further supported by individual analysis of regional free-air gravity anomalies, Bouguer gravity anomaly maps, and forward modeling. Our best candidate, for which we propose the informal name of Earhart Crater, is approximately 200 km in diameter and forms part of the northwestern rim of Lacus Somniorum, The other candidate, for which we propose the informal name of Ashoka Anomaly, is approximately 160 km in diameter and lies completely buried beneath Mare Tranquillitatis. Other large, still unrecognized, craters undoubtedly underlie other portions of the Moon's vast mare lavas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19415.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19415.html"><span>Expansive Northern Volcanic Plains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-16</p> <p>Mercury northern region is dominated by expansive smooth plains, created by huge amounts of volcanic material flooding across Mercury surface in the past, as seen by NASA MESSENGER spacecraft. The volcanic lava flows buried craters, leaving only traces of their rims visible. Such craters are called ghost craters, and there are many visible in this image, including a large one near the center. Wrinkle ridges cross this scene and small troughs are visible regionally within ghost craters, formed as a result of the lava cooling. The northern plains are often described as smooth since their surface has fewer impact craters and thus has been less battered by such events. This indicates that these volcanic plains are younger than Mercury's rougher surfaces. Instrument: Mercury Dual Imaging System (MDIS) Center Latitude: 60.31° N Center Longitude: 36.87° E Scale: The large ghost crater at the center of the image is approximately 103 kilometers (64 miles) in diameter http://photojournal.jpl.nasa.gov/catalog/PIA19415</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4963536','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4963536"><span>The missing large impact craters on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Marchi, S.; Ermakov, A. I.; Raymond, C. A.; Fu, R. R.; O'Brien, D. P.; Bland, M. T.; Ammannito, E.; De Sanctis, M. C.; Bowling, T.; Schenk, P.; Scully, J. E. C.; Buczkowski, D. L.; Williams, D. A.; Hiesinger, H.; Russell, C. T.</p> <p>2016-01-01</p> <p>Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6–7 such basins. However, Ceres' surface appears devoid of impact craters >∼280 km. Here, we show a significant depletion of cerean craters down to 100–150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing. PMID:27459197</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010045','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010045"><span>Distribution of small channels on the Martian surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pieri, D.</p> <p>1976-01-01</p> <p>The distribution of small channels on Mars has been mapped from Mariner 9 images, at the 1:5 000 000 scale, by the author. The small channels referred to here are small valleys ranging in width from the resolution limit of the Mariner 9 wide-angle images (???1 km) to about 10 km. The greatest density of small band occurs in dark cratered terrain. This dark zone forms a broad subequatorial band around the planet. The observed distribution may be the result of decreased small-channel visibility in bright areas due to obscuration by a high albedo dust or sediment mantle. Crater densities within two small-channel segments show crater size-frequency distributions consistent with those of the oldest of the heavily cratered plains units. Such crater densities coupled with the almost exclusive occurrence of small channels in old cratered terrain and the generally degraded appearance of small channels in the high-resolution images (???100 m) imply a major episode of small-channel formation early in Martian geologic history. ?? 1976.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830003739&hterms=mercury+planet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmercury%2Bplanet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830003739&hterms=mercury+planet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmercury%2Bplanet"><span>The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Cratering histories of the intercrater plains. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leake, M. A.</p> <p>1982-01-01</p> <p>The intercrater plains of Mercury and the Moon are defined, in part, by their high densities of small craters. The crater size frequency statistics presented in this chapter may help constrain the relative ages and origins of these surfaces. To this end, the effects of common geologic processes on crater frequency statistics are compared with the diameter frequency distributions of the intercrater regions of the Moon and Mercury. Such analyses may determine whether secondary craters dominate the distribution at small diameters, and whether volcanic plains or ballistic deposits form the intercrater surface. Determining the mass frequency distribution and flux of the impacting population is a more difficult problem. The necessary information such as scaling relationships between projectile energy and crater diameter, the relative fluxes of solar system objects, and the absolute ages of surface units is model dependent and poorly constrained, especially for Mercury.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011723','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011723"><span>Martian crater degradation by eolian processes: Analogy with the Rio Cuarto Crater Field, Argentina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grant, J. A.; Schultz, P. H.</p> <p>1993-01-01</p> <p>Numerous degraded and rimless craters occur across broad areas of the Martian surface that are mantled by thick, unconformable deposits. These regions include Arabia, Mesogaea, Electris, Tempe, the interior and surface to the northwest of Isidis Basin, southern Ismenius Lacus, and the polar layered terrains. Occurrence of the deposits and low regional thermal inertias indicate that at least some accumulated fine-grained sediment (effective particle diameters of 0.1-0.5 mm or coarse silt to medium sand) to a thickness of 100's to 1000's of meters. Most unconformable deposits experienced some eolian modification that may be recent in some locales. Despite the presence of these deposits, simple eolian deposition appears incapable of creating the numerous degraded and rimless craters occurring within their limits. Nevertheless, terrestrial analyses of the Rio Cuario craters formed into loessoid deposits demonstrates that eolian redistribution of fine-grained sediment in and around craters produces degraded morphologies that are analogous to some found in mantled regions on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1955c0039Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1955c0039Z"><span>Computer simulation of explosion crater in dams with different buried depths of explosive</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Zhichao; Ye, Longzhen</p> <p>2018-04-01</p> <p>Based on multi-material ALE method, this paper conducted a computer simulation on the explosion crater in dams with different buried depths of explosive using LS-DYNA program. The results turn out that the crater size increases with the increase of buried depth of explosive at first, but closed explosion cavity rather than a visible crater is formed when the buried depth of explosive increases to some extent. The soil in the explosion cavity is taken away by the explosion products and the soil under the explosion cavity is compressed with its density increased. The research can provide some reference for the anti-explosion design of dams in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020479','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020479"><span>Postimpact deformation associated with the late Eocene Chesapeake Bay impact structure in southeastern Virginia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnson, G.H.; Kruse, S.E.; Vaughn, A.W.; Lucey, J.K.; Hobbs, C. H.; Powars, D.S.</p> <p>1998-01-01</p> <p>Upper Cenozoic strata covering the Chesapeake Bay impact structure in southeastern Virginia record intermittent differential movement around its buried rim. Miocene strata in a graben detected by seismic surveys on the York River exhibit variable thickness and are deformed above the creater rim. Fan-like interformational and intraformational angular unconformities within Pliocene-Pleistocene strata, which strike parallel to the crater rim and dip 2-3?? away from the crater center, indicate that deformation and deposition were synchronous. Concentric, large-scale crossbedded, bioclastics and bodies of Pliocene age within ~20km of the buried crater rim formed on offshore shoals, presumably as subsiding listric slump blocks rotated near the crater rim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008DPS....40.6109S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008DPS....40.6109S"><span>Comparison of the Production Size-frequency Distribution (SFD) of Craters on Saturnian Satellites With the Lunar Crater SFD and Asteroid Diameter SFD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmedemann, Nico; Neukum, G.; Denk, T.; Wagner, R.; Hartmann, O.; Michael, G.</p> <p>2008-09-01</p> <p>Introduction: The understanding of the geologic history of the saturnian satellites (and hence of the history of the solar system) is a major goal for us as part of the Cassini imaging experiment (ISS) team. For this reason, the SFDs of craters on Saturn's medium-sized moons have been analyzed and compared with the goal to determine the sources of the primary impactors on the saturnian satellites. Comparison of SFDs: The lunar SFD was derived by Neukum (1983). Multiple measurements of the crater production SFD on the saturnian satellites have shown a high similarity to the lunar curve (Neukum et al., 2006). From measurements on Iapetus, crater counts over 4 orders of magnitude in crater diameter are available now. Those measurements fit nicely to the velocity-corrected lunar curve for crater diameters below 60 km. By analyzing the body-diameter SFD of main-belt asteroids (data source: MPC web site, http://cfa-www.harvard.edu/iau/mpc.html, July 2008), a strong similarity with respect to the lunar curve is found as well. Hence, there are good reasons for the conclusion that asteroidal impactors captured by Saturn are responsible for the cratering record measured on the saturnian satellites. References and notes: Magnitude-to-diameter conversion of asteroids: D2=1/Pv*106.247-0.4*H H: absolute magnitude; Pv: geometric albedo; (Fowler & Chillemi, 1992) Neukum, G. (1983): Meteoritenbombardement und Datierung planetarer Oberflächen. Habilitation Dissertation for Faculty Membership, Ludwig-Maximilians Univ. München, Munich, Germany, 186 pp. Neukum, G.; Wagner, R.; Wolf, U.; Denk, T. (2006): The Cratering Record and Cratering Chronologies of the Saturnian Satellites and the Origin of Impactors: Results from Cassini ISS Data. European Planetary Science Congress (EPSC) 2006, Berlin, Germany, 18-22 September 2006, p.610. Fowler, J.W.; Chillemi, J.R. (1992): IRAS asteroid data processing. In: Tedesco, E.F., Veeder, G.J., Fowler, J.W., Chillemi, J.R. (eds.): The IRAS Minor Planet Survey. Technical Report PL-TR-92-2049, Phillips Laboratory, Hanscom AF Base, MA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70043896','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70043896"><span>Crater topography on Titan: implications for landscape evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neish, Catherine D.; Kirk, R.L.; Lorenz, R.D.; Bray, V.J.; Schenk, P.; Stiles, B.W.; Turtle, E.; Mitchell, Ken; Hayes, A.</p> <p>2013-01-01</p> <p>We present a comprehensive review of available crater topography measurements for Saturn’s moon Titan. In general, the depths of Titan’s craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede’s average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 ± 0.0003 (for the largest crater studied, Menrva, D ~ 425 km) and 0.017 ± 0.004 (for the smallest crater studied, Ksa, D ~ 39 km). When we evaluate the Anderson–Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan’s craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close ‘airless’ analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan’s surface, the only body in the outer Solar System with extensive surface–atmosphere exchange.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...356..948A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...356..948A"><span>Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreassen, K.; Hubbard, A.; Winsborrow, M.; Patton, H.; Vadakkepuliyambatta, S.; Plaza-Faverola, A.; Gudlaugsson, E.; Serov, P.; Deryabin, A.; Mattingsdal, R.; Mienert, J.; Bünz, S.</p> <p>2017-06-01</p> <p>Widespread methane release from thawing Arctic gas hydrates is a major concern, yet the processes, sources, and fluxes involved remain unconstrained. We present geophysical data documenting a cluster of kilometer-wide craters and mounds from the Barents Sea floor associated with large-scale methane expulsion. Combined with ice sheet/gas hydrate modeling, our results indicate that during glaciation, natural gas migrated from underlying hydrocarbon reservoirs and was sequestered extensively as subglacial gas hydrates. Upon ice sheet retreat, methane from this hydrate reservoir concentrated in massive mounds before being abruptly released to form craters. We propose that these processes were likely widespread across past glaciated petroleum provinces and that they also provide an analog for the potential future destabilization of subglacial gas hydrate reservoirs beneath contemporary ice sheets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss007e16813.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss007e16813.html"><span>Earth observations taken by the Expedition Seven crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-10-08</p> <p>ISS007-E-16813 (8 October 2003) --- This view featuring Honolulu, Hawaii was photographed by an Expedition 7 crewmember onboard the International Space Station (ISS). The city is striking for the way it is bound by surrounding geography. Built-up fingers of the city extend northeast onto the steep volcanic slopes and surround the volcanic craters of Punchbowl crater and Diamond Head, leaving undeveloped only parklands and the steepest ridges. They are both tuff cones that formed as magma from the erupting volcano came in contact with ground water at a time when sea levels were higher than they are now. As the water turned to steam, according to NASA scientists, it caused an explosion that formed a hill of ash with a broad crater in the center.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4822304M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4822304M"><span>Quantifying Slope Effects and Variations in Crater Density across a Single Geologic Unit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Heather; Mahanti, Prasun; Robinson, Mark; Povilaitis, Reinhold</p> <p>2016-10-01</p> <p>Steep underlying slopes (>~5°) significantly increase the rate of degradation of craters [1-3]. As a result, the density of craters is less on steeper slopes for terrains of the same age [2, 4]. Thus, when age-dating a planetary surface, an area encompassing one geologic unit of constant low slope is chosen. However, many key geologic units, such as ejecta blankets, lack sufficient area of constant slope to derive robust age estimates. Therefore, accurate age-dating of such units requires an accurate understanding of the effects of slope on age estimates. This work seeks to determine if the observed trend of decreasing crater density with increasing slopes [2] holds for craters >1 km and to quantify the effect of slope for craters of this size, focusing on the effect of slopes over the kilometer scale. Our study focuses on the continuous ejecta of Orientale basin, where we measure craters >1 km excluding secondaries that occur as chains or clusters. Age-dating via crater density measurements relies on uniform cratering across a single geologic unit. In the case of ejecta blankets and other impact related surfaces, this assumption may not hold due to the formation of auto- secondary craters. As such, we use LRO WAC mosaics [5], crater size-frequency distributions, absolute age estimates, a 3 km slope map derived from the WAC GLD100 [6], and density maps for various crater size ranges to look for evidence of non-uniform cratering across the continuous ejecta of Orientale and to determine the effect of slope on crater density. Preliminary results suggest that crater density does decrease with increasing slope for craters >1 km in diameter though at a slower rate than for smaller craters.References: [1] Trask N. J. and Rowan L. C. (1967) Science 158, 1529-1535. [2] Basilevsky (1976) Proc. Lunar Sci. Conf. 7th, p. 1005-1020. [3] Pohn and Offield (1970) USGS Prof. Pap., 153-162. [4] Xiao et al. (2013) Earth and Planet. Sci. Lett., 376, pgs. 1-11. doi:10.1016/j.epsl.2013.06.015. [5] Robinson M. S. et al. (2010) Space Sci. Rev. 150, 81 -124. [6] Scholten F. et al. (2011), JGR, 117, doi:10.1029/2011JE003926</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V33B3104G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V33B3104G"><span>Distribution of Ejecta in Analog Tephra Rings from Discrete Single and Multiple Subsurface Explosions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graettinger, A. H.; Valentine, G. A.; Sonder, I.; Ross, P. S.; White, J. D. L.</p> <p>2015-12-01</p> <p>Buried-explosion experiments were used to investigate the spatial and volumetric distribution of extra-crater ejecta resulting from a range of explosion configurations with and without a crater present. Explosion configuration is defined in terms of scaled depth, the relationship between depth of burial and the cube root of explosion energy, where an optimal scaled depth explosion produces the largest crater diameter for a given energy. The multiple explosion experiments provide an analog for the formation of maar-diatreme ejecta deposits and the deposits of discrete explosions through existing conduits and hydrothermal systems. Experiments produced meter-sized craters with ejecta distributed between three major facies based on morphology and distance from the crater center. The proximal deposits form a constructional steep-sided ring that extends no more than two-times the crater radius away from center. The medial deposits form a low-angle continuous blanket that transitions with distance into the isolated clasts of the distal ejecta. Single explosion experiments produce a trend of increasing volume proportion of proximal ejecta as scaled depth increases (from 20-90% vol.). Multiple explosion experiments are dominated by proximal deposits (>90% vol.) for all but optimal scaled depth conditions (40-70% vol.). In addition to scaled depth, the presence of a crater influences jet shape and how the jet collapses, resulting in two end-member depositional mechanisms that produce distinctive facies. The experiments use one well-constrained explosion mechanism and, consequently, the variations in depositional facies and distribution are the result of conditions independent of that mechanism. Previous interpretations have invoked variations in fragmentation as the cause of this variability, but these experiments should help with a more complete reconstruction of the configuration and number of explosions that produce a tephra ring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010Icar..207..248S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010Icar..207..248S"><span>The formation of floor-fractured craters in Xanthe Terra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sato, Hiroyuki; Kurita, Kei; Baratoux, David</p> <p>2010-05-01</p> <p>Floor-fractured craters (FFC) are a peculiar form of degradation of impact craters defined by the presence of crevice networks and mesas affecting crater floors. They are preferentially distributed near chaotic terrains and outflow channels. The scope of this paper is to present a detailed systematic analysis of FFC at Xanthe Terra. FFC morphologies in this region are classified into five types making a picture of different stages of the same degradation process. FFC are geographically intermixed with un-fractured normal craters (non-FFC). Young craters are less prone to show this type of degradation, as suggested by fresh ejecta layer with preserved crater floor. Size distributions of FFC and non-FFC indicate that larger craters are preferentially fractured. Careful examinations of the crater floor elevations reveal that the crevices often extend deeper than the original crater cavity. Furthermore, an onset depth for the formation of FFC is evidenced from the difference of spatial distributions between FFC and non-FFC. Roof-collapsed depressions observed in the same region have been also documented and their characteristics suggest the removal of subsurface material at depth from about 1200 to 4000 m. These observations taken together suggest a subsurface zone of volume deficit at depth from 1 to 2 km down to several kilometers responsible for FFC formation. Then a scenario of FFC formations is presented in the context of groundwater discharge events at the late Hesperian. This scenario involves two key processes, Earth fissuring and piping erosion, known to occur with rapid groundwater migrations on Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0116&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0116&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0116</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Ball Aerospace in Boulder, Colo., the impactor on the Deep Impact spacecraft is tested. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The impactor will separate from the flyby spacecraft 24 hours before it impacts the surface of Tempel 1's nucleus. The impactor delivers 19 Gigajoules (that's 4.8 tons of TNT) of kinetic energy to excavate the crater. This kinetic energy is generated by the combination of the mass of the impactor and its velocity when it impacts. To accomplish this feat, the impactor uses a high-precision star tracker, the Impactor Target Sensor (ITS), and Auto-Navigation algorithms developed by Jet Propulsion Laboratory to guide it to the target. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720005848','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720005848"><span>Microcraters formed in glass by low density projectiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mandeville, J.-C.; Vedder, J. F.</p> <p>1971-01-01</p> <p>Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene (p = 1.06 g/cu cm) with masses between 0.7 and 62 picograms and velocities between 2 and 14 km/s. The morphology of the craters depended on the velocity and the angle of incidence of the projectiles and these are discussed in detail. It was found that the transitions in morphology of the craters formed by polystyrene spheres occurred at higher velocities than they did for more dense projectiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21255.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21255.html"><span>Now and Long Ago at Gale Crater, Mars Illustration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-12-13</p> <p>This pair of drawings depicts the same location on Mars at two points in time: now and billions of years ago. The location is in Gale Crater, near the Red Planet's equator. Since August 2012, NASA's Curiosity Mars rover mission has been investigating rock layers in the crater floor and in the crater's central peak (Mount Sharp) for information recorded in the rocks about ancient environmental conditions and how they changed over time. Slide 1 shows a present-day snapshot of the northern half of Gale Crater. North is to the left. The underlying basement is the crust of Mars that forms the crater's rim (left) and central peak (right). About 3.5 billion years ago, rivers brought sediment into the crater, depositing pebbles where the river was flowing more quickly, sand where the river entered a standing body of water in the center of the basin, and silt within this lake. Lake level rose over time as the sediments built up. Eventually they were buried by dry dust. These sediments later turned into the conglomerate, sandstone, mudstone, and duststone rocks that Curiosity has found. Wind then carved the stack of deposits into the present shape of a mountain, which Curiosity is climbing as approximately shown. The basement rock fractured during the initial impact that formed the crater, and the later sediments fractured as they were buried. Slide 2 shows a snapshot in time when a lake was present in the crater. As on Earth, Martian lakes were the surface expression of a much larger lake and groundwater system. Spaces between grains and in fractures were saturated with water at levels below the water table (dashed blue line). This groundwater circulated due to gravity and the topography within and around the crater. In this case, groundwater pressurized under the nearby Martian highlands may have flowed into the crater, where it would be less confined. Groundwater also flowed downward from the lake. As the groundwater circulated, it drove chemical reactions that dissolved some minerals and precipitate others. Habitable environments in ancient Gale Crater -- identified during Curiosity's first year on Mars --expanded both in space and time beyond just the lakes. They extend throughout the subsurface where groundwater was present, and extended in time well after the lakes disappeared, when groundwater continued to circulate through the buried and fractured sediments. The unannotated figure and an animated gif are available at http://photojournal.jpl.nasa.gov/catalog/PIA21255</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..256...78K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..256...78K"><span>Dione's resurfacing history as determined from a global impact crater database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirchoff, Michelle R.; Schenk, Paul</p> <p>2015-08-01</p> <p>Saturn's moon Dione has an interesting and unique resurfacing history recorded by the impact craters on its surface. In order to further resolve this history, we compile a crater database that is nearly global for diameters (D) equal to and larger than 4 km using standard techniques and Cassini Imaging Science Subsystem images. From this database, spatial crater density maps for different diameter ranges are generated. These maps, along with the observed surface morphology, have been used to define seven terrain units for Dione, including refinement of the smooth and "wispy" (or faulted) units from Voyager observations. Analysis of the terrains' crater size-frequency distributions (SFDs) indicates that: (1) removal of D ≈ 4-50 km craters in the "wispy" terrain was most likely by the formation of D ≳ 50 km craters, not faulting, and likely occurred over a couple billion of years; (2) resurfacing of the smooth plains was most likely by cryovolcanism at ∼2 Ga; (3) most of Dione's largest craters (D ⩾ 100 km), including Evander (D = 350 km), may have formed quite recently (<2 Ga), but are still relaxed, indicating Dione has been thermally active for at least half its history; and (4) the variation in crater SFDs at D ≈ 4-15 km is plausibly due to different levels of minor resurfacing (mostly subsequent large impacts) within each terrain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100005365','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100005365"><span>Exploring Martian Impact Craters: Why They are Important for the Search for Life</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schwenzer, S. P.; Abramov, O.; Allen, C. C.; Clifford, S.; Filiberto, J.; Kring, D. A.; Lasue, J.; McGovern, P. J.; Newsom, H. E.; Treiman, A. H.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20100005365'); toggleEditAbsImage('author_20100005365_show'); toggleEditAbsImage('author_20100005365_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20100005365_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20100005365_hide"></p> <p>2010-01-01</p> <p>Fluvial features and evidence for aqueous alteration indicate that Mars was wet, at least partially and/or periodically, in the Noachian. Also, impact cratering appears to have been the dominant geological process [1] during that epoch. Thus, investigation of Noachian craters will further our understanding of this geologic process, its effects on the water-bearing Martian crust, and any life that may have been present at the time. Impact events disturbed and heated the water- and/or ice-bearing crust, likely initiated long-lived hydrothermal systems [2-4], and formed crater lakes [5], creating environments suitable for life [6]. Thus, Noachian impact craters are particularly important exploration targets because they provide a window into warm, water-rich environments of the past which were possibly conducive to life. In addition to the presence of lake deposits, assessment of the presence of hydrothermal deposits in the walls, floors and uplifts of craters is important in the search for life on Mars. Impact craters are also important for astrobiological exploration in other ways. For example, smaller craters can be used as natural excavation pits, and so can provide information and samples that would otherwise be inaccessible (e.g., [7]). In addition, larger (> 75 km) craters can excavate material from a potentially habitable region, even on present-day Mars, located beneath a >5-km deep cryosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JASS...31..131H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JASS...31..131H"><span>Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hong, Ik-Seon; Yi, Yu; Kim, Eojin</p> <p>2014-06-01</p> <p>Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..298...64Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..298...64Z"><span>Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zanetti, M.; Stadermann, A.; Jolliff, B.; Hiesinger, H.; van der Bogert, C. H.; Plescia, J.</p> <p>2017-12-01</p> <p>Crater size-frequency distributions on the ejecta blankets of Aristarchus and Tycho Craters are highly variable, resulting in apparent absolute model age differences despite ejecta being emplaced in a geologic instant. Crater populations on impact melt ponds are a factor of 4 less than on the ejecta, and crater density increases with distance from the parent crater rim. Although target material properties may affect crater diameters and in turn crater size-frequency distribution (CSFD) results, they cannot completely reconcile crater density and population differences observed within the ejecta blanket. We infer from the data that self-secondary cratering, the formation of impact craters immediately following the emplacement of the continuous ejecta blanket by ejecta from the parent crater, contributed to the population of small craters (< 300 m diameter) on ejecta blankets and must be taken into account if small craters and small count areas are to be used for relative and absolute model age determinations on the Moon. Our results indicate that the cumulative number of craters larger than 1 km in diameter per unit area, N(1), on the continuous ejecta blanket at Tycho Crater, ranges between 2.17 × 10-5 and 1.0 × 10-4, with impact melt ponds most accurately reflecting the primary crater flux (N(1) = 3.4 × 10-5). Using the cratering flux recorded on Tycho impact melt deposits calibrated to accepted exposure age (109 ± 1.5 Ma) as ground truth, and using similar crater distribution analyses on impact melt at Aristarchus Crater, we infer the age of Aristarchus Crater to be ∼280 Ma. The broader implications of this work suggest that the measured cratering rate on ejecta blankets throughout the Solar System may be overestimated, and caution should be exercised when using small crater diameters (i.e. < 300 m on the Moon) for absolute model age determination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P21C2122P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P21C2122P"><span>Aqueous alteration revealed by diverse mineralogy at Amazonian-aged Lyot crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, L.; Ehlmann, B. L.</p> <p>2016-12-01</p> <p>Located close to the hemispheric dichotomy, Lyot crater is the largest (with diameter 220 km) and deepest impact crater in the northern lowlands of Mars. The impact event could have released substantial amount of volatiles and strongly influenced the evolution of Amazonian Mars climate [1]. Previous works have shown that the impact event probably induced overland flow that formed the channels north of Lyot [2] and within the crater, kilometer-long valleys have formed in micro-environments that post-date the impact [3]. These features suggest that groundwater may have been mobilized in the subsurface, and there was melting of ice-rich deposits after the impact event. In a recent mineralogy survey [4], diverse hydrated minerals in and around Lyot crater have been revealed by data acquired from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). The concentration of hydrated minerals in this region is much greater than average northern plains, suggesting substantial aqueous alteration directly associated to the Lyot impact or in the regional stratigraphy. We have found 7 Fe/Mg phyllosilicate detections, likely smectite or mixed-layer smectite-chlorite, in the central ring region; 10 chlorite/prehnite detections (identified with a typical 2.35 µm absorption, in which 2 have an additional 1.48 µm absorption that matches prehnite, confirming [5]) in the central ring, crater floor, outer rim, and ejecta blanket; and 9 locations with absorptions at 2.21 µm with/without the coexistence with the 2.35 µm feature, which can be explained by illite/muscovite or a mixture of hydrated silica and chlorite/prehnite. The unit with 2.21-µm absorptions is often associated with the smooth mantling deposit, superposed on the valleys within the crater and on the crater rim. Further morphological analysis over these units with distinct mineralogy will shed light on the aqueous activity that formed these minerals. Combined with geological map of the region, we will establish the timeline of aqueous activities associated with the impact and provide insights into the climatic influence of Lyot impact in the Amazonian age. [1] Toon et al. (2010) Ann. Rev Earth Plan. Sci 38 [2] Harrison et al. (2010) GRL 37(21) [3] Dickson et al. (2010) GRL 36(8) [4] Pan, Ehlmann, Carter, Ernst, JGR Planets, submitted [5] Carter et al., (2010) Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P23E..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P23E..04R"><span>Morphologic and Dynamic Similarities Between Polygonal Dunes on Mars and Interference Ripples on Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rubin, D. M.; Newman, C. E.</p> <p>2012-12-01</p> <p>Some dunes in craters on Mars are similar in morphology to ripples formed in complicated multidirectional flows on Earth. Similarities in morphology of these ripples on Earth and dunes on Mars include (1) relatively symmetrical cross-sections, and (2) crests with planform polygonal patterns, "tile" patterns, or "ladderback" structure. On Earth, bedforms with these morphologies are produced by complicated directionally-varying flows such as those generated by interfering waves (Figure 1), recirculating flows in the lee of large dunes, and recirculating flows in lateral separation eddies in rivers. Here we hypothesize that dunes with these morphologies on Mars (Figure 2) are also formed by multidirectional flows. Processes that might produce multidirectional winds on Mars include: heating and cooling that cause daily changes in wind direction; winds that vary in direction seasonally or with the passage of storms; and recirculating flows within steep-walled craters or within the troughs of larger dunes. This work was funded by NASA Mars Data Analysis Program.igure 1. Polygonal ripples formed by waves in shallow water; boot print is 30 cm long. igure 2. Polygonal dunes in Victoria Crater, Mars; crater is approximately 700 m in diameter and 70 m deep; image from NASA/JPL-Caltech/University of Arizona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940007574&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DATLA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940007574&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DATLA"><span>Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Basilevsky, A. T.</p> <p>1993-01-01</p> <p>This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRE..117.0H06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRE..117.0H06F"><span>Lunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.</p> <p>2012-02-01</p> <p>Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D ≥ 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014881','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014881"><span>Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.</p> <p>2012-01-01</p> <p>Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P41D2852D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P41D2852D"><span>Depth of maturity in the Moon's regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denevi, B. W.; Duck, A.; Klem, S.; Ravi, S.; Robinson, M. S.; Speyerer, E. J.</p> <p>2017-12-01</p> <p>The observed maturity of the lunar surface is a function of its exposure to the weathering agents of the space environment as well as the rates of regolith gardening and overturn. Regolith exposed on the surface weathers until it is buried below material delivered to the surface by impact events; weathering resumes when it is re-exposed to the surface environment by later impacts. This cycle repeats until a mature layer of some thickness develops. The gardening rate of the upper regolith has recently been shown to be substantially higher than previously thought, and new insights on the rates of space weathering and potential variation of these rates with solar wind flux have been gained from remote sensing as well as laboratory studies. Examining the depth to which the lunar regolith is mature across a variety of locations on the Moon can provide new insight into both gardening and space weathering. Here we use images from the Lunar Reconnaissance Orbiter Camera (LROC) with pixel scales less than approximately 50 cm to examine the morphology and reflectance of impact craters in the 2- to 100-m diameter size range. Apollo core samples show substantial variation, but suggest that the upper 50 cm to >1 m of regolith is mature at the sampled sites. These depths indicate that because craters excavate to a maximum depth of 10% of the transient crater diameter, craters with diameters less than 5-10 m will typically expose only mature material and this phenomenon should be observable in LROC images. Thus, we present the results of classifying craters by both morphology and reflectance to determine the size-frequency distribution of craters that expose immature material versus those that do not. These results are then compared to observations of reflectance values for the ejecta of craters that have formed during the LRO mission. These newly formed craters span a similar range of diameters, and there is no ambiguity about post-impact weathering because they are less than a decade old.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22143.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22143.html"><span>Investigating Mars: Rabe Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-15</p> <p>This VIS image provides another instance where the topography of the upper floor material affects the winds and dune formation. At the edges of the dune field, the dunes become smaller and more separated, revealing the harder surface that the dunes are moving across. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 57843 Latitude: -43.3482 Longitude: 34.6454 Instrument: VIS Captured: 2014-12-28 12:37 https://photojournal.jpl.nasa.gov/catalog/PIA22143</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012289','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012289"><span>The morphology of the Martian surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carr, M.H.</p> <p>1980-01-01</p> <p>Most of the southern hemisphere of Mars is densely cratered and stands 1-3 km above the topographic datum. The northern hemisphere is more sparsely cratered and elevations are generally below the datum. A broad rise, the Tharsis bulge, centered at 14?? S, 101?? W, is 8000 km across and 10 km above the datum at its summit. The densely cratered terrain has two main components; very ancient crust, nearly saturated with large craters, and younger intercrater plains. In many areas the older unit is fractured and extensively dissected by small channels. The younger intercrater plains are distinctly layered in places and less dissected, less fractured, and less cratered. Both units probably date from very early in the planet's history. Cratered plains cover much of the northern hemisphere and are highly variegated. Those around the large volcanoes are covered with numerous volcanic flows whereas in other areas the plains are featureless except for craters and lunar mare-like ridges. Between 40?? N and 60?? N the plains are complex with various kinds of striped and patterned ground, low escarpments, and isolated irregularly shaped mesas. Their peculiar morphology has been attributed, in part, to the repeated deposition and removal of volatile-rich debris layers. Along the boundary between the northern plains and the densely cratered terrain to the south, the plains and cratered terrain complexly inter-finger. The old terrain forms the high ground and appears to have undergone mass wasting on a large scale. In several areas, particularly south of Chryse Planitia, the old, cratered surface has collapsed to form chaotic terrain. Large channels, tens of kilometers wide and hundreds of kilometers long, with numerous characteristics suggestive of catastrophic flooding, commonly emerge from the chaotic areas. Much of the area between 50?? W and 180?? W and 50?? N and 50?? S is cut by fractures radial to the center of the Tharsis bulge. The equatorial canyon system, Valles Marineris, is radial to the bulge and appears to have formed largely by faulting along the radial fractures, although it has also been extensively modified by various mass wasting and fluvial processes. Most but not all volcanoes are in the Tharsis and Elysium regions. The largest resemble terrestrial shield volcanoes except for scale; the edifices, flow features and calderas are all far larger than their terrestrial counterparts. Most impact craters on Mars are surrounded by layers of ejecta, each with a distil ridge. This unique morphology coupled with other surface characteristics suggests large amounts of ground ice. Layered deposits at both poles appear to be relatively young, volatile-rich, aeolian deposits. The north pole is also surrounded by a continuous belt of dunes several tens of kilometers across. In most other places, aeolian modification of the surface at a scale of several tens of meters appears slight despite annual global dust storms. ?? 1980 D. Reidel Publishing Co.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMED51B0527C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMED51B0527C"><span>An Impact Cratering Interactive Website Used for Outreach and in Professional Development Workshops for Middle School Science Teachers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Croft, S. K.; Pierazzo, E.; Canizo, T.; Lebofsky, L. A.</p> <p>2009-12-01</p> <p>Impact cratering is one of the fundamental geologic processes affecting all planetary and asteroidal bodies in the Solar System. With few exceptions, all bodies with solid surfaces explored so far show the presence of impact craters - from the less than 200 known craters on Earth to the many thousands seen on the Moon, Mercury, and other bodies. Indeed, the study of crater populations is one of the principal tools for understanding the geologic history of planetary surfaces. In recent years, impact cratering has gained public notoriety through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: “How often do impacts occur?” “How do scientists learn about impact cratering?” and “What information do impact craters provide in understanding the evolution planetary surfaces?” On our website: “Explorer’s Guide to Impact Craters,” we answer those questions in a fun, informative and interactive way. The website provides the interested public with an opportunity to: 1) experience how scientists explore known terrestrial craters through a virtual fieldtrips; 2) learn more about the dynamics of impact cratering using numerical simulations of various impacts; and 3) investigate how impact cratering affects rocks via images and descriptions of field samples of impact rocks. This learning tool has been a popular outreach endeavor (recently reaching 100,000 hits), and it has recently been incorporated in the Impact Cratering Workshop developed by scientists and EPO specialists at the Planetary Science Institute. The workshop provides middle school science teachers with an inquiry-based understanding of the process of impact cratering and how it affects the solar system. Participants are instructed via standards-based multimedia presentations, analysis of planetary images, hands-on experience with geologic samples from terrestrial impact craters, and first-hand experience forming impact craters. Through the “Explorer’s Guide to Impact Craters,” participants are able to virtually explore three terrestrial impact craters, while examining, first-hand, samples of rocks collected at the three impact sites by real field geologists. The rock samples are included in our Impact Rock Kits that are available for check-out by teachers desiring to involve their students in the study of impact craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007M%26PS...42.1995K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007M%26PS...42.1995K"><span>Coupled effects of impact and orogeny: Is the marine Lockne crater, Sweden, pristine?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kenkmann, T.; Kiebach, F.; Rosenau, M.; Raschke, U.; Pigowske, A.; Mittelhaus, K.; Eue, D.</p> <p></p> <p>Our current understanding of marine-impact cratering processes is partly inferred from the geological structure of the Lockne crater. We present results of a mapping campaign and structural data indicating that this crater is not pristine. In the western part of the crater, pre-impact, impact, and post-impact rocks are incorporated in Caledonian thrust slices and are subjected to folding and faulting. A nappe outlier in the central crater depression is a relic of the Caledonian nappe cover that reached a thickness of more than 5 km. The overthrusted crater is gently deformed. Strike of strata and trend of fold axes deviate from standard Caledonian directions (northeast-southwest). Radially oriented crater depressions, which were previously regarded as marine resurge gullies formed when resurging seawater erosively cut through the crater brim, are interpreted to be open synclines in which resurge deposits were better preserved.The presence of the impact structure influenced orogenesis due to morphological and lithological anomalies of the crater: i) a raised crater brim zone acted as an obstacle during nappe propagation, (ii) the occurrence of a central crater depression caused downward sagging of nappes, and (iii) the lack of an appropriate detachment horizon (alum shale) within the crater led to an enhanced mechanical coupling and internal deformation of the nappe and the overthrusted foreland. Preliminary results of 3-D-analogue experiments suggest that a circular high-friction zone representing the crater locally hinders nappe propagation and initiates a circumferentially striking ramp fault that delineates the crater. Crustal shortening is also partitioned into the crater basement and decreases laterally outward. Deformation of the foreland affected the geometry of the detachment and could be associated with the activation of a deeper detachment horizon beneath the crater. Strain gradients both vertically and horizontally result in non-plane strain deformation in the vicinity of the crater. The strain tensors in the hanging and foot walls may deviate up to 90° from each other and rotated by up to 45° with respect to the standard regional orientation. The observed deflection of strata and fold axes within the Lockne crater area as revealed by field mapping is in agreement with the pattern of strain partitioning shown in the analogue models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017535','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017535"><span>First images of asteroid 243 Ida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Belton, M.J.S.; Chapman, C.R.; Veverka, J.; Klaasen, K.P.; Harch, A.; Greeley, R.; Greenberg, R.; Head, J. W.; McEwen, A.; Morrison, D.; Thomas, P.C.; Davies, M.E.; Carr, M.H.; Neukum, G.; Fanale, F.P.; Davis, D.R.; Anger, C.; Gierasch, P.J.; Ingersoll, A.P.; Pilcher, C.B.</p> <p>1994-01-01</p> <p>The first images of the asteroid 243 Ida from Galileo show an irregular object measuring 56 kilometers by 24 kilometers by 21 kilometers. Its surface is rich in geologic features, including systems of grooves, blocks, chutes, albedo features, crater chains, and a full range of crater morphologies. The largest blocks may be distributed nonuniformly across the surface; lineaments and dark-floored craters also have preferential locations. Ida is interpreted to have a substantial regolith. The high crater density and size-frequency distribution (-3 differential power-law index) indicate a surface in equilibrium with saturated cratering. A minimum model crater age for Ida - and therefore for the Koronis family to which Ida belongs - is estimated at 1 billion years, older than expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940030913','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940030913"><span>Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cintala, Mark J.; Mcbride, Kathleen M.</p> <p>1994-01-01</p> <p>Enlargements of Lunar-Orbiter photography were used in conjunction with a digitizing tablet to collect the locations and dimensions of blocks surrounding the Surveyor 1, 3, 6, and 7 landing sites. Data were reduced to the location and the major axis of the visible portion of each block. Shadows sometimes made it difficult to assess whether the visible major axis corresponded with the actual principal dimension. These data were then correlated with the locations of major craters in the study areas, thus subdividing the data set into blocks obviously associated with craters and those in intercrater areas. A block was arbitrarily defined to be associated with a crater when its location was within 1.1 crater radii of the crater's center. Since this study was commissioned for the ultimate purpose of determining hazards to landing spacecraft, such a definition was deemed appropriate in defining block-related hazards associated with craters. Size distributions of smaller fragments as determined from Surveyor photography were obtained as measurements from graphical data. Basic comparisons were performed through use of cumulative frequency distributions identical to those applied to studies of crater-count data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840042873&hterms=violent+media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dviolent%2Bmedia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840042873&hterms=violent+media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dviolent%2Bmedia"><span>Impact into the earth's ocean floor - Preliminary experiments, a planetary model, and possibilities for detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mckinnon, W. B.</p> <p>1982-01-01</p> <p>Impact processes and plate tectonics are invoked in an experimental study of craters larger than 100 km in diameter on the ocean floor. Although the results obtained from 22-caliber (383 m/sec) ammunition experiments using dense, saturated sand as a target medium cannot be directly scaled to large events, the phenomenology exhibited is that expected of actual craters on the ocean floor: steep, mixed ejecta plume, gravitational adjustment of the crater to form a shallow basin, and extensive reworking of the ejecta, rim, and floor materials by violent collapse of the transient water cavity. Excavation into the mantle is predicted, although asthenospheric influence on outer ring formation is not. The clearest geophysical signature of such a crater is not topography; detection should instead be based on gravity and geoid anomalies due to uplift of the Moho, magnetic anomalies, and seismic resolution of the Moho uplift and crater formation fault planes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5013556','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5013556"><span>Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nayak, M.; Asphaug, E.</p> <p>2016-01-01</p> <p>The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties. PMID:27575002</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030675','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030675"><span>Phyllosilicate and sulfate-hematite deposits within Miyamoto crater in Southern Sinus Meridiani, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wiseman, S.M.; Arvidson, R. E.; Andrews-Hanna, J. C.; Clark, R.N.; Lanza, N.L.; des Marais, D.; Marzo, G.A.; Morris, R.V.; Murchie, S.L.; Newsom, Horton E.; Noe Dobrea, E.Z.; Ollila, A.M.; Poulet, F.; Roush, T.L.; Seelos, F.P.; Swayze, G.A.</p> <p>2008-01-01</p> <p>Orbital topographic, image, and spectral data show that sulfate- and hematite-bearing plains deposits similar to those explored by the MER rover Opportunity unconformably overlie the northeastern portion of the 160 km in diameter Miyamoto crater. Crater floor materials exhumed to the west of the contact exhibit CRISM and OMEGA NIR spectral signatures consistent with the presence of Fe/Mg-rich smectite phyllosilicates. Based on superposition relationships, the phyllosilicate-bearing deposits formed either in-situ or were deposited on the floor of Miyamoto crater prior to the formation of the sulfate-rich plains unit. These findings support the hypothesis that neutral pH aqueous conditions transitioned to a ground-water driven acid sulfate system in the Sinus Meridiani region. The presence of both phyllosilicate and sulfate- and hematite-bearing deposits within Miyamoto crater make it an attractive site for exploration by future rover missions. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04011&hterms=5S&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D5S','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04011&hterms=5S&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D5S"><span>Proctor Crater Dunes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p><p/> [figure removed for brevity, see original site] <p/>This image, located near 30E and 47.5S, displays sand dunes within Proctor Crater. These dunes are composed of basaltic sand that has collected in the bottom of the crater. The topographic depression of the crater forms a sand trap that prevents the sand from escaping. Dune fields are common in the bottoms of craters on Mars and appear as dark splotches that lean up against the downwind walls of the craters. Dunes are useful for studying both the geology and meteorology of Mars. The sand forms by erosion of larger rocks, but it is unclear when and where this erosion took place on Mars or how such large volumes of sand could be formed. The dunes also indicate the local wind directions by their morphology. In this case, there are few clear slipfaces that would indicate the downwind direction. The crests of the dunes also typically run north-south in the image. This dune form indicates that there are probably two prevailing wind directions that run east and west (left to right and right to left).<p/>Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.<p/>NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.296...11M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.296...11M"><span>Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.</p> <p>2017-11-01</p> <p>This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04049&hterms=sputnik&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsputnik','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04049&hterms=sputnik&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsputnik"><span>Impact Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p><p/> [figure removed for brevity, see original site] <p/>Today marks the 45th anniversary of the dawn of the Space Age (October 4, 1957). On this date the former Soviet Union launched the world's first satellite, Sputnik 1. Sputnik means fellow traveler. For comparison Sputnik 1 weighed only 83.6 kg (184 pounds) while Mars Odyssey weighs in at 758 kg (1,671 pounds).<p/>This scene shows several interesting geologic features associated with impact craters on Mars. The continuous lobes of material that make up the ejecta blanket of the large impact crater are evidence that the crater ejecta were fluidized upon impact of the meteor that formed the crater. Volatiles within the surface mixed with the ejecta upon impact thus creating the fluidized form. Several smaller impact craters are also observed within the ejecta blanket of the larger impact crater giving a relative timing of events. Layering of geologic units is also observed within the large impact crater walls and floor and may represent different compositional units that erode at variable rates. Cliff faces, dissected gullies, and heavily eroded impact craters are observed in the bottom half of the image at the terminus of a flat-topped plateau.<p/>Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.<p/>NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.<p/></p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150005662&hterms=rock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Drock','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150005662&hterms=rock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Drock"><span>Assessments of Potential Rock Coatings at Rocknest, Gale Crater with ChemCam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blaney, D. L.; Anderson, R.; Berger, G.; Bridges, J.; Bridges, N.; Clark, B.; Clegg, S.; Ehlman, B.; Goetz, W.; King, P.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150005662'); toggleEditAbsImage('author_20150005662_show'); toggleEditAbsImage('author_20150005662_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150005662_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150005662_hide"></p> <p>2013-01-01</p> <p>Many locations on Mars have low color contrast between the rocks and soils due to the rocks being "dusty"--basically having a surface that is spectrally similar to Martian soil. In general this has been interpreted as soil and/or dust clinging to the rock though either mechanical or electrostic processes. However, given the apparent mobility of thin films of water forming cemented soils on Mars and at Gale Crater, the possibility exists that some of these "dusty" surfaces may actually be coatings formed by thin films of water locally mobilizing soil/air fall material at the rock interface. This type of coating was observed by Spirit during an investigation of the rock Mazatzal which showed enhanced salts above "normal soil" and an enhancement of nano phase iron oxide that was 10 micronmeters thick. We decided to use ChemCam to investigate the possibility of similar rock coatings forming at the Rocknest site at Gale Crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870063862&hterms=Age+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DAge%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870063862&hterms=Age+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DAge%2Bearth"><span>The age of the Venusian surface - Estimates using terrestrial crater data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schaber, G. G.; Shoemaker, E. N.; Kozak, R. C.</p> <p>1987-01-01</p> <p>It is hypothesized that the age of the Venusian northern hemisphere surface studied thus far could be as great as the average age of the earth's crust (450 Myr). This possibility arises because of the uncertainty of the role of active and inactive cometary nuclei in the crateral history of the earth. If the observed Venusian surface were 1 Byr old, then there would be traces of the impacts of a half dozen or more large cometary nuclei which penetrated the atmosphere and formed craters over 100 km in diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890049119&hterms=kant&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dkant','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890049119&hterms=kant&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dkant"><span>Geology and deposits of the lunar Nectaris basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spudis, P. D.; Hawke, B. R.; Lucey, P. G.</p> <p>1989-01-01</p> <p>The geology and composition of Nectaris basin deposits have been investigated in order to provide information on the lunar basin-forming process and the regional geologic setting of the Apollo 16 landing site. Several outcrops of nearly pure anorthosite were noted in locations such as the walls of Kant crater, an inner ring of the basin, and the crater Bohnenberger F. The results suggest that the impact can be modeled as a proportional-growth crater, and that the Nectaris excavation cavity was about 470 km in diameter and as deep as 55 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989LPSC...19...51S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989LPSC...19...51S"><span>Geology and deposits of the lunar Nectaris basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spudis, P. D.; Hawke, B. R.; Lucey, P. G.</p> <p></p> <p>The geology and composition of Nectaris basin deposits have been investigated in order to provide information on the lunar basin-forming process and the regional geologic setting of the Apollo 16 landing site. Several outcrops of nearly pure anorthosite were noted in locations such as the walls of Kant crater, an inner ring of the basin, and the crater Bohnenberger F. The results suggest that the impact can be modeled as a proportional-growth crater, and that the Nectaris excavation cavity was about 470 km in diameter and as deep as 55 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00100.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00100.html"><span>Venus - Fractured Somerville Crater in Beta Regio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-01-29</p> <p>This radar image from NASA's Magellan spacecraft is of a half crater located in the rift between Rhea and Theia Montes in Beta Regio on Venus and has been cut by many fractures or faults since it was formed by the impact of a large asteroid. http://photojournal.jpl.nasa.gov/catalog/PIA00100</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008LPI....39.1216T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008LPI....39.1216T"><span>What Do We Know About the "Carancas-Desaguadero" Fireball, Meteorite and Impact Crater?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tancredi, G.; Ishitsuka, J.; Rosales, D.; Vidal, E.; Dalmau, A.; Pavel, D.; Benavente, S.; Miranda, P.; Pereira, G.; Vallejos, V.; Varela, M. E.; Brandstätter, F.; Schultz, P. H.; Harris, R. S.; Sánchez, L.</p> <p>2008-03-01</p> <p>On September 15, 2007, at noon local time, a fireball was observed and heard in the southern shore of the Lake Titicaca, close to the border between Peru and Bolivia. A crater was formed due to the impact of a chondrite meteorite weighing more than 2 tons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003882','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003882"><span>The Vestal Cataclysm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cohen, Barbara A.</p> <p>2012-01-01</p> <p>The currently operating Dawn mission shows asteroid 4 Vesta to be an extensively cratered body, with craters in a variety of morphologies and preservation states The crater size-frequency distribution for Vesta, modeled using the lunar chronology and scaled to impact frequencies modeled for Vesta, shows that both the north and south pole areas are ancient in age [1]. We have in our meteorite collection products from 4 Vesta in the form of the HED (howardite, eucrite, diogenite) meteorites. The HED parent body globally differentiated and fully crystallized by approx.4.56 Ga; subsequently, the eucrites were brecciated and heated by large impacts into the parent body surface, reflected in their disturbance ages [2, 3]. Dawn images have also shown that Vesta is covered with a well-developed regolith that is spectrally similar to howardite meteorites [4, 5]. Howardites are polymict regolith breccias made up mostly of clasts of eucrites and diogenites, but which also contain clasts formed by impact into the regolith. Impact-melt clast ages from howardites extend our knowledge of the impact history of Vesta, expanding on eucrite disturbance ages and helping give absolute age context to the observed crater-counts on Vesta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930061697&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dbarlow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930061697&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dbarlow"><span>Application of the inner solar system cratering record to the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, Nadine G.</p> <p>1990-01-01</p> <p>The cratering records on the Moon, Mercury, and Mars are studied to provide constraints on: (1) terrestrial conditions prior to about 3.8 Ga, (2) why biology was not extensively established prior to 3.5 Ga, (3) whether impact-induced volcanism can explain some feature of the Cretaceous/Tertiary boundary event, and (4) how common large single-impact events are in the inner solar system. Earth underwent a period of high impact rates and large basin-forming events early in its history, based on the cratering record retained in the Lunar, Mercurian, and Martian highlands. The widespread occurrence of life around 3.5 Ga is linked to the cessation of high impact rates. Impact of a 10-km-diam object into terrestrial oceans could excavate through crustal material and into mantle reservoirs, creating extended basaltic volcanic activity. Scaling laws, coupled with the record retained on Lunar and Martian plains, indicate that between one and seven craters of 90 km diam or greater could have formed on Earth in the past 65 million years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140004932','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140004932"><span>LU60645GT and MA132843GT Catalogues of Lunar and Martian Impact Craters Developed Using a Crater Shape-based Interpolation Crater Detection Algorithm for Topography Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salamuniccar, Goran; Loncaric, Sven; Mazarico, Erwan Matias</p> <p>2012-01-01</p> <p>For Mars, 57,633 craters from the manually assembled catalogues and 72,668 additional craters identified using several crater detection algorithms (CDAs) have been merged into the MA130301GT catalogue. By contrast, for the Moon the most complete previous catalogue contains only 14,923 craters. Two recent missions provided higher-quality digital elevation maps (DEMs): SELENE (in 1/16° resolution) and Lunar Reconnaissance Orbiter (we used up to 1/512°). This was the main motivation for work on the new Crater Shape-based interpolation module, which improves previous CDA as follows: (1) it decreases the number of false-detections for the required number of true detections; (2) it improves detection capabilities for very small craters; and (3) it provides more accurate automated measurements of craters' properties. The results are: (1) LU60645GT, which is currently the most complete (up to D>=8 km) catalogue of Lunar craters; and (2) MA132843GT catalogue of Martian craters complete up to D>=2 km, which is the extension of the previous MA130301GT catalogue. As previously achieved for Mars, LU60645GT provides all properties that were provided by the previous Lunar catalogues, plus: (1) correlation between morphological descriptors from used catalogues; (2) correlation between manually assigned attributes and automated measurements; (3) average errors and their standard deviations for manually and automatically assigned attributes such as position coordinates, diameter, depth/diameter ratio, etc; and (4) a review of positional accuracy of used datasets. Additionally, surface dating could potentially be improved with the exhaustiveness of this new catalogue. The accompanying results are: (1) the possibility of comparing a large number of Lunar and Martian craters, of e.g. depth/diameter ratio and 2D profiles; (2) utilisation of a method for re-projection of datasets and catalogues, which is very useful for craters that are very close to poles; and (3) the extension of the previous framework for evaluation of CDAs with datasets and ground-truth catalogue for the Moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..288...69H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..288...69H"><span>Spatial distribution of impact craters on Deimos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirata, Naoyuki</p> <p>2017-05-01</p> <p>Deimos, one of the Martian moons, has numerous impact craters. However, it is unclear whether crater saturation has been reached on this satellite. To address this issue, we apply a statistical test known as nearest-neighbor analysis to analyze the crater distribution of Deimos. When a planetary surface such as the Moon is saturated with impact craters, the spatial distribution of craters is generally changed from random to more ordered. We measured impact craters on Deimos from Viking and HiRISE images and found (1) that the power law of the size-frequency distribution of the craters is approximately -1.7, which is significantly shallower than those of potential impactors, and (2) that the spatial distribution of craters over 30 m in diameter cannot be statistically distinguished from completely random distribution, which indicates that the surface of Deimos is inconsistent with a surface saturated with impact craters. Although a crater size-frequency distribution curve with a slope of -2 is generally interpreted as indicating saturation equilibrium, it is here proposed that two competing mechanisms, seismic shaking and ejecta emplacement, have played a major role in erasing craters on Deimos and are therefore responsible for the shallow slope of this curve. The observed crater density may have reached steady state owing to the obliterations induced by the two competing mechanisms. Such an occurrence indicates that the surface is saturated with impact craters despite the random distribution of craters on Deimos. Therefore, this work proposes that the age determined by the current craters on Deimos reflects neither the age of Deimos itself nor that of the formation of the large concavity centered at its south pole because craters should be removed by later impacts. However, a few of the largest craters on Deimos may be indicative of the age of the south pole event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..302..386B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..302..386B"><span>Clastic polygonal networks around Lyot crater, Mars: Possible formation mechanisms from morphometric analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brooker, L. M.; Balme, M. R.; Conway, S. J.; Hagermann, A.; Barrett, A. M.; Collins, G. S.; Soare, R. J.</p> <p>2018-03-01</p> <p>Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (>100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGP11A1023N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGP11A1023N"><span>Geomagnetic and morphological signature of small crateriform structures in the Alpine Foreland, Southeast Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neumair, A.; Ernstson, K.</p> <p>2011-12-01</p> <p>Lots of rimmed crateriform structures with diameters of the order of meters and ten meters in young fluvial and moraine sediments in Southeast Germany have raised increased interest in the last decade although they have been known since longtime. An anthropogenic origin (for smelting or lime kiln purposes, as prospecting pits, bomb craters, etc) can in most cases be excluded, and the ring walls are speaking against a formation as simple sink holes. Some earlier geomagnetic field and soil susceptibility measurements found anomalies without giving them further enhanced consideration. In a new geomagnetic campaign we exemplarily investigated a few of these craters by fluxgate gradiometer surveys and by magnetic susceptibility measurements of the crater soil and of rock samples digged from the crater underground that also supplied remnant magnetization data. Conspicuously, the craters although morphologically similar, can be subdivided into structures with a clear magnetic signature and ones free of mentionable anomalies. The magnetic signature is expressed by soil susceptibilities up to one order of magnititude higher for the depression and rim area compared to outside the structure, and by an irregular cluster of short-wavelength magnetic anomalies in extreme cases exceding several 1000 nT/m amplitude. Excavations do not show any anthropogenic influence but highly magnetized, frequently strongly fractured cobbles and boulders as the cause. Susceptibilities up to more than 6000 x 10-5 SI and remnant magnetizations of the order of 10 A/m (Koenigsberger ratio Q up to 3.5) were measured. So far enigmatic are very high susceptibilities and remnant magnetizations of limestone clasts. While in general carbonate clasts of the region have susceptibilities of the order of 0.00005 x 10-5 SI and negligible remanence, we measured up to more than 1500 x 10-5 SI and remnant magnetizations of up to 2 A/m (Q up to 3) for limestone samples from the craters. Detailed rock-magnetic studies are ongoing, and, for the moment, we point to new ideas focusing on a formation of at least part of the craters as meteorite craters originating from the recently proposed large Holocene so-called Chiemgau impact event. The magnetic signature as described may prove as a characteristic attribute of identifying respective craters, and thermal effects implying a thermal remnant magnetization are discussed. On the other hand, the highly magnetized carbonate rocks do not show any significant thermal overprint, and a strong shock magnetization debated for some magnetic anomalies in impact craters must seriously be considered. The "magnetic" craters irrespective of their diameters show when appropriately scaled more or less identical diametral cross sections while the craters without magnetic signature have a different profile. Hence, two different processes are suggested to have produced "magnetic" meteorite craters and a second group of craters that may have an endogenetic origin possibly by soil liquefaction sand explosions in the course of the postulated impact event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880037987&hterms=hey&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhey','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880037987&hterms=hey&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhey"><span>Zhamanshin and Aouelloul - Craters produced by impact of tektite-like glasses?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>O'Keefe, John A.</p> <p>1987-01-01</p> <p>It is shown that the enhanced abundance of siderophile elements and chromium in tektite-like glasses from the two impact craters of Zhamanshin and Aouelloul cannot be explained as a result of contamination of the country rock by meteorites nor, probably, comets. The pattern is, however, like that found in certain Australasian tektites, and in Ivory Coast tektites. It is concluded, in agreement with earlier suggestions by Campbell-Smith and Hey, that these craters were formed by the impact of large masses of tektite-like glass, of which the glasses which were studied are fragments. It follows that it is necessary, in considering an impact crater, to bear in mind that the projectile may have been a glass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987Metic..22..219O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987Metic..22..219O"><span>Zhamanshin and Aouelloul - Craters produced by impact of tektite-like glasses?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Keefe, John A.</p> <p>1987-09-01</p> <p>It is shown that the enhanced abundance of siderophile elements and chromium in tektite-like glasses from the two impact craters of Zhamanshin and Aouelloul cannot be explained as a result of contamination of the country rock by meteorites nor, probably, comets. The pattern is, however, like that found in certain Australasian tektites, and in Ivory Coast tektites. It is concluded, in agreement with earlier suggestions by Campbell-Smith and Hey, that these craters were formed by the impact of large masses of tektite-like glass, of which the glasses which were studied are fragments. It follows that it is necessary, in considering an impact crater, to bear in mind that the projectile may have been a glass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001619','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001619"><span>Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith</p> <p>2012-01-01</p> <p>Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27856906','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27856906"><span>The formation of peak rings in large impact craters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William</p> <p>2016-11-18</p> <p>Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. Copyright © 2016, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4851312J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4851312J"><span>Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.</p> <p>2016-10-01</p> <p>Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability of body and surface wave phases created by different sizes and types of impacts all over Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V53A1137P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V53A1137P"><span>Deformation Associated With the July 21 Fissure Eruption at Kilauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poland, M.; Orr, T.; Miklius, A.</p> <p>2007-12-01</p> <p>Deformation measurements at the Pu`u `O`o cone on Kilauea volcano indicate that the vent is underlain by a shallow magma storage reservoir fed by magma transported from Kilauea's summit. The Pu`u `O`o reservoir was drained during the "Father's&pDay" intrusion of June 17-19, 2007, causing Pu`u `O`o's floor to collapse. Following the intrusion, the reservoir gradually refilled and lava reappeared on July 1-2. A lava lake grew in the crater during July 2-20, steadily raising the elevation of the crater floor. The crater interior and adjoining walls began to uplift on July 10, and 2 days later lava began to vent above the level of the lava lake along the margins of the crater. The number of crater margin vents and the magnitude of their activity increased until July 21, by which time crater uplift amounted to about 8 meters. Early that morning, the lava pond at Pu`u `O`o drained suddenly and an eruptive fissure opened on the east flank of the cone. The fissure propagated 2 km downrift, and within a few hours the eruption had localized on three fissure segments between 1 and 2 km east of Pu`u `O`o. Lava erupting from this series of vents formed a system of perched lava ponds feeding long `a`a flows. Deformation associated with the July 21 fissure was exceptionally well-documented by a borehole tiltmeter on the north flank of Pu`u `O`o and 7 continuous GPS stations within 2 km of the cone (the fissure propagated between two of these GPS stations). The time series of geodetic measurements suggests that deflation of Pu`u `O`o began at about 2250 HST (Hawaiian Standard Time - UTC minus 10 hours) on July 20, while a camera looking into Pu`u `O`o crater recorded draining of the lava lake starting at around 2355 HST. Deformation associated with opening of the fissure was apparent in the tilt and GPS records by 0012 HST, with the camera showing glow in the direction of the eruption site by 0039 HST on July 21. Localized deformation from InSAR suggests that the fissure has a shallow source, probably within 1 km of the surface; this interpretation is also supported by kinematic GPS results collected from points around Pu`u `O`o in July 2006 and July 2007.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>