Sample records for crayfish caudal photoreceptor

  1. Extracellular Recording of Light Responses from Optic Nerve Fibers and the Caudal Photoreceptor in the Crayfish

    PubMed Central

    Nesbit, Steven C.; Van Hoof, Alexander G.; Le, Chi C.; Dearworth, James R.

    2015-01-01

    Few laboratory exercises have been developed using the crayfish as a model for teaching how neural processing is done by sensory organs that detect light stimuli. This article describes the dissection procedures and methods for conducting extracellular recording from light responses of both the optic nerve fibers found in the animal’s eyestalk and from the caudal photoreceptor located in the ventral nerve cord. Instruction for ADInstruments’ data acquisition system is also featured for the data collection and analysis of responses. The comparison provides students a unique view on how spike activities measured from neurons code image-forming and non-image-forming processes. Results from the exercise show longer latency and lower frequency of firing by the caudal photoreceptor compared to optic nerve fibers to demonstrate evidence of different functions. After students learn the dissection, recording procedure, and the functional anatomy, they can develop their own experiments to learn more about the photoreceptive mechanisms and the sensory integration of modalities by these light-responsive interneurons. PMID:26557793

  2. Responses of crayfish photoreceptor cells following intense light adaptation.

    PubMed

    Cummins, D R; Goldsmith, T H

    1986-01-01

    After intense orange adapting exposures that convert 80% of the rhodopsin in the eye to metarhodopsin, rhabdoms become covered with accessory pigment and appear to lose some microvillar order. Only after a delay of hours or even days is the metarhodopsin replaced by rhodopsin (Cronin and Goldsmith 1984). After 24 h of dark adaptation, when there has been little recovery of visual pigment, the photoreceptor cells have normal resting potentials and input resistances, and the reversal potential of the light response is 10-15 mV (inside positive), unchanged from controls. The log V vs log I curve is shifted about 0.6 log units to the right on the energy axis, quantitatively consistent with the decrease in the probability of quantum catch expected from the lowered concentration of rhodopsin in the rhabdoms. Furthermore, at 24 h the photoreceptors exhibit a broader spectral sensitivity than controls, which is also expected from accumulations of metarhodopsin in the rhabdoms. In three other respects, however, the transduction process appears to be light adapted: The voltage responses are more phasic than those of control photoreceptors. The relatively larger effect (compared to controls) of low extracellular Ca++ (1 mmol/l EGTA) in potentiating the photoresponses suggests that the photoreceptors may have elevated levels of free cytoplasmic Ca++. The saturating depolarization is only about 30% as large as the maximal receptor potentials of contralateral, dark controls, and by that measure the log V-log I curve is shifted downward by 0.54 log units.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Left-right asymmetry in firing rate of extra-retinal photosensitive neurons in the crayfish.

    PubMed

    Pacheco-Ortiz, José A; Sánchez-Hernández, Juan C; Rodríguez-Sosa, Leonardo; Calderón-Rosete, Gabina; Villagran-Vargas, Edgar

    2018-01-01

    The purpose of this paper is to explore the firing rate of the caudal photoreceptors (CPRs) from the sixth abdominal ganglion of the crayfish Cherax quadricarinatus. We use simultaneous extracellular recordings on left and right CPR in the isolated ganglion (n = 10). The CPRs showed an asymmetry in the spontaneous activity and light-induced response. In darkness, we observed one subgroup (70%) in which the left CPR (CPR-L) and right CPR (CPR-R) had spontaneous firing rates with a median of 18 impulses/s and 6 impulses/s, respectively. In another subgroup (20%), the CPR-R had a median of 15 impulses/s and the CPR-L had 8 impulses/s. In both groups, the differences were significant. Furthermore, the CPRs showed an asymmetrical photoresponse induced by a pulse of white light (700 Lux, 4 s). In one subgroup (30%), the CPR-L showed light-induced activity with a median of 73%, (interquartile range, IQR = 51), while the CPR-R had a median of 41%, (IQR = 47). In another subgroup (70%), the CPR-R showed a median of 56%, (IQR = 51) and the CPR-L had a median of 42%, (IQR = 46). In both groups, the differences were significant. Moreover, we observed a differential effect of temperature on CPR activity. These results suggest a functional asymmetry in both activities from left and right CPRs. These CPR activity fluctuations may modulate the processing of information by the nervous system.

  4. Effects of depth and crayfish size on predation risk and foraging profitability of a lotic crayfish

    USGS Publications Warehouse

    Flinders, C.A.; Magoulick, D.D.

    2007-01-01

    We conducted field surveys and experiments to determine whether observed distributions of crayfish among habitats were influenced by differential resource availability, foraging profitability, and predation rates and whether these factors differed with crayfish size and habitat depth. We sampled available food resources (detritus and invertebrates) and shelter as rock substrate in deep (>50 cm) and shallow (<30 cm) habitats. We used an enclosure-exclosure experiment to examine the effects of water depth and crayfish size on crayfish biomass and survival, and to determine whether these factors affected silt accrual, algal abundance (chlorophyll a [chl a]), and detritus and invertebrate biomass (g ash-free dry mass) differently from enclosures without crayfish. We conducted tethering experiments to assess predation on small (13-17 mm carapace length [CL]) and large (23-30 mm CL) Orconectes marchandi and to determine whether predation rates differed with water depth. Invertebrate biomass was significantly greater in shallow water than in deep water, whereas detritus biomass did not differ significantly between depths. Cobble was significantly more abundant in shallow than in deep water. Depth and crayfish size had a significant interactive effect on change in size of enclosed crayfish when CL was used as a measure of size but not when biomass was used as a measure of size. CL of small crayfish increased significantly more in enclosures in shallow than in deep water, but CL of large crayfish changed very little at either depth. Silt, chl a, and detritus biomass were significantly lower on tiles in large- than in small- and no-crayfish enclosures, and invertebrate biomass was significantly lower in large- than in no-crayfish enclosures. Significantly more crayfish were consumed in deep than in shallow water regardless of crayfish size. Our results suggest that predation and resource availability might influence the depth distribution of small and large crayfish. Small

  5. Crayfish for Research

    ERIC Educational Resources Information Center

    Poulos, C. Jean

    1977-01-01

    This article describes how Robert LeBleu's interest in aquatic life developed and that today he owns a large hydroculture operation supplying research crayfish nationwide. Suggested laboratory experiments with crayfish are described, as well as information on additional studies, equipment needs, and tours of the hatchery. (MA)

  6. Crayfish behavioral changes with CO2

    NASA Astrophysics Data System (ADS)

    Ellis, J.

    2017-12-01

    Changes in carbon dioxide (CO2) could have a major impact on aquatic life. We examined the effects of different levels of CO2 on the behavior of crayfish. The shelter treatments showed that crayfish became less active with increased CO2. The predator treatments showed that crayfish became more aggressive with increased CO2. From these experiments, we conclude that the roles of crayfish in the ecosystem could change.

  7. Acute toxicity of chlorantraniliprole to non-target crayfish (Procambarus clarkii) associated with rice-crayfish cropping systems.

    PubMed

    Barbee, Gary C; McClain, W Ray; Lanka, Srinivas K; Stout, Michael J

    2010-09-01

    Chlorantraniliprole, a novel anthranilic diamide insecticide, was recently introduced into the United States where rice-crayfish crop rotations are practiced to control rice water weevil (Lissorhoptrus oryzophilus Kuschel) infestations. Chlorantraniliprole has high margins of mammalian safety and excellent insecticidal efficacy, but its toxicity to non-target crayfish is uncertain. In this study, the acute toxicity of chlorantraniliprole to the red swamp crayfish Procambarus clarkii Girard was determined using aquatic and feeding assays. The aquatic 96 h median lethal toxicity (LC(50)) data indicate that technical-grade chlorantraniliprole is highly toxic (US EPA category) to crayfish with an LC(50) of 951 microg L(-1) (95% CL = 741-1118 microg L(-1)). A no observed effect concentration (NOEC) of 480 microg L(-1) was recorded. Neither the 36 day chronic feeding study, where crayfish fed on chlorantraniliprole-treated rice seed in aquaria, nor the 144 h acute feeding test, where crayfish fed on rice seeds treated with chlorantraniliprole, produced mortality or abnormal behavior. Chlorantraniliprole is three orders of magnitude less acutely toxic to P. clarkii than lambda-cyhalothrin and etofenprox, two pyrethroid insecticides also used in rice, and is less likely to cause acute crayfish toxicity in rice pond ecosystems. Based on acute toxicity data, the use of chlorantraniliprole should be more compatible with rice-crayfish crop rotations than pyrethroids. (c) 2010 Society of Chemical Industry.

  8. Distribution and conservation standing of West Virginia crayfishes

    USGS Publications Warehouse

    Loughman, Zachary J.; Welsh, Stuart A.

    2010-01-01

    The diversity of crayfishes in West Virginia represents a transition between the species-rich southern Appalachian faunas and the depauperate crayfish diversity in the northeastern United States. Currently, 22 described species occur in the state, of which 6 are given S1 status, and 3 are introduced species. One species, Orconectes limosus (Spinycheek Crayfish) is considered extirpated within the past decade. Imperiled species include Cambarus veteranus (Big Sandy Crayfish),Cambarus elkensis (Elk River Crayfish), Cambarus longulus (Atlantic Slope Crayfish), andCambarus nerterius (Greenbrier Cave Crayfish). Three species—O. virilis (Virile Crayfish),Orconectes rusticus (Rusty Crayfish), and Procambarus zonangulus (Southern White River Crawfish)—have introduced populations within the state. Procambarus acutus (White River Crawfish) occurs in bottomland forest along the Ohio River floodplain, and is considered native. Several undescribed taxa have been identified and currently are being described. A statewide survey was initiated in 2007 to document the current distribution and conservation status of crayfishes in West Virginia.

  9. The Impacts of flow alterations to crayfishes in Southeastern Oklahoma, with an emphasis on the mena crayfish (orconectes menae)

    USGS Publications Warehouse

    Brewer, Shannon K.; Dyer, Joseph J.

    2016-01-01

    Human activities can alter the environment to the point that it is unsuitable to the native species resulting in a loss of biodiversity. Ecologists understand the importance of biodiversity and the conservation of vulnerable species. Species that are narrowly endemic are considered to be particularly vulnerable because they often use specific habitats that are highly susceptible to human disturbance. The basic components of species conservation are 1) delineation of the spatial distribution of the species, 2) understanding how the species interacts with its environment, and 3) employing management strategies based on the ecology of the species. In this study, we investigated several crayfish species endemic to the Ouachita Mountains in Oklahoma and Arkansas. We established the spatial distributions (i.e., range) of the crayfish using Maximum Entropy species distribution modeling. We then investigated crayfish habitat use with quantitative sampling and a paired movement study. Finally, we evaluated the ability of crayfish to burrow under different environmental conditions in a controlled laboratory setting. Crayfish distribution at the landscape scale was largely driven by climate, geology and elevation. In general, the endemic crayfish in this study occurred above 300-m elevation where the geology was dominated by sandstone and shale, and rainfall totals were the highest compared to the rest of the study region. Our quantitative data indicated crayfish did not select for specific habitat types at the reach scale; however, crayfish appeared to continue to use shallow and dry habitat even as the streams dried. Movement by passive integrated transponder (PIT) tagged crayfish was highly variable but crayfish tended to burrow in response to drought rather than migrate to wet habitat. Controlled laboratory experiments revealed smaller substrate size (pebble) restricted crayfish burrowing more than larger substrates (cobble). We also found excess fine sediment restricted

  10. Crazy about Crayfish

    ERIC Educational Resources Information Center

    Endreny, Anna

    2006-01-01

    Crayfish, also known as "crawfish" or "crawdads," are easy to keep in the classroom, and with patience and luck, students will observe the complete life cycle of the crayfish. They will also learn about aquatic animals and habitats and get to conduct inquiry experiments about animal behavior. This article describes how a third-grade teacher used…

  11. Invasive crayfish in the Pacific Northwest

    USGS Publications Warehouse

    Pearl, Christopher A.; McCreary, Brome; Adams, Michael

    2011-01-01

    Invasive species directly threaten freshwater biodiversity, particularly in regions of high aquatic richness like the Pacific Northwest (PNW). Crayfish are among the most impactful of aquatic invasive species. Invasive crayfish are considered ecosystem engineers due to their ability to alter basic wetland properties, such as reducing vegetation and bank integrity and increasing turbidity. In areas where invasion is advanced, crayfish pose major economic and ecological problems. Crayfish have been widely introduced for aquaculture and can become established in a wide range of habitat conditions. They also may be spread by anglers who use them as bait. Several non-native crayfish are established in the PNW, but the extent of their invasion is not well known. At least two groups are known from scattered sites in the PNW, and both have proven problematic for native species in other parts of the world: Red swamp crayfish (Procambarus clarkii) and several members of the genus Orconectes. Both groups are native to areas of the eastern United States. Both are identified globally as invasives of high concern and appear on the Oregon Department of Fish and Wildlife's "10 Most Unwanted" and the U.S. Forest Service's "Primary Species of Concern" lists for stream systems in the PNW. Despite the presence of introduced crayfish in the PNW and their high potential for negative effects, the scope of their invasion and effects on aquatic systems are not well known. The U.S. Geological Survey (USGS), along with local groups and state agencies, is working to clarify crayfish distribution and to outline which basins may not yet be invaded. Other goals are to improve understanding of habitat associations of invasive crayfish and their potential effects on native crayfish.

  12. Nitrite toxicity to the crayfish Procambarus clarkii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutzmer, M.P.; Tomasso, J.R.

    The purpose of this study was to determine the effects of acute nitrite exposure to the crayfish Procambarus clarkii (Decapoda). Specific objectives of this study included (1) determining the 24-, 48-, 72- and 96-h LC-50's of nitrite to crayfish of different weights and genders in freshwater, (2) determining the LC-50's of nitrite to crayfish in water with elevated chloride concentrations, and (3), in order to gain insight into the mechanisms of nitrite toxicity in crayfish, determining hemolymph nitrite concentrations in crayfish exposed to nitrite in freshwater and water with elevated chloride concentrations.

  13. Comparative acute toxicity of neonicotinoid and pyrethroid insecticides to non-target crayfish (Procambarus clarkii) associated with rice-crayfish crop rotations.

    PubMed

    Barbee, Gary C; Stout, Michael J

    2009-11-01

    Most insecticides used to control rice water weevil (Lissorhoptrus oryzophilus Kuscel) infestations are pyrethroids. However, pyrethroids are highly toxic to non-target crayfish associated with rice-crayfish crop rotations. One solution to the near-exclusive reliance on pyrethroids in a rice-crayfish pest management program is to incorporate neonicotinoid insecticides, which are insect specific and effective against weevils but not extremely toxic to crayfish. This study aimed to take the first step to assess neonicotinoids as alternatives to pyrethroids in rice-crayfish crop rotations by measuring the acute toxicities of three candidate neonicotinoid insecticides, clothianidin, dinotefuran and thiamethoxam, to juvenile Procambarus clarkii (Girard) crayfish and comparing them with the acute toxicities of two currently used pyrethroid insecticides, lambda-cyhalothrin and etofenprox. Neonicotinoid insecticides are at least 2-3 orders of magnitude less acutely toxic (96 h LC(50)) than pyrethroids to juvenile Procambarid crayfish: lambda-cyhalothrin (0.16 microg AI L(-1)) = etofenprox (0.29 microg AI L(-1)) > clothianidin (59 microg AI L(-1)) > thiamethoxam (967 microg AI L(-1)) > dinotefuran (2032 microg AI L(-1)). Neonicotinoid insecticides appear to be much less hazardous alternatives to pyrethroids in rice-crayfish crop rotations. Further field-level neonicotinoid acute and chronic toxicity testing with crayfish is needed. (c) 2009 Society of Chemical Industry.

  14. Effects of introduced crayfish on selected native fishes of Arizona

    USGS Publications Warehouse

    Carpenter, J.

    2000-01-01

    The virile crayfish (Orconectes virilis), an aggressive polytrophic species, has been introduced into many Arizona streams. I investigated competition and predation between this crayfish and several native Arizona fishes. I conducted field experiments to assess competition for food between crayfish and fish, and laboratory experiments to examine competition for shelter and food, and predation. In Sabino Creek, I manipulated crayfish densities in isolated pools to examine effects of crayfish on growth, mortality, and recruitment of Gila chub (Gila intermedia). Regardless of crayfish density, Gila chub declined slightly in weight and condition. Mortality and recruitment did not differ between densities of crayfish. I examined crayfish effects on benthic macroinvertebrates, a submerged aquatic macrophyte and associated invertebrates, and three fish species in a small stream in the White Mountains by fencing eight stream sections to prevent movement. The three fishes were speckled dace (Rhinichthys osculus), Sonora sucker (Catostomus insignis), and desert sucker (C. clarki). Molluscs > 10 mm and macrophytes were less abundant at sites with a high density of crayfish than at sites with low crayfish densities. Insect diversity was lower in high- vs. low-density sites. No treatment effect was observed on growth or condition of individually marked fish. Short-term laboratory experiments demonstrated predatory interactions and competition for shelter between crayfish and Gila chub, desert sucker, and speckled dace. Crayfish used shelter more than fish, displaced fish from shelter, and frequently attacked fish. Fish never attacked crayfish, and only once displaced crayfish from shelter. In predation experiments, crayfish preyed upon all species, but preyed most heavily upon desert suckers. Fish never altered use of the water column in the presence of crayfish. Density manipulation experiments in a laboratory measured food competition between crayfish and two native fishes

  15. Density-dependent effects of omnivorous stream crayfish on benthic trophic dynamics

    USGS Publications Warehouse

    Ludlam, J.P.; Banks, B. T.; Magoulick, Daniel D.

    2015-01-01

    Crayfish are abundant and important consumers in aquatic food webs and crayfish invasions have demonstrated strong effects of crayfish on multiple trophic levels. Density may be an important factor determining the role of omnivorous crayfish in benthic communities, especially if density alters the strength of trophic interactions. The effect of crayfish density on a simple benthic food web using ceramic tiles was examined in three treatments (crayfish exclusion cage, cage control (open to crayfish), and exposed ceramic tiles) in mesocosms stocked with 6, 12, or 18 crayfish·m-2. We hypothesized that at low densities crayfish consumption of herbivorous chironomids would increase algal abundance, but at high densities crayfish would reduce both periphyton and invertebrates. In the experiment, periphyton and chironomid abundance increased with declining crayfish biomass on day 30 but not day 15. The magnitude of crayfish effects on day 15 periphyton chlorophyll a abundance increased with crayfish biomass, but crayfish effects on day 30 periphyton chlorophyll a or chironomid biomass did not increase with crayfish biomass. In this experiment there was little evidence for a trophic cascade at low crayfish densities and strong omnivory by crayfish dominated trophic dynamics.

  16. Heavy metals in Tuskegee Lake crayfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.T.

    1995-12-31

    The crayfish, Onconectes virifis, is a bottom dweller and eats insect larvae, worms, crustaceans, small snails, fishes, and dead animal matter. They can be used to monitor the aquatic environment such as lakes, ponds and creeks. To monitor the environmental contamination of heavy metals (Hg, Pb, Cd, Cu, Co, Ni, and Zn) in Tuskegee Lake, Tuskegee, Alabama, adult crayfish were collected and analyzed for these metals. The Pb, Cd, Cu, Ni, and Zn concentrations were 3.91, 0.22, 8.06, 1.11, and 33.37 ppm in muscle and 28.98, 1.15, 9.86, 2.1 8, and 32.62 ppm in exoskeleton of crayfish, respectively. The concentrationsmore » of Pb and Cd were significantly higher in exoskeleton than those of muscle. However, the concentrations of Cu, Ni, and Zn did not show any significant difference between the muscle and the exoskeleton of the crayfish. The concentrations of Hg and Co were undetected in both the exoskeleton and muscle of the crayfish.« less

  17. Does juvenile competition explain displacement of a native crayfish by an introduced crayfish?

    USGS Publications Warehouse

    Larson, E.R.; Magoulick, D.D.

    2009-01-01

    The coldwater crayfish Orconectes eupunctus is endemic to the Spring and Eleven Point Rivers of Arkansas and Missouri, and appears to have been displaced from a portion of its range by the recently introduced ringed crayfish Orconectes neglectus. We examined competition among juveniles as a potential mechanism for this crayfish species displacement through laboratory and field experiments. Orconectes eupunctus juveniles survived and grew in stream cages in their former range, implicating biotic interactions rather than habitat degradation in the displacement. Laboratory experiments revealed O. neglectus juveniles were dominant in the presence of limited food, whereas size rather than species determined occupancy of limited shelter. In a field competition experiment using stream cages, O. neglectus juveniles did not inhibit growth or reduce survival of O. eupunctus juveniles. Consequently, laboratory evidence of O. neglectus dominance did not correspond with competition under field conditions. Combined with previous studies examining the effects of O. neglectus on O. eupunctus, these results suggest that competition may not be a factor in this crayfish species displacement. Alternate mechanisms for the apparent displacement of O. eupunctus by O. neglectus, such as differential predation or reproductive interference, should be investigated. ?? 2008 Springer Science+Business Media B.V.

  18. Habitat associations of three crayfish endemic to the Ouachita Mountain Ecoregion

    USGS Publications Warehouse

    Dyer, Joseph J.; Brewer, Shannon K.

    2018-01-01

    Many crayfish are of conservation concern because of their use of unique habitats and often narrow ranges. In this study, we determined fine-scale habitat use by 3 crayfishes that are endemic to the Ouachita Mountains, in Oklahoma and Arkansas. We sampled Faxonius menae (Mena Crayfish), F. leptogonopodus (Little River Creek Crayfish), and Fallicambarus tenuis (Ouachita Mountain Crayfish) from wet and dry erosional channel units of 29 reaches within the Little River catchment. We compared channel-unit and microhabitat selection for each species. Crayfish of all species and life stages selected erosional channel units more often than depositional units, even though these sites were often dry. Accordingly, crayfish at all life stages typically selected the shallowest available microhabitats. Adult crayfish of all species and juvenile Little River Creek Crayfish selected patches of coarse substrate, and all crayfish tended to use the lowest amount of bedrock available. In general, we showed that these endemic crayfish used erosional channel units of streams, even when the channel units were dry. Conservation efforts that protect erosional channel units and mitigate actions that cause channel downcutting to bedrock would benefit these crayfish, particularly during harsh, summer drying periods.

  19. Response of crayfish to hyporheic water availability and excess sedimentation

    USGS Publications Warehouse

    Dyer, Joseph J.; Worthington, Thomas A.; Brewer, Shannon K.

    2015-01-01

    Crayfish in many headwater streams regularly cope with seasonal drought. However, it is unclear how landscape changes affect the long-term persistence of crayfish populations. We designed two laboratory experiments to investigate the acute effects of common landscape stressors on crayfish: water withdrawal and sedimentation. The first experiment tested the interaction among water withdrawals (four 24-h water reductions of 0, 15, 30, or 45 cm) and two substrate treatments (pebble and cobble) on the burrowing depth of crayfish. The second experiment evaluated the effects of excess fine sediment (three treatments of 0, 45, and 90% sediment) and substrate type (cobble and pebble) on crayfish burrowing depth. Crayfish were able to burrow deeper into the simulated hyporheic zone in cobble substrate when compared to pebble. Crayfish subjected to greater water withdrawals in the pebble treatment were not able to reach the simulated hyporheic zone. Excess fine sediment reduced the depth that crayfish burrowed, regardless of substrate type. Results from this study suggest excess fine sediment may reduce crayfish persistence, particularly when seeking refuge during prolonged dry conditions.

  20. Crayfish: a newly recognized vehicle for vibrio infections.

    PubMed

    Bean, N H; Maloney, E K; Potter, M E; Korazemo, P; Ray, B; Taylor, J P; Seigler, S; Snowden, J

    1998-10-01

    We conducted a 1-year case-control study of sporadic vibrio infections to identify risk factors related to consumption of seafood products in two coastal areas of Louisiana and Texas. Twenty-six persons with sporadic vibrio infections and 77 matched controls were enrolled. Multivariate analysis revealed that crayfish (P < 0.025) and raw oysters (P < 0.009) were independently associated with illness. Species-specific analysis revealed an association between consumption of cooked crayfish and Vibrio parahemolyticus infection (OR 9.24, P < 0.05). No crayfish consumption was reported by persons with V. vulnificus infection. Although crayfish had been suspected as a vehicle for foodborne disease, this is the first time to our knowledge that consumption of cooked crayfish has been demonstrated to be associated with vibrio infection.

  1. Resistance to the crayfish plague, Aphanomyces astaci (Oomycota) in the endangered freshwater crayfish species, Austropotamobius pallipes.

    PubMed

    Martín-Torrijos, Laura; Campos Llach, Miquel; Pou-Rovira, Quim; Diéguez-Uribeondo, Javier

    2017-01-01

    The pathogen Aphanomyces astaci Schikora 1906 is responsible for the decline of the native crayfish species of Europe, and their current endangered status. This pathogenic species is native to North America and only colonizes aquatic decapods. The North American crayfish species have a high resistance to this pathogen, while species from other regions are highly susceptible. However, recent field and laboratory observations indicate that there might exist some populations with resistance against this disease. The objective of this study was to test the susceptibility of 8 selected native European crayfish populations of Austropotamobius pallipes Lereboullet 1858 from the Pyrenees. We challenged them against the genome sequenced strain AP03 of A. astaci isolated from a North American red swamp crayfish, Procambarus clarkii Girard 1852, in the Garrotxa Natural Park, Girona. The results showed that there are significant differences (P<0,001) among populations, although most of them show high mortality rates after the zoospore challenge with A. astaci. However, one population from Girona exhibited a 100% survival during a four-month monitoring period under the experimental conditions tested. Histological analyses revealed a high immune reaction in tissues examined, i.e., encapsulation and melanization of hyphae, similar to that found in North American resistant crayfish species. These results represent the first observation of a native European crayfish population showing high resistance towards the most virulent genotype of this pathogen, i.e., genotype Pc. The identification of this population is of key importance for the management of these endangered species, and represents a crucial step forward towards the elucidation of the factors involved in the immune reaction against this devastating pathogen.

  2. Resistance to the crayfish plague, Aphanomyces astaci (Oomycota) in the endangered freshwater crayfish species, Austropotamobius pallipes

    PubMed Central

    Martín-Torrijos, Laura; Campos Llach, Miquel; Pou-Rovira, Quim

    2017-01-01

    The pathogen Aphanomyces astaci Schikora 1906 is responsible for the decline of the native crayfish species of Europe, and their current endangered status. This pathogenic species is native to North America and only colonizes aquatic decapods. The North American crayfish species have a high resistance to this pathogen, while species from other regions are highly susceptible. However, recent field and laboratory observations indicate that there might exist some populations with resistance against this disease. The objective of this study was to test the susceptibility of 8 selected native European crayfish populations of Austropotamobius pallipes Lereboullet 1858 from the Pyrenees. We challenged them against the genome sequenced strain AP03 of A. astaci isolated from a North American red swamp crayfish, Procambarus clarkii Girard 1852, in the Garrotxa Natural Park, Girona. The results showed that there are significant differences (P<0,001) among populations, although most of them show high mortality rates after the zoospore challenge with A. astaci. However, one population from Girona exhibited a 100% survival during a four-month monitoring period under the experimental conditions tested. Histological analyses revealed a high immune reaction in tissues examined, i.e., encapsulation and melanization of hyphae, similar to that found in North American resistant crayfish species. These results represent the first observation of a native European crayfish population showing high resistance towards the most virulent genotype of this pathogen, i.e., genotype Pc. The identification of this population is of key importance for the management of these endangered species, and represents a crucial step forward towards the elucidation of the factors involved in the immune reaction against this devastating pathogen. PMID:28750039

  3. Impacts of drought and crayfish invasion on stream ecosystem structure and function

    USGS Publications Warehouse

    Magoulick, Daniel D.

    2014-01-01

    Drought and seasonal drying can be important disturbance events in many small streams, leading to intermittent or isolated habitats. Many small streams contain crayfish populations that are often keystone or dominant species in these systems. I conducted an experiment in stream mesocosms to examine the effects of drought and potential ecological redundancy of a native and invasive crayfish species. I examined the effects of drought (drought or control) and crayfish presence (none, native crayfish Orconectes eupunctus or invasive crayfish Orconectes neglectus) on stream mesocosm structure and function (leaf breakdown, community metabolism, periphyton, sediment and chironomid densities) in a fully factorial design. Each mesocosm contained a deep and shallow section, and drought treatments had surface water present (5-cm depth) in deep sections where tiles and leaf packs were placed. Drought and crayfish presence did not interact for any response variable. Drought significantly reduced leaf breakdown, and crayfish presence significantly increased leaf breakdown. However, the native and invasive crayfish species did not differ significantly in their effects on leaf breakdown. Drought significantly reduced primary production and community respiration overall, whereas crayfish presence did not significantly affect primary production and community respiration. Neither drought nor crayfish presence significantly affected periphyton overall. However, drought significantly reduced autotrophic index (AI), and crayfish presence increased AI. Inorganic sediment and chironomid density were not affected by drought, but both were significantly reduced by crayfish presence. O. eupunctus reduced AI and sediment more than O. neglectus did. Neither drought nor crayfish species significantly affected crayfish growth or survival. Drought can have strong effects on ecosystem function, but weaker effects on benthic structure. Crayfish can have strong effects on ecosystem

  4. Parasites alter freshwater communities in mesocosms by modifying invasive crayfish behavior.

    PubMed

    Reisinger, Lindsey S; Lodge, David M

    2016-06-01

    Parasites can alter communities by reducing densities of keystone hosts, but few studies have examined how trait-mediated indirect effects of parasites can alter ecological communities. We test how trematode parasites (Microphallus spp.) that affect invasive crayfish (Orconectes rusticus) behavior alter how crayfish impact lake littoral communities. O. rusticus drive community composition in north temperate lakes, and predatory fish can reduce crayfish activity and feeding. In laboratory studies, Microphallus parasites also alter O. rusticus behavior: infected O. rusticus eat fewer macroinvertebrates and are bolder near predatory fish than uninfected individuals. We used a 2 x 2 factorial experiment to test how predatory fish and parasites affect O. rusticus impacts in large mesocosms over 4 weeks. We predicted (1) that when predators were absent, infected crayfish would have lower impacts than uninfected crayfish on macrophytes and macroinvertebrates (as well as reduced growth and higher mortality). However, (2) when predators were present but unable to consume crayfish, infected crayfish would have greater impacts (as well as greater growth and lower mortality) than uninfected crayfish because of increased boldness. Because of its effect on crayfish feeding behavior, we also predicted (3) that infection would alter macrophyte and macroinvertebrate community composition. In contrast to our first hypothesis, we found that infected and uninfected crayfish had similar impacts on lower trophic levels when predators were absent. Across all treatments, infected crayfish were more likely to be outside shelters and had greater growth than uninfected crayfish, suggesting that the reduced feeding observed in short-term experiments does not occur over longer timescales. However, in support of the second hypothesis, when predatory fish were present, infected crayfish ate more macroinvertebrates than did uninfected crayfish, likely due to increased boldness. We also observed a

  5. Conservation and management of crayfishes: Lessons from Pennsylvania

    USGS Publications Warehouse

    Lieb, D.A.; Bouchard, R.W.; Carline, R.F.; Nuttall, T.R.; Wallace, J.R.; Burkholder, C.L.

    2011-01-01

    North America's crayfish fauna is diverse, ecologically important, and highly threatened. Unfortunately, up-to-date information is scarce, hindering conservation and management efforts. In Pennsylvania and nearby states, recent efforts allowed us to determine the conservation status of several native crayfishes and develop management strategies for those species. Due to rarity and proximity to urban centers and introduced (exotic) crayfishes, Cambarus (Puncticambarus) sp., an undescribed member of the Cambarus acuminatus complex, is critically imperiled in Pennsylvania and possibly range-wide. Orconectes limosus is more widespread; however, recent population losses have been substantial, especially in Pennsylvania and northern Maryland, where its range has declined (retreated eastward) by greater than 200 km. Introduced congeners likely played a major role in those losses. Although extirpated from some areas, Cambarus bartonii bartonii remains widespread and is not an immediate conservation concern. In light of these findings, the role of barriers (e.g., dams), environmental protection, educational programs, and regulations in preventing crayfish invasions and conserving native crayfishes is discussed, and management initiatives centered on those factors are presented. The need for methods to eliminate exotics and monitor natives is highlighted. Although tailored to a specific regional fauna, these ideas have broad applicability and would benefit many North American crayfishes. ?? copyright 2011. Periodicals postage paid at Bethesda.

  6. A synthetic phylogeny of freshwater crayfish: insights for conservation

    PubMed Central

    Owen, Christopher L.; Bracken-Grissom, Heather; Stern, David; Crandall, Keith A.

    2015-01-01

    Phylogenetic systematics is heading for a renaissance where we shift from considering our phylogenetic estimates as a static image in a published paper and taxonomies as a hardcopy checklist to treating both the phylogenetic estimate and dynamic taxonomies as metadata for further analyses. The Open Tree of Life project (opentreeoflife.org) is developing synthesis tools for harnessing the power of phylogenetic inference and robust taxonomy to develop a synthetic tree of life. We capitalize on this approach to estimate a synthesis tree for the freshwater crayfish. The crayfish make an exceptional group to demonstrate the utility of the synthesis approach, as there recently have been a number of phylogenetic studies on the crayfishes along with a robust underlying taxonomic framework. Importantly, the crayfish have also been extensively assessed by an IUCN Red List team and therefore have accurate and up-to-date area and conservation status data available for analysis within a phylogenetic context. Here, we develop a synthesis phylogeny for the world's freshwater crayfish and examine the phylogenetic distribution of threat. We also estimate a molecular phylogeny based on all available GenBank crayfish sequences and use this tree to estimate divergence times and test for divergence rate variation. Finally, we conduct EDGE and HEDGE analyses and identify a number of species of freshwater crayfish of highest priority in conservation efforts. PMID:25561670

  7. A synthetic phylogeny of freshwater crayfish: insights for conservation.

    PubMed

    Owen, Christopher L; Bracken-Grissom, Heather; Stern, David; Crandall, Keith A

    2015-02-19

    Phylogenetic systematics is heading for a renaissance where we shift from considering our phylogenetic estimates as a static image in a published paper and taxonomies as a hardcopy checklist to treating both the phylogenetic estimate and dynamic taxonomies as metadata for further analyses. The Open Tree of Life project (opentreeoflife.org) is developing synthesis tools for harnessing the power of phylogenetic inference and robust taxonomy to develop a synthetic tree of life. We capitalize on this approach to estimate a synthesis tree for the freshwater crayfish. The crayfish make an exceptional group to demonstrate the utility of the synthesis approach, as there recently have been a number of phylogenetic studies on the crayfishes along with a robust underlying taxonomic framework. Importantly, the crayfish have also been extensively assessed by an IUCN Red List team and therefore have accurate and up-to-date area and conservation status data available for analysis within a phylogenetic context. Here, we develop a synthesis phylogeny for the world's freshwater crayfish and examine the phylogenetic distribution of threat. We also estimate a molecular phylogeny based on all available GenBank crayfish sequences and use this tree to estimate divergence times and test for divergence rate variation. Finally, we conduct EDGE and HEDGE analyses and identify a number of species of freshwater crayfish of highest priority in conservation efforts. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Habitat use and life history of the vernal crayfish, Procambarus viaeviridis (Faxon, 1914), a secondary burrowing crayfish in Mississippi, USA

    Treesearch

    Zanethia C. Barnett; Susan B. Adams; Rebecca L.   Rosamond

    2017-01-01

    The Lower Mississippi Alluvial Valley (LMAV) is a species-rich region in North America, but its crayfish community has not been extensively sampled. We investigated the annual life cycle, habitat use, and some morphological characteristics of the vernal crayfish, Procambarus viaeviridis (Faxon, 1914), in the Dahomey National Wildlife Refuge,...

  9. Habituation of LG-mediated tailflip in the crayfish.

    PubMed

    Nagayama, Toshiki; Araki, Makoto

    2015-06-01

    Crayfish escape from threatening stimuli by tailflipping. If a stimulus is applied to the rear, crayfish escape up and forwards in a summersault maneuver that is mediated by the activation of lateral giant (LG) interneurons. The occurrence probability of LG-mediated tailflip, however, diminishes and habituates if a stimulus is repeatedly applied. Since crayfish have a relatively simple CNS with many identifiable neurons, crayfish represent a good animal to analyze the cellular basis of habituation. A reduction in the amplitude of the EPSP in the LGs, caused by direct chemical synaptic connection from sensory afferents by repetitive stimulations, is essential to bring about an inactivation of the LGs. The spike response of the LGs recovers within several minutes of habituation, but the LGs subsequently fail to spike when an additional stimulus is applied after specific periods following habituation. These results indicate that a decline in synaptic efficacy from the mechanosensory afferents recovers readily after a short delay, but then the excitability of the LGs themselves decreases. Furthermore, the processes underlying habituation are modulated depending on a social status. When two crayfish encounter each other, a winner-loser relationship is established. With a short interstimulus interval of 5 s, the rate of habituation of the LG in both socially dominant and subordinate crayfish becomes lower than in socially isolated animals. Serotonin and octopamine affect this social status-dependent modulation of habituation by means of activation of downstream second messenger system of cAMP and IP3 cascades, respectively.

  10. Effects of small impoundments on downstream crayfish assemblages

    Treesearch

    Susan B. Adams

    2013-01-01

    Dams and impoundments, both large and small, affect downstream physicochemical characteristics and up- and downstream biotic communities. I tested whether small dams and their impoundments altered downstream crayfish assemblages in northern Mississippi. I sampled crayfish and measured physicochemical variables at 4 sites downstream of impoundments (outlet sites) and 4...

  11. Tyraminergic modulation of agonistic outcomes in crayfish.

    PubMed

    Momohara, Yuto; Aonuma, Hitoshi; Nagayama, Toshiki

    2018-05-01

    Octopamine, a biogenic amine, modulates various behaviors, ranging from locomotion and aggression to learning and memory in invertebrates. Several studies recently demonstrated that tyramine, the biological precursor of octopamine, also affects behaviors independent of octopamine. Here we investigated the involvement of tyramine in agonistic interaction of the male crayfish Procambarus clarkii. When male crayfish fight, larger animals (3-7% difference in body length) are more likely to win. By contrast, direct injection of tyramine or octopamine counteracted the physical advantage of larger animals. Tyramine or octopamine-injected naive large animals were mostly beaten by untreated smaller naive animals. This pharmacological effect was similar to the loser effect in which subordinate larger animals are frequently beaten by smaller animals. Furthermore, loser effects were partly eliminated by either injection of epinastine, an octopamine blocker, or yohimbine, a tyramine blocker, and significantly diminished by injection of a mixture of both blockers. We also observed that tyramine levels in the subesophageal ganglion were remarkably increased in subordinate crayfish after losing a fight. These results suggest that tyramine modulates aggressive levels of crayfish and contributes to the loser effect in parallel with octopamine.

  12. Crayfish (Orconectes virilis) predation on zebra mussels (Dreissena polymorpha)

    USGS Publications Warehouse

    Love, Joy; Savino, Jacqueline F.

    1993-01-01

    In laboratory studies, we quantified predation rates and handling time of crayfish (Orconectes virilis) on zebra mussels (Dreissena polymorpha) and rainbow trout (Oncorhhynchus mykiss) eggs. In single prey species tests, crayfish ate zebra mussels at similar rates as they ate rainbow trout eggs. When both prey were present, crayfish preferred rainbow trout eggs. Handling time of mussels was about twice that of rainbow trout eggs, and energetic content of mussels was lower. Therefore, net benefit for foraging on rainbow trout eggs was about three times that of foraging on zebra mussels.

  13. Cadmium and lead uptake by Red Swamp crayfish (Procambarus clarkii) of Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naqvi, S.M.; Howell, R.D.

    1993-08-01

    Environmental contamination by heavy metals such as cadmium and lead is generally reflected by an increase in the tissue residues of aquatic animals. This is also true for fresh-water crayfish as reported by Bagatto and Khan (1987) for Orconectes virilis collected in the vicinity of Canadian smelters. They found a positive correlation between the residues of Cd and Pb in crayfish tissues and the distance from smelters. Stinson and Eaton reported similar findings for another crayfish, Pacifasticus leniusculus, collected from a lake on the West Coast of the US which was receiving urban runoff. Cadmium and lead were more concentratedmore » in the viscera and exoskeleton, respectively. Madigosky et al. (1991) found that Procambarus clarkii collected from roadside drainage ditches of Louisiana contained greater amounts of Cd and Pb than commercially harvested control groups. Lead accumulation has been attributed to the use of farm machinery runoff in agricultural areas and Cd to rubber tires. Cadmium and lead are known to accumulate even in those crayfish where no known contamination can be established, e.g., Dickson et al. (1980) found metal residues in troglobitic crayfish. Accumulation of Pb and Cd in the tissues in laboratory-exposed crayfish of different species has been documented by several investigators. These metals accumulate in exoskeleton, hepatopancreas, gills, antennal glands, mid-gut glands and abdominal muscles of crayfish. Generally, all studies mentioned above report metal uptake by crayfish but have not quantified the amount of metal remaining after the crayfish are transferred to uncontaminated water (depuration). The purpose of this study was to: (1) assess Cd and Pb accumulation in laboratory-exposed male and female P. clarkii (total body wet weight basis), and (2) to determine how much metal is lost when crayfish are transferred to uncontaminated aged tap water. 17 refs., 3 tabs.« less

  14. Impacts of Invasive Rusty Crayfish on Stream Ecosystems of the Upper Midwestern U.S.

    NASA Astrophysics Data System (ADS)

    Bobeldyk, A. M.; Lamberti, G. A.

    2005-05-01

    Invasive species can have detrimental effects on structural characteristics of freshwater ecosystems, but relatively few studies have assessed ecosystem-level impacts of invasive species in streams. We studied the effects of invasive rusty crayfish (Orconectes rusticus) on detritus processing and invertebrate and fish abundance in northern Wisconsin and Michigan, USA, streams. We hypothesized that rusty crayfish would increase the rate of detritus processing and reduce fish and invertebrate abundance due to their aggressiveness and competitive superiority for food and habitat. We measured sugar maple (Acer saccharum) decomposition rates in three reaches of a stream with differing densities of rusty crayfish, high (5.05/m2), intermediate (2.27/m2), and none (0/m2) using leaf bags excluding crayfish and open bags allowing crayfish access. We found that open bags decayed significantly faster (k=0.143) than crayfish excluded bags at all sites (k=0.079) (p=0.0005). The reach lacking crayfish had significantly higher densities of invertebrates (p=0.005). We also surveyed an additional 7 streams that contained or lacked rusty crayfish and found significantly higher fish abundance (p=0.019) and biomass (p=0.001) in streams lacking rusty crayfish. Rusty crayfish appear to indirectly affect detritus processing via negative effects on benthic invertebrates, and may have larger-scale impacts on fishes across streams.

  15. Baited lines: An active nondestructive collection method for burrowing crayfish

    USGS Publications Warehouse

    Loughman, Zachary J.; Foltz, David A.; Welsh, Stuart A.

    2013-01-01

    A new method (baited lines) is described for the collection of burrowing crayfishes, where fishing hooks baited with earthworms and tied to monofilament leaders are used to lure crayfishes from their burrow entrances. We estimated capture rates using baited lines at four locations across West Virginia for a total of four crayfish taxa; the taxa studied were orange, blue, and blue/orange morphs of Cambarus dubius (Upland Burrowing Catfish), and C. thomai (Little Brown Mudbug). Baited-line capture rates were lowest for C. thomai (81%; n = 21 attempts) and highest for the orange morph ofC. dubius (99%; n = 13 attempts). The pooled capture rate across all taxa was 91.5% (n = 50 attempts). Baited lines represent an environmentally nondestructive method to capture burrowing crayfishes without harm to individuals, and without disturbing burrows or the surrounding area. This novel method allows for repeat captures and long-term studies, providing a useful sampling method for ecological studies of burrowing crayfishes.

  16. Assessing potential abiotic and biotic complications of crayfish-induced gravel transport in experimental streams

    NASA Astrophysics Data System (ADS)

    Statzner, Bernhard; Peltret, Odile

    2006-03-01

    Biogeomorphology adds the element "biological dynamics" (of populations or communities) to chemical and physical geomorphic factors and thus complicates the framework of geomorphic processes. Such biological complications of the animal-induced transport of solids in streams should be particularly important in crayfish, as crayfish affect this transport through their overall activity and intraspecific aggression levels, which could be modified by shelter availability or the establishment of dominance hierarchies among individuals not knowing each other. Using experimental streams, we tested these hypotheses by measuring how shelter availability or residential crayfish group invasion by unknown individuals affected the impact of the crayfish Orconectes limosus on the (i) transport of gravel at baseflow (during 12 experimental days); (ii) sediment surface characteristics (after 12 days); and (iii) critical shear stress causing incipient gravel motion during simulated floods (after 12 days). The two potentially important factors shelter availability or residential group invasion negligibly affected the crayfish impact on gravel sediments, suggesting that habitat unfamiliarity (a third potentially important factor affecting crayfish activity) should increase the crayfish-induced sediment transport. Because habitat unfamiliarity is associated with sporadic long-distance migrations of a few crayfish individuals, this third factor should play a minor role in real streams, where crayfish biomass should be a key factor in relations with crayfish effects on sediments. Therefore, we combined the results of this study with those of previous crayfish experiments to assess how crayfish biomass could serve in modelling the gravel transport. Crayfish biomass explained 47% of the variability in the baseflow gravel transport and, in combination with the coefficient of variation of the bed elevation and algal cover, 72% of the variability in the critical gravel shear stress. These

  17. Color discrimination with broadband photoreceptors.

    PubMed

    Schnaitmann, Christopher; Garbers, Christian; Wachtler, Thomas; Tanimoto, Hiromu

    2013-12-02

    Color vision is commonly assumed to rely on photoreceptors tuned to narrow spectral ranges. In the ommatidium of Drosophila, the four types of so-called inner photoreceptors express different narrow-band opsins. In contrast, the outer photoreceptors have a broadband spectral sensitivity and were thought to exclusively mediate achromatic vision. Using computational models and behavioral experiments, we demonstrate that the broadband outer photoreceptors contribute to color vision in Drosophila. The model of opponent processing that includes the opsin of the outer photoreceptors scored the best fit to wavelength discrimination data. To experimentally uncover the contribution of individual photoreceptor types, we restored phototransduction of targeted photoreceptor combinations in a blind mutant. Dichromatic flies with only broadband photoreceptors and one additional receptor type can discriminate different colors, indicating the existence of a specific output comparison of the outer and inner photoreceptors. Furthermore, blocking interneurons postsynaptic to the outer photoreceptors specifically impaired color but not intensity discrimination. Our findings show that receptors with a complex and broad spectral sensitivity can contribute to color vision and reveal that chromatic and achromatic circuits in the fly share common photoreceptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences.

    PubMed Central

    Crandall, K A; Harris, D J; Fetzner, J W

    2000-01-01

    Despite their widespread use as model organisms, the phylogenetic status of the around 520 species of freshwater crayfish is still in doubt. One hypothesis suggests two distinct origins of freshwater crayfish as indicated by their geographical distribution, with two centres of origin near the two present centres of diversity; one in south-eastern United States and the other in Victoria, Australia. An alternative theory proposes a single (monophyletic) origin of freshwater crayfish. Here we use over 3000 nucleotides from three different gene regions in estimating phylogenetic relationships among freshwater crayfish and related Crustacea. We show clear evidence for monophyly of freshwater crayfish and for the sister-group relationship between crayfish and clawed lobsters. Monophyly of the superfamilies Astacoidea and Parastacoidea is also supported. However, the monophyly of the family Cambaridae is questioned with the genus Cambaroides being associated with the Astacidae. PMID:11467432

  19. Laboratory agonistic interactions demonstrate failure of an introduced crayfish to dominate two imperiled endemic crayfishes

    USGS Publications Warehouse

    Rahm, E.J.; Griffith, S.A.; Noltie, Douglas B.; DiStefano, R.J.

    2005-01-01

    Following its introduction into the St. Francis River drainage, Missouri, U.S.A., the woodland crayfish, Orconectes hylas has expanded its range there; simultaneously populations of two imperiled endemic species, the Big Creek crayfish, O. peruncus, and the St. Francis River crayfish, O. quadruncus have declined therein. In seeking a basis for this decline, our study objective was to test whether the outcome of aggressive inter-specific interactions would favor O. hylas. We studied agonistic encounters between size-matched pairs of same-sex individuals of the introduced and the endemic species in a laboratory setting, first with juveniles and then with adults. Within each life stage, we conducted four sets of laboratory experiments, with approximately 20 trials in each set: (1) O. hylas males versus O. peruncus males, (2) O. hylas males versus O. quadruncus males, (3) O. hylas females versus O. peruncus females, and (4) O. hylas females versus O. quadruncus females. In addition, these same four experiment sets were repeated using larger adult O. hylas crayfish matched with smaller-sized adult endemics, mimicking the mismatch in adult sizes that occurs in the wild. Within each experiment, every trial was analysed to quantify the frequency of occurrence of three initiation behaviors and to determine the overall outcome of the trial. Results did not show O. hylas (juveniles or adults) to be behaviorally dominant over either endemic species. Orconectes hylas displayed the majority of one of the initiation behaviors significantly more often than did the endemic species in only two of the twelve experiments. Because direct aggressive interaction was not demonstrated to be the mechanism whereby O. peruncus and O. quadruncus are being replaced by O. hylas, other life history and ecological factors will require investigation. ?? Koninklijke Brill NV, 2005.

  20. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species.

    PubMed

    Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W

    2014-02-01

    Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates.

  1. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species

    PubMed Central

    Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W

    2014-01-01

    Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates. PMID:24634733

  2. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples.

    PubMed

    Agersnap, Sune; Larsen, William Brenner; Knudsen, Steen Wilhelm; Strand, David; Thomsen, Philip Francis; Hesselsøe, Martin; Mortensen, Peter Bondgaard; Vrålstad, Trude; Møller, Peter Rask

    2017-01-01

    For several hundred years freshwater crayfish (Crustacea-Decapoda-Astacidea) have played an important ecological, cultural and culinary role in Scandinavia. However, many native populations of noble crayfish Astacus astacus have faced major declines during the last century, largely resulting from human assisted expansion of non-indigenous signal crayfish Pacifastacus leniusculus that carry and transmit the crayfish plague pathogen. In Denmark, also the non-indigenous narrow-clawed crayfish Astacus leptodactylus has expanded due to anthropogenic activities. Knowledge about crayfish distribution and early detection of non-indigenous and invasive species are crucial elements in successful conservation of indigenous crayfish. The use of environmental DNA (eDNA) extracted from water samples is a promising new tool for early and non-invasive detection of species in aquatic environments. In the present study, we have developed and tested quantitative PCR (qPCR) assays for species-specific detection and quantification of the three above mentioned crayfish species on the basis of mitochondrial cytochrome oxidase 1 (mtDNA-CO1), including separate assays for two clades of A. leptodactylus. The limit of detection (LOD) was experimentally established as 5 copies/PCR with two different approaches, and the limit of quantification (LOQ) were determined to 5 and 10 copies/PCR, respectively, depending on chosen approach. The assays detected crayfish in natural freshwater ecosystems with known populations of all three species, and show promising potentials for future monitoring of A. astacus, P. leniusculus and A. leptodactylus. However, the assays need further validation with data 1) comparing traditional and eDNA based estimates of abundance, and 2) representing a broader geographical range for the involved crayfish species.

  3. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples

    PubMed Central

    Knudsen, Steen Wilhelm; Strand, David; Thomsen, Philip Francis; Hesselsøe, Martin; Mortensen, Peter Bondgaard; Vrålstad, Trude; Møller, Peter Rask

    2017-01-01

    For several hundred years freshwater crayfish (Crustacea—Decapoda—Astacidea) have played an important ecological, cultural and culinary role in Scandinavia. However, many native populations of noble crayfish Astacus astacus have faced major declines during the last century, largely resulting from human assisted expansion of non-indigenous signal crayfish Pacifastacus leniusculus that carry and transmit the crayfish plague pathogen. In Denmark, also the non-indigenous narrow-clawed crayfish Astacus leptodactylus has expanded due to anthropogenic activities. Knowledge about crayfish distribution and early detection of non-indigenous and invasive species are crucial elements in successful conservation of indigenous crayfish. The use of environmental DNA (eDNA) extracted from water samples is a promising new tool for early and non-invasive detection of species in aquatic environments. In the present study, we have developed and tested quantitative PCR (qPCR) assays for species-specific detection and quantification of the three above mentioned crayfish species on the basis of mitochondrial cytochrome oxidase 1 (mtDNA-CO1), including separate assays for two clades of A. leptodactylus. The limit of detection (LOD) was experimentally established as 5 copies/PCR with two different approaches, and the limit of quantification (LOQ) were determined to 5 and 10 copies/PCR, respectively, depending on chosen approach. The assays detected crayfish in natural freshwater ecosystems with known populations of all three species, and show promising potentials for future monitoring of A. astacus, P. leniusculus and A. leptodactylus. However, the assays need further validation with data 1) comparing traditional and eDNA based estimates of abundance, and 2) representing a broader geographical range for the involved crayfish species. PMID:28654642

  4. Evaluation of chemical control for nonnative crayfish at a warm-water fish production hatchery

    USGS Publications Warehouse

    Allert, Ann L.; McKee, M.J.; DiStefano, R.J.; Fairchild, J.F.

    2016-01-01

    Invasive crayfish are known to displace native crayfish species, alter aquatic habitat and community structure and function, and are serious pests for fish hatcheries. White River Crawfish (WRC; Procambarus acutus) were inadvertently introduced to a warm-water fish hatchery in Missouri, USA, possibly in an incoming fish shipment. We evaluated the use of chemical control for crayfish to ensure incoming and outgoing fish shipments from hatcheries do not contain live crayfish. We conducted acute (≤24 hr) static toxicity tests to determine potency, dose-response, and selectivity of pesticides to WRC, Virile Crayfish (VC; Orconectes virilis), and Fathead Minnow (FHM; Pimephales promelas). Testing identified a formulation of cypermethrin (Cynoff®) as the most potent of five pesticides evaluated for toxicity to crayfish. A 4-hr exposure to a cypermethrin concentration of 100 μg · L-1 was found to kill 100% of juvenile and adult WRC; however, adult VC were not consistently killed. Concentrations of cypermethrin ≤100 μg · L-1 did not cause significant (>10%) mortality in juvenile FHM. Additional testing is needed to examine selectivity between crayfish and hatchery fish species. Biosecurity protocols at hatcheries that use chemical control have the potential to reliably prevent inadvertent transfers of live crayfish in fish shipments.

  5. Interactions between accumulated copper, bacterial community structure and histamine levels in crayfish meat during storage.

    PubMed

    Soedarini, Bernadeta; van Gestel, Cornelis A M; van Straalen, Nico M; Widianarko, Budi; Röling, Wilfred F M

    2014-08-01

    Pollution in aquaculture areas may negatively impact edible species and threaten seafood quality and safety. The aim of this study was to determine the interaction between copper and bacteria in the aquatic habitat and their impact upon crustaceans. Marbled crayfish was chosen as a model of aquatic crustaceans and the influence of metal contamination on bacterial community structure in water used to culture crayfish and in crayfish themselves was investigated. Histamine, an allergen commonly formed by certain groups of bacteria in crustacean edible tissue during storage, was also determined. Copper exposure increased its concentration in crayfish meat by 17.4%, but the copper concentration remained within acceptable food safety limits. Elevated copper levels affected the bacterial community both in the water used to cultivate crayfish and in the marbled crayfish themselves. Cluster analysis of 16S rRNA-gene based microbial community fingerprints revealed that copper impacted the bacterial community in the water and in the crayfish meat. However, copper exposure reduced the formation of histamine in crayfish meat during storage by 66.3%. Copper from the habitat appears to reduce histamine accumulation in crayfish meat during storage by affecting the bacterial community structure of the cultivation water and most likely also in the intestine of the crayfish. From a food safety point of view, copper treatment during the aqua culturing of crustaceans has a positive impact on the postharvest stage. © 2013 Society of Chemical Industry.

  6. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes.

    PubMed

    Capinha, César; Larson, Eric R; Tricarico, Elena; Olden, Julian D; Gherardi, Francesca

    2013-08-01

    Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal-limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate-suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate-suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague-transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. © 2013 Society for Conservation Biology.

  7. Atrazine exposure affects the ability of crayfish (Orconectes rusticus) to localize a food odor source.

    PubMed

    Belanger, Rachelle M; Peters, Tyler J; Sabhapathy, Gita S; Khan, Sana; Katta, Juhi; Abraham, Noor K

    2015-05-01

    Environmental pollutants, found in aquatic ecosystems, have been shown to have an effect on olfactory-mediated behaviors including feeding, mate attraction, and other important social behaviors. Crayfish are polytrophic, meaning that they feed on and become prey for all levels of the aquatic food web as well as are also important for the transfer of energy between benthic and terrestrial food webs. Because crayfish are a keystone species, it is important to investigate any factors that may affect their population size. Crayfish are active at night and rely heavily on their sensory appendages (e.g., antennulues, maxillipeds, and pereopods) to localize food sources. In this experiment, we investigated the effects of atrazine (ATR) exposure on the chemosensory responses of male and female crayfish to food odors. We exposed crayfish to environmentally relevant, sublethal levels of ATR [80 ppb (µg/L)] for 72 h and then examined the behavioral responses of both ATR-treated and control crayfish to food odor delivered from one end of a test arena. We used Noldus Ethovision XT software to measure odor localization and locomotory behaviors of crayfish in response to food (fish) odor. We found that control crayfish spent more time in the proximal region of the test arena and at the odor source compared with ATR-treated crayfish. Furthermore, there were no differences in the time spent moving and not moving, total distance travelled in the tank, and walking speed (cm/s) when control and ATR-treated crayfish were compared. Overall, this indicates that acute ATR exposure alters chemosensory abilities of crayfish, whereas overall motor function remains unchanged.

  8. Ontogenetic variation in food consumption of rusty crayfish (Orconectes rusticus) in a central New York stream

    USGS Publications Warehouse

    Johnson, J. H.; Nack, C.C.

    2010-01-01

    We examined feeding periodicity of three size groups of the rusty crayfish (Orconectes rusticus) at four-hour intervals over a 28-hour period during July in a headwater stream of the Susquehanna River drainage in central New York. Feeding activity was expressed as the ratio of stomach weight divided by the crayfish wet weight. The diel food consumption patterns of all three size groups of rusty crayfish (i.e., ??? 10 mm, 11-20 mm, and > 20 mm carapace length) were significantly different. Peak feeding of the smallest crayfish occurred during crepuscular periods. Food consumption of the intermediate size crayfish was highest at 2000 h, and feeding of large crayfish was consistently high from 1200 h to 0400 h. Feeding intensity of both small and intermediate size crayfish was highest when feeding intensity of large crayfsh was lowest. Ontogenetic differences in feeding periodicity may be associated with predation pressure from large rusty crayfish on smaller individuals.

  9. Ontogenetic Variation in Food Consumption of Rusty Crayfish (Orconectes rusticus) in a Central New York Stream

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.

    2010-01-01

    We examined feeding periodicity of three size groups of the rusty crayfish (Orconectes rusticus) at four-hour intervals over a 28-hour period during July in a headwater stream of the Susquehanna River drainage in central New York. Feeding activity was expressed as the ratio of stomach weight divided by the crayfish wet weight. The diel food consumption patterns of all three size groups of rusty crayfish (i.e., ≤ 10 mm, 11–20 mm, and > 20 mm carapace length) were significantly different. Peak feeding of the smallest crayfish occurred during crepuscular periods. Food consumption of the intermediate size crayfish was highest at 2000 h, and feeding of large crayfish was consistently high from 1200 h to 0400 h. Feeding intensity of both small and intermediate size crayfish was highest when feeding intensity of large crayfsh was lowest. Ontogenetic differences in feeding periodicity may be associated with predation pressure from large rusty crayfish on smaller individuals.

  10. Life-history notes on Cambarus hubbsi creaser (Hubbs crayfish) from the South Fork Spring River, Arkansas

    USGS Publications Warehouse

    Larson, E.R.; Magoulick, Daniel D.

    2011-01-01

    Many crayfish species native to the southeastern United States are imperiled due to small range sizes and anthropogenic impacts such as habitat loss and introduction of non-native species. Furthermore, effective management of crayfish is limited by the scarcity of life-history and ecological data for many of these species. We report results of the first life-history study of the crayfish Cambarus hubbsi (Hubbs Crayfish). We collected 466 Hubbs Crayfish from the South Fork Spring River, AR throughout 2006 and recorded carapace lengths, wet weights, indicators of reproductive activity, and number of eggs on ovigerous females. Using length-frequency distributions, we identified four Hubbs Crayfish age classes and evaluated growth rates by plotting size by season (winter, spring, summer, autumn). Male Hubbs Crayfish were more common than females in all seasons except autumn, and males weighed more at equivalent lengths than females. Reproductive activity in Hubbs Crayfish peaked in late winter and spring, and ovigerous females were collected in March, April, and June. Ovigerous females were age II or III and carried few eggs relative to co-occurring crayfish of the genus Orconectes. Compared to these Orconectes species, Hubbs Crayfish is comparatively slow growing, long lived, with low reproductive potential, and as a result may be categorized as a K life-history strategist. Based on this species' life-history strategy and previously documented habitat specificity and taxonomic distinctiveness, Hubbs Crayfish may require monitoring and management attention normally reserved for species with smaller ranges.

  11. Stream permanence influences crayfish occupancy and abundance in the Ozark Highlands, USA

    USGS Publications Warehouse

    Yarra, Allyson N.; Magoulick, Daniel D.

    2018-01-01

    Crayfish use of intermittent streams is especially important to understand in the face of global climate change. We examined the influence of stream permanence and local habitat on crayfish occupancy and species densities in the Ozark Highlands, USA. We sampled in June and July 2014 and 2015. We used a quantitative kick–seine method to sample crayfish presence and abundance at 20 stream sites with 32 surveys/site in the Upper White River drainage, and we measured associated local environmental variables each year. We modeled site occupancy and detection probabilities with the software PRESENCE, and we used multiple linear regressions to identify relationships between crayfish species densities and environmental variables. Occupancy of all crayfish species was related to stream permanence. Faxonius meeki was found exclusively in intermittent streams, whereas Faxonius neglectus and Faxonius luteushad higher occupancy and detection probability in permanent than in intermittent streams, and Faxonius williamsi was associated with intermittent streams. Estimates of detection probability ranged from 0.56 to 1, which is high relative to values found by other investigators. With the exception of F. williamsi, species densities were largely related to stream permanence rather than local habitat. Species densities did not differ by year, but total crayfish densities were significantly lower in 2015 than 2014. Increased precipitation and discharge in 2015 probably led to the lower crayfish densities observed during this year. Our study demonstrates that crayfish distribution and abundance is strongly influenced by stream permanence. Some species, including those of conservation concern (i.e., F. williamsi, F. meeki), appear dependent on intermittent streams, and conservation efforts should include consideration of intermittent streams as an important component of freshwater biodiversity.

  12. Effectiveness of two commercial rotenone formulations in the eradication of virile crayfish Orconectes virillis

    USGS Publications Warehouse

    Recsetar, Matthew S.; Bonar, Scott A.

    2015-01-01

    The virile or northern crayfish Orconectes virilis is an invasive species throughout much of the USA, damaging aquatic communities where it is introduced. Therefore, identification of effective methods for its eradication from areas in which it is unwanted is important. We studied the effectiveness of two commercial formulations of rotenone, Chem Fish Regular and CFT Legumine, for virile crayfish control. Although both formulations were effective for fish eradication, earlier observations by fisheries managers suggested that the relative effectiveness of the two formulations differs for crayfish. The only noteworthy difference between the formulations is that the former contains a synergist. In our first experiment, we tested each toxicant at the maximum labeled dosage (5 ppm) and found CFT Legumine to be 100% ineffective (0% mortality), while the Chem Fish Regular treatment resulted in 12.5% mortality. After we deemed Chem Fish Regular to be the only toxicant with any effectiveness against virile crayfish, we tested concentrations from 5 to 50 ppm and found 10 times the maximum labeled dosage (50 ppm rotenone) was needed to kill all virile crayfish. Because crayfish burrow and can leave water, and because 100% eradication is usually desired, rotenone applied at the labeled rates will not be effective for crayfish control. However, treating a body of water with CFT Legumine to eradicate invasive fish while leaving desirable crayfish unharmed is possible.

  13. Incomes, Attitudes, and Occurrences of Invasive Species: An Application to Signal Crayfish in Sweden

    NASA Astrophysics Data System (ADS)

    Gren, Ing-Marie; Campos, Monica; Edsman, Lennart; Bohman, Patrik

    2009-02-01

    This article analyzes and carries out an econometric test of the explanatory power of economic and attitude variables for occurrences of the nonnative signal crayfish in Swedish waters. Signal crayfish are a carrier of plague which threatens the native noble crayfish with extinction. Crayfish are associated with recreational and cultural traditions in Sweden, which may run against environmental preferences for preserving native species. Econometric analysis is carried out using panel data at the municipality level with economic factors and attitudes as explanatory variables, which are derived from a simple dynamic harvesting model. A log-normal model is used for the regression analysis, and the results indicate significant impacts on occurrences of waters with signal crayfish of changes in both economic and attitude variables. Variables reflecting environmental and recreational preferences have unexpected signs, where the former variable has a positive and the latter a negative impact on occurrences of waters with signal crayfish. These effects are, however, counteracted by their respective interaction effect with income.

  14. Invasive crayfish as vectors of mercury in freshwater food webs of the Pacific Northwest

    USGS Publications Warehouse

    Johnson, Branden L.; Willacker, James J.; Eagles-Smith, Collin A.; Pearl, Christopher A.; Adams, Michael J.

    2014-01-01

    Invasive species are important drivers of environmental change in aquatic ecosystems and can alter habitat characteristics, community composition, and ecosystem energetics. Such changes have important implications for many ecosystem processes, including the bioaccumulation and biomagnification of contaminants through food webs. Mercury concentrations were measured in 2 nonnative and 1 native crayfish species from western Oregon (USA). Nonnative red swamp crayfish had mercury concentrations similar to those in native signal crayfish (0.29 ± 0.05 µg/g dry wt and 0.36 ± 0.06 µg/g dry wt, respectively), whereas the nonnative ringed crayfish had lower mercury concentrations (0.10 ± 0.02 µg/g dry wt) than either of the other species. The mean energy content of muscle was similar between the native signal crayfish and nonnative ringed crayfish but was significantly higher in the nonnative red swamp crayfish. Across species, mercury concentrations were negatively correlated with energy density. Such energetic differences could exacerbate changes in mercury transfer through trophic pathways of food webs, especially via alterations to the growth dynamics of consumers. Thus, it is important to consider the role of energy content in determining effective mercury exposure even when mercury concentrations on a per-unit mass basis do not differ between species.

  15. Effects of predators on fish and crayfish survival in intermittent streams

    USGS Publications Warehouse

    Dekar, Matthew P.; Magoulick, Daniel D.

    2013-01-01

    Predation from aquatic and terrestrial predators arc important factors structuring the size and depth distribution of aquatic prey. We conducted mesocosm and tethering experiments on Little Mulberry Creek in northwest Arkansas during low flows to examine the effects of predators on fish and crayfish survival in intermittent streams Using shallow artificial pools (10 cm deep) and predator exclusions, we tested the hypothesis that large-bodied fish are at greater risk from terrestrial predators in shallow habitats compared to small-bodied individuals. Twenty-four circular pools (12 open top. 12 closed top) were stocked with two size classes of Campostoma anomalum (Central Stonerller) and deployed systematically in a single stream pool. In addition, we used a crayfish tethering experiment to test the hypothesis that the survival of small and large crayfish is greater in shallow and deep habitats, respectively. We tethered two size classes of Orconectes meeki meeki (Meek's Crayfish) along shallow and deep transects in two adjacent stream pools and measured survival for 15 days. During both experiments, we monitored the presence or absence of predators by visual observation and from scat surveys. We demonstrated a negative effect of terrestrial predators on Central Stonerller survival in the artificial pools, and larger individuals were more susceptible to predation. In contrast, small crayfish experienced low survival at all depths and large crayfish were preyed upon much less intensively during the tethering study, particularly in the pool with larger substrate. More studies are needed to understand how stream drying and environmental heterogeneity influence the complex interactions between predator and prey populations in intermittent streams.

  16. Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops

    PubMed Central

    Mawphlang, Ophilia I. L.; Kharshiing, Eros V.

    2017-01-01

    Rising temperatures during growing seasons coupled with altered precipitation rates presents a challenging task of improving crop productivity for overcoming such altered weather patterns and cater to a growing population. Light is a critical environmental factor that exerts a powerful influence on plant growth and development ranging from seed germination to flowering and fruiting. Higher plants utilize a suite of complex photoreceptor proteins to perceive surrounding red/far-red (phytochromes), blue/UV-A (cryptochromes, phototropins, ZTL/FKF1/LKP2), and UV-B light (UVR8). While genomic studies have also shown that light induces extensive reprogramming of gene expression patterns in plants, molecular genetic studies have shown that manipulation of one or more photoreceptors can result in modification of agronomically beneficial traits. Such information can assist researchers to engineer photoreceptors via genome editing technologies to alter expression or even sensitivity thresholds of native photoreceptors for targeting aspects of plant growth that can confer superior agronomic value to the engineered crops. Here we summarize the agronomically important plant growth processes influenced by photoreceptors in crop species, alongwith the functional interactions between different photoreceptors and phytohormones in regulating these responses. We also discuss the potential utility of synthetic biology approaches in photobiology for improving agronomically beneficial traits of crop plants by engineering designer photoreceptors. PMID:28744290

  17. Consumptive effects of fish reduce wetland crayfish recruitment and drive species turnover.

    PubMed

    Kellogg, Christopher M; Dorn, Nathan J

    2012-04-01

    Predators and dry-disturbances have pronounced effects on invertebrate communities and can deterministically affect compositional turnover between discrete aquatic habitats. We examined the effect of sunfish (Lepomis spp.) predators on two native crayfish, Procambarus alleni and P. fallax, that regionally coexist in an expansive connected wetland in order to test the hypotheses that sunfish predation limits crayfish recruitment (both species) and that it disproportionately affects P. alleni, the species inhabiting temporary wetlands. In replicate vegetated wetlands (18.6 m(2)), we quantified summertime crayfish recruitment and species composition across an experimental gradient of sunfish density. Separately, we quantified effects of sunfish on crayfish growth, conducted a complimentary predation assay in mesocosms, and compared behavior of the two crayfish. Sunfish reduced P. alleni summertime recruitment by >99% over the full sunfish gradient, and most of the effect was caused by low densities of sunfish (0.22-0.43 m(-2)). P. alleni dominated wetlands with few or no sunfish, but the composition shifted towards P. fallax dominance in wetlands with abundant sunfish. P. fallax survived better than P. alleni over 40 h in smaller mesocosms stocked with warmouth. Sunfish reduced P. fallax recruitment 62% in a second wetland experiment, but growth rates of caged crayfish (both species) were unaffected by sunfish presence, suggesting predatory effects were primarily consumptive. Consistent with life histories of relatively fish-sensitive invertebrates, P. alleni engaged in more risky behaviors in the laboratory. Our results indicate that sunfish predators limit recruitment of both species, but disproportionately remove the more active and competitively dominant P. alleni. Spatially and temporally variable dry-disturbances negatively co-varying with sunfish populations allow for regional coexistence of these two crayfish and may release populations of either species from

  18. Ulcerative disease outbreak in crayfish Orconectes propinquus linked to Saprolegnia australis in big Muskellunge Lake, Wisconsin.

    PubMed

    Krugner-Higby, Lisa; Haak, Danielle; Johnson, Pieter T J; Shields, Jeffery D; Jones, William M; Reece, Kimberly S; Meinke, Tim; Gendron, Annette; Rusak, James A

    2010-07-26

    Crayfish populations in the area of the North Temperate Lakes Long Term Ecological Research (LTER) project, Wisconsin, USA, have been monitored for >25 yr. In 2005, native crayfish Orconectes propinquus from Big Muskellunge Lake were found with ulcerated lesions in the cuticle. In 2006, lesions occurred in 9.5% of sampled crayfish from the lake (n=3146). Ulcers generally occurred on the appendages of affected individuals but varied in location and severity. The prevalence of ulcers varied widely among sites, sample depths, and sampling dates, ranging from < 2% to >20%. The prevalence of ulcers in crayfish increased from a minimum in early June to a maximum in late July and August. In aquarium trials, healthy crayfish representing either O. propinquus or O. rusticus co-housed with ulcerated crayfish did not develop ulcers within 4 wk of exposure. Gross and histopathologic analyses of ulcerated crayfish revealed the presence of filamentous hyphae in the lesions while hemocytic infiltrates, melanotic reactions and silver-stained sections indicated that the ulcers had an oomycete etiology. Excised samples of ulcerated crayfish cuticle grown in culture developed an oomycete that was identified as Saprolegnia australis by PCR amplification and sequence analysis of 2 different DNA fragments. This is the first report of the occurrence of ulcers in wild crayfish associated with S. australis infection in the U.S.A. The advent of the outbreak and its underlying ecological causes are still under investigation.

  19. Tag retention, growth, and survival of red swamp crayfish Procambarus clarkii marked with coded wire tags

    USGS Publications Warehouse

    Isely, J.J.; Eversole, A.G.

    1998-01-01

    Juvenile red swamp crayfish (or crawfish), Procambarus clarkii (20-41 mm in total length) were collected from a crayfish culture pond by dipnetting and tagged with sequentially numbered, standard length, binary-coded wire tags. Four replicates of 50 crayfish were impaled perpendicular to the long axis of the abdomen with a fixed needle. Tags were injected transversely into the ventral surface of the first or second abdominal segment and were imbedded in the musculature just beneath the abdominal sternum. Tags were visible upon inspection. Additionally, two replicates of 50 crayfish were not tagged and were used as controls. Growth, survival, and tag retention were evaluated after 7 d in individual containers, after 100 d in aquaria, and after 200 d in field cages. Tag retention during each sample period was 100%, and average mortality of tagged crayfish within 7 d of tagging was 1%. Mortality during the remainder of the study was high (75-91%) but was similar between treatment and control samples. Most of the deaths were probably due to cannibalism. Average total length increased threefold during the course of the study, and crayfish reached maturity. Because crayfish were mature by the end of the study, we concluded that the coded wire tag was retained through the life history of the crayfish.

  20. Competition for food between an introduced crayfish and two fishes endemic to the Colorado River basin

    USGS Publications Warehouse

    Carpenter, J.

    2005-01-01

    Crayfish are not native to the Colorado River basin (CRB), however they are now established in portions of the mainstem and in many tributaries. I used density manipulation experiments in a laboratory setting to determine intra- and interspecific competition for food between Orconectes virilis, an aggressive polytrophic crayfish now common in the CRB, and two native fishes: Gila chub, Gila intermedia, and flannelmouth sucker, Catostomus latipinnis. I tested each fish species in separate trials. Growth of Gila chub decreased when animal densities increased, however they were more affected by intraspecific competition than by crayfish presence. In contrast, growth of flannelmouth suckers was more affected by crayfish than by intraspecific competition. Crayfish growth was not significantly altered by presence of either fish. Crayfish thus reduced fish growth by competition for food, but the effect differed markedly between the two species.

  1. Crayfishes (Decapoda : Cambaridae) of Oklahoma: identification, distributions, and natural history.

    PubMed

    Morehouse, Reid L; Tobler, Michael

    2013-01-01

    We furnish an updated crayfish species list for the state of Oklahoma (United States of America), including an updated and illustrated dichotomous key. In addition, we include species accounts that summarize general characteristics, life coloration, similar species, distribution and habitat, life history, and syntopic species. Current and potential distributions were analyzed using ecological niche models to provide a critical resource for the identification of areas with conservation priorities and potential susceptibility to invasive species. Currently, Oklahoma harbors 30 species of crayfish, two of which were recently discovered. Eastern Oklahoma has the highest species diversity, as this area represents the western distribution extent for several species. The work herein provides baseline data for future work on crayfish biology and conservation in Oklahoma and surrounding states.

  2. Phylogenetic species delimitation for crayfishes of the genus Pacifastacus.

    PubMed

    Larson, Eric R; Castelin, Magalie; Williams, Bronwyn W; Olden, Julian D; Abbott, Cathryn L

    2016-01-01

    Molecular genetic approaches are playing an increasing role in conservation science by identifying biodiversity that may not be evident by morphology-based taxonomy and systematics. So-called cryptic species are particularly prevalent in freshwater environments, where isolation of dispersal-limited species, such as crayfishes, within dendritic river networks often gives rise to high intra- and inter-specific genetic divergence. We apply here a multi-gene molecular approach to investigate relationships among extant species of the crayfish genus Pacifastacus, representing the first comprehensive phylogenetic study of this taxonomic group. Importantly, Pacifastacus includes both the widely invasive signal crayfish Pacifastacus leniusculus, as well as several species of conservation concern like the Shasta crayfish Pacifastacus fortis. Our analysis used 83 individuals sampled across the four extant Pacifastacus species (omitting the extinct Pacifastacus nigrescens), representing the known taxonomic diversity and geographic distributions within this genus as comprehensively as possible. We reconstructed phylogenetic trees from mitochondrial (16S, COI) and nuclear genes (GAPDH), both separately and using a combined or concatenated dataset, and performed several species delimitation analyses (PTP, ABGD, GMYC) on the COI phylogeny to propose Primary Species Hypotheses (PSHs) within the genus. All phylogenies recovered the genus Pacifastacus as monophyletic, within which we identified a range of six to 21 PSHs; more abundant PSHs delimitations from GMYC and ABGD were always nested within PSHs delimited by the more conservative PTP method. Pacifastacus leniusculus included the majority of PSHs and was not monophyletic relative to the other Pacifastacus species considered. Several of these highly distinct P. leniusculus PSHs likely require urgent conservation attention. Our results identify research needs and conservation priorities for Pacifastacus crayfishes in western

  3. Ecological effects of lead mining on Ozark streams: In-situ toxicity to woodland crayfish (Orconectes hylas)

    USGS Publications Warehouse

    Allert, A.L.; Fairchild, J.F.; DiStefano, R.J.; Schmitt, C.J.; Brumbaugh, W.G.; Besser, J.M.

    2009-01-01

    The Viburnum Trend mining district in southeast Missouri, USA is one of the largest producers of lead-zinc ore in the world. Previous stream surveys found evidence of increased metal exposure and reduced population densities of crayfish immediately downstream of mining sites. We conducted an in-situ 28-d exposure to assess toxicity of mining-derived metals to the woodland crayfish (Orconectes hylas). Crayfish survival and biomass were significantly lower at mining sites than at reference and downstream sites. Metal concentrations in water, detritus, macroinvertebrates, fish, and crayfish were significantly higher at mining sites, and were negatively correlated with caged crayfish survival. These results support previous field and laboratory studies that showed mining-derived metals negatively affect O. hylas populations in streams draining the Viburnum Trend, and that in-situ toxicity testing was a valuable tool for assessing the impacts of mining on crayfish populations.

  4. Amine Neurochemistry and Aggression in Crayfish

    PubMed Central

    Panksepp, Jules B.; Yue, Zhaoxia; Drerup, Catherine; Huber, Robert

    2016-01-01

    A primary goal of our research is to explore proximate mechanisms important in recruiting adaptive social behaviors. For instance, if one of three different behaviors may be expressed in a particular set of circumstances, how do neurochemical mechanisms bias behavior towards the expression of one act in lieu of the other possibilities? In this article, we review recent results suggesting that serotonin may play such a role in the control of aggression in crayfish. First, we summarize techniques that have been optimized for sensitive characterization of neurochemical profiles in crayfish. Then, borrowing concepts from behavioral ecology, we review a framework for quantitative investigation, which regards behavior as a set of individual decisions, each with a particular probability for occurrence, a motivational context, and controlled by its own distinct neurochemical mechanisms. PMID:12539165

  5. Using eDNA to detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World Heritage site

    PubMed Central

    Yang, Chunyan; Wang, Lin; Wang, Wenzhi; Zhao, Guigang; Geng, Yupeng; Yu, Douglas W.

    2017-01-01

    The Honghe-Hani landscape in China is a UNESCO World Natural Heritage site due to the beauty of its thousands of rice terraces, but these structures are in danger from the invasive crayfish Procambarus clarkii. Crayfish dig nest holes, which collapse terrace walls and destroy rice production. Under the current control strategy, farmers self-report crayfish and are issued pesticide, but this strategy is not expected to eradicate the crayfish nor to prevent their spread since farmers are not able to detect small numbers of crayfish. Thus, we tested whether environmental DNA (eDNA) from paddy-water samples could provide a sensitive detection method. In an aquarium experiment, Real-time Quantitative polymerase chain reaction (qPCR) successfully detected crayfish, even at a simulated density of one crayfish per average-sized paddy (with one false negative). In a field test, we tested eDNA and bottle traps against direct counts of crayfish. eDNA successfully detected crayfish in all 25 paddies where crayfish were observed and in none of the 7 paddies where crayfish were absent. Bottle-trapping was successful in only 68% of the crayfish-present paddies. eDNA concentrations also correlated positively with crayfish counts. In sum, these results suggest that single samples of eDNA are able to detect small crayfish populations, but not perfectly. Thus, we conclude that a program of repeated eDNA sampling is now feasible and likely reliable for measuring crayfish geographic range and for detecting new invasion fronts in the Honghe Hani landscape, which would inform regional control efforts and help to prevent the further spread of this invasive crayfish. PMID:28505200

  6. Using eDNA to detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World Heritage site.

    PubMed

    Cai, Wang; Ma, Zhuxin; Yang, Chunyan; Wang, Lin; Wang, Wenzhi; Zhao, Guigang; Geng, Yupeng; Yu, Douglas W

    2017-01-01

    The Honghe-Hani landscape in China is a UNESCO World Natural Heritage site due to the beauty of its thousands of rice terraces, but these structures are in danger from the invasive crayfish Procambarus clarkii. Crayfish dig nest holes, which collapse terrace walls and destroy rice production. Under the current control strategy, farmers self-report crayfish and are issued pesticide, but this strategy is not expected to eradicate the crayfish nor to prevent their spread since farmers are not able to detect small numbers of crayfish. Thus, we tested whether environmental DNA (eDNA) from paddy-water samples could provide a sensitive detection method. In an aquarium experiment, Real-time Quantitative polymerase chain reaction (qPCR) successfully detected crayfish, even at a simulated density of one crayfish per average-sized paddy (with one false negative). In a field test, we tested eDNA and bottle traps against direct counts of crayfish. eDNA successfully detected crayfish in all 25 paddies where crayfish were observed and in none of the 7 paddies where crayfish were absent. Bottle-trapping was successful in only 68% of the crayfish-present paddies. eDNA concentrations also correlated positively with crayfish counts. In sum, these results suggest that single samples of eDNA are able to detect small crayfish populations, but not perfectly. Thus, we conclude that a program of repeated eDNA sampling is now feasible and likely reliable for measuring crayfish geographic range and for detecting new invasion fronts in the Honghe Hani landscape, which would inform regional control efforts and help to prevent the further spread of this invasive crayfish.

  7. The crustacean eye: dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage.

    PubMed

    Meyer-Rochow, V B

    2001-12-01

    Compound eyes, nauplius eyes, frontal organs, intracerebral ocelli, and caudal photoreceptors are the main light and darkness detectors in crustaceans, but they need not be present all at once in an individual and in some crustaceans no photoreceptors whatsoever are known. Compound eye designs reflect on their functions and have evolved to allow the eye to operate optimally under a variety of environmental conditions. Dark-light-adaptational changes manifest themselves in pigment granule translocations, cell movements, and optical adjustments which fine-tune an eye's performance to rapid and unpredictable fluctuations in ambient light intensities as well as to the slower and predictable light level changes associated with day and night oscillations. Recycling of photoreceptive membrane and light-induced membrane collapse are superficially similar events that involve the transduction cascade, intracellular calcium, and membrane fatty acid composition, but which differ in aetiology and longterm consequence. Responses to intermittant illumination and linearly polarized light evoke in the eye of many crustaceans characteristic responses that appear to be attuned to each species' special needs. How the visual responses are processed more centrally and to what extent a crustacean makes behavioural use of e-vector discrimination and flickering lights are questions, however, that still have not been satisfactorily answered for the vast majority of all crustacean species. The degree of light-induced photoreceptor damage depends on a large number of variables, but once manifest, it tends to be progressive and irreversible. Concomittant temperature stress aggravates the situation and there is evidence that free radicals and lipid hydroperoxides are involved.

  8. Accumulation of Heavy Metals in Crayfish and Fish from Selected Czech Reservoirs

    PubMed Central

    Kuklina, Iryna; Kouba, Antonín; Buřič, Miloš; Horká, Ivona; Ďuriš, Zdeněk; Kozák, Pavel

    2014-01-01

    To evaluate the accumulation of aluminium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in crayfish and fish organ tissues, specimens from three drinking water reservoirs (Boskovice, Landštejn, and Nová Říše) and one contaminated site (Darkovské moře) in the Czech Republic were examined. Crayfish hepatopancreas was confirmed to be the primary accumulating site for the majority of metals (Cu > Zn > Ni > Cd > Cr), while Hg and Cr were concentrated in abdominal muscle, and Al and Pb were concentrated in gill. Metals found in Nová Říše specimens included Cu > Zn > Ni and those found in Boskovice included Zn > Hg > Cr. Cd concentrations were observed only in Landštejn specimens, while contaminated Darkovské moře specimens showed the highest levels of accumulation (Cu > Al > Zn > Pb). The majority of evaluated metals were found in higher concentrations in crayfish: Cu > Al > Zn > Ni > Cr > Cd > Pb, with Hg being the only metal accumulating higher in fish. Due to accumulation similarities of Al in crayfish and fish gill, differences of Hg in muscle, and features noted for the remaining metals in examined tissues, biomonitoring should incorporate both crayfish and fish to produce more relevant water quality surveys. PMID:24738051

  9. Genome survey sequencing of red swamp crayfish Procambarus clarkii.

    PubMed

    Shi, Linlin; Yi, Shaokui; Li, Yanhe

    2018-06-21

    Red swamp crayfish, Procambarus clarkii, presently is an important aquatic commercial species in China. The crayfish is a hot area of research focus, and its genetic improvement is quite urgent for the crayfish aquaculture in China. However, the knowledge of its genomic landscape is limited. In this study, a survey of P. clarkii genome was investigated based on Illumina's Solexa sequencing platform. Meanwhile, its genome size was estimated using flow cytometry. Interestingly, the genome size estimated is about 8.50 Gb by flow cytometry and 1.86 Gb with genome survey sequencing. Based on the assembled genome sequences, total of 136,962 genes and 152,268 exons were predicted, and the predicted genes ranged from 150 to 12,807 bp in length. The survey sequences could help accelerate the progress of gene discovery involved in genetic diversity and evolutionary analysis, even though it could not successfully applied for estimation of P. clarkii genome size.

  10. Tag retention, growth, and survival of red swamp crayfish marked with a visible implant tag

    USGS Publications Warehouse

    Isely, J.J.; Stockett, P.E.

    2001-01-01

    Eighty juvenile (means: 42.4 mm total length, 1.6 g) red swamp crayfish Procambarus clarkii were implanted with sequentially numbered visible implant tags and held in the laboratory. Tags were injected transversely into the musculature just beneath the exoskeleton of the third abdominal segment from the cephalothorax; tags were visible upon inspection. An additional 20 crayfish were left untagged and served as controls. After 150 d, tag retention was 80% and all tags were readable. No tagged crayfish died during the study, and no differences in total length or weight were detected between tagged and control crayfish. All individuals molted at least three times during the 150-d study, and some individuals molted up to six times, suggesting that most tags would be permanently retained. The readability in the field without specialized equipment makes the visible implant tag ideal for studies of crayfish ecology, management, and culture.

  11. Enzymatic production of N-acetyl-d-glucosamine from crayfish shell wastes pretreated via high pressure homogenization.

    PubMed

    Wei, Guoguang; Zhang, Alei; Chen, Kequan; Ouyang, Pingkai

    2017-09-01

    This study presents an efficient pretreatment of crayfish shell using high pressure homogenization that enables N-acetyl-d-glucosamine (GlcNAc) production by chitinase. Firstly, the chitinase from Serratia proteamaculans NJ303 was screened for its ability to degrade crayfish shell and produce GlcNAc as the sole product. Secondly, high pressure homogenization, which caused the crayfish shell to adopt a fluffy netted structure that was characterized by Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), was evaluated as the best pretreatment method. In addition, the optimal conditions of high pressure homogenization of crayfish shell were determined to be five cycles at a pressure of 400bar, which achieved a yield of 3.9g/L of GlcNAc from 25g/L of crayfish shell in a batch enzymatic reaction over 1.5h. The results showed high pressure homogenization might be an efficient method for direct utilization of crayfish shell for enzymatic production of GlcNAc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Neural control of behavioural choice in juvenile crayfish.

    PubMed

    Liden, William H; Phillips, Mary L; Herberholz, Jens

    2010-11-22

    Natural selection leads to behavioural choices that increase the animal's fitness. The neuronal mechanisms underlying behavioural choice are still elusive and empirical evidence connecting neural circuit activation to adaptive behavioural output is sparse. We exposed foraging juvenile crayfish to approaching shadows of different velocities and found that slow-moving shadows predominantly activated a pair of giant interneurons, which mediate tail-flips that thrust the animals backwards and away from the approaching threat. Tail-flips also moved the animals farther away from an expected food source, and crayfish defaulted to freezing behaviour when faced with fast-approaching shadows. Under these conditions, tail-flipping, an ineffective and costly escape strategy was suppressed in favour of freezing, a more beneficial choice. The decision to freeze also dominated in the presence of a more desirable resource; however, the increased incentive was less effective in suppressing tail-flipping when paired with slow-moving visual stimuli that reliably evoked tail-flips in most animals. Together this suggests that crayfish make value-based decisions by weighing the costs and benefits of different behavioural options, and they select adaptive behavioural output based on the activation patterns of identifiable neural circuits.

  13. Evaluation of Crayfish Growth and Assimilation on Animal and Detrital Food Sources: Are Stable Isotopes Telling the Whole Story?

    NASA Astrophysics Data System (ADS)

    Warren, L. L.; Wotton, R. S.; Wharton, G.; Fortino, K.; Ulseth, A. J.; Hershey, A. E.

    2005-05-01

    Crayfish are the dominant omnivores of many ecosystems and have strong direct and indirect effects through predation and organic matter processing. Despite this, the importance of detritus for crayfish production is poorly understood. We conducted a laboratory experiment where we fed crayfish an ad. lib. diet of only detritus, only fish tissue, or a mixture the above. The crayfish grew more on a diet which contained meat but growth was highly correlated with the amount of food consumed. The least amount of food was consumed in the detritus treatment, an intermediate amount of food in the meat treatment, and the most food in the mix treatment, suggesting that consumption of detritus by crayfish is related to more than simply the abundance of detritus. Nonetheless, isotopic evidence indicated that the crayfish were not assimilating leaf C and N. Additionally, crayfish in the meat containing treatments never exceeded the del 15N signature of their source by the approximately 3 units expected following fractionation, despite coming to isotopic equilibrium with their source. These findings suggest that crayfish may fractionate C and N uniquely. This difference may have to do with gut microbial activity and may have implications for the interpretation crayfish isotopic signatures.

  14. Toxic and heavy metals as a cause of crayfish mass mortality from acidified headwater streams.

    PubMed

    Svobodová, Jitka; Douda, Karel; Fischer, David; Lapšanská, Natalia; Vlach, Pavel

    2017-03-01

    Mining activities are responsible for high concentrations of metals in river networks in many parts of the world. Mining activities and the resulting high loads of heavy metals interact with intensive acid rain, and often have great consequences for biodiversity. However, considering the frequently episodic nature of these heavy acid rains, there is little detailed evidence of direct impacts. In 2011 we observed a massive mortality of noble crayfish and stone crayfish in Padrťsko Special Area of Conservation (SAC) in the Brdy Mountain region of the Czech Republic. Based on concentrations of metals (Al, Fe, As, Cd, Pb, Cu, Zn and Hg) in various tissues (gills, hepatopancreas, muscle) of both dead and live crayfish in this locality compared to reference populations, these crayfish had experienced long-term exposure to increased levels of these metals. Here we give detailed documentation of crayfish mortality associated with high metal concentrations in the gills and other tissues of these endangered invertebrates.

  15. Clearance of Apoptotic Photoreceptors

    PubMed Central

    Hisatomi, Toshio; Sakamoto, Taiji; Sonoda, Koh-hei; Tsutsumi, Chikako; Qiao, Hong; Enaida, Hiroshi; Yamanaka, Ichiro; Kubota, Toshiaki; Ishibashi, Tatsuro; Kura, Shinobu; Susin, Santos A.; Kroemer, Guido

    2003-01-01

    The effective phagocytotic clearance of apoptotic debris is fundamental to the maintenance of neural tissues during apoptosis. Retinal photoreceptors undergo apoptosis after retinal detachment. Although their induction phase of apoptosis has been well discussed, their phagocytotic process remains quite unclear. We herein demonstrate that apoptotic photoreceptors are selectively eliminated from their physiological localization, the outer nuclear layer, to the subretinal space, and then phagocytosed by monocyte-derived macrophages. This could be shown by an ultrastructural and immunophenotypic analysis. Moreover, in chimera mice expressing transgenic green fluorescent protein in bone marrow-derived cells, the local infiltration of macrophages could be detected after retinal detachment-induced photoreceptor apoptosis. The local injection of an antibody blocking the phosphatidylserine receptor (PSR) or a peptide (GRGDSP)-blocking integrin αvβ3 revealed that phagocytotic clearance involves the PSR as well as integrin αvβ3 in vivo. Importantly, the level of blockade obtained with these reagents was different. Although anti-PSR increased the frequency of apoptotic cells that fail to bind to macrophages, GRGDSP prevented the engulfment (but not the recognition) of apoptotic photoreceptor cells by macrophages. To our knowledge, this is the first report describing the mechanisms through which apoptotic photoreceptors are selectively eliminated via a directional process in the subretinal space. PMID:12759244

  16. Effects of Different Social and Environmental Conditions on Established Dominance Relationships in Crayfish.

    PubMed

    Herberholz, Jens; Swierzbinski, Matthew E; Birke, Juliane M

    2016-04-01

    Like most social animals, crayfish readily form dominance relationships and linear social hierarchies when competing for limited resources. Competition often entails dyadic aggressive interactions, from which one animal emerges as the dominant and one as the subordinate. Once dominance relationships are formed, they typically remain stable for extended periods of time; thus, access to future resources is divided unequally among conspecifics. We previously showed that firmly established dominance relationships in juvenile crayfish can be disrupted by briefly adding a larger conspecific to the original pair. This finding suggested that the stability of social relationships in crayfish was highly context-dependent and more transient than previously assumed. We now report results that further identify the mechanisms underlying the destabilization of crayfish dominance relationships. We found that rank orders remained stable when conspecifics of smaller or equal size were added to the original pair, suggesting that both dominant and subordinate must be defeated by a larger crayfish in order to destabilize dominance relationships. We also found that dominance relationships remained stable when both members of the original pair were defeated by larger conspecifics in the absence of their original opponent. This showed that dominance relationships are not destabilized unless both animals experience defeat together. Lastly, we found that dominance relationships of pairs were successfully disrupted by larger intruders, although with reduced magnitude, after all chemical cues associated with earlier agonistic experiences were eliminated. These findings provide important new insights into the contextual features that regulate the stability of social dominance relationships in crayfish and probably in other species as well. © 2016 Marine Biological Laboratory.

  17. Habitat use and growth of the western painted crayfish Orconectes palmeri longimanus

    USGS Publications Warehouse

    Dyer, Joseph J.; Mouser, Joshua; Brewer, Shannon K.

    2016-01-01

    Identifying ontogenetic shifts in habitat use by aquatic organisms is necessary for improving conservation strategies; however, our ability to designate life stages based on surrogate metrics (i.e., length) is questionable without validation. This study identified growth patterns of age-0 western painted crayfish Orconectes palmeri longimanus (Faxon, 1898) reared in the laboratory, provided support for field-based designations of age-0 lengths, and identified microhabitat factors important to adult and juvenile presence from field collections. Two growth periods of a laboratory crayfish population were described using a broken line model: a rapid, early-growth period (weeks 2-20, slope = 0.81 ± 0.03SE), and a slower, late-growth period (weeks 22-50, slope = 0.13 ± 0.03SE). A smoothed curve was generated to represent the size distribution of juveniles from our laboratory population to determine the probability that an age-0 crayfish from our laboratory population had a carapace length (CL) similar to that found in previous field studies using onset of maturity (22.4 mm CL). We determined that the probability of the age-0 crayfish in our summer laboratory population exceeding 22.4 mm CL was 0.06. The threshold between the lower 0.95 and upper 0.05 probabilities was 22.9 mm CL, confirming previous field observations of onset at maturity. We used this threshold to identify juveniles and adults from our field collections, and found that both life stages were positively associated with coarse substrate and negatively associated with water depth. Adults, however, were negatively related to gravel, whereas juveniles showed a positive relationship. This result is reflective of the relationship between crayfish body size and refuge use within the interstitial spaces of substrates, whereby adult crayfish are unable to seek refuge in the small interstitial spaces of gravel.

  18. Exposure to Sublethal Ammonia Concentrations Alters the Duration and Intensity of Agonistic Interactions in the Crayfish, Orconectes rusticus.

    PubMed

    Edwards, David D; Klotz, Katie L; Moore, Paul A

    2018-02-01

    Crayfish extract information from chemical stimuli during social interactions. Commercial fertilizers increase background ammonia concentrations which may interfere with chemical communication. Background pollution can disrupt perception of chemical stimuli in three ways: masking, sensory impairment, physiological impairment or in combination. We investigated whether exposure to ammonia alters agonistic behavior. Crayfish pairs exposed to 0.9 mg/L ammonia fought for a longer duration, while crayfish exposed to 9.0 mg/L ammonia fought for a shorter duration. Altering activity patterns of crayfish may alter crayfish populations leading to a nonproportional impact because of their importance to the structure and function of aquatic ecosystems.

  19. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors

    PubMed Central

    Pearson, R. A.; Gonzalez-Cordero, A.; West, E. L.; Ribeiro, J. R.; Aghaizu, N.; Goh, D.; Sampson, R. D.; Georgiadis, A.; Waldron, P. V.; Duran, Y.; Naeem, A.; Kloc, M.; Cristante, E.; Kruczek, K.; Warre-Cornish, K.; Sowden, J. C.; Smith, A. J.; Ali, R. R.

    2016-01-01

    Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor–host nuclear or cell–cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders. PMID:27701378

  20. Physical habitat and water quality correlates of crayfish distributions in a mined watershed

    USGS Publications Warehouse

    Welsh, Stuart A.; Loughman, Zachary J.

    2014-01-01

    In mined watersheds, water quality alters aquatic faunas, but few studies have focused on associations between stream habitat and crayfish distributions. We examined associations of water quality and physical habitat quality on presence/absence of six crayfish species in the upper Kanawha River drainage of southern West Virginia, USA, a region with a long history of surface and mountaintop removal mining of coal. Data supported an association of physical habitat quality with the presence of four species (Cambarus carinirostris, Cambarus robustus, Cambarus cf. sciotensis, and Orconectes sanbornii). Cambarus bartonii cavatus and the non-native Orconectes virilis were associated with lower quality physical habitat than that of the other four species. Relative to other species, C. b. cavatus was associated with the lowest conductivity values, whereas O. virilis was associated with the highest conductivity values. Secondary and tertiary burrowers were generally associated with relatively high-quality physical habitat. However, C. b. cavatus, a crayfish known to burrow extensively in headwater streams, was associated with the lowest quality physical habitat. Physical habitat quality was generally supported over stream conductivity as a variable influencing crayfish distributions. Our data demonstrate the importance of stream habitat quality when assessing crayfish assemblages within mined watersheds.

  1. The signal transducing photoreceptors of plants.

    PubMed

    Franklin, Keara A; Larner, Victoria S; Whitelam, Garry C

    2005-01-01

    Light signals are amongst the most important environmental cues regulating plant development. In addition to light quantity, plants measure the quality, direction and periodicity of incident light and use the information to optimise growth and development to the prevailing environmental conditions. Red and far-red wavelengths are perceived by the photoreversible phytochrome family of photoreceptors, whilst the detection of blue and ultraviolet (UV)-A wavelengths is conferred by the cryptochromes and phototropins. Higher plants contain multiple discrete phytochromes, the apoproteins of which are encoded by a small divergent gene family. In Arabidopsis, two cryptochrome and two phototropin family members have been identified and characterized. Photoreceptor action regulates development throughout the lifecycle of plants, from seed germination through to architecture of the mature plant and the onset of reproduction. The roles of individual photoreceptors in mediating plant development have, however, often been confounded by redundant, synergistic and in some cases mutually antagonistic mechanisms of action. The isolation of mutants null for individual photoreceptors and the construction of mutants null for multiple photoreceptors have therefore been paramount in elucidating photoreceptor functions. Photoreceptor action does not, however, operate in isolation from other signalling systems. The integration of light signals with other environmental cues enables plants to adapt their physiology to changing seasonal environments. This paper summarises current understanding of photoreceptor families and their functions throughout the lifecycle of plants. The integration of light signals with other environmental stimuli is also discussed.

  2. Biomonitoring of Trace Metals in the Keban Dam Reservoir (Turkey) Using Mussels (Unio elongatulus eucirrus) and Crayfish (Astacus leptodactylus).

    PubMed

    Varol, Memet; Sünbül, Muhammet Raşit

    2018-01-03

    Freshwater mussels and crayfish are commonly used as biomonitors of trace metals. In the present study, the concentrations of ten metals were determined in mussels (Unio elongatulus eucirrus) and crayfish (Astacus leptodactylus) collected from the Keban Dam Reservoir in Turkey. The significant spatial differences in concentrations of studied metals except As in mussels were not found. However, Co, Cr, Cu, and Zn concentrations in mussels and As, Co, Cu, Fe, Pb, and Zn concentrations in crayfish showed significant seasonal differences. As, Cd, and Mn levels in mussels were about nine times higher than those in crayfish. The concentrations of Cd, Cr, Cu, Pb, Zn, and inorganic As in crayfish and mussels were lower than maximum permissible levels. When compared with other biomonitoring studies using mussels and crayfish, high concentrations of As, Cd, Co, Cr, and Ni in mussels and Cr and Ni in crayfish were observed due to lithogenic sources and anthropogenic activities in the basin. Bioconcentration factor values of Fe, Mn, Cd, and Zn in mussels and Zn, Cu, Fe, and Co in crayfish were > 1000, which indicates that both U. e. eucirrus and A. leptodactylus have potential to bioaccumulate these metals. Therefore, attention should be paid to mussels and crayfish from ecological and human health perspective, because they are potential vectors of metals to higher trophic levels.

  3. Application of morphologic burrow interpretations to discern continental burrow architects: Lungfish or crayfish?

    USGS Publications Warehouse

    Hasiotis, Stephen T.; Mitchell, Charles E.; Dubiel, Russell R.

    1993-01-01

    A methodology for trace fossil identification using burrowing signatures is tested by evaluating ancient and modern lungfish and crayfish burrows and comparing them to previously undescribed burrows in a stratigraphic interval thought to contain both lungfish and crayfish burrows. Permian burrows that bear skeletal remains of the lungfish Gnathorhiza, from museum collections, were evaluated to identify unique burrow morphologies that could be used to distinguish lungfish from crayfish burrows when fossil remains are absent. The lungfish burrows were evaluated for details of the burrowing mechanism preserved in the burrow morphologies together forming burrowing signatures and were compared to new burrows in the Chinle Formation of western Colorado to test the methodology of using burrow signatures to identify unknown burrows.Permian lungfish aestivation burrows show simple, nearly vertical, unbranched architectures and relatively smooth surficial morphologies with characteristic quasi‐horizontal striae on the burrow walls and vertical striae on the bulbous terminus. Burrow lengths do not exceed 0.5 m. In contrast, modern and ancient crayfish burrows exhibit simple to highly complex architectures with highly textured surficial morphologies. Burrow lengths may reach 4 to 5 m.Burrow morphologies unlike those identified in Gnathorhiza aestivation burrows were found in four burrow groups from museum collections. Two of these groups exhibit simple architectures and horizontal striae that were greater in sinuosity and magnitude, respectively. One of these burrows contains the remains of Lysoro‐phus, but the burrow surface reveals no reliable surficial characteristics. It is not clear whether Lysorophustruly burrowed or merely occupied a pre‐existing structure. The other two groups exhibit surficial morphologies similar to those found on modern and ancient crayfish burrows and may provide evidence of freshwater crayfish in the Permian.Burrows from the Upper

  4. Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures?

    PubMed Central

    Veselý, Lukáš; Buřič, Miloš; Kouba, Antonín

    2015-01-01

    The spreading of new crayfish species poses a serious risk for freshwater ecosystems; because they are omnivores they influence more than one level in the trophic chain and they represent a significant part of the benthic biomass. Both the environmental change through global warming and the expansion of the pet trade increase the possibilities of their spreading. We investigated the potential of four “warm water” highly invasive crayfish species to overwinter in the temperate zone, so as to predict whether these species pose a risk for European freshwaters. We used 15 specimens of each of the following species: the red swamp crayfish (Procambarus clarkii), the marbled crayfish (Procambarus fallax f. virginalis), the yabby (Cherax destructor), and the redclaw (Cherax quadricarinatus). Specimens were acclimatized and kept for 6.5 months at temperatures simulating the winter temperature regime of European temperate zone lentic ecosystems. We conclude that the red swamp crayfish, marbled crayfish and yabby have the ability to withstand low winter temperatures relevant for lentic habitats in the European temperate zone, making them a serious invasive threat to freshwater ecosystems. PMID:26572317

  5. SEASONAL FORAGING BY CHANNEL CATFISH ON TERRESTRIALLY BURROWING CRAYFISH IN A FLOODPLAIN-RIVER ECOSYSTEM

    EPA Science Inventory

    The seasonal use of terrestrially burrowing crayfish as a food item by channel catfish Ictalurus punctatus was studied in channelized and non-channelized sections of the Yockanookany River (Mississippi, USA). During seasonal inundation of the floodplains, the crayfish occupied o...

  6. Effects of natural flooding and manual trapping on the facilitation of invasive crayfish-native amphibian coexistence in a semi-arid perennial stream

    USGS Publications Warehouse

    Kats, Lee B.; Bucciarelli, Gary; Vandergon, Thomas L.; Honeycutt, Rodney L.; Mattiasen, Evan; Sanders, Arthur; Riley, Seth P.D.; Kerby, Jacob L.; Fisher, Robert N.

    2013-01-01

    Aquatic amphibians are known to be vulnerable to a myriad of invasive predators. Invasive crayfish are thought to have eliminated native populations of amphibians in some streams in the semi-arid Santa Monica Mountains of southern California. Despite their toxic skin secretions that defend them from native predators, newts are vulnerable to crayfish attacks, and crayfish have been observed attacking adult newts, and eating newt egg masses and larvae. For 15 years, we have observed invasive crayfish and native California newts coexisting in one stream in the Santa Monica Mountains. During that period, we monitored the densities of both crayfish and newt egg mass densities and compared these to annual rainfall totals. After three seasons of below average rainfall, we reduced crayfish numbers by manual trapping. Our long-term data indicated that crayfish did not fare well in years when rainfall is above the historic average. This invasive predator did not evolve with high velocity streams, and observations indicated that southern California storm events washed crayfish downstream, killing many of them. Newts exhibit increased reproduction in years when crayfish numbers were reduced. A comparison with a nearby stream that does not contain crayfish indicated that newt reproduction positively responded to increased rainfall, but that fluctuations were much greater in the stream that contains crayfish. We suggest that rainfall patterns help explain invasive crayfish/newt coexistence and that management for future coexistence may benefit from manual trapping.

  7. Sex identification in female crayfish is bimodal

    NASA Astrophysics Data System (ADS)

    Aquiloni, Laura; Massolo, Alessandro; Gherardi, Francesca

    2009-01-01

    Sex identification has been studied in several species of crustacean decapods but only seldom was the role of multimodality investigated in a systematic fashion. Here, we analyse the effect of single/combined chemical and visual stimuli on the ability of the crayfish Procambarus clarkii to identify the sex of a conspecific during mating interactions. Our results show that crayfish respond to the offered stimuli depending on their sex. While males rely on olfaction alone for sex identification, females require the combination of olfaction and vision to do so. In the latter, chemical and visual stimuli act as non-redundant signal components that possibly enhance the female ability to discriminate potential mates in the crowded social context experienced during mating period. This is one of the few clear examples in invertebrates of non-redundancy in a bimodal communication system.

  8. Effects of historical lead–zinc mining on riffle-dwelling benthic fish and crayfish in the Big River of southeastern Missouri, USA

    USGS Publications Warehouse

    Allert, A.L.; DiStefano, R.J.; Fairchild, J.F.; Schmitt, C.J.; McKee, M.J.; Girondo, J.A.; Brumbaugh, W.G.; May, T.W.

    2013-01-01

    The Big River (BGR) drains much of the Old Lead Belt mining district (OLB) in southeastern Missouri, USA, which was historically among the largest producers of lead–zinc (Pb–Zn) ore in the world. We sampled benthic fish and crayfish in riffle habitats at eight sites in the BGR and conducted 56-day in situ exposures to the woodland crayfish (Orconectes hylas) and golden crayfish (Orconectes luteus) in cages at four sites affected to differing degrees by mining. Densities of fish and crayfish, physical habitat and water quality, and the survival and growth of caged crayfish were examined at sites with no known upstream mining activities (i.e., reference sites) and at sites downstream of mining areas (i.e., mining and downstream sites). Lead, zinc, and cadmium were analyzed in surface and pore water, sediment, detritus, fish, crayfish, and other benthic macro-invertebrates. Metals concentrations in all materials analyzed were greater at mining and downstream sites than at reference sites. Ten species of fish and four species of crayfish were collected. Fish and crayfish densities were significantly greater at reference than mining or downstream sites, and densities were greater at downstream than mining sites. Survival of caged crayfish was significantly lower at mining sites than reference sites; downstream sites were not tested. Chronic toxic-unit scores and sediment probable effects quotients indicated significant risk of toxicity to fish and crayfish, and metals concentrations in crayfish were sufficiently high to represent a risk to wildlife at mining and downstream sites. Collectively, the results provided direct evidence that metals associated with historical mining activities in the OLB continue to affect aquatic life in the BGR.

  9. Influence of elevated temperature and acid mine drainage on mortality of the crayfish Cambarus bartonii

    USGS Publications Warehouse

    Hartman, K.J.; Hom, C.D.; Mazik, P.M.

    2010-01-01

    Effects of elevated temperature and acid mine drainage (AMD) on crayfish mortality were investigated in the Stony River, Grant County, West Virginia. During summers 2003 and 2004, four-week in situ bioassays were performed along a thermal and AMD gradient with the native crayfish Cambarus bartonii. Crayfish mortality was analyzed in conjunction with temperature and AMD related variables (pH, specific conductivity). Mortality was significantly higher (48-88%) at sites with high temperatures during 2003 (max = 33.0??C), but no significant differences were observed in 2004 (max = 32.0??C). Temperatures were higher in 2003 than 2004 due to increased discharge from a cooling reservoir flowing into the river. Additionally, duration of high temperature was approximately four days in 2003 as compared with only one day in 2004. No significant relationship between acid mine drainage variables and crayfish mortality was apparent.

  10. Photoreceptor Cell Death, Proliferation and Formation of Hybrid Rod/S-Cone Photoreceptors in the Degenerating STK38L Mutant Retina

    PubMed Central

    Berta, Ágnes I.; Boesze-Battaglia, Kathleen; Genini, Sem; Goldstein, Orly; O'Brien, Paul J.; Szél, Ágoston; Acland, Gregory M.; Beltran, William A.; Aguirre, Gustavo D.

    2011-01-01

    A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7–14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene. PMID:21980341

  11. Restoration of vision after transplantation of photoreceptors.

    PubMed

    Pearson, R A; Barber, A C; Rizzi, M; Hippert, C; Xue, T; West, E L; Duran, Y; Smith, A J; Chuang, J Z; Azam, S A; Luhmann, U F O; Benucci, A; Sung, C H; Bainbridge, J W; Carandini, M; Yau, K-W; Sowden, J C; Ali, R R

    2012-05-03

    Cell transplantation is a potential strategy for treating blindness caused by the loss of photoreceptors. Although transplanted rod-precursor cells are able to migrate into the adult retina and differentiate to acquire the specialized morphological features of mature photoreceptor cells, the fundamental question remains whether transplantation of photoreceptor cells can actually improve vision. Here we provide evidence of functional rod-mediated vision after photoreceptor transplantation in adult Gnat1−/− mice, which lack rod function and are a model of congenital stationary night blindness. We show that transplanted rod precursors form classic triad synaptic connections with second-order bipolar and horizontal cells in the recipient retina. The newly integrated photoreceptor cells are light-responsive with dim-flash kinetics similar to adult wild-type photoreceptors. By using intrinsic imaging under scotopic conditions we demonstrate that visual signals generated by transplanted rods are projected to higher visual areas, including V1. Moreover, these cells are capable of driving optokinetic head tracking and visually guided behaviour in the Gnat1−/− mouse under scotopic conditions. Together, these results demonstrate the feasibility of photoreceptor transplantation as a therapeutic strategy for restoring vision after retinal degeneration.

  12. Fly Photoreceptors Encode Phase Congruency

    PubMed Central

    Friederich, Uwe; Billings, Stephen A.; Hardie, Roger C.; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  13. Thermal games in crayfish depend on establishment of social hierarchies.

    PubMed

    Tattersall, Glenn J; Luebbert, Joshua P; LePine, Olivia K; Ormerod, Kiel G; Mercier, A Joffre

    2012-06-01

    An unequal resource distribution is commonly seen in dominance hierarchies, in which the individual with the higher status is more successful in obtaining the resource. One possible resource is preferred temperature. When situations allow, ectotherms regulate their body temperature by behaviourally selecting different environmental conditions, achieving, when possible, a preferred temperature. Using a shuttlebox, the preferred temperature for Procambarus clarkii was determined to be 23.9°C with upper and lower voluntary escape temperatures of 25.9 and 21.8°C, respectively. If this preferred temperature zone (21.8-25.9°C) was valued as a resource, given the choice between a preferred temperature and a non-preferred temperature, crayfish should compete over the preferred temperature, with the dominant individual of dyadic pairs achieving the preferred temperature more often than the subordinate. Using a dual-choice experimental tank, competition over a binary temperature choice between rank-established paired crayfish was determined under both warm and cold challenge conditions (warm vs preferred temperature and cold vs preferred temperature, respectively). In naive pairings, similar levels of competition over the preferred temperature occurred in both warm and cold challenge trials, as predicted by game theory. In established pairings, however, dominant crayfish gained significantly greater access to preferred temperature in both warm and cold challenge conditions. These results demonstrate that crayfish engage in a cost-benefit assessment during their initial agonistic contests over temperature, but as hierarchies mature, these thermal games are decided by the dominant animal gaining primary access to the temperature resource.

  14. A comparison of two gears for quantifying abundance of lotic-dwelling crayfish

    USGS Publications Warehouse

    Williams, Kristi; Brewer, Shannon K.; Ellersieck, Mark R.

    2014-01-01

    Crayfish (saddlebacked crayfish, Orconectes medius) catch was compared using a kick seine applied two different ways with a 1-m2 quadrat sampler (with known efficiency and bias in riffles) from three small streams in the Missouri Ozarks. Triplicate samples (one of each technique) were taken from two creeks and one headwater stream (n=69 sites) over a two-year period. General linear mixed models showed the number of crayfish collected using the quadrat sampler was greater than the number collected using either of the two seine techniques. However, there was no significant interaction with gear suggesting year, stream size, and channel unit type did not relate to different catches of crayfish by gear type. Variation in catch among gears was similar, as was the proportion of young-of-year individuals across samples taken with different gears or techniques. Negative binomial linear regression provided the appropriate relation between the gears which allows correction factors to be applied, if necessary, to relate catches by the kick seine to those of the quadrat sampler. The kick seine appears to be a reasonable substitute to the quadrat sampler in these shallow streams, with the advantage of ease of use and shorter time required per sample.

  15. Crayfish Impact Desert River Ecosystem Function and Litter-Dwelling Invertebrate Communities through Association with Novel Detrital Resources

    PubMed Central

    Moody, Eric K.; Sabo, John L.

    2013-01-01

    Shifts in plant species distributions due to global change are increasing the availability of novel resources in a variety of ecosystems worldwide. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant plant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers, allochthonous detritus, and benthic invertebrates, can impact communities at multiple levels through both direct and indirect effects mediated by drought-tolerant plants. We tested the impact of both virile crayfish (Orconectes virilis) and litter type on benthic invertebrates and the effect of crayfish on detrital resources across a gradient of riparian vegetation drought-tolerance using field cages with leaf litter bags in the San Pedro River in Southeastern Arizona. Virile crayfish increased breakdown rate of novel drought-tolerant saltcedar (Tamarix ramosissima), but did not impact breakdown of drought-tolerant seepwillow (Baccharis salicifolia) or hydric Fremont cottonwood (Populus fremontii) and Gooding's willow (Salix goodingii). Effects on invertebrate diversity were observed at the litter bag scale, but no effects were found at the cage scale. Crayfish decreased alpha diversity of colonizing macroinvertebrates, but did not affect beta diversity. In contrast, the drought-tolerant litter treatment decreased beta diversity relative to hydric litter. As drought-tolerant species become more abundant in riparian zones, their litter will become a larger component of the organic matter budget of desert streams which may serve to homogenize the litter-dwelling community and support elevated populations of virile crayfish. Through impacts at multiple trophic levels, crayfish have a significant effect on desert stream ecosystems. PMID:23667600

  16. Range extensions of three crayfishes (Faxonius yanahlindus, F. placidus, and F. erichsonianus) into Mississippi

    Treesearch

    Susan B. Adams; Robert L. Jones

    2018-01-01

    We report 3 new state crayfish records from the Tennessee River drainage in Tishomingo County, Mississippi: 1 is a re-identification of previously published material, and 2 are from unpublished collections. Faxonius yanahlindus (Spinywrist Crayfish), recently described from the middle Tennessee River drainage in northwest Alabama and southern...

  17. Resistance of a northwestern crayfish, Pacifastacus leniusculus (Dana), to elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.; Genoway, R.G.; Merrill, J.A.

    1975-04-01

    Pacifastacus leniusculus from two populations in Washington State, the central Columbia River and a small tributary, were acclimated at 5/sup 0/C intervals and exposed to elevated temperatures in 48 hour thermal bioassays. The upper lethal temperature for both crayfish populations increased relatively slightly, from about 28.5 to 31.5/sup 0/C, over the entire acclimation range. A rise of 1/sup 0/C in test temperature often represented the difference between zero and total mortality when lethal limits were approached. The ultimate upper lethal temperature was near 32 to 33/sup 0/C. Statistically significant differences in thermal resistance patterns (slope and spacing of regression lines)more » occurred between the two crayfish populations at all acclimation levels, but resistance in terms of eventual mortality was similar for practical purposes. Moulting individuals were particularly susceptible to high temperature stress. Mature, pre-breeding female crayfish from the Columbia River during fall appeared less resistant, and egg-bearing females during winter more resistant, than other individuals. Larger crayfish from the Columbia River were slightly less resistant to elevated temperatures than smaller ones, and females were more resistant than males. The upper temperature triangle for P. leniusculus encompasses an area of 424/sup 0/C/sup 2/. This freshwater decapod is more tolerant of elevated temperatures than native salmonids, but less tolerant than some introduced ''warmwater'' fish.« less

  18. Dynamical Adaptation in Photoreceptors

    PubMed Central

    Clark, Damon A.; Benichou, Raphael; Meister, Markus; Azeredo da Silveira, Rava

    2013-01-01

    Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant. PMID:24244119

  19. The evolution of rod photoreceptors

    PubMed Central

    Morshedian, Ala

    2017-01-01

    Photoreceptors in animals are generally of two kinds: the ciliary or c-type and the rhabdomeric or r-type. Although ciliary photoreceptors are found in many phyla, vertebrates seem to be unique in having two distinct kinds which together span the entire range of vision, from single photons to bright light. We ask why the principal photoreceptors of vertebrates are ciliary and not rhabdomeric, and how rods evolved from less sensitive cone-like photoreceptors to produce our duplex retina. We suggest that the principal advantage of vertebrate ciliary receptors is that they use less ATP than rhabdomeric photoreceptors. This difference may have provided sufficient selection pressure for the development of a completely ciliary eye. Although many of the details of rod evolution are still uncertain, present evidence indicates that (i) rods evolved very early before the split between the jawed and jawless vertebrates, (ii) outer-segment discs make no contribution to rod sensitivity but may have evolved to increase the efficiency of protein renewal, and (iii) evolution of the rod was incremental and multifaceted, produced by the formation of several novel protein isoforms and by changes in protein expression, with no one alteration having more than a few-fold effect on transduction activation or inactivation. This article is part of the themed issue ‘Vision in dim light’. PMID:28193819

  20. The evolution of rod photoreceptors.

    PubMed

    Morshedian, Ala; Fain, Gordon L

    2017-04-05

    Photoreceptors in animals are generally of two kinds: the ciliary or c-type and the rhabdomeric or r-type. Although ciliary photoreceptors are found in many phyla, vertebrates seem to be unique in having two distinct kinds which together span the entire range of vision, from single photons to bright light. We ask why the principal photoreceptors of vertebrates are ciliary and not rhabdomeric, and how rods evolved from less sensitive cone-like photoreceptors to produce our duplex retina. We suggest that the principal advantage of vertebrate ciliary receptors is that they use less ATP than rhabdomeric photoreceptors. This difference may have provided sufficient selection pressure for the development of a completely ciliary eye. Although many of the details of rod evolution are still uncertain, present evidence indicates that (i) rods evolved very early before the split between the jawed and jawless vertebrates, (ii) outer-segment discs make no contribution to rod sensitivity but may have evolved to increase the efficiency of protein renewal, and (iii) evolution of the rod was incremental and multifaceted, produced by the formation of several novel protein isoforms and by changes in protein expression, with no one alteration having more than a few-fold effect on transduction activation or inactivation.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  1. Purification and cDNA cloning of ferritin from the hepatopancreas of the freshwater crayfish Pacifastacus leniusculus.

    PubMed

    Huang, T S; Law, J H; Söderhäll, K

    1996-03-01

    Ferritin was purified from the hepatopancreas of the freshwater crayfish Pacifastacus leniusculus after injection of iron. It has the same size as horse spleen ferritin (440 kDa) and migrates as two bands, 19 kDa and 20 kDa, respectively, in SDS/PAGE under reducing conditions. Crayfish ferritin (20 kDa) was cloned from a hepatopancreas cDNA library. The deduced amino acid sequence of the crayfish ferritin shows a closer relationship to vertebrate ferritin heavy chains than to insect ferritin and contains the conserved H-specific residues for the ferroxidase centre found in vertebrate ferritin heavy chain. An IRE(iron-responsive element)-like sequence with a predicted stem-loop structure was present in the 5' untranslated region of the crayfish ferritin mRNA. Crayfish ferritin does not share the atypical properties of insect ferritins, such as high molecular mass of intact protein, abundance in hemolymph, and export into vacuoles. We suggest that there are two different types of ferritins distributed in different species: insect-type or secretory ferritins which are predominant in the snail oocyte and insects, and vertebrate (crustacean)-type or cytosolic ferritins which are predominant in vertebrates and crustacea.

  2. Reduced aggression and foraging efficiency of invasive signal crayfish (Pacifastacus leniusculus) infested with non-native branchiobdellidans (Annelida: Clitellata).

    PubMed

    James, J; Davidson, K E; Richardson, G; Grimstead, C; Cable, J

    2015-11-17

    Biological invasions are a principal threat to global biodiversity and identifying the determinants of non-native species' success is a conservation priority. Through their ability to regulate host populations, parasites are increasingly considered as important in determining the outcome of species' invasions. Here, we present novel evidence that the common crayfish ecto-symbiont, Xironogiton victoriensis (Annelida: Clitellata) can affect the behaviour of a widespread and ecologically important invader, the signal crayfish (Pacifastacus leniusculus). To assess the signal crayfish-X. victoriensis relationship naïve crayfish were infested with an intensity of worms typically observed under natural conditions. Over a 10-week period the growth rate and survivorship of these animals was monitored and compared to those of uninfested counterparts. Complementary dyadic competition and foraging experiments were run to assess the behaviour of infested compared to uninfested animals. These data were analysed using General Linear Models and Generalized Linear Mixed Models. Whilst X. victoriensis did not affect the growth rate or survivorship of signal crayfish under laboratory conditions, infested animals were significantly less aggressive and poorer foragers than uninfested individuals. Through reducing aggression and foraging efficiency, infestation with X. victoriensis may disrupt the social structure, and potentially growth rate and/or dispersal of afflicted crayfish populations, with potential effects on their invasion dynamics. This is important given the widespread invasive range of crayfish and their functional roles as ecosystem engineers and keystone species.

  3. Histological techniques for study of photoreceptor orientation.

    PubMed

    Laties, A M

    1969-01-01

    An histological method for the study of photoreceptor orientation in primate eyes is described. To preserve photoreceptor orientation it is necessary to protect the fragile rod and cone outer segments to the maximum extent possible from mechanical deformation and from injury by solvent extraction. To prevent mechanical deformation the eyes are freeze-dried and embedded in plastic with or without prior vapor fixation. Solvent extraction from the lipid-rich outer segment is limited by avoidance or restriction of organic solvents. When large segments of primate eyes are so treated, it is possible to section the plastic blocks along the visual axis, polish the block surface, and view photoreceptor orientation by epi-illumination microscopy. In such specimens a differential orientation of photoreceptors exists with the long axis of photoreceptor inner and outer segments in line with incoming light rays.

  4. Nutritional treatment of cancer cachexia in rats. Use of a diet formulated with a crayfish enzymatic extract.

    PubMed

    Cremades, Olga; Parrado, Juan; Jover, María; Collantes de Terán, Laura; Gutiérrez, Juan Francisco; Bautista Palomas, Juan D

    2007-09-01

    Terminal cancer-associated cachexia, characterized by a marked weight loss, anorexia, asthenia and anemia, is usually associated with a malnutrition status. To investigate whether a diet formulated with a crayfish enzymatic extract, enriched in essential amino acids, omega-3 fatty acids, and astaxanthin, would be effective for the treatment of cancer-associated cachexias, by decreasing mortality and morbidity rates in cachectic rats and/or improving survival. Two types of diet were used: a standard diet and one formulated with crayfish enzymatic extract. Rats were divided into two groups (24 animals per group): one without tumor (T-) and the other with tumor (T+) (AH-130 Yoshida ascites hepatoma). Each group was further divided into two subgroups (12 animals per subgroup). Two subgroups (T-(standard) and T+(standard)) were fed the standard diet and the other two (T-(CFEE) and T+(CFEE)) the crayfish enzymatic extract one for four weeks, after which different tissue and plasma parameters were studied. The implantation of the tumor resulted in a considerable loss of muscle and adipose tissue mass in both groups, but the loss of muscle and fat was lower in the group fed the crayfish enzymatic extract diet. There was also a concomitant increase in the plasma concentration of TNF-alpha, although the increase was smaller in the crayfish enzymatic extract-treated group. This study shows that although the treatment of cachetic rats with the crayfish enzymatic extract diet did not revert the cachexia, it increased survival (57.1% vs. 25.9% in the group treated with crayfish enzymatic extract and standard diets, respectively) and meliorated the cachexia symptoms--anorexia and body mass loss (muscle and adipose tissue).

  5. Molecular chaperones and photoreceptor function

    PubMed Central

    Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.

    2008-01-01

    Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186

  6. Landscape- and local-scale habitat influences on occupancy and detection probability of stream-dwelling crayfish: Implications for conservation

    USGS Publications Warehouse

    Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Nolen, Matthew S.; Wagner, Brian K.

    2017-01-01

    Crayfish are ecologically important in freshwater systems worldwide and are imperiled in North America and globally. We sought to examine landscape- to local-scale environmental variables related to occupancy and detection probability of a suite of stream-dwelling crayfish species. We used a quantitative kickseine method to sample crayfish presence at 102 perennial stream sites with eight surveys per site. We modeled occupancy (psi) and detection probability (P) and local- and landscape-scale environmental covariates. We developed a set of a priori candidate models for each species and ranked models using (Q)AICc. Detection probabilities and occupancy estimates differed among crayfish species with Orconectes eupunctus, O. marchandi, and Cambarus hubbsi being relatively rare (psi < 0.20) with moderate (0.46–0.60) to high (0.81) detection probability and O. punctimanus and O. ozarkae being relatively common (psi > 0.60) with high detection probability (0.81). Detection probability was often related to local habitat variables current velocity, depth, or substrate size. Important environmental variables for crayfish occupancy were species dependent but were mainly landscape variables such as stream order, geology, slope, topography, and land use. Landscape variables strongly influenced crayfish occupancy and should be considered in future studies and conservation plans.

  7. Influence of instream habitat and water quality on aggressive behavior in crayfish of channelized headwater streams

    USDA-ARS?s Scientific Manuscript database

    Many agricultural drainage ditches that border farm fields of the Midwestern United States are degraded headwater streams that possess communities of crayfish. We hypothesized that crayfish communities at sites with low instream habitat diversity and poor water quality would show greater evidence of...

  8. Ontogenetic scaling of caudal fin shape in Squalus acanthias (Chondrichthyes, Elasmobranchii): a geometric morphometric analysis with implications for caudal fin functional morphology.

    PubMed

    Reiss, Katie L; Bonnan, Matthew F

    2010-07-01

    The shark heterocercal caudal fin and its contribution to locomotion are of interest to biologists and paleontologists. Current hydrodynamic data show that the stiff dorsal lobe leads the ventral lobe, both lobes of the tail are synchronized during propulsion, and tail shape reflects its overall locomotor function. Given the difficulties surrounding the analysis of shark caudal fins in vivo, little is known about changes in tail shape related to ontogeny and sex in sharks. A quantifiable analysis of caudal fin shape may provide an acceptable proxy for inferring gross functional morphology where direct testing is difficult or impossible. We examined ontogenetic and sex-related shape changes in the caudal fins of 115 Squalus acanthias museum specimens, to test the hypothesis that significant shape changes in the caudal fin shape occur with increasing size and between the sexes. Using linear and geometric morphometrics, we examined caudal shape changes within the context of current hydrodynamic models. We found no statistically significant linear or shape difference between sexes, and near-isometric scaling trends for caudal dimensions. These results suggest that lift and thrust increase linearly with size and caudal span. Thin-plate splines results showed a significant allometric shape change associated with size and caudal span: the dorsal lobe elongates and narrows, whereas the ventral lobe broadens and expands ventrally. Our data suggest a combination of caudal fin morphology with other body morphology aspects, would refine, and better elucidate the hydrodynamic factors (if any) that underlie the significant shape changes we report here for S. acanthias.

  9. Exposure to a nicotinoid pesticide reduces defensive behaviors in a non-target organism, the rusty crayfish Orconectes rusticus.

    PubMed

    Sohn, Lauren; Brodie, Renae J; Couldwell, Genevieve; Demmons, Eleanor; Sturve, Joachim

    2018-05-25

    Imidacloprid is the most widely used of the nicotinoid insecticides, the fastest growing class of pesticides on the global market. Although less toxic to mammals and birds compared to organophosphates, nicotinoids have the potential to impact non-target invertebrates, especially through sublehal effects on behavior, physiology, reproduction, and development. We investigated the impact of sublethal doses of imidacloprid on the defensive responses of rusty crayfish Orconectes rusticus exposed to 0, 1, 10, and 100 µg•L -1 of imidacloprid for 10 days (n = 7 crayfish per treatment). Defensive behaviors were examined with the rod test, in which a glass rod was jabbed into the crayfish's container at a 90 degree angle from the bottom and about 0.5 cm directly in front of the crayfish. Crayfish responded to the rod aggressively with claw raising and pinching, neutrally (no response), or by backing or tail-flipping away. The frequency of neutral responses more than doubled after four days in the high (100 µg•L -1 ) group and after eight days in the low (1 µg•L -1 ) exposure group. Furthermore, most crayfish in the 100 µg•L -1 treatment were not able to right themselves within 30 s when placed on their backs. Several studies have reported concentrations of imidacloprid contamination in freshwater ecosystems that exceed this study's lowest exposure scenario, 1 µg•L -1 . We therefore conclude that imidacloprid contamination reduces the defensive behaviors of crayfish, impairing their ability to survive in habitats where they play important ecological roles.

  10. Bioaccumulation of lead nitrate in freshwater crayfish (Astacus leptodactylus) tissues under aquaculture conditions.

    PubMed

    Naghshbandi, N; Zare, S; Heidari, R; Soleimani Palcheglu, S

    2007-09-15

    The aim of this research was to evaluate the amount of lead in the tissue of Astacus leptodactylus especially in their muscle which the consumed part of their body. In this study the crayfish was exposed to intermediate concentration of lead nitrate (500 microg L(-1)) for periods up to 3 weeks. In the first, second and third weeks bioaccumulation in various tissues was under investigation. The data of toxicological analysis obtained by the method of atomic absorption revealed that the levels of bioaccumulation of metal are different in various tissues of this crayfish. The accumulation of the lead in gills was the highest and in muscles was lowest degree. The amount of heavy metals in the tissues of crayfish was as follow. Gills>exoskeleton>hepatopancreas (digestive glands)>digestive tract>green gland>testis and ovary>muscles.

  11. BAX inhibitor-1 silencing suppresses white spot syndrome virus replication in red swamp crayfish, Procambarus clarkii.

    PubMed

    Du, Zhi-Qiang; Lan, Jiang-Feng; Weng, Yu-Ding; Zhao, Xiao-Fan; Wang, Jin-Xing

    2013-07-01

    BAX inhibitor-1 (BI-1) was originally described as an anti-apoptotic protein in both animal and plant cells. BI-1 overexpression suppresses ER stress-induced apoptosis in animal cells. Inhibition of BI-1 activity could induce the cell death in mammals and plants. However, the function of BI-1 in crustacean immunity was unclear. In this paper, the full-length cDNA of a BI-1 protein in red swamp crayfish, Procambarus clarkii (PcBI-1) was cloned and its expression profiles in normal and infected crayfish were analyzed. The results showed that PcBI-1 was expressed in hemocytes, heart, hepatopancreas, gills, stomach, and intestines of the crayfish and was upregulated after challenged with Vibrio anguillarum and with white spot syndrome virus (WSSV). To determine the function of PcBI-1 in the innate immunity of the crayfish, the RNA interference against PcBI-1 was performed and the results indicated the hemocyte programmed cell death rate was increased significantly and WSSV replication was declined after PcBI-1 knocked down. Altogether, PcBI-1 plays an anti-apoptotic role, wherein high PcBI-1 expression suppresses programmed cell death, which is beneficial for WSSW replication in crayfish. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A successful crayfish invader is capable of facultative parthenogenesis: a novel reproductive mode in decapod crustaceans.

    PubMed

    Buřič, Miloš; Hulák, Martin; Kouba, Antonín; Petrusek, Adam; Kozák, Pavel

    2011-01-01

    Biological invasions are impacting biota worldwide, and explaining why some taxa tend to become invasive is of major scientific interest. North American crayfish species, particularly of the family Cambaridae, are prominent invaders in freshwaters, defying the "tens rule" which states that only a minority of species introduced to new regions become established, and only a minority of those become invasive and pests. So far, success of cambarid invaders has largely been attributed to rapid maturation, high reproductive output, aggressiveness, and tolerance to pollution. We provide experimental evidence that females of one cambarid species particularly widespread in Europe, the spiny-cheek crayfish Orconectes limosus, are capable of facultative parthenogenesis. Such reproductive mode has never before been recognized in decapods, the most diverse crustacean order. As shown by analysis of seven microsatellite loci, crayfish females kept physically separated from males produced genetically homogeneous offspring identical with maternal individuals; this suggests they reproduced by apomixis, unlike those females which mated with males and had a diverse offspring. Further research is needed to clarify what environmental conditions are necessary for a switch to parthenogenesis in O. limosus, and what role it plays in natural crayfish populations. However, if such reproductive plasticity is present in other cambarid crayfish species, it may contribute to the overwhelming invasive success of this group.

  13. Predatory functional response and prey choice identify predation differences between native/invasive and parasitised/unparasitised crayfish.

    PubMed

    Haddaway, Neal R; Wilcox, Ruth H; Heptonstall, Rachael E A; Griffiths, Hannah M; Mortimer, Robert J G; Christmas, Martin; Dunn, Alison M

    2012-01-01

    Invasive predators may change the structure of invaded communities through predation and competition with native species. In Europe, the invasive signal crayfish Pacifastacus leniusculus is excluding the native white clawed crayfish Austropotamobius pallipes. This study compared the predatory functional responses and prey choice of native and invasive crayfish and measured impacts of parasitism on the predatory strength of the native species. Invasive crayfish showed a higher (>10%) prey (Gammarus pulex) intake rate than (size matched) natives, reflecting a shorter (16%) prey handling time. The native crayfish also showed greater selection for crustacean prey over molluscs and bloodworm, whereas the invasive species was a more generalist predator. A. pallipes parasitised by the microsporidian parasite Thelohania contejeani showed a 30% reduction in prey intake. We suggest that this results from parasite-induced muscle damage, and this is supported by a reduced (38%) attack rate and increased (30%) prey handling time. Our results indicate that the per capita (i.e., functional response) difference between the species may contribute to success of the invader and extinction of the native species, as well as decreased biodiversity and biomass in invaded rivers. In addition, the reduced predatory strength of parasitized natives may impair their competitive abilities, facilitating exclusion by the invader.

  14. Exploratory behavior and withdrawal signs in crayfish: chronic central morphine injections and termination effects.

    PubMed

    Imeh-Nathaniel, Adebobola; Okon, Marvin; Huber, Robert; Nathaniel, Thomas I

    2014-05-01

    Functional and evolutionary conservation of neural circuits of reward seeking >is a symbol of survival. It is found in most animals from insects to humans. Exploration is a component of a wide range of drug-elicited behaviors that reflects an appetitive motivational state when animals seek natural rewards such as food, water, and shelter for survival. Not only does the characterization of exploratory behaviors indicate the specific components of appetitive motor patterns, it also reveals how exploratory behavioral patterns are implemented via increased incentive salience of environmental stimuli. The current work demonstrates that novel stimuli appear to directly augment exploration in crayfish, while injections of morphine directly into the brain of crayfish enhanced robust arousal resulting in increased locomotion and exploration of the environment. Elimination of morphine suppressed exploratory motor patterns. Crayfish displayed atypical behavioral changes evident of withdrawal-like states when saline is injected into the brain. With proven evidence of rewarding to the exposure to mammalian drugs of abuse, modularly organized and experimentally accessible nervous system makes crayfish exceptionally suitable for characterizing the central workings of addiction at its key behavioral and neuroanatomic locations. Published by Elsevier B.V.

  15. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish

    USGS Publications Warehouse

    Pintor, L.M.; Sih, A.; Bauer, M.L.

    2008-01-01

    Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/ boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population. ?? 2008 The Authors.

  16. ‘Leaves and Eats Shoots’: Direct Terrestrial Feeding Can Supplement Invasive Red Swamp Crayfish in Times of Need

    PubMed Central

    Grey, Jonathan; Jackson, Michelle C.

    2012-01-01

    We used stable isotope analyses to characterise the feeding dynamics of a population of red swamp crayfish in Lake Naivasha, Kenya, after the crash of submerged macrophytes and associated macroinvertebrates, and during a natural draw-down of the lake water level. We expected a heavy reliance upon a diet of detrital matter to sustain the population as a consequence, and indeed, for the majority of the crayfish population caught from the lake, we saw a concomitant shift in isotopic values reflecting a dietary change. However, we also caught individual crayfish that had occupied the footprints of hippopotamus and effectively extended their range beyond the lake up to 40 m into the riparian zone. Isotopic analysis confirmed limited nocturnal observations that these individuals were consuming living terrestrial plants in the vicinity of the footprints. These are the first empirical data to demonstrate direct use of terrestrial resources by an aquatic crayfish species and further highlight the traits that make red swamp crayfish such opportunistic and successful invaders. PMID:22880039

  17. Conservation status of North American freshwater crayfish (Decapoda: Cambaridae) from the southern United States

    USGS Publications Warehouse

    Loughman, Zachary J.; Welsh, Stuart A.; Fetzner, James W.; Thoma, Roger F.

    2015-01-01

    A list is provided of all crayfishes (family Cambaridae) in the southern United States, which includes common names, global conservation status, an alternative review of the conservation status based on the IUCN red list criteria, and state distribution. This list includes 357 native crayfishes, of which 12 (3.4%) are critically endangered, 37 (10.4%) are endangered, 126 (35.3%) are vulnerable, 181 (50.7%) are lower risk, and 1 (0.3%) is not evaluated. The leading factors causing imperilment are restricted ranges caused by anthropogenic impacts from changes in land use, contaminants, invasion by non-indigenous species, and habitat fragmentation. In order to conserve and manage diversity of native crayfish, consistency is needed in determining conservation status and more complete distribution and life history information are needed for about 60% of species.

  18. Protein sorting, targeting and trafficking in photoreceptor cells

    PubMed Central

    Pearring, Jillian N.; Salinas, Raquel Y.; Baker, Sheila A.; Arshavsky, Vadim Y.

    2013-01-01

    Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins. PMID:23562855

  19. Histological changes and antioxidant enzyme activity in signal crayfish (Pacifastacus leniusculus) associated with sub-acute peracetic acid exposure.

    PubMed

    Chupani, Latifeh; Zuskova, Eliska; Stara, Alzbeta; Velisek, Josef; Kouba, Antonin

    2016-01-01

    Peracetic acid (PAA) is a powerful disinfectant recently adopted as a therapeutic agent in aquaculture. A concentration of 10 mg L(-1) PAA effectively suppresses zoospores of Aphanomyces astaci, the agent of crayfish plague. To aid in establishing safe therapeutic guideline, the effects of PAA on treated crayfish were investigated through assessment of histological changes and oxidative damage. Adult female signal crayfish Pacifastacus leniusculus (n = 135) were exposed to 2 mg L(-1) and 10 mg L(-1) of PAA for 7 days followed by a 7 day recovery period in clean water. Superoxide dismutase activity was significantly lower in gill and hepatopancreas after three days exposure to 10 mg L(1) PAA than in the group treated with 2 mg L(-1) PAA and a control in only clean water. Catalase activity in gill and hepatopancreas remained unaffected by both exposures. Glutathione reductase was significantly decreased in gill of 10 mg L(-1) PAA treated crayfish and increased in group exposed to 2 mg L(-1) compared to control after 7 days exposure. Antioxidant enzyme activity in exposed groups returned to control values after recovery period. Gill, hepatopancreas, and antennal gland showed slight damage in crayfish treated with 2 mg L(-1) of PAA compared to the control group. The extent and frequency of histological alterations were more pronounced in animals exposed to 10 mg L(-1). The gill was the most affected organ, infiltrated by granular hemocytes and displaying malformations of lamella tips and disorganization of epithelial cells. After a 7 day recovery period, the infiltrating cells in affected tissues of the exposed crayfish began to return to normal levels. Results suggested that the given concentrations could be applied to signal crayfish against crayfish plague agent in aquaculture; however, further studies are required for safe use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Direct and indirect effects of channel catfish (Ictalurus punctatus) on native crayfishes (Cambaridae) in experimental tanks

    Treesearch

    Susan B. Adams

    2006-01-01

    For The incised, sand-bed streams of northcentral Mississippi, USA, fish predation is one plausible mechanism to explain both relatively low crayfish densities and differences in stream size occupied by various native crayfishes. I conducted two mesocosm experiments to test effects of a fish predator (channel catfish, Ictalurus punctahls) on the...

  1. Occupancy rates of primary burrowing crayfish in natural and disturbed large river bottomlands

    USGS Publications Warehouse

    Loughman, Zachary J.; Welsh, Stuart A.; Simon, Thomas P.

    2012-01-01

    Among crayfish, primary burrowing species are the least understood ecologically. Many primary burrowing crayfish inhabit floodplains where forested landscapes have been fragmented by agricultural, industrial, or residential uses. In this study, site occupancy rates (ψ) were modeled for two primary burrowing crayfish, Fallicambarus fodiens (Cottle, 1863) and Cambarus thomai Jezerinac, 1993, from Ohio and Kanawha river floodplains in West Virginia, U.S.A. Fallicambarus fodiens is one of West Virginia’s rarest crayfish, while C. thomai is prevalent in most wetlands along both river floodplains. Occupancy rate modeling incorporated four environmental covariates (forest age, soil type, tree frequency, and land use). Based on presence/absence data, forests with tree ages >100 years (ΔQAICc = 0) and sites with loam soils (ΔQAICc = 1.80) were most likely to harbor F. fodiens populations. For C. thomai, several models were supported owing to model selection uncertainty, but those with the land use covariate had more total model weight (total w i = 0 . 54 ) than all other covariate models. Cambarus thomai rarely occupied industrial/agricultural sites, but were often present in forested and residential sites. Although the influence of covariates on site occupancy differed between species, both taxa readily utilized mature forested habitats when available. Conservation actions for F. fodiens and C. thomai should focus on preserving forested tracts along large river floodplains

  2. A Successful Crayfish Invader Is Capable of Facultative Parthenogenesis: A Novel Reproductive Mode in Decapod Crustaceans

    PubMed Central

    Buřič, Miloš; Hulák, Martin; Kouba, Antonín

    2011-01-01

    Biological invasions are impacting biota worldwide, and explaining why some taxa tend to become invasive is of major scientific interest. North American crayfish species, particularly of the family Cambaridae, are prominent invaders in freshwaters, defying the “tens rule” which states that only a minority of species introduced to new regions become established, and only a minority of those become invasive and pests. So far, success of cambarid invaders has largely been attributed to rapid maturation, high reproductive output, aggressiveness, and tolerance to pollution. We provide experimental evidence that females of one cambarid species particularly widespread in Europe, the spiny-cheek crayfish Orconectes limosus, are capable of facultative parthenogenesis. Such reproductive mode has never before been recognized in decapods, the most diverse crustacean order. As shown by analysis of seven microsatellite loci, crayfish females kept physically separated from males produced genetically homogeneous offspring identical with maternal individuals; this suggests they reproduced by apomixis, unlike those females which mated with males and had a diverse offspring. Further research is needed to clarify what environmental conditions are necessary for a switch to parthenogenesis in O. limosus, and what role it plays in natural crayfish populations. However, if such reproductive plasticity is present in other cambarid crayfish species, it may contribute to the overwhelming invasive success of this group. PMID:21655282

  3. Cone photoreceptor definition on adaptive optics retinal imaging

    PubMed Central

    Muthiah, Manickam Nick; Gias, Carlos; Chen, Fred Kuanfu; Zhong, Joe; McClelland, Zoe; Sallo, Ferenc B; Peto, Tunde; Coffey, Peter J; da Cruz, Lyndon

    2014-01-01

    Aims To quantitatively analyse cone photoreceptor matrices on images captured on an adaptive optics (AO) camera and assess their correlation to well-established parameters in the retinal histology literature. Methods High resolution retinal images were acquired from 10 healthy subjects, aged 20–35 years old, using an AO camera (rtx1, Imagine Eyes, France). Left eye images were captured at 5° of retinal eccentricity, temporal to the fovea for consistency. In three subjects, images were also acquired at 0, 2, 3, 5 and 7° retinal eccentricities. Cone photoreceptor density was calculated following manual and automated counting. Inter-photoreceptor distance was also calculated. Voronoi domain and power spectrum analyses were performed for all images. Results At 5° eccentricity, the cone density (cones/mm2 mean±SD) was 15.3±1.4×103 (automated) and 13.9±1.0×103 (manual) and the mean inter-photoreceptor distance was 8.6±0.4 μm. Cone density decreased and inter-photoreceptor distance increased with increasing retinal eccentricity from 2 to 7°. A regular hexagonal cone photoreceptor mosaic pattern was seen at 2, 3 and 5° of retinal eccentricity. Conclusions Imaging data acquired from the AO camera match cone density, intercone distance and show the known features of cone photoreceptor distribution in the pericentral retina as reported by histology, namely, decreasing density values from 2 to 7° of eccentricity and the hexagonal packing arrangement. This confirms that AO flood imaging provides reliable estimates of pericentral cone photoreceptor distribution in normal subjects. PMID:24729030

  4. In Vivo Imaging of Human Cone Photoreceptor Inner Segments

    PubMed Central

    Scoles, Drew; Sulai, Yusufu N.; Langlo, Christopher S.; Fishman, Gerald A.; Curcio, Christine A.; Carroll, Joseph; Dubra, Alfredo

    2014-01-01

    Purpose. An often overlooked prerequisite to cone photoreceptor gene therapy development is residual photoreceptor structure that can be rescued. While advances in adaptive optics (AO) retinal imaging have recently enabled direct visualization of individual cone and rod photoreceptors in the living human retina, these techniques largely detect strongly directionally-backscattered (waveguided) light from normal intact photoreceptors. This represents a major limitation in using existing AO imaging to quantify structure of remnant cones in degenerating retina. Methods. Photoreceptor inner segment structure was assessed with a novel AO scanning light ophthalmoscopy (AOSLO) differential phase technique, that we termed nonconfocal split-detector, in two healthy subjects and four subjects with achromatopsia. Ex vivo preparations of five healthy donor eyes were analyzed for comparison of inner segment diameter to that measured in vivo with split-detector AOSLO. Results. Nonconfocal split-detector AOSLO reveals the photoreceptor inner segment with or without the presence of a waveguiding outer segment. The diameter of inner segments measured in vivo is in good agreement with histology. A substantial number of foveal and parafoveal cone photoreceptors with apparently intact inner segments were identified in patients with the inherited disease achromatopsia. Conclusions. The application of nonconfocal split-detector to emerging human gene therapy trials will improve the potential of therapeutic success, by identifying patients with sufficient retained photoreceptor structure to benefit the most from intervention. Additionally, split-detector imaging may be useful for studies of other retinal degenerations such as AMD, retinitis pigmentosa, and choroideremia where the outer segment is lost before the remainder of the photoreceptor cell. PMID:24906859

  5. The rat caudal nerves: a model for experimental neuropathies.

    PubMed

    Schaumburg, Herbert H; Zotova, Elena; Raine, Cedric S; Tar, Moses; Arezzo, Joseph

    2010-06-01

    This study provides a detailed investigation of the anatomy of the rat caudal nerve along its entire length, as well as correlated nerve conduction measures in both large and small diameter axons. It determines that rodent caudal nerves provide a simple, sensitive experimental model for evaluation of the pathophysiology of degeneration, recovery, and prevention of length-dependent distal axonopathy. After first defining the normal anatomy and electrophysiology of the rat caudal nerves, acrylamide monomer, a reliable axonal toxin, was administered at different doses for escalating time periods. Serial electrophysiological recordings were obtained, during intoxication, from multiple sites along caudal and distal sciatic nerves. Multiple sections of the caudal and sciatic nerves were examined with light and electron microscopy. The normal distribution of conduction velocities was determined and acrylamide-induced time- and dose-related slowing of velocities at the vulnerable ultraterminal region was documented. Degenerative morphological changes in the distal regions of the caudal nerves appeared well before changes in the distal sciatic nerves. Our study has shown that (1) rat caudal nerves have a complex neural structure that varies along a distal-to-proximal gradient and (2) correlative assessment of both morphology and electrophysiology of rat caudal nerves is easily achieved and provides a highly sensitive index of the onset and progression of the length-dependent distal axonopathy.

  6. Use of crayfishes as ecological indicator of water quality in natural lakes and city water grid

    NASA Astrophysics Data System (ADS)

    Sapunov, Valentin; Fedotov, Valery

    2017-04-01

    Crayfishes are organisms having strong demands for water quality. Their different species have different ecological limits. Nobel crayfishes Astacus astacus are organisms with narrow ecological limits need clear water that crayfish Pontastacus leptodactylus. Relation between populations of different crayfishes is criteria of water pollution, level of water bodies eutrofication and ecological pressure. Environmental policy of all countries is directed to water supply by drinking water of high quality and preserving the rivers, lakes and seas, suitable for people and wildlife. However, now freshwater reservoirs and water bodies, as well as including centralized drinking water supply, have been exposed to escalating anthropogenic loading, and risk of sudden emergency pollution. Besides, the problem of providing an ecological safety of the population and prevention of threats of ecological crime and terrorism in a zone of drinking water for many countries. The work is devoted to realization and perspectives of use of the biological early warning stations about changes of quality of surface waters, dangerous to a biota, on the basis of bioelectronic systems as elements of environmental monitoring of water areas. Regular monitoring of crayfish population is a way to follow ecological evolution of ponds. Such a monitoring took place in some lakes of Pskov and Leningrad regions. Ecological characters of crayfishes are appropriate for control of water quality in St. Petersburg and Khabarovsk grids. Fore species were used: Procambarus clarcii, Cherax quadricarinatus, A. astacus and P. leptodactilus. The results of the present work and experiments carried out us to conclude that before assessing any concentration of pollutant on water organisms, it is necessary to investigate not only their development, growth and survival, also their adaptive capacity relative to the variation of environmental parameters. Regular monitoring of heart oscillation was base for control of water

  7. A global review of freshwater crayfish temperature tolerance, preference, and optimal growth

    USGS Publications Warehouse

    Westhoff, Jacob T.; Rosenberger, Amanda E.

    2016-01-01

    Conservation efforts, environmental planning, and management must account for ongoing ecosystem alteration due to a changing climate, introduced species, and shifting land use. This type of management can be facilitated by an understanding of the thermal ecology of aquatic organisms. However, information on thermal ecology for entire taxonomic groups is rarely compiled or summarized, and reviews of the science can facilitate its advancement. Crayfish are one of the most globally threatened taxa, and ongoing declines and extirpation could have serious consequences on aquatic ecosystem function due to their significant biomass and ecosystem roles. Our goal was to review the literature on thermal ecology for freshwater crayfish worldwide, with emphasis on studies that estimated temperature tolerance, temperature preference, or optimal growth. We also explored relationships between temperature metrics and species distributions. We located 56 studies containing information for at least one of those three metrics, which covered approximately 6 % of extant crayfish species worldwide. Information on one or more metrics existed for all 3 genera of Astacidae, 4 of the 12 genera of Cambaridae, and 3 of the 15 genera of Parastacidae. Investigations employed numerous methodological approaches for estimating these parameters, which restricts comparisons among and within species. The only statistically significant relationship we observed between a temperature metric and species range was a negative linear relationship between absolute latitude and optimal growth temperature. We recommend expansion of studies examining the thermal ecology of freshwater crayfish and identify and discuss methodological approaches that can improve standardization and comparability among studies.

  8. Traction suture modification to tongue-in-groove caudal septoplasty.

    PubMed

    Indeyeva, Y A; Lee, T S; Gordin, E; Chan, D; Ducic, Y

    2018-02-01

    Caudal septal deviation leads to unfavorable esthetic as well as functional effects on the nasal airway. A modification to the tongue-in-groove (TIG) technique to correct these caudal septal deformities is described. With placement of a temporary suspension suture to the caudal septum, manual traction is applied, assuring that the caudal septum remains in the midline position while it is being secured with multiple through-and-through, trans-columellar and trans-septal sutures. From 2003 to 2016, 148 patients underwent endonasal septoplasty using this modified technique, with excellent functional and cosmetic outcomes and a revision rate of 1.4%. This modified TIG technique replaces the periosteal suture that secures the caudal septum to the midline nasal crest in the original TIG technique. This simplifies the procedure and minimizes the risk of securing the caudal septum off-midline when used in endonasal septoplasty. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Cone photoreceptor definition on adaptive optics retinal imaging.

    PubMed

    Muthiah, Manickam Nick; Gias, Carlos; Chen, Fred Kuanfu; Zhong, Joe; McClelland, Zoe; Sallo, Ferenc B; Peto, Tunde; Coffey, Peter J; da Cruz, Lyndon

    2014-08-01

    To quantitatively analyse cone photoreceptor matrices on images captured on an adaptive optics (AO) camera and assess their correlation to well-established parameters in the retinal histology literature. High resolution retinal images were acquired from 10 healthy subjects, aged 20-35 years old, using an AO camera (rtx1, Imagine Eyes, France). Left eye images were captured at 5° of retinal eccentricity, temporal to the fovea for consistency. In three subjects, images were also acquired at 0, 2, 3, 5 and 7° retinal eccentricities. Cone photoreceptor density was calculated following manual and automated counting. Inter-photoreceptor distance was also calculated. Voronoi domain and power spectrum analyses were performed for all images. At 5° eccentricity, the cone density (cones/mm(2) mean±SD) was 15.3±1.4×10(3) (automated) and 13.9±1.0×10(3) (manual) and the mean inter-photoreceptor distance was 8.6±0.4 μm. Cone density decreased and inter-photoreceptor distance increased with increasing retinal eccentricity from 2 to 7°. A regular hexagonal cone photoreceptor mosaic pattern was seen at 2, 3 and 5° of retinal eccentricity. Imaging data acquired from the AO camera match cone density, intercone distance and show the known features of cone photoreceptor distribution in the pericentral retina as reported by histology, namely, decreasing density values from 2 to 7° of eccentricity and the hexagonal packing arrangement. This confirms that AO flood imaging provides reliable estimates of pericentral cone photoreceptor distribution in normal subjects. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Testing Phylogenetic Hypotheses of the Subgenera of the Freshwater Crayfish Genus Cambarus (Decapoda: Cambaridae)

    PubMed Central

    Breinholt, Jesse W.; Porter, Megan L.; Crandall, Keith A.

    2012-01-01

    Background The genus Cambarus is one of three most species rich crayfish genera in the Northern Hemisphere. The genus has its center of diversity in the Southern Appalachians of the United States and has been divided into 12 subgenera. Using Cambarus we test the correspondence of subgeneric designations based on morphology used in traditional crayfish taxonomy to the underlying evolutionary history for these crayfish. We further test for significant correlation and explanatory power of geographic distance, taxonomic model, and a habitat model to estimated phylogenetic distance with multiple variable regression. Methodology/Principal Findings We use three mitochondrial and one nuclear gene regions to estimate the phylogenetic relationships for species within the genus Cambarus and test evolutionary hypotheses of relationships and associated morphological and biogeographical hypotheses. Our resulting phylogeny indicates that the genus Cambarus is polyphyletic, however we fail to reject the monophyly of Cambarus with a topology test. The majority of the Cambarus subgenera are rejected as monophyletic, suggesting the morphological characters used to define those taxa are subject to convergent evolution. While we found incongruence between taxonomy and estimated phylogenetic relationships, a multiple model regression analysis indicates that taxonomy had more explanatory power of genetic relationships than either habitat or geographic distance. Conclusions We find convergent evolution has impacted the morphological features used to delimit Cambarus subgenera. Studies of the crayfish genus Orconectes have shown gonopod morphology used to delimit subgenera is also affected by convergent evolution. This suggests that morphological diagnoses based on traditional crayfish taxonomy might be confounded by convergent evolution across the cambarids and has little utility in diagnosing relationships or defining natural groups. We further suggest that convergent morphological

  11. Effects of synbiotics on immunity and disease resistance of narrow-clawed crayfish, Astacus leptodactylus leptodactylus (Eschscholtz, 1823).

    PubMed

    Safari, Omid; Paolucci, Marina; Motlagh, Hamidreza Ahmadnia

    2017-05-01

    The aim of this study was to evaluate the effects of prebiotics (mannanoligosaccharide and xylooligosaccharide), probiotics (Enterococcus faecalis and Pediococcus acidilactici) and synbiotics for 126 days on the immune responses, hemolymph indices, antioxidant enzymes, and biological responses after a 48-hour Aeromonas hydrophila exposure of sub-adult crayfish (11.45 ± 1.87 g). Most antibacterial activities were observed in the shell mucus of crayfish fed a diet containing xylooligosaccharide + E. faecalis and mannanoligosaccharide + Pediococcus acidilactici against Nocardia brasilience and Vibrio harveyi (p < 0.05). Feeding crayfish a xylooligosaccharide + E. faecalis diet increased protein levels and the activities of alkaline phosphatase and lysozyme in the shell mucus after the feeding trial and 48 h after the A. hydrophila-injection challenge (p < 0.05). The highest ratio of the lactobacillus count to the total viable count was observed in synbiotic diets (p < 0.05). Feeding crayfish a xylooligosaccharide + E. faecalis diet increased the growth rate and the resistance to the A. hydrophila-injection challenge (p < 0.05). These results revealed that feeding crayfish with synbiotic diets was more effective than a single administration with prebiotics and probiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Who is the boss? Individual recognition memory and social hierarchy formation in crayfish.

    PubMed

    Jiménez-Morales, Nayeli; Mendoza-Ángeles, Karina; Porras-Villalobos, Mercedes; Ibarra-Coronado, Elizabeth; Roldán-Roldán, Gabriel; Hernández-Falcón, Jesús

    2018-01-01

    Under laboratory conditions, crayfish establish hierarchical orders through agonistic encounters whose outcome defines the dominant one and one, or more, submissive animals. These agonistic encounters are ritualistic, based on threats, pushes, attacks, grabs, and avoidance behaviors that include retreats and escape responses. Agonistic behavior in a triad of unfamiliar, size-matched animals is intense on the first day of social interaction and the intensity fades on daily repetitions. The dominant animal keeps its status for long periods, and the submissive ones seem to remember 'who the boss is'. It has been assumed that animals remember and recognize their hierarchical status by urine signals, but the putative substance mediating this recognition has not been reported. The aim of this work was to characterize this hierarchical recognition memory. Triads of unfamiliar crayfish (male animals, size and weight-matched) were faced during standardized agonistic protocols for five consecutive days to analyze memory acquisition dynamics (Experiment 1). In Experiment 2, dominant crayfish were shifted among triads to disclose whether hierarchy depended upon individual recognition memory or recognition of status. The maintenance of the hierarchical structure without behavioral reinforcement was assessed by immobilizing the dominant animal during eleven daily agonistic encounters, and considering any shift in the dominance order (Experiment 3). Standard amnesic treatments (anisomycin, scopolamine or cold-anesthesia) were given to all members of the triads immediately after the first interaction session to prevent individual recognition memory consolidation and evaluate its effect on the hierarchical order (Experiment 4). Acquisition of hierarchical recognition occurs at the first agonistic encounter and agonistic behavior gradually diminishes in the following days; animals keep their hierarchical order despite the inability of the dominant crayfish to attack the submissive

  13. Caspase-9 Mediates Photoreceptor Death After Blunt Ocular Trauma

    PubMed Central

    Blanch, Richard J.; Ahmed, Zubair; Thompson, Adam R.; Akpan, Nsikan; Snead, David R. J.; Berry, Martin; Troy, Carol M.; Scott, Robert A. H.; Logan, Ann

    2014-01-01

    Purpose. Ocular trauma is common in civilian and military populations. Commotio retinae involves acute disruption of photoreceptor outer segments after blunt ocular trauma, with subsequent photoreceptor apoptosis causing permanent visual impairment. The mechanisms of photoreceptor death in commotio retinae have not previously been described, although caspase-dependent death is important in other nontraumatic retinal degenerations. We assessed the role of caspase-9 as a mediator of photoreceptor death in a rat model of ballistic ocular trauma causing commotio retinae. Methods. Bilateral commotio retinae was induced in rats by ballistic ocular trauma. Caspase-9 activity was assessed by immunohistochemistry, Western blotting, and bVAD-fmk active caspase capture. Caspase-9 was inhibited by unilateral intravitreal injection of highly specific X-linked inhibitor of apoptosis (IAP) baculoviral IAP repeat 3 (XBIR3) domain linked to the cell transduction peptide penetratin 1 (Pen-1) after ballistic injury, and the affected eyes were compared with control eyes treated with Pen-1 injection alone, and retinal function was assessed by electroretinogram a-wave amplitude and photoreceptor survival by outer nuclear layer thickness. Results. Increased levels of cleaved caspase-9 were shown in photoreceptors 5 hours after injury, and catalytically active full-length caspase-9 was isolated from retinas. Photoreceptor death after commotio retinae was reduced by caspase-9 inhibition by using Pen-1–XBIR3, and electroretinographic measurements of photoreceptor function was preserved, providing structural and functional neuroprotection. Conclusions. The time course of caspase-9 activation and the neuroprotective effects of inhibition suggest that caspase-9 initiates cell death in a proportion of photoreceptors after blunt ocular trauma and that an intravitreally delivered biologic inhibitor may be an effective translational treatment strategy. PMID:25190658

  14. The Sensitivity of the Crayfish Reward System to Mammalian Drugs of Abuse.

    PubMed

    Shipley, Adam T; Imeh-Nathaniel, Adebobola; Orfanakos, Vasiliki B; Wormack, Leah N; Huber, Robert; Nathaniel, Thomas I

    2017-01-01

    The idea that addiction occurs when the brain is not able to differentiate whether specific reward circuits were triggered by adaptive natural rewards or falsely activated by addictive drugs exist in several models of drug addiction. The suitability of crayfish ( Orconectes rusticus ) for drug addiction research arises from developmental variation of growth, life span, reproduction, behavior and some quantitative traits, especially among isogenic mates reared in the same environment. This broad spectrum of traits makes it easier to analyze the effect of mammalian drugs of abuse in shaping behavioral phenotype. Moreover, the broad behavioral repertoire allows the investigation of self-reinforcing circuitries involving appetitive and exploratory motor behavior, while the step-wise alteration of the phenotype by metamorphosis allows accurate longitudinal analysis of different behavioral states. This paper reviews a series of recent experimental findings that evidence the suitability of crayfish as an invertebrate model system for the study of drug addiction. Results from these studies reveal that unconditioned exposure to mammalian drugs of abuse produces a variety of stereotyped behaviors. Moreover, if presented in the context of novelty, drugs directly stimulate exploration and appetitive motor patterns along with molecular processes for drug conditioned reward. Findings from these studies indicate the existence of drug sensitive circuitry in crayfish that facilitates exploratory behavior and appetitive motor patterns via increased incentive salience of environmental stimuli or by increasing exploratory motor patterns. This work demonstrates the potential of crayfish as a model system for research into the neural mechanisms of addiction, by contributing an evolutionary, comparative context to our understanding of natural reward as an important life-sustaining process.

  15. ROLES OF CELL-INTRINSIC AND MICROENVIRONMENTAL FACTORS IN PHOTORECEPTOR CELL DIFFERENTIATION

    PubMed Central

    Bradford, Rebecca L.; Wang, Chenwei; Zack, Donald J.; Adler, Ruben

    2005-01-01

    Photoreceptor differentiation requires the coordinated expression of numerous genes. It is unknown whether those genes share common regulatory mechanisms or are independently regulated by distinct mechanisms. To distinguish between these scenarios, we have used in situ hybridization, RT-PCR and real time PCR to analyze the expression of visual pigments and other photoreceptor-specific genes during chick embryo retinal development in ovo, as well as in retinal cell cultures treated with molecules that regulate the expression of particular visual pigments. In ovo, onset of gene expression was asynchronous, becoming detectable at the time of photoreceptor generation (ED 5–8) for some photoreceptor genes, but only around the time of outer segment formation (ED 14–16) for others. Treatment of retinal cell cultures with activin, staurosporine or CNTF selectively induced or down-regulated specific visual pigment genes, but many cognate rod- or cone-specific genes were not affected by the treatments. These results indicate that many photoreceptor genes are independently regulated during development, are consistent with the existence of at least two distinct stages of gene expression during photoreceptor differentiation, suggest that intrinsic, coordinated regulation of a cascade of gene expression triggered by a commitment to the photoreceptor fate is not a general mechanism of photoreceptor differentiation, and imply that using a single photoreceptor-specific “marker” as a proxy to identify photoreceptor cell fate is problematic. PMID:16120439

  16. Measuring the depth of the caudal epidural space to prevent dural sac puncture during caudal block in children.

    PubMed

    Lee, Hyun Jeong; Min, Ji Young; Kim, Hyun Il; Byon, Hyo-Jin

    2017-05-01

    Caudal blocks are performed through the sacral hiatus in order to provide pain control in children undergoing lower abdominal surgery. During the block, it is important to avoid advancing the needle beyond the sacrococcygeal ligament too much to prevent unintended dural puncture. This study used demographic data to establish simple guidelines for predicting a safe needle depth in the caudal epidural space in children. A total of 141 children under 12 years old who had undergone lumbar-sacral magnetic resonance imaging were included. The T2 sagittal image that provided the best view of the sacrococcygeal membrane and the dural sac was chosen. We used Picture Achieving and Communication System (Centricity ® PACS, GE Healthcare Co.) to measure the distance between the sacrococcygeal ligament and the dural sac, the length of the sacrococcygeal ligament, and the maximum depth of the caudal space. There were strong correlations between age, weight, height, and BSA, and the distance between the sacrococcygeal ligament and dural sac, as well as the length of the sacrococcygeal ligament. Based on these findings, a simple formula to calculate the distance between the sacrococcygeal ligament and dural sac was developed: 25 × BSA (mm). This simple formula can accurately calculate the safe depth of the caudal epidural space to prevent unintended dural puncture during caudal block in children. However, further clinical studies based on this formula are needed to substantiate its utility. © 2017 John Wiley & Sons Ltd.

  17. Evaluation of physicochemical and physical habitat associations for Cambarus callainus (Big Sandy crayfish), an imperilled crayfish endemic to the Central Appalachians

    USGS Publications Warehouse

    Loughman, Zachary J.; Welsh, Stuart A.; Sadecky, Nicole M.; Dillard, Zachary W.; Scott, R. Katie

    2017-01-01

    1. Crayfish represent one of the most imperilled animal groups on the planet. Habitat degradation, destruction and fragmentation, introduction of invasive crayfishes, and a lack of applied biological information have all been identified as agents thwarting crayfish conservation.2. Cambarus callainus was warranted federal protection by the United States Fish and Wildlife Service (USFWS) in April, 2016. As part of the USFWS listing procedure, a survey for C. callainus in the Big Sandy River catchment was conducted to determine points of occurrence with a secondary objective of determining reach level physical habitat and physicochemical correlates of C. callainus presence and absence.3. At each site, physicochemical and physical habitat data were collected to determine the influence of abiotic covariates on the presence of C. callainus. Cambarus callainus presence or absence and associated site covariates were modelled using logistic regression.4. Survey results recorded C. callainus at 39 sites in the Upper Levisa Fork (ULF) and Tug Fork (TF) drainages of the Big Sandy River; no C. callainus were collected in the Lower Levisa Fork (LLF). An additive effects model of physical habitat quality (Basin + Boulder presence/embeddedness) was the only model selected, supporting an association of C. callainus with slab boulders, open interstitial spaces, and moderate to no sedimentation. All sites lacking C. callainus were experiencing some degree of sedimentation. Physicochemical covariates were not supported by the data.5. Results indicated that good quality habitat was lacking in the LLF, but was present in the ULF and TF catchments, with ULF supporting the most robust populations and most suitable habitat. Effective conservation for C. callainus should focus on efforts that limit sedimentation as well as restore good quality instream habitat in the greater Big Sandy catchment.

  18. Antibacterial activity of hemocyanin from red swamp crayfish (Procambarus clarkii).

    PubMed

    Qin, Zhendong; Babu, V Sarath; Wan, Quanyuan; Muhammad, Asim; Li, Jun; Lan, Jiangfeng; Lin, Li

    2018-04-01

    Hemocyanins (HMC): the copper-containing respiratory proteins present in invertebrate hemolymph, which plays many essential roles in the immune system. Currently, little is known about the HMC domains of Procambarus clarkii (P. clarkii) and their function in antimicrobial immune response. In this present study, we comparatively studied the expression pattern of native PcHMC with the three recombinant proteins of variable domains of crayfish hemocyanin (PcHMC-N, N-terminal domain of hemocyanin; PcHMC-T, tyrosinase domain of hemocyanin; PcHMC-C, C-terminal domain of hemocyanin). The results showed that three purified recombinant proteins had a strong binding to various bacteria and lipopolysaccharides that further highly agglutinated. The HMCs recombinant proteins showed strong antibacterial activity against V. parahaemolyticus and S. aureus by bacterial growth inhibition, phenoloxidase (PO) and phagocytosis assays. Specifically, rPcHMC1-T and rPcHMC1-C inhibited both the bacteria efficiently, rPcHMC1-T was highly upregulated the PO activity than the other recombinant proteins. Whereas, recombinant proteins pretreated crayfish hemocytes participated in phagocytosis activity, rPcHMC1-N and rPcHMC1-C proteins had a profound effect than the rPcHMC1-T on S. aureus and V. parahaemolyticus phagocytosis. The crayfish hemocyanin domains clearly exhibited antibacterial and phagocytic activities against both the bacteria, suggesting that its variable domains of hemocyanin have the different function on specific pathogen during the assault of pathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Drug-sensitive reward in crayfish: an invertebrate model system for the study of SEEKING, reward, addiction, and withdrawal.

    PubMed

    Huber, Robert; Panksepp, Jules B; Nathaniel, Thomas; Alcaro, Antonio; Panksepp, Jaak

    2011-10-01

    In mammals, rewarding properties of drugs depend on their capacity to activate appetitive motivational states. With the underlying mechanisms strongly conserved in evolution, invertebrates have recently emerged as a powerful new model in addiction research. In crayfish natural reward has proven surprisingly sensitive to human drugs of abuse, opening an unlikely avenue of research into the basic biological mechanisms of drug addiction. In a series of studies we first examined the presence of natural reward systems in crayfish, then characterized its sensitivity to a wide range of human drugs of abuse. A conditioned place preference (CPP) paradigm was used to demonstrate that crayfish seek out those environments that had previously been paired with the psychostimulants cocaine and amphetamine, and the opioid morphine. The administration of amphetamine exerted its effects at a number of sites, including the stimulation of circuits for active exploratory behaviors (i.e., SEEKING). A further study examined morphine-induced reward, extinction and reinstatement in crayfish. Repeated intra-circulatory infusions of morphine served as a reward when paired with distinct visual or tactile cues. Morphine-induced CPP was extinguished after repeated saline injections. Following this extinction phase, morphine-experienced crayfish were once again challenged with the drug. The priming injections of morphine reinstated CPP at all tested doses, suggesting that morphine-induced CPP is unrelenting. In an exploration of drug-associated behavioral sensitization in crayfish we concurrently mapped measures of locomotion and rewarding properties of morphine. Single and repeated intra-circulatory infusions of morphine resulted in persistent locomotory sensitization, even 5 days following the infusion. Moreover, a single dose of morphine was sufficient to induce long-term behavioral sensitization. CPP for morphine and context-dependent cues could not be disrupted over a drug free period of 5

  20. UV-B photoreceptor-mediated signalling in plants.

    PubMed

    Heijde, Marc; Ulm, Roman

    2012-04-01

    Ultraviolet-B radiation (UV-B) is a key environmental signal that is specifically perceived by plants to promote UV acclimation and survival in sunlight. Whereas the plant photoreceptors for visible light are rather well characterised, the UV-B photoreceptor UVR8 was only recently described at the molecular level. Here, we review the current understanding of the UVR8 photoreceptor-mediated pathway in the context of UV-B perception mechanism, early signalling components and physiological responses. We further outline the commonalities in UV-B and visible light signalling as well as highlight differences between these pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Photoreceptor layer map using spectral-domain optical coherence tomography.

    PubMed

    Lee, Ji Eun; Lim, Dae Won; Bae, Han Yong; Park, Hyun Jin

    2009-12-01

    To develop a novel method for analysis of the photoreceptor layer map (PLM) generated using spectral-domain optical coherence tomography (OCT). OCT scans were obtained from 20 eyes, 10 with macular holes (MH) and 10 with central serous chorioretinopathy (CSC) using the Macular Cube (512 x 128) protocol of the Cirrus HD-OCT (Carl Zeiss). The scanned data were processed using embedded tools of the advanced visualization. A partial thickness OCT fundus image of the photoreceptor layer was generated by setting the region of interest to a 50-microm thick layer that was parallel and adjacent to the retinal pigment epithelium. The resulting image depicted the photoreceptor layer as a map of the reflectivity in OCT. The PLM was compared with fundus photography, auto-fluorescence, tomography, and retinal thickness map. The signal from the photoreceptor layer of every OCT scan in each case was demonstrated as a single image of PLM in a fundus photograph fashion. In PLM images, detachment of the sensory retina is depicted as a hypo-reflective area, which represents the base of MH and serous detachment in CSC. Relative hypo-reflectivity, which was also noted at closed MH and at recently reattached retina in CSC, was associated with reduced signal from the junction between the inner and outer segments of photoreceptors in OCT images. Using PLM, changes in the area of detachment and reflectivity of the photoreceptor layer could be efficiently monitored. The photoreceptor layer can be analyzed as a map using spectral-domain OCT. In the treatment of both MH and CSC, PLM may provide new pathological information about the photoreceptor layer to expand our understanding of these diseases.

  2. Photoreceptor cell death and rescue in retinal detachment and degenerations

    PubMed Central

    Murakami, Yusuke; Notomi, Shoji; Hisatomi, Toshio; Nakazawa, Toru; Ishibashi, Tatsuro; Miller, Joan W.; Vavvas, Demetrios G.

    2013-01-01

    Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss. PMID:23994436

  3. Minireview: The Role of Nuclear Receptors in Photoreceptor Differentiation and Disease

    PubMed Central

    Swaroop, Anand

    2012-01-01

    Rod and cone photoreceptors are specialized sensory cells that mediate vision. Transcriptional controls are critical for the development and long-term survival of photoreceptors; when these controls become ineffective, retinal dysfunction or degenerative disease may result. This review discusses the role of nuclear receptors, a class of ligand-regulated transcription factors, at key stages of photoreceptor life in the mammalian retina. Nuclear receptors with known ligands, such as retinoids or thyroid hormone, together with several orphan receptors without identified physiological ligands, complement other classes of transcription factors in directing the differentiation and functional maintenance of photoreceptors. The potential of nuclear receptors to respond to ligands introduces versatility into the control of photoreceptor development and function and may suggest new opportunities for treatments of photoreceptor disease. PMID:22556342

  4. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1.

    PubMed

    Luo, Ling; Uehara, Hironori; Zhang, Xiaohui; Das, Subrata K; Olsen, Thomas; Holt, Derick; Simonis, Jacquelyn M; Jackman, Kyle; Singh, Nirbhai; Miya, Tadashi R; Huang, Wei; Ahmed, Faisal; Bastos-Carvalho, Ana; Le, Yun Zheng; Mamalis, Christina; Chiodo, Vince A; Hauswirth, William W; Baffi, Judit; Lacal, Pedro M; Orecchia, Angela; Ferrara, Napoleone; Gao, Guangping; Young-Hee, Kim; Fu, Yingbin; Owen, Leah; Albuquerque, Romulo; Baehr, Wolfgang; Thomas, Kirk; Li, Dean Y; Chalam, Kakarla V; Shibuya, Masabumi; Grisanti, Salvatore; Wilson, David J; Ambati, Jayakrishna; Ambati, Balamurali K

    2013-06-18

    Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life. DOI:http://dx.doi.org/10.7554/eLife.00324.001.

  5. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1

    PubMed Central

    Luo, Ling; Uehara, Hironori; Zhang, Xiaohui; Das, Subrata K; Olsen, Thomas; Holt, Derick; Simonis, Jacquelyn M; Jackman, Kyle; Singh, Nirbhai; Miya, Tadashi R; Huang, Wei; Ahmed, Faisal; Bastos-Carvalho, Ana; Le, Yun Zheng; Mamalis, Christina; Chiodo, Vince A; Hauswirth, William W; Baffi, Judit; Lacal, Pedro M; Orecchia, Angela; Ferrara, Napoleone; Gao, Guangping; Young-hee, Kim; Fu, Yingbin; Owen, Leah; Albuquerque, Romulo; Baehr, Wolfgang; Thomas, Kirk; Li, Dean Y; Chalam, Kakarla V; Shibuya, Masabumi; Grisanti, Salvatore; Wilson, David J; Ambati, Jayakrishna; Ambati, Balamurali K

    2013-01-01

    Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life. DOI: http://dx.doi.org/10.7554/eLife.00324.001 PMID:23795287

  6. Caudal anesthesia in pediatric surgical practice.

    PubMed

    Rahman, S; Siddiqui, M A; Haque, M; Majumder, S K; Ali, M S; Majid, M A; Hasan, M R

    2006-07-01

    Prospective study was carried out on 100 patients since May 2005 in my private practice and in the department of pediatric surgery of MMCH. Under caudal anesthesia along with or without ketaminie induction and gas inhalation all the patients underwent different surgical procedure namely anorectal surgery (eg. anoplasty, rectal polyp), urogenital surgery (Circumcision, hypospadias, meatotomy), groin surgery (hernia, hydrocele) and foot & leg surgery. Calculated dose schedule of drugs used in anesthesia and volume were maintained. Time of giving anesthesia and time of starting analgesia were recorded. Per-operative and postoperative analgesia were evaluated. Every parent was explained regarding the merit of caudal anesthesia calculated and compared with that of general anesthesia. Application of caudal anesthesia with or without ketamine & diazepam induction can be used safely and cost effectively and may be put into protocol in many of the pediatric surgical practice both in institute and also in private practice.

  7. Bioenergetics assessment of fish and crayfish consumption by river otter (Lontra canadensis): integrating prey availability, diet, and field metabolic rate

    USGS Publications Warehouse

    Dekar, Matthew P.; Magoulick, Daniel D.; Beringer, J.

    2010-01-01

    River otters (Lontra canadensis) are important predators in aquatic ecosystems, but few studies quantify their prey consumption. We trapped crayfish monthly as an index of availability and collected otter scat for diet analysis in the Ozark Mountains of northwestern Arkansas, USA. We measured otter daily energy expenditure (DEE) with the doubly labeled water method to develop a bioenergetics model for estimating monthly prey consumption. Meek's crayfish (Orconectes meeki) catch-per-unit-effort was positively related to stream temperature, indicating that crayfish were more available during warmer months. The percentage frequency of occurrence for crayfish in scat samples peaked at 85.0% in summer and was lowest (42.3%) in winter. In contrast, the percentage occurrence of fish was 13.3% in summer and 57.7% in winter. Estimates of DEE averaged 4738 kJ·day-1 for an otter with a body mass of 7842 g. Total biomass consumption ranged from 35 079 to 52 653 g·month-1 (wet mass), corresponding to a high proportion of fish and crayfish in the diet, respectively. Otter consumption represents a large fraction of prey production, indicating potentially strong effects of otters on trophic dynamics in stream ecosystems.

  8. Ciliary photoreceptors in the cerebral eyes of a protostome larva

    PubMed Central

    2011-01-01

    Background Eyes in bilaterian metazoans have been described as being composed of either ciliary or rhabdomeric photoreceptors. Phylogenetic distribution, as well as distinct morphologies and characteristic deployment of different photopigments (ciliary vs. rhabdomeric opsins) and transduction pathways argue for the co-existence of both of these two photoreceptor types in the last common bilaterian ancestor. Both receptor types exist throughout the Bilateria, but only vertebrates are thought to use ciliary photoreceptors for directional light detection in cerebral eyes, while all other invertebrate bilaterians studied utilize rhabdomeric photoreceptors for this purpose. In protostomes, ciliary photoreceptors that express c-opsin have been described only from a non-visual deep-brain photoreceptor. Their homology with vertebrate rods and cones of the human eye has been hypothesized to represent a unique functional transition from non-visual to visual roles in the vertebrate lineage. Results To test the hypothesis that protostome cerebral eyes employ exclusively rhabdomeric photoreceptors, we investigated the ultrastructure of the larval eyes in the brachiopod Terebratalia transversa. We show that these pigment-cup eyes consist of a lens cell and a shading pigment cell, both of which are putative photoreceptors, deploying a modified, enlarged cilium for light perception, and have axonal connections to the larval brain. Our investigation of the gene expression patterns of c-opsin, Pax6 and otx in these eyes confirms that the larval eye spots of brachiopods are cerebral eyes that deploy ciliary type photoreceptors for directional light detection. Interestingly, c-opsin is also expressed during early embryogenesis in all potential apical neural cells, becoming restricted to the anterior neuroectoderm, before expression is initiated in the photoreceptor cells of the eyes. Coincident with the expression of c-opsin in the presumptive neuroectoderm, we found that middle

  9. Flow cytometric analysis of crayfish haemocytes activated by lipopolysaccharides

    USGS Publications Warehouse

    Cardenas, W.; Dankert, J.R.; Jenkins, J.A.

    2004-01-01

    Lipopolysaccharides (LPS) from Gram-negative bacteria are strong stimulators of white river crayfish, Procambarus zonangulus, haemocytes in vitro. Following haemocyte treatment with LPS and with LPS from rough mutant R5 (LPS Rc) from Salmonella minnesota, flow cytometric analysis revealed a conspicuous and reproducible decrease in cell size as compared to control haemocytes. These LPS molecules also caused a reduction in haemocyte viability as assessed by flow cytometry with the fluorescent dyes calcein-AM and ethidium homodimer. The onset of cell size reduction was gradual and occurred prior to cell death. Haemocytes treated with LPS from S. minnesota without the Lipid A moiety (detoxified LPS) decreased in size without a reduction of viability. The action of LPS on crayfish haemocytes appeared to be related to the activation of the prophenoloxidase system because phenoloxidase (PO)-specific activity in the supernatants from control and detoxified LPS-treated cells was significantly lower than that from LPS and LPS-Rc treated cells (P < 0.05). Furthermore, addition of trypsin inhibitor to the LPS treatments caused noticeable delays in cell size and viability changes. These patterns of cellular activation by LPS formulations indicated that crayfish haemocytes react differently to the polysaccharide and lipid A moieties of LPS, where lipid A is cytotoxic and the polysaccharide portion is stimulatory. These effects concur with the general pattern of mammalian cell activation by LPS, thereby indicting commone innate immune recognition mechanisms to bacterial antigens between cells from mammals and invertebrates. These definitive molecular approaches used to verify and identify mechanisms of invertbrate haemocyte responses to LPS could be applied with other glycoconjugates, soluble mediators, or xenobiotic compounds.

  10. Visual ecology and potassium conductances of insect photoreceptors.

    PubMed

    Frolov, Roman; Immonen, Esa-Ville; Weckström, Matti

    2016-04-01

    Voltage-activated potassium channels (Kv channels) in the microvillar photoreceptors of arthropods are responsible for repolarization and regulation of photoreceptor signaling bandwidth. On the basis of analyzing Kv channels in dipteran flies, it was suggested that diurnal, rapidly flying insects predominantly express sustained K(+) conductances, whereas crepuscular and nocturnally active animals exhibit strongly inactivating Kv conductances. The latter was suggested to function for minimizing cellular energy consumption. In this study we further explore the evolutionary adaptations of the photoreceptor channelome to visual ecology and behavior by comparing K(+) conductances in 15 phylogenetically diverse insects, using patch-clamp recordings from dissociated ommatidia. We show that rapid diurnal flyers such as the blowfly (Calliphora vicina) and the honeybee (Apis mellifera) express relatively large noninactivating Kv conductances, conforming to the earlier hypothesis in Diptera. Nocturnal and/or slow-moving species do not in general exhibit stronger Kv conductance inactivation in the physiological membrane voltage range, but the photoreceptors in species that are known to rely more on vision behaviorally had higher densities of sustained Kv conductances than photoreceptors of less visually guided species. No statistically significant trends related to visual performance could be identified for the rapidly inactivating Kv conductances. Counterintuitively, strong negative correlations were observed between photoreceptor capacitance and specific membrane conductance for both sustained and inactivating fractions of Kv conductance, suggesting insignificant evolutionary pressure to offset negative effects of high capacitance on membrane filtering with increased conductance. Copyright © 2016 the American Physiological Society.

  11. West Virginia crayfishes (Decapoda: Cambaridae): observations on distribution, natural history, and conservation

    USGS Publications Warehouse

    Loughman, Zachary J.; Simon, Thomas P.; Welsh, Stuart A.

    2009-01-01

    West Virginia's crayfishes have received moderate attention since publication of Jezerinac et al.'s (1995) monograph of the state fauna. Survey efforts were initiated over the summers of 2006 and 2007 to gather voucher material for the Indiana Biological Survey's Crustacean Collection. These collections have provided new information regarding the distribution, natural history, life history, taxonomy, and conservation status of Cambarus (Cambarus) carinirostris, C. (C.) bartonii cavatus, C. (C.) sciotensis, C. (Hiaticambarus) chasmodactylus, C. (H.) elkensis, C. (H.) longulus, C. (Jugicambarus) dubius, C. (Puncticambarus) robustus, Orconectes (Procericambarus) cristavarius, and O. (P.) rusticus. Orconectes (Faxonius) limosus has apparently been extirpated from West Virginia and should be removed from the state's list of extant crayfishes.

  12. West Virginia crayfishes (Decapoda: Cambaridae): observations on distribution, natural history, and conservation

    USGS Publications Warehouse

    Loughman, Zachary J.; Simon, Thomas P.; Welsh, Stuart A.

    2009-01-01

    West Virginia's crayfishes have received moderate attention since publication of Jezerinac et al.'s (1995) monograph of the state fauna. Survey efforts were initiated over the summers of 2006 and 2007 to gather voucher material for the Indiana Biological Survey's Crustacean Collection. These collections have provided new information regarding the distribution, natural history, life history, taxonomy, and conservation status of Cambarus (Cambarus) carinirostris, C. (C.) bartonii cavatus, C. (C.) sciotensis, C. (Hiaticambarus) chasmodactylus, C. (H.) elkensis, C. (H.) longulus, C. (Jugicambarus) dubius, C. (Puncticambarus) robustus, Orconectes (Procericambarus) cristavarius, and O. (P.) rusticus. Orconectes (Faxonius) limosus has apparently been extirpated from West Virginia and should be removed from the state's list of extant crayfishes.

  13. Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii.

    PubMed

    Carreira, Bruno M; Segurado, Pedro; Laurila, Anssi; Rebelo, Rui

    2017-01-01

    In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton's condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N). The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i) heat waves may change the predominant impacts of this keystone species and ii) that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.

  14. Waterborne outbreak of tularemia associated with crayfish fishing.

    PubMed Central

    Anda, P.; Segura del Pozo, J.; Díaz García, J. M.; Escudero, R.; García Peña, F. J.; López Velasco, M. C.; Sellek, R. E.; Jiménez Chillarón, M. R.; Sánchez Serrano, L. P.; Martínez Navarro, J. F.

    2001-01-01

    In 1997, an outbreak of human tularemia associated with hare-hunting in central Spain affected 585 patients. We describe the identification of Francisella tularensis biovar palaearctica in a second outbreak of ulceroglandular tularemia associated with crayfish (Procambarus clarkii) fishing in a contaminated freshwater stream distant from the hare-associated outbreak. The second outbreak occurred 1 year after the first. PMID:11485678

  15. Caudal dysgenesis in islet-1 transgenic mice

    PubMed Central

    Muller, Yunhua Li; Yueh, Yir Gloria; Yaworsky, Paul J.; Salbaum, J. Michael; Kappen, Claudia

    2014-01-01

    Maternal diabetes during pregnancy is responsible for the occurrence of diabetic embryopathy, a spectrum of birth defects that includes heart abnormalities, neural tube defects, and caudal dysgenesis syndromes. Here, we report that mice transgenic for the homeodomain transcription factor Isl-1 develop profound caudal growth defects that resemble human sacral/caudal agenesis. Isl-1 is normally expressed in the pancreas and is required for pancreas development and endocrine cell differentiation. Aberrant regulation of this pancreatic transcription factor causes increased mesodermal cell death, and the severity of defects is dependent on transgene dosage. Together with the finding that mutation of the pancreatic transcription factor HLXB9 causes sacral agenesis, our results implicate pancreatic transcription factors in the pathogenesis of birth defects associated with diabetes. PMID:12738808

  16. Upstream dispersal of an invasive crayfish aided by a fish passage facility

    USGS Publications Warehouse

    Welsh, Stuart A.; Loughman, Zachary J.

    2015-01-01

    Fish passage facilities for reservoir dams have been used to restore habitat connectivity within riverine networks by allowing upstream passage for native species. These facilities may also support the spread of invasive species, an unintended consequence and potential downside of upstream passage structures. We documented dam passage of the invasive virile crayfish, Orconectes virilis (Hagen, 1870), at fish ladders designed for upstream passage of American eels, Anguilla rostrata (Lesueur, 1817), in the Shenandoah River drainage, USA. Ladder use and upstream passage of 11 virile crayfish occurred from 2007–2014 during periods of low river discharge (<30 m3s–1) and within a wide range of water temperatures from 9.0–28.6 °C. Virile crayfish that used the eel ladders were large adults with a mean carapace length and width of 48.0 mm and 24.1 mm, respectively. Our data demonstrated the use of species-specific fish ladders by a non-target non-native species, which has conservation and management implications for the spread of aquatic invasive species and upstream passage facilities. Specifically, managers should consider implementing long-term monitoring of fish passage facilities with emphasis on detection of invasive species, as well as methods to reduce or eliminate passage of invasive species. 

  17. Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival

    PubMed Central

    Rice, Dennis S.; Calandria, Jorgelina M.; Gordon, William C.; Jun, Bokkyoo; Zhou, Yongdong; Gelfman, Claire M.; Li, Songhua; Jin, Minghao; Knott, Eric J.; Chang, Bo; Abuin, Alex; Issa, Tawfik; Potter, David; Platt, Kenneth A.; Bazan, Nicolas G.

    2015-01-01

    The identification of pathways necessary for photoreceptor and retinal pigment epithelium (RPE) function is critical to uncover therapies for blindness. Here we report the discovery of adiponectin receptor 1 (AdipoR1) as a regulator of these cells’ functions. Docosahexaenoic acid (DHA) is avidly retained in photoreceptors, while mechanisms controlling DHA uptake and retention are unknown. Thus, we demonstrate that AdipoR1 ablation results in DHA reduction. In situ hybridization reveals photoreceptor and RPE cell AdipoR1 expression, blunted in AdipoR1−/− mice. We also find decreased photoreceptor-specific phosphatidylcholine containing very long-chain polyunsaturated fatty acids and severely attenuated electroretinograms. These changes precede progressive photoreceptor degeneration in AdipoR1−/− mice. RPE-rich eyecup cultures from AdipoR1−/− reveal impaired DHA uptake. AdipoR1 overexpression in RPE cells enhances DHA uptake, whereas AdipoR1 silencing has the opposite effect. These results establish AdipoR1 as a regulatory switch of DHA uptake, retention, conservation and elongation in photoreceptors and RPE, thus preserving photoreceptor cell integrity. PMID:25736573

  18. Usher protein functions in hair cells and photoreceptors

    PubMed Central

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. PMID:24239741

  19. Usher protein functions in hair cells and photoreceptors.

    PubMed

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Conservation status of crayfishes of the United States and Canada

    Treesearch

    Christopher A. Taylor; Melvin L. Warren; J. F. Fitzpatrick; Horton H. Hobbs; Raymond F. Jezerinac; William L. Pflieger; Henry W. Robinson

    1996-01-01

    The American Fisheries Society (AFS) Endangered Species Committee herein provides a list of all crayfishes (families and Cambaridae) in the United States and Canada that includes state provincial distributions; a comprehensive review of the conservation status of all taxa; and references on biology, conservation, and...

  1. Zoogeography, taxonomy, and conservation of West Virginia’s Ohio River floodplain crayfishes (Decapoda, Cambaridae)

    PubMed Central

    Loughman, Zachary J.; Simon, Thomas P.

    2011-01-01

    Abstract The crayfish fauna of West Virginia consists of 23 species and several undescribed taxa. Most survey efforts documenting this fauna have been conducted in lotic waterways throughout the Appalachian plateau, Allegheny Mountains, and Ridge and Valley physiographic provinces. Bottomland forests, swamps, and marshes associated with large river floodplain such as the Ohio River floodplain historically have been under-surveyed in the state. These habitats harbor the richest primary burrowing crayfish fauna in West Virginia, and are worthy of survey efforts. In an effort to fill this void, the crayfish fauna of West Virginia’s Ohio River floodplain was surveyed from 2004 through 2009. From this survey, nine species from four genera were documented inhabiting the floodplain. Zoogeography, biology, and conservation status is provided for all nine crayfishes. The dominant genus along the floodplain is Cambarus, which includes Cambarus (Cambarus) carinirostris, Cambarus (Cambarus) bartonii cavatus, Cambarus (Procambarus) robustus and Cambarus (Tubericambarus) thomai. Cambarus (Tubericambarus) thomai is the most prevalent burrowing species occurring along the floodplain. The genus Orconectes consists of two native species, Orconectes (Cambarus) obscurus and Orconectes (Cambarus) sanbornii; and two invasive taxa, Orconectes (Gremicambarus) virilis and Orconectes (Procambarus) rusticus. Orconectes (Cambarus) obscurus has experienced a range extension to the south and occupies streams formerly occupied by Orconectes (Cambarus) sanbornii. Both invasive taxa were allied with anthropogenic habitats and disturbance gradients. The genera Fallicambarus and Procambarus are represented by a single species. Both Fallicambarus (Cambarus) fodiens and Procambarus (Orconectes) acutus are limited to the historic preglacial Marietta River Valley. PMID:21594135

  2. Conservation status of an imperiled crayfish, Faxonius marchandi Hobbs, 1948 (Decapoda: Cambaridae)

    USGS Publications Warehouse

    DiStefano, Robert J.; Magoulick, Daniel D.; Flinders, C.A.; Imhoff, Emily M.

    2017-01-01

    We summarize the distribution, ecology, threats, and conservation status of Faxonius marchandi (Hobbs, 1948), the Mammoth Spring crayfish, a limited-range endemic species to the Spring River drainage of Missouri and Arkansas, USA. The species is known from 51 locations on lower-order perennial and intermittent streams in only the eastern portion of the drainage. Faxonius marchandi is found in larger rocky substrates in shallower, slower-velocity habitats of well-buffered, mineral-rich streams. The invading alien crayfish Faxonius neglectus chaenodactylus (Williams, 1952) is the most likely threat to F. marchandi. These compiled data should serve as a baseline for future comparison, and facilitate discussion about future management, conservation, and research efforts.

  3. Fluoride bioaccumulation and toxic effects on the survival and behavior of the endangered white-clawed crayfish Austropotamobius pallipes (Lereboullet).

    PubMed

    Aguirre-Sierra, Arantxa; Alonso, Alvaro; Camargo, Julio A

    2013-08-01

    Laboratory experiments were performed to examine the toxic effects of fluoride (F(-)) on the survival and behavior of white-clawed crayfish (Austropotamobius pallipes). Body fluoride contents (bioaccumulation) of test crayfish were also examined. No significant differences between male and female crayfish regarding mortality, escape (tail-flip) response, and fluoride bioaccumulation were detected. For mortality, 48-, 72-, 96-, 120-, 144-, 168-, and 192-h median lethal concentrations (LC50) were estimated to be 93.0, 55.3, 42.7, 36.5, 32.9, 30.6, and 28.9 mg F(-)/l, respectively. For the escape response, 48-, 72-, 96-, 120-, 144-, 168- and 192-h median effective concentrations (EC50) were estimated to be 18.4, 11.1, 8.6, 7.4, 6.7, 6.2 and 5.9 mg F(-)/l, respectively. Average food consumption in test crayfish tended to decrease with increasing water fluoride concentration with a 192-h lowest-observed effect concentration of 10.7 mg F(-)/l. These results indicate that the escape response was the most sensitive end point to fluoride toxicity followed by food consumption and mortality. Fluoride bioaccumulation in test crayfish increased with increasing water fluoride concentration and exposure time. The exoskeleton accumulated more fluoride than muscle. A comparison of the obtained results with previous data for other freshwater invertebrates shows that white-clawed crayfish are relatively tolerant to fluoride toxicity. We conclude that fluoride pollution in freshwater ecosystems should not be viewed as an important risk factor contributing to the catastrophic decrease of A. pallipes in many European countries. Our results indicate that fluoride bioaccumulation in A. pallipes might be used as a bioindicator of fluoride pollution in freshwater ecosystems where it is present.

  4. Glycolytic reliance promotes anabolism in photoreceptors

    PubMed Central

    Chinchore, Yashodhan; Begaj, Tedi; Wu, David; Drokhlyansky, Eugene; Cepko, Constance L

    2017-01-01

    Vertebrate photoreceptors are among the most metabolically active cells, exhibiting a high rate of ATP consumption. This is coupled with a high anabolic demand, necessitated by the diurnal turnover of a specialized membrane-rich organelle, the outer segment, which is the primary site of phototransduction. How photoreceptors balance their catabolic and anabolic demands is poorly understood. Here, we show that rod photoreceptors in mice rely on glycolysis for their outer segment biogenesis. Genetic perturbations targeting allostery or key regulatory nodes in the glycolytic pathway impacted the size of the outer segments. Fibroblast growth factor signaling was found to regulate glycolysis, with antagonism of this pathway resulting in anabolic deficits. These data demonstrate the cell autonomous role of the glycolytic pathway in outer segment maintenance and provide evidence that aerobic glycolysis is part of a metabolic program that supports the biosynthetic needs of a normal neuronal cell type. DOI: http://dx.doi.org/10.7554/eLife.25946.001 PMID:28598329

  5. New crayfish species records from the Sipsey Fork drainage, including Lewis Smith Reservoir (Alabama, USA): Native or introduced species?

    Treesearch

    Susan B. Adams; Craig Roghair; Colin Krause; Mel Warren; J. Allison Cochran; Andy Dolloff; John Moran; Stuart W. McGregor; Guenter A. Schuester; Michael Gangloff; Dennis R. DeVries; Michael R. Kendrick; G. Lee Grove; Russell A. Wright

    2015-01-01

    As part of a study of aquatic faunal community changes along riverine-lacustrine transition zones upstream of Lewis Smith Reservoir in northwest Alabama, USA, we collected crayfish from 60 sites in the Sipsey Fork, Brushy Creek, and selected tributaries (Black Warrior River system). After finding two unexpected and possibly-introduced crayfish species, we expanded our...

  6. [Modification of retinal photoreceptor membranes and Ca ion binding].

    PubMed

    Korchagin, V P; Berman, A L; Shukoliukov, S A; Rychkova, M P; Etingof, R N

    1978-10-01

    Calcium binding by modified photoreceptor membranes of cattle retina has been studied. Ca2+-binding the membranes significantly changes after C-phospholipase treatment, displaying the initial growth (less than 65% of lipid phosphorus removed) with subsequent decrease (more than 65% of phosphorus removed). Liposomes of the photoreceptor membranes lipids were found to bind more calcium than do the native photoreceptor membranes. Proteolytic enzymes (papaine, pronase) splitting some rhodopsin fragments do not affect the ability of the membrane to bind Ca2+. The increase of light-induced Ca-binding is observed only after the outer segments preincubation under conditions providing for rhodopsin phosphorylation. This effect was observed also after the splitting of the rhodopsin fragment by papaine. It is concluded that calcium binding in the photoreceptor membranes is mainly due to the phosphate groups of phospholipids.

  7. Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision.

    PubMed

    Beier, Corinne; Hovhannisyan, Anahit; Weiser, Sydney; Kung, Jennifer; Lee, Seungjun; Lee, Dae Yeong; Huie, Philip; Dalal, Roopa; Palanker, Daniel; Sher, Alexander

    2017-04-26

    Upon degeneration of photoreceptors in the adult retina, interneurons, including bipolar cells, exhibit a plastic response leading to their aberrant rewiring. Photoreceptor reintroduction has been suggested as a potential approach to sight restoration, but the ability of deafferented bipolar cells to establish functional synapses with photoreceptors is poorly understood. Here we use photocoagulation to selectively destroy photoreceptors in adult rabbits while preserving the inner retina. We find that rods and cones shift into the ablation zone over several weeks, reducing the blind spot at scotopic and photopic luminances. During recovery, rod and cone bipolar cells exhibit markedly different responses to deafferentation. Rod bipolar cells extend their dendrites to form new synapses with healthy photoreceptors outside the lesion, thereby restoring visual function in the deafferented retina. Secretagogin-positive cone bipolar cells did not exhibit such obvious dendritic restructuring. These findings are encouraging to the idea of photoreceptor reintroduction for vision restoration in patients blinded by retinal degeneration. At the same time, they draw attention to the postsynaptic side of photoreceptor reintroduction; various bipolar cell types, representing different visual pathways, vary in their response to the photoreceptor loss and in their consequent dendritic restructuring. SIGNIFICANCE STATEMENT Loss of photoreceptors during retinal degeneration results in permanent visual impairment. Strategies for vision restoration based on the reintroduction of photoreceptors inherently rely on the ability of the remaining retinal neurons to correctly synapse with new photoreceptors. We show that deafferented bipolar cells in the adult mammalian retina can reconnect to rods and cones and restore retinal sensitivity at scotopic and photopic luminances. Rod bipolar cells extend their dendrites to form new synapses with healthy rod photoreceptors. These findings support

  8. Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision

    PubMed Central

    Hovhannisyan, Anahit; Kung, Jennifer; Lee, Seungjun; Lee, Dae Yeong; Huie, Philip; Dalal, Roopa; Palanker, Daniel

    2017-01-01

    Upon degeneration of photoreceptors in the adult retina, interneurons, including bipolar cells, exhibit a plastic response leading to their aberrant rewiring. Photoreceptor reintroduction has been suggested as a potential approach to sight restoration, but the ability of deafferented bipolar cells to establish functional synapses with photoreceptors is poorly understood. Here we use photocoagulation to selectively destroy photoreceptors in adult rabbits while preserving the inner retina. We find that rods and cones shift into the ablation zone over several weeks, reducing the blind spot at scotopic and photopic luminances. During recovery, rod and cone bipolar cells exhibit markedly different responses to deafferentation. Rod bipolar cells extend their dendrites to form new synapses with healthy photoreceptors outside the lesion, thereby restoring visual function in the deafferented retina. Secretagogin-positive cone bipolar cells did not exhibit such obvious dendritic restructuring. These findings are encouraging to the idea of photoreceptor reintroduction for vision restoration in patients blinded by retinal degeneration. At the same time, they draw attention to the postsynaptic side of photoreceptor reintroduction; various bipolar cell types, representing different visual pathways, vary in their response to the photoreceptor loss and in their consequent dendritic restructuring. SIGNIFICANCE STATEMENT Loss of photoreceptors during retinal degeneration results in permanent visual impairment. Strategies for vision restoration based on the reintroduction of photoreceptors inherently rely on the ability of the remaining retinal neurons to correctly synapse with new photoreceptors. We show that deafferented bipolar cells in the adult mammalian retina can reconnect to rods and cones and restore retinal sensitivity at scotopic and photopic luminances. Rod bipolar cells extend their dendrites to form new synapses with healthy rod photoreceptors. These findings support

  9. [Caudal regression sequence: clinical-radiological case].

    PubMed

    Zepeda T, Juan; García M, Mirna; Morales S, Jorge; Pantoja H, Miguel A; Espinoza G, Aníbal

    2015-01-01

    Caudal regression syndrome is an uncommon congenital malformation that includes a wide spectrum of clinical presentations. Characterised by caudal musculoskeletal compromise, it can be associated to neurological, gastrointestinal, renal and genitourinary defects. Although the specific aetiology has not been clarified, it has been associated with the presence of maternal diabetes and mutations in homeobox gene HBLX9. Its diagnosis is based on a good prenatal ultrasound detection, detailed physical examination, and post-natal imaging study using radiography and magnetic resonance. Caudal regression syndrome requires multidisciplinary management, and it seems that good metabolic control of gestational diabetes constitutes the best preventive measure available. We present the clinical case and images of a male term newborn, born to a pregestational diabetic mother with poor metabolic control and a prenatal ultrasound diagnosis of lumbar spine, iliac bones and lower limbs malformation. Born in good conditions, the diagnosis was confirmed using X-rays and magnetic resonance. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Can crayfish take the heat? Procambarus clarkii show nociceptive behaviour to high temperature stimuli, but not low temperature or chemical stimuli

    PubMed Central

    Puri, Sakshi; Faulkes, Zen

    2015-01-01

    Nociceptors are sensory neurons that are tuned to tissue damage. In many species, nociceptors are often stimulated by noxious extreme temperatures and by chemical agonists that do not damage tissue (e.g., capsaicin and isothiocyanate). We test whether crustaceans have nociceptors by examining nociceptive behaviours and neurophysiological responses to extreme temperatures and potentially nocigenic chemicals. Crayfish (Procambarus clarkii) respond quickly and strongly to high temperatures, and neurons in the antenna show increased responses to transient high temperature stimuli. Crayfish showed no difference in behavioural response to low temperature stimuli. Crayfish also showed no significant changes in behaviour when stimulated with capsaicin or isothiocyanate compared to controls, and neurons in the antenna did not change their firing rate following application of capsaicin or isothiocyanate. Noxious high temperatures appear to be a potentially ecologically relevant noxious stimulus for crayfish that can be detected by sensory neurons, which may be specialized nociceptors. PMID:25819841

  11. Mechanisms of photoreceptor patterning in vertebrates and invertebrates

    PubMed Central

    Johnston, Robert J

    2016-01-01

    Across the animal kingdom, visual systems have evolved to be uniquely suited to the environments and behavioral patterns of different species. The visual acuity and color perception of organisms depend on the distribution of photoreceptor subtypes within the retina. Retinal mosaics can be organized into three broad categories: stochastic/regionalized, regionalized, and ordered. Here, we describe the retinal mosaics of flies, zebrafish, chickens, mice, and humans and the gene regulatory networks controlling proper photoreceptor specification in each. By drawing parallels in eye development between these divergent species, we identify a set of conserved organizing principles and transcriptional networks that govern photoreceptor subtype differentiation. PMID:27615122

  12. Parotid salivary duct stenosis following caudal maxillectomy.

    PubMed

    Mestrinho, Lisa A; Faísca, Pedro B; Niza, Maria M R E

    2014-01-01

    Parotid salivary duct dilation was diagnosed in a 9-year-old male dog. The dog had undergone caudal maxillectomy on the ipsilateral side 2-years prior to presentation. Treatment consisted of parotid salivary duct excision and superficial parotidectomy that lead to the resolution of clinical signs. Transient facial neuropraxia was observed immediately after surgery and resolved spontaneously after 2-weeks. Parotid salivary duct dilation should be considered as a chronic postoperative complication following caudal maxillectomy.

  13. Actuation of a robotic fish caudal fin for low reaction torque

    NASA Astrophysics Data System (ADS)

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghee

    2011-07-01

    In this paper, a novel caudal fin for actuating a robotic fish is presented. The proposed caudal fin waves in a vertical direction with a specific spatial shape, which is determined by a so-called shape factor. For a specific shape factor, a traveling wave with a vertical phase difference is formed on a caudal fin during fin motion. It will be shown by the analysis that the maximum reaction torque at the joint of a caudal fin varies depending on the shape factors. Compared with a conventional plate type caudal fin, the proposed fin with a shape factor of 2π can eliminate the reaction torque perfectly, while keeping the propulsion force unchanged. The benefits of the proposed fin will be demonstrated by experiments.

  14. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea).

    PubMed

    Richman, Nadia I; Böhm, Monika; Adams, Susan B; Alvarez, Fernando; Bergey, Elizabeth A; Bunn, John J S; Burnham, Quinton; Cordeiro, Jay; Coughran, Jason; Crandall, Keith A; Dawkins, Kathryn L; DiStefano, Robert J; Doran, Niall E; Edsman, Lennart; Eversole, Arnold G; Füreder, Leopold; Furse, James M; Gherardi, Francesca; Hamr, Premek; Holdich, David M; Horwitz, Pierre; Johnston, Kerrylyn; Jones, Clive M; Jones, Julia P G; Jones, Robert L; Jones, Thomas G; Kawai, Tadashi; Lawler, Susan; López-Mejía, Marilu; Miller, Rebecca M; Pedraza-Lara, Carlos; Reynolds, Julian D; Richardson, Alastair M M; Schultz, Mark B; Schuster, Guenter A; Sibley, Peter J; Souty-Grosset, Catherine; Taylor, Christopher A; Thoma, Roger F; Walls, Jerry; Walsh, Todd S; Collen, Ben

    2015-02-19

    Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.

  15. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea)

    PubMed Central

    Richman, Nadia I.; Böhm, Monika; Adams, Susan B.; Alvarez, Fernando; Bergey, Elizabeth A.; Bunn, John J. S.; Burnham, Quinton; Cordeiro, Jay; Coughran, Jason; Crandall, Keith A.; Dawkins, Kathryn L.; DiStefano, Robert J.; Doran, Niall E.; Edsman, Lennart; Eversole, Arnold G.; Füreder, Leopold; Furse, James M.; Gherardi, Francesca; Hamr, Premek; Holdich, David M.; Horwitz, Pierre; Johnston, Kerrylyn; Jones, Clive M.; Jones, Julia P. G.; Jones, Robert L.; Jones, Thomas G.; Kawai, Tadashi; Lawler, Susan; López-Mejía, Marilu; Miller, Rebecca M.; Pedraza-Lara, Carlos; Reynolds, Julian D.; Richardson, Alastair M. M.; Schultz, Mark B.; Schuster, Guenter A.; Sibley, Peter J.; Souty-Grosset, Catherine; Taylor, Christopher A.; Thoma, Roger F.; Walls, Jerry; Walsh, Todd S.; Collen, Ben

    2015-01-01

    Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach. PMID:25561679

  16. Habitat and co-occurrence of native and invasive crayfish in the Pacific Northwest, USA

    USGS Publications Warehouse

    Pearl, Christopher A.; Adams, Michael J.; McCreary, Brome

    2013-01-01

    Biological invasions can have dramatic effects on freshwater ecosystems and introduced crayfish can be particularly impacting. We document crayfish distribution in three large hydrographic basins (Rogue, Umpqua, Willamette/Columbia) in the Pacific Northwest USA. We used occupancy analyses to investigate habitat relationships and evidence for displacement of native Pacifastacus leniusculus (Dana, 1852) by two invaders. We found invasive Procambarus clarkii (Girard, 1852), in 51 of 283 sites and in all three hydrographic basins. We found invasive Orconectes n. neglectus (Faxon, 1885) at 68% of sites in the Rogue basin and provide first documentation of their broad distribution in the Umpqua basin. We found P. clarkii in both lentic and lotic habitats, and it was positively associated with manmade sites. P. leniusculus was positively associated with lotic habitats and negatively related to manmade sites. In the Rogue and Umpqua basins, O. n. neglectus and P. leniusculus were similar in their habitat associations. We did not find a negative relationship in site occupancy between O. n. neglectus and P. leniusculus. Our data suggest that P. clarkii has potential to locally displace P. leniusculus. There is still time for preventive measures to limit the spread of the invasive crayfish in this region.

  17. Crayfish Behavior: Observing Arthropods to Learn about Science & Scientific Inquiry

    ERIC Educational Resources Information Center

    Rop, Charles J.

    2010-01-01

    This is a set of animal behavior investigations in which students will practice scientific inquiry as they observe crayfish, ask questions, and discuss territoriality, social interactions, and other behaviors. In doing this, they hone their skills of observation, learn to record and analyze data, control for variables, write hypotheses, make…

  18. A screening-level assessment of lead, cadmium, and zinc in fish and crayfish from northeastern Oklahoma, USA

    USGS Publications Warehouse

    Schmitt, C.J.; Brumbaugh, W.G.; Linder, G.L.; Hinck, J.E.

    2006-01-01

    The objective of this study was to evaluate potential human and ecological risks associated with metals in fish and crayfish from mining in the Tri-States Mining District (TSMD). Crayfish (Orconectes spp.) and fish of six frequently consumed species (common carp, Cyprinus carpio; channel catfish, Ictalurus punctatus; flathead catfish, Pylodictis olivaris; largemouth bass, Micropterus salmoides; spotted bass, M. punctulatus; and white crappie, Pomoxis annularis) were collected in 2001-2002 from the Oklahoma waters of the Spring River (SR) and Neosho River (NR), which drain the TSMD. Samples from a mining-contaminated site in eastern Missouri and from reference sites were also analyzed. Individual fish were prepared for human consumption in the manner used locally by Native Americans (headed, eviscerated, and scaled) and analyzed for lead, cadmium, and zinc. Whole crayfish were analyzed as composite samples of 5-60 animals. Metals concentrations were typically higher in samples from sites most heavily affected by mining and lowest in reference samples. Within the TSMD, most metals concentrations were higher at sites on the SR than on the NR and were typically highest in common carp and crayfish than in other taxa. Higher concentrations and greater risk were associated with fish and crayfish from heavily contaminated SR tributaries than the SR or NR mainstems. Based on the results of this and previous studies, the human consumption of carp and crayfish could be restricted based on current criteria for lead, cadmium, and zinc, and the consumption of channel catfish could be restricted due to lead. Metals concentrations were uniformly low in Micropterus spp. and crappie and would not warrant restriction, however. Some risk to carnivorous avian wildlife from lead and zinc in TSMD fish and invertebrates was also indicated, as was risk to the fish themselves. Overall, the wildlife assessment is consistent with previously reported biological effects attributed to metals

  19. Trophic overlap between native and invasive stream crayfish

    USGS Publications Warehouse

    Magoulick, Daniel D.; Piercey, Glenn L.

    2016-01-01

    We examined trophic dynamics of a stream food web where invasive Orconectes neglectusappear to be displacing native O. eupunctus in the Spring River drainage of the Ozark Highlands, Missouri and Arkansas, USA. We collected crayfish species and possible food sources seasonally from a site of sympatry on the South Fork Spring River. We determined diet overlap and potential for competition between O. eupunctus and O. neglectus, and investigated seasonal variation using carbon and nitrogen stable isotope analyses and gut content analyses. Gut content analysis showed both species of crayfish consumed mainly detritus during summer and spring, with other prey categories varying by species and season. Stable isotope analysis showed that O. eupunctus and O. neglectus relied on invertebrates as a major energy and nutrient source throughout summer, autumn, and spring, and the two species showed differences in their stable isotope signatures during spring and summer, but not autumn. Given the trophic overlap between O. eupunctus and O. neglectus, there is a potential for the two species to compete for food and to be ecologically redundant. Ecological redundancy can lead to reduced effects on ecosystem function post-invasion, and therefore examining ecological redundancy of potential invaders should be a conservation priority.

  20. Trophic overlap between native and invasive stream crayfish

    USGS Publications Warehouse

    Magoulick, Daniel D.; Piercey, Glenn L.

    2016-01-01

    We examined trophic dynamics of a stream food web where invasive Orconectes neglectus appear to be displacing native O. eupunctus in the Spring River drainage of the Ozark Highlands, Missouri and Arkansas, USA. We collected crayfish species and possible food sources seasonally from a site of sympatry on the South Fork Spring River. We determined diet overlap and potential for competition between O. eupunctus and O. neglectus, and investigated seasonal variation using carbon and nitrogen stable isotope analyses and gut content analyses. Gut content analysis showed both species of crayfish consumed mainly detritus during summer and spring, with other prey categories varying by species and season. Stable isotope analysis showed that O. eupunctus and O. neglectus relied on invertebrates as a major energy and nutrient source throughout summer, autumn, and spring, and the two species showed differences in their stable isotope signatures during spring and summer, but not autumn. Given the trophic overlap between O. eupunctus and O. neglectus, there is a potential for the two species to compete for food and to be ecologically redundant. Ecological redundancy can lead to reduced effects on ecosystem function post-invasion, and therefore examining ecological redundancy of potential invaders should be a conservation priority.

  1. Responses of photoreceptors in Hermissenda.

    PubMed

    Akon, D L; Fuortes, M G

    1972-12-01

    The five photoreceptors in the eye of the mollusc Hermissenda crassicornis respond to light with depolarization and firing of impulses. The impulses of any one cell inhibit other cells, but the degree of inhibition differs in different pairs. Evidence is presented to show that the interactions occur at terminal branches of the photoreceptor axons, inside the cerebropleural ganglion. Properties of the generator potential are examined and it is shown that the depolarization develops in two phases which are affected differently by extrinsic currents. Finally, it is shown that by enhancing the differences in the responses of individual cells to a variety of stimuli, the interactions may facilitate a number of simple discriminations.

  2. Caudal Septal Stabilization Suturing Technique to Treat Crooked Noses.

    PubMed

    Baykal, Bahadir; Erdim, Ibrahim; Guvey, Ali; Oghan, Fatih; Kayhan, Fatma Tulin

    2016-10-01

    To rotate the nasal axis and septum to the midline using an L-strut graft and a novel caudal septal stabilization suturing technique to treat crooked noses. Thirty-six patients were included in the study. First, an L-strut graft was prepared by excising the deviated cartilage site in all patients. Second, multiple stabilization suturing, which we describe as a caudal septal stabilization suturing technique with a "fishing net"-like appearance, was applied between the anterior nasal spine and caudal septum in all patients. This new surgical technique, used to rotate the caudal septum, was applied to 22 I-type and 14 C-type crooked noses. Correction rates for the crooked noses were compared between the 2 inclination types with angular estimations. Deviation angles were measured using the AutoCAD 2012 software package and frontal (anterior) views, with the Frankfurt horizontal line parallel to the ground. Nasal axis angles showing angle improvement graded 4 categories as excellent, good, acceptable, and unsuccessful for evaluations at 6 months after surgery in the study. The success rate in the C-type nasal inclination was 86.7% (±21.9) and 88% (±16.7) in the I-type. The overall success rate of L-strut grafting and caudal septal stabilization suturing in crooked nose surgeries was 87.5% (±18.6). "Unsuccessful" results were not reported in any of the patients. L-strut grafting and caudal septal stabilization suturing techniques are efficacious in crooked noses according to objective measurement analysis results. However, a longer follow-up duration in a larger patient population is needed.

  3. Programming Retinal Stem Cells into Cone Photoreceptors

    DTIC Science & Technology

    2015-12-01

    AWARD NUMBER: W81XWH-14-1-0566 TITLE: Programming Retinal Stem Cells into Cone Photoreceptors PRINCIPAL INVESTIGATOR: Joseph A. Brzezinski IV...SUBTITLE 5a. CONTRACT NUMBER Programming Retinal Stem Cells into Cone Photoreceptors 5b. GRANT NUMBER W81XWH-14-1-0566 5c. PROGRAM ELEMENT NUMBER 6...to program human stem cells directly into cones. Using RNA-seq, we identified several genes that are upregulated in advance of the earliest

  4. Electrophysiological Investigation of Different Methods of Anesthesia in Lobster and Crayfish

    PubMed Central

    Fregin, Torsten; Bickmeyer, Ulf

    2016-01-01

    Objectives In search for methods of anesthesia of crustaceans, an implanted electrode into lobster and crayfish CNS enabled us to monitor signal propagation in the nerve system of animals undergoing different protocols. Results Cooling (tap water 0°C, sea water -1,8°C) and anesthesia with MgCl2 (10%) were both discarded as anesthetic procedures because responses to external stimuli were still detectable under treatment. Contrarily, bubbling the aquarium water with CO2 can be considered a “partially successful” anesthesia, because signal propagation is inhibited but before that the animals show discomfort. The procedure of “electro-stunning” induces epileptic-form seizures in the crustacean CNS (lobster, crayfish), which overlay but do not mitigate the response to external stimuli. After several minutes the activity declines before the nervous system starts to recover. A feasible way to sacrifice lobsters is to slowly raise the water temperature (1°C min-1), as all electrical activities in the CNS cease at temperatures above ~30°C, whereas below this temperature the animals do not show signs of stress or escape behavior (e.g. tail flips) in the warming water. Conclusion CO2 is efficient to anaesthetize lobster and crayfish but due to low pH in water is stressful to the animals previous to anesthesia. Electrical stunning induces epileptiform seizures but paralyses the animals and leads to a reversible decline of nerve system activity after seizure. Electric stunning or slowly warming just before preparation may meet ethical expectations regarding anaesthesia and to sacrifice crustaceans. PMID:27642755

  5. Variation of cone photoreceptor packing density with retinal eccentricity and age.

    PubMed

    Song, Hongxin; Chui, Toco Yuen Ping; Zhong, Zhangyi; Elsner, Ann E; Burns, Stephen A

    2011-09-01

    To study the variation of cone photoreceptor packing density across the retina in healthy subjects of different ages. High-resolution adaptive optics scanning laser ophthalmoscope (AOSLO) systems were used to systematically image the retinas of two groups of subjects of different ages. Ten younger subjects (age range, 22-35 years) and 10 older subjects (age range, 50-65 years) were tested. Strips of cone photoreceptors, approximately 12° × 1.8° long were imaged for each of the four primary retinal meridians: superior, inferior, nasal, and temporal. Cone photoreceptors within the strips were counted, and cone photoreceptor packing density was calculated. Statistical analysis (three-way ANOVA) was used to calculate the interaction for cone photoreceptor packing density between age, meridian, and eccentricity. As expected, cone photoreceptor packing density was higher close to the fovea and decreased with increasing retinal eccentricity from 0.18 to 3.5 mm (∼0.6-12°). Older subjects had approximately 75% of the cone density at 0.18 mm (∼0.6°), and this difference decreased rapidly with eccentricity, with the two groups having similar cone photoreceptor packing densities beyond 0.5 mm retinal eccentricity on average. Cone packing density in the living human retina decreases as a function of age within the foveal center with the largest difference being found at our most central measurement site. At all ages, the retina showed meridional difference in cone densities, with cone photoreceptor packing density decreasing faster with increasing eccentricity in the vertical dimensions than in the horizontal dimensions.

  6. Effects of chronic cocaine, morphine and methamphetamine on the mobility, immobility and stereotyped behaviors in crayfish.

    PubMed

    Imeh-Nathaniel, Adebobola; Rincon, Natalia; Orfanakos, Vasiliki Bessie; Brechtel, Leanne; Wormack, Leah; Richardson, Erika; Huber, Robert; Nathaniel, Thomas I

    2017-08-14

    The worth of crayfish as a model system for studies of addiction was not previously recognized because a drug-reward phenomenon had not been documented in this model system. In our previous experiments, we demonstrate that the crayfish natural reward pathways are sensitive to human drugs of abuse. This finding supports crayfish as a suitable model to characterize specific behaviors that are relevant in drug addiction research, and the current study builds on our previous findings. The aim of the present study was to investigate unconditioned neurobehavioral effects of repeated treatment regimens using cocaine, morphine, and methamphetamine for three consecutive days. We analyzed mobility, immobility and characterized stereotypic behaviors following intracardial infusions of 2.0μg/g or 10.0μg/g doses of cocaine, morphine, and methamphetamine for three days. The results showed that systemic cocaine, morphine, and methamphetamine increased mobility at a low dose of 2.0μg/g more effectively than a high dose of 10.0μg/g, while simultaneously showing that the high dose exerted a more prominent effect in increasing immobility. Moreover, systemic cocaine, morphine, and methamphetamine injections have discerning effects towards a group of defined unconditioned stereotyped behavioral patterns associated with each drug, rather than a shared universal behavioral effect. These findings provide insight into the behavioral and pharmacological basis responsible for the unconditioned effects of these drugs in crayfish. Copyright © 2017. Published by Elsevier B.V.

  7. Insect photoreceptor adaptations to night vision

    PubMed Central

    Honkanen, Anna; Salmela, Iikka; Weckström, Matti

    2017-01-01

    Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals. This article is part of the themed issue ‘Vision in dim light’. PMID:28193821

  8. Insect photoreceptor adaptations to night vision.

    PubMed

    Honkanen, Anna; Immonen, Esa-Ville; Salmela, Iikka; Heimonen, Kyösti; Weckström, Matti

    2017-04-05

    Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  9. Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration

    PubMed Central

    Wang, Xu; Ma, Wenxin; Gonzalez, Shaimar R.; Kretschmer, Friedrich; Badea, Tudor C.

    2017-01-01

    Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease. SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be

  10. Loss of Genetic Diversity Means Loss of Geological Information: The Endangered Japanese Crayfish Exhibits Remarkable Historical Footprints

    PubMed Central

    Koizumi, Itsuro; Usio, Nisikawa; Kawai, Tadashi; Azuma, Noriko; Masuda, Ryuichi

    2012-01-01

    Intra-specific genetic diversity is important not only because it influences population persistence and evolutionary potential, but also because it contains past geological, climatic and environmental information. In this paper, we show unusually clear genetic structure of the endangered Japanese crayfish that, as a sedentary species, provides many insights into lesser-known past environments in northern Japan. Over the native range, most populations consisted of unique 16S mtDNA haplotypes, resulting in significant genetic divergence (overall F ST = 0.96). Owing to the simple and clear structure, a new graphic approach unraveled a detailed evolutionary history; regional crayfish populations were comprised of two distinct lineages that had experienced contrasting demographic processes (i.e. rapid expansion vs. slow stepwise range expansion) following differential drainage topologies and past climate events. Nuclear DNA sequences also showed deep separation between the lineages. Current ocean barriers to dispersal did not significantly affect the genetic structure of the freshwater crayfish, indicating the formation of relatively recent land bridges. This study provides one of the best examples of how phylogeographic analysis can unravel a detailed evolutionary history of a species and how this history contributes to the understanding of the past environment in the region. Ongoing local extinctions of the crayfish lead not only to loss of biodiversity but also to the loss of a significant information regarding past geological and climatic events. PMID:22470505

  11. Identification of endogenous fluorophores in the photoreceptors using autofluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Lingling; Qu, Junle; Niu, Hanben

    2007-11-01

    In this paper, we present our investigation on the identification of endogenous fluorophores in photoreceptors using autofluorescence spectroscopy, which is performed with an inverted laser scanning confocal microscope equipped with an Argon ion laser and a GreNe laser. In our experiments, individual cones and rods are clearly resolved even in freshly prepared retina samples, without slicing or labeling. The experiment results show that autofluorescence spectrum of the photoreceptors has three peaks approximately at 525nm, 585nm and 665nm. Furthermore, the brightest autofluorescence originates from the photoreceptor outer segments. We can, therefore, come to a conclusion that the peaks at 525nm, 585nm are corresponding to FAD and A2-PE, respectively, which are distributed in the photoreceptor outer segments.

  12. A-Si Photoreceptors At The Threshold Of Industrial Application

    NASA Astrophysics Data System (ADS)

    Senske, W.; Marschall, N.

    1986-03-01

    A-Si has become an attractive alternative for conventional electrophotographic photoreceptors. A-Si photoreceptors have been prepared by other laboratories by plasma deposition with blocking and protection layers. These photoreceptors are highly photosensitive and show low fatigue. Using sputtering we have shown that this technique is capable of produc-ing films with high charge acceptance. The increase of the deposition rate is presently un-der intensive investigation. High rates can be achieved by a higher degree of silane decomposition or by magnetron sputtering together with a higher power level. Deposition rates of more than 20 pm/h have been obtained by both techniques.

  13. New distributional records of the stygobitic crayfish Cambarus cryptodytes (Decapoda: Cambaridae) in the Floridan Aquifer System of southwestern Georgia

    USGS Publications Warehouse

    Fenolio, Dante B.; Niemiller, Matthew L.; Gluesenkamp, Andrew G.; Mckee, Anna; Taylor, Steven J.

    2017-01-01

    Cambarus cryptodytes (Dougherty Plain Cave Crayfish) is an obligate inhabitant of groundwater habitats (i.e., a stygobiont) with troglomorphic adaptations in the Floridan aquifer system of southwestern Georgia and adjacent Florida panhandle, particularly in the Dougherty Plain and Marianna Lowlands. Documented occurrences of Dougherty Plain Cave Crayfish are spatially distributed as 2 primary clusters separated by a region where few caves and springs have been documented; however, the paucity of humanly accessible karst features in this intermediate region has inhibited investigation of the species' distribution. To work around this constraint, we employed bottle traps to sample for Dougherty Plain Cave Crayfish and other groundwater fauna in 18 groundwater-monitoring wells that access the Floridan aquifer system in 10 counties in southwestern Georgia. We captured 32 Dougherty Plain Cave Crayfish in 9 wells in 8 counties between September 2014 and August 2015. We detected crayfish at depths ranging from 17.9 m to 40.6 m, and established new county records for Early, Miller, Mitchell, and Seminole counties in Georgia, increasing the number of occurrences in Georgia from 8 to 17 sites. In addition, a new US Geological Survey (USGS) Hydrologic Unit Code 8 (HUC8) watershed record was established for the Spring Creek watershed. These new records fill in the distribution gap between the 2 previously known clusters in Georgia and Jackson County, FL. Furthermore, this study demonstrates that deployment of bottle traps in groundwater-monitoring wells can be an effective approach to presence—absence surveys of stygobionts, especially in areas where surface access to groundwater is limited.

  14. Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.

    PubMed

    Qian, S M; Delaney, K R

    1997-10-17

    Action potential-evoked transmitter release is enhanced for many seconds after moderate-frequency stimulation (e.g. 15 Hz for 30 s) at the excitor motorneuron synapse of the crayfish dactyl opener muscle. Beginning about 1.5 s after a train, activity-dependent synaptic enhancement (ADSE) is dominated by a process termed augmentation (G.D. Bittner, D.A. Baxter, Synaptic plasticity at crayfish neuromuscular junctions: facilitation and augmentation, Synapse 7 (1991) 235-243'[4]; K.L. Magleby, Short-term changes in synaptic efficacy, in: G.M. Edelman, L.E. Gall, C.W. Maxwell (Eds.), Synaptic Function, John Wiley and Sons, New York, 1987, pp. 21-56; K.L. Magleby; J.E. Zengel, Augmentation: a process that acts to increase transmitter release at the frog neuromuscular junction, J. Physiol. (Lond.) 257 (1976) 449-470) which decays approximately exponentially with a time constant of about 10 s at 16 degrees C, reflecting the removal of Ca2+ which accumulates during the train in presynaptic terminals (K.R. Delaney, D.W. Tank, R.S. Zucker, Serotonin-mediated enhancement of transmission at crayfish neuromuscular junction is independent of changes in calcium, J. Neurosci. 11 (1991) 2631-2643). Serotonin (5-HT, 1 microM) increases evoked and spontaneous transmitter release several-fold (D. Dixon, H.L. Atwood, Crayfish motor nerve terminal's response to serotonin examined by intracellular microelectrode, J. Neurobiol. 16 (1985) 409-424; J. Dudel, Modulation of quantal synaptic release by serotonin and forskolin in crayfish motor nerve terminals, in: Modulation of Synaptic Transmission and Plasticity in Nervous Systems, G. Hertting, H.-C. Spatz (Eds.), Springer-Verlag, Berlin, 1988; S. Glusman, E.A. Kravitz. The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations, J. Physiol. (Lond.) 325 (1982) 223-241). We found that ADSE persists about 2-3 times longer after moderate-frequency presynaptic stimulation in the presence of 5-HT. This slowing of the

  15. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances.

    PubMed

    Dougherty, Matthew M; Larson, Eric R; Renshaw, Mark A; Gantz, Crysta A; Egan, Scott P; Erickson, Daniel M; Lodge, David M

    2016-06-01

    Early detection is invaluable for the cost-effective control and eradication of invasive species, yet many traditional sampling techniques are ineffective at the low population abundances found at the onset of the invasion process. Environmental DNA (eDNA) is a promising and sensitive tool for early detection of some invasive species, but its efficacy has not yet been evaluated for many taxonomic groups and habitat types.We evaluated the ability of eDNA to detect the invasive rusty crayfish Orconectes rusticus and to reflect patterns of its relative abundance, in upper Midwest, USA, inland lakes. We paired conventional baited trapping as a measure of crayfish relative abundance with water samples for eDNA, which were analysed in the laboratory with a qPCR assay. We modelled detection probability for O. rusticus eDNA using relative abundance and site characteristics as covariates and also tested the relationship between eDNA copy number and O. rusticus relative abundance.We detected O. rusticus eDNA in all lakes where this species was collected by trapping, down to low relative abundances, as well as in two lakes where trap catch was zero. Detection probability of O. rusticus eDNA was well predicted by relative abundance of this species and lake water clarity. However, there was poor correspondence between eDNA copy number and O. rusticus relative abundance estimated by trap catches. Synthesis and applications . Our study demonstrates a field and laboratory protocol for eDNA monitoring of crayfish invasions, with results of statistical models that provide guidance of sampling effort and detection probabilities for researchers in other regions and systems. We propose eDNA be included as a tool in surveillance for invasive or imperilled crayfishes and other benthic arthropods.

  16. Variation of Cone Photoreceptor Packing Density with Retinal Eccentricity and Age

    PubMed Central

    Song, Hongxin; Chui, Toco Yuen Ping; Zhong, Zhangyi; Elsner, Ann E.

    2011-01-01

    Purpose. To study the variation of cone photoreceptor packing density across the retina in healthy subjects of different ages. Methods. High-resolution adaptive optics scanning laser ophthalmoscope (AOSLO) systems were used to systematically image the retinas of two groups of subjects of different ages. Ten younger subjects (age range, 22–35 years) and 10 older subjects (age range, 50–65 years) were tested. Strips of cone photoreceptors, approximately 12° × 1.8° long were imaged for each of the four primary retinal meridians: superior, inferior, nasal, and temporal. Cone photoreceptors within the strips were counted, and cone photoreceptor packing density was calculated. Statistical analysis (three-way ANOVA) was used to calculate the interaction for cone photoreceptor packing density between age, meridian, and eccentricity. Results. As expected, cone photoreceptor packing density was higher close to the fovea and decreased with increasing retinal eccentricity from 0.18 to 3.5 mm (∼0.6–12°). Older subjects had approximately 75% of the cone density at 0.18 mm (∼0.6°), and this difference decreased rapidly with eccentricity, with the two groups having similar cone photoreceptor packing densities beyond 0.5 mm retinal eccentricity on average. Conclusions. Cone packing density in the living human retina decreases as a function of age within the foveal center with the largest difference being found at our most central measurement site. At all ages, the retina showed meridional difference in cone densities, with cone photoreceptor packing density decreasing faster with increasing eccentricity in the vertical dimensions than in the horizontal dimensions. PMID:21724911

  17. Genetic Interaction of Centrosomin and Bazooka in Apical Domain Regulation in Drosophila Photoreceptor

    PubMed Central

    Chen, Geng; Rogers, Alicia K.; League, Garrett P.; Nam, Sang-Chul

    2011-01-01

    Background Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes' role in photoreceptor morphogenesis. Methodology/Principal Findings Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn's gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs). Conclusions/Significance These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor. PMID:21253601

  18. A Crayfish Insulin-like-binding Protein

    PubMed Central

    Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir

    2013-01-01

    Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079

  19. Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors.

    PubMed

    Abrahan, Carolina E; Miranda, Gisela E; Agnolazza, Daniela L; Politi, Luis E; Rotstein, Nora P

    2010-02-01

    Oxidative stress is involved in inducing apoptosis of photoreceptors in many retinal neurodegenerative diseases. It has been shown that oxidative stress increases in photoreceptors the synthesis of ceramide, a sphingolipid precursor that then activates apoptosis. In several cell types, ceramide is converted by ceramidases to sphingosine (Sph), another apoptosis mediator; hence, this study was undertaken to determine whether Sph participates in triggering photoreceptor apoptosis. Rat retina neurons were incubated with [(3)H]palmitic acid and treated with the oxidant paraquat (PQ) to evaluate Sph synthesis. Sph was added to cultures with or without docosahexaenoic acid (DHA), the major retina polyunsaturated fatty acid and a photoreceptor survival factor, to evaluate apoptosis. Synthesis of Sph and sphingosine-1-phosphate (S1P), a prosurvival signal, were inhibited with alkaline ceramidase or sphingosine kinase inhibitors, respectively, before adding PQ, C(2)-ceramide, or Sph. Apoptosis, mitochondrial membrane polarization, cytochrome c localization, and reactive oxygen species (ROS) production were determined. PQ increased [(3)H]Sph synthesis in photoreceptors and blocking this synthesis by inhibiting alkaline ceramidase decreased PQ-induced apoptosis. Addition of Sph induced photoreceptor apoptosis, increased ROS production, and promoted cytochrome c release from mitochondria. Although DHA prevented this apoptosis, inhibiting Sph conversion to S1P blocked DHA protection. These results suggest that oxidative stress enhances formation of ceramide and its subsequent breakdown to Sph; ceramide and/or Sph would then trigger photoreceptor apoptosis. Preventing Sph synthesis or promoting its phosphorylation to S1P rescued photoreceptors, suggesting that Sph is a mediator of their apoptosis and modulation of Sph metabolism may be crucial for promoting photoreceptor survival.

  20. River bank burrowing by invasive crayfish: Spatial distribution, biophysical controls and biogeomorphic significance.

    PubMed

    Faller, Matej; Harvey, Gemma L; Henshaw, Alexander J; Bertoldi, Walter; Bruno, Maria Cristina; England, Judy

    2016-11-01

    Invasive species generate significant global environmental and economic costs and represent a particularly potent threat to freshwater systems. The biogeomorphic impacts of invasive aquatic and riparian species on river processes and landforms remain largely unquantified, but have the potential to generate significant sediment management issues within invaded catchments. Several species of invasive (non-native) crayfish are known to burrow into river banks and visual evidence of river bank damage is generating public concern and media attention. Despite this, there is a paucity of understanding of burrow distribution, biophysical controls and the potential significance of this problem beyond a small number of local studies at heavily impacted sites. This paper presents the first multi-catchment analysis of this phenomenon, combining existing data on biophysical river properties and invasive crayfish observations with purpose-designed field surveys across 103 river reaches to derive key trends. Crayfish burrows were observed on the majority of reaches, but burrowing tended to be patchy in spatial distribution, concentrated in a small proportion (<10%) of the length of rivers surveyed. Burrow distribution was better explained by local bank biophysical properties than by reach-scale properties, and burrowed banks were more likely to be characterised by cohesive bank material, steeper bank profiles with large areas of bare bank face, often on outer bend locations. Burrow excavation alone has delivered a considerable amount of sediment to invaded river systems in the surveyed sites (3tkm(-1) impacted bank) and this represents a minimum contribution and certainly an underestimate of the absolute yield (submerged burrows were not recorded). Furthermore, burrowing was associated with bank profiles that were either actively eroding or exposed to fluvial action and/or mass failure processes, providing the first quantitative evidence that invasive crayfish may cause or

  1. Constraints upon the Response of Fish and Crayfish to Environmental Flow Releases in a Regulated Headwater Stream Network

    PubMed Central

    Chester, Edwin T.; Matthews, Ty G.; Howson, Travis J.; Johnston, Kerrylyn; Mackie, Jonathon K.; Strachan, Scott R.; Robson, Belinda J.

    2014-01-01

    In dry climate zones, headwater streams are often regulated for water extraction causing intermittency in perennial streams and prolonged drying in intermittent streams. Regulation thereby reduces aquatic habitat downstream of weirs that also form barriers to migration by stream fauna. Environmental flow releases may restore streamflow in rivers, but are rarely applied to headwaters. We sampled fish and crayfish in four regulated headwater streams before and after the release of summer-autumn environmental flows, and in four nearby unregulated streams, to determine whether their abundances increased in response to flow releases. Historical data of fish and crayfish occurrence spanning a 30 year period was compared with contemporary data (electrofishing surveys, Victoria Range, Australia; summer 2008 to summer 2010) to assess the longer–term effects of regulation and drought. Although fish were recorded in regulated streams before 1996, they were not recorded in the present study upstream or downstream of weirs despite recent flow releases. Crayfish (Geocharax sp. nov. 1) remained in the regulated streams throughout the study, but did not become more abundant in response to flow releases. In contrast, native fish (Gadopsis marmoratus, Galaxias oliros, Galaxias maculatus) and crayfish remained present in unregulated streams, despite prolonged drought conditions during 2006–2010, and the assemblages of each of these streams remained essentially unchanged over the 30 year period. Flow release volumes may have been too small or have operated for an insufficient time to allow fish to recolonise regulated streams. Barriers to dispersal may also be preventing recolonisation. Indefinite continuation of annual flow releases, that prevent the unnatural cessation of flow caused by weirs, may eventually facilitate upstream movement of fish and crayfish in regulated channels; but other human–made dispersal barriers downstream need to be identified and ameliorated, to allow

  2. Photoreceptor dystrophy in the RCS rat: roles of oxygen, debris, and bFGF.

    PubMed

    Valter, K; Maslim, J; Bowers, F; Stone, J

    1998-11-01

    To examine the roles of oxygen, basic fibroblast growth factor (bFGF), and photoreceptor debris in the photoreceptor dystrophy of the Royal College of Surgeons (RCS) rat. Pups were exposed during the critical period of their development (postnatal day [P] 16-24) and for some days thereafter to hypoxia and hyperoxia. The effects of these exposures on photoreceptor death, debris accumulation in the subretinal space, and the expression of bFGF protein and mRNA by surviving cells were studied. During the critical period hyperoxia slowed photoreceptor death in a dose-related fashion and decreased bFGF protein levels, whereas hypoxia accelerated death and increased bFGF levels. At the edges of the retina, where photoreceptors survive longest in normoxia, hypoxia had little effect on either photoreceptor death or bFGF protein levels. Oxygen-induced modulation of rates of death could not be related to the accumulation of debris in the subretinal space. After P27, the relationship between oxygen and photoreceptor death changed markedly, hyperoxia no longer delaying and hypoxia no longer accelerating death. The death of RCS rat photoreceptors in the period P16 to P27 is precipitated by hypoxia that may result from the accumulation of photoreceptor debris in the subretinal space. This debris, the result of the phagocytotic failure of the retinal pigment epithelium in this strain, lies in the normal pathway of oxygen diffusing to the photoreceptors from the choriocapillaris. During this period the retina responds to hypoxia by increasing expression of a potentially protective protein (bFGF), but hypoxia-induced damage overwhelms any protection provided by this or other mechanisms. Later stages of the dystrophy may not be hypoxia-induced.

  3. Bipolar Cell-Photoreceptor Connectivity in the Zebrafish (Danio rerio) Retina

    PubMed Central

    Li, Yong N.; Tsujimura, Taro; Kawamura, Shoji; Dowling, John E.

    2013-01-01

    Bipolar cells convey luminance, spatial and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly-ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red- (R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which – G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod and RRod bipolar cells – accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further sub-divided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the 9 common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels. PMID:22907678

  4. Differences found in the macroinvertebrate community composition in the presence or absence of the invasive alien crayfish, Orconectes hylas

    USGS Publications Warehouse

    Freeland-Riggert, Brandye T.; Cairns, Stefan H.; Poulton, Barry C.; Riggert, Chris M.

    2016-01-01

    Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities.

  5. Predator identity and consumer behavior: differential effects of fish and crayfish on the habitat use of a freshwater snail.

    PubMed

    Turner, Andrew M; Fetterolf, Shelley A; Bernot, Randall J

    1999-02-01

    Predators can alter the outcome of ecological interactions among other members of the food web through their effects on prey behavior. While it is well known that animals often alter their behavior with the imposition of predation risk, we know less about how other features of predators may affect prey behavior. For example, relatively few studies have addressed the effects of predator identity on prey behavior, but such knowledge is crucial to understanding food web interactions. This study contrasts the behavioral responses of the freshwater snail Physellagyrina to fish and crayfish predators. Snails were placed in experimental mesocosms containing caged fish and crayfish, so the only communication between experimental snails and their predators was via non-visual cues. The caged fish and crayfish were fed an equal number of snails, thereby simulating equal prey mortality rates. In the presence of fish, the experimental snails moved under cover, which confers safety from fish predators. However, in the presence of crayfish, snails avoided benthic cover and moved to the water surface. Thus, two species of predators, exerting the same level of mortality on prey, induced very different behavioral responses. We predict that these contrasting behavioral responses to predation risk have important consequences for the interactions between snails and their periphyton resources.

  6. Differences Found in the Macroinvertebrate Community Composition in the Presence or Absence of the Invasive Alien Crayfish, Orconectes hylas

    PubMed Central

    Freeland-Riggert, Brandye T.

    2016-01-01

    Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities. PMID:26986207

  7. Electron tomographic analysis of gap junctions in lateral giant fibers of crayfish.

    PubMed

    Ohta, Yasumi; Nishikawa, Kouki; Hiroaki, Yoko; Fujiyoshi, Yoshinori

    2011-07-01

    Innexin-gap junctions in crayfish lateral giant fibers (LGFs) have an important role in escape behavior as a key component of rapid signal transduction. Knowledge of the structure and function of characteristic vesicles on the both sides of the gap junction, however, is limited. We used electron tomography to analyze the three-dimensional structure of crayfish gap junctions and gap junctional vesicles (GJVs). Tomographic analyses showed that some vesicles were anchored to innexons and almost all vesicles were connected by thin filaments. High densities inside the GJVs and projecting densities on the GJV membranes were observed in fixed and stained samples. Because the densities inside synaptic vesicles were dependent on the fixative conditions, different fixative conditions were used to elucidate the molecules included in the GJVs. The projecting densities on the GJVs were studied by immunoelectron microscopy with anti-vesicular monoamine transporter (anti-VMAT) and anti-vesicular nucleotide transporter (anti-VNUT) antibodies. Some of the projecting densities were labeled by anti-VNUT, but not anti-VMAT. Three-dimensional analyses of GJVs and excitatory chemical synaptic vesicles (CSVs) revealed clear differences in their sizes and central densities. Furthermore, the imaging data obtained under different fixative conditions and the immunolabeling results, in which GJVs were positively labeled for anti-VNUT but excitatory CSVs were not, support our model that GJVs contain nucleotides and excitatory CSVs do not. We propose a model in which characteristic GJVs containing nucleotides play an important role in the signal processing in gap junctions of crayfish LGFs. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Stanniocalcin-1 Rescued Photoreceptor Degeneration in Two Rat Models of Inherited Retinal Degeneration

    PubMed Central

    Roddy, Gavin W; Rosa Jr, Robert H; Youn Oh, Joo; Ylostalo, Joni H; Bartosh, Thomas J; Choi, Hosoon; Lee, Ryang Hwa; Yasumura, Douglas; Ahern, Kelly; Nielsen, Gregory; Matthes, Michael T; LaVail, Matthew M; Prockop, Darwin J

    2012-01-01

    Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD). PMID:22294148

  9. Heavy metal speciation and uptake in crayfish and tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bundy, K.J.; Berzins, D.; Millet, L.

    1996-12-31

    Developing valid pollution recording methods is central to assessing environmental damage and remediation. This often is difficult, however, because of speciation and multiphase distribution of contaminants. Polarography, an electroanalytical technique capable of detection and quantification of trace levels of elements and ionic complexes, is a promising method for analyzing environmental samples. Here, polarography has been used to determine lead concentration in water, sediment, bullfrogs, tadpoles, and adsorbed onto kaolin. It has also been used to measure hexavalent chromium concentration in crayfish. This research involves field studies and two laboratory experiments. Studies of a Louisiana swamp have shown lead`s affinity formore » sediment and water particulate phases, rather than being ionically dissolved in the aqueous phase. In swamp bullfrogs, lead was found in greater concentrations in bone compared to muscle. In the first laboratory experiment, lead uptake originating from water and sediment increased in tadpoles as exposure time and concentration increased. Also, this animal`s development was hindered at higher concentrations. The second laboratory experiment exposed crayfish to aqueous hexavalent chromium. Total chromium uptake increased with exposure time and concentration. The chromium tissue abundance was hepatopancreas > gills > muscle. A substantial portion of tissue hexavalent chromium converted to the less toxic trivalent form.« less

  10. Intraocular gene transfer of ciliary neurotrophic factor rescues photoreceptor degeneration in RCS rats.

    PubMed

    Huang, Shun-Ping; Lin, Po-Kang; Liu, Jorn-Hon; Khor, Chin-Ni; Lee, Yih-Jing

    2004-01-01

    Ciliary neurotrophic factor (CNTF) is known as an important factor in the regulation of retinal cell growth. We used both recombinant CNTF and an adenovirus carrying the CNTF gene to regulate retinal photoreceptor expression in a retinal degenerative animal, Royal College of Surgeons (RCS) rats. Cells in the outer nuclear layer of the retinae from recombinant-CNTF-treated, adenoviral-CNTF-treated, saline-operated, and contralateral untreated preparations were examined for those exhibiting CNTF photoreceptor protective effects. Cell apoptosis in the outer nuclear layer of the retinae was also detected. It was found that CNTF had a potent effect on delaying the photoreceptor degeneration process in RCS rats. Furthermore, adenovirus CNTF gene transfer was proven to be better at rescuing photoreceptors than that when using recombinant CNTF, since adenoviral CNTF prolonged the photoreceptor protection effect. The function of the photoreceptors was also examined by taking electroretinograms of different animals. Adenoviral-CNTF-treated eyes showed better retinal function than did the contralateral control eyes. This study indicates that adenoviral CNTF effectively rescues degenerating photoreceptors in RCS rats. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  11. CHARACTERIZING PHOTORECEPTOR CHANGES IN ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY USING ADAPTIVE OPTICS.

    PubMed

    Roberts, Philipp K; Nesper, Peter L; Onishi, Alex C; Skondra, Dimitra; Jampol, Lee M; Fawzi, Amani A

    2018-01-01

    To characterize lesions of acute posterior multifocal placoid pigment epitheliopathy (APMPPE) by multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO). We included patients with APMPPE at different stages of evolution of the placoid lesions. Color fundus photography, spectral domain optical coherence tomography, infrared reflectance, fundus autofluorescence, and AOSLO images were obtained and registered to correlate microstructural changes. Eight eyes of four patients (two women) were included and analyzed by multimodal imaging. Photoreceptor reflectivity within APMPPE lesions was more heterogeneous than in adjacent healthy areas. Hyperpigmentation on color fundus photography appeared hyperreflective on infrared reflectance and on AOSLO. Irregularity of the interdigitation zone and the photoreceptor inner and outer segment junctions (IS/OS) on spectral domain optical coherence tomography was associated with photoreceptor hyporeflectivity on AOSLO. Interruption of the interdigitation zone or IS/OS was associated with loss of photoreceptor reflectivity on AOSLO. Irregularities in the reflectivity of the photoreceptor mosaic are visible on AOSLO even in inactive APMPPE lesions, where the photoreceptor bands on spectral domain optical coherence tomography have recovered. Adaptive optics scanning laser ophthalmoscopy combined with multimodal imaging has the potential to enhance our understanding of photoreceptor involvement in APMPPE.

  12. Bullfrog tadpole (Rana catesbeiana) and red swamp crayfish (Procambarus clarkii) predation on early life stages of endangered razorback sucker (Xyrauchen texanus)

    USGS Publications Warehouse

    Mueller, G.A.; Carpenter, J.; Thornbrugh, D.

    2006-01-01

    Bullfrog tadpoles (Rana catesbeiana) and red swamp crayfish (Procambarus clarkii) are widespread introduced taxa that are problematic throughout the western United States. Their impact on native amphibians and crustaceans is well documented, but less is known regarding their influence on native fishes. Predator-prey tank tests showed both species consumed eggs and larvae of the endangered razorback sucker (Xyrauchen texanus) in a laboratory setting. Tadpoles consumed 2.2 razorback sucker eggs/d and 1.4 razorback sucker larvae/d, while crayfish ate 6.0 eggs/d and 3.5 larvae/d. Relatively high densities of bullfrog tadpoles and crayfish in razorback sucker spawning areas suggest that these nonnative taxa might pose a threat to the recruitment success of this and other imperiled native fish.

  13. Variations in the formation of the human caudal spinal cord.

    PubMed

    Saraga-Babić, M; Sapunar, D; Wartiovaara, J

    1995-01-01

    Collection of 15 human embryos between 4-8 developmental weeks was used to histologically investigate variations in the development of the caudal part of the spinal cord and the neighboring axial organs (notochord and vertebral column). In the 4-week embryo, two types of neurulation were parallelly observed along the anteroposterior body axis: primary in the areas cranial to the neuroporus caudalis and secondary in the more caudal tail regions. In the 5-week embryos, both parts of the neural tube fused, forming only one continuous lumen in the developing spinal cord. In the three examined embryos we found anomalous pattern of spinal cord formation. Caudal parts of these spinal cords displayed division of their central canal into two or three separate lumina, each surrounded by neuroepithelial layer. In the caudal area of the spinal cord, derived by secondary neurulation, formation of separate lumina was neither connected to any anomalous notochord or vertebral column formation, nor the appearance of any major axial disturbances. We suggest that development of the caudal part of the spinal cord differs from its cranial region not only in the type of neurulation, but also in the destiny of its derivatives and possible modes of abnormality formation.

  14. Acute Zonal Cone Photoreceptor Outer Segment Loss.

    PubMed

    Aleman, Tomas S; Sandhu, Harpal S; Serrano, Leona W; Traband, Anastasia; Lau, Marisa K; Adamus, Grazyna; Avery, Robert A

    2017-05-01

    The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. To describe the structural and functional associations found in a patient with acute zonal occult photoreceptor loss. A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute zonal occult outer retinopathy complex. Acute zonal occult outer retinopathy should be considered in patients with acute vision loss and abnormalities on NIR-REF imaging, especially if

  15. Biophysical mechanism of transient retinal phototropism in rod photoreceptors.

    PubMed

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Gai, Shaoyan; Yao, Xincheng

    2016-02-13

    Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.

  16. Biophysical mechanism of transient retinal phototropism in rod photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Gai, Shaoyan; Yao, Xincheng

    2016-03-01

    Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.

  17. Roles of glucose in photoreceptor survival.

    PubMed

    Chertov, Andrei O; Holzhausen, Lars; Kuok, Iok Teng; Couron, Drew; Parker, Ed; Linton, Jonathan D; Sadilek, Martin; Sweet, Ian R; Hurley, James B

    2011-10-07

    Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD(+), TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.

  18. Advances in repairing the degenerate retina by rod photoreceptor transplantation☆

    PubMed Central

    Pearson, Rachael A.

    2014-01-01

    Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application. PMID:24412415

  19. Fgfr3 regulates development of the caudal telencephalon.

    PubMed

    Moldrich, Randal X; Mezzera, Cecilia; Holmes, William M; Goda, Sailaja; Brookfield, Sam J; Rankin, Alastair J; Barr, Emily; Kurniawan, Nyoman; Dewar, Deborah; Richards, Linda J; López-Bendito, Guillermina; Iwata, Tomoko

    2011-06-01

    The fibroblast growth factor receptor 3 (Fgfr3) is expressed in a rostral(low) to caudal(high) gradient in the developing cerebral cortex. Therefore, we hypothesized that Fgfr3 contributes to the correct morphology and connectivity of the caudal cortex. Overall, the forebrain structures appeared normal in Fgfr3(-/-) mice. However, cortical and hippocampal volumes were reduced by 26.7% and 16.3%, respectively. Hypoplasia was particularly evident in the caudo-ventral region of the telencephalon where proliferation was mildly decreased at embryonic day 18.5. Dysplasia of GABAergic neurons in the amygdala and piriform cortex was seen following GAD67 immunohistochemistry. Dye-tracing studies and diffusion magnetic resonance imaging and tractography detected a subtle thalamocortical tract deficit, and significant decreases in the stria terminalis and lateral arms of the anterior commissure. These results indicate the subtle role of Fgfr3 in formation of caudal regions of the telencephalon affecting some brain projections. Copyright © 2011 Wiley-Liss, Inc.

  20. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish.

    PubMed

    Mendoza-Vargas, Leonor; Báez-Saldaña, Armida; Alvarado, Ramón; Fuentes-Pardo, Beatriz; Flores-Soto, Edgar; Solís-Chagoyán, Héctor

    2017-06-01

    Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.

  1. In-vivo imaging of photoreceptor structure and laser injury pathophysiology in the snake eye

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Elliot, Rowe; Li, Guo; Akers, Andre; Edsall, Peter R.; Stuck, Bruce E.

    1999-06-01

    Confocal scanning laser ophthalmoscopy (CSLO) combined with the high numerical aperture of the snake eye was used to evaluate laser injury at the photoreceptor and vascular retinal layers. An Argon laser source focused within a 35 micron retinal spot was used to produce a range of exposures from 152 to 1000 μjoules in the retinas of the Checkered Garter and Great Plains Rat snake. Anesthesia was induced with ketamine and xylazine. In vivo exposure sites measured post exposure showed unique photoreceptor damage characterized by surviving photoreceptors that were highly reflective and saturated, swollen and revealed more complex mode structure than normal photoreceptors when imaged under higher magnification. Evidence of oxidative stress was observed in photoreceptor cells peripheral to the lesion site as a late developing fluorescence (1-2 hour post exposure) following injection of Dichlorodihydrofluorescein diacetate, a marker of oxidative stress. At the anterior retina, acute exposure produced `sticky' blood cells, identified as leukocytes with Acridine orange. These findings indicate that laser retinal injury in large eyes, such as the human eye may involve pathophysiological cellular dynamics in both posterior and anterior retina and in normal retina adjacent to lesion sites. Photoreceptor movement outside the lesion site may relate to alterations in photoreceptor orientation and the efficiency of the photoreceptors quantal catch.

  2. Crayfish respiration as a function of water oxygenation.

    PubMed

    Dejours, P; Beekenkamp, H

    1977-06-01

    Crayfish, Astacus leptodactylus, for several hours breathed water equilibrated either with a hypoxic gas mixture, or air, or oxygen. The hydrostatic pressure in the right epibranchial cavity was recorded and the left epibranchial water sempled from time to time. The higher the water oxygenation, the less the duration of ventilation, the frequency of the scaphognathite beats which ensure water convection, the negative of the water hydrostatic pressure relative to ambient water pressure, and the respired water flow. The water convection per unit quantity of oxygen consumed decreased by a factor of about 20 when the animal passed from hypoxic water at PO2 of 72 torr to hyperoxic water at PO2 of 697 torr. Prolonged hyperoxia, up to 100 days, results in a hypercapnic acidosis of the prebranchial blood. pH decreased about 0.2 unit, PCO2 increased from 2.5 torr to a value of 6 torr, and [HCO-3] from 6 to a value of 9 meq-L-1. This hypercapnic acidosis remained uncompensated during several weeks exposure to hyperoxia. Observations on the fresh water crayfish, a marine crab, and several species of fish, suggest that in aquatic animals (1) the ventilatory activity depends greatly on the degree of water oxygenation: the higher the water oxygenation, the lower the ventilation; (2) the change of ventilation may be accompanied by a new equilibrium of the blood acid-base status, quite different from that observed in normoxia.

  3. Drosophila Fatty Acid Transport Protein Regulates Rhodopsin-1 Metabolism and Is Required for Photoreceptor Neuron Survival

    PubMed Central

    Dourlen, Pierre; Bertin, Benjamin; Chatelain, Gilles; Robin, Marion; Napoletano, Francesco; Roux, Michel J.; Mollereau, Bertrand

    2012-01-01

    Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance. PMID:22844251

  4. Mapping networks of light-dark transition in LOV photoreceptors.

    PubMed

    Kaur Grewal, Rajdeep; Mitra, Devrani; Roy, Soumen

    2015-11-15

    In optogenetics, designing modules of long or short signaling state lifetime is necessary for control over precise cellular events. A critical parameter for designing artificial or synthetic photoreceptors is the signaling state lifetime of photosensor modules. Design and engineering of biologically relevant artificial photoreceptors is based on signaling mechanisms characteristic of naturally occurring photoreceptors. Therefore identifying residues important for light-dark transition is a definite first step towards rational design of synthetic photoreceptors. A thorough grasp of detailed mechanisms of photo induced signaling process would be immensely helpful in understanding the behaviour of organisms. Herein, we introduce the technique of differential networks. We identify key biological interactions, using light-oxygen-voltage domains of all organisms whose dark and light state crystal structures are simultaneously available. Even though structural differences between dark and light states are subtle (other than the covalent bond formation between flavin chromophore and active site Cysteine), our results successfully capture functionally relevant residues and are in complete agreement with experimental findings from literature. Additionally, using sequence-structure alignments, we predict functional significance of interactions found to be important from network perspective yet awaiting experimental validation. Our approach would not only help in minimizing extensive photo-cycle kinetics procedure but is also helpful in providing first-hand information on the fundamentals of photo-adaptation and rational design of synthetic photoreceptors in optogenetics. devrani.dbs@presiuniv.ac.in or soumen@jcbose.ac.in Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Laser induced photoreceptor damage and recovery in the high numerical aperture eye of the garter snake.

    PubMed

    Zwick, H; Edsall, P; Stuck, B E; Wood, E; Elliott, R; Cheramie, R; Hacker, H

    2008-02-01

    The garter snake provides a unique model for in-vivo imaging of photoreceptor damage induced by laser retinal exposure. Laser thermal/mechanical retinal injury induced alterations in photoreceptor structure and leukocyte cellular behavior. Photoreceptors turned white, lost mode structure, and swelled; leukocyte activity was observed in the vicinity of photoreceptor cells. Non-thermal alterations were identified with a bio-tag for oxidative stress. Mechanisms of photoreceptor recovery and replacement were observed and evaluated for active cytoskeletal systems by using an anti-actin tag that could detect the presence of active cytoskeletal systems resident in photoreceptors as well as other retinal systems.

  6. Effect of temperature on heavy metal toxicity to juvenile crayfish, Orconectes immunis (Hagen).

    PubMed

    Khan, M A Q; Ahmed, S A; Catalin, Bogdon; Khodadoust, A; Ajayi, Oluwaleke; Vaughn, Mark

    2006-10-01

    The acute toxicity of four selected heavy metals to juvenile crayfish Orconectes immunis (Hagen) (1-2 g wet body wt. each) at room temperature increased in the following order: cadmium (x3) < copper (x10) < zinc (x2) < lead. The toxicity of these metals to crayfish acclimated at 17, 20, 23/24, and 27 degrees C increased with temperature (by 7-20% between 20 and 24 degrees C and 14-26% between 20 and 27 degrees C) as judged by the lowering of LT(50) (time to kill 50% of test animals at a fixed concentration) values. A 4 degrees C rise in temperature (from 20 to 24 degrees C), which increased the toxicity of copper by about 7%, increased the rate of oxygen consumption by about 34%. Heavy metals inhibited the rate of oxygen consumption at all temperatures. In 20 degrees C-acclimated crayfish, copper caused about 17% inhibition of oxygen consumption compared to about 7-12% by other metals including the most toxic cadmium. A 3-4 degrees C rise in temperature tripled the inhibitory effect of copper (20%), cadmium and zinc (26 and 18%, respectively), but not of lead, on oxygen consumption. A 7 degrees C-rise in temperature (from 20 to 27 degrees C) increased the inhibitory effect of heavy metals, including lead, on oxygen consumption by up to 54% in the case of copper. The data indicate that rising global temperatures (currently 0.60 degrees C) associated with climate change can have the potential to increase the sensitivity of aquatic animals to heavy metals in their environment.

  7. D-amphetamine stimulates unconditioned exploration/approach behaviors in crayfish: towards a conserved evolutionary function of ancestral drug reward

    PubMed Central

    Alcaro, Antonio; Panksepp, Jaak; Huber, Robert

    2012-01-01

    In mammals, rewarding properties of drugs depend on their capacity to activate a dopamine-mediated appetitive motivational seeking state—a system that allows animals to pursue and find all kinds of objects and events needed for survival. With such states strongly conserved in evolution, invertebrates have recently been developed into a powerful model in addiction research, where a shared ancestral brain system for the acquisition of reward can mediate drug addiction in many species. A conditioned place preference paradigm has illustrated that crayfish seek out environments that had previously been paired with psychostimulant and opioid administration. The present work demonstrates that the administration of d-amphetamine stimulates active explorative behaviors in crayfish through the action of the drug within their head ganglion. Crayfish, with a modularly organized and experimentally accessible, ganglionic nervous system offers a unique model to investigate (1) the fundamental, biological mechanisms of addictive drug reward; (2) how an appetitive/seeking disposition is implemented in a simple neural system, and (3) how it mediates the rewarding actions of major drugs of abuse. PMID:21504757

  8. Acute Zonal Cone Photoreceptor Outer Segment Loss

    PubMed Central

    Sandhu, Harpal S.; Serrano, Leona W.; Traband, Anastasia; Lau, Marisa K.; Adamus, Grazyna; Avery, Robert A.

    2017-01-01

    Importance The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. Objective To describe the structural and functional associations found in a patient with acute zonal occult photoreceptor loss. Design, Setting, and Participants A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Main Outcomes and Measures Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). Results The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Conclusions and Relevance Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute zonal occult outer retinopathy complex. Acute zonal occult outer retinopathy

  9. Advances in repairing the degenerate retina by rod photoreceptor transplantation.

    PubMed

    Pearson, Rachael A

    2014-01-01

    Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  10. Constructed microhabitat bundles for sampling fishes and crayfishes in coastal plain streams

    Treesearch

    Melvin L. Warren; A.L. Sheldon; W.R. Haag

    2009-01-01

    We investigated fish and crayfish use of standardized, constructed microhabitats (bundles) in three northern Mississippi streams. Cypress Creek and the Little Tallahatchie Canal were channelized and incised and had little woody cover; Puskus Creek was unchannelized and unincised and had abundant woody cover. We constructed three types of bundles (cane, leaf, and string...

  11. Steroidal and nonsteroidal antiinflammatory medications can improve photoreceptor survival after laser retinal photocoagulation.

    PubMed

    Brown, Jeremiah; Hacker, Henry; Schuschereba, Steven T; Zwick, Harry; Lund, David J; Stuck, Bruce E

    2007-10-01

    To determine whether methylprednisolone or indomethacin can enhance photoreceptor survival after laser retinal injury in an animal model. Experimental study. Twenty rhesus monkeys. Twenty rhesus monkeys (Macaca mulatta) received a grid of argon green (514.5 nm, 10 ms) laser lesions in the macula of the right eye and a grid of neodymium:yttrium-aluminum-garnet (Nd:YAG; 1064 nm, 10 ns) lesions in the macula of the left eye, followed by randomization to 2 weeks of treatment in 1 of 4 treatment groups: high-dose methylprednisolone, moderate-dose methylprednisolone, indomethacin, or control. The lesions were assessed at day 1, day 14, 2 months, and 4 months. The authors were masked to the treatment group. This report discusses the histologic results of ocular tissue harvested at 4 months. The number of surviving photoreceptor cell nuclei within each lesion was compared with the number of photoreceptor nuclei in surrounding unaffected retina. The proportion of surviving photoreceptor nuclei was compared between each treatment group. Argon retinal lesions in the high-dose steroid treatment group and the indomethacin treatment group demonstrated improved photoreceptor survival compared with the control group (P = 0.004). Hemorrhagic Nd:YAG lesions demonstrated improved survivability with indomethacin treatment compared with controls (P = 0.003). In nonhemorrhagic Nd:YAG laser retinal lesions, the lesions treated with moderate-dose steroids demonstrated improved photoreceptor survival compared with the control group (P = 0.004). Based on histologic samples of retinal laser lesions 4 months after injury, treatment with indomethacin resulted in improved photoreceptor survival in argon laser lesions and hemorrhagic Nd:YAG laser lesions. Treatment with systemic methylprednisolone demonstrated improved photoreceptor survival in argon retinal lesions and in nonhemorrhagic Nd:YAG lesions.

  12. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Lau, Timothy; Hatzikirou, Haralampos; Meyer-Hermann, Michael; Corbo, Joseph C.; Torquato, Salvatore

    2014-02-01

    Optimal spatial sampling of light rigorously requires that identical photoreceptors be arranged in perfectly regular arrays in two dimensions. Examples of such perfect arrays in nature include the compound eyes of insects and the nearly crystalline photoreceptor patterns of some fish and reptiles. Birds are highly visual animals with five different cone photoreceptor subtypes, yet their photoreceptor patterns are not perfectly regular. By analyzing the chicken cone photoreceptor system consisting of five different cell types using a variety of sensitive microstructural descriptors, we find that the disordered photoreceptor patterns are "hyperuniform" (exhibiting vanishing infinite-wavelength density fluctuations), a property that had heretofore been identified in a unique subset of physical systems, but had never been observed in any living organism. Remarkably, the patterns of both the total population and the individual cell types are simultaneously hyperuniform. We term such patterns "multihyperuniform" because multiple distinct subsets of the overall point pattern are themselves hyperuniform. We have devised a unique multiscale cell packing model in two dimensions that suggests that photoreceptor types interact with both short- and long-ranged repulsive forces and that the resultant competition between the types gives rise to the aforementioned singular spatial features characterizing the system, including multihyperuniformity. These findings suggest that a disordered hyperuniform pattern may represent the most uniform sampling arrangement attainable in the avian system, given intrinsic packing constraints within the photoreceptor epithelium. In addition, they show how fundamental physical constraints can change the course of a biological optimization process. Our results suggest that multihyperuniform disordered structures have implications for the design of materials with novel physical properties and therefore may represent a fruitful area for future

  13. Comparative Ultrastructure and Carbohydrate Composition of Gastroliths from Astacidae, Cambaridae and Parastacidae Freshwater Crayfish (Crustacea, Decapoda)

    PubMed Central

    Luquet, Gilles; Fernández, María S.; Badou, Aïcha; Guichard, Nathalie; Roy, Nathalie Le; Corneillat, Marion; Alcaraz, Gérard; Arias, José L.

    2012-01-01

    Crustaceans have to cyclically replace their rigid exoskeleton in order to grow.Most of them harden this skeleton by a calcification process. Some decapods (land crabs, lobsters and crayfish) elaborate calcium storage structures as a reservoir of calcium ions in their stomach wall, as so-called gastroliths. For a better understanding of the cyclic elaboration of these calcium deposits, we studied the ultrastructure of gastroliths from freshwater crayfish by using a combination of microscopic and physical techniques. Because sugars are also molecules putatively involved in the elaboration process of these biomineralizations, we also determined their carbohydrate composition. This study was performed in a comparative perspective on crayfish species belonging to the infra-order Astacidea (Decapoda, Malacostraca): three species from the Astacoidea superfamily and one species from the Parastacoidea superfamily. We observed that all the gastroliths exhibit a similar dense network of protein-chitin fibers, from macro- to nanoscale, within which calcium is precipitated as amorphous calcium carbonate. Nevertheless, they are not very similar at the molecular level, notably as regards their carbohydrate composition. Besides glucosamine, the basic carbohydrate component of chitin, we evidenced the presence of other sugars, some of which are species-specific like rhamnose and galacturonic acid whereas xylose and mannose could be linked to proteoglycan components. PMID:24970155

  14. Fundus Autofluorescence and Photoreceptor Cell Rosettes in Mouse Models

    PubMed Central

    Flynn, Erin; Ueda, Keiko; Auran, Emily; Sullivan, Jack M.; Sparrow, Janet R.

    2014-01-01

    Purpose. This study was conducted to study correlations among fundus autofluorescence (AF), RPE lipofuscin accumulation, and photoreceptor cell degeneration and to investigate the structural basis of fundus AF spots. Methods. Fundus AF images (55° lens; 488-nm excitation) and spectral-domain optical coherence tomography (SD-OCT) scans were acquired in pigmented Rdh8−/−/Abca4−/− mice (ages 1–9 months) with a confocal scanning laser ophthalmoscope (cSLO). For quantitative fundus AF (qAF), gray levels (GLs) were calibrated to an internal fluorescence reference. Retinal bisretinoids were measured by quantitative HPLC. Histometric analysis of outer nuclear layer (ONL) thicknesses was performed, and cryostat sections of retina were examined by fluorescence microscopy. Results. Quantified A2E and qAF intensities increased until age 4 months in the Rdh8−/−/Abca4−/− mice. The A2E levels declined after 4 months of age, but qAF intensity values continued to rise. The decline in A2E levels in the Rdh8−/−/Abca4−/− mice paralleled reduced photoreceptor cell viability as reflected in ONL thinning. Hyperautofluorescent puncta in fundus AF images corresponded to photoreceptor cell rosettes in SD-OCT images and histological sections stained with hematoxylin and eosin. The inner segment/outer segment–containing core of the rosette emitted an autofluorescence detected by fluorescence microscopy. Conclusions. When neural retina is disordered, AF from photoreceptor cells can contribute to noninvasive fundus AF images. Hyperautofluorescent puncta in fundus AF images are attributable, in at least some cases, to photoreceptor cell rosettes. PMID:25015357

  15. Distinct and Atypical Intrinsic and Extrinsic Cell Death Pathways between Photoreceptor Cell Types upon Specific Ablation of Ranbp2 in Cone Photoreceptors

    PubMed Central

    Cho, Kyoung-in; Yu, Minzhong; Hao, Ying; Qiu, Sunny; Pillai, Indulekha C. L.; Peachey, Neal S.; Ferreira, Paulo A.

    2013-01-01

    Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2), a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+-apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct retinal spatial

  16. Tauroursodeoxycholic Acid (TUDCA) Protects Photoreceptors from Cell Death after Experimental Retinal Detachment

    PubMed Central

    Mantopoulos, Dimosthenis; Murakami, Yusuke; Comander, Jason; Thanos, Aristomenis; Roh, Miin; Miller, Joan W.; Vavvas, Demetrios G.

    2011-01-01

    Background Detachment of photoreceptors from the underlying retinal pigment epithelium is seen in various retinal disorders such as retinal detachment and age-related macular degeneration and leads to loss of photoreceptors and vision. Pharmacologic inhibition of photoreceptor cell death may prevent this outcome. This study tests whether systemic administration of tauroursodeoxycholic acid (TUDCA) can protect photoreceptors from cell death after experimental retinal detachment in rodents. Methodology/Principal Findings Retinal detachment was created in rats by subretinal injection of hyaluronic acid. The animals were treated daily with vehicle or TUDCA (500 mg/kg). TUNEL staining was used to evaluate cell death. Photoreceptor loss was evaluated by measuring the relative thickness of the outer nuclear layer (ONL). Macrophage recruitment, oxidative stress, cytokine levels, and caspase levels were also quantified. Three days after detachment, TUDCA decreased the number of TUNEL-positive cells compared to vehicle (651±68/mm2 vs. 1314±68/mm2, P = 0.001) and prevented the reduction of ONL thickness ratio (0.84±0.03 vs. 0.65±0.03, P = 0.002). Similar results were obtained after 5 days of retinal detachment. Macrophage recruitment and expression levels of TNF-a and MCP-1 after retinal detachment were not affected by TUDCA treatment, whereas increases in activity of caspases 3 and 9 as well as carbonyl-protein adducts were almost completely inhibited by TUDCA treatment. Conclusions/Significance Systemic administration of TUDCA preserved photoreceptors after retinal detachment, and was associated with decreased oxidative stress and caspase activity. TUDCA may be used as a novel therapeutic agent for preventing vision loss in diseases that are characterized by photoreceptor detachment. PMID:21961034

  17. Ultra-high contrast retinal display system for single photoreceptor psychophysics

    PubMed Central

    Domdei, Niklas; Domdei, Lennart; Reiniger, Jenny L.; Linden, Michael; Holz, Frank G.; Roorda, Austin; Harmening, Wolf M.

    2017-01-01

    Due to the enormous dynamic range of human photoreceptors in response to light, studying their visual function in the intact retina challenges the stimulation hardware, specifically with regard to the displayable luminance contrast. The adaptive optics scanning laser ophthalmoscope (AOSLO) is an optical platform that focuses light to extremely small retinal extents, approaching the size of single photoreceptor cells. However, the current light modulation techniques produce spurious visible backgrounds which fundamentally limit experimental options. To remove unwanted background light and to improve contrast for high dynamic range visual stimulation in an AOSLO, we cascaded two commercial fiber-coupled acousto-optic modulators (AOMs) and measured their combined optical contrast. By compensating for zero-point differences in the individual AOMs, we demonstrate a multiplicative extinction ratio in the cascade that was in accordance with the extinction ratios of both single AOMs. When latency differences in the AOM response functions were individually corrected, single switch events as short as 50 ns with radiant power contrasts up to 1:1010 were achieved. This is the highest visual contrast reported for any display system so far. We show psychophysically that this contrast ratio is sufficient to stimulate single foveal photoreceptor cells with small and bright enough visible targets that do not contain a detectable background. Background-free stimulation will enable photoreceptor testing with custom adaptation lights. Furthermore, a larger dynamic range in displayable light levels can drive photoreceptor responses in cones as well as in rods. PMID:29359094

  18. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA. © 2015 International Society for Neurochemistry.

  19. Distinct transcriptomes define rostral and caudal serotonin neurons

    PubMed Central

    Wylie, Christi J.; Hendricks, Timothy J.; Zhang, Bing; Wang, Lily; Lu, Pengcheng; Leahy, Patrick; Fox, Stephanie; Maeno, Hiroshi; Deneris, Evan S.

    2012-01-01

    The molecular architecture of developing serotonin (5HT) neurons is poorly understood yet its determination is likely to be essential for elucidating functional heterogeneity of these cells and the contribution of serotonergic dysfunction to disease pathogenesis. Here, we describe the purification of postmitotic embryonic 5HT neurons by flow cytometry for whole genome microarray expression profiling of this unitary monoaminergic neuron type. Our studies identified significantly enriched expression of hundreds of unique genes in 5HT neurons thus providing an abundance of new serotonergic markers. Furthermore, we identified several hundred transcripts encoding homeodomain, axon guidance, cell adhesion, intracellular signaling, ion transport, and imprinted genes associated with various neurodevelopmental disorders that were differentially enriched in developing rostral and caudal 5HT neurons. These findings suggested a homeodomain code that distinguishes rostral and caudal 5HT neurons. Indeed, verification studies demonstrated that Hmx homeodomain and Hox gene expression defined an Hmx+ rostral subtype and Hox+ caudal subtype. Expression of engrailed genes in a subset of 5HT neurons in the rostral domain further distinguished two subtypes defined as Hmx+En+ and Hmx+En-. The differential enrichment of gene sets for different canonical pathways and gene ontology categories provided additional evidence for heterogeneity between rostral and caudal 5HT neurons. These findings demonstrate a deep transcriptome and biological pathway duality for neurons that give rise to the ascending and descending serotonergic subsystems. Our databases provide a rich, clinically relevant, resource for definition of 5HT neuron subtypes and elucidation of the genetic networks required for serotonergic function. PMID:20071532

  20. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress

    PubMed Central

    Simón, María Victoria; Agnolazza, Daniela L.; German, Olga Lorena; Garelli, Andrés; Politi, Luis E.; Agbaga, Martin-Paul; Anderson, Robert E.; Rotstein, Nora P.

    2015-01-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat (PQ) and hydrogen peroxide (H2O2). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. PMID:26662863

  1. Development of crayfish bio-based plastic materials processed by small-scale injection moulding.

    PubMed

    Felix, Manuel; Romero, Alberto; Cordobes, Felipe; Guerrero, Antonio

    2015-03-15

    Protein has been investigated as a source for biodegradable polymeric materials. This work evaluates the development of plastic materials based on crayfish and glycerol blends, processed by injection moulding, as a fully biodegradable alternative to conventional polymer-based plastics. The effect of different additives, namely sodium sulfite or bisulfite as reducing agents, urea as denaturing agent and L-cysteine as cross-linking agent, is also analysed. The incorporation of any additive always yields an increase in energy efficiency at the mixing stage, but its effect on the mechanical properties of the bioplastics is not so clear, and even dampened. The additive developing a greater effect is L-cysteine, showing higher Young's modulus values and exhibiting a remnant thermosetting potential. Thus, processing at higher temperature yields a remarkable increase in extensibility. This work illustrates the feasibility of crayfish-based green biodegradable plastics, thereby contributing to the search for potential value-added applications for this by-product. © 2014 Society of Chemical Industry.

  2. Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies Musca domestica.

    PubMed

    Burton, Brian G; Laughlin, Simon B

    2003-11-01

    Male houseflies use a sex-specific frontal eye region, the lovespot, to detect and pursue mates. We recorded the electrical responses of photoreceptors to optical stimuli that simulate the signals received by a male or female photoreceptor as a conspecific passes through its field of view. We analysed the ability of male and female frontal photoreceptors to code conspecifics over the range of speeds and distances encountered during pursuit, and reconstructed the neural images of these targets in photoreceptor arrays. A male's lovespot photoreceptor detects a conspecific at twice the distance of a female photoreceptor, largely through better optics. This detection distance greatly exceeds those reported in previous behavioural studies. Lovespot photoreceptors respond more strongly than female photoreceptors to targets tracked during pursuit, with amplitudes reaching 25 mV. The male photoreceptor also has a faster response, exhibits a unique preference for stimuli of 20-30 ms duration that selects for conspecifics and deblurs moving images with response transients. White-noise analysis substantially underestimates these improvements. We conclude that in the lovespot, both optics and phototransduction are specialised to enhance and deblur the neural images of moving targets, and propose that analogous mechanisms may sharpen the neural image still further as it is transferred to visual interneurones.

  3. Pineal Photoreceptor Cells Are Required for Maintaining the Circadian Rhythms of Behavioral Visual Sensitivity in Zebrafish

    PubMed Central

    Li, Xinle; Montgomery, Jake; Cheng, Wesley; Noh, Jung Hyun; Hyde, David R.; Li, Lei

    2012-01-01

    In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity. PMID:22815753

  4. Preservation of photoreceptors in dystrophic RCS rats following allo- and xenotransplantation of IPE cells.

    PubMed

    Thumann, Gabriele; Salz, Anna Katharina; Walter, Peter; Johnen, Sandra

    2009-03-01

    To examine whether iris pigment epithelial (IPE) cells transplanted into the subretinal space of Royal College of Surgeons (RCS) rats have the ability to rescue photoreceptors. Rat IPE (rIPE) or human IPE (hIPE) cells were transplanted subretinally in 23-day-old RCS rats. Sham injection and transplantation of ARPE-19 cells served as controls. After 12 weeks, eyes were evaluated for photoreceptor survival by morphometric analysis and electron microscopy. Morphometric analysis showed photoreceptor rescue in all transplanted and sham-injected animals (number of photoreceptors/300 microm retina+/-sd: rIPE 41.67 +/- 28; hIPE 29.50 +/- 16; ARPE-19 36.12 +/- 21; sham 16.56 +/- 6) compared to age-matched, control rats (number of photoreceptors/300 microm retina+/-sd: 9.71 +/- 4). Photoreceptor rescue was prominent in IPE cell-transplanted rats and was significantly greater than sham-injected eyes (p = 0.02 for rIPE and p = 0.04 for hIPE). Since IPE cells transplanted into the subretinal space have the ability to rescue photoreceptors from degeneration in the RCS rat without any harmful effects, IPE cells may represent an ideal cell to genetically modify and thus carry essential genetic information for the repair of defects in the subretinal space.

  5. Genome Editing to Study Ca2+ Homeostasis in Zebrafish Cone Photoreceptors.

    PubMed

    Brockerhoff, Susan E

    2017-01-01

    Photoreceptors are specialized sensory neurons with unique biological features. Phototransduction is well understood due in part to the exclusive expression and function of the molecular components of this cascade. Many other processes are less well understood, but also extremely important for understanding photoreceptor function and for treating disease. One example is the role of Ca 2+ in the cell body and overall compartmentalization and regulation of Ca 2+ within the cell. The recent development of CRISPR/Cas9 genome editing techniques has made it possible to rapidly and cheaply alter specific genes. This will help to define the biological function of elusive processes that have been more challenging to study. CRISPR/Cas9 has been optimized in many systems including zebrafish, which already has some distinct advantages for studying photoreceptor biology and function. These new genome editing technologies and the continued use of the zebrafish model system will help advance our understanding of important understudied aspects of photoreceptor biology.

  6. A multigear protocol for sampling crayfish assemblages in Gulf of Mexico coastal streams

    Treesearch

    William R. Budnick; William E. Kelso; Susan B. Adams; Michael D. Kaller

    2018-01-01

    Identifying an effective protocol for sampling crayfish in streams that vary in habitat and physical/chemical characteristics has proven problematic. We evaluated an active, combined-gear (backpack electrofishing and dipnetting) sampling protocol in 20 Coastal Plain streams in Louisiana. Using generalized linear models and rarefaction curves, we evaluated environmental...

  7. The effects of sublethal levels of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) on feeding behaviors of the crayfish O. rusticus.

    PubMed

    Browne, Amanda M; Moore, Paul A

    2014-08-01

    The widespread use of herbicides across the globe has increased the probability of synthetic chemicals entering freshwater habitats. On entering aquatic habitats, these chemicals target and disrupt both physiological and behavioral functioning in various aquatic organisms. Herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D), can have negative impacts on chemoreception because these receptor cells are in direct contact with water-soluble chemicals in the environment. Studies focusing on lethal concentration (LC50) levels may understate the impact of herbicides within aquatic habitats because damage to the chemoreceptors can result in modified behaviors or lack of appropriate responses to environmental or social cues. The purpose of this experiment was to determine whether exposure to sublethal levels of 2,4-D alters the foraging behaviors of crayfish Orconectes rusticus. We hypothesized that crayfish exposed to greater concentrations of 2,4-D would be less successful in locating food or on locating food would consume smaller amounts possibly due to an inability to recognize the food odors in the contaminated waters. Crayfish were exposed to three sublethal levels of 2,4-D for 96 h and placed into a Y-maze system with a fish gelatin food source placed randomly in the right or left arm. Average walking speed, average time spent in the correct arm, and percent consumption were analyzed. Our data show that crayfish were impaired in their ability to forage effectively. These inabilities to locate and consume adequate amounts of food could result in lower body weights and decreased fitness in populations of crayfish exposed to 2,4-D in natural habitats.

  8. Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants.

    PubMed

    Ogawa, Yuri; Falkowski, Marcin; Narendra, Ajay; Zeil, Jochen; Hemmi, Jan M

    2015-06-07

    Ants are thought to be special among Hymenopterans in having only dichromatic colour vision based on two spectrally distinct photoreceptors. Many ants are highly visual animals, however, and use vision extensively for navigation. We show here that two congeneric day- and night-active Australian ants have three spectrally distinct photoreceptor types, potentially supporting trichromatic colour vision. Electroretinogram recordings show the presence of three spectral sensitivities with peaks (λmax) at 370, 450 and 550 nm in the night-active Myrmecia vindex and peaks at 370, 470 and 510 nm in the day-active Myrmecia croslandi. Intracellular electrophysiology on individual photoreceptors confirmed that the night-active M. vindex has three spectral sensitivities with peaks (λmax) at 370, 430 and 550 nm. A large number of the intracellular recordings in the night-active M. vindex show unusually broad-band spectral sensitivities, suggesting that photoreceptors may be coupled. Spectral measurements at different temporal frequencies revealed that the ultraviolet receptors are comparatively slow. We discuss the adaptive significance and the probability of trichromacy in Myrmecia ants in the context of dim light vision and visual navigation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Heteromeric MT1/MT2 Melatonin Receptors Modulate Photoreceptor Function

    PubMed Central

    Baba, Kenkichi; Benleulmi-Chaachoua, Abla; Journé, Anne-Sophie; Kamal, Maud; Guillaume, Jean-Luc; Dussaud, Sébastien; Gbahou, Florence; Yettou, Katia; Liu, Cuimei; Contreras-Alcantara, Susana; Jockers, Ralf; Tosini, Gianluca

    2013-01-01

    The formation of G protein-coupled receptor (GPCR) heteromers elicits signaling diversification and holds great promise for improved drug selectivity. Most studies have been conducted in heterologous expression systems; however, in vivo validation is missing from most cases thus questioning the physiological significance of GPCR heteromerization. Melatonin MT1 and MT2 receptors have been shown to exist as homo- and heteromers in vitro. We show here that the effect of melatonin on rod photoreceptor light sensitivity is mediated by melatonin MT1/MT2 receptor heteromers. This effect involves activation of the heteromer-specific PLC/PKC pathway and is abolished in MT1−/− and MT2−/− mice as well as in mice overexpressing a non-functional MT2 receptor mutant that competes with the formation of functional MT1/MT2 heteromers in photoreceptor cells. This study establishes the essential role of melatonin receptor heteromers in retinal function and supports the physiological importance of GPCR heteromerization. Finally, our work may have important therapeutic implications, as the heteromer complex may provide a unique pharmacological target to improve photoreceptor functioning and to extend the viability of photoreceptors during aging. PMID:24106342

  10. Effects of dietary propolis on the number and size of pleopadal egg, oxidative stress and antioxidant status of freshwater crayfish (Astacus leptodactylus Eschscholtz).

    PubMed

    Mişe Yonar, Serpil; Köprücü, Kenan; Yonar, Muhammet Enis; Silici, Sibel

    2017-09-01

    Four different crayfish diets; control, E1, E2 and E3, respectively containing 0, 1, 2 and 4% propolis, were tested to determine the effects of dietary propolis on the number and size of pleopadal egg, and malondialdehyde (MDA) level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities in the freshwater crayfish (Astacus leptodactylus). The crayfish were kept at 9.6±5.3°C water temperature and fed three times daily during a six month period The pleopodal egg number (from 7 to 9) produced per gram of the body weight and total pleopodal egg number (from 201 to 263) significantly increased (P<0.05) with the dietary propolis supplemantation. However, an increase in the dietary propolis led to a significant decrease (P<0.05) in the pleopodal egg size (from 3.22mm to 2.76mm). MDA level significantly (P<0.05) decreased in the hepatopancreas (from 4.78 to 3.04 nmol/g protein) and ovarium (from 3.52 to 1.98 nmol/g protein) of the crayfish fed with the increased dietary propolis level. On the other hand, an increase in the dietary propolis led to a significant increase (P<0.05) in SOD activities in hepatopancreas (from 21.8 to 41.1U/g protein) and ovarium (from 16.8 to 26.8U/g protein). However, CAT activities significantly decreased (P<0.05) in the hepatopancreas (from 23.8 to 18.9 nmol/g protein) and ovarium (from 21.8 to 17.5 nmol/g protein) of the crayfish fed with the increased dietary propolis level. Similarly, an increase in the dietary propolis caused a significant decrease (P<0.05) in GSH-Px activities in the hepatopancreas (from 21.8 to 41.1U/g protein) and ovarium (from 16.8 to 26.8U/g protein) with the formation of the pleopodal egg. The dietary propolis improves reproductive efficiency in the crayfish and decreases the oxidative stress under controlled hatchery conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Protein and Signaling Networks in Vertebrate Photoreceptor Cells

    PubMed Central

    Koch, Karl-Wilhelm; Dell’Orco, Daniele

    2015-01-01

    Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cyclic guanosine monophosphate (cGMP) and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase (GRK1) under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases (GCs) and is regulated by specific neuronal Ca2+-sensor proteins called guanylate cyclase-activating proteins (GCAPs). At least one GC (ROS-GC1) was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated (CNG) channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments. PMID:26635520

  12. Arap1 Deficiency Causes Photoreceptor Degeneration in Mice.

    PubMed

    Moshiri, Ala; Humpal, Devin; Leonard, Brian C; Imai, Denise M; Tham, Addy; Bower, Lynette; Clary, Dave; Glaser, Thomas M; Lloyd, K C Kent; Murphy, Christopher J

    2017-03-01

    Small guanosine triphosphatase (GTPase) ADP-ribosylation factors (Arfs) regulate membrane traffic and actin reorganization under the control of GTPase-activating proteins (GAPs). Arap1 is an Arf-directed GAP that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome, but the diversity of its functions is incompletely understood. The aim of this study was to determine the role of Arap1 in the mammalian retina. Genetically engineered Arap1 knockout mice were screened for ocular abnormalities in the National Institutes of Health Knockout Mouse Production and Phenotyping (KOMP2) Project. Arap1 knockout and wild-type eyes were imaged using optical coherence tomography and fundus photography, and analyzed by immunohistochemistry. Arap1-/- mice develop a normal appearing retina, but undergo photoreceptor degeneration starting at 4 weeks postnatal age. The fundus appearance of mutants is notable for pigmentary changes, optic nerve pallor, vascular attenuation, and outer retinal thinning, reminiscent of retinitis pigmentosa in humans. Immunohistochemical studies suggest the cell death is predominantly in the outer nuclear layer. Functional evaluation of the retina by electroretinography reveals amplitudes are reduced. Arap1 is detected most notably in Müller glia, and not in photoreceptors, implicating a role for Müller glia in photoreceptor survival. Arap1 is necessary for normal photoreceptor survival in mice, and may be a novel gene relevant to human retinal degenerative processes, although its mechanism is unknown. Further studies in this mouse model of retinal degeneration will give insights into the cellular functions and signaling pathways in which Arap1 participates.

  13. Comparison of caudal tramadol versus caudal fentanyl with bupivacaine for prolongation of postoperative analgesia in pediatric patients.

    PubMed

    Solanki, N M; Engineer, S R; Jansari, D B; Patel, R J

    2016-01-01

    Caudal block is a common technique for pediatric analgesia for infraumblical surgeries. Because of the short duration of analgesia with bupivacaine alone various additive have been used to prolong the action of bupivacaine. The present study was aimed to evaluate the analgesic effect of tramadol or fentanyl added to bupivacaine for infraumblical surgeries in pediatric patients. We conducted a prospective, randomized, single-blind controlled trial. After written informed consent from parents, 100 patients belonging to American Society of Anesthesiologist physical status I-II, in the age group of 1-12 years, of either sex undergoing infraumblical surgery under general anesthesia were divided into two groups. Group BT received 1 ml/kg of 0.25% bupivacaine with tramadol 2 mg/kg in normal saline and Group BF received 1 ml/kg of 0.25% bupivacaine with fentanyl 2 μg/kg in normal saline with maximum volume of 12 ml in both groups. All patients were assessed intraoperatively for hemodynamic changes, the requirement of sevoflurane concentration, as well as postoperatively for pain by using FLACC (F = Face, L = Leg, A = Activity, C = Cry, C = Consolability), pain score and for sedation by using four point sedation score. The mean duration of analgesia was 10-18 h in Group BT while in Group BF it was 7-11 h. The postoperatively period up to 1½ h, Group BF had higher sedation score up to two as compared to that below one on Group BT. Caudal tramadol significantly prolongs the duration of analgesia as compared to caudal fentanyl without any side effects.

  14. Stochastic, adaptive sampling of information by microvilli in fly photoreceptors.

    PubMed

    Song, Zhuoyi; Postma, Marten; Billings, Stephen A; Coca, Daniel; Hardie, Roger C; Juusola, Mikko

    2012-08-07

    In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (~100-200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina

    PubMed Central

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726

  16. Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors

    PubMed Central

    Song, Zhuoyi; Postma, Marten; Billings, Stephen A.; Coca, Daniel; Hardie, Roger C.; Juusola, Mikko

    2012-01-01

    Summary Background In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. Results We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (∼100–200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. Conclusions These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. PMID:22704990

  17. Photoreceptor perturbation around subretinal drusenoid deposits revealed by adaptive optics scanning laser ophthalmoscopy

    PubMed Central

    Zhang, Yuhua; Wang, Xiaolin; Rivero, Ernesto Blanco; Clark, Mark E; Witherspoon, Clark Douglas; Spaide, Richard F; Girkin, Christopher A.; Owsley, Cynthia; Curcio, Christine A.

    2014-01-01

    Purpose To describe the microscopic structure of photoreceptors impacted by subretinal drusenoid deposits, also called pseudodrusen, an extracellular lesion associated with age-related macular degeneration (AMD), using adaptive optics scanning laser ophthalmoscopy (AOSLO). Design Observational case series. Methods Fifty-three patients with AMD and 10 age-similar subjects in normal retinal health were recruited. All subjects underwent color fundus photography, infrared reflectance, red-free reflectance, autofluorescence, and spectral-domain optical coherence tomography (SD-OCT). Subretinal drusenoid deposits were classified with a 3-stage OCT-based grading system. Lesions and surrounding photoreceptors were examined with AOSLO. Results Subretinal drusenoid deposits were found in 26 eyes of 13 patients with AMD and imaged by AOSLO and SD-OCT in 18 eyes (n=342 lesions). SD-OCT showed subretinal drusenoid deposits as highly reflective material accumulated internal to the retinal pigment epithelium. AOSLO revealed that photoreceptor reflectivity was qualitatively reduced by stage 1 subretinal drusenoid deposits and greatly reduced by stage 2. AOSLO presented a distinct structure in stage 3, a hyporeflective annulus consisting of deflected, degenerated or absent photoreceptors. A central core with a reflectivity superficially resembling photoreceptors is formed by the lesion material itself. A hyporeflective gap in the photoreceptor ellipsoid zone on either side of this core shown in SD-OCT corresponded to the hyporeflective annulus seen by AOSLO. Conclusions AOSLO and multimodal imaging of subretinal drusenoid deposits indicate solid, space filling lesions in the subretinal space. Associated retinal reflectivity changes are related to lesion stages and are consistent with perturbations to photoreceptors, as suggested by histology. PMID:24907433

  18. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution.

    PubMed

    Musser, Jacob M; Arendt, Detlev

    2017-11-01

    Ciliary photoreceptors are a diverse cell type family that comprises the rods and cones of the retina and other related cell types such as pineal photoreceptors. Ciliary photoreceptor evolution has been dynamic during vertebrate evolution with numerous gains and losses of opsin and phototransduction genes, and changes in their expression. For example, early mammals lost all but two cone opsins, indicating loss of cone receptor types in response to nocturnal lifestyle. Our review focuses on the comparison of specifying transcription factors and cell type-specific transcriptome data in vertebrate retinae to build and test hypotheses on ciliary photoreceptor evolution. Regarding cones, recent data reveal that a combination of factors specific for long-wavelength sensitive opsin (Lws)- cones in non-mammalian vertebrates (Thrb and Rxrg) is found across all differentiating cone photoreceptors in mice. This suggests that mammalian ancestors lost all but one ancestral cone type, the Lws-cone. We test this hypothesis by a correlation analysis of cone transcriptomes in mouse and chick, and find that, indeed, transcriptomes of all mouse cones are most highly correlated to avian Lws-cones. These findings underscore the importance of specifying transcription factors in tracking cell type evolution, and shed new light on the mechanisms of cell type loss and gain in retina evolution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives.

    PubMed

    Vogt, Gunter

    2018-03-01

    In the last 15 years, considerable attempts have been undertaken to develop the obligately parthenogenetic marbled crayfish Procambarus virginalis as a new model in biology. Its main advantage is the production of large numbers of offspring that are genetically identical to the mother, making this crustacean particularly suitable for research in epigenetics. Now, a draft genome, transcriptome and genome-wide methylome are available opening new windows for research. In this article, I summarize the biological advantages and genomic and epigenetic features of marbled crayfish and, based on first promising data, discuss what this new model could contribute to answering of ''big'' biological questions. Genome mining is expected to reveal new insights into the genetic specificities of decapod crustaceans, the genetic basis of arthropod reproduction, moulting and immunity, and more general topics such as the genetic underpinning of adaptation to fresh water, omnivory, biomineralization, sexual system change, behavioural variation, clonal genome evolution, and resistance to cancer. Epigenetic investigations with the marbled crayfish can help clarifying the role of epigenetic mechanisms in gene regulation, tissue specification, adult stem cell regulation, cell ageing, organ regeneration and disease susceptibility. Marbled crayfish is further suitable to elucidate the relationship between genetic and epigenetic variation, the transgenerational inheritance of epigenetic signatures and the contribution of epigenetic phenotype variation to the establishment of social hierarchies, environmental adaptation and speciation. These issues can be tackled by experiments with highly standardized laboratory lineages, comparison of differently adapted wild populations and the generation of genetically and epigenetically edited strains.

  20. Multidetector row computed tomography and ultrasound characteristics of caudal vena cava duplication in dogs.

    PubMed

    Bertolini, Giovanna; Diana, Alessia; Cipone, Mario; Drigo, Michele; Caldin, Marco

    2014-01-01

    Caudal vena cava duplication has been rarely reported in small animals. The purpose of this retrospective study was to describe characteristics of duplicated caudal vena cava in a large group of dogs. Computed tomography (CT) and ultrasound databases from two hospitals were searched for canine reports having the diagnosis "double caudal vena cava." One observer reviewed CT images for 71 dogs and two observers reviewed ultrasound images for 21 dogs. In all CT cases, the duplication comprised two vessels that were bilaterally symmetrical and approximately the same calibre (similar to Type I complete duplication in humans). In all ultrasound cases, the duplicated caudal vena cava appeared as a distinct vessel running on the left side of the abdominal segment of the descending aorta and extending from the left common iliac vein to the left renal vein. The prevalence of caudal vena cava duplication was 0.46% for canine ultrasound studies and 2.08% for canine CT studies performed at these hospitals. Median body weight for affected dogs was significantly lower than that of unaffected dogs (P < 0.0001). Breeds with increased risk for duplicated caudal vena cava were Yorkshire Terrier (odds ratio [OR] = 6.41), Poodle (OR = 7.46), West Highland White Terrier (OR = 6.33), and Maltese (OR = 3.87). Presence of a duplicated caudal vena cava was significantly associated with presence of extrahepatic portosystemic shunt(s) (P < 0.004). While uncommon in dogs, caudal vena cava duplication should be differentiated from other vascular anomalies when planning surgeries and for avoiding misdiagnoses. © 2014 American College of Veterinary Radiology.

  1. Diverse Distributions of Extraocular Opsins in Crustaceans, Cephalopods, and Fish.

    PubMed

    Kingston, Alexandra C N; Cronin, Thomas W

    2016-11-01

    Non-visual and extraocular photoreceptors are common among animals, but current understanding linking molecular pathways to physiological function of these receptors is lacking. Opsin diversity in extraocular tissues suggests that many putative extraocular photoreceptors utilize the "visual" phototransduction pathway-the same phototransduction pathway as photoreceptors within the retina dedicated to light detection for image sensing. Here, we provide a brief overview of the current understanding of non-visual and extraocular photoreceptors, and contribute a synopsis of several novel putative extraocular photoreceptors that use both visual and non-visual phototransduction pathways. Crayfish, cephalopods, and flat fish express opsins in diverse tissues, suggesting the presence of extraocular photoreceptors. In most cases, we find that these animals use the same phototransduction pathway that is utilized in the retinas for image-formation. However, we also find the presence of non-visual phototransduction components in the skin of flounders. Our evidence suggests that extraocular photoreceptors may employ a number of phototransduction pathways that do not appear to correlate with purpose or location of the photoreceptor. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. Lrit1, a Retinal Transmembrane Protein, Regulates Selective Synapse Formation in Cone Photoreceptor Cells and Visual Acuity.

    PubMed

    Ueno, Akiko; Omori, Yoshihiro; Sugita, Yuko; Watanabe, Satoshi; Chaya, Taro; Kozuka, Takashi; Kon, Tetsuo; Yoshida, Satoyo; Matsushita, Kenji; Kuwahara, Ryusuke; Kajimura, Naoko; Okada, Yasushi; Furukawa, Takahisa

    2018-03-27

    In the vertebrate retina, cone photoreceptors play crucial roles in photopic vision by transmitting light-evoked signals to ON- and/or OFF-bipolar cells. However, the mechanisms underlying selective synapse formation in the cone photoreceptor pathway remain poorly understood. Here, we found that Lrit1, a leucine-rich transmembrane protein, localizes to the photoreceptor synaptic terminal and regulates the synaptic connection between cone photoreceptors and cone ON-bipolar cells. Lrit1-deficient retinas exhibit an aberrant morphology of cone photoreceptor pedicles, as well as an impairment of signal transmission from cone photoreceptors to cone ON-bipolar cells. Furthermore, we demonstrated that Lrit1 interacts with Frmpd2, a photoreceptor scaffold protein, and with mGluR6, an ON-bipolar cell-specific glutamate receptor. Additionally, Lrit1-null mice showed visual acuity impairments in their optokinetic responses. These results suggest that the Frmpd2-Lrit1-mGluR6 axis regulates selective synapse formation in cone photoreceptors and is essential for normal visual function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Have We Achieved a Unified Model of Photoreceptor Cell Fate Specification in Vertebrates?

    PubMed Central

    Raymond, Pamela A.

    2008-01-01

    How does a retinal progenitor choose to differentiate as a rod or a cone and, if it becomes a cone, which one of their different subtypes? The mechanisms of photoreceptor cell fate specification and differentiation have been extensively investigated in a variety of animal model systems, including human and non-human primates, rodents (mice and rats), chickens, frogs (Xenopus) and fish. It appears timely to discuss whether it is possible to synthesize the resulting information into a unified model applicable to all vertebrates. In this review we focus on several widely used experimental animal model systems to highlight differences in photoreceptor properties among species, the diversity of developmental strategies and solutions that vertebrates use to create retinas with photoreceptors that are adapted to the visual needs of their species, and the limitations of the methods currently available for the investigation of photoreceptor cell fate specification. Based on these considerations, we conclude that we are not yet ready to construct a unified model of photoreceptor cell fate specification in the developing vertebrate retina. PMID:17466954

  4. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine

    PubMed Central

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K.; Hardie, Roger C.; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1–R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1–R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1–R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons. PMID:27047343

  5. Edaravone, an ROS Scavenger, Ameliorates Photoreceptor Cell Death after Experimental Retinal Detachment

    PubMed Central

    Roh, Mi In; Murakami, Yusuke; Thanos, Aristomenis; Miller, Joan W.

    2011-01-01

    Purpose. To investigate whether edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, would be neuroprotective against photoreceptor cell death in a rat model of retinal detachment (RD). Methods. RD was induced in adult Brown Norway rats by subretinal injection of sodium hyaluronate. Edaravone (3, 5, or 10 mg/kg) or physiologic saline was administered intraperitoneally once a day until death on day 3 or 5. Oxidative stress in the retina was assessed by 4-hydroxynonenal staining or ELISA for protein carbonyl content. Photoreceptor death was assessed by TUNEL and measurement of the outer nuclear layer thickness. Western blot analysis and caspase activity assays were performed. Inflammatory cytokine secretion and inflammatory cell infiltration were evaluated by ELISA and immunostaining, respectively. Results. RD resulted in increased generation of ROS. Treatment with 5 mg/kg edaravone significantly reduced the ROS level, along with a decrease in TUNEL-positive cells in the photoreceptor layer. A caspase assay also confirmed decreased activation of caspase-3, -8, and -9 in RD treated with edaravone. The level of the antiapoptotic Bcl-2 was increased in detached retinas after edaravone treatment, whereas the levels of the stress-activated p-ERK1/2 were decreased. In addition, edaravone treatment resulted in a significant decrease in the levels of TNF-α, MCP-1, and macrophage infiltration. Conclusions. Oxidative stress plays an important role in photoreceptor cell death after RD. Edaravone treatment may aid in preventing photoreceptor cell death after RD by suppressing ROS-induced photoreceptor damage. PMID:21310909

  6. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light.

    PubMed

    Chen, Wan-Ju; Wu, Caiying; Xu, Zhenhua; Kuse, Yoshiki; Hara, Hideaki; Duh, Elia J

    2017-01-01

    Oxidative stress plays a key role in age-related macular degeneration and hereditary retinal degenerations. Light damage in rodents has been used extensively to model oxidative stress-induced photoreceptor degeneration, and photo-oxidative injury from blue light is particularly damaging to photoreceptors. The endogenous factors protecting photoreceptors from oxidative stress, including photo-oxidative stress, are continuing to be elucidated. In this study, we evaluated the effect of blue light exposure on photoreceptors and its relationship to Nrf2 using cultured murine photoreceptor (661W) cells. 661W cells were exposed to blue light at 2500 lux. Exposure to blue light for 6-24 h resulted in a significant increase in intracellular reactive oxygen species (ROS) and death of 661W cells in a time-dependent fashion. Blue light exposure resulted in activation of Nrf2, as indicated by an increase in nuclear translocation of Nrf2. This was associated with a significant induction of expression of Nrf2 as well as an array of Nrf2 target genes, including antioxidant genes, as indicated by quantitative reverse transcription PCR (qRT-PCR). In order to determine the functional role of Nrf2, siRNA-mediated knockdown studies were performed. Nrf2-knockdown in 661W cells resulted in significant exacerbation of blue light-induced reactive oxygen species levels as well as cell death. Taken together, these findings indicate that Nrf2 is an important endogenous protective factor against oxidative stress in photoreceptor cells. This suggests that drugs targeting Nrf2 could be considered as a neuroprotective strategy for photoreceptors in AMD and other retinal conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Protein modification in the post-mating spermatophore of the signal crayfish Pacifastacus leniusculus: insight into the tyrosine phosphorylation in a non-motile spermatozoon.

    PubMed

    Niksirat, Hamid; Vancová, Marie; Andersson, Liselotte; James, Peter; Kouba, Antonín; Kozák, Pavel

    2016-09-01

    After mating, spermatophores of signal crayfish are stored on the body of the female for a period before fertilization. This study compared the post-mating protein profile and pattern of protein tyrosine phosphorylation of the signal crayfish spermatophore to that of the freshly ejaculated spermatophore and found substantial differences. Two major bands of tyrosine-phosphorylated proteins of molecular weights 10 and 50kDa were observed in the freshly ejaculated spermatophore of the signal crayfish. While the tyrosine-phosphorylated protein band with molecular weight 10kDa was formed by protein(s) of similar pH, the band with molecular weight of 50kDa consisted of proteins of varying pH. In the post-mating spermatophore, the band with molecular weight of 50kDa was not detected, and an increase in the level of protein tyrosine phosphorylation was observed in the 10kDa band. The microtubular radial arms of the spermatozoon showed a positive reaction to an anti-tyrosine antibody conjugated with gold particles in both the freshly ejaculated and post-mating spermatophores. In conclusion, the male gamete of the signal crayfish undergoes molecular modification during post-mating storage on the body of the female including changes in the level of protein expression and protein tyrosine phosphorylation. Structural similarity of the radial arms in the crayfish immotile spermatozoon with flagellum, which is the main site of protein tyrosine phosphorylation in the mammalian motile spermatozoa, raises questions regarding evolution and function of such organelles across the animal kingdom that must be addressed in the future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Inhibition of caudal fin regeneration in Corydoras aeneus by lithium chloride.

    PubMed

    Zarnescu, Otilia; Stavri, Simona; Moldovan, Lucia

    2013-03-01

    In the present study we examined the effects of lithium chloride on the Corydoras aeneus caudal fin regeneration. After caudal fin amputation, the fish were exposed 3h daily to 35 mM lithium chloride for 9 days. The effects of lithium chloride treatment were evaluated by analyzing the caudal fin structure at 3, 6 and 9 days after amputation. Comparison of normal and LiCl treated fish clearly shows that regeneration of amputated caudal fins was inhibited or delayed after lithium treatment. By the third day after amputation (dpa) either no epidermal cap or blastema ever formed or the epidermal cap had an abnormal morphology in lithium treated fish. By the 3 and 6 dpa no lepidotrichial matrix deposition was observed in the lithium treated fish compared to control fish. Unlike the control fish that completely regenerate their caudal fins after 9 dpa and have fully mineralized lepidotrichia, lithium treated fish have small blastema. In some treated fish, small amounts of new lepidotrichial matrix were observed at this time, in some fin rays. Ultrastructural observations have shown differences between control and lithium treated fish. Thus, in the lithium treated fish we observed expanded intercellular spaces between epidermal cells and many apoptotic cells. Results of this study suggest the use of this model in elucidating the molecular mechanisms that are responsible for regeneration of complex structures such as fish fins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells.

    PubMed

    Mellough, Carla B; Sernagor, Evelyne; Moreno-Gimeno, Inmaculada; Steel, David H W; Lako, Majlinda

    2012-04-01

    Recent successes in the stem cell field have identified some of the key chemical and biological cues which drive photoreceptor derivation from human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC); however, the efficiency of this process is variable. We have designed a three-step photoreceptor differentiation protocol combining previously published methods that direct the differentiation of hESC and hiPSC toward a retinal lineage, which we further modified with additional supplements selected on the basis of reports from the eye field and retinal development. We report that hESC and hiPSC differentiating under our regimen over a 60 day period sequentially acquire markers associated with neural, retinal field, retinal pigmented epithelium and photoreceptor cells, including mature photoreceptor markers OPN1SW and RHODOPSIN with a higher efficiency than previously reported. In addition, we report the ability of hESC and hiPSC cultures to generate neural and retinal phenotypes under minimal culture conditions, which may be linked to their ability to endogenously upregulate the expression of a range of factors important for retinal cell type specification. However, cultures that were differentiated with full supplementation under our photoreceptor-induction regimen achieve this within a significantly shorter time frame and show a substantial increase in the expression of photoreceptor-specific markers in comparison to cultures differentiated under minimal conditions. Interestingly, cultures supplemented only with B27 and/or N2 displayed comparable differentiation efficiency to those under full supplementation, indicating a key role for B27 and N2 during the differentiation process. Furthermore, our data highlight an important role for Dkk1 and Noggin in enhancing the differentiation of hESC and hiPSC toward retinal progenitor cells and photoreceptor precursors during the early stages of differentiation, while suggesting that further

  10. Fibroblast Growth Factor 21 Protects Photoreceptor Function in Type 1 Diabetic Mice.

    PubMed

    Fu, Zhongjie; Wang, Zhongxiao; Liu, Chi-Hsiu; Gong, Yan; Cakir, Bertan; Liegl, Raffael; Sun, Ye; Meng, Steven S; Burnim, Samuel B; Arellano, Ivana; Moran, Elizabeth; Duran, Rubi; Poblete, Alexander; Cho, Steve S; Talukdar, Saswata; Akula, James D; Hellström, Ann; Smith, Lois E H

    2018-05-01

    Retinal neuronal abnormalities occur before vascular changes in diabetic retinopathy. Accumulating experimental evidence suggests that neurons control vascular pathology in diabetic and other neovascular retinal diseases. Therefore, normalizing neuronal activity in diabetes may prevent vascular pathology. We investigated whether fibroblast growth factor 21 (FGF21) prevented retinal neuronal dysfunction in insulin-deficient diabetic mice. We found that in diabetic neural retina, photoreceptor rather than inner retinal function was most affected and administration of the long-acting FGF21 analog PF-05231023 restored the retinal neuronal functional deficits detected by electroretinography. PF-05231023 administration protected against diabetes-induced disorganization of photoreceptor segments seen in retinal cross section with immunohistochemistry and attenuated the reduction in the thickness of photoreceptor segments measured by optical coherence tomography. PF-05231023, independent of its downstream metabolic modulator adiponectin, reduced inflammatory marker interleukin-1β (IL-1β) mRNA levels. PF-05231023 activated the AKT-nuclear factor erythroid 2-related factor 2 pathway and reduced IL-1β expression in stressed photoreceptors. PF-05231023 administration did not change retinal expression of vascular endothelial growth factor A, suggesting a novel therapeutic approach for the prevention of early diabetic retinopathy by protecting photoreceptor function in diabetes. © 2018 by the American Diabetes Association.

  11. Signal coding in cockroach photoreceptors is tuned to dim environments.

    PubMed

    Heimonen, K; Immonen, E-V; Frolov, R V; Salmela, I; Juusola, M; Vähäsöyrinki, M; Weckström, M

    2012-11-01

    In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach (Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ~20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ~5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ~100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.

  12. Correlation between photoreceptor injury-regeneration and behavior in a zebrafish model.

    PubMed

    Wang, Ya-Jie; Cai, Shi-Jiao; Cui, Jian-Lin; Chen, Yang; Tang, Xin; Li, Yu-Hao

    2017-05-01

    Direct exposure to intensive visible light can lead to solar retinopathy, including macular injury. The signs and symptoms include central scotoma, metamorphopsia, and decreased vision. However, there have been few studies examining retinal injury due to intensive light stimulation at the cellular level. Neural network arrangements and gene expression patterns in zebrafish photoreceptors are similar to those observed in humans, and photoreceptor injury in zebrafish can induce stem cell-based cellular regeneration. Therefore, the zebrafish retina is considered a useful model for studying photoreceptor injury in humans. In the current study, the central retinal photoreceptors of zebrafish were selectively ablated by stimulation with high-intensity light. Retinal injury, cell proliferation and regeneration of cones and rods were assessed at 1, 3 and 7 days post lesion with immunohistochemistry and in situ hybridization. Additionally, a light/dark box test was used to assess zebrafish behavior. The results revealed that photoreceptors were regenerated by 7 days after the light-induced injury. However, the regenerated cells showed a disrupted arrangement at the lesion site. During the injury-regeneration process, the zebrafish exhibited reduced locomotor capacity, weakened phototaxis and increased movement angular velocity. These behaviors matched the morphological changes of retinal injury and regeneration in a number of ways. This study demonstrates that the zebrafish retina has a robust capacity for regeneration. Visual impairment and stress responses following high-intensity light stimulation appear to contribute to the alteration of behaviors.

  13. Chemically induced and light-independent cryptochrome photoreceptor activation.

    PubMed

    Rosenfeldt, Gesa; Viana, Rafael Muñoz; Mootz, Henning D; von Arnim, Albrecht G; Batschauer, Alfred

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  14. Fishes, mussels, crayfishes, and aquatic habitats of the Hoosier-Shawnee ecological assessment area

    Treesearch

    M. Burr Brooks; Justin T. Sipiorski; Matthew R. Thomas; Kevin S. Cummings; Christopher A. Taylor

    2004-01-01

    The Hoosier-Shawnee Ecological Assessment Area, part of the Coastal Plain and Interior Low Plateau physiographic provinces, includes 194 native fish species, 76 native mussel species, and 34 native crayfish species. Five of the subregions (e.g., Mississippi Embayment) that make up the assessment area were recently ranked as either globally or bioregionally outstanding...

  15. Comparison of caudal tramadol versus caudal fentanyl with bupivacaine for prolongation of postoperative analgesia in pediatric patients

    PubMed Central

    Solanki, NM; Engineer, SR; Jansari, DB; Patel, RJ

    2016-01-01

    Background and Aims: Caudal block is a common technique for pediatric analgesia for infraumblical surgeries. Because of the short duration of analgesia with bupivacaine alone various additive have been used to prolong the action of bupivacaine. The present study was aimed to evaluate the analgesic effect of tramadol or fentanyl added to bupivacaine for infraumblical surgeries in pediatric patients. Materials and Methods: We conducted a prospective, randomized, single-blind controlled trial. After written informed consent from parents, 100 patients belonging to American Society of Anesthesiologist physical status I-II, in the age group of 1-12 years, of either sex undergoing infraumblical surgery under general anesthesia were divided into two groups. Group BT received 1 ml/kg of 0.25% bupivacaine with tramadol 2 mg/kg in normal saline and Group BF received 1 ml/kg of 0.25% bupivacaine with fentanyl 2 μg/kg in normal saline with maximum volume of 12 ml in both groups. All patients were assessed intraoperatively for hemodynamic changes, the requirement of sevoflurane concentration, as well as postoperatively for pain by using FLACC (F = Face, L = Leg, A = Activity, C = Cry, C = Consolability), pain score and for sedation by using four point sedation score. Results: The mean duration of analgesia was 10–18 h in Group BT while in Group BF it was 7-11 h. The postoperatively period up to 1½ h, Group BF had higher sedation score up to two as compared to that below one on Group BT. Conclusion: Caudal tramadol significantly prolongs the duration of analgesia as compared to caudal fentanyl without any side effects. PMID:27051365

  16. Convergent synaptic inputs from the caudal fastigial nucleus and the superior colliculus onto pontine and pontomedullary reticulospinal neurons.

    PubMed

    Takahashi, Mayu; Sugiuchi, Yuriko; Shinoda, Yoshikazu

    2014-02-01

    The caudal fastigial nucleus (FN) is known to be related to the control of eye movements and projects mainly to the contralateral reticular nuclei where excitatory and inhibitory burst neurons for saccades exist [the caudal portion of the nucleus reticularis pontis caudalis (NRPc), and the rostral portion of the nucleus reticularis gigantocellularis (NRG) respectively]. However, the exact reticular neurons targeted by caudal fastigioreticular cells remain unknown. We tried to determine the target reticular neurons of the caudal FN and superior colliculus (SC) by recording intracellular potentials from neurons in the NRPc and NRG of anesthetized cats. Neurons in the rostral NRG received bilateral, monosynaptic excitation from the caudal FNs, with contralateral predominance. They also received strong monosynaptic excitation from the rostral and caudal contralateral SC, and disynaptic excitation from the rostral ipsilateral SC. These reticular neurons with caudal fastigial monosynaptic excitation were not activated antidromically from the contralateral abducens nucleus, but most of them were reticulospinal neurons (RSNs) that were activated antidromically from the cervical cord. RSNs in the caudal NRPc received very weak monosynaptic excitation from only the contralateral caudal FN, and received either monosynaptic excitation only from the contralateral caudal SC, or monosynaptic and disynaptic excitation from the contralateral caudal and ipsilateral rostral SC, respectively. These results suggest that the caudal FN helps to control also head movements via RSNs targeted by the SC, and these RSNs with SC topographic input play different functional roles in head movements.

  17. Presynaptic dystroglycan-pikachurin complex regulates the proper synaptic connection between retinal photoreceptor and bipolar cells.

    PubMed

    Omori, Yoshihiro; Araki, Fumiyuki; Chaya, Taro; Kajimura, Naoko; Irie, Shoichi; Terada, Koji; Muranishi, Yuki; Tsujii, Toshinori; Ueno, Shinji; Koyasu, Toshiyuki; Tamaki, Yasuhiro; Kondo, Mineo; Amano, Shiro; Furukawa, Takahisa

    2012-05-02

    Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex (DGC) at the neuromuscular junction postsynapse. In the mouse retina, the DGC is localized at the presynapse of photoreceptor cells, however, the function of presynaptic DGC is poorly understood. Here, we developed and analyzed retinal photoreceptor-specific DG conditional knock-out (DG CKO) mice. We found that the DG CKO retina showed a reduced amplitude and a prolonged implicit time of the ERG b-wave. Electron microscopic analysis revealed that bipolar dendrite invagination into the photoreceptor terminus is perturbed in the DG CKO retina. In the DG CKO retina, pikachurin, a DG ligand in the retina, is markedly decreased at photoreceptor synapses. Interestingly, in the Pikachurin(-/-) retina, the DG signal at the ribbon synaptic terminus was severely reduced, suggesting that pikachurin is required for the presynaptic accumulation of DG at the photoreceptor synaptic terminus, and conversely DG is required for pikachurin accumulation. Furthermore, we found that overexpression of pikachurin induces formation and clustering of a DG-pikachurin complex on the cell surface. The Laminin G repeats of pikachurin, which are critical for its oligomerization and interaction with DG, were essential for the clustering of the DG-pikachurin complex as well. These results suggest that oligomerization of pikachurin and its interaction with DG causes DG assembly on the synapse surface of the photoreceptor synaptic terminals. Our results reveal that the presynaptic interaction of pikachurin with DG at photoreceptor terminals is essential for both the formation of proper photoreceptor ribbon synaptic structures and normal retinal electrophysiology.

  18. Using electroretinograms and multi-model inference to identify spectral classes of photoreceptors and relative opsin expression levels

    PubMed Central

    2017-01-01

    Understanding how individual photoreceptor cells factor in the spectral sensitivity of a visual system is essential to explain how they contribute to the visual ecology of the animal in question. Existing methods that model the absorption of visual pigments use templates which correspond closely to data from thin cross-sections of photoreceptor cells. However, few modeling approaches use a single framework to incorporate physical parameters of real photoreceptors, which can be fused, and can form vertical tiers. Akaike’s information criterion (AICc) was used here to select absorptance models of multiple classes of photoreceptor cells that maximize information, given visual system spectral sensitivity data obtained using extracellular electroretinograms and structural parameters obtained by histological methods. This framework was first used to select among alternative hypotheses of photoreceptor number. It identified spectral classes from a range of dark-adapted visual systems which have between one and four spectral photoreceptor classes. These were the velvet worm, Principapillatus hitoyensis, the branchiopod water flea, Daphnia magna, normal humans, and humans with enhanced S-cone syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression. Data from the Asian swallowtail, Papilio xuthus, which has at least five main spectral photoreceptor classes in its compound eyes, were included to illustrate potential effects of model over-simplification on multi-model inference. The multi-model framework was then used with parameters of spectral photoreceptor classes and the structural photoreceptor array kept constant. The goal was to map relative opsin expression to visual pigment concentration. It identified relative opsin expression differences for two populations of the bluefin killifish, Lucania goodei. The modeling approach presented here will be useful in selecting the most likely

  19. Using electroretinograms and multi-model inference to identify spectral classes of photoreceptors and relative opsin expression levels.

    PubMed

    Lessios, Nicolas

    2017-01-01

    Understanding how individual photoreceptor cells factor in the spectral sensitivity of a visual system is essential to explain how they contribute to the visual ecology of the animal in question. Existing methods that model the absorption of visual pigments use templates which correspond closely to data from thin cross-sections of photoreceptor cells. However, few modeling approaches use a single framework to incorporate physical parameters of real photoreceptors, which can be fused, and can form vertical tiers. Akaike's information criterion (AIC c ) was used here to select absorptance models of multiple classes of photoreceptor cells that maximize information, given visual system spectral sensitivity data obtained using extracellular electroretinograms and structural parameters obtained by histological methods. This framework was first used to select among alternative hypotheses of photoreceptor number. It identified spectral classes from a range of dark-adapted visual systems which have between one and four spectral photoreceptor classes. These were the velvet worm, Principapillatus hitoyensis , the branchiopod water flea, Daphnia magna , normal humans, and humans with enhanced S-cone syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression. Data from the Asian swallowtail, Papilio xuthus , which has at least five main spectral photoreceptor classes in its compound eyes, were included to illustrate potential effects of model over-simplification on multi-model inference. The multi-model framework was then used with parameters of spectral photoreceptor classes and the structural photoreceptor array kept constant. The goal was to map relative opsin expression to visual pigment concentration. It identified relative opsin expression differences for two populations of the bluefin killifish, Lucania goodei . The modeling approach presented here will be useful in selecting the most

  20. Note: Dynamic analysis of a robotic fish motion with a caudal fin with vertical phase differences

    NASA Astrophysics Data System (ADS)

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghwi

    2013-03-01

    In this paper, a robotic fish with a caudal fin with vertical phase differences is studied, especially focusing on the energy consumption. Energies for thrusting a conventional robotic fish and one with caudal fin with vertical phase differences are obtained and compared each other. It is shown that a robotic fish with a caudal fin with vertical phase differences can save more energy, which implies the efficient thrusting via a vertically waving caudal fin.

  1. Evolution of phototransduction, vertebrate photoreceptors and retina.

    PubMed

    Lamb, Trevor D

    2013-09-01

    Evidence is reviewed from a wide range of studies relevant to the evolution of vertebrate photoreceptors and phototransduction, in order to permit the synthesis of a scenario for the major steps that occurred during the evolution of cones, rods and the vertebrate retina. The ancestral opsin originated more than 700 Mya (million years ago) and duplicated to form three branches before cnidarians diverged from our own lineage. During chordate evolution, ciliary opsins (C-opsins) underwent multiple stages of improvement, giving rise to the 'bleaching' opsins that characterise cones and rods. Prior to the '2R' rounds of whole genome duplication near the base of the vertebrate lineage, 'cone' photoreceptors already existed; they possessed a transduction cascade essentially the same as in modern cones, along with two classes of opsin: SWS and LWS (short- and long-wave-sensitive). These cones appear to have made synaptic contact directly onto ganglion cells, in a two-layered retina that resembled the pineal organ of extant non-mammalian vertebrates. Interestingly, those ganglion cells appear to be descendants of microvillar photoreceptor cells. No lens was associated with this two-layered retina, and it is likely to have mediated circadian timing rather than spatial vision. Subsequently, retinal bipolar cells evolved, as variants of ciliary photoreceptors, and greatly increased the computational power of the retina. With the advent of a lens and extraocular muscles, spatial imaging information became available for central processing, and gave rise to vision in vertebrates more than 500 Mya. The '2R' genome duplications permitted the refinement of cascade components suitable for both rods and cones, and also led to the emergence of five visual opsins. The exact timing of the emergence of 'true rods' is not yet clear, but it may not have occurred until after the divergence of jawed and jawless vertebrates. Copyright © 2013 The Author. Published by Elsevier Ltd.. All

  2. Photoreceptor Cells With Profound Structural Deficits Can Support Useful Vision in Mice

    PubMed Central

    Thompson, Stewart; Blodi, Frederick R.; Lee, Swan; Welder, Chris R.; Mullins, Robert F.; Tucker, Budd A.; Stasheff, Steven F.; Stone, Edwin M.

    2014-01-01

    Purpose. In animal models of degenerative photoreceptor disease, there has been some success in restoring photoreception by transplanting stem cell–derived photoreceptor cells into the subretinal space. However, only a small proportion of transplanted cells develop extended outer segments, considered critical for photoreceptor cell function. The purpose of this study was to determine whether photoreceptor cells that lack a fully formed outer segment could usefully contribute to vision. Methods. Retinal and visual function was tested in wild-type and Rds mice at 90 days of age (RdsP90). Photoreceptor cells of mice homozygous for the Rds mutation in peripherin 2 never develop a fully formed outer segment. The electroretinogram and multielectrode recording of retinal ganglion cells were used to test retinal responses to light. Three distinct visual behaviors were used to assess visual capabilities: the optokinetic tracking response, the discrimination-based visual water task, and a measure of the effect of vision on wheel running. Results. RdsP90 mice had reduced but measurable electroretinogram responses to light, and exhibited light-evoked responses in multiple types of retinal ganglion cells, the output neurons of the retina. In optokinetic and discrimination-based tests, acuity was measurable but reduced, most notably when contrast was decreased. The wheel running test showed that RdsP90 mice needed 3 log units brighter luminance than wild type to support useful vision (10 cd/m2). Conclusions. Photoreceptors that lack fully formed outer segments can support useful vision. This challenges the idea that normal cellular structure needs to be completely reproduced for transplanted cells to contribute to useful vision. PMID:24569582

  3. Differentiation of Swine iPSC into Rod Photoreceptors and Their Integration into the Retina

    PubMed Central

    Zhou, Liang; Wang, Wei; Liu, Yongqing; de Castro, Juan Fernandez; Ezashi, Toshihiko; Telugu, Bhanu Prakash V.L.; Roberts, R. Michael; Kaplan, Henry J.; Dean, Douglas C.

    2014-01-01

    Absence of a regenerative pathway for damaged retina following injury or disease has led to experiments utilizing stem cell transplantation for retinal repair, and encouraging results have been obtained in rodents. The swine eye is a closer anatomical and physiological match to the human eye, but embryonic stem cells have not been isolated from pig, and photoreceptor differentiation has not been demonstrated with swine induced pluripotent stem cells (iPSC). Here, we subjected swine iPSC to a rod photoreceptor differentiation protocol consisting of floating culture as embryoid bodies followed by differentiation in adherent culture. Real time PCR and immunostaining of differentiated cells demonstrated loss of expression of the pluripotent genes POU5F1, NANOG and SOX2 and induction of rod photoreceptor genes RCVRN, NRL, RHO and ROM1. While these differentiated cells displayed neuronal morphology, culturing on a Matrigel substratum triggered a further morphological change resulting in concentration of RHO and ROM1 in outer segment-like projections resembling those on primary cultures of rod photoreceptors. The differentiated cells were transplanted into the subretinal space of pigs treated with iodoacetic acid to eliminate rod photoreceptors. Three weeks after transplantation, engrafted RHO+ cells were evident in the outer nuclear layer where photoreceptors normally reside. A portion of these transplanted cells had generated projections resembling outer segments. These results demonstrate that swine iPSC can differentiate into photoreceptors in culture and these cells can integrate into the damaged swine neural retina thus laying a foundation for future studies using the pig as a model for retinal stem cell transplantation. PMID:21491544

  4. Persistent regurgitation in four dogs with caudal esophageal neoplasia.

    PubMed

    Arnell, Katharine; Hill, Steve; Hart, John; Richter, Keith

    2013-01-01

    Esophageal neoplasia is an uncommon, but important, consideration for acute and chronic regurgitation and megaesophagus in dogs. The diagnosis can be challenging, and treatment options are often limited. This case series describes four dogs with regurgitation secondary to caudal esophageal masses. All dogs presented with regurgitation, and three of the four dogs had radiographically apparent megaesophagus. In all dogs, ancillary diagnostics revealed the presence of a caudal esophageal mass resulting in esophageal obstruction, and all mass lesions were histopathologically confirmed to be neoplastic. Treatment responses were variable, with one dog still alive 37 mo postdiagnosis at the time of manuscript preparation.

  5. Crayfish Self-Administer Amphetamine in a Spatially Contingent Task.

    PubMed

    Datta, Udita; van Staaden, Moira; Huber, Robert

    2018-01-01

    Natural reward is an essential element of any organism's ability to adapt to environmental variation. Its underlying circuits and mechanisms guide the learning process as they help associate an event, or cue, with the perception of an outcome's value. More generally, natural reward serves as the fundamental generator of all motivated behavior. Addictive plant alkaloids are able to activate this circuitry in taxa ranging from planaria to humans. With modularly organized nervous systems and confirmed vulnerabilities to human drugs of abuse, crayfish have recently emerged as a compelling model for the study of the addiction cycle, including psychostimulant effects, sensitization, withdrawal, reinstatement, and drug reward in conditioned place preference paradigms. Here we extend this work with the demonstration of a spatially contingent, operant drug self-administration paradigm for amphetamine. When the animal enters a quadrant of the arena with a particular textured substrate, a computer-based control system delivers amphetamine through an indwelling fine-bore cannula. Resulting reward strength, dose-response, and the time course of operant conditioning were assessed. Individuals experiencing the drug contingent on their behavior, displayed enhanced rates of operant responses compared to that of their yoked (non-contingent) counterparts. Application of amphetamine near the supra-esophageal ganglion elicited stronger and more robust increases in operant responding than did systemic infusions. This work demonstrates automated implementation of a spatially contingent self-administration paradigm in crayfish, which provides a powerful tool to explore comparative perspectives in drug-sensitive reward, the mechanisms of learning underlying the addictive cycle, and phylogenetically conserved vulnerabilities to psychostimulant compounds.

  6. Crayfish Self-Administer Amphetamine in a Spatially Contingent Task

    PubMed Central

    Datta, Udita; van Staaden, Moira; Huber, Robert

    2018-01-01

    Natural reward is an essential element of any organism’s ability to adapt to environmental variation. Its underlying circuits and mechanisms guide the learning process as they help associate an event, or cue, with the perception of an outcome’s value. More generally, natural reward serves as the fundamental generator of all motivated behavior. Addictive plant alkaloids are able to activate this circuitry in taxa ranging from planaria to humans. With modularly organized nervous systems and confirmed vulnerabilities to human drugs of abuse, crayfish have recently emerged as a compelling model for the study of the addiction cycle, including psychostimulant effects, sensitization, withdrawal, reinstatement, and drug reward in conditioned place preference paradigms. Here we extend this work with the demonstration of a spatially contingent, operant drug self-administration paradigm for amphetamine. When the animal enters a quadrant of the arena with a particular textured substrate, a computer-based control system delivers amphetamine through an indwelling fine-bore cannula. Resulting reward strength, dose-response, and the time course of operant conditioning were assessed. Individuals experiencing the drug contingent on their behavior, displayed enhanced rates of operant responses compared to that of their yoked (non-contingent) counterparts. Application of amphetamine near the supra-esophageal ganglion elicited stronger and more robust increases in operant responding than did systemic infusions. This work demonstrates automated implementation of a spatially contingent self-administration paradigm in crayfish, which provides a powerful tool to explore comparative perspectives in drug-sensitive reward, the mechanisms of learning underlying the addictive cycle, and phylogenetically conserved vulnerabilities to psychostimulant compounds.

  7. Morphology of the caudal spinal cord in Rana (Ranidae) and Xenopus (Pipidae) tadpoles.

    PubMed

    Nishikawa, K; Wassersug, R

    1988-03-08

    Using a variety of neuroanatomical and histological techniques, we compare the spinal cord and peripheral nerve distribution in the tails of larvae from Xenopus laevis and three species of Rana. The relatively large, postsacral spinal cord of Xenopus contains abundant motoneurons and their axons. Spinal nerves exit from the spinal cord in a regular array, one nerve per myotome, from the cervical region to near the end of the tail. Somata of motoneurons innervating caudal myotomes are found along the entire length of the tail. In contrast, the caudal cord of Rana is reduced to a filum terminale consisting of little more than an ependymal tube; spinal nerves to all caudal myotomes leave the cord in the sacral region and reach their motor targets via a cauda equina and caudal plexus. Motoneuron cell bodies innervating caudal myotomes are found only in the sacral region. The Rana larval pattern is similar to that of adult frogs and mammals, whereas the Xenopus larval pattern is more like that of salamanders and reptiles. These gross neuroanatomical differences are not due to differences in the size or developmental stage of the tadpoles, but instead are associated with differences in the swimming behavior of the larvae. The presence of motoneurons in the caudal spinal cord of Xenopus may provide local intermyotomal control within the tail; the elongated topography of the cord appears to permit finer, rostral-to-caudal regulation of neuromuscular activity. The Rana spinal cord, on the other hand--with motoneurons clustered anteriorly--may produce concurrent firing of adjacent ipsilateral myotomes, but at the expense of fine intermyotomal regulation. The fact that nerves in the tail of Xenopus enter and exit from the spinal cord locally, as opposed to far anteriorly as in Rana, means that for tadpoles of the same size, reflex arc lengths are many times shorter in Xenopus.

  8. Biochemical response of crayfish Astacus leptodactylus exposed to textile wastewater treated by indigenous white rot fungus Coriolus versicolor.

    PubMed

    Aksu, Onder; Yildirim, Nuran Cikcikoglu; Yildirim, Numan; Danabas, Durali; Danabas, Seval

    2015-02-01

    The discharge of textile effluents into the environment without appropriate treatment poses a serious threat for the aquatic organisms. The present study was undertaken to investigate biochemical response of crayfish Astacus leptodactylus exposed to textile wastewater (TW) treated by indigenous white rot fungus Coriolus versicolor. Glutathione S-transferase (GST), cytochrome P450 1A1 (CYP1A1), and acetylcholinesterase (AchE) levels in hepatopancreas and abdomen tissues of crayfish exposed to untreated, treated, and diluted rates (1/10) in both TW during 24 and 96 h were tested. Physiochemical parameters (electrical conductivity (EC), chemical oxygen demand (COD), pH, and total dissolved solid (TDS)) of TW were determined before and after treatment. Physiochemical parameters of TW decreased after treatment. The GST activity and AchE were generally increased, but CYP1A1 activity was decreased in hepatopancreas tissue of crayfish exposed to different kinds of untreated TW. After treatment by indigenous white rot fungus (C. versicolor), GST and CYP1A1 activities were returned to control values, while AchE activities were increasing further. In this study, only GST and CYP1A1 activities of A. leptodactylus confirmed the efficiency of TW treatment with C. versicolor.

  9. Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asteriti, Sabrina; Dal Cortivo, Giuditta; Pontelli, Valeria

    2015-06-12

    The potential of liposomes to deliver functional proteins in retinal photoreceptors and modulate their physiological response was investigated by two experimental approaches. First, we treated isolated mouse retinas with liposomes encapsulating either recoverin, an important endogenous protein operating in visual phototransduction, or antibodies against recoverin. We then intravitrally injected in vivo liposomes encapsulating either rhodamin B or recoverin and we investigated the distribution in retina sections by confocal microscopy. The content of liposomes was found to be released in higher amount in the photoreceptor layer than in the other regions of the retina and the functional effects of the release weremore » in line with the current model of phototransduction. Our study sets the basis for quantitative investigations aimed at assessing the potential of intraocular protein delivery via biocompatible nanovesicles, with promising implications for the treatment of retinal diseases affecting the photoreceptor layer. - Highlights: • Recombinant proteins encapsulated in nano-sized liposomes injected intravitreally reach retinal photoreceptors. • The phototransduction cascade in rods is modulated by the liposome content. • Mathematical modeling predicts the alteration of the photoresponses following liposome fusion.« less

  10. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    PubMed

    Arcinue, Cheryl A; Bartsch, Dirk-Uwe; El-Emam, Sharif Y; Ma, Feiyan; Doede, Aubrey; Sharpsten, Lucie; Gomez, Maria Laura; Freeman, William R

    2015-01-01

    To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula) compared with age-matched HIV-negative controls. Cohort of patients with known HIV under CART (combination Antiretroviral Therapy) treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT) to assess retinal layers and retinal thickness. Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative) were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior), the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2). A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative) was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea). We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer) was also significantly thickened in all the different locations scanned compared with HIV-negative controls. Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  11. Chronic Alterations in Serotonin Function: Dynamic Neurochemical Properties in Agonistic Behavior of the Crayfish, Orconectes rusticus

    PubMed Central

    Panksepp, Jules B.; Huber, Robert

    2016-01-01

    The biogenic amine serotonin [5-hydroxytryptamine (5-HT)] has received considerable attention for its role in behavioral phenomena throughout a broad range of invertebrate and vertebrate taxa. Acute 5-HT infusion decreases the likelihood of crayfish to retreat from dominant opponents. The present study reports the biochemical and behavioral effects resulting from chronic treatment with 5-HT-modifying compounds delivered for up to 5 weeks via silastic tube implants. High performance liquid chromatography with electrochemical detection (HPLC-ED) confirmed that 5,7-dihydroxytryptamine (5,7-DHT) effectively reduced 5-HT in all central nervous system (CNS) areas, except brain, while a concurrent accumulation of the compound was observed in all tissues analyzed. Unexpectedly, two different rates of chronic 5-HT treatment did not increase levels of the amine in the CNS. Behaviorally, 5,7-DHT treated crayfish exhibited no significant differences in measures of aggression. Although treatment with 5-HT did not elevate 5-HT content in the CNS, infusion at a slow rate caused animals to escalate more quickly while 5-HT treatment at a faster rate resulted in slower escalation. 5,7-DHT is commonly used in behavioral pharmacology and the present findings suggest its biochemical properties should be more thoroughly examined. Moreover, the apparent presence of powerful compensatory mechanisms indicates our need to adopt an increasingly dynamic view of the serotonergic bases of behavior like crayfish aggression. PMID:11891663

  12. Physical insight into light scattering by photoreceptor cell nuclei.

    PubMed

    Kreysing, Moritz; Boyde, Lars; Guck, Jochen; Chalut, Kevin J

    2010-08-01

    A recent study showed that the rod photoreceptor cell nuclei in the retina of nocturnal and diurnal mammals differ considerably in architecture: the location of euchromatin and heterochromatin in the nucleus is interchanged. This inversion has significant implications for the refractive index distribution and the light scattering properties of the nucleus. Here, we extend previous two-dimensional analysis to three dimensions (3D) by using both a numerical finite-difference time-domain and an analytic Mie theory approach. We find that the specific arrangement of the chromatin phases in the nuclear core-shell models employed have little impact on the far-field scattering cross section. However, scattering in the near field, which is the relevant regime inside the retina, shows a significant difference between the two architectures. The "inverted" photoreceptor cell nuclei of nocturnal mammals act as collection lenses, with the lensing effect being much more pronounced in 3D than in two dimensions. This lensing helps to deliver light efficiently to the light-sensing outer segments of the rod photoreceptor cells and thereby improve night vision.

  13. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina.

    PubMed

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro; Furukawa, Takahisa

    2015-08-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina

    PubMed Central

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro

    2015-01-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. PMID:25986607

  15. A FRAP-Based Method for Monitoring Molecular Transport in Ciliary Photoreceptor Cells In Vivo.

    PubMed

    Wunderlich, Kirsten A; Wolfrum, Uwe

    2016-01-01

    The outer segment of rod and cone photoreceptor cells represents a highly modified primary sensory cilium. It renews on a daily basis throughout lifetime and effective vectorial transport to the cilium is essential for the maintenance of the photoreceptor cell function. Defects in molecules of transport modules lead to severe retinal ciliopathies. We have recently established a fluorescence recovery after photobleaching (FRAP)-based method to monitor molecular trafficking in living rodent photoreceptor cells. We irreversibly bleach the fluorescence of tagged molecules (e.g. eGFP-Rhodopsin) in photoreceptor cells of native vibratome sections through the retina by high laser intensity. In the laser scanning microscope, the recovery of the fluorescent signal is monitored over time and the kinetics of movements of molecules can be quantitatively ascertained.

  16. Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.

    PubMed

    Espinoza Orías, Alejandro A; Malhotra, Neil R; Elliott, Dawn M

    2009-03-01

    Rat models with altered loading are used to study disc degeneration and mechano-transduction. Given the prominent role of mechanics in disc function and degeneration, it is critical to measure mechanical behavior to evaluate changes after model interventions. Axial compression mechanics of the rat disc are representative of the human disc when normalized by geometry, and differences between the lumbar and caudal disc have been quantified in axial compression. No study has quantified rat disc torsional mechanics. Compare the torsional mechanical behavior of rat lumbar and caudal discs, determine the contribution of combined axial load on torsional mechanics, and compare the torsional properties of rat discs to human lumbar discs. Cadaveric biomechanical study. Cyclic torsion without compressive load followed by cyclic torsion with a fixed compressive load was applied to rat lumbar and caudal disc levels. The apparent torsional modulus was higher in the lumbar region than in the caudal region: 0.081+/-0.026 (MPa/degrees, mean+/-SD) for lumbar axially loaded; 0.066+/-0.028 for caudal axially loaded; 0.091+/-0.033 for lumbar in pure torsion; and 0.056+/-0.035 for caudal in pure torsion. These values were similar to human disc properties reported in the literature ranging from 0.024 to 0.21 MPa/degrees. Use of the caudal disc as a model may be appropriate if the mechanical focus is within the linear region of the loading regime. These results provide support for use of this animal model in basic science studies with respect to torsional mechanics.

  17. Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats.

    PubMed

    Cuenca, Nicolás; Pinilla, Isabel; Sauvé, Yves; Lund, Raymond

    2005-09-01

    The Royal College of Surgeons (RCS) rat has a retinal pigment epithelial cell defect that causes progressive loss of photoreceptors. Although it is extensively used in retinal degeneration and repair studies, how photoreceptor degeneration affects retinal circuitry has not been fully explored. This study examined the changes in synaptic connectivity between photoreceptors and their target cells using immunocytochemistry and correlated these changes with retinal function using the electroretinogram (ERG). Immunostaining with bassoon and synaptophysin (as presynaptic markers) and metabotropic glutamate receptor (mGluR6, a postsynaptic marker for ON-bipolar dendrites) was already impaired at postnatal day (P) 21 and progressively lost with infrequent pairing of presynaptic and postsynaptic elements at P60. By P90 to P120, staining became increasingly patchy and was eventually restricted to sparsely and irregularly distributed foci in which the normal pairing of presynaptic and postsynaptic markers was lost. ERG results showed that mixed scotopic a-waves and b-waves were already reduced by P21 but not oscillatory potentials. While cone-driven responses (photopic b-wave) reached normal levels at P30, they were impaired by P60 but could still be recorded at P120, although with reduced amplitude; rod responses never reached normal amplitudes. Thus, only cone-driven activity attained normal levels, but declined rapidly thereafter. In conclusion, the synaptic markers associated with photoreceptors and processes of bipolar and horizontal cells show abnormalities prior to significant photoreceptor loss. These changes are paralleled with the deterioration of specific aspects of ERG responsiveness with age. Besides providing information on the effects of photoreceptor dysfunction and loss on connection patterns in the retina, the work addresses the more general issue of how disorder of input neurons affects downstream circuitry.

  18. Quantification of photoreceptor layer thickness in different macular pathologies using ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Hermann, Boris; Unterhuber, Angelika; Sattmann, Harald; Wirtitsch, Matthias; Stur, Michael; Scholda, Christoph; Ergun, Erdem; Anger, Elisabeth; Ko, Tony H.; Schubert, Christian; Ahnelt, Peter K.; Fujimoto, James G.; Fercher, Adolf F.

    2004-07-01

    In vivo ultrahigh resolution ophthalmic OCT has been performed in more than 300 eyes of 200 patients with several retinal pathologies, demonstrating unprecedented visualization of all major intraretinal layers, in particular the photoreceptor layer. Visualization as well as quantification of the inner and outer segment of the photoreceptor layer especially in the foveal region has been acvhieved. In normal subjects the photoreceptor layer thickness in the center of the fovea is about of 90 μm, approximately equally distributed to the inner and the outer photoreceptor segment. In the parafoveal region this thickness is reduced to ~50 μm (~30 μm for the inner and ~20 μm for the outer segment). This is in good agreement with well known increase of cone outer segments in the central foveal region. Photoreceptor layer impairment in different macular pathologies like macular hole, central serous chorioretinopathy, age related macular degeneration, foveomacular dystrophies, Stargardt dystrophy as well as retinitis pigmentosa has been investigated. Photoreceptor layer loss significantly correlated with visual acuity (R2 = 0.6, p < 0.001) and microperimetry findings for the first time in 22 eyes with Stargardt dystrophy. Visualization and quantification of photoreceptor inner and outer segment using ultrahigh resolution OCT has the potential to improve early ophthalmic diagnosis, contributes to a better understanding of pathogenesis of retinal diseases as well as might have impact in the development and monitoring of novel therapy approaches.

  19. Migration, Integration and Maturation of Photoreceptor Precursors Following Transplantation in the Mouse Retina

    PubMed Central

    Warre-Cornish, Katherine; Barber, Amanda C.; Sowden, Jane C.; Ali, Robin R.

    2014-01-01

    Retinal degeneration leading to loss of photoreceptors is a major cause of untreatable blindness. Recent research has yielded definitive evidence for restoration of vision following the transplantation of rod photoreceptors in murine models of blindness, while advances in stem cell biology have enabled the generation of transplantable photoreceptors from embryonic stem cells. Importantly, the amount of visual function restored is dependent upon the number of photoreceptors that migrate correctly into the recipient retina. The developmental stage of the donor cells is important for their ability to migrate; they must be immature photoreceptor precursors. Little is known about how and when donor cell migration, integration, and maturation occurs. Here, we have performed a comprehensive histological analysis of the 6-week period following rod transplantation in mice. Donor cells migrate predominately as single entities during the first week undergoing a stereotyped sequence of morphological changes in their translocation from the site of transplantation, through the interphotoreceptor matrix and into the recipient retina. This includes initial polarization toward the outer nuclear layer (ONL), followed by formation of an apical attachment and rudimentary segment during migration into the ONL. Strikingly, acquisition of a nuclear architecture typical of mature rods was accelerated compared with normal development and a feature of migrating cells. Once within the ONL, precursors formed synaptic-like structures and outer segments in accordance with normal maturation. The restoration of visual function mediated by transplanted photoreceptors correlated with the later expression of rod α-transducin, achieving maximal function by 5 weeks. PMID:24328605

  20. Characterization of a double WAP domain-containing protein from the red swamp crayfish Procambarus clarkii

    USDA-ARS?s Scientific Manuscript database

    Crustaceans express multiple whey acidic protein (WAP) domain containing proteins which are components of host immunity. In the present study, a new double WAP domain containing protein was identified from red swamp crayfish Procambarus clarkii, designated Pc-DWD. The ORF is 387 bp, encoding 128 ami...

  1. Prior social experience affects the behavioral and neural responses to acute alcohol in juvenile crayfish.

    PubMed

    Swierzbinski, Matthew E; Lazarchik, Andrew R; Herberholz, Jens

    2017-04-15

    The effects of alcohol on society can be devastating, both as an immediate consequence of acute intoxication and as a powerful drug of abuse. However, the neurocellular mechanisms of alcohol intoxication are still elusive, partly because of the complex interactions between alcohol and nervous system function. We found that juvenile crayfish are behaviorally sensitive to acute alcohol exposure and progress through stages that are strikingly similar to those of most other intoxicated organisms. Most surprisingly, we found that the social history of the animals significantly modified the acute effects of alcohol. Crayfish taken from a rich social environment became intoxicated more rapidly than animals that were socially isolated before alcohol exposure. In addition, we found that the modulation of intoxicated behaviors by prior social experience was paralleled on the level of individual neurons. These results significantly improve our understanding of the mechanisms underlying the interplay between social experience, alcohol intoxication and nervous system function. © 2017. Published by The Company of Biologists Ltd.

  2. Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection.

    PubMed

    Liu, Hai-peng; Chen, Rong-yuan; Zhang, Qiu-xia; Peng, Hui; Wang, Ke-jian

    2011-07-01

    White spot syndrome virus (WSSV) is one of the most important viral pathogens in crustaceans. During WSSV infection, multiple cell signaling cascades are activated, leading to the generation of antiviral molecules and initiation of programmed cell death of the virus infected cells. To gain novel insight into cell signaling mechanisms employed in WSSV infection, we have used suppression subtractive hybridization (SSH) to elucidate the cellular response to WSSV challenge at the gene level in red claw crayfish haematopoietic tissue (Hpt) stem cell cultures. Red claw crayfish Hpt cells were infected with WSSV for 1h (L1 library) and 12h (L12 library), respectively, after which the cell RNA was prepared for SSH using uninfected cells as drivers. By screening the L1 and L12 forward libraries, we have isolated the differentially expressed genes of crayfish Hpt cells upon WSSV infection. Among these genes, the level of many key molecules showed clearly up-regulated expression, including the genes involved in immune responses, cytoskeletal system, signal transduction molecules, stress, metabolism and homestasis related genes, and unknown genes in both L1 and L12 libraries. Importantly, of the 2123 clones screened, 176 novel genes were found the first time to be up-regulated in WSSV infection in crustaceans. To further confirm the up-regulation of differentially expressed genes, the semi-quantitative RT-PCR were performed to test twenty randomly selected genes, in which eight of the selected genes exhibited clear up-regulation upon WSSV infection in red claw crayfish Hpt cells, including DNA helicase B-like, multiprotein bridging factor 1, apoptosis-linked gene 2 and an unknown gene-L1635 from L1 library; coatomer gamma subunit, gabarap protein gene, tripartite motif-containing 32 and an unknown gene-L12-254 from L2 library, respectively. Taken together, as well as in immune and stress responses are regulated during WSSV infection of crayfish Hpt cells, our results also

  3. Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology

    PubMed Central

    Mustafi, Debarshi; Avishai, Amir; Avishai, Nanthawan; Engel, Andreas; Heuer, Arthur; Palczewski, Krzysztof

    2011-01-01

    Structurally deciphering complex neural networks requires technology with sufficient resolution to allow visualization of single cells and their intimate surrounding connections. Scanning electron microscopy (SEM), coupled with serial ion ablation (SIA) technology, presents a new avenue to study these networks. SIA allows ion ablation to remove nanometer sections of tissue for SEM imaging, resulting in serial section data collection for three-dimensional reconstruction. Here we highlight a method for preparing retinal tissues for imaging of photoreceptors by SIA-SEM technology. We show that this technique can be used to visualize whole rod photoreceptors and the internal disc elements from wild-type (wt) mice. The distance parameters of the discs and photoreceptors are in good agreement with previous work with other methods. Moreover, we show that large planes of retinal tissue can be imaged at high resolution to display the packing of normal rods. Finally, SIA-SEM imaging of retinal tissue from a mouse model (Nrl−/−) with phenotypic changes akin to the human disease enhanced S-cone syndrome (ESCS) revealed a structural profile of overall photoreceptor ultrastructure and internal elements that accompany this disease. Overall, this work presents a new method to study photoreceptor cells at high structural resolution that has a broad applicability to the visual neuroscience field. PMID:21439323

  4. In vitro transdifferentiation of human peripheral blood mononuclear cells to photoreceptor-like cells

    PubMed Central

    Komuta, Yukari; Ishii, Toshiyuki; Kaneda, Makoto; Ueda, Yasuji; Miyamoto, Kiyoko; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    ABSTRACT Direct reprogramming is a promising, simple and low-cost approach to generate target cells from somatic cells without using induced pluripotent stem cells. Recently, peripheral blood mononuclear cells (PBMCs) have attracted considerable attention as a somatic cell source for reprogramming. As a cell source, PBMCs have an advantage over dermal fibroblasts with respect to the ease of collecting tissues. Based on our studies involving generation of photosensitive photoreceptor cells from human iris cells and human dermal fibroblasts by transduction of photoreceptor-related transcription factors via retrovirus vectors, we transduced these transcription factors into PBMCs via Sendai virus vectors. We found that retinal disease-related genes were efficiently detected in CRX-transduced cells, most of which are crucial to photoreceptor functions. In functional studies, a light-induced inward current was detected in some CRX-transduced cells. Moreover, by modification of the culture conditions including additional transduction of RAX1 and NEUROD1, we found a greater variety of retinal disease-related genes than that observed in CRX-transduced PBMCs. These data suggest that CRX acts as a master control gene for reprogramming PBMCs into photoreceptor-like cells and that our induced photoreceptor-like cells might contribute to individualized drug screening and disease modeling of inherited retinal degeneration. PMID:27170256

  5. Holoprosencephaly with caudal dysplasia. Pseudo-trisomy 13 or a distinct entity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, R.P.B.; Aylsworth, A.S.; Timmons, M.C.

    1994-09-01

    We have studied three chromosomally normal patients with multiple anomalies that include holoprosencephaly and caudal dysplasia. Each has features found in patients with pseudo-trisomy 13, though each lacks malformations common in that syndrome. Patients 1 and 2 did not have polydactyly and patients 2 and 3 had no congenital heart malformation. Patient 1 is also unusual in that he does not have typical holoprosencephalic facies and is alive at age 25 months. We have also identified two other similar patients in the London Dysmorphology Database, each of which had holoprosencephaly, congenital heart malformation, and imperforate anus. Isolated caudal dysplasia andmore » holoprosencephaly are both causally heterogeneous. They have been reported together rarely in patients with several different syndromes including chromosomal abnormalities, monogenic syndromes, teratogenic insults, and syndromes of unknown cause. Over thirty cases of {open_quotes}pseudo-trisomy 13{close_quotes} have now been reported and eight of these have had features of caudal dysplasia. There have been four with imperforate anus or anal stenosis, one with lumbosacral vertebral anomaly, and three others with bilateral renal agenesis or hypoplasia. Based on our patients and this review of other reported and unreported cases, we suggest that caudal dysplasia may be a significant clinical feature of pseudo-trisomy 13. Alternatively, holoprosencephaly and caudal dysplasia with a normal karyotype may represent a similar though distinct entity. Some may have submicroscopic chromosomal deletions. Molecular studies of regions known to be associated with holoprosencephaly are currently in progress on tissue from Patient 1. We hope these observations will stimulate reports of similarly affected patients to allow better definition of pseudo-trisomy 13 and other overlap syndromes.« less

  6. Assessment of pulse oximeter perfusion index in pediatric caudal block under basal ketamine anesthesia.

    PubMed

    Xu, Zifeng; Zhang, Jianhai; Shen, Hao; Zheng, Jijian

    2013-01-01

    Whether pulse oximeter perfusion index (PI) may be applied to detect the onset of caudal block in pediatric patients under ketamine intravenous basal anesthesia is investigated. 40 ASA I, 2-8-year-old boys scheduled for elective circumcision surgery were randomized into two groups. Group I: 20 patients were anesthetized by 2 mg·kg(-1) ketamine intravenous injection (IV) followed by caudal block using 1 mL·kg(-1) lidocaine (1%); Group II: 20 patients were anesthetized by 2 mg·kg(-1) ketamine IV only. PI on the toe in Group II decreased by 33 ± 12%, 71 ± 9% and 65 ± 8% at 1 min, 15 min, and 30 min after ketamine injection. The maximum increase in MAP and HR after ketamine IV was 11 ± 6% at 3 min and 10 ± 6% at 2 min. Compared to the PI value before caudal injection of lidocaine, PI in Group I increased by 363 ± 318% and 778 ± 578% at 5 min and 20 min after caudal block, while no significant changes in MAP and HR were found compared to the baseline before caudal block. Thus, PI provides an earlier, more objective, and more sensitive indicator to assess the early onset of caudal block under basal ketamine anesthesia.

  7. Caudal Duplication Syndrome: the Vital Role of a Multidisciplinary Approach and Staged Correction

    PubMed Central

    Samuk, Inbal; Levitt, Marc; Dlugy, Elena; Kravarusic, Dragan; Ben-Meir, David; Rajz, Gustavo; Konen, Osnat; Freud, Enrique

    2015-01-01

    Caudal duplication syndrome is a rare entity that describes the association between congenital anomalies involving caudal structures and may have a wide spectrum of clinical manifestations. A full-term male presented with combination of anomalies including anorectal malformation, duplication of the colon and lower urinary tract, split of the lower spine, and lipomyelomeningocele with tethering of the cord. We report this exceptional case of caudal duplication syndrome with special emphasis on surgical strategy and approach combining all disciplines involved. The purpose of this report is to present the pathology, assessment, and management strategy of this complex case. PMID:28018799

  8. Rat Disc Torsional Mechanics: Effect of Lumbar and Caudal Levels and Axial Compression Load

    PubMed Central

    Elliott, Dawn M; Espinoza Orías, Alejandro A; Malhotra, Neil R

    2009-01-01

    Background Context Rat models with altered loading are used to study disc degeneration and mechano-transduction. Given the prominent role of mechanics in disc function and degeneration, it is critical to measure mechanical behavior in order to evaluate changes following model interventions. Axial compression mechanics of the rat disc are representative of the human disc when normalized by geometry, and differences between the lumbar and caudal disc have been quantified in axial compression. No study has quantified rat disc torsional mechanics. Purpose Compare the torsional mechanical behavior of rat lumbar and caudal discs, determine the contribution of combined axial load on torsional mechanics, and compare the torsional properties of rat discs to human lumbar discs. Study Design Cadaveric biomechanical study. Methods Cyclic torsion without compressive load followed by cyclic torsion with a fixed compressive load was applied to rat lumbar and caudal disc levels. Results The apparent torsional modulus was higher in the lumbar region than in the caudal region,: 0.081±0.026 (MPa/°, Mean±SD) for lumbar axially loaded; 0.066±0.028 caudal axially loaded; 0.091±0.033 for lumbar in pure torsion; and 0.056±0.035 for caudal in pure torsion. These values were similar to human disc properties reported in the literature ranging from 0.024 to 0.21 MPa/°. Conclusions Use of the caudal disc as a model may be appropriate if the mechanical focus is within the linear region of the loading regime. These results provide support for use of this animal model in basic science studies with respect to torsional mechanics. PMID:18495544

  9. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  10. Crayfish fauna of the Tennessee River drainage in Mississippi, including new state species records

    Treesearch

    Susan B. Adams; Christopher A. Taylor; Chris Lukhaup

    2010-01-01

    We present new state records for 3 crayfish species in the Tennessee River basin in Mississippi, and the first drainage-specific distributional information in the state for a fourth. The species - Cambarus girardianus, Cambarus rusticiformis, Orconectes spinosus, and Orconectes wright, - are all known from the Tennessee River basin in Tennessee, while all but O....

  11. CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors

    PubMed Central

    Corbo, Joseph C.; Lawrence, Karen A.; Karlstetter, Marcus; Myers, Connie A.; Abdelaziz, Musa; Dirkes, William; Weigelt, Karin; Seifert, Martin; Benes, Vladimir; Fritsche, Lars G.; Weber, Bernhard H.F.; Langmann, Thomas

    2010-01-01

    Approximately 98% of mammalian DNA is noncoding, yet we understand relatively little about the function of this enigmatic portion of the genome. The cis-regulatory elements that control gene expression reside in noncoding regions and can be identified by mapping the binding sites of tissue-specific transcription factors. Cone-rod homeobox (CRX) is a key transcription factor in photoreceptor differentiation and survival, but its in vivo targets are largely unknown. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) on CRX to identify thousands of cis-regulatory regions around photoreceptor genes in adult mouse retina. CRX directly regulates downstream photoreceptor transcription factors and their target genes via a network of spatially distributed regulatory elements around each locus. CRX-bound regions act in a synergistic fashion to activate transcription and contain multiple CRX binding sites which interact in a spacing- and orientation-dependent manner to fine-tune transcript levels. CRX ChIP-seq was also performed on Nrl−/− retinas, which represent an enriched source of cone photoreceptors. Comparison with the wild-type ChIP-seq data set identified numerous rod- and cone-specific CRX-bound regions as well as many shared elements. Thus, CRX combinatorially orchestrates the transcriptional networks of both rods and cones by coordinating the expression of photoreceptor genes including most retinal disease genes. In addition, this study pinpoints thousands of noncoding regions of relevance to both Mendelian and complex retinal disease. PMID:20693478

  12. Evolution of caudal fin ray development and caudal fin hypural diastema complex in spotted gar, teleosts, and other neopterygian fishes.

    PubMed

    Desvignes, Thomas; Carey, Andrew; Postlethwait, John H

    2018-06-01

    The caudal fin of actinopterygians transitioned from a heterocercal dorsoventrally asymmetrical fin to a homocercal externally symmetrical fin in teleosts through poorly understood evolutionary developmental mechanisms. We studied the caudal skeleton of major living actinopterygian lineages, including polypteriformes, acipenseriformes, Holostei (gars and bowfin), and teleosts, compared with reports of extinct neopterygians and basal teleosteans. We focused on the hypural diastema complex, which includes (1) a gap between hypurals 2 and 3, that (2) separates two plates of connective tissue at (3) the branching of caudal vasculature; these features had been considered as a shared, derived trait of teleosts, a synapomorphy. These studies revealed that gars and teleosts share all three features of the hypural diastema complex. Absence of a complex with these features from bowfin, fossil Holostei, and stem Teleostei argues in favor of repetitive, independent emergence in several neopterygian and basal Teleostei lineages, or less likely, many independent losses. We further observed that, in gars and teleosts, the earliest developing lepidotrichia align with the horizontal adult body axis, thus participating in external symmetry. These results suggest that the hypural diastema complex in teleosts and gars represents a homoplasy among neopterygians and that it emerged repeatedly by parallel evolution due to shared inherited underlying genetic and developmental programs (latent homology). Because the hypural diastema complex exists in gars with heterocercal tails, this complex is independent of homocercality. Developmental Dynamics 247:832-853, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Structure and function of the UV-B photoreceptor UVR8.

    PubMed

    Jenkins, Gareth I

    2014-12-01

    UVR8 is a UV-B photoreceptor that employs specific tryptophans in its primary sequence as chromophores in photoreception. UV-B absorption causes dissociation of the dimeric photoreceptor by neutralizing interactions between monomers. The monomeric form initiates signalling through interaction with the COP1 protein, leading to transcriptional responses. This article discusses the structural basis of UVR8 function, highlighting recent research on the mechanism of photoreception and on interactions with other proteins involved in signalling and regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A review of the surface and internal anatomy of the caudal canal in children.

    PubMed

    Lees, David; Frawley, Geoff; Taghavi, Kiarash; Mirjalili, Seyed Ali

    2014-08-01

    The anatomy of the sacral hiatus and caudal canal is prone to significant variation, yet studies assessing this in the pediatric population remain limited. Awareness of the possible anatomical variations is critical to the safety and success of caudal epidural blocks, particularly when image guidance is not employed. This systematic review analyzes the available evidence on the clinical anatomy of the caudal canal in pediatric patients, emphasizing surface anatomy and internal anatomical variations. A literature search using three electronic databases and standard pediatric and anatomy reference texts was conducted yielding 24 primary and seven secondary English-language sources. Appreciating that our current landmark-guided approaches to the caudal canal are not well studied in the pediatric population is important for both clinicians and researchers. © 2014 John Wiley & Sons Ltd.

  15. Hemocyte-lineage marker proteins in a crustacean, the freshwater crayfish, Pacifastacus leniusculus.

    PubMed

    Wu, Chenglin; Söderhäll, Irene; Kim, Young-A; Liu, Haipeng; Söderhäll, Kenneth

    2008-10-01

    To identify proteins associated with development of different hemocyte types in the freshwater crayfish Pacifastacus leniusculus, 2-DE followed by MS analysis was carried out with hematopoietic tissue (Hpt) cells, semigranular cells (SGC) and granular cells (GC). Within the hemocyte lineages one two-domain Kazal proteinase inhibitor (KPI) was found to be specific for SGC, while a superoxide dismutase (SOD) was specific for GC at protein as well as at mRNA level. The proliferation cell nuclear antigen (PCNA) was detected at the mRNA level in Hpt cells only. We also provide evidence that SGC and GC most likely differentiate to maturation as separate lineages. We found that after laminarin or lipopolysaccharide (LPS) injection into crayfish, the transcript levels of PCNA and SOD increased in the Hpt cells, whereas the KPI transcript never was present in Hpt regardless of any challenge. RNA interference of PCNA in the Hpt cells led to that most of the cells did not spread or attach to the tissue culture dish. These results suggest that PCNA, KPI and SOD can be used as markers for Hpt cells, SGC and GC, respectively, and in conjunction with these results, a model is proposed how the Hpt responds to a microbial challenge by proliferation and release of Hpt cells.

  16. Evolutionary History and Conservation Status of Cave Crayfishes Along the Cumberland Plateau

    NASA Astrophysics Data System (ADS)

    Buhay, J. E.; Crandall, K. A.

    2005-05-01

    Obligate cave-dwelling crayfish species are found only in southeastern United States, Mexico, and Cuba. Most species are considered to be endangered because of surface pollution threats to groundwater and small geographic distributions. There are currently three subterranean species of the genus Orconectes found along the Cumberland Plateau, a worldwide hotspot of cave biodiversity. The objectives of my dissertation research are to: 1) delineate species' boundaries using molecular genetic data in a phylogenetic framework, 2) examine evolutionary history of each species using Nested Clade Analysis, and 3) assess conservation status of each species using measures of effective population size and genetic diversity. This research project has uncovered a new species of cave crayfish along the border of Tennessee and Kentucky, an area previously thought to have "intergrades" between two subspecies of O. australis. It appears that Cambarus gentryi, a surface-dwelling burrowing species, is the closest living ancestor to the cave Orconectes assemblage on the Plateau. The origin appears to be Eastern Kentucky, with range expansions occuring southward down the Plateau. Although controversial, these cave species exhibit high levels of genetic diversity, especially in comparison to surface-dwellers. Conservation efforts should focus on protecting `high-traffic' areas to maintain gene flow and prevent isolation.

  17. Natural photoreceptors and their application to synthetic biology.

    PubMed

    Schmidt, Daniel; Cho, Yong Ku

    2015-02-01

    The ability to perturb living systems is essential to understand how cells sense, integrate, and exchange information, to comprehend how pathologic changes in these processes relate to disease, and to provide insights into therapeutic points of intervention. Several molecular technologies based on natural photoreceptor systems have been pioneered that allow distinct cellular signaling pathways to be modulated with light in a temporally and spatially precise manner. In this review, we describe and discuss the underlying design principles of natural photoreceptors that have emerged as fundamental for the rational design and implementation of synthetic light-controlled signaling systems. Furthermore, we examine the unique challenges that synthetic protein technologies face when applied to the study of neural dynamics at the cellular and network level. Published by Elsevier Ltd.

  18. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations

    USGS Publications Warehouse

    Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.

    2013-01-01

    1.A major limitation to effective management of narrow-range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2.Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate-change scenarios. 3.The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 6587% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4.Current models created using two spatial resolutions (1 and 4.5km2) showed that fine-resolution data more accurately represented current distributions. For three of the four species, the 1-km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1-km2 resolution models were more accurate than 4.5-km2 resolution models. 5.Future projected (4.5-km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low-emission scenario

  19. Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography

    PubMed Central

    Saxena, Sandeep; Srivastav, Khushboo; Cheung, Chui M; Ng, Joanne YW; Lai, Timothy YY

    2014-01-01

    Spectral domain optical coherence tomography cross-sectional imaging of the macula has conventionally been resolved into four bands. However, some doubts were raised regarding authentication of the existence of these bands. Recently, a number of studies have suggested that the second band appeared to originate from the inner segment ellipsoids of the foveal cone photoreceptors, and therefore the previously called inner segment-outer segment junction is now referred to as inner segment ellipsoidband. Photoreceptor dysfunction may be a significant predictor of visual acuity in a spectrum of surgical and medical retinal diseases. This review aims to provide an overview and summarizes the role of the photoreceptor inner segment ellipsoid band in the management and prognostication of various vitreoretinal diseases. PMID:25525329

  20. Drug-seeking behavior in an invertebrate system: evidence of morphine-induced reward, extinction and reinstatement in crayfish

    PubMed Central

    Nathaniel, Thomas I.; Panksepp, Jules; Huber, Robert

    2009-01-01

    Several lines of evidence suggest that exploring the neurochemical basis of reward in invertebrate species may provide clues for the fundamental behavioral and neurobiology underpinnings of drug addiction. How the presence of drug-sensitive reward relates to a decrease in drug-seeking behavior and reinstatement of drug seeking behavior in invertebrate systems is not known. The present study of a conditioned place preference (CPP) paradigm in crayfish (Orconectes rusticus) explores morphine-induced reward, extinction and reinstatement. Repeated intra-circulatory infusions of 2.5μg/g, 5.0μg/g and 10.0μg/g doses of morphine over 5 days serve as a reward when paired with a distinct visual or tactile environment. Morphine-induced CPP was extinguished after repeated saline injections for 5 days in the previously morphine-paired compartment. After the previously established CPP had been eliminated during the extinction phase, morphine-experienced crayfish were challenged with 2.5 μg/g, 5.0 μg/g and 10.0 μg/g respectively. The priming injections of morphine reinstated CPP in all training doses, suggesting that morphine-induced CPP is unrelenting, and that with time, it can be reinstated by morphine following extinction in an invertebrate model just like in mammals. Together with other recent studies, this work demonstrates the advantage of using crayfish as an invertebrate animal model to investigate the basic biological processes that underline exposure to mammalian drugs of abuse. PMID:18822319

  1. Sulphonated phthalocyanine induced caudal malformative syndrome in the chick embryo.

    PubMed

    Sandor, S; Prelipceanu, O; Checiu, I

    1985-01-01

    Sulphonated phthalocyanine (Pht.) has been tested for its possible noxious effect on the developing chick embryo. When injected into the subembryonic cavity of 40-45 hours incubated chick embryos (mainly 10-20 somite pairs), Pht. induces a highly reproducible caudal malformative syndrome (trunk and taillessness, various anomalies of the limbs). The main effect is--in about 15% of the malformed specimens--associated with unilateral microphthalmy and, less frequently, with coelosomy. Microscopically developmental disturbances of the caudal axial organs, of the mesonephros and of the limbs are observed. The initial pathological changes, at microscopic level, are necrosis and hemorrhages in the caudal axial and paraxial area. The allantois is poorly developed or even absent. Skeletal changes involve anomalies of the ribs and of the vertebral column and total or partial absence of the pelvic girdle bones. The high mortality, mainly during the first week, is due--first of all--to the developmental disturbances including the poor development or absence of the allantois. Control experiments with CuCl2 suggest the ethiological role of Cu. Pathogenetic aspects are discussed.

  2. Short-term psychosocial stress protects photoreceptors from damage via corticosterone-mediated activation of the AKT pathway.

    PubMed

    Forkwa, Tembei K; Neumann, Inga D; Tamm, Ernst R; Ohlmann, Andreas; Reber, Stefan O

    2014-02-01

    Apoptotic death of photoreceptors in hereditary retinal degenerations can be prevented by neuroprotective molecules. Here, we report that adrenal glucocorticoids (GC) released during psychosocial stress protect photoreceptors from apoptosis after light damage. Psychosocial stress is known to be the main type of stressor humans are exposed to and was induced here in mice by 10h of chronic subordinate colony housing (CSC). Photoreceptor damage was generated by subsequent exposure to white light. Short-term psychosocial stress prior to illumination significantly reduced the number of apoptotic photoreceptors, an effect that was absent in adrenalectomized (ADX) mice. The neuroprotective effect was completely restored in ADX mice substituted with GC. Moreover, phosphorylation of retinal AKT increased following CSC or exogenous GC treatment, an effect that was again absent in ADX mice exposed to CSC. Finally, inhibition of AKT signaling with triciribine blocked the stress- and GC-mediated neuroprotective effects on photoreceptors. In summary, we provide evidence that 1) short-term psychosocial stress protects photoreceptors from light-induced damage and 2) the protective effect is most likely mediated by GC-induced activation of the AKT signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. CRB2 in immature photoreceptors determines the superior-inferior symmetry of the developing retina to maintain retinal structure and function.

    PubMed

    Quinn, Peter M; Alves, C Henrique; Klooster, Jan; Wijnholds, Jan

    2018-06-08

    The mammalian apical-basal determinant Crumbs homolog-1 (CRB1) plays a crucial role in retinal structure and function by the maintenance of adherens junctions between photoreceptors and Müller glial cells. Patients with mutations in the CRB1 gene develop retinal dystrophies, including early-onset retinitis pigmentosa and Leber congenital amaurosis. Previously, we showed that Crb1 knockout mice developed a slow-progressing retinal phenotype at foci in the inferior retina, whiles specific ablation of Crb2 in immature photoreceptors lead to an early-onset phenotype throughout the retina. Here, we conditionally disrupted one or both alleles of Crb2 in immature photoreceptors, on a genetic background lacking Crb1, and studied the retinal dystrophies thereof. Our data showed that disruption of one allele of Crb2 in immature photoreceptors caused a substantial aggravation of the Crb1 phenotype in the entire inferior retina. The photoreceptor layer showed early-onset progressive thinning limited to the inferior retina while the superior retina maintained intact. Surprisingly, disruption of both alleles of Crb2 in immature photoreceptors further aggravated the phenotype. Throughout the retina, photoreceptor synapses were disrupted and photoreceptor nuclei intermingled with nuclei of the inner nuclear layer. In the superior retina, the ganglion cell layer appeared thicker due to ectopic nuclei of photoreceptors. In conclusion, the data suggest that CRB2 is required to maintain retinal progenitor and photoreceptor cell adhesion and prevent photoreceptor ingression into the immature inner retina. We hypothesise, from these animal models, that decreased levels of CRB2 in immature photoreceptors adjust retinitis pigmentosa due to loss of CRB1 into Leber congenital amaurosis phenotype.

  4. Förster resonance energy transfer as a tool to study photoreceptor biology

    PubMed Central

    Hovan, Stephanie C.; Howell, Scott; Park, Paul S.-H.

    2010-01-01

    Vision is initiated in photoreceptor cells of the retina by a set of biochemical events called phototransduction. These events occur via coordinated dynamic processes that include changes in secondary messenger concentrations, conformational changes and post-translational modifications of signaling proteins, and protein-protein interactions between signaling partners. A complete description of the orchestration of these dynamic processes is still unavailable. Described in this work is the first step in the development of tools combining fluorescent protein technology, Förster resonance energy transfer (FRET), and transgenic animals that have the potential to reveal important molecular insights about the dynamic processes occurring in photoreceptor cells. We characterize the fluorescent proteins SCFP3A and SYFP2 for use as a donor-acceptor pair in FRET assays, which will facilitate the visualization of dynamic processes in living cells. We also demonstrate the targeted expression of these fluorescent proteins to the rod photoreceptor cells of Xenopus laevis, and describe a general method for detecting FRET in these cells. The general approaches described here can address numerous types of questions related to phototransduction and photoreceptor biology by providing a platform to visualize dynamic processes in molecular detail within a native context. PMID:21198205

  5. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    NASA Astrophysics Data System (ADS)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  6. Fgf Signaling is Required for Photoreceptor Maintenance in the Adult Zebrafish Retina

    PubMed Central

    Hochmann, Sarah; Kaslin, Jan; Hans, Stefan; Weber, Anke; Machate, Anja; Geffarth, Michaela; Funk, Richard H. W.; Brand, Michael

    2012-01-01

    Fibroblast growth factors (Fgf) are secreted signaling molecules that have mitogenic, patterning, neurotrophic and angiogenic properties. Their importance during embryonic development in patterning and morphogenesis of the vertebrate eye is well known, but less is known about the role of Fgfs in the adult vertebrate retina. To address Fgf function in adult retina, we determined the spatial distribution of components of the Fgf signaling pathway in the adult zebrafish retina. We detected differential expression of Fgf receptors, ligands and downstream Fgf targets within specific retinal layers. Furthermore, we blocked Fgf signaling in the retina, by expressing a dominant negative variant of Fgf receptor 1 conditionally in transgenic animals. After blocking Fgf signaling we observe a fast and progressive photoreceptor degeneration and disorganization of retinal tissue, coupled with cell death in the outer nuclear layer. Following the degeneration of photoreceptors, a profound regeneration response is triggered that starts with proliferation in the inner nuclear layer. Ultimately, rod and cone photoreceptors are regenerated completely. Our study reveals the requirement of Fgf signaling to maintain photoreceptors and for proliferation during regeneration in the adult zebrafish retina. PMID:22291943

  7. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity

    PubMed Central

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Furukawa, Takahisa

    2017-01-01

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity. PMID:28900001

  8. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity.

    PubMed

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Nakagawa, Atsushi; Furukawa, Takahisa

    2017-09-26

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7- null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7 -deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.

  9. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  10. The anatomy of the caudal zona incerta in rodents and primates

    PubMed Central

    Watson, Charles; Lind, Christopher R P; Thomas, Meghan G

    2014-01-01

    The caudal zona incerta is the target of a recent modification of established procedures for deep brain stimulation (DBS) for Parkinson's disease and tremor. The caudal zona incerta contains a number of neuronal populations that are distinct in terms of their cytoarchitecture, connections, and pattern of immunomarkers and is located at a position where a number of major tracts converge before turning toward their final destination in the forebrain. However, it is not clear which of the anatomical features of the region are related to its value as a target for DBS. This paper has tried to identify features that distinguish the caudal zona incerta of rodents (mouse and rat) and primates (marmoset, rhesus monkey, and human) from the remainder of the zona incerta. We studied cytoarchitecture, anatomical relationships, the pattern of immunomarkers, and gene expression in both of these areas. We found that the caudal zona incerta has a number of histological and gene expression characteristics that distinguish it from the other subdivisions of the zona incerta. Of particular note are the sparse population of GABA neurons and the small but distinctive population of calbindin neurons. We hope that a clearer appreciation of the anatomy of the region will in the end assist the interpretation of cases in which DBS is used in human patients. PMID:24138151

  11. Caudal Regulates the Spatiotemporal Dynamics of Pair-Rule Waves in Tribolium

    PubMed Central

    El-Sherif, Ezzat; Zhu, Xin; Fu, Jinping; Brown, Susan J.

    2014-01-01

    In the short-germ beetle Tribolium castaneum, waves of pair-rule gene expression propagate from the posterior end of the embryo towards the anterior and eventually freeze into stable stripes, partitioning the anterior-posterior axis into segments. Similar waves in vertebrates are assumed to arise due to the modulation of a molecular clock by a posterior-to-anterior frequency gradient. However, neither a molecular candidate nor a functional role has been identified to date for such a frequency gradient, either in vertebrates or elsewhere. Here we provide evidence that the posterior gradient of Tc-caudal expression regulates the oscillation frequency of pair-rule gene expression in Tribolium. We show this by analyzing the spatiotemporal dynamics of Tc-even-skipped expression in strong and mild knockdown of Tc-caudal, and by correlating the extension, level and slope of the Tc-caudal expression gradient to the spatiotemporal dynamics of Tc-even-skipped expression in wild type as well as in different RNAi knockdowns of Tc-caudal regulators. Further, we show that besides its absolute importance for stripe generation in the static phase of the Tribolium blastoderm, a frequency gradient might serve as a buffer against noise during axis elongation phase in Tribolium as well as vertebrates. Our results highlight the role of frequency gradients in pattern formation. PMID:25329152

  12. The role of ultrasound guidance in pediatric caudal block

    PubMed Central

    Erbüyün, Koray; Açıkgöz, Barış; Ok, Gülay; Yılmaz, Ömer; Temeltaş, Gökhan; Tekin, İdil; Tok, Demet

    2016-01-01

    Objectives: To compare the time interval of the procedure, possible complications, post-operative pain levels, additional analgesics, and nurse satisfaction in ultrasonography-guided and standard caudal block applications. Methods: This retrospective study was conducted in Celal Bayar University Hospital, Manisa, Turkey, between January and December 2014, included 78 pediatric patients. Caudal block was applied to 2 different groups; one with ultrasound guide, and the other using the standard method. Results: The time interval of the procedure was significantly shorter in the standard application group compared with ultrasound-guided group (p=0.020). Wong-Baker FACES Pain Rating Scale values obtained at the 90th minute was statistically lower in the standard application group compared with ultrasound-guided group (p=0.035). No statistically significant difference was found on the other parameters between the 2 groups. The shorter time interval of the procedure at standard application group should not be considered as a distinctive mark by the pediatric anesthesiologists, because this time difference was as short as seconds. Conclusion: Ultrasound guidance for caudal block applications would neither increase nor decrease the success of the treatment. However, ultrasound guidance should be needed in cases where the detection of sacral anatomy is difficult, especially by palpations. PMID:26837396

  13. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress.

    PubMed

    Prymaczok, Natalia C; Pasqualino, Valeria M; Viau, Verónica E; Rodríguez, Enrique M; Medesani, Daniel A

    2016-02-01

    This study was aimed at determining the role of the crustacean hyperglycemic hormone (CHH) in the physiological compensation to both saline and thermal stress, in the freshwater crayfish Cherax quadricarinatus. By determining the expression of the CHH gene in the eyestalk of juvenile crayfish, we found that maximal induction of CHH was induced at high salinity (10 g/L) and low temperature (20 °C). In order to investigate the role of CHH in the physiological compensation to such stressful conditions, recombinant CHH was supplied to stressed animals. CHH-injected crayfish showed increased hemolymphatic levels of glucose, in accordance with a significant utilization of glycogen reserves from the hepatopancreas. Furthermore, CHH administration allowed stressed animals to regulate hemolymphatic sodium and potassium at more constant levels than controls. Taken together, these results suggest a relevant role of CHH in increasing the energy available intended for processes involved in the physiological compensation of C. quadricarinatus to both saline and thermal stress.

  14. Arrestin in ciliary invertebrate photoreceptors: molecular identification and functional analysis in vivo.

    PubMed

    Gomez, Maria Del Pilar; Espinosa, Lady; Ramirez, Nelson; Nasi, Enrico

    2011-02-02

    Arrestin was identified in ciliary photoreceptors of Pecten irradians, and its role in terminating the light response was established electrophysiologically. Downstream effectors in these unusual visual cells diverge from both microvillar photoreceptors and rods and cones; the finding that key regulatory mechanisms of the early steps of visual excitation are conserved across such distant lineages of photoreceptors underscores that a common blueprint for phototransduction exists across metazoa. Arrestin was detected by Western blot analysis of retinal lysates, and localized in ciliary photoreceptors by immunostaining of whole-eye cryosections and dissociated cells. Two arrestin isoforms were molecularly identified by PCR; these present the canonical N- and C-arrestin domains, and are identical at the nucleotide level over much of their sequence. A high degree of homology to various β-arrestins (up to 70% amino acid identity) was found. In situ hybridization localized the two transcripts within the retina, but failed to reveal finer spatial segregation, possibly because of insufficient differences between the riboprobes. Intracellular dialysis of anti arrestin antibodies into voltage-clamped ciliary photoreceptors produced a gradual slow-down of the photocurrent falling phase, leaving a tail that decayed over many seconds after light termination. The antibodies also caused spectrally neutral flashes to elicit prolonged aftercurrents in the absence of large metarhodopsin accumulation; such aftercurrents could be quenched by chromatic illumination that photoconverts metarhodopsin back to rhodopsin. These observations indicate that the antibodies depleted functionally available arrestin, and implicate this molecule in the deactivation of the photoresponse at the rhodopsin level.

  15. Wnt signaling in caudal dysgenesis and diabetic embryopathy

    PubMed Central

    Pavlinkova, Gabriela; Salbaum, J. Michael; Kappen, Claudia

    2010-01-01

    Congenital defects are a major complication of diabetic pregnancy, and the leading cause of infant death in the first year of life. Caudal dysgenesis, occurring up to 200-fold more frequently in children born to diabetic mothers, is a hallmark of diabetic pregnancy. Given that there is also an at least 3-fold higher risk for heart defects and neural tube defects, it is important to identify the underlying molecular mechanisms for aberrant embryonic development. We have investigated gene expression in a transgenic mouse model of caudal dysgenesis, and in a pharmacological model using situ hybridization and quantitative real-time PCR. We identify altered expression of several molecules that control developmental processes and embryonic growth. The results from our models point towards major implication of altered Wnt signaling in the pathogenesis of developmental anomalies associated with embryonic exposure to maternal diabetes. PMID:18937363

  16. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish.

    PubMed

    Viringipurampeer, I A; Shan, X; Gregory-Evans, K; Zhang, J P; Mohammadi, Z; Gregory-Evans, C Y

    2014-05-01

    Achromatopsia is a progressive autosomal recessive retinal disease characterized by early loss of cone photoreceptors and later rod photoreceptor loss. In most cases, mutations have been identified in CNGA3, CNGB3, GNAT2, PDE6C or PDE6H genes. Owing to this genetic heterogeneity, mutation-independent therapeutic schemes aimed at preventing cone cell death are very attractive treatment strategies. In pde6c(w59) mutant zebrafish, cone photoreceptors expressed high levels of receptor-interacting protein kinase 1 (RIP1) and receptor-interacting protein kinase 3 (RIP3) kinases, key regulators of necroptotic cell death. In contrast, rod photoreceptor cells were alternatively immunopositive for caspase-3 indicating activation of caspase-dependent apoptosis in these cells. Morpholino gene knockdown of rip3 in pde6c(w59) embryos rescued the dying cone photoreceptors by inhibiting the formation of reactive oxygen species and by inhibiting second-order neuron remodelling in the inner retina. In rip3 morphant larvae, visual function was restored in the cones by upregulation of the rod phosphodiesterase genes (pde6a and pde6b), compensating for the lack of cone pde6c suggesting that cones are able to adapt to their local environment. Furthermore, we demonstrated through pharmacological inhibition of RIP1 and RIP3 activity that cone cell death was also delayed. Collectively, these results demonstrate that the underlying mechanism of cone cell death in the pde6c(w59) mutant retina is through necroptosis, whereas rod photoreceptor bystander death occurs through a caspase-dependent mechanism. This suggests that targeting the RIP kinase signalling pathway could be an effective therapeutic intervention in retinal degeneration patients. As bystander cell death is an important feature of many retinal diseases, combinatorial approaches targeting different cell death pathways may evolve as an important general principle in treatment.

  17. A light-colored region of caudal fin: a niche of melanocyte progenitors in crucian carp (Cyprinus carpio L.).

    PubMed

    Huang, Yaping; Luo, Yurong; Liu, Jinhui; Gui, Saiyu; Wang, Mei; Liu, Wenbin; Peng, Liangyue; Xiao, Yamei

    2017-01-01

    Melanocyte stem cells are a population of immature cells which sustain the self-renewal and replenish the differentiated melanocytes. In this research, a light-colored region (LCR) is observed at the heel of caudal fin in juvenile crucian carp. By cutting off the caudal fin, the operated caudal fin can regenerate in accordance with the original pigment pattern from the retained LCR. As markers of stem cells, Oct4 and Sox2 have been found to be highly expressed in the LCR as well as Mitfa, a label of the melanoblasts. In vitro, Mitfa + melanoblasts are observed in the cells which are derived from the LCR and transfected with Mitfa-EGFP reporter by using Tol2 transposon system. Furthermore, by real-time qPCR, it is shown that the level of sox2 mRNA is gradually decreased from the LCR to proximal and distal caudal fin, and that of mitfa mRNA in the proximal caudal fin (PCF) is higher than that in the LCR, while it is the lowest in the distal caudal fin. Hence, we propose that the LCR is a pigment progenitor niche, sending melanocytes to the distal of caudal fin, which gradually emerges as caudal fin grow. We reveal that the LCR of caudal fin might be a niche of pigment progenitors, and contribute to pigment-producing stem cells in crucian carp. © 2016 International Federation for Cell Biology.

  18. The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae)

    PubMed Central

    de Busserolles, Fanny; Fitzpatrick, John L.; Marshall, N. Justin; Collin, Shaun P.

    2014-01-01

    The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the

  19. Mapping of photoreceptor dysfunction using high resolution three-dimensional spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sikorski, B. L.; Szkulmowski, M.; Kałużny, J. J.; Bajraszewski, T.; Kowalczyk, A.; Wojtkowski, M.

    2008-02-01

    The ability to obtain reliable information on functional status of photoreceptor layer is essential for assessing vision impairment in patients with macular diseases. The reconstruction of three-dimensional retinal structure in vivo using Spectral Optical Coherence Tomography (Spectral OCT) became possible with a recent progress of the OCT field. Three-dimensional data collected by Spectral OCT devices comprise information on light intensity back-reflected from the junction between photoreceptor outer and inner segments (IS/OS) and thus can be used for evaluating photoreceptors impairment. In this paper, we introduced so called Spectral OCT reflectivity maps - a new method of selecting and displaying the spatial distribution of reflectivity of individual retinal layers. We analyzed the reflectivity of the IS/OS layer in various macular diseases. We have measured eyes of 49 patients with photoreceptor dysfunction in course of age-related macular degeneration, macular holes, central serous chorioretinopathy, acute zonal occult outer retinopathy, multiple evanescent white dot syndrome, acute posterior multifocal placoid pigment epitheliopathy, drug-induced retinopathy and congenital disorders.

  20. Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy.

    PubMed

    Katschke, Kenneth J; Xi, Hongkang; Cox, Christian; Truong, Tom; Malato, Yann; Lee, Wyne P; McKenzie, Brent; Arceo, Rommel; Tao, Jianhua; Rangell, Linda; Reichelt, Mike; Diehl, Lauri; Elstrott, Justin; Weimer, Robby M; Campagne, Menno van Lookeren

    2018-05-09

    Geographic atrophy (GA), the advanced form of dry age-related macular degeneration (AMD), is characterized by progressive loss of retinal pigment epithelium cells and photoreceptors in the setting of characteristic extracellular deposits and remains a serious unmet medical need. While genetic predisposition to AMD is dominated by polymorphisms in complement genes, it remains unclear how complement activation contributes to retinal atrophy. Here we demonstrate that complement is activated on photoreceptor outer segments (POS) in the retina peripheral to atrophic lesions associated with GA. When exposed to human serum following outer blood-retinal barrier breakdown, POS act as potent activators of the classical and alternative complement pathway. In mouse models of retinal degeneration, classical and alternative pathway complement activation on photoreceptors contributed to the loss of photoreceptor function. This was dependent on C5a-mediated recruitment of peripheral blood monocytes but independent of resident microglia. Genetic or pharmacologic inhibition of both classical and alternative complement C3 and C5 convertases was required to reduce progressive degeneration of photoreceptor rods and cones. Our study implicates systemic classical and alternative complement proteins and peripheral blood monocytes as critical effectors of localized retinal degeneration with potential relevance for the contribution of complement activation to GA.

  1. Early photoreceptor outer segment loss and retinoschisis in Cohen syndrome.

    PubMed

    Uyhazi, Katherine E; Binenbaum, Gil; Carducci, Nicholas; Zackai, Elaine H; Aleman, Tomas S

    2018-06-01

    To describe early structural and functional retinal changes in a patient with Cohen syndrome. A 13-month-old Caucasian girl of Irish and Spanish ancestry was noted to have micrognathia and laryngomalacia at birth, which prompted a genetic evaluation that revealed biallelic deletions in COH1 (VPS13B) (a maternally inherited 60-kb deletion involving exons 26-32 and a paternally inherited 3.5-kb deletion within exon 17) consistent with Cohen syndrome. She underwent a complete ophthalmic examination, full-field flash electroretinography and retinal imaging with spectral domain optical coherence tomography. Central vision was central, steady, and maintained. There was bilateral myopic astigmatic refractive error. Fundus exam was notable for dark foveolar pigmentation, but no obvious abnormalities of either eye. Spectral domain optical coherence tomography cross sections through the fovea revealed a normal appearing photoreceptor outer nuclear layer but loss of the interdigitation signal between the photoreceptor outer segments and the apical retinal pigment epithelium. Retinoschisis involving the inner nuclear layer of both eyes and possible ganglion cell layer thinning were also noted. There was a detectable electroretinogram with similarly reduced amplitudes of rod- (white, 0.01 cd.s.m -2 ) and cone-mediated (3 cd.s.m -2 , 30 Hz) responses. Photoreceptor outer segment abnormalities and retinoschisis may represent the earliest structural retinal change detected by spectral domain optical coherence tomography in patients with Cohen syndrome, suggesting a complex pathophysiology with primary involvement of the photoreceptor cilium and disorganization of the structural integrity of the inner retina.

  2. Computed tomographic characteristics of collateral venous pathways in dogs with caudal vena cava obstruction.

    PubMed

    Specchi, Swan; d'Anjou, Marc-André; Carmel, Eric Norman; Bertolini, Giovanna

    2014-01-01

    Collateral venous pathways develop in dogs with obstruction or increased blood flow resistance at any level of the caudal vena cava in order to maintain venous drainage to the right atrium. The purpose of this retrospective study was to describe the sites, causes of obstruction, and configurations of venous collateral pathways for a group of dogs with caudal vena cava obstruction. Computed tomography databases from two veterinary hospitals were searched for dogs with a diagnosis of caudal vena cava obstruction and multidetector row computed tomographic angiographic (CTA) scans that included the entire caudal vena cava. Images for each included dog were retrieved and collateral venous pathways were characterized using image postprocessing and a classification system previously reported for humans. A total of nine dogs met inclusion criteria and four major collateral venous pathways were identified: deep (n = 2), portal (n = 2), intermediate (n = 7), and superficial (n = 5). More than one collateral venous pathway was present in 5 dogs. An alternative pathway consisting of renal subcapsular collateral veins, arising mainly from the caudal pole of both kidneys, was found in three dogs. In conclusion, findings indicated that collateral venous pathway patterns similar to those described in humans are also present in dogs with caudal vena cava obstruction. These collateral pathways need to be distinguished from other vascular anomalies in dogs. Postprocessing of multidetector-row CTA images allowed delineation of the course of these complicated venous pathways and may be a helpful adjunct for treatment planning in future cases. © 2014 American College of Veterinary Radiology.

  3. Understanding innate preferences of wild bee species: responses to wavelength-dependent selective excitation of blue and green photoreceptor types.

    PubMed

    Ostroverkhova, Oksana; Galindo, Gracie; Lande, Claire; Kirby, Julie; Scherr, Melissa; Hoffman, George; Rao, Sujaya

    2018-06-05

    Bees have a trichromatic vision with ultraviolet, blue, and green photoreceptors in their compound eyes. While the three photoreceptor types comprise the 'color space' at the perceptual level, preferential excitation of one or two of the photoreceptor types has been shown to play an important role in innate color preferences of bumble bees. Bees have been shown to exhibit strong attraction to fluorescence emission exclusively in the blue spectral region. It is not known if emission exclusively in the green spectral region produces similar attraction. Here, we examined responses of wild bees to traps designed to selectively stimulate either the blue or the green photoreceptor using sunlight-induced fluorescence in the 420-480 or 510-540 nm region, respectively. Additionally, we probed how subtle changes in the spectral characteristics of the traps affect the bee captures once a highly selective excitation of the blue photoreceptor is achieved. It was established that selective excitation of the green photoreceptor type was not attractive, in contrast to that of the blue photoreceptor type. However, once a highly selective excitation of the blue photoreceptor type (at ~ 400-480 nm) was achieved, the wild bees favored strong excitation at 430-480 nm over that in the 400-420 nm region.

  4. Accumulation of 14C-naphthalene in the tissues of redhead ducks fed oil-contaminated crayfish

    USGS Publications Warehouse

    Tarshis, I.B.; Rattner, B.A.

    1982-01-01

    Crayfish, artificially contaminated with14C-naphthalene-5% water-soluble fraction of No. 2 fuel oil, were force-fed to one-year-old redhead ducks to determine the accumulation of petroleum hydrocarbons. The relative distribution of carbon-14 activity in the gall bladder containing bile, and fat were similar, and significantly greater (P < 0.05) than the activity in the blood, brain, liver, and kidney. There was a significant increase (P < 0.05) in the disintegrations per minute per gram (dpm/g) in the blood, brain, kidney, and liver between days 1 and 3 of feeding, indicating a progressive accumulation of carbon-14 activity (naphthalene and presumably its metabolites). There was no significant effect of sex or the interaction of the duration of feeding and sex on carbon-14 activity in any of the tissues. The low daily dose of petroleum hydrocarbons (a total of approximately 1.25 mg/day) received by the ducks from the crayfish and the relatively short feeding regimen did not cause any overt signs of toxicity in the ducks.

  5. Structure-Function Analysis of the Drosophila melanogaster Caudal Transcription Factor Provides Insights into Core Promoter-preferential Activation.

    PubMed

    Shir-Shapira, Hila; Sharabany, Julia; Filderman, Matan; Ideses, Diana; Ovadia-Shochat, Avital; Mannervik, Mattias; Juven-Gershon, Tamar

    2015-07-10

    Regulation of RNA polymerase II transcription is critical for the proper development, differentiation, and growth of an organism. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters encompass the RNA start site and consist of functional elements such as the TATA box, initiator, and downstream core promoter element (DPE), which confer specific properties to the core promoter. We have previously discovered that Drosophila Caudal, which is a master regulator of genes involved in development and differentiation, is a DPE-specific transcriptional activator. Here, we show that the mouse Caudal-related homeobox (Cdx) proteins (mCdx1, mCdx2, and mCdx4) are also preferential core promoter transcriptional activators. To elucidate the mechanism that enables Caudal to preferentially activate DPE transcription, we performed structure-function analysis. Using a systematic series of deletion mutants (all containing the intact DNA-binding homeodomain) we discovered that the C-terminal region of Caudal contributes to the preferential activation of the fushi tarazu (ftz) Caudal target gene. Furthermore, the region containing both the homeodomain and the C terminus of Caudal was sufficient to confer core promoter-preferential activation to the heterologous GAL4 DNA-binding domain. Importantly, we discovered that Drosophila CREB-binding protein (dCBP) is a co-activator for Caudal-regulated activation of ftz. Strikingly, dCBP conferred the ability to preferentially activate the DPE-dependent ftz reporter to mini-Caudal proteins that were unable to preferentially activate ftz transcription themselves. Taken together, it is the unique combination of dCBP and Caudal that enables the co-activation of ftz in a core promoter-preferential manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration

    PubMed Central

    Mustafi, Debarshi; Kevany, Brian M.; Genoud, Christel; Okano, Kiichiro; Cideciyan, Artur V.; Sumaroka, Alexander; Roman, Alejandro J.; Jacobson, Samuel G.; Engel, Andreas; Adams, Mark D.; Palczewski, Krzysztof

    2011-01-01

    Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl−/−) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl−/− mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl−/− retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl−/− retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl−/− mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.—Mustafi, D., Kevany, B. M., Genoud, C., Okano, K., Cideciyan, A. V., Sumaroka, A., Roman, A. J., Jacobson, S. G. Engel, A., Adams, M. D., Palczewski, K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. PMID:21659555

  7. Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors

    PubMed Central

    Piccoli, Giuseppe; del Pilar Gomez, Maria; Nasi, Enrico

    2002-01-01

    The mechanisms by which Ca2+ regulates light adaptation in microvillar photoreceptors remain poorly understood. Protein kinase C (PKC) is a likely candidate, both because some sub-types are activated by Ca2+ and because of its association with the macromolecular ‘light-transduction complex’ in Drosophila. We investigated the possible role of PKC in the modulation of the light response in molluscan photoreceptors. Western blot analysis with isoform-specific antibodies revealed the presence of PKCα in retinal homogenates. Immunocytochemistry in isolated cell preparations confirmed PKCα localization in microvillar photoreceptors, preferentially confined to the light-sensing lobe. Light stimulation induced translocation of PKCα immunofluorescence to the photosensitive membrane, an effect that provides independent evidence for PKC activation by illumination; a similar outcome was observed after incubation with the phorbol ester PMA. Several chemically distinct activators of PKC, such as phorbol-12-myristate-13-acetate (PMA), (-)indolactam V and 1,2,-dioctanoyl-sn-glycerol (DOG) inhibited the light response of voltage-clamped microvillar photoreceptors, but were ineffective in ciliary photoreceptors, in which light does not activate the Gq/PLC cascade, nor elevates intracellular Ca2+. Pharmacological inhibition of PKC antagonized the desensitization produced by adapting lights and also caused a small, but consistent enhancement of basal sensitivity. These results strongly support the involvement of PKC activation in the light-dependent regulation of response sensitivity. However, unlike adapting background light or elevation of [Ca2+]i, PKC activators did not speed up the photoresponse, nor did PKC inhibitors antagonize the accelerating effects of background adaptation, suggesting that modulation of photoresponse time course may involve a separate Ca2+-dependent signal. PMID:12205183

  8. High prevalence of multiple paternity in the invasive crayfish species, Procambarus clarkii

    PubMed Central

    Yue, Gen Hua; Li, Jia Le; Wang, Chun Ming; Xia, Jun Hong; Wang, Gen Lin; Feng, Jian Bing

    2010-01-01

    Reproductive strategy is a central feature of the ecology of invasive species as it determines the potential for population increase and range expansion. The red swamp crayfish, Procambarus clarkii, has invaded many countries and caused serious problems in freshwater ecosystems. However, little is known about the effects of environmental conditions on crayfish paternity and offspring traits in the wild. We studied these reproductive characteristics of P. clarkii in wild populations from two different habitats (ponds and ditches) in three locations with different environmental conditions in China. Genotyping of 1,436 offspring and 30 mothers of 30 broods was conducted by using four microsatellites. An analysis of genotyping results revealed that gravid females were the exclusive mother of the progeny they tended. Twenty-nine of 30 mothers had mated with multiple (2-4) males, each of which contributed differently to the number of offspring in a brood. The average number of fathers per brood and the number of offspring per brood were similar (P > 0.05) among six sampling sites, indicating that in P. clarkii multiple paternity and offspring number per brood are independent of environmental conditions studied. Indirect benefits from increasing the genetic diversity of broods, male and sperm competition, and cryptic female choice are a possible explanation for the high level multiple paternity and different contribution of fathers to offspring in this species. PMID:20186292

  9. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors

    PubMed Central

    Govardovskii, Victor I.

    2017-01-01

    The absolute sensitivity of vertebrate retinas is set by a background noise, called dark noise, which originates from several different cell types and is generated by different molecular mechanisms. The major share of dark noise is produced by photoreceptors and consists of two components, discrete and continuous. Discrete noise is generated by spontaneous thermal activations of visual pigment. These events are undistinguishable from real single-photon responses (SPRs) and might be considered an equivalent of the signal. Continuous noise is produced by spontaneous fluctuations of the catalytic activity of the cGMP phosphodiesterase. This masks both SPR and spontaneous SPR-like responses. Circadian rhythms affect photoreceptors, among other systems by periodically increasing intracellular cAMP levels ([cAMP]in), which increases the size and changes the shape of SPRs. Here, we show that forskolin, a tool that increases [cAMP]in, affects the magnitude and frequency spectrum of the continuous and discrete components of dark noise in photoreceptors. By changing both components of rod signaling, the signal and the noise, cAMP is able to increase the photoreceptor signal-to-noise ratio by twofold. We propose that this results in a substantial improvement of signal detection, without compromising noise rejection, at the rod bipolar cell synapse. PMID:28611079

  10. Multimodal Imaging of Photoreceptor Structure in Choroideremia.

    PubMed

    Sun, Lynn W; Johnson, Ryan D; Williams, Vesper; Summerfelt, Phyllis; Dubra, Alfredo; Weinberg, David V; Stepien, Kimberly E; Fishman, Gerald A; Carroll, Joseph

    2016-01-01

    Choroideremia is a progressive X-linked recessive dystrophy, characterized by degeneration of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors. We examined photoreceptor structure in a series of subjects with choroideremia with particular attention to areas bordering atrophic lesions. Twelve males with clinically-diagnosed choroideremia and confirmed hemizygous mutations in the CHM gene were examined. High-resolution images of the retina were obtained using spectral domain optical coherence tomography (SD-OCT) and both confocal and non-confocal split-detector adaptive optics scanning light ophthalmoscope (AOSLO) techniques. Eleven CHM gene mutations (3 novel) were identified; three subjects had the same mutation and one subject had two mutations. SD-OCT findings included interdigitation zone (IZ) attenuation or loss in 10/12 subjects, often in areas with intact ellipsoid zones; RPE thinning in all subjects; interlaminar bridges in the imaged areas of 10/12 subjects; and outer retinal tubulations (ORTs) in 10/12 subjects. Only split-detector AOSLO could reliably resolve cones near lesion borders, and such cones were abnormally heterogeneous in morphology, diameter and density. On split-detector imaging, the cone mosaic terminated sharply at lesion borders in 5/5 cases examined. Split-detector imaging detected remnant cone inner segments within ORTs, which were generally contiguous with a central patch of preserved retina. Early IZ dropout and RPE thinning on SD-OCT are consistent with previously published results. Evidence of remnant cone inner segments within ORTs and the continuity of the ORTs with preserved retina suggests that these may represent an intermediate state of retinal degeneration prior to complete atrophy. Taken together, these results supports a model of choroideremia in which the RPE degenerates before photoreceptors.

  11. Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead‐end

    PubMed Central

    Stern, David B.; Breinholt, Jesse; Pedraza‐Lara, Carlos; López‐Mejía, Marilú; Owen, Christopher L.; Bracken‐Grissom, Heather; Fetzner, James W.; Crandall, Keith A.

    2017-01-01

    Abstract Caves are perceived as isolated, extreme habitats with a uniquely specialized biota, which long ago led to the idea that caves are “evolutionary dead‐ends.” This implies that cave‐adapted taxa may be doomed for extinction before they can diversify or transition to a more stable state. However, this hypothesis has not been explicitly tested in a phylogenetic framework with multiple independently evolved cave‐dwelling groups. Here, we use the freshwater crayfish, a group with dozens of cave‐dwelling species in multiple lineages, as a system to test this hypothesis. We consider historical patterns of lineage diversification and habitat transition as well as current patterns of geographic range size. We find that while cave‐dwelling lineages have small relative range sizes and rarely transition back to the surface, they exhibit remarkably similar diversification patterns to those of other habitat types and appear to be able to maintain a diversity of lineages through time. This suggests that cave adaptation is not a “dead‐end” for freshwater crayfish, which has positive implications for our understanding of biodiversity and conservation in cave habitats. PMID:28804900

  12. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    PubMed

    Zabouri, Nawal; Haverkamp, Silke

    2013-01-01

    Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V)1.4(α(1F)) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V)1.4(α(1F)) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V)1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V)1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V)1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  13. Photoreceptor disc shedding in the living human eye

    PubMed Central

    Kocaoglu, Omer P.; Liu, Zhuolin; Zhang, Furu; Kurokawa, Kazuhiro; Jonnal, Ravi S.; Miller, Donald T.

    2016-01-01

    Cone photoreceptors undergo a daily cycle of renewal and shedding of membranous discs in their outer segments (OS), the portion responsible for light capture. These physiological processes are fundamental to maintaining photoreceptor health, and their dysfunction is associated with numerous retinal diseases. While both processes have been extensively studied in animal models and postmortem eyes, little is known about them in the living eye, in particular human. In this study, we report discovery of the optical signature associated with disc shedding using a method based on adaptive optics optical coherence tomography (AO-OCT) in conjunction with post-processing methods to track and monitor individual cone cells in 4D. The optical signature of disc shedding is characterized by an abrupt transient loss in the cone outer segment tip (COST) reflection followed by its return that is axially displaced anteriorly. Using this signature, we measured the temporal and spatial properties of shedding events in three normal subjects. Average duration of the shedding event was 8.8 ± 13.4 minutes, and average length loss of the OS was 2.1 μm (7.0% of OS length). Prevalence of cone shedding was highest in the morning (14.3%) followed by the afternoon (5.7%) and evening (4.0%), with load distributed across the imaged patch. To the best of our knowledge these are the first images of photoreceptor disc shedding in the living retina. PMID:27895995

  14. Kinetics of Inhibitory Feedback from Horizontal Cells to Photoreceptors: Implications for an Ephaptic Mechanism

    PubMed Central

    Warren, Ted J.; Van Hook, Matthew J.; Tranchina, Daniel

    2016-01-01

    Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca2+ channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8–9 pA and exhibited a biexponential time course with time constants averaging 14–17 ms and 120–220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca2+ channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4–5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9–13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11–14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that

  15. Granulocytes of the red claw crayfish Cherax quadricarinatus can endocytose beads, E. coli and WSSV, but in different ways.

    PubMed

    Duan, Hu; Jin, Songjun; Zhang, Yan; Li, Fuhua; Xiang, Jianhai

    2014-10-01

    The hemocytes of the red claw crayfish Cherax quadricarinatus are classified by morphologic observation into the following types: hyalinocytes (H), semi-granulocytes (SG) and granulocytes (G). Density gradient centrifugation with Percoll was developed to separate these three subpopulations of hemocytes. Beads, Escherichia coli, and FITC labeling WSSV were used to investigate the characteristics of granulocytes by using scanning electron microscope, transmission electron microscope, and laser scan confocal microscope. Results showed that granulocytes could phagocytose beads and E. coli by endocytic pathways. WSSV could rely on caveolae-mediated endocytosis to mainly enter into granulocytes. These results could elucidate the mechanism of the innate immunity function of granulocytes, and it also showed the mechanism by which WSSV invaded granulocytes in the red claw crayfish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A new dwarf crayfish (Decapoda: Cambaridae) from floodplain swamps in central Alabama.

    PubMed

    Schuster, Guenter A; Kendrick, Michael R

    2017-03-05

    Cambarellus (Pandicambarus) rotatus, new species, is a dwarf crayfish from floodplain swamps in the Tombigbee and Black Warrior river drainages of Greene, Hale, and Marengo counties, Alabama. The new species is morphologically most similar to Cambarellus (Pandicambarus) lesliei. They differ in a several morphological characters. Cambarellus rotatus, new species, has gonopods that are rotated mesially so that the terminal elements oppose each other, and they have a short C-shaped sperm groove. These are unique features among known species of Cambarellus.

  17. Endogenous calcium buffering at photoreceptor synaptic terminals in salamander retina

    PubMed Central

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2014-01-01

    Calcium operates by several mechanisms to regulate glutamate release at rod and cone synaptic terminals. In addition to serving as the exocytotic trigger, Ca2+ accelerates replenishment of vesicles in cones and triggers Ca2+-induced Ca2+ release (CICR) in rods. Ca2+ thereby amplifies sustained exocytosis, enabling photoreceptor synapses to encode constant and changing light. A complete picture of the role of Ca2+ in regulating synaptic transmission requires an understanding of the endogenous Ca2+ handling mechanisms at the synapse. We therefore used the “added buffer” approach to measure the endogenous Ca2+ binding ratio (κendo) and extrusion rate constant (γ) in synaptic terminals of photoreceptors in retinal slices from tiger salamander. We found that κendo was similar in both cell types - approximately 25 and 50 in rods and cones, respectively. Using measurements of the decay time constants of Ca2+ transients, we found that γ was also similar, with values of approximately 100 s−1 and 160 s−1 in rods and cones, respectively. The measurements of κendo differ considerably from measurements in retinal bipolar cells, another ribbon-bearing class of retinal neurons, but are comparable to similar measurements at other conventional synapses. The values of γ are slower than at other synapses, suggesting that Ca2+ ions linger longer in photoreceptor terminals, supporting sustained exocytosis, CICR, and Ca2+-dependent ribbon replenishment. The mechanisms of endogenous Ca2+ handling in photoreceptors are thus well-suited for supporting tonic neurotransmission. Similarities between rod and cone Ca2+ handling suggest that neither buffering nor extrusion underlie differences in synaptic transmission kinetics. PMID:25049035

  18. The metamorphic fate of supernumerary caudal vertebrae in South Asian litter frogs (Anura: Megophryidae)

    PubMed Central

    Handrigan, Gregory R; Wassersug, Richard J

    2007-01-01

    Tadpoles of the Megophryidae, a South Asian family of litter frogs, are unique among anurans by virtue of their expanded caudal skeletons, which include supernumerary vertebral centra. The number of these vertebrae varies widely within the family, with tadpoles of Leptobrachella having as many as 30 and Leptolalax only five. Vertebral morphology is also quite variable, ranging from complete, perichordal centra to fragmentary ossifications. This variation in the caudal osteology of larval megophryids, however, is not manifested in the adult morphology. Post-metamorphic litter frogs have a typical anuran axial skeleton, invariably comprising eight presacral vertebrae, a single sacral vertebra and, postsacrally, the urostyle. To resolve this incongruity between life phases and to determine the precise metamorphic fate of supernumerary caudal vertebrae in megophryids, we examined metamorphic specimens from the genera Leptobrachella, Leptolalax, Ophryophryne and Megophrys. In all four, the caudal larval skeleton undergoes massive reduction, leaving only the coccyx and hypochord untouched. Caudal centra are apparently degraded by osteoclasts, which have not previously been implicated in vertebral remodelling during anuran metamorphosis. In Megophrys and Ophryophryne metamorphs, presacral centra also undergo resorption, consistent with an epichordal mode of centrum formation. The conservation of megophryid adult axial osteology in the face of extensive larval skeletal diversity reveals the role of metamorphosis in constraining anuran morphology. PMID:17559539

  19. Caudal articular process dysplasia of thoracic vertebrae in neurologically normal French bulldogs, English bulldogs, and Pugs: Prevalence and characteristics.

    PubMed

    Bertram, Simon; Ter Haar, Gert; De Decker, Steven

    2018-02-20

    The aims of this study were to evaluate the prevalence and anatomical characteristics of thoracic caudal articular process dysplasia in French bulldogs, English bulldogs and Pugs presenting for problems unrelated to spinal disease. In this retrospective cross-sectional study, computed tomography scans of the thoracic vertebral column of these three breeds were reviewed for the presence and location of caudal articular process hypoplasia and aplasia, and compared between breeds. A total of 271 dogs met the inclusion criteria: 108 French bulldogs, 63 English bulldogs, and 100 Pugs. A total of 70.4% of French bulldogs, 84.1% of English bulldogs, and 97.0% of Pugs showed evidence of caudal articular process dysplasia. Compared to French and English bulldogs, Pugs showed a significantly higher prevalence of caudal articular process aplasia, but also a lower prevalence of caudal articular process hypoplasia, a higher number of affected vertebrae per dog and demonstrated a generalized and bilateral spatial pattern more frequently. Furthermore, Pugs showed a significantly different anatomical distribution of caudal articular process dysplasia along the vertebral column, with a high prevalence of caudal articular process aplasia between T10 and T13. This area was almost completely spared in French and English bulldogs. As previously suggested, caudal articular process dysplasia is a common finding in neurologically normal Pugs but this also seems to apply to French and English bulldogs. The predisposition of clinically relevant caudal articular process dysplasia in Pugs is possibly not only caused by the higher prevalence of caudal articular process dysplasia, but also by breed specific anatomical characteristics. © 2018 American College of Veterinary Radiology.

  20. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    PubMed Central

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-01-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage. PMID:25901915

  1. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-04-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.

  2. Exposure of the eggs to 17alpha-methyl testosterone reduced hatching success and growth and elicited teratogenic effects in postembryonic life stages of crayfish.

    PubMed

    Vogt, Günter

    2007-12-30

    Testosterone is regularly found in the tissues of decapod crustaceans. Although this vertebrate-type sex hormone is not the principal factor of sex differentiation in crustaceans, it was shown to be capable of acting on the reproductive organs of shrimps and crabs. In the present study I have exposed developing eggs and stage 5 juveniles of the parthenogenetic all female marbled crayfish to 17alpha-methyl testosterone in order to test whether in freshwater crayfish sex can be changed from female to male by this androgen. MT did not elicit sex change, neither when administered during embryonic development nor during juvenile stage 5, the main period of proliferation of the oocytes. However, exposure to 100 microg/L MT from 64% to 84% embryonic development resulted in prolonged embryonic development, reduced hatching success, reduced growth of the juveniles, and severe malformations of the appendages in the juveniles. The marbled crayfish is recommended to be considered for toxicity tests due to its easy culture in the laboratory and its genotypical uniformity.

  3. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting.

    PubMed

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-09-01

    Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.

  4. Light adaptation and the evolution of vertebrate photoreceptors.

    PubMed

    Morshedian, Ala; Fain, Gordon L

    2017-07-15

    Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease

  5. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa.

    PubMed

    Beltran, William A; Cideciyan, Artur V; Lewin, Alfred S; Iwabe, Simone; Khanna, Hemant; Sumaroka, Alexander; Chiodo, Vince A; Fajardo, Diego S; Román, Alejandro J; Deng, Wen-Tao; Swider, Malgorzata; Alemán, Tomas S; Boye, Sanford L; Genini, Sem; Swaroop, Anand; Hauswirth, William W; Jacobson, Samuel G; Aguirre, Gustavo D

    2012-02-07

    Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5-vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.

  6. The Caudal Skeleton of the Zebrafish, Danio rerio, from a Phylogenetic Perspective: A Polyural Interpretation of Homologous Structures

    PubMed Central

    Wiley, Edward O.; Fuiten, Allison M.; Doosey, Michael H.; Lohman, Brian K.; Merkes, Christopher; Azuma, Mizuki

    2016-01-01

    The structure of the caudal skeleton of extant teleost fishes has been interpreted in two different ways. In a diural interpretation, a caudal skeleton is composed of two centra articulated with one to six hypurals. Most subsequent authors have followed this interpretation. In contrast, a polyural interpretation considers the teleost fin to be derived from a fully metameristic ancestral bauplan originally composed of a one-to-one relationship between neural arches, centra (when present), and hypurals. Three different interpretations of the identity and homology of skeletal components of the caudal skeleton of the teleost fish Danio rerio have been proposed, two from a diural perspective and one from a polyural perspective. We examine each caudal skeletal component of Danio rerio from both a developmental and phylogenetic perspective. We propose that a polyural interpretation of structures is consistent with the current interpretation of the basal neopterygian caudal fin for this model organism rather than the older diural interpretation that does not take into account the metamerism observed in caudal structures during development. The polyural interpretation suggests several shared evolutionary innovations of major clades that would remain undiscovered under the older diural naming paradigm and makes the terminology of the parts of the caudal fin of Danio rerio strictly comparable to more basal fishes. PMID:28250540

  7. A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography.

    PubMed

    Hood, D C; Birch, D G

    1990-10-01

    An electrical potential recorded from the cornea, the a-wave of the ERG, is evaluated as a measure of human photoreceptor activity by comparing its behavior to a model derived from in vitro recordings from rod photoreceptors. The leading edge of the ERG exhibits both the linear and nonlinear behavior predicted by this model. The capability for recording the electrical activity of human photoreceptors in vivo opens new avenues for assessing normal and abnormal receptor activity in humans. Furthermore, the quantitative model of the receptor response can be used to isolate the inner retinal contribution, Granit's PII, to the gross ERG. Based on this analysis, the practice of using the trough-to-peak amplitude of the b-wave as a proxy for the amplitude of the inner nuclear layer activity is evaluated.

  8. Multimodal Imaging of Photoreceptor Structure in Choroideremia

    PubMed Central

    Johnson, Ryan D.; Williams, Vesper; Summerfelt, Phyllis; Dubra, Alfredo; Weinberg, David V.; Stepien, Kimberly E.; Fishman, Gerald A.; Carroll, Joseph

    2016-01-01

    Purpose Choroideremia is a progressive X-linked recessive dystrophy, characterized by degeneration of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors. We examined photoreceptor structure in a series of subjects with choroideremia with particular attention to areas bordering atrophic lesions. Methods Twelve males with clinically-diagnosed choroideremia and confirmed hemizygous mutations in the CHM gene were examined. High-resolution images of the retina were obtained using spectral domain optical coherence tomography (SD-OCT) and both confocal and non-confocal split-detector adaptive optics scanning light ophthalmoscope (AOSLO) techniques. Results Eleven CHM gene mutations (3 novel) were identified; three subjects had the same mutation and one subject had two mutations. SD-OCT findings included interdigitation zone (IZ) attenuation or loss in 10/12 subjects, often in areas with intact ellipsoid zones; RPE thinning in all subjects; interlaminar bridges in the imaged areas of 10/12 subjects; and outer retinal tubulations (ORTs) in 10/12 subjects. Only split-detector AOSLO could reliably resolve cones near lesion borders, and such cones were abnormally heterogeneous in morphology, diameter and density. On split-detector imaging, the cone mosaic terminated sharply at lesion borders in 5/5 cases examined. Split-detector imaging detected remnant cone inner segments within ORTs, which were generally contiguous with a central patch of preserved retina. Conclusions Early IZ dropout and RPE thinning on SD-OCT are consistent with previously published results. Evidence of remnant cone inner segments within ORTs and the continuity of the ORTs with preserved retina suggests that these may represent an intermediate state of retinal degeneration prior to complete atrophy. Taken together, these results supports a model of choroideremia in which the RPE degenerates before photoreceptors. PMID:27936069

  9. Differences in photoreceptor recovery among patients and between different parts of the posterior pole in Vogt–Koyanagi–Harada disease

    PubMed Central

    Zhou, M; Gu, R P; Sun, Z; Jiang, C H; Chang, Q; Xu, G Z

    2018-01-01

    Purpose To investigate the recovery of photoreceptors following the treatment in Vogt–Koyanagi–Harada (VKH) disease. Patients and methods This was a retrospective study. We enrolled 28 patients with VKH (56 eyes). The clinical and optical coherence tomography (OCT) findings were recorded for 12 months after treatment. The patterns of photoreceptor recovery on OCT were defined: pattern F group=Foveal photoreceptor recovery visible first; pattern E group=Extrafoveal photoreceptor recovery visible first; and pattern S group=Simultaneous foveal and extrafoveal photoreceptor recovery. Results Photoreceptor recovery varied in different parts of the fundus among patients. Among the 56 eyes, the ellipsoid zone (EZ) recovery of 10 eyes and the interdigitation zone (IZ) recovery of 17 eyes belonged to pattern F group. In most eyes (46 eyes for EZ and 26 eyes for IZ), the recovery of these structures were pattern S. Only in 10 eyes, the recovery of IZ was pattern E. The different patterns of recovery correlated with how promptly the patients had been treated and with the anatomical and visual outcomes at 12 months. Patients in pattern F group were characterized by delayed treatment, delayed recovery of EZ or IZ, and a less favourable prognosis at 12 months relative to other patients, while those in pattern E group had the most prompt treatment and recovery as well as a more favourable outcome at 12 months. Conclusions In VKH patients with delayed treatment, foveal photoreceptors tended to recover more rapidly than photoreceptors in other regions. PMID:29148525

  10. Hobbseus yalobushensis, a crayfish of intermittent streams: Biotic and habitat associations, life history characteristics, and new localities

    Treesearch

    Susan B. Adams; Blake A. Davis; Darren A. Miller

    2018-01-01

    Hobbseus yalobushensis, the Yalobusha rivulet crayfish, is a species of conservation concern because it is known from only six localities in parts of three central Mississippi counties. No studies have focused on the species since its description in 1989. Our objectives were to: (1) identify additional H. yalobushensis...

  11. Relative distribution and abundance of fishes and crayfish in 2010 and 2014 prior to saltcedar (Tamarix ssp.) removal in the Amargosa River Canyon, southeastern California

    USGS Publications Warehouse

    Hereford, Mark E.

    2016-07-22

    The Amargosa River Canyon, located in the Mojave Desert of southeastern California, contains the longest perennial reach of the Amargosa River. Because of its diverse flora and fauna, it has been designated as an Area of Critical Environmental Concern and a Wild and Scenic River by the Bureau of Land Management. A survey of fishes conducted in summer 2010 indicated that endemic Amargosa River pupfish (Cyprinodon nevadensis amargosae) and speckled dace (Rhinichthys osculus spp.) were abundant and occurred throughout the Amargosa River Canyon. The 2010 survey reported non-native red swamp crayfish (Procambarus clarkii) and western mosquitofish (Gambusia affinis) captures were significantly higher, whereas pupfish captures were lower, in areas dominated by non-native saltcedar (Tamarix ssp.). Based on the 2010 survey, it was hypothesized that the invasion of saltcedar could result in a decrease in native species. In an effort to maintain and enhance native fish populations, the Bureau of Land Management removed saltcedar from a 1,550 meter reach of stream on the Amargosa River in autumn 2014 and autumn 2015. Prior to the removal of saltcedar, a survey of fishes and crayfish using baited minnow traps was conducted in the treatment reach to serve as a baseline for future comparisons with post-saltcedar removal surveys. During the 2014 survey, 1,073 pupfish and 960 speckled dace were captured within the treatment reach. Catch per unit effort of pupfish and speckled dace in the treatment reach was less in 2014 than in 2010, although differences could be owing to seasonal variation in capture probability. Non-native mosquitofish catch per unit effort decreased from 2010 to 2014; however, the catch per unit effort of crayfish increased from 2010 to 2014. Future monitoring efforts of this reach should be conducted at the same time period to account for potential seasonal fluctuations of abundance and distribution of fishes and crayfish. A more robust study design that

  12. The relationship of photoreceptor degeneration to retinal vascular development and loss in mutant rhodopsin transgenic and RCS rats.

    PubMed

    Pennesi, Mark E; Nishikawa, Shimpei; Matthes, Michael T; Yasumura, Douglas; LaVail, Matthew M

    2008-12-01

    The early loss of photoreceptors in some retinal degenerations in mice has been shown to have a profound effect on vascular development of the retina. To better characterize this relationship, we have examined the formation of retinal blood vessels during the first month of life in 8 lines of transgenic rats with different ages of onset and rates of photoreceptor cell loss mediated by the expression of mutant rhodopsin (P23H and S334ter). The number of capillary profiles in the superficial plexus (SP) and deep capillary plexus (DCP) of the retina were quantified in retinal sections taken at postnatal day (P) 8, 10, 12, 15 and 30. In normal wild-type rats, the SP and DCP had mostly established mature, adult patterns by P15, as previously shown. In the transgenic rats, the loss of photoreceptors had relatively little effect on the SP. By contrast, the loss of photoreceptors during vascular development had a major impact on the DCP. In the two lines with early and most rapid photoreceptor loss, S334ter-7 and S334ter-3, where about 90% and 65%, respectively, of the photoreceptors were already lost by P15, the DCP either failed to form (S334ter-7) or the number of capillary profiles was less than 7% of controls (S334ter-3). In lines where almost all photoreceptors were still present at P15 (S334ter-4, S334ter-9, P23H-2 and P23H-3), the number of profiles in the DCP were the same as in wild-type controls at P30. In two lines with an intermediate rate of degeneration (S334ter-5 and P23H-1), where only about 25% of the photoreceptors were lost by P15, there was an intermediate number of vascular profiles in the DCP at P30. Thus, a very close relationship between the number of photoreceptors and vessel profiles in the DCP during its development exists in the transgenic rats, and the loss of photoreceptors results in the failure or inhibition of the DCP to develop. Several mechanisms may explain this relationship including changes in the level of physiological oxygen tension

  13. NAD+ maintenance attenuates light induced photoreceptor degeneration Δ

    PubMed Central

    Bai, Shi; Sheline, Christian T.

    2013-01-01

    Light-induced retinal damage (LD) occurs after surgery or sun exposure. We previously showed that zinc (Zn2+) accumulated in photoreceptors and RPE cells after LD but prior to cell death, and pyruvate or nicotinamide attenuated the resultant death perhaps by restoring nicotinamide adenine dinucleotide (NAD+) levels. We first examined the levels of NAD+ and the efficacy of pyruvate or nicotinamide in oxidative toxicities using primary retinal cultures. We next manipulated NAD+ levels in vivo and tested the affect on LD to photoreceptors and RPE. NAD+ levels cycle with a 24-h rhythm in mammals, which is affected by the feeding schedule. Therefore, we tested the affect of increasing NAD+ levels on LD by giving nicotinamide, inverting the feeding schedule, or using transgenic mice which overexpress cytoplasmic nicotinamide mononucleotide adenyl-transferase-1 (cytNMNAT1), an NAD+ synthetic enzyme. Zn2+ accumulation was also assessed in culture and in retinal sections. Retinas of light damaged animals were examined by OCT and plastic sectioning, and retinal NAD levels were measured. Day fed, or nicotinamide treated rats showed less NAD+ loss, and LD compared to night fed rats or untreated rats without changing the Zn2+ staining pattern. CytNMNAT1 showed less Zn2+ staining, NAD+ loss, and cell death after LD. In conclusion, intense light, Zn2+ and oxidative toxicities caused an increase in Zn2+, NAD+ loss, and cell death which were attenuated by NAD+ restoration. Therefore, NAD+ levels play a protective role in LD-induced death of photoreceptors and RPE cells. PMID:23274583

  14. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

    PubMed Central

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  15. Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming

    NASA Astrophysics Data System (ADS)

    Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo

    2017-11-01

    It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.

  16. Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors

    PubMed Central

    Homma, Kohei; Okamoto, Satoshi; Mandai, Michiko; Gotoh, Norimoto; Rajasimha, Harsha K.; Chang, Yi-Sheng; Chen, Shan; Li, Wei; Cogliati, Tiziana; Swaroop, Anand; Takahashi, Masayo

    2013-01-01

    Replacement of dysfunctional or dying photoreceptors offers a promising approach for retinal neurodegenerative diseases, including age-related macular degeneration and retinitis pigmentosa. Several studies have demonstrated the integration and differentiation of developing rod photoreceptors when transplanted in wild type or degenerating retina; however, the physiology and function of the donor cells are not adequately defined. Here, we describe the physiological properties of developing rod photoreceptors that are tagged with GFP driven by the promoter of rod differentiation factor, Nrl. GFP-tagged developing rods show Ca2+ responses and rectifier outward currents that are smaller than those observed in fully developed photoreceptors, suggesting their immature developmental state. These immature rods also exhibit hyperpolarization-activated current (Ih) induced by the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. When transplanted into the subretinal space of wild type or retinal degeneration mice, GFP-tagged developing rods can integrate into the photoreceptor outer nuclear layer in wild-type mouse retina, and exhibit Ca2+ responses and membrane current comparable to native rod photoreceptors. A proportion of grafted rods develop rhodopsin-positive outer segment-like structures within two weeks after transplantation into the retina of Crx-knockout mice, and produce rectifier outward current and Ih upon membrane depolarization and hyperpolarization. GFP-positive rods derived from induced pluripotent stem (iPS) cells also display similar membrane current Ih as native developing rod photoreceptors, express rod-specific phototransduction genes, and HCN-1 channels. We conclude that Nrl-promoter driven GFP-tagged donor photoreceptors exhibit physiological characteristics of rods and that iPS cell-derived rods in vitro may provide a renewable source for cell replacement therapy. PMID:23495178

  17. Invasion of an occupied niche by the crayfish Orconectes rusticus: potential importance of growth and mortality.

    PubMed

    Hill, Anna M; Sinars, Damon M; Lodge, David M

    1993-06-01

    We are exploring mechanisms of an invasion that contradicts the oft-cited generalization that species invade vacant niches. In northern Wisconsin lakes, the introduced crayfish Orconectes rusticus is replacing two ecologically similar resident congeners, O. virilis and O. propinquus. In laboratory experiments, we compared growth and mortality of individually maintained crayfish offered one of five ad libitum diets: invertebrates, macrophytes, dentritus, periphyton or all items combined. Mortality was highest for O. virilis and lowest for O. rusticus. Macrophyte diets yielded the highest mortality. All three species grew best on invertebrate and combination diets but grew little or not at all on diets of periphyton, detritus or macrophytes. O. rusticus and O. virilis grew more than O. propinquus. O. rusticus grew more quickly and/or was better able to survive overall than its congeners. Therefore, O. rusticus would probably have advantages over O. virilis and O. propinquus in competitive interactions, reproductive success and avoiding size-selective fish predation. Subtle interspecific differences may interact strongly with other ecological factors and contribute to the displacement of resident species from a well-occupied niche.

  18. High-resolution structural and elemental analyses of calcium storage structures synthesized by the noble crayfish Astacus astacus.

    PubMed

    Luquet, Gilles; Salomé, Murielle; Ziegler, Andreas; Paris, Céline; Percot, Aline; Dauphin, Yannicke

    2016-11-01

    During premolt, crayfish develop deposits of calcium ions, called gastroliths, in their stomach wall. The stored calcium is used for the calcification of parts of the skeleton regularly renewed for allowing growth. Structural and molecular analyses of gastroliths have been primarily performed on three crayfish species, Orconectes virilis, Procambarus clarkii, and more recently, Cherax quadricarinatus. We have performed high-resolution analyses of gastroliths from the native noble crayfish, Astacus astacus, focusing on the microstructure, the mineralogical and elemental composition and distribution in a comparative perspective. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) observations showed a classical layered microstructure composed of 200-nm diameter granules aligned along fibers. These granules are themselves composed of agglomerated nanogranules of 50nm-mean diameters. Denser regions of bigger fused granules are also present. Micro-Raman spectroscopy show that if A. astacus gastroliths, similarly to the other analyzed gastroliths, are mainly composed of amorphous calcium carbonate (ACC), they are also rich in amorphous calcium phosphate (ACP). The presence of a carotenoid pigment is also observed in A. astacus gastrolith contrary to C. quadricarinatus. Energy-dispersive X-ray spectroscopy (EDX) analyses demonstrate the presence of minor elements such as Mg, Sr, Si and P. The distribution of this last element is particularly heterogeneous. X-ray absorption near edge structure spectroscopy (XANES) reveals an alternation of layers more or less rich in phosphorus evidenced in the mineral phase as well as in the organic matrix in different molecular forms. Putative functions of the different P-comprising molecules are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Photobiomodulation reduces photoreceptor death and regulates cytoprotection in early states of P23H retinal dystrophy

    NASA Astrophysics Data System (ADS)

    Kirk, Diana K.; Gopalakrishnan, Sandeep; Schmitt, Heather; Abroe, Betsy; Stoehr, Michele; Dubis, Adam; Carroll, Joseph; Stone, Jonathan; Valter, Krisztina; Eells, Janis

    2013-03-01

    Irradiation by light in the far-red to near-infrared (NIR) region of the spectrum (photobiomodulation, PBM) has been demonstrated to attenuate the severity of neurodegenerative disease in experimental and clinical studies. The purpose of this study was to test the hypothesis that 670 nm PBM would protect against the loss of retinal function and improve photoreceptor survival in a rodent model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated once per day with a 670 nm LED array (180 sec treatments at 50 mW/cm2; fluence 9 joules/cm2) (Quantum Devices Inc., Barneveld WI) from postnatal day (p) 16-20 or from p10-20. Sham-treated rats were restrained, but not exposed to NIR light. The status of the retina was determined at p22 by assessment of mitochondrial function, oxidative stress and cell death. In a second series of studies, retinal status was assessed at p30 by measuring photoreceptor function by ERG and retinal morphology by Spectral Domain Optical Coherence Tomography (SD-OCT). 670 nm PBM increased retinal mitochondrial cytochrome oxidase activity and upregulated the retina's production of the key mitochondrial antioxidant enzyme, MnSOD. PBM also attenuated photoreceptor cell loss and improved photoreceptor function. PBM protects photoreceptors in the developing P23H retina, by augmenting mitochondrial function and stimulating antioxidant protective pathways. Photobiomodulation may have therapeutic potential, where mitochondrial damage is a step in the death of photoreceptors.

  20. Conjoined twin piglets with duplicated cranial and caudal axes.

    PubMed

    McManus, C A; Partlow, G D; Fisher, K R

    1994-06-01

    Twins with doubling of the cranial and caudal poles, yet having a single thorax, are rare. One set of diprosopus, dipygus porcine conjoined twins was studied. In addition to the conjoining anomaly, these twins also exhibited ambiguous internal reproductive features. The twins had two snouts, three eyes, a single thorax, and were duplicated from the umbilicus caudally. Radiography indicated a single vertebral column in the cervical region. The vertebral columns were separate caudally from this point. There was a total of six limbs--one pair of forelimbs and two pairs of hindlimbs. Many medial structures failed to develop in these twins. Medial cranial nerves V-XII were absent or displaced although apparently normal laterally. The medial palates were present but shortened, whereas the medial mandibular rami had folded back on themselves rostrally to form a midline mass between the two chins. Each twin had only one lateral kidney and one lateral testis. Medial scrotal sacs were present but devoid of a testis. There was a midline, "uterine"-like structure which crossed between the twins. However, histological analysis of this structure revealed it to be dysplastic testicular tissue. The relationship between the abnormal reproductive features in these twins and the conjoining is unclear. The anatomy of these twins, in addition to the literature reviewed, illustrates the internal anatomical heterogeneity of grossly similar conjoined twins. A review of the literature also suggests that conjoined twinning may be more common in swine than was previously suspected.

  1. Caudal autotomy and regeneration in lizards.

    PubMed

    Clause, Amanda R; Capaldi, Elizabeth A

    2006-12-01

    Caudal autotomy, or the voluntary self-amputation of the tail, is an anti-predation strategy in lizards that depends on a complex array of environmental, individual, and species-specific characteristics. These factors affect both when and how often caudal autotomy is employed, as well as its overall rate of success. The potential costs of autotomy must be weighed against the benefits of this strategy. Many species have evolved specialized behavioral and physiological adaptations to minimize or compensate for any negative consequences. One of the most important steps following a successful autotomous escape involves regeneration of the lost limb. In some species, regeneration occurs rapidly; such swift regeneration illustrates the importance of an intact, functional tail in everyday experience. In lizards and other vertebrates, regeneration is a highly ordered process utilizing initial developmental programs as well as regeneration-specific mechanisms to produce the correct types and pattern of cells required to sufficiently restore the structure and function of the sacrificed tail. In this review, we discuss the behavioral and physiological features of self-amputation, with particular reference to the costs and benefits of autotomy and the basic mechanisms of regeneration. In the process, we identify how these behaviors could be used to explore the neural regulation of complex behavioral responses within a functional context. Copyright 2006 Wiley-Liss, Inc.

  2. Mef2d is essential for the maturation and integrity of retinal photoreceptor and bipolar cells.

    PubMed

    Omori, Yoshihiro; Kitamura, Tamiki; Yoshida, Satoyo; Kuwahara, Ryusuke; Chaya, Taro; Irie, Shoichi; Furukawa, Takahisa

    2015-05-01

    Mef2 transcription factors play a crucial role in cardiac and skeletal muscle differentiation. We found that Mef2d is highly expressed in the mouse retina and its loss causes photoreceptor degeneration similar to that observed in human retinitis pigmentosa patients. Electroretinograms (ERGs) were severely impaired in Mef2d-/- mice. Immunohistochemistry showed that photoreceptor and bipolar cell synapse protein levels severely decreased in the Mef2d-/- retina. Expression profiling by microarray analysis showed that Mef2d is required for the expression of various genes in photoreceptor and bipolar cells, including cone arrestin, Guca1b, Pde6h and Cacna1s, which encode outer segment and synapse proteins. We also observed that Mef2d synergistically activates the cone arrestin (Arr3) promoter with Crx, suggesting that functional cooperation between Mef2d and Crx is important for photoreceptor cell gene regulation. Taken together, our results show that Mef2d is essential for photoreceptor and bipolar cell gene expression, either independently or cooperatively with Crx. © 2015 Institution for Protein Research. Genes to Cells published by Wiley Publishing Asia Pty Ltd and the Molecular Biology Society of Japan.

  3. Glutamatergic postsynaptic block by Pamphobeteus spider venoms in crayfish.

    PubMed

    Araque, A; Ferreira, W; Lucas, S; Buño, W

    1992-01-31

    The effects of toxins from venom glands of two south american spiders (Pamphobeteus platyomma and P. soracabae) on glutamatergic excitatory synaptic transmission were studied in the neuromuscular junction of the opener muscle of crayfish. The toxins selectively and reversibly blocked both excitatory postsynaptic currents and potentials in a dose-dependent manner. They also reversibly abolished glutamate-induced postsynaptic membrane depolarization. They had no effect on resting postsynaptic membrane conductance nor on postsynaptic voltage-gated currents. The synaptic facilitation and the frequency of miniature postsynaptic potentials were unaffected by the toxins, indicating that presynaptic events were not modified. Picrotoxin, a selective antagonist of the gamma-aminobutyric acid (GABA)A receptor, did not modify toxin effects. We conclude that both toxins specifically block the postsynaptic glutamate receptor-channel complex.

  4. Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors.

    PubMed

    Lu, Rongwen; Levy, Alexander M; Zhang, Qiuxiang; Pittler, Steven J; Yao, Xincheng

    2013-10-01

    Stiles-Crawford effect (SCE) is exclusively observed in cone photoreceptors, but why the SCE is absent in rod photoreceptors is still a mystery. In this study, we employed dynamic near infrared light imaging to monitor photoreceptor kinetics in freshly isolated frog and mouse retinas stimulated by oblique visible light flashes. It was observed that retinal rods could rapidly (onset: ∼10 ms for frog and 5 ms for mouse; time-to-peak: ∼200 ms for frog and 30 ms for mouse) shift toward the direction of the visible light, which might quickly compensate for the loss of luminous efficiency due to oblique illumination. In contrast, such directional movement was negligible in retinal cones. Moreover, transient rod phototropism could contribute to characteristic intrinsic optical signal (IOS). We anticipate that further study of the transient rod phototropism may not only provide insight into better understanding of the nature of vision but also promise an IOS biomarker for functional mapping of rod physiology at high resolution.

  5. Long-Term Survival of Photoreceptors Transplanted into the Adult Murine Neural Retina Requires Immune Modulation

    PubMed Central

    West, Emma L.; Pearson, Rachael A.; Barker, Susie E.; Luhmann, Ulrich F. O.; Maclaren, Robert E.; Barber, Amanda C.; Duran, Yanai; Smith, Alexander J.; Sowden, Jane C.; Ali, Robin R.

    2012-01-01

    Stem cell therapy presents an opportunity to replace photoreceptors that are lost as a result of inherited and age-related degenerative disease. We have previously shown that murine postmitotic rod photoreceptor precursor cells, identified by expression of the rod-specific transcription factor Nrl, are able to migrate into and integrate within the adult murine neural retina. However, their long-term survival has yet to be determined. Here, we found that integrated Nrl.gfp+ve photoreceptors were present up to 12 months post-transplantation, albeit in significantly reduced numbers. Surviving cells had rod-like morphology, including inner/outer segments and spherule synapses. In a minority of eyes, we observed an early, marked reduction in integrated photoreceptors within 1 month post-transplantation, which correlated with increased numbers of amoeboid macrophages, indicating acute loss of transplanted cells due to an inflammatory response. In the majority of transplants, similar numbers of integrated cells were observed between 1 and 2 months post-transplantation. By 4 months, however, we observed a significant decrease in integrated cell survival. Macrophages and T cells were present around the transplantation site, indicating a chronic immune response. Immune suppression of recipients significantly increased transplanted photoreceptor survival, indicating that the loss observed in unsuppressed recipients resulted from T cell-mediated host immune responses. Thus, if immune responses are modulated, correctly integrated transplanted photoreceptors can survive for extended periods of time in hosts with partially mismatched H-2 haplotypes. These findings suggest that autologous donor cells are optimal for therapeutic approaches to repair the neural retina, though with immune suppression nonautologous donors may be effective. PMID:20857496

  6. Concentrations of elements in fish fillets, fish muscle plugs, and crayfish from the 2007 Missouri Department of Conservation General Contaminant Monitoring Program

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.

    2009-01-01

    This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in fish fillets, fish muscle plugs, and crayfish. Fillets of channel catfish (Ictalurus punctatus), bass (Micropterus salmoides, Micropterus dolomieu, Morone chrysops), walleye (Sander vitreus), common carp (Cyprinus carpio), lake sturgeon (Acipenser fulvescens), northern hog sucker (Hypentelium nigricans), and rainbow trout (Oncorhynchus mykiss) were collected from 21 sites as part of the Department's Fish Contaminant Monitoring Program. Long-pincered crayfish (Orconectes longidigitus) were collected from one site to assess trophic transfer of metals to fish. Fish muscle plugs were collected from smallmouth bass (Micropterus dolomieu) at two different locations from one site.

  7. Analysis of severe photoreceptor loss and Morris water-maze performance in aged rats.

    PubMed

    O'Steen, W K; Spencer, R L; Bare, D J; McEwen, B S

    1995-06-01

    In a study of aging and memory in 25-27-month-old albino rats, performance on a Morris water maze was found to be dependent on the structural integrity of the retina. Generally, as expected, 'learners' had intact retinas, while 'non-learners' had retinas with severe photoreceptor loss and a non-continuous outer nuclear layer, consisting of scattered cell nuclei. However, contrary to this general correlation between learning ability and photoreceptor presence, some learners had severely degenerated retinas and occasionally, non-learners had photoreceptor populations that apparently were comparable to those of learners. Rat retinas from these unpredictable, borderline response categories were examined histopathologically and morphometrically with the purpose of determining the minimal number of photoreceptors (PRs) necessary for animals to be rated as learners on the Morris water maze. However, among these severely damaged retinas of borderline groups, total number of surviving photoreceptors did not vary significantly among the learner, ambiguous or marginal and non-learner groups. The population of surviving PRs in learners was as low as 0.04% and in non-learners as high as 0.4%, as compared to that of young, adult rats. Therefore, borderline learners and non-learners had overlapping surviving PR numbers and the results did not clarify the response difference between these groups in the Morris water maze. It is suggested that the pattern of surviving PRs over the retinal surface, as well as the ratio of surviving rods to cones and their connectivity with other retinal neurons, may be related to the residual function of degenerated retinas of learner rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting

    PubMed Central

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-01-01

    Purpose Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Methods Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. Results There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). Conclusions MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics. PMID:28873173

  9. Evaluation of Anesthesia Profile in Pediatric Patients after Inguinal Hernia Repair with Caudal Block or Local Wound Infiltration.

    PubMed

    Gavrilovska-Brzanov, Aleksandra; Kuzmanovska, Biljana; Kartalov, Andrijan; Donev, Ljupco; Lleshi, Albert; Jovanovski-Srceva, Marija; Spirovska, Tatjana; Brzanov, Nikola; Simeonov, Risto

    2016-03-15

    The aim of this study is to evaluate anesthesia and recovery profile in pediatric patients after inguinal hernia repair with caudal block or local wound infiltration. In this prospective interventional clinical study, the anesthesia and recovery profile was assessed in sixty pediatric patients undergoing inguinal hernia repair. Enrolled children were randomly assigned to either Group Caudal or Group Local infiltration. For caudal blocks, Caudal Group received 1 ml/kg of 0.25% bupivacaine; Local Infiltration Group received 0.2 ml/kg 0.25% bupivacaine. Investigator who was blinded to group allocation provided postoperative care and assessments. Postoperative pain was assessed. Motor functions and sedation were assessed as well. The two groups did not differ in terms of patient characteristic data and surgical profiles and there weren't any hemodynamic changes between groups. Regarding the difference between groups for analgesic requirement there were two major points - on one hand it was statistically significant p < 0.05 whereas on the other hand time to first analgesic administration was not statistically significant p = 0.40. There were significant differences in the incidence of adverse effects in caudal and local group including: vomiting, delirium and urinary retention. Between children undergoing inguinal hernia repair, local wound infiltration insures safety and satisfactory analgesia for surgery. Compared to caudal block it is not overwhelming. Caudal block provides longer analgesia, however complications are rather common.

  10. Behavioral Effects of the Fungal Pathogen Batrachochytrium Dendrobatidis on the Crayfish Host Procambarus Alleni

    NASA Astrophysics Data System (ADS)

    Waggett, R. J.; Virgl, E. J.; McMahon, T. A.

    2016-02-01

    The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a parasite implicated in local and global amphibian declines. Although it is considered to be an amphibian specialist, co-occurring species such as the crayfish species Procambarus alleni and Procambarus clarkii have been identified as Bd hosts and potential vectors in the spread and transmission of Bd to amphibians. Procambarus alleni is a freshwater crayfish species native to Florida and popular in the aquarium trade due to its distinctive blue coloration. Although many behavioral and physiological studies have been conducted on the congener, Procambarus clarkii, an introduced species found in many niches throughout the United States, few comparative studies have involved P. alleni. Here, we have quantified the escape behavior kinetics of healthy, lab-reared and wild-caught P. alleni (juvenile and adult) using high speed videography and motion analysis. Kinetic parameters analyzed included velocity, acceleration, net to gross displacement ratios (NGDR), response latency, number of thrusts per response and total distance jumped. Further, we exposed wild-caught P. alleni to cultured Bd and quantified the behavioral effects 24 hours and 1 week following exposure. Data on the survival and behavioral changes of P. alleni could provide insight on the potential toxic effects of Bd and the tendency toward Bd transmission.

  11. Concentrations of elements in fish fillets, fish muscle plugs, and crayfish from the 2011 Missouri Department of Conservation general contaminant monitoring program

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.

    2013-01-01

    This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in fish fillets, fish muscle plugs, and crayfish. Fillet samples of yellow bullhead (Ameiurus natalis), golden redhorse (Moxostoma erythrurum), longear sunfish (Lepomis megalotis), and channel catfish (Ictalurus punctatus) were collected from six sites as part of the Missouri Department of Conservation’s Fish Contaminant Monitoring Program. Fish dorsal muscle plugs were collected from largemouth bass (Micropterus salmoides) at eight of the sites, and crayfish from two sites. Following preparation and analysis of the samples, highlights of the data were as follows: cadmium and lead residues were most elevated in crayfish tissue samples from the Big River at Cherokee Landing, with 1 to 8 micrograms per gram dry weight and 22 to 45 micrograms per gram dry weight, respectively. Some dorsal muscle plugs from largemouth bass collected from Clearwater Lake, Lake St. Louis, Noblett Lake, Hazel Creek Lake, and Harrison County Lake contained mercury residues (1.7 to 4.7 micrograms per gram dry weight) that exceeded the U.S. Environmental Protection Agency Water Quality Criterion of 1.5 micrograms per gram dry weight of fish tissue (equivalent to 0.30 micrograms per gram wet weight).

  12. Comparison of dysphagia outcomes between rostral and caudal lateral medullary infarct patients.

    PubMed

    Chun, Min Ho; Kim, Daeha; Chang, Min Cheol

    2017-11-01

    A detailed knowledge of dysphagia outcomes in lateral medullary infarct (LMI) patients would enable proper establishment of swallowing therapy goals and strategies. However, little is known about the impact of infarct location on dysphagia outcomes in patients with LMI. Twenty patients with rostral LMI (rostral group) and 20 patients with caudal LMI (caudal group) participated in the study. All patients underwent swallowing therapy, which included compensatory treatments and strengthening exercises, for >3 months. Dysphagia evaluation was performed twice (during the subacute stage and six months after stroke onset) using videofluoroscopic swallowing studies. Dysphagia degree was assessed using the functional dysphagia scale (FDS), the penetration-aspiration scale (PAS) and the American Speech-Language-Hearing Association (ASHA) National Outcome Measurement System (NOMS) swallowing scale. In the subacute stage, the rostral group had significantly higher FDS and PAS scores and a significantly lower ASHA NOMS score than the caudal group. Patients from both groups showed significant improvement from the initial evaluation to the six-month evaluation. There were no significant differences in these scale scores between the two groups at the six-month evaluation. In the subacute stage, patients in the rostral group had more severe dysphagia than those in the caudal group. Dysphagia improved in both groups after 3-6 months of swallowing therapy. At six months after onset, there were no significant differences in dysphagia severity between the two groups. Recovery from dysphagia after LMI was observed regardless of the infarct location.

  13. Dexmedetomidine as an adjuvant to bupivacaine in caudal analgesia in children

    PubMed Central

    Goyal, Vigya; Kubre, Jyotsna; Radhakrishnan, Krishnaprabha

    2016-01-01

    Context: Postoperative pain management is becoming an integral part of anesthesia care. Various techniques of pediatric pain relief have been designed among which the most commonly practiced is caudal epidural block. Several adjuvants have been used to prolong the duration of caudal analgesia such as clonidine, neostigmine, ketamine, opioids, and ephedrine. We have designed the study using dexmedetomidine as an adjuvant to assess analgesic efficacy, duration of postoperative analgesia, hemodynamic stability, postoperative sedation, and any adverse effects in children. Aims: The aim is to study the effects of dexmedetomidine as an adjuvant to bupivacaine in caudal analgesia in pediatric patients posted for infraumbilical surgeries. Settings and Design: This is a randomized, double-blind study in which effect of dexmedetomidine is studied when added to bupivacaine in the caudal epidural block. The observations are made intraoperatively for hemodynamic stability and postoperatively for the duration of analgesia. Subjects and Methods: This study was conducted in 100 children of American Society of Anesthesiologists physical status I and II, aged 2–10 years, undergoing elective infraumbilical surgeries. They were divided into two groups as follows: Group A: (0.25%) bupivacaine 1 ml/kg + normal saline (NS) 1 ml. Group B: (0.25%) bupivacaine 1 ml/kg + 1 μg/kg dexmedetomidine in 1 ml NS. As this study was double-blind, patients were randomly assigned to receive either (bupivacaine + saline) or (bupivacaine + dexmedetomidine) in each group. The patients were observed for hemodynamic stability, respiratory depression, and postoperative pain using face, legs, activity, cry, consolability (FLACC) pain scale for 24 h postoperatively. Statistical Analysis Used: Unpaired Student's t-test. Results: The mean duration of effective analgesia in Group A patients was 4.33 ± 0.98 h versus 9.88 ± 0.90 h in Group B patients. Likewise, the difference in mean FLACC score of both the

  14. Simple explant culture of the embryonic chicken retina with long-term preservation of photoreceptors.

    PubMed

    Thangaraj, Gopenath; Greif, Alexander; Layer, Paul G

    2011-10-01

    Structurally stable in vitro-model systems are indispensible to analyse neural development during embryogenesis, follow cellular differentiation and evaluate neurotoxicological or growth factor effects. Here we describe a three-dimensional, long-term in vitro-culture system of the embryonic chick retina which supports photoreceptor development. Retinal tissue was isolated from E6 chick eye, and cultured as explants by continuous orbital rotation to allow free floatation without any supporting materials. Young stage (E6) immature retinas were cultured for various time periods in order to follow the differentiation of cell types and plexiform layers by immunocytochemical methods. These explants could be cultured for at least 2-3 weeks with remarkable retention of retinal architecture. Interestingly, photoreceptors developed in the absence of pigment epithelium. Electron microscopic studies revealed formation of structures resembling photoreceptor outer segments, a feature not reported previously. Thus, the verification of photoreceptors, Müller cells, inner retinal cells and the inner plexiform layer described in our study establishes this explant culture as a valuable in vivo-like model system. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Interaction of arrestin with enolase1 in photoreceptors.

    PubMed

    Smith, W Clay; Bolch, Susan; Dugger, Donald R; Li, Jian; Esquenazi, Isi; Arendt, Anatol; Benzenhafer, Del; McDowell, J Hugh

    2011-03-01

    Arrestin is in disequilibrium in photoreceptors, translocating between inner and outer segments in response to light. The purpose of this project was to identify the cellular component with which arrestin associates in the dark-adapted retina. Retinas were cross-linked with 2.5 mM dithiobis(succinimidylpropionate) (DSP), and arrestin-containing complexes purified by anion-exchange chromatography. Tandem mass spectrometric analysis was used to identify the protein components in the complex. Enolase localization in photoreceptors was assessed by immunohistochemistry. Confirmation of interacting components was performed using immunoprecipitation and surface plasmon resonance (SPR). Enolase activity was also assessed in the presence of arrestin1. In retinas treated with DSP, arrestin cross-linked in a 125-kDa complex. The principal components of this complex were arrestin1 and enolase1. Both arrestin1 and -4 were pulled down with enolase1 when enolase1 was immunoprecipitated. In the dark-adapted retina, enolase1 co-localized with arrestin1 in the inner segments and outer nuclear layer, but remained in the inner segments when arrestin1 translocated in response to light adaptation. SPR of purified arrestin1 and enolase1 demonstrated direct binding between arrestin1 and enolase1. Arrestin1 modulated the catalytic activity of enolase1, slowing it by as much as 24%. The results show that in the dark-adapted retina, arrestin1 and -4 interact with enolase1. The SPR data show that the interaction between arrestin1 and enolase1 was direct, not requiring a third element to form the complex. Arrestin1 slowed the catalytic activity of enolase1, suggesting that light-driven translocation of arrestin1 may modulate the metabolic activity of photoreceptors.

  16. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: Evidence from visual opsin gene expression

    USGS Publications Warehouse

    Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  17. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression

    PubMed Central

    Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. PMID:26817768

  18. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J

    2016-01-27

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. © 2016 The Author(s).

  19. Evaluation of Anesthesia Profile in Pediatric Patients after Inguinal Hernia Repair with Caudal Block or Local Wound Infiltration

    PubMed Central

    Gavrilovska-Brzanov, Aleksandra; Kuzmanovska, Biljana; Kartalov, Andrijan; Donev, Ljupco; Lleshi, Albert; Jovanovski-Srceva, Marija; Spirovska, Tatjana; Brzanov, Nikola; Simeonov, Risto

    2016-01-01

    AIM: The aim of this study is to evaluate anesthesia and recovery profile in pediatric patients after inguinal hernia repair with caudal block or local wound infiltration. MATERIAL AND METHODS: In this prospective interventional clinical study, the anesthesia and recovery profile was assessed in sixty pediatric patients undergoing inguinal hernia repair. Enrolled children were randomly assigned to either Group Caudal or Group Local infiltration. For caudal blocks, Caudal Group received 1 ml/kg of 0.25% bupivacaine; Local Infiltration Group received 0.2 ml/kg 0.25% bupivacaine. Investigator who was blinded to group allocation provided postoperative care and assessments. Postoperative pain was assessed. Motor functions and sedation were assessed as well. RESULTS: The two groups did not differ in terms of patient characteristic data and surgical profiles and there weren’t any hemodynamic changes between groups. Regarding the difference between groups for analgesic requirement there were two major points - on one hand it was statistically significant p < 0.05 whereas on the other hand time to first analgesic administration was not statistically significant p = 0.40. There were significant differences in the incidence of adverse effects in caudal and local group including: vomiting, delirium and urinary retention. CONCLUSIONS: Between children undergoing inguinal hernia repair, local wound infiltration insures safety and satisfactory analgesia for surgery. Compared to caudal block it is not overwhelming. Caudal block provides longer analgesia, however complications are rather common. PMID:27275337

  20. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment.

    PubMed

    Schietroma, Cataldo; Parain, Karine; Estivalet, Amrit; Aghaie, Asadollah; Boutet de Monvel, Jacques; Picaud, Serge; Sahel, José-Alain; Perron, Muriel; El-Amraoui, Aziz; Petit, Christine

    2017-06-05

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis , these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23 , encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15-containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. © 2017 Schietroma et al.

  1. Integrated shotgun sequencing and bioinformatics pipeline allows ultra-fast mitogenome recovery and confirms substantial gene rearrangements in Australian freshwater crayfishes

    PubMed Central

    2014-01-01

    Background Although it is possible to recover the complete mitogenome directly from shotgun sequencing data, currently reported methods and pipelines are still relatively time consuming and costly. Using a sample of the Australian freshwater crayfish Engaeus lengana, we demonstrate that it is possible to achieve three-day turnaround time (four hours hands-on time) from tissue sample to NCBI-ready submission file through the integration of MiSeq sequencing platform, Nextera sample preparation protocol, MITObim assembly algorithm and MITOS annotation pipeline. Results The complete mitochondrial genome of the parastacid freshwater crayfish, Engaeus lengana, was recovered by modest shotgun sequencing (1.2 giga bases) using the Illumina MiSeq benchtop sequencing platform. Genome assembly using the MITObim mitogenome assembler recovered the mitochondrial genome as a single contig with a 97-fold mean coverage (min. = 17; max. = 138). The mitogenome consists of 15,934 base pairs and contains the typical 37 mitochondrial genes and a non-coding AT-rich region. The genome arrangement is similar to the only other published parastacid mitogenome from the Australian genus Cherax. Conclusions We infer that the gene order arrangement found in Cherax destructor is common to Australian crayfish and may be a derived feature of the southern hemisphere family Parastacidae. Further, we report to our knowledge, the simplest and fastest protocol for the recovery and assembly of complete mitochondrial genomes using the MiSeq benchtop sequencer. PMID:24484414

  2. Meckelin 3 Is Necessary for Photoreceptor Outer Segment Development in Rat Meckel Syndrome

    PubMed Central

    Tiwari, Sarika; Hudson, Scott; Gattone, Vincent H.; Miller, Caroline; Chernoff, Ellen A. G.; Belecky-Adams, Teri L.

    2013-01-01

    Ciliopathies lead to multiorgan pathologies that include renal cysts, deafness, obesity and retinal degeneration. Retinal photoreceptors have connecting cilia joining the inner and outer segment that are responsible for transport of molecules to develop and maintain the outer segment process. The present study evaluated meckelin (MKS3) expression during outer segment genesis and determined the consequences of mutant meckelin on photoreceptor development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using immunohistochemistry, analysis of cell death and electron microscopy. MKS3 was ubiquitously expressed throughout the retina at postnatal day 10 (P10) and P21. However, in the mature retina, MKS3 expression was restricted to photoreceptors and the retinal ganglion cell layer. At P10, both the wild type and homozygous Wpk mutant retina had all retinal cell types. In contrast, by P21, cells expressing rod- and cone-specific markers were fewer in number and expression of opsins appeared to be abnormally localized to the cell body. Cell death analyses were consistent with the disappearance of photoreceptor-specific markers and showed that the cells were undergoing caspase-dependent cell death. By electron microscopy, P10 photoreceptors showed rudimentary outer segments with an axoneme, but did not develop outer segment discs that were clearly present in the wild type counterpart. At p21 the mutant outer segments appeared much the same as the P10 mutant outer segments with only a short axoneme, while the wild-type controls had developed outer segments with many well-organized discs. We conclude that MKS3 is not important for formation of connecting cilium and rudimentary outer segments, but is critical for the maturation of outer segment processes. PMID:23516626

  3. Platelet-Derived Growth Factor-BB Lessens Light-Induced Rod Photoreceptor Damage in Mice.

    PubMed

    Takahashi, Kei; Shimazawa, Masamitsu; Izawa, Hiroshi; Inoue, Yuki; Kuse, Yoshiki; Hara, Hideaki

    2017-12-01

    Platelet-derived growth factor (PDGF)-BB is known to have neuroprotective effects against various neurodegenerative disorders. The purpose of this study was to determine whether PDGF-BB can be neuroprotective against light-induced photoreceptor damage in mice. Mice were exposed to 8000-lux luminance for 3 hours to induce phototoxicity. Two hours before light exposure, the experimental mice were injected with PDGF-BB intravitreally, and the control mice were injected with phosphate-buffered saline. The light-exposed PDGF-BB-injected mice and saline-injected mice were evaluated electroretinographically and histologically. The site and expression levels of PDGFR-β and PDGF-BB were determined by immunostaining and Western blotting, respectively. The effect of PDGF-BB on light-induced cone and rod photoreceptor damage was also evaluated in vitro in 661W cells, a murine cone photoreceptor cell line, and in primary retinal cell cultures. An intravitreal injection of PDGF-BB significantly reduced the decrease in the amplitudes of the electroretinograms (ERGs) and the thinning of the outer nuclear layer (ONL) induced by the light exposure. It also reduced the number of TUNEL-positive cells in the ONL. PDGFR-β was expressed in the rod outer segments (OSs) but not the cone OSs. The levels of PDGF-BB and PDGFR-β were decreased after light irradiation. In addition, PDGF-BB had protective effects against light-induced damage to cells of rod photoreceptors but had no effect on the 661W cells in vitro. These findings indicate that PDGF-BB reduces the degree of light-induced retinal damage by activating PDGFR-β in rod photoreceptors. These findings suggest that PDGF-BB could play a role in the prevention of degeneration in eyes susceptible to phototoxicity.

  4. Molecular and functional identification of a novel photopigment in Pecten ciliary photoreceptors.

    PubMed

    Arenas, Oscar; Osorno, Tomás; Malagón, Gerardo; Pulido, Camila; Gomez, María Del Pilar; Nasi, Enrico

    2018-01-26

    The two basic animal photoreceptor types, ciliary and microvillar, use different light-transduction schemes: their photopigments couple to G t versus G q proteins, respectively, to either mobilize cyclic nucleotides or trigger a lipid signaling cascade. A third class of photoreceptors has been described in the dual retina of some marine invertebrates; these present a ciliary morphology but operate via radically divergent mechanisms, prompting the suggestion that they comprise a novel lineage of light sensors. In one of these organisms, an uncommon putative opsin was uncovered that was proposed to signal through G o Orthologues subsequently emerged in diverse phyla, including mollusks, echinoderms, and chordates, but the cells in which they express have not been identified, and no studies corroborated their function as visual pigments or their suggested signaling mode. Conversely, in only one invertebrate species, Pecten irradians , have the ciliary photoreceptors been physiologically characterized, but their photopigment has not been identified molecularly. We used the transcriptome of Pecten retina to guide the cloning by polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) extensions of a new member of this group of putative opsins. In situ hybridization shows selective transcription in the distal retina, and specific antibodies identify a single band of the expected molecular mass in Western blots and distinctly label ciliary photoreceptors in retina sections. RNA interference knockdown resulted in a reduction in the early receptor current-the first manifestation of light transduction-and prevented the prolonged aftercurrent, which requires a large buildup of activated rhodopsin. We also obtained a full-length clone of the α-subunit of a G o from Pecten retina complementary DNA and localized it by in situ hybridization to the distal photoreceptors. Small interfering RNA targeting this G o caused a specific depression of the photocurrent

  5. The association between caudal anesthesia and increased risk of postoperative surgical complications in boys undergoing hypospadias repair.

    PubMed

    Taicher, Brad M; Routh, Jonathan C; Eck, John B; Ross, Sherry S; Wiener, John S; Ross, Allison K

    2017-07-01

    Recent reports have suggested that caudal anesthesia may be associated with an increased risk of postoperative surgical complications. We examined our experience with caudal anesthesia in hypospadias repair to evaluate for increased risk of urethrocutaneous fistula or glanular dehiscence. All hypospadias repairs performed by a single surgeon in 2001-2014 were reviewed. Staged or revision surgeries were excluded. Patient age, weight, hypospadias severity, surgery duration, month and year of surgery, caudal anesthesia use, and postoperative complications were recorded. Bivariate and multivariate statistical analyses were performed. We identified 395 single-stage primary hypospadias repairs. Mean age was 15.6 months; 326 patients had distal (83%) and 69 had proximal (17%) hypospadias. Caudal anesthetics were used in 230 (58%) cases; 165 patients (42%) underwent local penile block at the discretion of the surgeon and/or anesthesiologist. Complications of urethrocutaneous fistula or glanular deshiscence occurred in 22 patients (5.6%) and were associated with caudal anesthetic use (OR 16.5, 95% CI 2.2-123.8, P = 0.007), proximal hypospadias (OR 8.2, 95% CI 3.3-20.0, P < 0.001), increased surgical duration (OR 1.01, 95% CI 1.01-1.02, P < 0.001), and earlier year of practice (OR 3.0, 95% CI 1.2-7.9, P = 0.03 for trend). After adjusting for confounding variables via multivariable logistic regression, both caudal anesthetic use (OR 13.4, 95% CI 1.8-101.8, P = 0.01) and proximal hypospadias (OR 6.8, 95% CI 2.7-16.9, P < 0.001) remained highly associated with postoperative complications. In our experience, caudal anesthesia was associated with an over 13-fold increase in the odds of developing postoperative surgical complications in boys undergoing hypospadias repair even after adjusting for urethral meatus location. Until further investigation occurs, clinicians should carefully consider the use of caudal anesthesia for children undergoing hypospadias repair. © 2017 John

  6. The hydrodynamic principle for the caudal fin shape of small aquatic animals

    NASA Astrophysics Data System (ADS)

    Lee, Jeongsu; Park, Yong-Jai; Cho, Kyu-Jin; Kim, Ho-Young

    2014-11-01

    The shape of caudal fins of small aquatic animals is completely different from that of large cruising animals like dolphin and tuna which have high aspect-ratio lunate tail. To unveil the physical principle behind natural selection of caudal fins of small aquatic animals, here we investigate the hydrodynamics of an angularly reciprocating plate as a model for the caudal fin oscillation. We find that the thrust production of a reciprocating plate at high Strouhal numbers is dominated by generation of two distinct vortical structures associated with the acceleration and deceleration of the plate regardless of their shape. Based on our observations, we construct a scaling law to predict the thrust of the flapping plate, which agrees well with the experimental data. We then seek the optimal aspect ratio to maximize thrust and efficiency of a flapping plate for fixed flapping frequency and amplitude. Thrust is maximized for the aspect ratio of approximately 0.7. We also theoretically explain the power law behaviors of the thrust and efficiency as a function of the aspect ratio.

  7. Interdisciplinarity to reconstruct historical introductions: solving the status of cryptogenic crayfish.

    PubMed

    Clavero, Miguel; Nores, Carlos; Kubersky-Piredda, Susanne; Centeno-Cuadros, Alejandro

    2016-11-01

    Anciently introduced species can be confounded with native species because introduction pre-dates the first species inventories or because of the loss of the collective memory of the introductions. The term 'cryptogenic species' denotes species of unknown or unclear status (native versus non-native) in a given territory, and disciplinary approaches are often insufficient for solving their true status. Here, we follow an integrative, multidisciplinary approach to solve the status of a cryptogenic species, proposing that building on evidence from multiple disciplines can produce robust and clarifying insights. We undertook an exhaustive review of information on a putatively native crayfish (Austropotamobius italicus) in Spain. The reviewed information included taxonomy, genetics and phylogeography, history, archaeology, linguistics, biogeography, ecology, symbiotic organisms and even gastronomy and pharmacy. The knowledge produced by different scientific disciplines converges to indicate that A. italicus is a non-native species in Spain. Historical documents even identify the first introduction event: crayfish were shipped from Italy to Spain in 1588 as a diplomatic gift from Francesco I de' Medici to King Philip II of Spain. Previous discussions on the status of A. italicus focussed on inconclusive and often confusing genetic results and excluded the rich and clarifying evidence available from other approaches and disciplines. Interdisciplinarity is an often-invoked but rarely implemented practice in an academic environment that increasingly promotes narrow-focussed specialization. Our review shows that the integration of disciplines can surpass disciplinary approaches in solving scientific controversies. Our results have straightforward implications for strategies to conserve biological diversity in Spain and Europe, urging a debate on the appropriateness of devoting conservation efforts to non-native species. © 2015 Cambridge Philosophical Society.

  8. Heavy metals bioaccumulation in selected tissues of red swamp crayfish: An easy tool for monitoring environmental contamination levels.

    PubMed

    Goretti, E; Pallottini, M; Ricciarini, M I; Selvaggi, R; Cappelletti, D

    2016-07-15

    In this paper we explored the heavy metal bioaccumulation (Cd, Cu, Pb and Zn) in Procambarus clarkii, a crayfish recently suggested as a potential bioindicator for metals pollution in freshwater systems. The present study is focused on crayfishes populations caught in a heavily polluted industrial and in a reference sites (Central Italy), though the results are generalized with a thorough analysis of literature metadata. In agreement with the literature, the hepatopancreas (Hep, detoxification tissues) of the red swamp crayfish showed a higher concentration of heavy metals in comparison to the abdominal muscle (AbM, not detoxification tissues) in the sites under scrutiny. Hep/AbM concentration ratio was dependent on the specific metal investigated and on its sediment contamination level. Specifically we found that Hep/AbM ratio decreases as follows: Cd (11.7)>Cu (5.5)>Pb (3.6)>Zn (1.0) and Pb (4.34)>Cd (3.66)>Zn (1.69)>Cu (0.87) for the industrial and reference sites, respectively. The analysis of our bioaccumulation data as well as of literature metadata allowed to elaborate a specific contamination index (Toxic Contamination Index, TCI), dependent only on the bioaccumulation data of hepatopancreas and abdominal muscle. In the industrial site, TCI expressed values much higher than the unit for Cd and Cu, confirming that these metals were the main contaminants; in contrast for lower levels of heavy metals, as those observed in the reference site for Cu, Zn and Pb, the index provided values below unit. TCI is proposed as a useful and easy tool to assess the toxicity level of contaminated sites by heavy metals in the environmental management. Copyright © 2016. Published by Elsevier B.V.

  9. Neuromodulation of reciprocal glutamatergic inhibition between antagonistic motoneurons by 5-hydroxytryptamine (5-HT) in crayfish walking system.

    PubMed

    Pearlstein, E; Clarac, F; Cattaert, D

    1998-01-23

    In an in vitro preparation of the crayfish thoracic locomotor system, paired intracellular recordings were performed from antagonistic depressor (Dep) and levator (Lev) motoneurons (MNs) that control the second joint of walking legs. Connections between these two groups of MNs consist mainly of inhibitory connections and weak electrotonic synapses. Injection of depolarizing current into a Lev MN results in a hyperpolarization in a Dep MN, and vice versa. This reciprocal glutamatergic inhibition, is not changed in the presence of the sodium channel blocker tetrodotoxin (TTX) and therefore is likely supported by a direct connection between MNs. By contrast, reciprocal inhibition is largely reduced in the presence of 5-hydroxytryptamine (5-HT; 10 microM). Direct micro-application of glutamate pressure-ejected close to an intracellularly recorded MN, evoked an inhibitory response in that MN, accompanied by a decrease of input resistance. These two effects were dramatically reduced in the presence of 5-HT. Thus 5-HT could be involved in mechanisms of dynamic reconfigurations of the neural network controlling leg movements in crayfish.

  10. Redox proteomic identification of visual arrestin dimerization in photoreceptor degeneration after photic injury.

    PubMed

    Lieven, Christopher J; Ribich, Jonathan D; Crowe, Megan E; Levin, Leonard A

    2012-06-26

    Light-induced oxidative stress is an important risk factor for age-related macular degeneration, but the downstream mediators of photoreceptor and retinal pigment epithelium cell death after photic injury are unknown. Given our previous identification of sulfhydryl/disulfide redox status as a factor in photoreceptor survival, we hypothesized that formation of one or more disulfide-linked homo- or hetero-dimeric proteins might signal photoreceptor death after light-induced injury. Two-dimensional (non-reducing/reducing) gel electrophoresis of Wistar rat retinal homogenates after 10 hours of 10,000 lux (4200°K) light in vivo, followed by mass spectrometry identification of differentially oxidized proteins. The redox proteomic screen identified homodimers of visual arrestin (Arr1; S antigen) after toxic levels of light injury. Immunoblot analysis revealed a light duration-dependent formation of Arr1 homodimers, as well as other Arr1 oligomers. Immunoprecipitation studies revealed that the dimerization of Arr1 due to photic injury was distinct from association with its physiological binding partners, rhodopsin and enolase1. Systemic delivery of tris(2-carboxyethyl)phosphine, a specific disulfide reductant, both decreased Arr1 dimer formation and protected photoreceptors from light-induced degeneration in vivo. These findings suggest a novel arrestin-associated pathway by which oxidative stress could result in cell death, and identify disulfide-dependent dimerization as a potential therapeutic target in retinal degeneration.

  11. SPERMIOGENESIS IN THE CRAYFISH (PROCAMBARUS CLARKII)

    PubMed Central

    Moses, Montrose J.

    1961-01-01

    The sperm of the crayfish, Procambarus clarkii, is relatively simple among decapod sperm and was described in the first paper of this series (28). The present paper details the development of this sperm as followed with the light and electron microscopes. The process is divided into six stages for purposes of description. The main points of interest discussed are the absence of mitochondria or mitochondrial derivatives in the mature sperm, the development of a complex acrosome in the absence of highly organized characteristic Golgi apparatus but in the presence of small stacks of annulate lamellae, and the changes in the nucleus. Of the latter, the elaborate convoluted sheets of membrane that are extensions of the nuclear envelope are unique. The nucleus undergoes unusual changes in size and shape that are accompanied by several phases of organization of the chromatin. In the mature sperm the nucleus is empty-appearing and notably lacking in any apparent high degree of order. The entire development of the sperm is consonant with the idea that the fate of the mitochondria and centrioles, structures that figure prominently in the elaborate architecture of flagellate sperm, is associated with the lack of a flagellum. PMID:13773055

  12. [Efficacy analysis of laparoscopic radical right hemicolectomy using caudal-to-cranial approach].

    PubMed

    Zou, Liaonan; Xiong, Wenjun; Li, Hongming; He, Yaobin; Diao, Dechang; Zheng, Yansheng; Luo, Lijie; Tan, Ping; Wang, Wei; Wan, Jin

    2015-11-01

    To investigate the safety and feasibility of laparoscopic radical right hemicolectomy using caudal-to-cranial approach (yellow-white borderline between right mesostenium and retroperitoneal is firstly cut as the entry to dissect the fusion fascial space between the visceral and parietal peritoneum, which is called caudal-to-cranial approach for right hemicolectomy). From January 2014 to May 2015, 76 consecutive patients with right side colon cancer underwent laparoscopic radical right hemicolectomy using caudal-to-cranial approach. The baseline characteristics, intraoperative and postoperative outcomes were prospective collected and reviewed retrospectively. All the 76 patients completed operations successfully, and one patient (1.3%) was converted to open surgery because of intraoperative bleeding due to unexpected injury of ileocolic artery. The mean operative time was (152.8±42.1) min with a mean estimated blood loss of (70.4±43.5) ml. The mean time of first flatus was (49.3±22.9) h and mean liquid oral intake was (58.5±17.6) h. The postoperative complications appeared in 7 patients (9.2%), including one (1.3%) of pulmonary infection, one(1.3%) of urinary system infection, two (2.6%) of wound infection, two (2.6%) of inflammatory bowel obstruction and one (1.3%) of lymphatic fistula, and they were all cured with conservative treatments. The postoperative hospital stay was (7.8±5.4) d. The mean number of harvested lymph node was 34.2±10.9, among which 4.1±2.8 was positive. Laparoscopic radical right hemicolectomy using caudal-to-cranial approach is safe and feasible.

  13. Adaptations for vision in dim light: impulse responses and bumps in nocturnal spider photoreceptor cells (Cupiennius salei Keys).

    PubMed

    Pirhofer-Walzl, Karin; Warrant, Eric; Barth, Friedrich G

    2007-10-01

    The photoreceptor cells of the nocturnal spider Cupiennius salei were investigated by intracellular electrophysiology. (1) The responses of photoreceptor cells of posterior median (PM) and anterior median (AM) eyes to short (2 ms) light pulses showed long integration times in the dark-adapted and shorter integration times in the light-adapted state. (2) At very low light intensities, the photoreceptors responded to single photons with discrete potentials, called bumps, of high amplitude (2-20 mV). When measured in profoundly dark-adapted photoreceptor cells of the PM eyes these bumps showed an integration time of 128 +/- 35 ms (n = 7) whereas in dark-adapted photoreceptor cells of AM eyes the integration time was 84 +/- 13 ms (n = 8), indicating that the AM eyes are intrinsically faster than the PM eyes. (3) Long integration times, which improve visual reliability in dim light, and large responses to single photons in the dark-adapted state, contribute to a high visual sensitivity in Cupiennius at night. This conclusion is underlined by a calculation of sensitivity that accounts for both anatomical and physiological characteristics of the eye.

  14. Caudal Regression Syndrome with Partial Agenesis of the Corpus callosum and Partial Lobar Holoprosencephaly

    PubMed Central

    Hashami, Hilal Al; Bataclan, Maria F; Mathew, Mariam; Krishnan, Lalitha

    2010-01-01

    Caudal regression syndrome is a rare fetal condition of diabetic pregnancy. Although the exact mechanism is not known, hyperglycaemia during embryogenesis seems to act as a teratogen. Independently, caudal regression syndrome (CRS), agenesis of the corpus callosum (ACC) and partial lobar holoprosencephaly (HPE) have been reported in infants of diabetic mothers. To our knowledge, a combination of all these three conditions has not been reported so far. PMID:21509087

  15. Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis.

    PubMed

    Blumenfeld, Robert S; Nomura, Emi M; Gratton, Caterina; D'Esposito, Mark

    2013-10-01

    Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing evidence for a rostro-caudal functional organization, along the lateral as well as dorsomedial frontal cortex. Thus, it is not known whether dorsal and ventral regions of lateral PFC form distinct functional networks and how to reconcile any dorso-ventral organization with the medio-lateral and rostro-caudal axes. Here, we used resting-state connectivity data to identify parallel dorsolateral and ventrolateral streams of intrinsic connectivity with the dorsomedial frontal cortex. Moreover, we show that this connectivity follows a rostro-caudal gradient. Our results provide evidence for a novel framework for the intrinsic organization of the frontal cortex that incorporates connections between medio-lateral, dorso-ventral, and rostro-caudal axes.

  16. Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD

    PubMed Central

    Seko, Yuko; Azuma, Noriyuki; Kaneda, Makoto; Nakatani, Kei; Miyagawa, Yoshitaka; Noshiro, Yuuki; Kurokawa, Reiko; Okano, Hideyuki; Umezawa, Akihiro

    2012-01-01

    Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases. PMID:22558175

  17. A technique for in vivo measurement of photoreceptor orientation in the chicken retina.

    PubMed

    Beresford, J A; Crewther, S G; Crewther, D P

    1999-01-01

    The aim of the current study was to develop a method for simultaneously assessing central and peripheral photoreceptor alignment in vivo in animal models. The stimulus apparatus consisted of nine light-emitting diodes (LED) positioned 7.5 degrees apart around an arc. The stimulus was viewed through a pinhole imaged into the entrance pupil of the eye using a telecentric lens system. Photodiodes placed over an array of the VERIS imaging system stimulated the electroretinogram. Data were obtained by positioning the pinhole at 0.25-mm intervals across the pupil and recording (Volk Optical, Mentor, OH, USA) at each location. Orientation assessed in normal chickens demonstrates that photoreceptors orientate towards a locus near the centre of the pupil and that there is a systematic change in peak location with eccentricity. This technique provides a valuable method for determining photoreceptor orientation properties in vivo and can be applied to animal models of pathology.

  18. Electrophysical properties, synaptic transmission and neuromodulation in serotonergic caudal raphe neurons.

    PubMed

    Li, Y W; Bayliss, D A

    1998-06-01

    1. We studied electrophysiological properties, synaptic transmission and modulation by 5-hydroxytryptamine (5-HT) of caudal raphe neurons using whole-cell recording in a neonatal rat brain slice preparation; recorded neurons were identified as serotonergic by post-hoc immunohistochemical detection of tryptophan hydroxylase, the 5-HT-synthesizing enzyme. 2. Serotonergic neurons fired spontaneously (approximately 1 Hz), with maximal steady state firing rates of < 4 Hz. 5-Hydroxytryptamine caused hyperpolarization and cessation of spike activity in these neurons by activating inwardly rectifying K+ conductance via somatodendritic 5-HT1A receptors. 3. Unitary glutamatergic excitatory post-synaptic potentials (EPSP) and currents (EPSC) were evoked in serotonergic neurons by local electrical stimulation. Evoked EPSC were potently inhibited by 5-HT, an effect mediated by presynaptic 5-HT1B receptors. 4. In conclusion, serotonergic caudal raphe neurons are spontaneously active in vitro; they receive prominent glutamatergic synaptic inputs. 5-Hydroxytryptamine regulates serotonergic neuronal activity of the caudal raphe by decreasing spontaneous activity via somatodendritic 5-HT1A receptors and by inhibiting excitatory synaptic transmission onto these neurons via presynaptic 5-HT1B receptors. These local modulatory mechanisms provide multiple levels of feedback autoregulation of serotonergic raphe neurons by 5-HT.

  19. The molecular mechanism of thermal noise in rod photoreceptors.

    PubMed

    Gozem, Samer; Schapiro, Igor; Ferré, Nicolas; Olivucci, Massimo

    2012-09-07

    Spontaneous electrical signals in the retina's photoreceptors impose a limit on visual sensitivity. Their origin is attributed to a thermal, rather than photochemical, activation of the transduction cascade. Although the mechanism of such a process is under debate, the observation of a relationship between the maximum absorption wavelength (λ(max)) and the thermal activation kinetic constant (k) of different visual pigments (the Barlow correlation) indicates that the thermal and photochemical activations are related. Here we show that a quantum chemical model of the bovine rod pigment provides a molecular-level understanding of the Barlow correlation. The transition state mediating thermal activation has the same electronic structure as the photoreceptor excited state, thus creating a direct link between λ(max) and k. Such a link appears to be the manifestation of intrinsic chromophore features associated with the existence of a conical intersection between its ground and excited states.

  20. Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock

    PubMed Central

    Katti, C.; Kempler, K.; Porter, M. L.; Legg, A.; Gonzalez, R.; Garcia-Rivera, E.; Dugger, D.; Battelle, B.-A.

    2010-01-01

    A long-standing concept in vision science has held that a single photoreceptor expresses a single type of opsin, the protein component of visual pigment. However, the number of examples in the literature of photoreceptors from vertebrates and invertebrates that break this rule is increasing. Here, we describe a newly discovered Limulus opsin, Limulus opsin5, which is significantly different from previously characterized Limulus opsins, opsins1 and 2. We show that opsin5 is co-expressed with opsins1 and 2 in Limulus lateral and ventral eye photoreceptors and provide the first evidence that the expression of co-expressed opsins can be differentially regulated. We show that the relative levels of opsin5 and opsin1 and 2 in the rhabdom change with a diurnal rhythm and that their relative levels are also influenced by the animal's central circadian clock. An analysis of the sequence of opsin5 suggests it is sensitive to visible light (400–700 nm) but that its spectral properties may be different from that of opsins1 and 2. Changes in the relative levels of these opsins may underlie some of the dramatic day–night changes in Limulus photoreceptor function and may produce a diurnal change in their spectral sensitivity. PMID:20639420

  1. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    PubMed

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  2. P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle.

    PubMed

    Araque, A; Clarac, F; Buño, W

    1994-05-10

    The toxin fraction (FTX) and peptide omega-Aga-IVA from the venom of the funnel-web spider Agelenopsis aperta, as well as a synthetic analogue of FTX, specifically block the P-type voltage-dependent Ca2+ channel (VDCC). The effects of these toxins on synaptic transmission were studied in the neuromuscular synapses of the crayfish opener muscle, which has a single excitatory and a single inhibitory motoneuron. FTX selectively and reversibly blocked excitatory and inhibitory postsynaptic currents and potentials in a dose-dependent manner. FTX had no effect on (i) resting and postsynaptic membrane conductance, (ii) postsynaptic L-type VDCC, and (iii) both glutamate- and gamma-aminobutyric acid-induced postsynaptic responses. Mean amplitude and frequency of miniature postsynaptic potentials were unchanged by FTX. The postsynaptic VDCC was inhibited by nifedipine, a selective dihydropyridine antagonist of L-type VDCC, whereas synaptic transmission was unaffected. Transmission was also undisturbed by omega-conotoxin, suggesting that N-type VDCCs are not involved. The peptide omega-Aga-IVA blocked excitatory and inhibitory transmission without affecting postsynaptic VDCC. Synaptic transmission was also blocked by synthetic FTX. We conclude that presynaptic P-type VDCCs are involved in both evoked excitatory and inhibitory transmitter release in crayfish neuromuscular synapses.

  3. P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle.

    PubMed Central

    Araque, A; Clarac, F; Buño, W

    1994-01-01

    The toxin fraction (FTX) and peptide omega-Aga-IVA from the venom of the funnel-web spider Agelenopsis aperta, as well as a synthetic analogue of FTX, specifically block the P-type voltage-dependent Ca2+ channel (VDCC). The effects of these toxins on synaptic transmission were studied in the neuromuscular synapses of the crayfish opener muscle, which has a single excitatory and a single inhibitory motoneuron. FTX selectively and reversibly blocked excitatory and inhibitory postsynaptic currents and potentials in a dose-dependent manner. FTX had no effect on (i) resting and postsynaptic membrane conductance, (ii) postsynaptic L-type VDCC, and (iii) both glutamate- and gamma-aminobutyric acid-induced postsynaptic responses. Mean amplitude and frequency of miniature postsynaptic potentials were unchanged by FTX. The postsynaptic VDCC was inhibited by nifedipine, a selective dihydropyridine antagonist of L-type VDCC, whereas synaptic transmission was unaffected. Transmission was also undisturbed by omega-conotoxin, suggesting that N-type VDCCs are not involved. The peptide omega-Aga-IVA blocked excitatory and inhibitory transmission without affecting postsynaptic VDCC. Synaptic transmission was also blocked by synthetic FTX. We conclude that presynaptic P-type VDCCs are involved in both evoked excitatory and inhibitory transmitter release in crayfish neuromuscular synapses. Images PMID:7910404

  4. Interaction of Arrestin with Enolase1 in Photoreceptors

    PubMed Central

    Bolch, Susan; Dugger, Donald R.; Li, Jian; Esquenazi, Isi; Arendt, Anatol; Benzenhafer, Del; McDowell, J. Hugh

    2011-01-01

    Purpose. Arrestin is in disequilibrium in photoreceptors, translocating between inner and outer segments in response to light. The purpose of this project was to identify the cellular component with which arrestin associates in the dark-adapted retina. Methods. Retinas were cross-linked with 2.5 mM dithiobis(succinimidylpropionate) (DSP), and arrestin-containing complexes purified by anion-exchange chromatography. Tandem mass spectrometric analysis was used to identify the protein components in the complex. Enolase localization in photoreceptors was assessed by immunohistochemistry. Confirmation of interacting components was performed using immunoprecipitation and surface plasmon resonance (SPR). Enolase activity was also assessed in the presence of arrestin1. Results. In retinas treated with DSP, arrestin cross-linked in a 125-kDa complex. The principal components of this complex were arrestin1 and enolase1. Both arrestin1 and -4 were pulled down with enolase1 when enolase1 was immunoprecipitated. In the dark-adapted retina, enolase1 co-localized with arrestin1 in the inner segments and outer nuclear layer, but remained in the inner segments when arrestin1 translocated in response to light adaptation. SPR of purified arrestin1 and enolase1 demonstrated direct binding between arrestin1 and enolase1. Arrestin1 modulated the catalytic activity of enolase1, slowing it by as much as 24%. Conclusions. The results show that in the dark-adapted retina, arrestin1 and -4 interact with enolase1. The SPR data show that the interaction between arrestin1 and enolase1 was direct, not requiring a third element to form the complex. Arrestin1 slowed the catalytic activity of enolase1, suggesting that light-driven translocation of arrestin1 may modulate the metabolic activity of photoreceptors. PMID:21051714

  5. Invasion biology in non-free-living species: interactions between abiotic (climatic) and biotic (host availability) factors in geographical space in crayfish commensals (Ostracoda, Entocytheridae)

    PubMed Central

    Mestre, Alexandre; Aguilar-Alberola, Josep A; Baldry, David; Balkis, Husamettin; Ellis, Adam; Gil-Delgado, Jose A; Grabow, Karsten; Klobučar, Göran; Kouba, Antonín; Maguire, Ivana; Martens, Andreas; Mülayim, Ayşegül; Rueda, Juan; Scharf, Burkhard; Soes, Menno; S Monrós, Juan; Mesquita-Joanes, Francesc

    2013-01-01

    In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement-related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non-free-living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum-Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum-Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This

  6. Invasion biology in non-free-living species: interactions between abiotic (climatic) and biotic (host availability) factors in geographical space in crayfish commensals (Ostracoda, Entocytheridae).

    PubMed

    Mestre, Alexandre; Aguilar-Alberola, Josep A; Baldry, David; Balkis, Husamettin; Ellis, Adam; Gil-Delgado, Jose A; Grabow, Karsten; Klobučar, Göran; Kouba, Antonín; Maguire, Ivana; Martens, Andreas; Mülayim, Ayşegül; Rueda, Juan; Scharf, Burkhard; Soes, Menno; S Monrós, Juan; Mesquita-Joanes, Francesc

    2013-12-01

    In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement-related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non-free-living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum-Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum-Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This

  7. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival.

    PubMed

    Omori, Yoshihiro; Chaya, Taro; Katoh, Kimiko; Kajimura, Naoko; Sato, Shigeru; Muraoka, Koichiro; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-12-28

    Cilia function as cell sensors in many organs, and their disorders are referred to as "ciliopathies." Although ciliary components and transport machinery have been well studied, regulatory mechanisms of ciliary formation and maintenance are poorly understood. Here we show that male germ cell-associated kinase (Mak) regulates retinal photoreceptor ciliary length and subcompartmentalization. Mak was localized both in the connecting cilia and outer-segment axonemes of photoreceptor cells. In the Mak-null retina, photoreceptors exhibit elongated cilia and progressive degeneration. We observed accumulation of intraflagellar transport 88 (IFT88) and IFT57, expansion of kinesin family member 3A (Kif3a), and acetylated α-tubulin signals in the Mak-null photoreceptor cilia. We found abnormal rhodopsin accumulation in the Mak-null photoreceptor cell bodies at postnatal day 14. In addition, overexpression of retinitis pigmentosa 1 (RP1), a microtubule-associated protein localized in outer-segment axonemes, induced ciliary elongation, and Mak coexpression rescued excessive ciliary elongation by RP1. The RP1 N-terminal portion induces ciliary elongation and increased intensity of acetylated α-tubulin labeling in the cells and is phosphorylated by Mak. These results suggest that Mak is essential for the regulation of ciliary length and is required for the long-term survival of photoreceptors.

  8. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival

    PubMed Central

    Omori, Yoshihiro; Chaya, Taro; Katoh, Kimiko; Kajimura, Naoko; Sato, Shigeru; Muraoka, Koichiro; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-01-01

    Cilia function as cell sensors in many organs, and their disorders are referred to as “ciliopathies.” Although ciliary components and transport machinery have been well studied, regulatory mechanisms of ciliary formation and maintenance are poorly understood. Here we show that male germ cell-associated kinase (Mak) regulates retinal photoreceptor ciliary length and subcompartmentalization. Mak was localized both in the connecting cilia and outer-segment axonemes of photoreceptor cells. In the Mak-null retina, photoreceptors exhibit elongated cilia and progressive degeneration. We observed accumulation of intraflagellar transport 88 (IFT88) and IFT57, expansion of kinesin family member 3A (Kif3a), and acetylated α-tubulin signals in the Mak-null photoreceptor cilia. We found abnormal rhodopsin accumulation in the Mak-null photoreceptor cell bodies at postnatal day 14. In addition, overexpression of retinitis pigmentosa 1 (RP1), a microtubule-associated protein localized in outer-segment axonemes, induced ciliary elongation, and Mak coexpression rescued excessive ciliary elongation by RP1. The RP1 N-terminal portion induces ciliary elongation and increased intensity of acetylated α-tubulin labeling in the cells and is phosphorylated by Mak. These results suggest that Mak is essential for the regulation of ciliary length and is required for the long-term survival of photoreceptors. PMID:21148103

  9. Photoreceptor-mediated bending towards UV-B in Arabidopsis.

    PubMed

    Vandenbussche, Filip; Tilbrook, Kimberley; Fierro, Ana Carolina; Marchal, Kathleen; Poelman, Dirk; Van Der Straeten, Dominique; Ulm, Roman

    2014-06-01

    Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  10. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish.

    PubMed

    Raghupathy, Rakesh K; Zhang, Xun; Alhasani, Reem H; Zhou, Xinzhi; Mullin, Margaret; Reilly, James; Li, Wenchang; Liu, Mugen; Shu, Xinhua

    2016-08-01

    Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Moderate Light-Induced Degeneration of Rod Photoreceptors with Delayed Transducin Translocation in shaker1 Mice

    PubMed Central

    Zallocchi, Marisa; Wang, Wei-Min; Delimont, Duane; Cosgrove, Dominic

    2011-01-01

    Purpose. Usher syndrome is characterized by congenital deafness associated with retinitis pigmentosa (RP). Mutations in the myosin VIIa gene (MYO7A) cause a common and severe subtype of Usher syndrome (USH1B). Shaker1 mice have mutant MYO7A. They are deaf and have vestibular dysfunction but do not develop photoreceptor degeneration. The goal of this study was to investigate abnormalities of photoreceptors in shaker1 mice. Methods. Immunocytochemistry and hydroethidine-based detection of intracellular superoxide production were used. Photoreceptor cell densities under various conditions of light/dark exposures were evaluated. Results. In shaker1 mice, the rod transducin translocation is delayed because of a shift of its light activation threshold to a higher level. Even moderate light exposure can induce oxidative damage and significant rod degeneration in shaker1 mice. Shaker1 mice reared under a moderate light/dark cycle develop severe retinal degeneration in less than 6 months. Conclusions. These findings show that, contrary to earlier studies, shaker1 mice possess a robust retinal phenotype that may link to defective rod protein translocation. Importantly, USH1B animal models are likely vulnerable to light-induced photoreceptor damage, even under moderate light. PMID:21447681

  12. Subcellular localization of calcium deposits in the noble crayfish Astacus astacus spermatophore: Implications for post-mating spermatophore hardening and spermatozoon maturation.

    PubMed

    Niksirat, Hamid; Kouba, Antonín

    2016-04-01

    The freshly ejaculated spermatophore of crayfish undergoes a hardening process during post-mating storage on the body surface of female. The ultrastructural distribution of calcium deposits were studied and compared in freshly ejaculated and post-mating noble crayfish spermatophores, using the oxalate-pyroantimonate technique, to determine possible roles of calcium in post-mating spermatophore hardening and spermatozoon maturation. Small particles of sparsely distributed calcium deposits were visible in the wall of freshly ejaculated spermatophore. Also, large amount of calcium deposits were visible in the membranes of the freshly ejaculated spermatozoon. Five minutes post-ejaculation, granules in the spermatophore wall appeared as porous formations with numerous electron lucent spaces. Calcium deposits were visible within the spaces and scattered in the spermatophore wall matrix, where smaller calcium deposits combined to form globular calcium deposits. Large numbers of the globular calcium deposits were visible in the wall of the post-mating spermatophore. Smaller calcium deposits were detected in the central area of post-mating spermatophore, which contains the sperm mass, and in the extracellular matrix and capsule. While the density of calcium deposits decreased in the post-mating spermatozoon membranes, numerous small calcium deposits appeared in the subacrosomal zone and nucleus. Substantial changes in calcium deposit distribution in the crayfish spermatophore during post-mating storage on the body of female may be involved in the processes of the spermatophore hardening and spermatozoon maturation. © 2016 Wiley Periodicals, Inc.

  13. Distribution and establishment of the alien Australian redclaw crayfish, Cherax quadricarinatus, in South Africa and Swaziland

    PubMed Central

    Zengeya, Tsungai A.; Hoffman, Andries C.; Measey, G. John; Weyl, Olaf L.F.

    2017-01-01

    Background The Australian redclaw crayfish (Cherax quadricarinatus, von Martens), is native to Australasia, but has been widely translocated around the world due to aquaculture and aquarium trade. Mostly as a result of escape from aquaculture facilities, this species has established extralimital populations in Australia and alien populations in Europe, Asia, Central America and Africa. In South Africa, C. quadricarinatus was first sampled from the wild in 2002 in the Komati River, following its escape from an aquaculture facility in Swaziland, but data on the current status of its populations are not available. Methods To establish a better understanding of its distribution, rate of spread and population status, we surveyed a total of 46 sites in various river systems in South Africa and Swaziland. Surveys were performed between September 2015 and August 2016 and involved visual observations and the use of collapsible crayfish traps. Results Cherax quadricarinatus is now present in the Komati, Lomati, Mbuluzi, Mlawula and Usutu rivers, and it was also detected in several off-channel irrigation impoundments. Where present, it was generally abundant, with populations having multiple size cohorts and containing ovigerous females. In the Komati River, it has spread more than 112 km downstream of the initial introduction point and 33 km upstream of a tributary, resulting in a mean spread rate of 8 km year−1 downstream and 4.7 km year−1 upstream. In Swaziland, estimated downstream spread rate might reach 14.6 km year−1. Individuals were generally larger and heavier closer to the introduction site, which might be linked to juvenile dispersal. Discussion These findings demonstrate that C. quadricarinatus is established in South Africa and Swaziland and that the species has spread, not only within the river where it was first introduced, but also between rivers. Considering the strong impacts that alien crayfish usually have on invaded ecosystems, assessments of its

  14. Evaluation of gradual occlusion of the caudal vena cava in clinically normal dogs.

    PubMed

    Peacock, John T; Fossum, Theresa W; Bahr, Anne M; Miller, Matthew W; Edwards, John F

    2003-11-01

    To devise a technique for gradual occlusion of the caudal vena cava in dogs and determine effects of complete occlusion of the caudal vena cava. 8 mixed-breed hounds that weighed between 25 and 30 kg. Baseline evaluation of dogs included serum biochemical analyses and determination of glomerular filtration rate (GFR) with dynamic renal scintigraphy and plasma clearance analysis. An occluder was placed around the vena cava in the region cranial to the renal veins. The occluder was attached to a vascular access port. The vena cava was gradually occluded over 2 weeks. The GFR was measured every 2 weeks after surgery, and venograms were performed every 3 weeks after surgery. Blood samples were collected every 48 hours for the first week and then weekly thereafter to measure BUN and creatinine concentrations and activities of alanine transaminase, alkaline phosphatase, and creatinine kinase. Dogs were euthanatized 6 weeks after surgery, and tissues were submitted for histologic examination. The GFR and biochemical data were compared with baseline values. Gradual occlusion of the caudal vena cava was easily and consistently performed with this method, and adverse clinical signs were not detected. Formation of collateral vessels allowed overall GFR to remain constant despite a decrease in function of the left kidney. Measured biochemical values did not deviate from reference ranges. Gradual occlusion of the caudal vena cava may allow removal of adrenal gland tumors with vascular invasion that would otherwise be difficult or impossible to resect.

  15. Excitatory innervation of caudal hypoglossal nucleus from nucleus reticularis gigantocellularis in the rat.

    PubMed

    Yang, C C; Chan, J Y; Chan, S H

    1995-03-01

    We examined the possible innervation of the caudal hypoglossal nucleus by the nucleus reticularis gigantocellularis of the medulla oblongata, based on single-neuron recording and retrograde tracing experiments in Sprague-Dawley rats. Under pentobarbital sodium (50 mg/kg, i.p.) anesthesia, electrical stimulation of the caudal portion of the nucleus reticularis gigantocellularis with repetitive 0.5-ms rectangular pulses increased (46 of 51 neurons) the basal discharge frequency of spontaneously active cells, or evoked spike activity in silent, hypoglossal neurons located at the level of the obex. This excitatory effect was related to the intensity (25-100 microA) and/or frequency (0.5-20 Hz) of the stimulating pulses to the nucleus reticularis gigantocellularis. Perikaryal activation of neurons by microinjection of L-glutamate (0.5 nmol, 25 nl) into the caudal portion of the nucleus reticularis gigantocellularis similarly produced an excitatory action on eight of 14 hypoglossal neurons. Retrogradely labeled neurons were found bilaterally within the confines of the nucleus reticularis gigantocellularis following unilateral microinjection of wheatgerm agglutinin-conjugated horseradish peroxidase or Fast Blue into the corresponding hypoglossal recording sites. Furthermore, the distribution of labeled neurons in the nucleus reticularis gigantocellularis substantially overlapped with the loci of electrical or chemical stimulation. These complementary electrophysiological and neuroanatomical results support the conclusion that an excitatory link exists between the nucleus reticularis gigantocellularis and at least the caudal portion of the hypoglossal nucleus in the rat.

  16. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels.

    PubMed

    Meighan, Peter C; Meighan, Starla E; Rich, Elizabeth D; Brown, R Lane; Varnum, Michael D

    2012-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels.

  17. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels

    PubMed Central

    Meighan, Peter C.; Meighan, Starla E.; Rich, Elizabeth D.; Brown, R. Lane; Varnum, Michael D.

    2012-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels. PMID:22699690

  18. Organ and Effective Dose Coefficients for Cranial and Caudal Irradiation Geometries: Neutrons

    NASA Astrophysics Data System (ADS)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; Hiller, M. M.

    2017-09-01

    With the introduction of new recommendations by ICRP Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors, and the introduction of reference sex-specific computational phantoms (ICRP Publication 110). Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT), and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue absorbed doses for caudal and cranial exposures to neutrons ranging in energy from 10-9 MeV to 10 GeV have been performed using the MCNP6 radiation transport code and the adult reference voxel phantoms of ICRP Publication 110. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above about 30 MeV the cranial and caudal values are greater.

  19. Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors.

    PubMed

    Gonzalez-Cordero, Anai; Kruczek, Kamil; Naeem, Arifa; Fernando, Milan; Kloc, Magdalena; Ribeiro, Joana; Goh, Debbie; Duran, Yanai; Blackford, Samuel J I; Abelleira-Hervas, Laura; Sampson, Robert D; Shum, Ian O; Branch, Matthew J; Gardner, Peter J; Sowden, Jane C; Bainbridge, James W B; Smith, Alexander J; West, Emma L; Pearson, Rachael A; Ali, Robin R

    2017-09-12

    Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The non-canonical Wnt-PCP pathway shapes the mouse caudal neural plate.

    PubMed

    López-Escobar, Beatriz; Caro-Vega, José Manuel; Vijayraghavan, Deepthi S; Plageman, Timothy F; Sanchez-Alcazar, José A; Moreno, Roberto Carlos; Savery, Dawn; Márquez-Rivas, Javier; Davidson, Lance A; Ybot-González, Patricia

    2018-05-08

    The last stage of neural tube (NT) formation involves closure of the caudal neural plate (NP), an embryonic structure formed by neuromesodermal progenitors and newly differentiated cells that becomes incorporated into the NT. Here, we show in mouse that, as cell specification progresses, neuromesodermal progenitors and their progeny undergo significant changes in shape prior to their incorporation into the NT. The caudo-rostral progression towards differentiation is coupled to a gradual reliance on a unique combination of complex mechanisms that drive tissue folding, involving pulses of apical actomyosin contraction and planar polarised cell rearrangements, all of which are regulated by the Wnt-PCP pathway. Indeed, when this pathway is disrupted, either chemically or genetically, the polarisation and morphology of cells within the entire caudal NP is disturbed, producing delays in NT closure. The most severe disruptions of this pathway prevent caudal NT closure and result in spina bifida. In addition, a decrease in Vangl2 gene dosage also appears to promote more rapid progression towards a neural fate, but not the specification of more neural cells. © 2018. Published by The Company of Biologists Ltd.

  1. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness

    PubMed Central

    Wiley, Luke A.; Burnight, Erin R.; DeLuca, Adam P.; Anfinson, Kristin R.; Cranston, Cathryn M.; Kaalberg, Emily E.; Penticoff, Jessica A.; Affatigato, Louisa M.; Mullins, Robert F.; Stone, Edwin M.; Tucker, Budd A.

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  2. Recruitment of Rod Photoreceptors from Short-Wavelength-Sensitive Cones during the Evolution of Nocturnal Vision in Mammals.

    PubMed

    Kim, Jung-Woong; Yang, Hyun-Jin; Oel, Adam Phillip; Brooks, Matthew John; Jia, Li; Plachetzki, David Charles; Li, Wei; Allison, William Ted; Swaroop, Anand

    2016-06-20

    Vertebrate ancestors had only cone-like photoreceptors. The duplex retina evolved in jawless vertebrates with the advent of highly photosensitive rod-like photoreceptors. Despite cones being the arbiters of high-resolution color vision, rods emerged as the dominant photoreceptor in mammals during a nocturnal phase early in their evolution. We investigated the evolutionary and developmental origins of rods in two divergent vertebrate retinas. In mice, we discovered genetic and epigenetic vestiges of short-wavelength cones in developing rods, and cell-lineage tracing validated the genesis of rods from S cones. Curiously, rods did not derive from S cones in zebrafish. Our study illuminates several questions regarding the evolution of duplex retina and supports the hypothesis that, in mammals, the S-cone lineage was recruited via the Maf-family transcription factor NRL to augment rod photoreceptors. We propose that this developmental mechanism allowed the adaptive exploitation of scotopic niches during the nocturnal bottleneck early in mammalian evolution. Published by Elsevier Inc.

  3. Accelerated hatching of southern leopard frog (Rana sphenocephala) eggs in response to the presence of a crayfish Procambarus nigrocinctus predator

    Treesearch

    Daniel Saenz; James B. Johnson; Cory K. Adams; Gage H. Dayton

    2003-01-01

    Phenotypic plasticity, such as morphological and behavioral changes in response to predators, is common in larval anurans. Less is known about inducible defenses in the embryonic stages of development. We investigated the predation risk imposed by crayfish (Procambarus nigrocinctus) on southern leopard frog (Rana sphenocephala)...

  4. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia

    PubMed Central

    Tolmachova, Tanya; Anders, Ross; Abrink, Magnus; Bugeon, Laurence; Dallman, Margaret J.; Futter, Clare E.; Ramalho, José S.; Tonagel, Felix; Tanimoto, Naoyuki; Seeliger, Mathias W.; Huxley, Clare; Seabra, Miguel C.

    2006-01-01

    Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs. PMID:16410831

  5. Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2015-02-01

    Photosynthetic organisms, e.g., plants including green algae, use a sophisticated light-sensing system, composed of primary photoreceptors and additional downstream signaling components, to monitor changes in the ambient light environment towards adjust their growth and development. Although a variety of cellular processes, e.g., initiation of cleavage division and final cellular differentiation, have been shown to be light-regulated in the green alga Volvox carteri, little is known about the underlying light perception and signaling pathways. This multicellular alga possesses at least 12 photoreceptors, i.e., one phototropin (VcPhot), four cryptochromes (VcCRYa, VcCRYp, VcCRYd1, and VcCRYd2), and seven members of rhodopsin-like photoreceptors (VR1, VChR1, VChR2, VcHKR1, VcHKR2, VcHKR3, and VcHKR4), which display distinct light-dependent chemical processes based on their protein architectures and associated chromophores. Gene expression analyses could show that the transcript levels of some of the photoreceptor genes (e.g., VChR1 and VcHKR1) accumulate during division cleavages, while others (e.g., VcCRYa, VcCRYp, and VcPhot) accumulate during final cellular differentiation. However, the pattern of transcript accumulation changes when the alga switches to the sexual development. Eight photoreceptor genes, e.g., VcPhot, VcCRYp, and VcHKR1, are highly expressed in the somatic cells, while only the animal-type rhodopsin VR1 was found to be highly expressed in the reproductive cells/embryos during both asexual and sexual life cycles. Moreover, accumulation of VChR1 and VcCRYa transcripts is more sensitive to light and changes in response to more than one light quality. Obviously, different regulatory mechanisms underlying gene expression control transcript accumulation of photoreceptors not only during development, but also in a cell-type specific way and in response to various external signals such as light quality. The transcriptional patterns described in this study

  6. Chondrocyte-Specific Inhibition of β-Catenin Signaling Leads to Dysplasia of the Caudal Vertebrae in Mice

    PubMed Central

    Shu, Bing; Li, Tian-Fang; Li, Xiao-Feng; Tang, De-Zhi; Zhang, Yejia; Shi, Qi

    2013-01-01

    Study Design. To inhibit β-catenin specifically signaling in chondrocytes Col2-ICAT transgenic mice were generated. Anomalies in caudal vertebrae were detected during embryonic and postnatal stages of Col2-ICAT transgenic mice. Objective. To determine the role of canonical β-catenin signaling in caudal vertebral development. Summary of Background Data. β-catenin signaling plays a critical role in skeletal development. Col2-ICAT transgenic mice were generated to selectively block β-catenin signaling by overexpression of the ICAT gene in chondrocytes. Methods. Tails of E16.5 transgenic embryos and adult Col2-ICAT transgenic mice and their wild-type littermates were collected and analyzed. Skeletal preparation, 3-dimensional micro-computed tomographic and histological analyses were performed to evaluate changes in the structure of caudal vertebrae. Bromodeoxyuridine labeling was performed to evaluate changes in chondrocyte proliferation in caudal vertebrae. Results. Skeletal preparation and 3-dimensional micro-computed tomographic analyses revealed bone deformation and angulated deformities in tail tissue in Col2-ICAT transgenic mice. Histological studies revealed abnormal bone development and dysplastic caudal vertebrae in Col2-ICAT transgenic mice. Inhibition of β-catenin signaling in cartilage resulted in vertebral dysplasia leading to aberrant resegmenting process. Thus, 2 poorly developed sclerotomes failed to fuse to form a complete vertebrae. BrdU labeling revealed a decreased chondrocyte proliferation in both cartilageous templates of transgenic embryos and the growth plate of adult Col2-ICAT transgenic mice. Conclusion. Wnt/β-catenin signaling plays an important role in vertebral development. Inhibition of β-catenin signaling in chondrocytes results in caudal vertebra deformity in mice, which may occur as early as in the stage of sclerotome formation. Level of Evidence: N/A PMID:24026150

  7. A Reinterpretation of Cell Transplantation: GFP Transfer From Donor to Host Photoreceptors.

    PubMed

    Ortin-Martinez, Arturo; Tsai, En Leh Samuel; Nickerson, Philip E; Bergeret, Miriam; Lu, Yao; Smiley, Sheila; Comanita, Lacrimioara; Wallace, Valerie A

    2017-04-01

    The utilization of fluorescent reporter transgenes to discriminate donor versus host cells has been a mainstay of photoreceptor transplantation research, the assumption being that the presence of reporter+ cells in outer nuclear layer (ONL) of transplant recipients represents the integration of donor photoreceptors. We previously reported that GFP + cells in the ONL of cone-GFP transplanted retinas exhibited rod-like characteristics, raising the possibility that GFP signal in recipient tissue may not be a consequence of donor cell integration. To investigate the basis for this mismatch, we performed a series of transplantations using multiple transgenic donor and recipient models, and assessed cell identity using nuclear architecture, immunocytochemistry, and DNA prelabeling. Our results indicate that GFP + cells in the ONL fail to exhibit hallmark elements of donor cells, including nuclear hetero/euchromatin architecture. Furthermore, GFP signal does not appear to be a consequence of classic donor/host cell fusion or transfating post-transplant, but is most likely due to material exchange between donor and host photoreceptors. This transfer can be mediated by rods and cones, is bidirectional between donor and host cells, requires viable photoreceptors, occurs preferentially at sites of outer limiting membrane disruption and can be detected in second-order retinal neurons and Müller glia. Collectively, these data warrant re-evaluation of the use of lineage tracing fluorescent reporters in transplantation studies involving the retina and other CNS tissues. Furthermore, the reinterpretation of previous functional rescue data, based on material exchange, rather than cell integration, may offer a novel approach to vision rescue. Stem Cells 2017;35:932-939. © 2016 AlphaMed Press.

  8. Photoreceptor cells as a source of fundus autofluorescence in recessive Stargardt disease.

    PubMed

    Paavo, Maarjaliis; Lee, Winston; Allikmets, Rando; Tsang, Stephen; Sparrow, Janet R

    2018-04-27

    Bisretinoid fluorophores form in photoreceptor outer segments from nonenzymatic reactions of vitamin A aldehyde. The short-wavelength autofluorescence (SW-AF) of fundus flecks in recessive Stargardt disease (STGD1) suggests a connection to these fluorophores. Through multimodal imaging, we sought to elucidate this link. Flecks observed in SW-AF images often colocalized with foci exhibiting reduced or absent near-infrared autofluorescence signal, the source of which is melanin in retinal pigment epithelial (RPE) cells. With serial imaging, changes in near-infrared autofluorescence (NIR-AF) preceded the onset of fleck hyperautofluorescence in SW-AF images and fleck profiles in NIR-AF images tended to be larger. Flecks in SW-AF and NIR-AF images also corresponded to hyperreflective lesions traversing photoreceptor-attributable bands in horizontal SD-OCT scans. The hyperreflective lesions interrupted adjacent OCT reflectivity bands and were associated with thinning of the outer nuclear layer. These SD-OCT findings are attributable to photoreceptor cell degeneration. Progressive increases and decreases in the SW-AF intensity of flecks were evident in color-coded quantitative fundus autofluorescence maps. In some cases, flecks appeared to spread radially from the fovea to approximately 8° of eccentricity, beyond which a circumferential spread characterized the distribution. Since the NIR-AF signal is derived from melanin and loss of this autofluorescence is indicative of RPE atrophy, the SW-AF of flecks cannot be accounted for by bisretinoid lipofuscin in RPE. Instead, we suggest that the bisretinoid serving as the source of the SW-AF signal, resides in photoreceptors, the cell that is also the site of bisretinoid synthesis. © 2018 Wiley Periodicals, Inc.

  9. Usher syndrome type 1–associated cadherins shape the photoreceptor outer segment

    PubMed Central

    Parain, Karine; Aghaie, Asadollah; Picaud, Serge

    2017-01-01

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. PMID:28495838

  10. Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding

    PubMed Central

    Niven, Jeremy E; Anderson, John C; Laughlin, Simon B

    2007-01-01

    Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1–6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ∼20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ∼200 bits s−1 in D. melanogaster to ∼1,000 bits s−1 in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. PMID:17373859

  11. Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry.

    PubMed

    Schott, Ryan K; Van Nynatten, Alexander; Card, Daren C; Castoe, Todd A; S W Chang, Belinda

    2018-06-01

    The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.

  12. Model for the accumulation of strontium and calcium by recently molted crayfish (Cambarus longulus longerostris Ort.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHURR, J. M.; STAMPER, M. N.

    1962-10-01

    After molting, crayfish absorbed Sr 85 rapidly; rates of uptake decreased exponentially as an upper limit was approached (T 1/2 = 1 to 2 days). A simple mathematical model attributes this limit to the number of sites available for deposition in the exoskeleton. Deposited ions are relatively immobile until 2 to 4 days prior to the next molt, when some are redistributed to the calcareous gastroliths prior to reuse.

  13. Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices.

    PubMed

    Santer, Roger D

    2017-03-01

    Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated 'tiny targets' have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the

  14. Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices

    PubMed Central

    2017-01-01

    Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated ‘tiny targets’ have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for

  15. Directionality of Individual Cone Photoreceptors in the Parafoveal Region

    PubMed Central

    Morris, Hugh J.; Blanco, Leonardo; Codona, Johanan L.; Li, Simone; Choi, Stacey S.; Doble, Nathan

    2015-01-01

    The pointing direction of cone photoreceptors can be inferred from the Stiles-Crawford Effect of the First Kind (SCE-I) measurement. Healthy retinas have tightly packed cones with a SCE-I function peak either centered in the pupil or with a slight nasal bias. Various retinal pathologies can change the profile of the SCE-I function implying that the arrangement or the light capturing properties of the cone photoreceptors are affected. Measuring the SCE-I may reveal early signs of photoreceptor change before actual cell apoptosis occurs. In vivo retinal imaging with adaptive optics (AO) was used to measure the pointing direction of individual cones at eight retinal locations in four control human subjects. Retinal images were acquired by translating an aperture in the light delivery arm through 19 different locations across a subject’s entrance pupil. Angular tuning properties of individual cones were calculated by fitting a Gaussian to the reflected intensity profile of each cone projected onto the pupil. Results were compared to those from an accepted psychophysical SCE-I measurement technique. The maximal difference in cone directionality of an ensemble of cones, ρ̄, between the major and minor axes of the Gaussian fit was 0.05 versus 0.29 mm−2 in one subject. All four subjects were found to have a mean nasal bias of 0.81 mm with a standard deviation of ±0.30 mm in the peak position at all retinal locations with mean ρ̄ value decreasing by 23% with increasing retinal eccentricity. Results show that cones in the parafoveal region converge towards the center of the pupillary aperture, confirming the anterior pointing alignment hypothesis. PMID:26494187

  16. Predicting probability of occurrence and factors affecting distribution and abundance of three Ozark endemic crayfish species at multiple spatial scales

    USGS Publications Warehouse

    Nolen, Matthew S.; Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Wagner, Brian K.

    2014-01-01

    We found that a range of environmental variables were important in predicting crayfish distribution and abundance at multiple spatial scales and their importance was species-, response variable- and scale dependent. We would encourage others to examine the influence of spatial scale on species distribution and abundance patterns.

  17. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

    PubMed

    Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2018-01-24

    No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

  18. Quantification of Oxygen Consumption in Retina Ex Vivo Demonstrates Limited Reserve Capacity of Photoreceptor Mitochondria

    PubMed Central

    Kooragayala, Keshav; Gotoh, Norimoto; Cogliati, Tiziana; Nellissery, Jacob; Kaden, Talia R.; French, Stephanie; Balaban, Robert; Li, Wei; Covian, Raul; Swaroop, Anand

    2015-01-01

    Purpose Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration. Methods Circular punches of freshly isolated mouse retina, adjacent to the optic nerve head, were used in the microplate-based Seahorse Extracellular Flux Analyzer to measure oxygen consumption. Tissue integrity was evaluated by propidium iodide staining and live imaging. Different substrates were tested for mitochondrial respiration. Basal and maximal respiration were expressed as oxygen consumption rate (OCR) and respectively measured in Ames' medium before and after the addition of mitochondrial uncoupler, BAM15. Results We show that glucose is an essential substrate for retinal mitochondria. At baseline, mitochondria respiration in the intact wild-type retina was close to maximal, with limited reserve capacity. Similar OCR and limited mitochondrial reserve capacity was also observed in cone-only Nrl−/− retina. However, the retina of Pde6brd1/rd1, Cep290rd16/rd16 and Rpgrip1−/− mice, all with dysfunctional or no photoreceptors, had reduced OCR and higher mitochondrial reserve capacity. Conclusions We have optimized a method to directly measure oxygen consumption in acutely isolated, ex vivo mouse retina and demonstrate that photoreceptors have low mitochondrial reserve capacity. Our data provide a plausible explanation for the high vulnerability of photoreceptors to altered energy homeostasis caused by mutations or metabolic challenges. PMID:26747773

  19. Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa.

    PubMed

    Tojo, Naoki; Nakamura, Tomoko; Fuchizawa, Chiharu; Oiwake, Toshihiko; Hayashi, Atsushi

    2013-01-01

    The purpose of this study was to examine cone photoreceptors in the macula of patients with retinitis pigmentosa using an adaptive optics fundus camera and to investigate any correlations between cone photoreceptor density and findings on optical coherence tomography and fundus autofluorescence. We examined two patients with typical retinitis pigmentosa who underwent ophthalmological examination, including measurement of visual acuity, and gathering of electroretinographic, optical coherence tomographic, fundus autofluorescent, and adaptive optics fundus images. The cone photoreceptors in the adaptive optics images of the two patients with retinitis pigmentosa and five healthy subjects were analyzed. An abnormal parafoveal ring of high-density fundus autofluorescence was observed in the macula in both patients. The border of the ring corresponded to the border of the external limiting membrane and the inner segment and outer segment line in the optical coherence tomographic images. Cone photoreceptors at the abnormal parafoveal ring were blurred and decreased in the adaptive optics images. The blurred area corresponded to the abnormal parafoveal ring in the fundus autofluorescence images. Cone densities were low at the blurred areas and at the nasal and temporal retina along a line from the fovea compared with those of healthy controls. The results for cone spacing and Voronoi domains in the macula corresponded with those for the cone densities. Cone densities were heavily decreased in the macula, especially at the parafoveal ring on high-density fundus autofluorescence in both patients with retinitis pigmentosa. Adaptive optics images enabled us to observe in vivo changes in the cone photoreceptors of patients with retinitis pigmentosa, which corresponded to changes in the optical coherence tomographic and fundus autofluorescence images.

  20. Metameric pattern of intervertebral disc/vertebral body is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somites in the mouse embryo.

    PubMed

    Takahashi, Yu; Yasuhiko, Yukuto; Takahashi, Jun; Takada, Shinji; Johnson, Randy L; Saga, Yumiko; Kanno, Jun

    2013-08-15

    The vertebrae are derived from the sclerotome of somites. Formation of the vertebral body involves a process called resegmentation, by which the caudal half of a sclerotome is combined with the rostral half of the next sclerotome. To elucidate the relationship between resegmentation and rostro-caudal patterning of somite, we used the Uncx4.1-LacZ transgene to characterize the resegmentation process. Our observations suggested that in the thoracic and lumbar vertebrae, the Uncx4.1-expressing caudal sclerotome gave rise to the intervertebral disc (IVD) and rostral portion of the vertebral body (VB). In the cervical vertebrae, the Uncx4.1-expressing caudal sclerotome appeared to contribute to the IVD and both caudal and rostral ends of the VB. This finding suggests that the rostro-caudal gene expression boundary does not necessarily coincide with the resegmentation boundary. This conclusion was supported by analyses of Mesp2 KO and Ripply1/2 double KO embryos lacking rostral and caudal properties, respectively. Resegmentation was not observed in Mesp2 KO embryos, but both the IVD and whole VB were formed from the caudalized sclerotome. Expression analysis of IVD marker genes including Pax1 in the wild-type, Mesp2 KO, and Ripply1/2 DKO embryos also supported the idea that a metameric pattern of IVD/VB is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somite. However, in the lumbar region, IVD differentiation appeared to be stimulated by the caudal property and suppressed by the rostral property. Therefore, we propose that rostro-caudal patterning of somites is not a prerequisite for metameric patterning of the IVD and VB, but instead required to stimulate IVD differentiation in the caudal half of the sclerotome. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons

    DOE PAGES

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.

    2015-05-02

    With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision ofmore » ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above similar to 30 MeV the cranial and caudal values are greater.« less

  2. Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.

    With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision ofmore » ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above similar to 30 MeV the cranial and caudal values are greater.« less

  3. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope

    PubMed Central

    Dubra, Alfredo; Sulai, Yusufu; Norris, Jennifer L.; Cooper, Robert F.; Dubis, Adam M.; Williams, David R.; Carroll, Joseph

    2011-01-01

    The rod photoreceptors are implicated in a number of devastating retinal diseases. However, routine imaging of these cells has remained elusive, even with the advent of adaptive optics imaging. Here, we present the first in vivo images of the contiguous rod photoreceptor mosaic in nine healthy human subjects. The images were collected with three different confocal adaptive optics scanning ophthalmoscopes at two different institutions, using 680 and 775 nm superluminescent diodes for illumination. Estimates of photoreceptor density and rod:cone ratios in the 5°–15° retinal eccentricity range are consistent with histological findings, confirming our ability to resolve the rod mosaic by averaging multiple registered images, without the need for additional image processing. In one subject, we were able to identify the emergence of the first rods at approximately 190 μm from the foveal center, in agreement with previous histological studies. The rod and cone photoreceptor mosaics appear in focus at different retinal depths, with the rod mosaic best focus (i.e., brightest and sharpest) being at least 10 μm shallower than the cones at retinal eccentricities larger than 8°. This study represents an important step in bringing high-resolution imaging to bear on the study of rod disorders. PMID:21750765

  4. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor.

    PubMed

    McCulloch, Kyle J; Osorio, Daniel; Briscoe, Adriana D

    2016-08-01

    Most butterfly families expand the number of spectrally distinct photoreceptors in their compound eye by opsin gene duplications together with lateral filter pigments; however, most nymphalid genera have limited diversity, with only three or four spectral types of photoreceptor. Here, we examined the spatial pattern of opsin expression and photoreceptor spectral sensitivities in Heliconius erato, a nymphalid with duplicate ultraviolet opsin genes, UVRh1 and UVRh2 We found that the H. erato compound eye is sexually dimorphic. Females express the two UV opsin proteins in separate photoreceptors, but males do not express UVRh1. Intracellular recordings confirmed that females have three short wavelength-sensitive photoreceptors (λmax=356, ∼390 and 470 nm), while males have two (λmax=390 and ∼470 nm). We also found two long wavelength-sensitive photoreceptors (green, λmax∼555 nm, and red, λmax∼600 nm), which express the same LW opsin. The red cell's shifted sensitivity is probably due to perirhabdomal filtering pigments. Sexual dimorphism of the UV-absorbing rhodopsins may reflect the females' need to discriminate conspecifics from co-mimics. Red-green color vision may be used to detect differences in red coloration on Heliconius wings, or for host-plant identification. Among nymphalids so far investigated, only H. erato is known to possess five spectral classes of photoreceptor; sexual dimorphism of the eye via suppression of one class of opsin (here UVRh1 in males) has not - to our knowledge - been reported in any animal. © 2016. Published by The Company of Biologists Ltd.

  5. Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum

    PubMed Central

    Sommer, Marc A.

    2013-01-01

    The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce “delay activity” between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move. PMID:23365182

  6. Electrical and Mechanical Responses in Deep Abdominal Extensor Muscles of Crayfish and Lobster

    PubMed Central

    Abbott, Bernard C.; Parnas, I.

    1965-01-01

    Electrical and mechanical studies have been made of the deep abdominal extensor muscles, medial (DEAM) and lateral (DEAL), of crayfish and lobster. The medial muscle responds to direct (intracellular) and indirect stimulation with a transient membrane depolarization which exhibits the properties of a propagated non-decremental action potential but does not overshoot the zero level. The amplitude is about 30 mv in crayfish and 50 mv in lobster. It is followed by a fast all-or-none twitch whose duration at 20°C is 30 to 50 msec. and whose developed tension is 500 gm/cm2 or about half the tetanic value. Membrane potential is K+-dependent and immersion in high K+ induces a brief transient tension rise as in other twitch-type muscles. The action potential and twitch are normal even if all external Na+ is replaced with sucrose but vary with external Ca++, the action potential increasing 8 to 10 mv for a twofold increase in Ca++. The lateral muscle (DEAL) is much slower and responds to intracellular stimulation only with an electrotonic or a local response. Mechanical responses and relaxation speeds are slow with minimal duration of contraction of 0.5 to 2 seconds. Immersion in high K solutions induces large maintained tensions. Sarcomere length in the fast DEAM is uniform and about 2 µ at rest, but in the DEAL speed is less and sarcomere length is greater averaging about 4.5 µ but with a mixed population of fibers. PMID:14324996

  7. A genome-wide association study reveals a QTL influencing caudal supernumerary teats in Holstein cattle.

    PubMed

    Joerg, H; Meili, C; Ruprecht, O; Bangerter, E; Burren, A; Bigler, A

    2014-12-01

    Supernumerary teats represent a common abnormality of the bovine udder. A genome-wide association study was performed based on the proportion of the occurrence of supernumerary teats in the daughters of 1097 Holstein bulls. The heritability of caudal supernumerary teats without mammary gland in this study was 0.604. The largest proportion of the heritability was attributable to BTA 20. The strongest evidence for association was with five SNPs on chromosome 20, referred to as a QTL. The mode of inheritance at this QTL was dominant. These findings reveal that the occurrence of caudal supernumerary teats without mammary gland in Holstein cattle is influenced by a QTL on chromosome 20 and a polygenic part. The data support the high potential of the SNPs in the QTL region as markers for breeding against caudal supernumerary teats. © 2014 Stichting International Foundation for Animal Genetics.

  8. The effects of low level microwaves on the fluidity of photoreceptor cell membrane.

    PubMed

    Pologea-Moraru, Roxana; Kovacs, Eugenia; Iliescu, Karina Roxana; Calota, Violeta; Sajin, Gheorghe

    2002-05-15

    Due to the extensive use of electromagnetic fields in everyday life, more information is required for the detection of mechanisms of interaction and the possible side effects of electromagnetic radiation on the structure and function of the organism. In this paper, we study the effects of low-power microwaves (2.45 GHz) on the membrane fluidity of rod photoreceptor cells. The retina is expected to be very sensitive to microwave irradiation due to the polar character of the photoreceptor cells [Biochim. Biophys. Acta 1273 (1995) 217] as well as to its high water content [Stud. Biophys. 81 (1981) 39].

  9. [Regulation of pyloric rhythm by I(A) and I(h) in crayfish stomatogastric ganglion].

    PubMed

    Kuang, Guo-Hui; Liu, Yi-Hui; Ren, Wei

    2012-06-25

    The stomatogastric ganglion (STG) of shellfish includes 30 neurons and produces pyloric rhythms. It is the common model to study central pattern generator (CPG). Regulation of pyloric rhythms not only is related to the property of single neurons in STG but also depends on the connections and property of the whole neuronal network. It has been found that transient potassium current (I(A)) and hyperpolarization-activated cation current (I(h)) exist in certain types of neurons of STG. However, roles played by these two currents in maintaining and regulating the pyloric rhythms are unknown. In the present study, in vitro electrophysiological recordings were performed on crayfish STG to examine the role played by I(A) and I(h) in regulation of pyloric rhythm. 4AP (2 mmol/L), a specific inhibitor of I(A), caused a decrease in pyloric cycle (P < 0.01), an increase in PD (pyloric dilator) ratio, a decrease in PY (pyloric) ratio (P < 0.01) and delay of phases of LP and PY firing. ZD7288 (100 μmol/L), a specific inhibitor of I(h), caused a decrease in pyloric cycle (P < 0.01), an increase in PD ratio (P < 0.01), an increase in LP (lateral pyloric) ratio (P < 0.01), a decrease in PY ratio (P < 0.01) and delay of phases of LP and PY firing. These results indicate that I(A) and I(h) play important roles in regulating pyloric rhythms in crayfish STG.

  10. Disease-associated mutations in CNGB3 promote cytotoxicity in photoreceptor-derived cells

    PubMed Central

    Liu, Chunming; Sherpa, Tshering

    2013-01-01

    Purpose To determine if achromatopsia associated F525N and T383fsX mutations in the CNGB3 subunit of cone photoreceptor cyclic nucleotide-gated (CNG) channels increases susceptibility to cell death in photoreceptor-derived cells. Methods Photoreceptor-derived 661W cells were transfected with cDNA encoding wild-type (WT) CNGA3 subunits plus WT or mutant CNGB3 subunits, and incubated with the membrane-permeable CNG channel activators 8-(4-chlorophenylthio) guanosine 3′,5′-cyclic monophosphate (CPT-cGMP) or CPT-adenosine 3′,5′-cyclic monophosphate (CPT-cAMP). Cell viability under these conditions was determined by measuring lactate dehydrogenase release. Channel ligand sensitivity was calibrated by patch-clamp recording after expression of WT or mutant channels in Xenopus oocytes. Results Coexpression of CNGA3 with CNGB3 subunits containing F525N or T383fsX mutations produced channels exhibiting increased apparent affinity for CPT-cGMP compared to WT channels. Consistent with these effects, cytotoxicity in the presence of 0.1 μM CPT-cGMP was enhanced relative to WT channels, and the increase in cell death was more pronounced for the mutation with the largest gain-of-function effect on channel gating, F525N. Increased susceptibility to cell death was prevented by application of the CNG channel blocker L-cis-diltiazem. Increased cytotoxicity was also found to be dependent on the presence of extracellular calcium. Conclusions These results indicate a connection between disease-associated mutations in cone CNG channel subunits, altered CNG channel-activation properties, and photoreceptor cytotoxicity. The rescue of cell viability via CNG channel block or removal of extracellular calcium suggests that cytotoxicity in this model depends on calcium entry through hyperactive CNG channels. PMID:23805033

  11. SIFamide peptides in clawed lobsters and freshwater crayfish (Crustacea, Decapoda, Astacidea): a combined molecular, mass spectrometric and electrophysiological investigation.

    PubMed

    Dickinson, Patsy S; Stemmler, Elizabeth A; Cashman, Christopher R; Brennan, Henry R; Dennison, Bobbi; Huber, Kristen E; Peguero, Braulio; Rabacal, Whitney; Goiney, Christopher C; Smith, Christine M; Towle, David W; Christie, Andrew E

    2008-04-01

    Recently, we identified the peptide VYRKPPFNGSIFamide (Val(1)-SIFamide) in the stomatogastric nervous system (STNS) of the American lobster Homarus americanus using matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS). Given that H. americanus is the only species thus far shown to possess this peptide, and that a second SIFamide isoform, Gly(1)-SIFamide, is broadly conserved in other decapods, including another astacidean, the crayfish Procambarus clarkii, we became interested both in confirming our identification of Val(1)-SIFamide via molecular methods and in determining the extent to which this isoform is conserved within other members of the infraorder Astacidea. Here, we present the identification and characterization of an H. americanus prepro-SIFamide cDNA that encodes the Val(1) isoform. Moreover, we demonstrate via MALDI-FTMS the presence of Val(1)-SIFamide in a second Homarus species, Homarus gammarus. In contrast, only the Gly(1) isoform was detected in the other astacideans investigated, including the lobster Nephrops norvegicus, a member of the same family as Homarus, and the crayfish Cherax quadricarinatus, P. clarkii and Pacifastacus leniusculus, which represent members of each of the extant families of freshwater astacideans. These results suggest that Val(1)-SIFamide may be a genus (Homarus)-specific isoform. Interestingly, both Val(1)- and Gly(1)-SIFamide possess an internal dibasic site, Arg(3)-Lys(4), raising the possibility of the ubiquitously conserved isoform PPFNGSIFamide. However, this octapeptide was not detected via MALDI-FTMS in any of the investigated species, and when applied to the isolated STNS of H. americanus possessed little bioactivity relative to the full-length Val(1) isoform. Thus, it appears that the dodeca-variants Val(1)- and Gly(1)-SIFamide are the sole bioactive isoforms of this peptide family in clawed lobsters and freshwater crayfish.

  12. ARL2BP, a protein linked to Retinitis Pigmentosa, is needed for normal photoreceptor cilia doublets and outer segment structure.

    PubMed

    Moye, Abigail R; Singh, Ratnesh; Kimler, Victoria A; Dilan, Tanya L; Munezero, Daniella; Saravanan, Thamaraiselvi; Goldberg, Andrew F X; Ramamurthy, Visvanathan

    2018-05-02

    The outer segment (OS) of photoreceptor cells is an elaboration of a primary cilium with organized stacks of membranous discs that contain the proteins needed for phototransduction and vision. Though cilia formation and function has been well characterized, little is known about the role of cilia in the development of photoreceptor OS. Nevertheless, progress has been made by studying mutations in ciliary proteins which often result in malformed outer segments and lead to blinding diseases. To investigate how ciliary proteins contribute to outer segment formation, we generated a knockout mouse model for ARL2BP, a ciliary protein linked to Retinitis Pigmentosa. The knockout mice display an early and progressive reduction in visual response. Prior to photoreceptor degeneration we observed disorganization of the photoreceptor OS, with vertically aligned discs and shortened axonemes. Interestingly, ciliary doublet microtubule structure was also impaired, displaying open B-tubule doublets, paired with loss of singlet microtubules. Based on results from this study, we conclude that ARL2BP is necessary for photoreceptor cilia doublet formation and axoneme elongation, which is required for outer segment morphogenesis and vision.

  13. Cell Fate of Müller Cells During Photoreceptor Regeneration in an N-Methyl-N-nitrosourea-Induced Retinal Degeneration Model of Zebrafish.

    PubMed

    Ogai, Kazuhiro; Hisano, Suguru; Sugitani, Kayo; Koriyama, Yoshiki; Kato, Satoru

    2016-01-01

    Zebrafish can regenerate several organs such as the tail fin, heart, central nervous system, and photoreceptors. Very recently, a study has demonstrated the photoreceptor regeneration in the alkylating agent N-methyl-N-nitrosourea (MNU)-induced retinal degeneration (RD) zebrafish model, in which whole photoreceptors are lost within a week after MNU treatment and then regenerated within a month. The research has also shown massive proliferation of Müller cells within a week. To address the question of whether proliferating Müller cells are the source of regenerating photoreceptors, which remains unknown in the MNU-induced zebrafish RD model, we employed a BrdU pulse-chase technique to label the proliferating cells within a week after MNU treatment. As a result of the BrdU pulse-chase technique, a number of BrdU(+) cells were observed in the outer nuclear layer as well as the inner nuclear layer. This implies that regenerating photoreceptors are derived from proliferating Müller cells in the zebrafish MNU-induced RD model.

  14. Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data

    PubMed Central

    Gonen-Yaacovi, Gil; de Souza, Leonardo Cruz; Levy, Richard; Urbanski, Marika; Josse, Goulven; Volle, Emmanuelle

    2013-01-01

    Creativity is of central importance for human civilization, yet its neurocognitive bases are poorly understood. The aim of the present study was to integrate existing functional imaging data by using the meta-analysis approach. We reviewed 34 functional imaging studies that reported activation foci during tasks assumed to engage creative thinking in healthy adults. A coordinate-based meta-analysis using Activation Likelihood Estimation (ALE) first showed a set of predominantly left-hemispheric regions shared by the various creativity tasks examined. These regions included the caudal lateral prefrontal cortex (PFC), the medial and lateral rostral PFC, and the inferior parietal and posterior temporal cortices. Further analyses showed that tasks involving the combination of remote information (combination tasks) activated more anterior areas of the lateral PFC than tasks involving the free generation of unusual responses (unusual generation tasks), although both types of tasks shared caudal prefrontal areas. In addition, verbal and non-verbal tasks involved the same regions in the left caudal prefrontal, temporal, and parietal areas, but also distinct domain-oriented areas. Taken together, these findings suggest that several frontal and parieto-temporal regions may support cognitive processes shared by diverse creativity tasks, and that some regions may be specialized for distinct types of processes. In particular, the lateral PFC appeared to be organized along a rostro-caudal axis, with rostral regions involved in combining ideas creatively and more posterior regions involved in freely generating novel ideas. PMID:23966927

  15. Caudal Regression Syndrome with Partial Agenesis of the Corpus callosum and Partial Lobar Holoprosencephaly: Case report.

    PubMed

    Hashami, Hilal Al; Bataclan, Maria F; Mathew, Mariam; Krishnan, Lalitha

    2010-04-01

    Caudal regression syndrome is a rare fetal condition of diabetic pregnancy. Although the exact mechanism is not known, hyperglycaemia during embryogenesis seems to act as a teratogen. Independently, caudal regression syndrome (CRS), agenesis of the corpus callosum (ACC) and partial lobar holoprosencephaly (HPE) have been reported in infants of diabetic mothers. To our knowledge, a combination of all these three conditions has not been reported so far.

  16. Dinosaur Speed Demon: The Caudal Musculature of Carnotaurus sastrei and Implications for the Evolution of South American Abelisaurids

    PubMed Central

    Persons, W. Scott; Currie, Philip J.

    2011-01-01

    In the South American abelisaurids Carnotaurus sastrei, Aucasaurus garridoi, and, to a lesser extent Skorpiovenator bustingorryi, the anterior caudal ribs project at a high dorsolateral inclination and have interlocking lateral tips. This unique morphology facilitated the expansion of the caudal hypaxial musculature at the expense of the epaxial musculature. Distinct ridges on the ventrolateral surfaces of the caudal ribs of Aucasaurus garridoi are interpreted as attachment scars from the intra caudofemoralis/ilio-ischiocaudalis septa, and confirm that the M. caudofemoralis of advanced South American abelisaurids originated from a portion of the caudal ribs. Digital muscle models indicate that, relative to its overall body size, Carnotaurus sastrei had a substantially larger M. caudofemoralis than any other theropod yet studied. In most non-avian theropods, as in many extant sauropsids, the M. caudofemoralis served as the primary femoral retractor muscle during the locomotive power stroke. This large investment in the M. caudofemoralis suggests that Carnotaurus sastrei had the potential for great cursorial abilities, particularly short-burst sprinting. However, the tightly interlocking morphology of the anterior caudal vertebrae implies a reduced ability to make tight turns. Examination of these vertebral traits in evolutionary context reveals a progressive sequence of increasing caudofemoral mass and tail rigidity among the Abelisauridae of South America. PMID:22043292

  17. Ultrasound assessment of cranial spread during caudal blockade in children: Effect of different volumes of local anesthetic

    PubMed Central

    Sinha, Chandni; Kumar, Amarjeet; Sharma, Shalini; Singh, Akhilesh Kumar; Majumdar, Somak; Kumar, Ajeet; Sahay, Nishant; Kumar, Bindey; Bhadani, UK

    2017-01-01

    Background: Ultrasound-guided caudal block injection is a simple, safe, and effective method of anesthesia/analgesia in pediatric patients. The volume of caudal drug required has always been a matter of debate. Materials and Methods: This present prospective, randomized, double-blinded study aimed to measure extent of the cranial spread of caudally administered levobupivacaine in Indian children by means of real-time ultrasonography. Ninety American Society of Anesthesiologists I/II children scheduled for urogenital surgeries were enrolled in this trial. Anesthesia and caudal analgesia were administered in a standardized manner in the patients. The patients received 0.5 ml/kg or 1 ml/kg or 1.25 ml/kg of 0.125% levobupivacaine according to the group allocated. Cranial spread of local anesthetic was noted using ultrasound. Results: There was no difference in the spread when related to age, sex, weight, or body mass index. A significant difference of ultrasound-assessed cranial spread of the local anesthetic was found between Group 1 (0.5 ml/kg) with both Group 2 (1 ml/kg) (P = 0.001) and with Group 3 (1.125 ml/kg) (P < 0.001) but there is no significant difference between Group 2 and Group 3 (P = 0.451) revealing that spinal level spread is only different between 0.5 ml/kg and 1 ml/kg of local anesthetic. Conclusion: In conclusion, the ultrasound assessment of local anesthetic spread after a caudal block showed that cranial spread of the block is dependent on the volume injected into the caudal space. Since there was no difference between 1 ml/kg and 1.25 ml/kg, to achieve a dermatomal blockade up to thoracic level, we might have to increase the dose beyond 1.25 ml/kg, keeping the toxic dose in mind. PMID:29033727

  18. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.

    PubMed

    Vinberg, Frans; Peshenko, Igor V; Chen, Jeannie; Dizhoor, Alexander M; Kefalov, Vladimir J

    2018-05-11

    Light adaptation of photoreceptor cells is mediated by Ca 2+ -dependent mechanisms. In darkness, Ca 2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca 2+ extrusion via Na + /Ca 2+ , K + exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca 2+ levels in photoreceptor outer segment because of continuing Ca 2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca 2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca 2+ -feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca 2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca 2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Molecular basis for photoreceptor outer segment architecture

    PubMed Central

    Goldberg, Andrew F. X.; Moritz, Orson L.; Williams, David S.

    2016-01-01

    To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ~10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained. PMID:27260426

  20. Neuronal connections of direct and indirect pathways for stable value memory in caudal basal ganglia.

    PubMed

    Amita, Hidetoshi; Kim, Hyoung F; Smith, Mitchell; Gopal, Atul; Hikosaka, Okihide

    2018-05-08

    Direct and indirect pathways in the basal ganglia work together for controlling behavior. However, it is still a controversial topic whether these pathways are segregated or merged with each other. To address this issue, we studied the connections of these two pathways in the caudal parts of the basal ganglia of rhesus monkeys using anatomical tracers. Our previous studies showed that the caudal basal ganglia control saccades by conveying long-term values (stable values) of many visual objects toward the superior colliculus. In experiment 1, we injected a tracer in the caudate tail (CDt), and found local dense plexuses of axon terminals in the caudal-dorsal-lateral part of substantia nigra pars reticulata (cdlSNr) and the caudal-ventral part of globus pallidus externus (cvGPe). These anterograde projections may correspond to the direct and indirect pathways, respectively. To verify this in experiment 2, we injected different tracers into cdlSNr and cvGPe, and found many retrogradely labeled neurons in CDt and, in addition, the caudal-ventral part of the putamen (cvPut). These cdlSNr-projecting and cvGPe-projecting neurons were found intermingled in both CDt and cvPut (which we call 'striatum tail'). A small but significant proportion of neurons (< 15%) were double-labeled, indicating that they projected to both cdlSNr and cvGPe. These anatomical results suggest that stable value signals (good vs. bad) are sent from the striatum tail to cdlSNr and cvGPe in a biased (but not exclusive) manner. These connections may play an important role in biasing saccades toward higher-valued objects and away from lower-valued objects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Comparison of caudal ropivacaine-morphine and paravertebral catheter for major upper abdominal surgery in infants.

    PubMed

    Sato, Makoto; Iida, Takafumi; Kikuchi, Chika; Sasakawa, Tomoki; Kunisawa, Takayuki

    2017-05-01

    The caudal epidural block is one of the most commonly used regional anesthetic techniques in children. Administration of morphine via caudal injection enables analgesia, even for upper abdominal surgery. The thoracic paravertebral block has also been successfully used to treat perioperative pain during upper abdominal procedures in pediatric patients. In the current study, we compared the two regional techniques for upper abdominal surgery in infants to determine whether one of them was preferable to the other. Consecutive patients under 12 months of age who underwent upper abdominal surgery were retrospectively divided according to the chosen postoperative analgesia: Group C, caudal ropivacaine-morphine; Group P, paravertebral catheter. We analyzed the following outcomes: requirement for additional analgesics, pain scores, need for mechanical ventilation and oxygen dosage, postoperative blood pressure and heart rate, time to pass first stool, time until first full meal, and complications. Twenty-one consecutive patients were included: 10 in Group C and 11 in Group P. Median age at surgery was 80 (47.5-270.0) and 84.5 (34.3-287.5) days, respectively. No difference was found between the two groups in requirement for additional analgesics at 24 h after surgery (median 1 in Group C vs 1 in Group P, P = 0.288, 95% CI: -2 to 1). BOPS pain scores were only lower in Group P when compared to Group C at 24 h after surgery (median 1 vs 2, P = 0.041, 95% CI: -2 to 0). None of the patients had perioperative complications. In this small series, there was no significant difference between caudal ropivacaine-morphine and paravertebral catheter for postoperative care in infants undergoing upper abdominal surgery. Further prospective studies are needed to compare the efficacy and incidence of complications of caudal block and paravertebral catheter for postoperative analgesia. © 2017 John Wiley & Sons Ltd.

  2. Residue analysis of sixty pesticides in red swamp crayfish using QuEChERS with high-performance liquid chromatography-tandem mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    In this study, a multi-residue analytical method using QuEChERS extraction and dispersive solid-phase extraction (d-SPE) cleanup followed by high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) was developed for rapid determination of 60 pesticide residues in whole crayfish a...

  3. Differential Contributions of Dorso-Ventral and Rostro-Caudal Prefrontal White Matter Tracts to Cognitive Control in Healthy Older Adults

    PubMed Central

    Strenziok, Maren; Greenwood, Pamela M.; Santa Cruz, Sophia A.; Thompson, James C.; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to

  4. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    PubMed

    Strenziok, Maren; Greenwood, Pamela M; Santa Cruz, Sophia A; Thompson, James C; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to

  5. Serotonin has opposite effects on the aggressiveness of crayfish, facing either a smaller or a larger rival: alteration of size perception.

    PubMed

    Bacqué-Cazenave, Julien; Cattaert, Daniel; Delbecque, Jean Paul; Fossat, Pascal

    2018-04-26

    We injected serotonin (5-HT) in adult male crayfish before pairing them with size-matched non-injected competitors, and we observed dyadic agonistic interactions. Paradoxically, 5-HT elicited opposite behavioral responses if the injected animal was opposed by a smaller or larger rival: the level of aggressiveness of the injected crayfish was higher in front of a larger rival but lower in front of a smaller rival. Our results indicate that the effects of 5-HT on aggressiveness are dependent on the perception of the relative size difference of the opponent. In both cases, however, 5-HT significantly delayed the decision to retreat. We conclude that 5-HT does not primarily act on aggressiveness but rather on the brain centers that integrate risk assessment and/or decision-making, which then modulate the aggressive response. Our study supports a reinterpretation of the role of 5-HT in crustacean agonistic behavior that may be of interest for other animals. © 2018. Published by The Company of Biologists Ltd.

  6. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    PubMed

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Optimal design of photoreceptor mosaics: why we do not see color at night.

    PubMed

    Manning, Jeremy R; Brainard, David H

    2009-01-01

    While color vision mediated by rod photoreceptors in dim light is possible (Kelber & Roth, 2006), most animals, including humans, do not see in color at night. This is because their retinas contain only a single class of rod photoreceptors. Many of these same animals have daylight color vision, mediated by multiple classes of cone photoreceptors. We develop a general formulation, based on Bayesian decision theory, to evaluate the efficacy of various retinal photoreceptor mosaics. The formulation evaluates each mosaic under the assumption that its output is processed to optimally estimate the image. It also explicitly takes into account the statistics of the environmental image ensemble. Using the general formulation, we consider the trade-off between monochromatic and dichromatic retinal designs as a function of overall illuminant intensity. We are able to demonstrate a set of assumptions under which the prevalent biological pattern represents optimal processing. These assumptions include an image ensemble characterized by high correlations between image intensities at nearby locations, as well as high correlations between intensities in different wavelength bands. They also include a constraint on receptor photopigment biophysics and/or the information carried by different wavelengths that produces an asymmetry in the signal-to-noise ratio of the output of different receptor classes. Our results thus provide an optimality explanation for the evolution of color vision for daylight conditions and monochromatic vision for nighttime conditions. An additional result from our calculations is that regular spatial interleaving of two receptor classes in a dichromatic retina yields performance superior to that of a retina where receptors of the same class are clumped together.

  8. Systems analysis of the single photon response in invertebrate photoreceptors.

    PubMed

    Pumir, Alain; Graves, Jennifer; Ranganathan, Rama; Shraiman, Boris I

    2008-07-29

    Photoreceptors of Drosophila compound eye employ a G protein-mediated signaling pathway that transduces single photons into transient electrical responses called "quantum bumps" (QB). Although most of the molecular components of this pathway are already known, the system-level understanding of the mechanism of QB generation has remained elusive. Here, we present a quantitative model explaining how QBs emerge from stochastic nonlinear dynamics of the signaling cascade. The model shows that the cascade acts as an "integrate and fire" device and explains how photoreceptors achieve reliable responses to light although keeping low background in the dark. The model predicts the nontrivial behavior of mutants that enhance or suppress signaling and explains the dependence on external calcium, which controls feedback regulation. The results provide insight into physiological questions such as single-photon response efficiency and the adaptation of response to high incident-light level. The system-level analysis enabled by modeling phototransduction provides a foundation for understanding G protein signaling pathways less amenable to quantitative approaches.

  9. Asymmetric activation mechanism of a homodimeric red light regulated photoreceptor.

    PubMed

    Gourinchas, Geoffrey; Heintz, Udo; Winkler, Andreas

    2018-06-05

    Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl-cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes. © 2018, Gourinchas et al.

  10. Effect of G Protein–Coupled Receptor Kinase 1 (Grk1) Overexpression on Rod Photoreceptor Cell Viability

    PubMed Central

    Whitcomb, Tiffany; Sakurai, Keisuke; Brown, Bruce M.; Young, Joyce E.; Sheflin, Lowell; Dlugos, Cynthia; Craft, Cheryl M.; Kefalov, Vladimir J.

    2010-01-01

    Purpose. Photoreceptor rhodopsin kinase (Rk, G protein–dependent receptor kinase 1 [Grk1]) phosphorylates light-activated opsins and channels them into an inactive complex with visual arrestins. Grk1 deficiency leads to human retinopathy and heightened susceptibility to light-induced photoreceptor cell death in the mouse. The goal of this study was to determine whether excess Grk1 activity is protective against photoreceptor cell death. Methods. Grk1-overexpressing transgenic mice (Grk1+) were generated by using a bacterial artificial chromosome (BAC) construct containing mouse Grk1, along with its flanking sequences. Quantitative reverse transcription-PCR, immunoblot analysis, immunostaining, and activity assays were combined with electrophysiology and morphometric analysis, to evaluate Grk1 overexpression and its effect on physiologic and morphologic retinal integrity. Morphometry and nucleosome release assays measured differences in resistance to photoreceptor cell loss between control and transgenic mice exposed to intense light. Results. Compared with control animals, the Grk1+ transgenic line had approximately a threefold increase in Grk1 transcript and immunoreactive protein. Phosphorylated opsin immunochemical staining and in vitro phosphorylation assays confirmed proportionately higher Grk1 enzyme activity. Grk1+ mice retained normal rod function, normal retinal appearance, and lacked evidence of spontaneous apoptosis when reared in cyclic light. In intense light, Grk1+ mice showed photoreceptor damage, and their susceptibility was more pronounced than that of control mice with prolonged exposure times. Conclusions. Enhancing visual pigment deactivation does not appear to protect against apoptosis; however, excess flow of opsin into the deactivation pathway may actually increase susceptibility to stress-induced cell death similar to some forms of retinal degeneration. PMID:19834036

  11. Serotonergic Innervation of the Caudal Spinal Stump in Rats After Complete Spinal Transection: Effect of Olfactory Ensheathing Glia

    PubMed Central

    Takeoka, Aya; Kubasak, Marc D.; Zhong, Hui; Roy, Roland R.; Phelps, Patricia E.

    2010-01-01

    Spinal cord injury studies use the presence of serotonin (5-HT)-immunoreactive axons caudal to the injury site as evidence of axonal regeneration. As olfactory ensheathing glia (OEG) transplantation improves hindlimb locomotion in adult rats with complete spinal cord transection, we hypothesized that more 5-HT-positive axons would be found in the caudal stump of OEG- than media-injected rats. Previously we found 5-HT-immunolabeled axons that spanned the transection site only in OEG-injected rats but detected labeled axons just caudal to the lesion in both media- and OEG-injected rats. Now we report that many 5-HT-labeled axons are present throughout the caudal stump of both media- and OEG-injected rats. We found occasional 5-HT-positive interneurons that are one likely source of 5-HT-labeled axons. These results imply that the presence of 5-HT-labeled fibers in the caudal stump is not a reliable indicator of regeneration. We then asked if 5-HT-positive axons appose cholinergic neurons associated with motor functions: central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more 5-HT-positive varicosities in lamina X adjacent to central canal cluster cells in lumbar and sacral segments of OEG- than media-injected rats. SMNs and partition cells are less frequently apposed. As nonsynaptic release of 5-HT is common in the spinal cord, an increase in 5-HT-positive varicosities along motor-associated cholinergic neurons may contribute to the locomotor improvement observed in OEG-injected spinal rats. Furthermore, serotonin located within the caudal stump may activate lumbosacral locomotor networks. J. Comp. Neurol. 515: 664–676, 2009. PMID:19496067

  12. Serotonergic innervation of the caudal spinal stump in rats after complete spinal transection: effect of olfactory ensheathing glia.

    PubMed

    Takeoka, Aya; Kubasak, Marc D; Zhong, Hui; Roy, Roland R; Phelps, Patricia E

    2009-08-20

    Spinal cord injury studies use the presence of serotonin (5-HT)-immunoreactive axons caudal to the injury site as evidence of axonal regeneration. As olfactory ensheathing glia (OEG) transplantation improves hindlimb locomotion in adult rats with complete spinal cord transection, we hypothesized that more 5-HT-positive axons would be found in the caudal stump of OEG- than media-injected rats. Previously we found 5-HT-immunolabeled axons that spanned the transection site only in OEG-injected rats but detected labeled axons just caudal to the lesion in both media- and OEG-injected rats. Now we report that many 5-HT-labeled axons are present throughout the caudal stump of both media- and OEG-injected rats. We found occasional 5-HT-positive interneurons that are one likely source of 5-HT-labeled axons. These results imply that the presence of 5-HT-labeled fibers in the caudal stump is not a reliable indicator of regeneration. We then asked if 5-HT-positive axons appose cholinergic neurons associated with motor functions: central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more 5-HT-positive varicosities in lamina X adjacent to central canal cluster cells in lumbar and sacral segments of OEG- than media-injected rats. SMNs and partition cells are less frequently apposed. As nonsynaptic release of 5-HT is common in the spinal cord, an increase in 5-HT-positive varicosities along motor-associated cholinergic neurons may contribute to the locomotor improvement observed in OEG-injected spinal rats. Furthermore, serotonin located within the caudal stump may activate lumbosacral locomotor networks. (c) 2009 Wiley-Liss, Inc.

  13. 3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities

    NASA Astrophysics Data System (ADS)

    Kedia, Nikita; Liu, Zhuolin; Sochol, Ryan; Hammer, Daniel X.; Agrawal, Anant

    2018-02-01

    Adaptive optics-enabled optical coherence tomography (AO-OCT) and scanning laser ophthalmoscopy (AO-SLO) devices can resolve retinal cones and rods in three dimensions. To evaluate the improved resolution of AO-OCT and AO-SLO, a phantom that mimics retinal anatomy at the cellular level is required. We used a two-photon polymerization approach to fabricate three-dimensional (3D) photoreceptor phantoms modeled on the central foveal cones. By using a femtosecond laser to selectively photocure precise locations within a liquid-based photoresist via two-photon absorption, we produced high-resolution phantoms with μm-level dimensions similar to true anatomy. In this work, we present two phantoms to evaluate the resolution limits of an AO imaging system: one that models only the outer segments of the photoreceptor cells at varying retinal eccentricities and another that contains anatomically relevant features of the full-length photoreceptor. With these phantoms we are able to quantitatively estimate transverse resolution of an AO system and produce images that are comparable to those found in the human retina.

  14. Photoreceptor protection by adeno-associated virus-mediated LEDGF expression in the RCS rat model of retinal degeneration: probing the mechanism.

    PubMed

    Raz-Prag, Dorit; Zeng, Yong; Sieving, Paul A; Bush, Ronald A

    2009-08-01

    Lens epithelium-derived growth factor (LEDGF) is upregulated in response to stress and enhances the survival of neurons in the retina and optic nerve, as well as a wide range of other cells, such as fibroblasts and keratinocytes. Photoreceptor protection was investigated in the RCS rat retinal degeneration model after Ledgf delivery with an adeno-associated virus (AAV) and the mechanism of protection explored. Thirty-six RCS and nine P23H rats had bilateral subretinal injections of AAV-Ledgf in one eye and buffer in the contralateral eye as the control. Retinal function was evaluated 8 weeks later by the electroretinogram and compared with photoreceptor cell layer count. LEDGF mRNA and protein levels and mRNA levels of known stress-related factors were compared in treated and control retinas to explore the mechanism of LEDGF protection. Nine RCS rats were treated with adenovirus-heat shock protein 27 (Ad-HSP27) and examined for protection. Significant photoreceptor protection was evident functionally and morphologically in 65% to 100% of the RCS rats treated at early ages of up to 7 weeks. Cell protection was more prominent in the superior retinal hemisphere which has a slower natural degeneration rate in untreated eyes. Although many of the heat shock proteins and other stress-related genes showed significant elevation in the AAV-Ledgf-treated eyes, all increases were approximately twofold or less. Transduction of retinal cells with Ad-HSP27 also resulted in photoreceptor protection. AAV-Ledgf elicited no photoreceptor functional protection in P23H rhodopsin transgenic rat retina. Chronic LEDGF treatment via AAV-Ledgf administration gave successful protection of photoreceptors in the RCS rat retina and retarded cell death by about 2 weeks. Induction of heat shock proteins also gave photoreceptor protection. However, compelling evidence was not found that LEDGF protection was associated with upregulation of heat shock proteins.

  15. Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness

    PubMed Central

    Kmoch, S.; Majewski, J.; Ramamurthy, V.; Cao, S.; Fahiminiya, S.; Ren, H.; MacDonald, I.M.; Lopez, I.; Sun, V.; Keser, V.; Khan, A.; Stránecký, V.; Hartmannová, H.; Přistoupilová, A.; Hodaňová, K.; Piherová, L.; Kuchař, L.; Baxová, A.; Chen, R.; Barsottini, O.G.P.; Pyle, A.; Griffin, H.; Splitt, M.; Sallum, J.; Tolmie, J.L.; Sampson, J.R.; Chinnery, P.; Canada, Care4Rare; Banin, E.; Sharon, D.; Dutta, S.; Grebler, R.; Helfrich-Foerster, C.; Pedroso, J.L.; Kretzschmar, D.; Cayouette, M.; Koenekoop, R.K.

    2015-01-01

    Blindness due to retinal degeneration affects millions of people worldwide, but many disease-causing mutations remain unknown. PNPLA6 encodes the patatin-like phospholipase domain containing protein 6, also known as neuropathy target esterase (NTE), which is the target of toxic organophosphates that induce human paralysis due to severe axonopathy of large neurons. Mutations in PNPLA6 also cause human spastic paraplegia characterized by motor neuron degeneration. Here we identify PNPLA6 mutations in childhood blindness in seven families with retinal degeneration, including Leber congenital amaurosis and Oliver McFarlane syndrome. PNPLA6 localizes mostly at the inner segment plasma membrane in photo-receptors and mutations in Drosophila PNPLA6 lead to photoreceptor cell death. We also report that lysophosphatidylcholine and lysophosphatidic acid levels are elevated in mutant Drosophila. These findings show a role for PNPLA6 in photoreceptor survival and identify phospholipid metabolism as a potential therapeutic target for some forms of blindness. PMID:25574898

  16. A comparison between caudal block versus splash block for postoperative analgesia following inguinal herniorrhaphy in children

    PubMed Central

    Cheon, Jun Kong; Hwang, Kan Taeck; Choi, Bo Yoon

    2011-01-01

    Background We wanted to determine the postoperative analgesic efficacy of preincisional caudal epidural block versus instillation (splash block) following inguinal herniorrhaphy in children. Methods Thirty children (age range: 1-7 years) who were scheduled to undergo inguinal herniorrhaphy were divided into 2 groups: the caudal block group and the splash block group with 15 children in each group. Tracheal intubation was performed. Fifteen children received caudal block with 1.0 ml/kg of 0.25% ropivacaine (Group 1). Caudal block was performed using the loss of resistance method via the sacral hiatus. Fifteen children in Group 2 received local instillation (splash block) in the surgical site with up to 0.4 ml/kg of 0.25% ropivacaine. The patients were observed for 90 minutes in the postanesthesia care unit and then they were transferred to the ward. The pain scores were taken 4 times. We assessed pain using the Faces pain scores. Results There were no significant differences between the groups regarding the pain scores at 10, 30 and 60 minutes upon entering the postanesthesia care unit. The pain scores of Group 1 were slightly lower at the last evaluation point when compared to that of Group 2. One patient in Group 1 required supplemental postoperative intravenous (IV) tramadol, while all the other patients in both groups did not require supplemental IV tramadol. The intraoperative requirement for sevoflurane was decreased in Group 1 as compared to that of Group 2. There were no major complications related to either type of block. Conclusions We conclude that a splash block can have a similar analgesic effect as that of a caudal block for the postoperative herniorrhaphy pain of children. PMID:21602975

  17. A comparison between caudal block versus splash block for postoperative analgesia following inguinal herniorrhaphy in children.

    PubMed

    Cheon, Jun Kong; Park, Cheon Hee; Hwang, Kan Taeck; Choi, Bo Yoon

    2011-04-01

    We wanted to determine the postoperative analgesic efficacy of preincisional caudal epidural block versus instillation (splash block) following inguinal herniorrhaphy in children. THIRTY CHILDREN (AGE RANGE: 1-7 years) who were scheduled to undergo inguinal herniorrhaphy were divided into 2 groups: the caudal block group and the splash block group with 15 children in each group. Tracheal intubation was performed. Fifteen children received caudal block with 1.0 ml/kg of 0.25% ropivacaine (Group 1). Caudal block was performed using the loss of resistance method via the sacral hiatus. Fifteen children in Group 2 received local instillation (splash block) in the surgical site with up to 0.4 ml/kg of 0.25% ropivacaine. The patients were observed for 90 minutes in the postanesthesia care unit and then they were transferred to the ward. The pain scores were taken 4 times. We assessed pain using the Faces pain scores. There were no significant differences between the groups regarding the pain scores at 10, 30 and 60 minutes upon entering the postanesthesia care unit. The pain scores of Group 1 were slightly lower at the last evaluation point when compared to that of Group 2. One patient in Group 1 required supplemental postoperative intravenous (IV) tramadol, while all the other patients in both groups did not require supplemental IV tramadol. The intraoperative requirement for sevoflurane was decreased in Group 1 as compared to that of Group 2. There were no major complications related to either type of block. We conclude that a splash block can have a similar analgesic effect as that of a caudal block for the postoperative herniorrhaphy pain of children.

  18. Lunar-Rhythmic Molting in Laboratory Populations of the Noble Crayfish Astacus astacus (Crustacea, Astacidea): An Experimental Analysis

    PubMed Central

    Franke, Robert; Hoerstgen-Schwark, Gabriele

    2013-01-01

    Juvenile noble crayfish, Astacusastacus (Crustacea, Astacidea) in the second year of age were kept in the laboratory for a twelve-month period under continuing “summer conditions” (LD 16:8, 19°C). Molting processes in this population could be synchronized by artificial moonlight cycles. Peaks of exuviations occurred at “new moons”. Males showed a slightly higher degree of synchronization than females. A phase-shift of the artificial lunar cycle in relation to the natural cycle resulted in a corresponding shift of the molting cycle. This clearly demonstrates that changes in the nocturnal light regime provide the primary external information for the lunar-monthly molting rhythm. There is a first indication that lunar photic stimuli do not act directly but as a zeitgeber which entrains an endogenous molting rhythm to the lunar cycle. Moreover, the results of the long-term experiments suggest that the hibernal resting period of A . astacus in the field (no molts between October and April) may also involve some endogenous programming. Continuing artificial summer conditions can delay but not completely suppress this resting period. The adaptive significance of the phenomena and how the findings may be applied to improve the management of crowded crayfish stocks are discussed. PMID:23840899

  19. Comparison of saddle, lumbar epidural and caudal blocks on anal sphincter tone: A prospective, randomized study.

    PubMed

    Shon, Yoon-Jung; Huh, Jin; Kang, Sung-Sik; Bae, Seung-Kil; Kang, Ryeong-Ah; Kim, Duk-Kyung

    2016-10-01

    Objective To compare the effects of saddle, lumbar epidural and caudal blocks on anal sphincter tone using anorectal manometry. Methods Patients undergoing elective anorectal surgery with regional anaesthesia were divided randomly into three groups and received a saddle (SD), lumbar epidural (LE), or caudal (CD) block. Anorectal manometry was performed before and 30 min after each regional block. The degree of motor blockade of the anal sphincter was compared using the maximal resting pressure (MRP) and the maximal squeezing pressure (MSP). Results The study analysis population consisted of 49 patients (SD group, n = 18; LE group, n = 16; CD group, n = 15). No significant differences were observed in the percentage inhibition of the MRP among the three regional anaesthetic groups. However, percentage inhibition of the MSP was significantly greater in the SD group (83.6 ± 13.7%) compared with the LE group (58.4 ± 19.8%) and the CD group (47.8 ± 16.9%). In all groups, MSP was reduced significantly more than MRP after each regional block. Conclusions Saddle block was more effective than lumbar epidural or caudal block for depressing anal sphincter tone. No differences were detected between lumbar epidural and caudal blocks.

  20. Removal of sodium inactivation and block of sodium channels by chloramine-T in crayfish and squid giant axons.

    PubMed Central

    Huang, J. M.; Tanguy, J.; Yeh, J. Z.

    1987-01-01

    Modification of sodium channels by chloramine-T was examined in voltage clamped internally perfused crayfish and squid giant axons using the double sucrose gap and axial wire technique, respectively. Freshly prepared chloramine-T solution exerted two major actions on sodium channels: (a) an irreversible removal of the fast Na inactivation, and (b) a reversible block of the Na current. Both effects were observed when chloramine-T was applied internally or externally (5-10 mM) to axons. The first effect was studied in crayfish axons. We found that the removal of the fast Na inactivation did not depend on the states of the channel since the channel could be modified by chloramine-T at holding potential (from -80 to -100 mV) or at depolarized potential of -30 mV. After removal of fast Na inactivation, the slow inactivation mechanism was still present, and more channels could undergo slow inactivation. This result indicates that in crayfish axons the transition through the fast inactivated state is not a prerequisite for the slow inactivation to occur. During chloramine-T treatment, a distinct blocking phase occurred, which recovered upon washing out the drug. This second effect of chloramine-T was studied in detail in squid axons. After 24 h, chloramine-T solution lost its ability to remove fast inactivation but retained its blocking action. After removal of the fast Na inactivation, both fresh and aged chloramine-T solutions blocked the Na currents with a similar potency and in a voltage-dependent manner, being more pronounced at lower depolarizing potentials. A similar voltage-dependent block was observed with aged chloramine-T solution in an axon with intact inactivation. In contrast to the action of the fresh solution, the aged chloramine-T solution was found to accelerate the decay of Na currents.These results suggest that chloramine-T solution contains at least two active molecular forms that act at different sites in the Na channel. PMID:2444276