Science.gov

Sample records for cre-loxp recombination vectors

  1. Transductional targeting with recombinant adenovirus vectors.

    PubMed

    Legrand, Valerie; Leissner, Philippe; Winter, Arend; Mehtali, Majid; Lusky, Monika

    2002-09-01

    Replication-deficient adenoviruses are considered as gene delivery vectors for the genetic treatment of a variety of diseases. The ability of such vectors to mediate efficient expression of therapeutic genes in a broad spectrum of dividing and non-dividing cell types constitutes an advantage over alternative gene transfer vectors. However, this broad tissue tropism may also turn disadvantageous when genes encoding potentially harmful proteins (e.g. cytokines, toxic proteins) are expressed in surrounding normal tissues. Therefore, specific restrictions of the viral tropism would represent a significant technological advance towards safer and more efficient gene delivery vectors, in particular for cancer gene therapy applications. In this review, we summarize various strategies used to selectively modify the natural tropism of recombinant adenoviruses. The advantages, limitations and potential impact on gene therapy operations of such modified vectors are discussed. PMID:12189719

  2. HSV Recombinant Vectors for Gene Therapy

    PubMed Central

    Manservigi, Roberto; Argnani, Rafaela; Marconi, Peggy

    2010-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges. PMID:20835362

  3. Recombinant vector and eukaryotic host transformed thereby

    SciTech Connect

    Sugden, W.M.

    1987-08-11

    A recombinant plasmid is described comprising: a segment from a first plasmid which is not a lymphotrophic herpes virus segment and which facilitates the replication of the recombinant plasmid in a prokaryotic host; a segment from a lymphotrophic herpes virus which is linked to the first plasmid segment such that is a capable of assisting in maintaining the recombinant plasmid as a plasmid if the recombinant plasmid is inserted into a eukaryotic host that has been transformed by the lymphotrophic herpes virus; and a foreign eukaryotic gene component linked as part of the recombinant plasmid.

  4. Antigenic structures stably expressed by recombinant TGEV-derived vectors.

    PubMed

    Becares, Martina; Sanchez, Carlos M; Sola, Isabel; Enjuanes, Luis; Zuñiga, Sonia

    2014-09-01

    Coronaviruses (CoVs) are positive-stranded RNA viruses with potential as immunization vectors, expressing high levels of heterologous genes and eliciting both secretory and systemic immune responses. Nevertheless, its high recombination rate may result in the loss of the full-length foreign gene, limiting their use as vectors. Transmissible gastroenteritis virus (TGEV) was engineered to express porcine reproductive and respiratory syndrome virus (PRRSV) small protein domains, as a strategy to improve heterologous gene stability. After serial passage in tissue cultures, stable expression of small PRRSV protein antigenic domains was achieved. Therefore, size reduction of the heterologous genes inserted in CoV-derived vectors led to the stable expression of antigenic domains. Immunization of piglets with these TGEV vectors led to partial protection against a challenge with a virulent PRRSV strain, as immunized animals showed reduced clinical signs and lung damage. Further improvement of TGEV-derived vectors will require the engineering of vectors with decreased recombination rate.

  5. Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

    PubMed Central

    Rawson, Jonathan M.O.; Mansky, Louis M.

    2014-01-01

    Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved. PMID:25254386

  6. Retroviral vectors for analysis of viral mutagenesis and recombination.

    PubMed

    Rawson, Jonathan M O; Mansky, Louis M

    2014-09-24

    Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.

  7. Herpes simplex virus type 1-derived recombinant and amplicon vectors.

    PubMed

    Fraefel, Cornel; Marconi, Peggy; Epstein, Alberto L

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.

  8. Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces Cerevisiae

    PubMed Central

    Lin, Qiuhui; Qi, Hao; Wu, Yi; Yuan, Yingjin

    2015-01-01

    Rearrangement of genomic DNA elements in a dynamic controlled fashion is a fundamental challenge. Site-specific DNA recombinases have been tamed as a powerful tool in genome editing. Here, we reported a DNA element rearrangement on the basis of a pairwise orthogonal recombination system which is comprised of two site-specific recombinases of Vika/vox and Cre/loxp in yeast Saccharomyces Creevisiae. Taking the advantage of the robust pairwise orthogonality, we showed that multi gene elements could be organized in a programmed way, in which rationally designed pattern of loxP and vox determined the final genotype after expressing corresponding recombinases. Finally, it was demonstrated that the pairwise orthogonal recombination system could be utilized to refine synthetic chromosome rearrangement and modification by loxP-mediated evolution, SCRaMbLE, in yeast cell carrying a completely synthesized chromosome III. PMID:26477943

  9. Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces cerevisiae.

    PubMed

    Lin, Qiuhui; Qi, Hao; Wu, Yi; Yuan, Yingjin

    2015-01-01

    Rearrangement of genomic DNA elements in a dynamic controlled fashion is a fundamental challenge. Site-specific DNA recombinases have been tamed as a powerful tool in genome editing. Here, we reported a DNA element rearrangement on the basis of a pairwise orthogonal recombination system which is comprised of two site-specific recombinases of Vika/vox and Cre/loxp in yeast Saccharomyces Creevisiae. Taking the advantage of the robust pairwise orthogonality, we showed that multi gene elements could be organized in a programmed way, in which rationally designed pattern of loxP and vox determined the final genotype after expressing corresponding recombinases. Finally, it was demonstrated that the pairwise orthogonal recombination system could be utilized to refine synthetic chromosome rearrangement and modification by loxP-mediated evolution, SCRaMbLE, in yeast cell carrying a completely synthesized chromosome III.

  10. Generation of helper-dependent adenoviral vectors by homologous recombination.

    PubMed

    Toietta, Gabriele; Pastore, Lucio; Cerullo, Vincenzo; Finegold, Milton; Beaudet, Arthur L; Lee, Brendan

    2002-02-01

    Helper-dependent adenoviral vectors (HD-Ad) represent a potentially valuable tool for safe and prolonged gene expression in vivo. The current approach for generating these vectors is based on ligation of the expression cassette into large plasmids containing the viral inverted terminal repeats flanking "stuffer" DNA to maintain a final size above the lower limit for efficient packaging into the adenovirus capsid (approximately 28 kb). The ligation to produce the viral plasmid is generally very inefficient. Similar problems in producing first-generation adenoviral (FG-Ad) vectors were circumvented with the development of a system taking advantage of efficient homologous recombination between a shuttle plasmid containing the expression cassette and a FG-Ad vector backbone in the Escherichia coli strain BJ5183. Here we describe a method for fast and efficient generation of HD-Ad vector plasmids that can accommodate expression cassettes of any size up to 35 kb. To validate the system, we generated a HD-Ad vector expressing the fusion protein between beta-galactosidase and neomycin resistance genes under the control of the SR alpha promoter, and one expressing the enhanced green fluorescent protein under the control of the cytomegalovirus promoter. The viruses were rescued and tested in vitro and for in vivo expression in mice. The data collected indicate the possibility for achieving a high level of hepatocyte transduction using HD-Ad vectors derived from plasmids obtained by homologous recombination in E. coli, with no significant alteration of liver enzymes and a less severe, transient thrombocytopenia in comparison with previous reports with similar doses of a FG-Ad vector. PMID:11829528

  11. Characterization of recombinant Raccoonpox Vaccine Vectors in Chickens

    USGS Publications Warehouse

    Hwa, S.-H.; Iams, K.P.; Hall, J.S.; Kingstad, B.A.; Osorio, J.E.

    2010-01-01

    Raccoonpox virus (RCN) has been used as a recombinant vector against several mammalian pathogens but has not been tested in birds. The replication of RCN in chick embryo fibroblasts (CEFs) and chickens was studied with the use of highly pathogenic avian influenza virus H5N1 hemagglutinin (HA) as a model antigen and luciferase (luc) as a reporter gene. Although RCN replicated to low levels in CEFs, it efficiently expressed recombinant proteins and, in vivo, elicited anti-HA immunoglobulin yolk (IgY) antibody responses comparable to inactivated influenza virus. Biophotonic in vivo imaging of 1-wk-old chicks with RCN-luc showed strong expression of the luc reporter gene lasting up to 3 days postinfection. These studies demonstrate the potential of RCN as a vaccine vector for avian influenza and other poultry pathogens. ?? American Association of Avian Pathologists 2010.

  12. Recombinant adeno-associated viral vector reference standards.

    PubMed

    Moullier, Philippe; Snyder, Richard O

    2012-01-01

    Reference standard materials (RSMs) exist for a variety of biologics including vaccines but are not readily available for gene therapy vectors. To date, a recombinant adeno-associated virus serotype 2 RSM (rAAV2 RSM) has been produced and characterized and was made available to the scientific community in 2010. In addition, a rAAV8 RSM has been produced and will be characterized in the coming months. The use of these reference materials by members of the gene therapy field facilitates the calibration of individual laboratory vector-specific internal standards and the eventual comparison of preclinical and clinical data based on common dosage units. Normalization of data to determine therapeutic dose ranges of rAAV vectors for each particular tissue target and disease indication is important information that can enhance the safety and protection of patients.

  13. Factors influencing the production of recombinant SV40 vectors.

    PubMed

    Vera, Maria; Prieto, Jesus; Strayer, David S; Fortes, Puri

    2004-10-01

    Most gene therapy approaches employ viral vectors for gene delivery. Ideally, these vectors should be produced at high titer and purity with well-established protocols. Standardized methods to measure the quality of the vectors produced are imperative, as are techniques that allow reproducible quantitation of viral titer. We devised a series of protocols that achieve high-titer production and reproducible purification and provide for quality control and titering of recombinant simian virus 40 vectors (rSV40s). rSV40s are good candidate vehicles for gene transfer: they are easily modified to be nonreplicative and they are nonimmunogenic. Further, they infect a wide variety of cells and allow long-term transgene expression. We report here these protocols to produce rSV40 vectors in high yields, describe their purification, and characterize viral stocks using quality control techniques that monitor the presence of wild-type SV40 revertants and defective interfering particles. Several methods for reproducible titration of rSV40 viruses have been compared. We believe that these techniques can be widely applied to obtain high concentrations of high-quality rSV40 viruses reproducibly.

  14. Biosafety of recombinant adeno-associated virus vectors.

    PubMed

    Dismuke, David J; Tenenbaum, Liliane; Samulski, R Jude

    2013-12-01

    It is hoped that the use of gene transfer technology to treat both monogenetic and acquired diseases may soon become a common therapy option in medicine. For gene therapy to achieve this objective, any gene delivery method will have to meet several criteria, including ease of manufacturing, efficient gene transfer to target tissue, long-term gene expression to alleviate the disease, and most importantly safety in patients. Viral vectors are an attractive choice for use in gene therapy protocols due to their relative efficiency in gene delivery. Since there is inherent risk in using viruses, investigators in the gene therapy community have devoted extensive efforts toward reengineering viral vectors for enhance safety. Here we review the approaches and technologies that are being evaluated for the use of recombinant vectors based upon adeno-associated virus (AAV) in the treatment of a variety of human diseases. AAV is currently the only known human DNA virus that is non-pathogenic and AAV-based vectors are classified as Risk Group 1 agents for all laboratory and animal studies carried out in the US. Although its apparent safety in natural infection and animals appears well documented, we examine the accumulated knowledge on the biology and vectorology of AAV, lessons learned from gene therapy clinical trials, and how this information is impacting current vector design and manufacturing with an overall emphasis on biosafety. PMID:24195602

  15. Vaccinia virus vectors: new strategies for producing recombinant vaccines.

    PubMed Central

    Hruby, D E

    1990-01-01

    The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years. This review (i) provides an updated overview of the technology that exists for assembling recombinant vaccinia virus strains, (ii) discusses the advantages and disadvantages of these approaches, (iii) outlines the areas of outgoing research directed towards overcoming the limitations of current techniques, and (iv) provides some insight (i.e., speculation) about probable future refinements in the use of vaccinia virus as a vector. PMID:2187593

  16. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    PubMed

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development.

  17. Design and generation of recombinant rabies virus vectors.

    PubMed

    Osakada, Fumitaka; Callaway, Edward M

    2013-08-01

    Rabies viruses, negative-strand RNA viruses, infect neurons through axon terminals and spread trans-synaptically in a retrograde direction between neurons. Rabies viruses whose glycoprotein (G) gene is deleted from the genome cannot spread across synapses. Complementation of G in trans, however, enables trans-synaptic spreading of G-deleted rabies viruses to directly connected, presynaptic neurons. Recombinant rabies viruses can encode genes of interest for labeling cells, controlling gene expression and monitoring or manipulating neural activity. Cre-dependent or bridge protein-mediated transduction and single-cell electroporation via the EnvA-TVA or EnvB-TVB (envelope glycoprotein and its specific receptor for avian sarcoma leukosis virus subgroup A or B) system allow cell type-specific or single cell-specific targeting. These rabies virus-based approaches permit the linking of connectivity to cell morphology and circuit function for particular cell types or single cells. Here we describe methods for construction of rabies viral vectors, recovery of G-deleted rabies viruses from cDNA, amplification of the viruses, pseudotyping them with EnvA or EnvB and concentration and titration of the viruses. The entire protocol takes 6-8 weeks.

  18. [Construction of recombinant yellow fever virus 17D containing 2A fragment as a vaccine vector].

    PubMed

    Xiaowu, Pang; Fu, Wen-Chuan; Guo, Yin-Han; Zhang, Li-Shu; Xie, Tian-Pei; Xinbin, Gu

    2006-05-01

    The Yellow Fever (YF) vaccine, an attenuated yellow fever 17D (YF-17D) live vaccine, is one of the most effective and safest vaccines in the world and is regarded as one of the best candidates for viral expression vector. We here first reported in China the construction and characterization of the recombinant expression vector of yellow fever 17D which contained the proteinase 2A fragment of foot-and-mouth disease virus (FMDV). Three cDNA fragments representing the full-length YF-17D genome, named 5'-end cDNA (A), 3'-end cDNA (B) and middle cDNA (C), were obtained by reverse transcription polymerase chain reaction (RT-PCR), together with the introduction of SP6 enhancer, necessary restriction sites and overlaps for homologous recombination in yeast. Fragment A and B were then introduced into pRS424 in turn by DNA recombination, followed by transfection of fragment C and the recombinant pRS424 containing A and B (pRS-A-B) into yeast. A recombinant vector containing full length cDNA of YF-17D (pRS-YF) was obtained by screening on medium lack of tryptophan and uracil. A recombinant YF-17D expression vector containing FMDV-2A gene fragment (pRS-YF-2A1) was then constructed by methods of DNA recombination and homologous recombination in yeast described above. In vitro transcription of the recombinant vector pRS-YF-2A1 was then carried out and introduced into BHK-21 cells by electroporation. Results of indirect immunofluorescence assay (IFA) and titer determination showed a stable infectious recombinant virus was gotten, whose features such as growth curve were similar to those of the parental YF-17D. The results suggest that the recombinant vector pRS-YF-2A1, by introduction of heterogenous genes via 2A region, is potential to be an effective live vaccine expression vector.

  19. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus

    PubMed Central

    Liu, Peiwen; Li, Xiaocong; Gu, Jinbao; Dong, Yunqiao; Liu, Yan; Santhosh, Puthiyakunnon; Chen, Xiaoguang

    2016-01-01

    We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control. PMID:26879823

  20. Production of a recombinant Fab in Pichia pastoris from a Monocistronic expression vector.

    PubMed

    Burtet, Rafael Trindade; Santos-Silva, Marcos Antônio; Buss, Guilherme Antônio Marques; Moraes, Lidia Maria Pepe; Maranhão, Andrea Queiroz; Brigido, Marcelo Macedo

    2007-12-01

    Recombinant Fab is usually expressed using dicistronic vectors producing the heavy and light chains separately. We developed an improved vector for Fab fragment expression in Pichia pastoris, which allows a stoichiometric expression of both chains based on a monocistronic arrangement. The protein is produced as a unique polypeptide harbouring a KEX2 processing site between both chains. After KEX cleavage, a correctly folded mature Fab is formed. The produced recombinant protein is characterized as a heterodimeric functional Fab. The vector described is a new tool for the proper expression of antibody fragments or any heterodimeric polypeptides.

  1. Construction of adenovirus vectors encoding the lumican gene by gateway recombinant cloning technology

    PubMed Central

    Wang, Gui-Fang; Qi, Bing; Tu, Lei-Lei; Liu, Lian; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2016-01-01

    AIM To construct adenovirus vectors of lumican gene by gateway recombinant cloning technology to further understand the role of lumican gene in myopia. METHODS Gateway recombinant cloning technology was used to construct adenovirus vectors. The wild-type (wt) and mutant (mut) forms of the lumican gene were synthesized and amplified by polymerase chain reaction (PCR). The lumican cDNA fragments were purified and ligated into the adenovirus shuttle vector pDown-multiple cloning site (MCS)-/internal ribozyme entry site (IRES)/enhanced green fluorescent protein (EGFP). Then the desired DNA fragments were integrated into the destination vector pAV.Des1d yielding the final expression constructs pAV.Ex1d-cytomegalovirus (CMV)>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES /EGFP, respectively. RESULTS The adenovirus plasmids pAV.Ex1d-CMV>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES/EGFP were successfully constructed by gateway recombinant cloning technology. Positive clones identified by PCR and sequencing were selected and packaged into recombinant adenovirus in HEK293 cells. CONCLUSION We construct adenovirus vectors containing the lumican gene by gateway recombinant cloning technology, which provides a basis for investigating the role of lumican gene in the pathogenesis of high myopia. PMID:27672590

  2. Construction of adenovirus vectors encoding the lumican gene by gateway recombinant cloning technology

    PubMed Central

    Wang, Gui-Fang; Qi, Bing; Tu, Lei-Lei; Liu, Lian; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2016-01-01

    AIM To construct adenovirus vectors of lumican gene by gateway recombinant cloning technology to further understand the role of lumican gene in myopia. METHODS Gateway recombinant cloning technology was used to construct adenovirus vectors. The wild-type (wt) and mutant (mut) forms of the lumican gene were synthesized and amplified by polymerase chain reaction (PCR). The lumican cDNA fragments were purified and ligated into the adenovirus shuttle vector pDown-multiple cloning site (MCS)-/internal ribozyme entry site (IRES)/enhanced green fluorescent protein (EGFP). Then the desired DNA fragments were integrated into the destination vector pAV.Des1d yielding the final expression constructs pAV.Ex1d-cytomegalovirus (CMV)>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES /EGFP, respectively. RESULTS The adenovirus plasmids pAV.Ex1d-CMV>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES/EGFP were successfully constructed by gateway recombinant cloning technology. Positive clones identified by PCR and sequencing were selected and packaged into recombinant adenovirus in HEK293 cells. CONCLUSION We construct adenovirus vectors containing the lumican gene by gateway recombinant cloning technology, which provides a basis for investigating the role of lumican gene in the pathogenesis of high myopia.

  3. Plasmid-Chromosome Recombination of Irradiated Shuttle Vector DNA in African Green Monkey Kidney Cells.

    NASA Astrophysics Data System (ADS)

    Mudgett, John Stuart

    1987-09-01

    An autonomously replicating shuttle vector was used to investigate the enhancement of plasmid-chromosome recombination in mammalian host cells by ultraviolet light and gamma radiation. Sequences homologous to the shuttle vector were stably inserted into the genome of African Green Monkey kidney cells to act as the target substrate for these recombination events. The SV40- and pBR322-derived plasmid DNA was irradiated with various doses of radiation before transfection into the transformed mammalian host cells. The successful homologous transfer of the bacterial ampicillin resistance (amp^{rm r}) gene from the inserted sequences to replace a mutant amp^->=ne on the shuttle vector was identified by plasmid extraction and transformation into E. coli host cells. Ultraviolet light (UV) was found not to induce homologous plasmid-chromosome recombination, while gamma radiation increased the frequency of recombinant plasmids detected. The introduction of specific double -strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was found to be increased by plasmid UV irradiation, but not to change with time. Plasmid survival, recombination, and mutagenesis were not affected by treating the mammalian host cells with UV light prior to plasmid transfection. The amp^{rm r} recombinant plasmid molecules analyzed were found to be mostly the result of nonconservative exchanges which appeared to involve both homologous and possibly nonhomologous interactions with the host chromosome. The observation that these recombinant structures were obtained from all of the plasmid alterations investigated suggests a common mechanistic origin for plasmid -chromosome recombination in these mammalian cells.

  4. Plasmid-chromosome recombination of irradiated shuttle vector DNA in African Green Monkey kidney cells

    SciTech Connect

    Mudgett, J.S.

    1987-01-01

    An autonomously replicating shuttle vector was used to investigate the enhancement of plasmid-chromosome recombination in mammalian host cells by ultraviolet light and gamma radiation. Sequences homologous to the shuttle vector were stably inserted into the genome of African Green Monkey kidney cells to act as the target substrate for these recombination events. The SV40- and pBR322-derived plasmid DNA was irradiated with various doses of radiation before transfection into the transformed mammalian host cells. Ultraviolet light (UV) was found not to induce homologous plasmid-chromosome recombination, while gamma radiation increased the frequency of recombinant plasmids detected. The introduction of specific double-strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was found to be increased by plasmid UV irradiation, but not to change with time. Plasmid survival, recombination, and mutagenesis were not affected by treating the mammalian host cells with UV light prior to plasmid transfection. The amp/sup r/ recombinant plasmid molecules analyzed were found to be mostly the result of nonconservative exchanges which appeared to involve both homologous and possibly nonhomologous interactions with the host chromosome.

  5. Analytical Ultracentrifugation as an Approach to Characterize Recombinant Adeno-Associated Viral Vectors.

    PubMed

    Burnham, Brenda; Nass, Shelley; Kong, Elton; Mattingly, MaryEllen; Woodcock, Denise; Song, Antonius; Wadsworth, Samuel; Cheng, Seng H; Scaria, Abraham; O'Riordan, Catherine R

    2015-12-01

    Recombinant adeno-associated viral (rAAV) vectors represent a novel class of biopharmaceutical drugs. The production of clinical-grade rAAV vectors for gene therapy would benefit from analytical methods that are able to monitor drug product quality with regard to homogeneity, purity, and manufacturing consistency. Here, we demonstrate the novel application of analytical ultracentrifugation (AUC) to characterize the homogeneity of preparations of rAAV vectors. We show that a single sedimentation velocity run of rAAV vectors detected and quantified a number of different viral species, such as vectors harboring an intact genome, lacking a vector genome (empty particles), and containing fragmented or incomplete vector genomes. This information is obtained by direct boundary modeling of the AUC data generated from refractometric or UV detection systems using the computer program SEDFIT. Using AUC, we show that multiple parameters contributed to vector quality, including the AAV genome form (i.e., self-complementary vs. single-stranded), vector genome size, and the production and purification methods. Hence, AUC is a critical tool for identifying optimal production and purification processes and for monitoring the physical attributes of rAAV vectors to ensure their quality.

  6. Recombinant vesicular stomatitis virus vector mediates postexposure protection against Sudan Ebola hemorrhagic fever in nonhuman primates.

    PubMed

    Geisbert, Thomas W; Daddario-DiCaprio, Kathleen M; Williams, Kinola J N; Geisbert, Joan B; Leung, Anders; Feldmann, Friederike; Hensley, Lisa E; Feldmann, Heinz; Jones, Steven M

    2008-06-01

    Recombinant vesicular stomatitis virus (VSV) vectors expressing homologous filoviral glycoproteins can completely protect rhesus monkeys against Marburg virus when administered after exposure and can partially protect macaques after challenge with Zaire ebolavirus. Here, we administered a VSV vector expressing the Sudan ebolavirus (SEBOV) glycoprotein to four rhesus macaques shortly after exposure to SEBOV. All four animals survived SEBOV challenge, while a control animal that received a nonspecific vector developed fulminant SEBOV hemorrhagic fever and succumbed. This is the first demonstration of complete postexposure protection against an Ebola virus in nonhuman primates and provides further evidence that postexposure vaccination may have utility in treating exposures to filoviruses.

  7. Targeted recombination with single-stranded DNA vectors in mammalian cells.

    PubMed Central

    Fujioka, K; Aratani, Y; Kusano, K; Koyama, H

    1993-01-01

    We studied the ability of single-stranded DNA (ssDNA) to participate in targeted recombination in mammalian cells. A 5' end-deleted adenine phosphoribosyltransferase (aprt) gene was subcloned into M13 vector, and the resulting ssDNA and its double-stranded DNA (dsDNA) were transfected to APRT-Chinese hamster ovary cells with a deleted aprt gene. APRT+ recombinants with the ssDNA was obtained at a frequency of 3 x 10(-7) per survivor, which was almost equal to that with the double-stranded equivalent. Analysis of the genome in recombinant clones produced by ssDNA revealed that 12 of 14 clones resulted from correction of the deletion in the aprt locus. On the other hand, the locus of the remaining 2 was not corrected; instead, the 5' deletion of the vector was corrected by end extension, followed by integration into random sites of the genome. To exclude the possibility that input ssDNA was converted into its duplex form before participating in a recombination reaction, we compared the frequency of extrachromosomal recombination between noncomplementary ssDNAs, and between one ssDNA and one dsDNA, of two phage vectors. The frequency with the ssDNAs was 0.4 x 10(-5), being 10-fold lower than that observed with the ssDNA and the dsDNA, suggesting that as little as 10% of the transfected ssDNA was converted into duplex forms before the recombination event, hence 90% remained unchanged as single-stranded molecules. Nevertheless, the above finding that ssDNA was as efficient as dsDNA in targeted recombination suggests that ssDNA itself is able to participate directly in targeted recombination reactions in mammalian cells. Images PMID:8441653

  8. Recombinant viral vectored vaccines for the control of avian influenza: a review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The poultry industry has been at the forefront of developing recombinant viral vectored vaccines in an attempt to improve the immune response to vaccination. With AIV, the hemagglutinin surface glycoprotein is the key antigen for protection against infection. This allows a single gene to be transf...

  9. High density recombinant AAV particles are competent vectors for in vivo transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant adeno-associated viral (rAAV) vectors have recently achieved clinical successes in human gene therapy. However, the commonly observed heavier particles found in AAV preparations have traditionally been ignored due to its low in vitro infectivity. In this study, we systemically compared t...

  10. Novel strategy for generation and titration of recombinant adeno-associated virus vectors.

    PubMed

    Shiau, Ai-Li; Liu, Pu-Ste; Wu, Chao-Liang

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.

  11. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  12. A novel and simple method for rapid generation of recombinant porcine adenoviral vectors for transgene expression.

    PubMed

    Zhang, Peng; Du, Enqi; Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620 ± 49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes.

  13. Efficient production of dual recombinant adeno-associated viral vectors for factor VIII delivery.

    PubMed

    Wang, Qizhao; Dong, Biao; Firrman, Jenni; Roberts, Sean; Moore, Andrea Rossi; Cao, Wenjing; Diao, Yong; Kapranov, Philipp; Xu, Ruian; Xiao, Weidong

    2014-08-01

    Recombinant adeno-associated viral (rAAV) vectors have gained attention for human gene therapy because of their high safety and clinical efficacy profile. For factor VIII gene delivery, splitting the coding region between two AAV vectors remains a viable strategy to avoid the packaging capacity limitation (∼5.0 kb). However, it is time-consuming and labor-intensive to produce two rAAV vectors in separate batches. Here we demonstrated successful production of dual rAAV vectors for hemophilia A gene therapy in a single preparation. When the AAV vector plasmids carrying the human factor VIII heavy chain (hHC) and the light chain (hLC) expression cassettes were cotransfected into 293 cells along with the AAV rep&cap and mini-adenovirus helper plasmids, both rAAV-hHC and rAAV-hLC were produced at the desired ratio and in high titer. Interestingly, the rAAV-hHC vectors always yielded higher titers than rAAV-hLC vectors as a result of more efficient replication of rAAV-hHC genomes. The resulting vectors were effective in transducing the tissue culture cells in vitro. When these vectors were administered to hemophilia A mice, factor VIII was detected in the mouse plasma by both the activated partial thromboplastin time assay and enzyme-linked immunosorbent assay. The functional activity as well as the antigen levels of secreted factor VIII were similar to those of vectors produced by the traditional method. The dual-vector production method has been successfully extended to both AAV2 and AAV8 serotypes. In conclusion, cotransfection of vector plasmids presents an efficient method for producing dual or multiple AAV vectors at significantly reduced cost and labor.

  14. Lentiviral Vectors for the Engineering of Implantable Cells Secreting Recombinant Antibodies.

    PubMed

    Lathuilière, Aurélien; Schneider, Bernard L

    2016-01-01

    The implantation of genetically modified cells is considered for the chronic delivery of therapeutic recombinant proteins in vivo. In the context of gene therapy, the genetic engineering of cells faces two main challenges. First, it is critical to generate expandable cell sources, which can maintain stable high productivity of the recombinant protein of interest over time, both in culture and after transplantation. In addition, gene transfer techniques need to be developed to engineer cells synthetizing complex polypeptides, such as recombinant monoclonal antibodies, to broaden the range of potential therapeutic applications. Here, we provide a workflow for the use of lentiviral vectors as a flexible tool to generate antibody-producing cells. In particular, lentiviral vectors can be used to genetically engineer the cell types compatible with encapsulation devices protecting the implanted cells from the host immune system. Detailed methods are provided for the design and production of lentiviral vectors, optimization of cell transduction, as well as for the quantification and quality control of the produced recombinant antibody. PMID:27317179

  15. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR.

    PubMed

    D'Costa, Susan; Blouin, Veronique; Broucque, Frederic; Penaud-Budloo, Magalie; François, Achille; Perez, Irene C; Le Bec, Christine; Moullier, Philippe; Snyder, Richard O; Ayuso, Eduard

    2016-01-01

    Clinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new "Free-ITR" qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  16. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR

    PubMed Central

    D’Costa, Susan; Blouin, Veronique; Broucque, Frederic; Penaud-Budloo, Magalie; François, Achille; Perez, Irene C; Le Bec, Christine; Moullier, Philippe; Snyder, Richard O; Ayuso, Eduard

    2016-01-01

    Clinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new “Free-ITR” qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field. PMID:27069952

  17. Efficient conditional knockout targeting vector construction using co-selection BAC recombineering (CoSBR)

    PubMed Central

    Newman, Robert J.; Roose-Girma, Merone; Warming, Søren

    2015-01-01

    A simple and efficient strategy for Bacterial Artificial Chromosome (BAC) recombineering based on co-selection is described. We show that it is possible to efficiently modify two positions of a BAC simultaneously by co-transformation of a single-stranded DNA oligo and a double-stranded selection cassette. The use of co-selection BAC recombineering reduces the DNA manipulation needed to make a conditional knockout gene targeting vector to only two steps: a single round of BAC modification followed by a retrieval step. PMID:26089387

  18. Rapid construction of capsid-modified adenoviral vectors through bacteriophage lambda Red recombination.

    PubMed

    Campos, Samuel K; Barry, Michael A

    2004-11-01

    There are extensive efforts to develop cell-targeting adenoviral vectors for gene therapy wherein endogenous cell-binding ligands are ablated and exogenous ligands are introduced by genetic means. Although current approaches can genetically manipulate the capsid genes of adenoviral vectors, these approaches can be time-consuming and require multiple steps to produce a modified viral genome. We present here the use of the bacteriophage lambda Red recombination system as a valuable tool for the easy and rapid construction of capsid-modified adenoviral genomes.

  19. A cloning vector employing a versatile β-glucosidase as an indicator for recombinant clones.

    PubMed

    Cheong, Dea-Eun; Chang, Woo-Suk; Kim, Geun-Joong

    2012-06-15

    A mutant glucosidase, cpGluT, with activity toward chromogenic substrates (X-gal [5-bromo-4-chloro-3-idolyl-β-d-galactoside] and indican) and a fluorogenic 4-methylumbeliferyl-β-d-glucopyranoside (MUG) was constructed by replacing the monomeric β-glucosidase region (E314-N326) with designed multiple cloning sites. When expressed in hosts (lacZ+ and lacZ-), a vector containing the cpGluT produced a colored or fluorescent phenotype according to the substrate supplemented on LB plates without any inducer. cpGluT is readily incorporable into customized vectors and does not require special hosts to detect recombinant plasmids, thereby making screening recombinants more effective and less expensive. PMID:22425541

  20. Limited infection upon human exposure to a recombinant raccoon pox vaccine vector.

    PubMed

    Rocke, Tonie E; Dein, F Joshua; Fuchsberger, Martina; Fox, Barry C; Stinchcomb, Dan T; Osorio, Jorge E

    2004-07-29

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  1. Transgene expression in Penaeus monodon cells: evaluation of recombinant baculoviral vectors with shrimp specific hybrid promoters.

    PubMed

    Puthumana, Jayesh; Philip, Rosamma; Bright Singh, I S

    2016-08-01

    It has been realized that shrimp cell immortalization may not be accomplished without in vitro transformation by expressing immortalizing gene in cells. In this process, efficiency of transgene expression is confined to the ability of vectors to transmit gene of interests to the genome. Over the years, unavailability of such vectors has been hampering application of such a strategy in shrimp cells. We report the use of recombinant baculovirus mediated transduction using hybrid promoter system for transgene expression in lymphoid cells of Penaeus monodon. Two recombinant baculovirus vectors with shrimp viral promoters (WSSV-Ie1 and IHHNV-P2) were constructed (BacIe1-GFP and BacP2-GFP) and green fluorescent protein (GFP) used as the transgene. The GFP expression in cells under the control of hybrid promoters, PH-Ie1 or PH-P2, were analyzed and confirmed in shrimp cells. The results indicate that the recombinant baculovirus with shrimp specific viral promoters (hybrid) can be employed for delivery of foreign genes to shrimp cells for in vitro transformation.

  2. A New Type of Adenovirus Vector That Utilizes Homologous Recombination To Achieve Tumor-Specific Replication

    PubMed Central

    Bernt, Kathrin; Liang, Min; Ye, Xun; Ni, Shaoheng; Li, Zong-Yi; Ye, Sheng Long; Hu, Fang; Lieber, André

    2002-01-01

    We have developed a new class of adenovirus vectors that selectively replicate in tumor cells. The vector design is based on our recent observation that a variety of human tumor cell lines support DNA replication of adenovirus vectors with deletions of the E1A and E1B genes, whereas primary human cells or mouse liver cells in vivo do not. On the basis of this tumor-selective replication, we developed an adenovirus system that utilizes homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome resulting in replication-dependent activation of transgene expression in tumors (Ad.IR vectors). Here, we used this system to achieve tumor-specific expression of adenoviral wild-type E1A in order to enhance viral DNA replication and spread within tumor metastases. In vitro DNA replication and cytotoxicity studies demonstrated that the mechanism of E1A-enhanced replication of Ad.IR-E1A vectors is efficiently and specifically activated in tumor cells, but not in nontransformed human cells. Systemic application of the Ad.IR-E1A vector into animals with liver metastases achieved transgene expression exclusively in tumors. The number of transgene-expressing tumor cells within metastases increased over time, indicating viral spread. Furthermore, the Ad.IR-E1A vector demonstrated antitumor efficacy in subcutaneous and metastatic models. These new Ad.IR-E1A vectors combine elements that allow for tumor-specific transgene expression, efficient viral replication, and spread in liver metastases after systemic vector application. PMID:12368342

  3. Novel Recombinant Hepatitis B Virus Vectors Efficiently Deliver Protein and RNA Encoding Genes into Primary Hepatocytes

    PubMed Central

    Hong, Ran; Bai, Weiya; Zhai, Jianwei; Liu, Wei; Li, Xinyan; Zhang, Jiming; Cui, Xiaoxian; Zhao, Xue; Ye, Xiaoli; Deng, Qiang; Tiollais, Pierre; Wen, Yumei

    2013-01-01

    Hepatitis B virus (HBV) has extremely restricted host and hepatocyte tropism. HBV-based vectors could form the basis of novel therapies for chronic hepatitis B and other liver diseases and would also be invaluable for the study of HBV infection. Previous attempts at developing HBV-based vectors encountered low yields of recombinant viruses and/or lack of sufficient infectivity/cargo gene expression in primary hepatocytes, which hampered follow-up applications. In this work, we constructed a novel vector based on a naturally occurring, highly replicative HBV mutant with a 207-bp deletion in the preS1/polymerase spacer region. By applying a novel insertion strategy that preserves the continuity of the polymerase open reading frame (ORF), recombinant HBV (rHBV) carrying protein or small interfering RNA (siRNA) genes were obtained that replicated and were packaged efficiently in cultured hepatocytes. We demonstrated that rHBV expressing a fluorescent reporter (DsRed) is highly infective in primary tree shrew hepatocytes, and rHBV expressing HBV-targeting siRNA successfully inhibited antigen expression from coinfected wild-type HBV. This novel HBV vector will be a powerful tool for hepatocyte-targeting gene delivery, as well as the study of HBV infection. PMID:23552416

  4. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells.

    PubMed

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2014-03-01

    Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5'-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd(+) baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.

  5. Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression.

    PubMed

    Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Kayastha, Shilva; de la Vega de León, Antonio; Bajorath, Jürgen

    2016-09-26

    Activity cliffs (ACs) are formed by structurally similar compounds with large differences in activity. Accordingly, ACs are of high interest for the exploration of structure-activity relationships (SARs). ACs reveal small chemical modifications that result in profound biological effects. The ability to foresee such small chemical changes with significant biological consequences would represent a major advance for drug design. Nevertheless, only few attempts have been made so far to predict whether a pair of analogues is likely to represent an AC-and even fewer went further to quantitatively predict how "deep" a cliff might be. This might be due to the fact that such predictions must focus on compound pairs. Matched molecular pairs (MMPs), defined as pairs of structural analogs that are only distinguished by a chemical modification at a single site, are a preferred representation of ACs. Herein, we report new strategies for AC prediction that are based upon two different approaches: (i) condensed graphs of reactions, which were originally introduced for modeling of chemical reactions and were here adapted to encode MMPs, and, (ii) plain descriptor recombination-a strategy used for quantitative structure-property relationship (QSPR) modeling of nonadditive mixtures (MQSPR). By applying these concepts, ACs were encoded as single descriptor vectors used as input for support vector machine (SVM) classification and support vector regression (SVR), yielding accurate predictions of AC status (i.e., cliff vs noncliff) and potency differences, respectively. The latter were predicted in a compound order-sensitive manner returning the signed value of expected potency differences between AC compounds. PMID:27564682

  6. Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression.

    PubMed

    Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Kayastha, Shilva; de la Vega de León, Antonio; Bajorath, Jürgen

    2016-09-26

    Activity cliffs (ACs) are formed by structurally similar compounds with large differences in activity. Accordingly, ACs are of high interest for the exploration of structure-activity relationships (SARs). ACs reveal small chemical modifications that result in profound biological effects. The ability to foresee such small chemical changes with significant biological consequences would represent a major advance for drug design. Nevertheless, only few attempts have been made so far to predict whether a pair of analogues is likely to represent an AC-and even fewer went further to quantitatively predict how "deep" a cliff might be. This might be due to the fact that such predictions must focus on compound pairs. Matched molecular pairs (MMPs), defined as pairs of structural analogs that are only distinguished by a chemical modification at a single site, are a preferred representation of ACs. Herein, we report new strategies for AC prediction that are based upon two different approaches: (i) condensed graphs of reactions, which were originally introduced for modeling of chemical reactions and were here adapted to encode MMPs, and, (ii) plain descriptor recombination-a strategy used for quantitative structure-property relationship (QSPR) modeling of nonadditive mixtures (MQSPR). By applying these concepts, ACs were encoded as single descriptor vectors used as input for support vector machine (SVM) classification and support vector regression (SVR), yielding accurate predictions of AC status (i.e., cliff vs noncliff) and potency differences, respectively. The latter were predicted in a compound order-sensitive manner returning the signed value of expected potency differences between AC compounds.

  7. Targeted and highly efficient gene transfer into CD4+ cells by a recombinant human immunodeficiency virus retroviral vector.

    PubMed Central

    Shimada, T; Fujii, H; Mitsuya, H; Nienhuis, A W

    1991-01-01

    We have established a recombinant HIV gene transfer system based on transient expression of the HIV packaging functions and a recombinant vector genome in monkey kidney Cos cells. The recombinant HIV retroviral vector introduced the neoR gene into CD4+ cells with high efficiency, comparable to that achieved with the highest titer amphotropic murine recombinant retrovirus. Vector preparations were devoid of replication competent, infectious HIV. Gene transfer was dependent on CD4 expression, as shown by expression of the CD4 gene in HeLa cells, and could be inhibited by soluble CD4. This specific and efficient gene transfer system may be useful for development of gene therapy for which T cells are the desired targets. Images PMID:1885765

  8. Manufacturing of recombinant adeno-associated viral vectors for clinical trials

    PubMed Central

    Clément, Nathalie; Grieger, Joshua C

    2016-01-01

    The ability to elicit robust and long-term transgene expression in vivo together with minimal immunogenicity and little to no toxicity are only a few features that make recombinant adeno-associated virus (rAAV) vectors ideally suited for many gene therapy applications. Successful preclinical studies have encouraged the use of rAAV for therapeutic gene transfer to patients in the clinical setting. Nevertheless, the use of rAAV in clinical trials has underscored the need for production and purification systems capable of generating large amounts of highly pure rAAV particles. To date, generating vector quantities sufficient to meet the expanding clinical demand is still a hurdle when using current production systems. In this chapter, we will provide a description of the current methods to produce clinical grade of rAAV under current good manufacturing practice (cGMP) settings. PMID:27014711

  9. Manufacturing of recombinant adeno-associated viral vectors for clinical trials.

    PubMed

    Clément, Nathalie; Grieger, Joshua C

    2016-01-01

    The ability to elicit robust and long-term transgene expression in vivo together with minimal immunogenicity and little to no toxicity are only a few features that make recombinant adeno-associated virus (rAAV) vectors ideally suited for many gene therapy applications. Successful preclinical studies have encouraged the use of rAAV for therapeutic gene transfer to patients in the clinical setting. Nevertheless, the use of rAAV in clinical trials has underscored the need for production and purification systems capable of generating large amounts of highly pure rAAV particles. To date, generating vector quantities sufficient to meet the expanding clinical demand is still a hurdle when using current production systems. In this chapter, we will provide a description of the current methods to produce clinical grade of rAAV under current good manufacturing practice (cGMP) settings.

  10. Rapid, Simple, and Versatile Manufacturing of Recombinant Adeno-Associated Viral Vectors at Scale

    PubMed Central

    Lock, Martin; Alvira, Mauricio; Vandenberghe, Luk H.; Samanta, Arabinda; Toelen, Jaan; Debyser, Zeger

    2010-01-01

    Abstract Adeno-associated viral (AAV) manufacturing at scale continues to hinder the application of AAV technology to gene therapy studies. Although scalable systems based on AAV–adenovirus, AAV–herpesvirus, and AAV–baculovirus hybrids hold promise for clinical applications, they require time-consuming generation of reagents and are not highly suited to intermediate-scale preclinical studies in large animals, in which several combinations of serotype and genome may need to be tested. We observed that during production of many AAV serotypes, large amounts of vector are found in the culture supernatant, a relatively pure source of vector in comparison with cell-derived material. Here we describe a high-yielding, recombinant AAV production process based on polyethylenimine (PEI)-mediated transfection of HEK293 cells and iodixanol gradient centrifugation of concentrated culture supernatant. The entire process can be completed in 1 week and the steps involved are universal for a number of different AAV serotypes. Process conditions have been optimized such that final purified yields are routinely greater than 1 × 1014 genome copies per run, with capsid protein purity exceeding 90%. Initial experiments with vectors produced by the new process demonstrate equivalent or better transduction both in vitro and in vivo when compared with small-scale, CsCl gradient-purified vectors. In addition, the iodixanol gradient purification process described effectively separates infectious particles from empty capsids, a desirable property for reducing toxicity and unwanted immune responses during preclinical studies. PMID:20497038

  11. Single-Vector, Single-Injection Recombinant Vesicular Stomatitis Virus Vaccines Against High-Containment Viruses.

    PubMed

    Whitt, Michael A; Geisbert, Thomas W; Mire, Chad E

    2016-01-01

    There are many avenues for making an effective vaccine against viruses. Depending on the virus these can include one of the following: inactivation of whole virions; attenuation of viruses; recombinant viral proteins; non-replication-competent virus particles; or surrogate virus vector systems such as vesicular stomatitis virus (VSV). VSV is a prototypic enveloped animal virus that has been used for over four decades to study virus replication, entry, and assembly due to its ability to replicate to high titers in a wide variety of mammalian and insect cells. The use of reverse genetics to recover infectious and single-cycle replicating VSV from plasmid DNA transfected in cell culture began a revolution in the study of recombinant VSV (rVSV). This platform can be manipulated to study the viral genetic sequences and proteins important in the virus life cycle. Additionally, foreign genes can be inserted between naturally occurring or generated start/stop signals and polyadenylation sites within the VSV genome. VSV has a tolerance for foreign gene expression which has led to numerous rVSVs reported in the literature. Of particular interest are the very effective single-dose rVSV vaccine vectors against high-containment viruses such as filoviruses, henipaviruses, and arenaviruses. Herein we describe the methods for selecting foreign antigenic genes, selecting the location within the VSV genome for insertion, generation of rVSV using reverse genetics, and proper vaccine study designs. PMID:27076138

  12. New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters

    PubMed Central

    Kanno, Alex I.; Goulart, Cibelly; Rofatto, Henrique K.; Oliveira, Sergio C.; Leite, Luciana C. C.

    2016-01-01

    The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovis BCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response. PMID:26850295

  13. New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters.

    PubMed

    Kanno, Alex I; Goulart, Cibelly; Rofatto, Henrique K; Oliveira, Sergio C; Leite, Luciana C C; McFadden, Johnjoe

    2016-04-01

    The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovisBCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response. PMID:26850295

  14. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap.

    PubMed

    Conway, J E; Rhys, C M; Zolotukhin, I; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1999-06-01

    Recombinant adeno-associated virus type 2 (rAAV) vectors have recently been used to achieve long-term, high level transduction in vivo. Further development of rAAV vectors for clinical use requires significant technological improvements in large-scale vector production. In order to facilitate the production of rAAV vectors, a recombinant herpes simplex virus type I vector (rHSV-1) which does not produce ICP27, has been engineered to express the AAV-2 rep and cap genes. The optimal dose of this vector, d27.1-rc, for AAV production has been determined and results in a yield of 380 expression units (EU) of AAV-GFP produced from 293 cells following transfection with AAV-GFP plasmid DNA. In addition, d27.1-rc was also efficient at producing rAAV from cell lines that have an integrated AAV-GFP provirus. Up to 480 EU/cell of AAV-GFP could be produced from the cell line GFP-92, a proviral, 293 derived cell line. Effective amplification of rAAV vectors introduced into 293 cells by infection was also demonstrated. Passage of rAAV with d27. 1-rc results in up to 200-fold amplification of AAV-GFP with each passage after coinfection of the vectors. Efficient, large-scale production (>109 cells) of AAV-GFP from a proviral cell line was also achieved and these stocks were free of replication-competent AAV. The described rHSV-1 vector provides a novel, simple and flexible way to introduce the AAV-2 rep and cap genes and helper virus functions required to produce high-titer rAAV preparations from any rAAV proviral construct. The efficiency and potential for scalable delivery of d27.1-rc to producer cell cultures should facilitate the production of sufficient quantities of rAAV vectors for clinical application.

  15. Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins.

    PubMed

    Taylor, J; Weinberg, R; Tartaglia, J; Richardson, C; Alkhatib, G; Briedis, D; Appel, M; Norton, E; Paoletti, E

    1992-03-01

    The development of canarypox virus (CPV) recombinants expressing the hemagglutinin (HA) and fusion (F) glycoproteins of measles virus (MV) is described. Inoculation of the CPV-MV recombinants into avian or nonavian tissue culture substrates led to the expression of authentic MVF and MVHA as determined by radioimmunoprecipitation and surface immunofluorescence. In contrast to avian-derived tissue culture, no productive replication of the CPV recombinant was evident in tissue culture cells derived from nonavian origin. On inoculation of dogs, a species restricted for avipoxvirus replication, the recombinants elicited a protective immune response against a lethal canine distemper virus (CDV) challenge. The level of MV neutralizing antibodies and the level of protection induced against CDV challenge achieved by the host-restricted CPV vector were equivalent to that obtained by vaccinia virus vectors expressing the same MV antigens. PMID:1736535

  16. Current Good Manufacturing Practice Production of an Oncolytic Recombinant Vesicular Stomatitis Viral Vector for Cancer Treatment

    PubMed Central

    Meseck, M.; Derecho, I.; Lopez, P.; Knoblauch, C.; McMahon, R.; Anderson, J.; Dunphy, N.; Quezada, V.; Khan, R.; Huang, P.; Dang, W.; Luo, M.; Hsu, D.; Woo, S.L.C.; Couture, L.

    2011-01-01

    Abstract Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 109 plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 1010 PFU/ml (total yield, 1 × 1013 PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC. PMID:21083425

  17. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    PubMed

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  18. Serotype-dependent transduction efficiencies of recombinant adeno-associated viral vectors in monkey neocortex

    PubMed Central

    Gerits, Annelies; Vancraeyenest, Pascaline; Vreysen, Samme; Laramée, Marie-Eve; Michiels, Annelies; Gijsbers, Rik; Van den Haute, Chris; Moons, Lieve; Debyser, Zeger; Baekelandt, Veerle; Arckens, Lutgarde; Vanduffel, Wim

    2015-01-01

    Abstract. Viral vector-mediated expression of genes (e.g., coding for opsins and designer receptors) has grown increasingly popular. Cell-type specific expression is achieved by altering viral vector tropism through crosspackaging or by cell-specific promoters driving gene expression. Detailed information about transduction properties of most recombinant adeno-associated viral vector (rAAV) serotypes in macaque cortex is gradually becoming available. Here, we compare transduction efficiencies and expression patterns of reporter genes in two macaque neocortical areas employing different rAAV serotypes and promoters. A short version of the calmodulin-kinase-II (CaMKIIα0.4) promoter resulted in reporter gene expression in cortical neurons for all tested rAAVs, albeit with different efficiencies for spread: rAAV2/5>>rAAV2/7>rAAV2/8>rAAV2/9>>rAAV2/1 and proportion of transduced cells: rAAV2/1>rAAV2/5>rAAV2/7=rAAV2/9>rAAV2/8. In contrast to rodent studies, the cytomegalovirus (CMV) promoter appeared least efficient in macaque cortex. The human synapsin-1 promoter preceded by the CMV enhancer (enhSyn1) produced homogeneous reporter gene expression across all layers, while two variants of the CaMKIIα promoter resulted in different laminar transduction patterns and cell specificities. Finally, differences in expression patterns were observed when the same viral vector was injected in two neocortical areas. Our results corroborate previous findings that reporter-gene expression patterns and efficiency of rAAV transduction depend on serotype, promoter, cortical layer, and area. PMID:26839901

  19. pGreen-S: a clone vector bearing absence of enhanced green fluorescent protein for screening recombinants.

    PubMed

    Tang, Jinbao; Liang, Shujuan; Zhang, Jinbao; Gao, Zhiqin; Zhang, Suhua

    2009-05-01

    The bacterial cloning vector, pGreen-S, was constructed by inserting the enhanced green fluorescent protein (EGFP) gene at the XbaI restriction site of pUC18 plasmid. When expressed in Escherichia coli DH5alpha produced colonies that were an absinthe green color under daylight and strongly fluorescent green under longwave ultraviolet light. The pGreen-S vector was used to select for directional insert based on the loss of green fluorescence in recombinant colonies that was caused by the absence of EGFP. The EGFP reporter system differs from the conventional complementation of lacZ, making screening recombinants simpler, less expensive, and more effective.

  20. Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector.

    PubMed

    Taylor, Travis J; Diaz, Fernando; Colgrove, Robert C; Bernard, Kristen A; DeLuca, Neal A; Whelan, Sean P J; Knipe, David M

    2016-09-01

    West Nile virus (WNV) is a flavivirus that swept rapidly across North America in 1999, declined in prevalence, and then resurged in 2012. To date, no vaccine is available to prevent infection in the human population. Herpes simplex virus (HSV) replication-defective vaccine vectors induce a durable immunity characterized by strong antibody and CD8(+) T cell responses even in HSV-immune animals. In this study, a WNV protein expression cassette was optimized for virus-like particle (VLP) production in transfection studies, and the cassette was recombined into an HSV-1 d106-WNV virus vector, which produced extracellular VLPs, as confirmed by immunoelectron microscopy. Immunization of mice with the d106-WNV recombinant vector elicited a specific anti-WNV IgG response. This study highlights the flavivirus coding sequences needed for efficient assembly of virus-like particles. This information will facilitate generation of additional vaccine vectors against other flaviviruses including the recently emerged Zika virus.

  1. Successful Interference with Cellular Immune Responses to Immunogenic Proteins Encoded by Recombinant Viral Vectors

    PubMed Central

    Sarukhan, Adelaida; Camugli, Sabine; Gjata, Bernard; von Boehmer, Harald; Danos, Olivier; Jooss, Karin

    2001-01-01

    Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-term expression of therapeutic genes in animal models and patients. One of the major advantages of these vectors is the absence of deleterious immune responses following gene transfer. However, AAV vectors, when used in vaccination studies, can result in efficient humoral and cellular responses against the transgene product. It is therefore important to understand the factors which influence the establishment of these immune responses in order to design safe and efficient procedures for AAV-based gene therapies. We have compared T-cell activation against a strongly immunogenic protein, the influenza virus hemagglutinin (HA), which is synthesized in skeletal muscle following gene transfer with an adenovirus (Ad) or an AAV vector. In both cases, cellular immune responses resulted in the elimination of transduced muscle fibers within 4 weeks. However, the kinetics of CD4+ T-cell activation were markedly delayed when AAV vectors were used. Upon recombinant Ad (rAd) gene transfer, T cells were activated both by direct transduction of dendritic cells and by cross-presentation of the transgene product, while upon rAAV gene transfer T cells were only activated by the latter mechanism. These results suggested that activation of the immune system by the transgene product following rAAV-mediated gene transfer might be easier to control than that following rAd-mediated gene transfer. Therefore, we tested protocols aimed at interfering with either antigen presentation by blocking the CD40/CD40L pathway or with the T-cell response by inducing transgene-specific tolerance. Long-term expression of the AAV-HA was achieved in both cases, whereas immune responses against Ad-HA could not be prevented. These data clearly underline the importance of understanding the mechanisms by which vector-encoded proteins are recognized by the immune system in order to specifically interfere with them and

  2. Neurovirulence Properties of Recombinant Vesicular Stomatitis Virus Vectors in Non-Human Primates

    PubMed Central

    Johnson, J. Erik; Nasar, Farooq; Coleman, John W.; Price, Roger E.; Javadian, Ali; Draper, Kenneth; Lee, Margaret; Reilly, Patricia A.; Clarke, David K.; Hendry, R. Michael; Udem, Stephen A.

    2007-01-01

    Although vesicular stomatitis virus (VSV) neurovirulence and pathogenicity in rodents have been well studied, little is known about VSV pathogenicity in non-human primates. To address this question, we measured VSV viremia, shedding, and neurovirulence in macaques. Following intranasal inoculation, macaques shed minimal recombinant VSV (rVSV) in nasal washes for one day post-inoculation; viremia was not detected. Following intranasal inoculation of macaques, wild type (wt) VSV, rVSV, and two rVSV-HIV vectors showed no evidence of spread to CNS tissues. However, macaques inoculated intrathalamically with wt VSV developed severe neurological disease. One of four macaques receiving rVSV developed clinical and histological signs similar to the wt group, while the remaining three macaques in this group and all of the macaques in the rVSV-HIV vector groups showed no clinical signs of disease and reduced severity of histopathology compared to the wt group. The implications of these findings for rVSV vaccine development are discussed. PMID:17098273

  3. [Novel qPCR strategy for quantification of recombinant adeno-associated virus serotype 2 vector genome-titer].

    PubMed

    Meng, Qinglin; Zhang, Binbin; Zhang, Chun

    2013-02-01

    Adeno-associated virus (AAV) has many advantages for gene therapy over other vector systems. However, after the production of recombinant AAV (Raav) vectors, the biological titration of rAAV stocks is still cumbersome. Different investigators used laboratory-specific methods or internal reference standards that may limit preclinical and clinical applications. The inverted terminal repeats (ITR) sequences are the only cis-regulated viral elements required for rAAV packaging and remain within viral vector genomes. ITR is the excellent target sequences for qPCR quantification of rAAV titer. In this study, we developed a novel qPCR strategy to quantify rAAVs' vector genome titer via targeting the ITR2 or ITR2-CMV element. In conclusion, the method is fast and accurate for the titration of rAAV2-derived vector genomes. It will promote the standardization of rAAV titration in the future.

  4. Re-Designed Recombinant Hepatitis B Virus Vectors Enable Efficient Delivery of Versatile Cargo Genes to Hepatocytes with Improved Safety

    PubMed Central

    Bai, Weiya; Cui, Xiaoxian; Chen, Ruidong; Tao, Shuai; Hong, Ran; Zhang, Jiming; Zhang, Junqi; Wang, Yongxiang; Xie, Youhua; Liu, Jing

    2016-01-01

    Hepatitis B virus (HBV) takes humans as its sole natural host, and productive infection in vivo is restricted exclusively to hepatocytes in the liver. Consequently, HBV-derived viral vectors are attractive candidates for liver-targeting gene therapies. Previously, we developed a novel recombinant HBV vector, designated 5c3c, from a highly replicative clinical isolate. 5c3c was demonstrated to be capable of efficiently delivering protein or RNA expression into infected primary tupaia hepatocytes (PTH), but the design of 5c3c imposes stringent restrictions on inserted sequences, which have limited its wider adoption. In this work, we addressed issues with 5c3c by re-designing the insertion strategy. The resultant vector, designated 5dCG, was more replicative than parental 5c3c, imposed no specific restrictions on inserted sequences, and allowed insertion of a variety of cargo genes without significant loss of replication efficiency. 5dCG-based recombinant HBV effectively delivered protein and RNA expression into infected PTH. Furthermore, due to the loss of functional core ORF, 5dCG vectors depend on co-infecting wild type HBV for replication and efficient expression of cargo genes. Development of the improved 5dCG vector makes wider applications of recombinant HBV possible, while dependence on co-infecting wild type HBV results in improved safety for certain in vivo applications. PMID:27171107

  5. New high-cloning-efficiency vectors for complementation studies and recombinant protein overproduction in Escherichia coli and Salmonella enterica.

    PubMed

    VanDrisse, C M; Escalante-Semerena, J C

    2016-07-01

    Galloway et al. recently described a method to alter vectors to include Type IIS restriction enzymes for high efficiency cloning. Utilizing this method, the multiple cloning sites of complementation and overexpression vectors commonly used in our laboratory were altered to contain recognition sequences of the Type IIS restriction enzyme, BspQI. Use of this enzyme increased the rate of cloning success to >97% efficiency. L(+)-Arabinose-inducible complementation vectors and overexpression vectors encoding N-terminal recombinant tobacco etch virus protease (rTEV)-cleavable H6-tags were altered to contain BspQI sites that allowed for cloning into all vectors using identical primer overhangs. Additionally, a vector used for directing the synthesis of proteins with a C-terminal, rTEV-cleavable H6-tag was engineered to contain BspQI sites, albeit with different overhangs from that of the previously mentioned vectors. Here we apply a method used to engineer cloning vectors to contain BspQI sites and the use of each vector in either in vivo complementation studies or in vitro protein purifications. PMID:27234933

  6. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall.

    PubMed

    Ye, Y W; Landau, C; Willard, J E; Rajasubramanian, G; Moskowitz, A; Aziz, S; Meidell, R S; Eberhart, R C

    1998-01-01

    The use of intravascular stents as an adjunct for percutaneous transluminal revascularization is limited by two principal factors, acute thrombosis and neointimal proliferation, resulting in restenosis. To overcome these limitations, we have investigated the potential of microporous bioresorbable polymer stents formed from poly(L-lactic acid) (PLLA)/poly(epsilon-caprolactone) (PCL) blends to function both to provide mechanical support and as reservoirs for local delivery of therapeutic molecules and particles to the vessel wall. Tubular PLLA/PCL stents were fabricated by the flotation-precipitation method, and helical stents were produced by a casting/winding technique. Hybrid structures in which a tubular sheath is deposited on a helical skeleton were also generated. Using a two-stage solvent swelling technique, polyethylene oxide has been incorporated into these stents to improve hydrophilicity and water uptake, and to facilitate the ability of these devices to function as drug carriers. Stents modified in this manner retain axial and radial mechanical strength sufficient to stabilize the vessel wall against elastic recoil caused by vasoconstrictive and mechanical forces. Because of the potential of direct gene transfer into the vessel wall to ameliorate thrombosis and neointimal proliferation, we have investigated the capacity of these polymer stents to function in the delivery of recombinant adenovirus vectors to the vessel wall. In vitro, virus stock was observed to readily absorb into, and elute from these devices in an infectious form, with suitable kinetics. Successful gene transfer and expression has been demonstrated following implantation of polymer stents impregnated with a recombinant adenovirus carrying a nuclear-localizing betaGal reporter gene into rabbit carotid arteries. These studies suggest that surface-modified polymer stents may ultimately be useful adjunctive devices for both mechanical support and gene transfer during percutaneous

  7. Dual Transneuronal Tracing in the Rat Entorhinal-Hippocampal Circuit by Intracerebral Injection of Recombinant Rabies Virus Vectors

    PubMed Central

    Ohara, Shinya; Inoue, Ken-ichi; Yamada, Masahiro; Yamawaki, Takuma; Koganezawa, Noriko; Tsutsui, Ken-Ichiro; Witter, Menno P.; Iijima, Toshio

    2008-01-01

    Dual transneuronal tracing is a novel viral tracing methodology which employs two recombinant viruses, each expressing a different reporter protein. Peripheral injection of recombinant pseudorabies viruses has been used as a powerful method to define neurons that coordinate outputs to various peripheral targets of motor and autonomic systems. Here, we assessed the feasibility of recombinants of rabies virus (RV) vector for dual transneuronal tracing in the central nervous system. First, we examined whether two different RV-vectors can double label cells in vitro, and showed that efficient double labeling can be realized by infecting targeted cells with the two RV-vectors within a short time interval. The potential of dual transneuronal tracing was then examined in vivo in the entorhinal-hippocampal circuit, using the chain of projections from CA3 pyramidal cells to CA1 pyramidal cells and subsequently to entorhinal cortex. Six days after the injection of two RV-vectors into the left and right entorhinal cortex respectively, double-labeled neurons were observed in CA3 bilaterally. Some double-labeled neurons showed a Golgi-like labeling. Dual transneuronal tracing potentially provides a powerful and sensitive method to study issues such as the amount of convergence and divergence within and between circuits in the central nervous system. Using this sensitive technique, we established that single neurons in CA3 are connected to the entorhinal cortex bilaterally with only one synaptic relay. PMID:19169410

  8. Subretinal delivery of recombinant AAV serotype 8 vector in dogs results in gene transfer to neurons in the brain.

    PubMed

    Stieger, Knut; Colle, Marie-Anne; Dubreil, Laurence; Mendes-Madeira, Alexandra; Weber, Michel; Le Meur, Guylène; Deschamps, Jack Yves; Provost, Nathalie; Nivard, Delphine; Cherel, Yan; Moullier, Philippe; Rolling, Fabienne

    2008-05-01

    Recombinant adeno-associated virus (rAAV) vectors are among the most efficient gene delivery vehicles for gene transfer to the retina. This study evaluates the behavior of the rAAV8 serotype vector with regard to intraocular delivery in rats and dogs. Subretinal delivery of an AAV2/8.gfp vector results in efficient gene transfer in the retinal pigment epithelium (RPE), the photoreceptors and, surprisingly, in the cells of the inner nuclear layer as well as in ganglion cells. Most importantly, in dogs, gene transfer also occurred distal to the injection site in neurons of the lateral geniculate nucleus of the brain. Because green fluorescent protein (GFP) was detected along the visual pathway within the brain, we analyzed total DNA extracted from various brain slices using PCR. Vector sequences were detected in many parts of the brain, but chiefly in the contralateral hemisphere.

  9. [Immortalization of rat corneal epithelial cells by SV40-adenovirus recombinant vector].

    PubMed

    Araki, K; Sasabe, T; Ohashi, Y; Yasuda, M; Handa, H; Tano, Y

    1994-04-01

    Using a SV40-adenovirus recombinant vector, we have successfully established a rat corneal epithelial cell line (RatCE) and studied its biological characteristics. RatCE continued to grow for more than 400 generations. It proliferated centrifugally in the early phase of the culture (1-3 days in culture) and had a cobblestone-like appearance in confluency. Desmosomes and microvilli were clearly seen under a transmission electron microscope. RatCE could be stored in liquid nitrogen and its biological characteristics were: doubling time, 18.3 hrs, colony forming ability, 36%, and growth ability in soft agar, 2%. When the insoluble extract from RatCE was electrophoresed, insoluble proteins were seen at 36 kD, 40 kD, 44 kD, 48 kD, 56 kD, and 64 kD. Anti-64 kD cytokeratin antibody strongly reacted with numerous filaments in the cytoplasm of RatCE. Hence, RatCE possessed 64 kD corneal specific keratin. A large amount of fibronectin was also assessed at focal contact by immunohistochemistry. Thus, RatCE retains several kinds of epithelial characteristics, is derived from one clone, and is immortalized. RatCE will be a useful tool in studies of the corneal epithelium. PMID:7513119

  10. Direct injection of a recombinant retroviral vector induces human immunodeficiency virus-specific immune responses in mice and nonhuman primates.

    PubMed Central

    Irwin, M J; Laube, L S; Lee, V; Austin, M; Chada, S; Anderson, C G; Townsend, K; Jolly, D J; Warner, J F

    1994-01-01

    The cytotoxic T-lymphocyte (CTL) response plays an important role in controlling the severity and duration of viral infections. Immunization by direct in vivo administration of retroviral vector particles represents an efficient means of introducing and expressing genes and, subsequently, the proteins they encode in vivo in mammalian cells. In this manner foreign proteins can be provided to the endogenous, class I major histocompatibility complex antigen presentation pathway leading to CTL activation. A nonreplicating recombinant retroviral vector, encoding the human immunodeficiency virus type 1 (HIV-1) IIIB envelope and rev proteins, has been developed and examined for stimulation of immune responses in mouse, rhesus macaque, and baboon models. Animals were immunized by direct intramuscular injection of the retroviral vector particles. Vector-immunized mice, macaques, and baboons generated long-lived CD8+, major histocompatibility complex-restricted CTL responses that were HIV-1 protein specific. The CTL responses were found to be dependent on the ability of the retroviral vector to transduce cells. The vector also elicited HIV-1 envelope-specific antibody responses in mice and baboons. These studies demonstrate the ability of a retroviral vector encoding HIV-1 proteins to stimulate cellular and humoral immune responses and suggest that retrovector immunization may provide an effective means of inducing or augmenting CTL responses in HIV-1-infected individuals. PMID:8035504

  11. Recombinant rubella vectors elicit SIV Gag-specific T cell responses with cytotoxic potential in rhesus macaques.

    PubMed

    Rosati, Margherita; Alicea, Candido; Kulkarni, Viraj; Virnik, Konstantin; Hockenbury, Max; Sardesai, Niranjan Y; Pavlakis, George N; Valentin, Antonio; Berkower, Ira; Felber, Barbara K

    2015-04-27

    Live-attenuated rubella vaccine strain RA27/3 has been demonstrated to be safe and immunogenic in millions of children. The vaccine strain was used to insert SIV gag sequences and the resulting rubella vectors were tested in rhesus macaques alone and together with SIV gag DNA in different vaccine prime-boost combinations. We previously reported that such rubella vectors induce robust and durable SIV-specific humoral immune responses in macaques. Here, we report that recombinant rubella vectors elicit robust de novo SIV-specific cellular immune responses detectable for >10 months even after a single vaccination. The antigen-specific responses induced by the rubella vector include central and effector memory CD4(+) and CD8(+) T cells with cytotoxic potential. Rubella vectors can be administered repeatedly even after vaccination with the rubella vaccine strain RA27/3. Vaccine regimens including rubella vector and SIV gag DNA in different prime-boost combinations resulted in robust long-lasting cellular responses with significant increase of cellular responses upon boost. Rubella vectors provide a potent platform for inducing HIV-specific immunity that can be combined with DNA in a prime-boost regimen to elicit durable cellular immunity.

  12. In vitro characterization of felid herpesvirus 1 (FHV-1) mutants generated by recombineering in a recombinant BAC vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Felid herpesvirus 1 (FHV-1) mutants were constructed using two-step Red-mediated recombination techniques based on a virulent full-length FHV-1 BAC clone. The individual mutant viruses generated were deficient in glycoprotein C (gC), glycoprotein E (gE),US3 serine/threonine protein kinase (PK), or b...

  13. MAC-T cells as a tool to evaluate lentiviral vector construction targeting recombinant protein expression in milk.

    PubMed

    Monzani, Paulo S; Guemra, Samuel; Adona, Paulo R; Ohashi, Otavio M; Meirelles, Flávio V; Wheeler, Matthew B

    2015-01-01

    Prior to generating transgenic animals for bioreactors, it is important to evaluate the vector constructed to avoid poor protein expression. Mammary epithelial cells cultured in vitro have been proposed as a model to reproduce the biology of the mammary gland. In the present work, three lentiviral vectors were constructed for the human growth hormone (GH), interleukin 2 (IL2), and granulocyte colony-stimulating factor 3 (CSF3) genes driven by the bovine β-casein promoter. The lentiviruses were used to transduce mammary epithelial cells (MAC-T), and the transformed cells were cultured on polystyrene in culture medium with and without prolactin. The gene expression of transgenes was evaluated by PCR using cDNA, and recombinant protein expression was evaluated by Western-blotting using concentrated medium and cellular extracts. The gene expression, of the three introduced genes, was detected in both induced and non induced MAC-T cells. The human GH protein was detected in the concentrated medium, whereas CSF3 was detected in the cellular extract. Apparently, the cellular extract is more appropriate than the concentrated medium to detect recombinant protein, principally because concentrated medium has a high concentration of bovine serum albumin. The results suggest that MAC-T cells may be a good system to evaluate vector construction targeting recombinant protein expression in milk. PMID:25380466

  14. Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector.

    PubMed

    Taylor, Travis J; Diaz, Fernando; Colgrove, Robert C; Bernard, Kristen A; DeLuca, Neal A; Whelan, Sean P J; Knipe, David M

    2016-09-01

    West Nile virus (WNV) is a flavivirus that swept rapidly across North America in 1999, declined in prevalence, and then resurged in 2012. To date, no vaccine is available to prevent infection in the human population. Herpes simplex virus (HSV) replication-defective vaccine vectors induce a durable immunity characterized by strong antibody and CD8(+) T cell responses even in HSV-immune animals. In this study, a WNV protein expression cassette was optimized for virus-like particle (VLP) production in transfection studies, and the cassette was recombined into an HSV-1 d106-WNV virus vector, which produced extracellular VLPs, as confirmed by immunoelectron microscopy. Immunization of mice with the d106-WNV recombinant vector elicited a specific anti-WNV IgG response. This study highlights the flavivirus coding sequences needed for efficient assembly of virus-like particles. This information will facilitate generation of additional vaccine vectors against other flaviviruses including the recently emerged Zika virus. PMID:27336950

  15. Recombinant Adeno-Associated Virus Vector Genomes Take the Form of Long-Lived, Transcriptionally Competent Episomes in Human Muscle.

    PubMed

    Schnepp, Bruce C; Chulay, Jeffrey D; Ye, Guo-Jie; Flotte, Terence R; Trapnell, Bruce C; Johnson, Philip R

    2016-01-01

    Gene augmentation therapy as a strategy to treat alpha-1 antitrypsin (AAT) deficiency has reached phase 2 clinical testing in humans. Sustained serum levels of AAT have been observed beyond one year after intramuscular administration of a recombinant adeno-associated virus (rAAV) vector expressing the AAT gene. In this study, sequential muscle biopsies obtained at 3 and 12 months after vector injection were examined for the presence of rAAV vector genomes. Each biopsy sample contained readily detectable vector DNA, the majority of which existed as double-stranded supercoiled and open circular episomes. Episomes persisted through 12 months, although at slightly lower levels than observed at 3 months. There was a clear dose response when comparing the low- and mid-vector-dose groups to the high-dose group. The highest absolute copy numbers were found in a high-dose subject, and serum AAT levels at 12 months confirmed that the high-dose group also had the highest sustained serum AAT levels. Sequence analysis revealed that the vast majority of episomes contained double-D inverted terminal repeats ranging from fully intact to severely deleted. Molecular clones of vector genomes derived directly from the biopsies were transcriptionally active, potentially identifying them as the source of serum AAT in the trial subjects.

  16. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    SciTech Connect

    Zhao Weihong; Wu Jianqing ||; Zhong Li; Chen Linyuan; Weigel-Kelley, Kirsten A. |; Qing Keyun; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H. |; Srivastava, Arun |. E-mail: asrivastava@gtc.ufl.edu

    2006-09-30

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by {approx}25-fold in WT MEFs, but only by {approx}4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency {approx}23-fold in WT MEFs, but only {approx}4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, {approx}59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only {approx}28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant

  17. Bovine respiratory syncytial virus nucleocapsid protein: mRNA sequence analysis and expression from recombinant vaccinia virus vectors.

    PubMed

    Amann, V L; Lerch, R A; Anderson, K; Wertz, G W

    1992-04-01

    The nucleotide sequence of the mRNA encoding the nucleocapsid (N) protein of bovine respiratory syncytial (BRS) virus, strain 391-2, was determined. Recombinant vectors containing a cDNA of the complete N gene were constructed, and expression of the N protein in eukaryotic cells was demonstrated using two different vector systems. The BRS virus N mRNA was 1197 nucleotides in length, exclusive of poly(A), and had a single major open reading frame that encoded a polypeptide of 391 amino acids with a calculated M(r) of 42.6K. The nucleotide and amino acid sequences of the BRS virus N gene were compared to those of human respiratory syncytial (HRS) virus strains A2 and 18537, and to BRS virus strain A51908. The level of nucleic acid identity between the N mRNA of BRS virus 391-2 and both HRS virus subtypes was 80 to 81%, whereas the identity between the two BRS virus strains was 97%. A 93 to 94% level of identity was observed between the deduced amino acid sequences of the N protein of BRS virus 391-2 and the corresponding sequences of the two HRS virus strains. The two BRS virus N proteins differed in amino acid sequence at only three positions. Recombinant BRS virus N protein was expressed using two different vector systems: in cells from a plasmid using the vaccinia virus/T7 polymerase expression system or from a recombinant vaccinia virus. N proteins synthesized by the two vector systems migrated with an electrophoretic mobility identical to that of authentic BRS virus N protein, and were precipitated by anti-BRS virus antibodies.

  18. Screening for recombinants of Crambe abyssynica after transformation by the pMF1 marker-free vector based on chemical selection and meristematic regeneration

    PubMed Central

    Qi, Weicong; Tinnenbroek-Capel, Iris E. M.; Salentijn, Elma M. J.; Schaart, Jan G.; Cheng, Jihua; Denneboom, Christel; Zhang, Zhao; Zhang, Xiaolin; Zhao, Han; Visser, Richard G. F.; Huang, Bangquan; Van Loo, Eibertus N.; Krens, Frans A.

    2015-01-01

    The T-DNA region of pMF1 vector of marker-free system developed by Wageningen UR, has Recombinase R-LBD gene fusion and nptII and codA gene fusion between two recombination sites. After transformation applying dexamethasone (DEX) can activate the recombinase to remove the T-DNA fragment between recombination sites. The recombinant ought to be selected on 5-fluorocytocine (5-FC) because of codA converting 5-FC into 5-fluorouracil the toxic. A PMF1 vector was transformed into hexaploid species Crambe abyssinica. Two independent transformants were chosen for DEX-induced recombination and later 5-FC selection. In contrast to earlier pMF1 experiments, the strategy of stepwise selection based on meristematic regeneration was engaged. After a long period of 5-FC selection, recombinants were obtained successfully, but most of the survivors were wildtype and non-recombinant. The results revealed when applying the PMF1 marker-free system on C. abyssinica, 1) Increasing in the DEX concentration did not correspondingly enhance the success of recombination; 2) both of the DEX-induced recombination and 5-FC negative selection were apparently insufficient which was leading to the extremely high frequency in chimerism occurring for recombinant and non-recombinant cells in tissues; 3) the strategy of stepwise selection based on meristem tissue regeneration was crucial for successfully isolating the recombinant germplasm from the chimera. PMID:26358007

  19. Screening for recombinants of Crambe abyssynica after transformation by the pMF1 marker-free vector based on chemical selection and meristematic regeneration.

    PubMed

    Qi, Weicong; Tinnenbroek-Capel, Iris E M; Salentijn, Elma M J; Schaart, Jan G; Cheng, Jihua; Denneboom, Christel; Zhang, Zhao; Zhang, Xiaolin; Zhao, Han; Visser, Richard G F; Huang, Bangquan; Van Loo, Eibertus N; Krens, Frans A

    2015-09-11

    The T-DNA region of pMF1 vector of marker-free system developed by Wageningen UR, has Recombinase R-LBD gene fusion and nptII and codA gene fusion between two recombination sites. After transformation applying dexamethasone (DEX) can activate the recombinase to remove the T-DNA fragment between recombination sites. The recombinant ought to be selected on 5-fluorocytocine (5-FC) because of codA converting 5-FC into 5-fluorouracil the toxic. A PMF1 vector was transformed into hexaploid species Crambe abyssinica. Two independent transformants were chosen for DEX-induced recombination and later 5-FC selection. In contrast to earlier pMF1 experiments, the strategy of stepwise selection based on meristematic regeneration was engaged. After a long period of 5-FC selection, recombinants were obtained successfully, but most of the survivors were wildtype and non-recombinant. The results revealed when applying the PMF1 marker-free system on C. abyssinica, 1) Increasing in the DEX concentration did not correspondingly enhance the success of recombination; 2) both of the DEX-induced recombination and 5-FC negative selection were apparently insufficient which was leading to the extremely high frequency in chimerism occurring for recombinant and non-recombinant cells in tissues; 3) the strategy of stepwise selection based on meristem tissue regeneration was crucial for successfully isolating the recombinant germplasm from the chimera.

  20. Increased recombinant protein production owing to expanded opportunities for vector integration in high chromosome number Chinese hamster ovary cells.

    PubMed

    Yamano, Noriko; Takahashi, Mai; Ali Haghparast, Seyed Mohammad; Onitsuka, Masayoshi; Kumamoto, Toshitaka; Frank, Jana; Omasa, Takeshi

    2016-08-01

    Chromosomal instability is a characteristic of Chinese hamster ovary (CHO) cells. Cultures of these cells gradually develop heterogeneity even if established from a single cell clone. We isolated cells containing different numbers of chromosomes from a CHO-DG44-based human granulocyte-macrophage colony stimulating factor (hGM-CSF)-producing cell line and found that high chromosome number cells showed higher hGM-CSF productivity. Therefore, we focused on the relationship between chromosome aneuploidy of CHO cells and high recombinant protein-producing cell lines. Distribution and stability of chromosomes were examined in CHO-DG44 cells, and two cell lines expressing different numbers of chromosomes were isolated from the original CHO-DG44 cell line to investigate the effect of aneuploid cells on recombinant protein production. Both cell lines were stably transfected with a vector that expresses immunoglobulin G3 (IgG3), and specific antibody production rates were compared. Cells containing more than 30 chromosomes had higher specific antibody production rates than those with normal chromosome number. Single cell analysis of enhanced green fluorescent protein (Egfp)-gene transfected cells revealed that increased GFP expression was relative to the number of gene integration sites rather than the difference in chromosome numbers or vector locations. Our results suggest that CHO cells with high numbers of chromosomes contain more sites for vector integration, a characteristic that could be advantageous in biopharmaceutical production.

  1. Application of a Fas Ligand Encoding a Recombinant Adenovirus Vector for Prolongation of Transgene Expression

    PubMed Central

    Zhang, Huang-Ge; Bilbao, Guadalupe; Zhou, Tong; Contreras, Juan Luis; Gómez-Navarro, Jesús; Feng, Meizhen; Saito, Izumu; Mountz, John D.; Curiel, David T.

    1998-01-01

    An adenovirus vector encoding murine Fas ligand (mFasL) under an inducible control was derived. In vivo ectopic expression of mFasL in murine livers induced an inflammatory cellular infiltration. Furthermore, ectopic expression of mFasL by myocytes did not allow prolonged vector-mediated transgene expression. Thus, ectopic expression of functional mFasL in vector-transduced cells does not appear to confer, by itself, an immunoprivileged site sufficient to mitigate adenovirus vector immunogenicity. PMID:9499110

  2. Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors.

    PubMed

    Vega, Juan M; Yu, Weichang; Han, Fangpu; Kato, Akio; Peters, Eric M; Zhang, Zhanyuan J; Birchler, James A

    2008-04-01

    The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.

  3. [Transcatheter delivery of recombinant adenovirus vector containing exogenous aquaporin gene in treatment of Sjögren's syndrome].

    PubMed

    He, Hong; Zhang, Jieqiong; Fan, Yan; Sun, Xiaoshuang; Zhu, Yuhao

    2016-01-01

    Sjögren's syndrome is a kind of autoimmune disease, whose main clinical symptoms are dry mouth, dry eye and chronic parotid glandular inflammation. The conservative treatments include artificial tears or saliva,oral administration of corticosteroids,and immunosuppressantsl with limited effectiveness. Along with the development of molecular biology, vast attentions are being paid to researches on gene therapy for Sjögren's syndrome, hopefully to bring gospel to patients with Sjögren's syndrome. This article reviews the recent research progresses on transcatheter delivery of recombinant adenovirus vector with aquaporin gene in experimental treatment of Sjögren's syndrome. PMID:27045247

  4. Oxygen vectors used for S-adenosylmethionine production in recombinant Pichia pastoris with sorbitol as supplemental carbon source.

    PubMed

    Zhang, Jian-Guo; Wang, Xue-Dong; Zhang, Ji-Ning; Wei, Dong-Zhi

    2008-04-01

    In order to increase the yield of S-adenosylmethionine (SAM) in recombinant Pichia pastoris, a strategy of adding oxygen vectors and supplemental carbon sources was described. Three organic solutions were used as oxygen vectors for SAM accumulation at different concentrations and addition times. Firstly, n-hexane (0.5%) or n-heptane (1.0%) was added after 72 h of cultivation to improve SAM production. Carbon metabolism was scarce during the induction phase because of low methanol concentration. Secondly, sorbitol (1.2%), selected from three candidates (glycerol, lactic acid, and sorbitol), was used as the supplemental carbon source. The yield of SAM was improved significantly (53.26%) at 1.0%n-heptane added at 72 h (48 h induction), 1.2% sorbitol added at 72, 96, and 120 h of cultivation and 1.0% methanol added every 24 h during cultivation.

  5. In vitro characterization of felid herpesvirus 1 (FHV-1) mutants generated by recombineering in a recombinant BAC vector.

    PubMed

    Tai, S-H Sheldon; Holz, Carine; Engstrom, Michael D; Cheng, Hans H; Maes, Roger K

    2016-08-01

    Felid herpesvirus 1 (FHV-1) mutants were constructed using two-step Red-mediated recombination techniques based on a virulent full-length FHV-1 BAC clone. The individual mutant viruses generated were deficient in glycoprotein C (gC), glycoprotein E (gE), US3 serine/threonine protein kinase (PK), or both gE and thymidine kinase (TK). The gC- mutant virus produced plaques that were similar in size to those resulting from infection with the C-27 parent strain. In contrast, the gE(-), PK(-), and gE(-)PK(-) deletion mutants produced plaques that were significantly smaller. Multistep in vitro growth kinetics of the gE(-), PK(-), and gE(-)PK(-) viruses were slightly delayed compared to those of the C-27 parent strain. Peak progeny titers of these three mutants were approximately 10-fold lower than those generated with the C-27 strain. There was no delay in the growth kinetics of the gC- mutant, but the progeny virus titer obtained with this mutant was at least 3 logs lower compared to the parental strain titer. Based upon their in vitro characteristics, these mutants will be useful for the development of novel immunization strategies against this important feline pathogen. PMID:27157860

  6. Differential targeting of feline photoreceptors by recombinant adeno-associated viral vectors: implications for preclinical gene therapy trials.

    PubMed

    Minella, A L; Mowat, F M; Willett, K L; Sledge, D; Bartoe, J T; Bennett, J; Petersen-Jones, S M

    2014-10-01

    The cat is emerging as a promising large animal model for preclinical testing of retinal dystrophy therapies, for example, by gene therapy. However, there is a paucity of studies investigating viral vector gene transfer to the feline retina. We therefore sought to study the tropism of recombinant adeno-associated viral (rAAV) vectors for the feline outer retina. We delivered four rAAV serotypes: rAAV2/2, rAAV2/5, rAAV2/8 and rAAV2/9, each expressing green fluorescent protein (GFP) under the control of a cytomegalovirus promoter, to the subretinal space in cats and, for comparison, mice. Cats were monitored for gene expression by in vivo imaging and cellular tropism was determined using immunohistochemistry. In cats, rAAV2/2, rAAV2/8 and rAAV2/9 vectors induced faster and stronger GFP expression than rAAV2/5 and all vectors transduced the retinal pigment epithelium (RPE) and photoreceptors. Unlike in mice, cone photoreceptors in the cat retina were more efficiently transduced than rod photoreceptors. In mice, rAAV2/2 only transduced the RPE whereas the other vectors also transduced rods and cones. These results highlight species differences in cellular tropism of rAAV vectors in the outer retina. We conclude that rAAV serotypes are suitable for use for retinal gene therapy in feline models, particularly when cone photoreceptors are the target cell.

  7. Enhancing Transgene Expression from Recombinant AAV8 Vectors in Different Tissues Using Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element

    PubMed Central

    Wang, Lizheng; Wang, Zixuan; Zhang, Fangfang; Zhu, Rui; Bi, Jinpeng; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-01-01

    Adeno-associated virus (AAV) vectors have been utilized extensively in gene therapy and gene function studies, as strong transgene expression is a prerequisite for positive outcomes. AAV8 was reported as the most efficient AAV serotype for transduction of the liver, brain and muscle compared with other serotypes. However, AAV8-mediated transduction of human hepatocytes is rather poor with approximately 20-fold lower efficiency compared with that of mouse hepatocytes. Therefore, we applied the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to enhance AAV8-mediated transgene expression driven by a combination promoter (CAG promoter) with a CMV-IE enhancer and chicken beta-actin promoter for a more efficient viral vector. Transgene expression from recombinant AAV8 (rAAV8) vectors harboring a red fluorescent protein (RFP) reporter gene with or without WPRE were evaluated in vitro and in vivo. The results demonstrated that WPRE improved AAV8-mediated RFP expression in different cell lines with clear increases of transgene expression in the liver, brain or muscle of animals. The findings of this study will help to substantially reduce the quantity of viral particles that must be injected in order to reach a therapeutic level of transgene expression in gene therapy. Consequently, such dose reductions may lessen the potential risks associated with high doses of viral vectors. PMID:27076785

  8. Genetic Manipulation of Brown Fat Via Oral Administration of an Engineered Recombinant Adeno-associated Viral Serotype Vector.

    PubMed

    Huang, Wei; McMurphy, Travis; Liu, Xianglan; Wang, Chuansong; Cao, Lei

    2016-06-01

    Recombinant adeno-associated virus (rAAV) vectors are attractive vehicles for gene therapy. Gene delivery to the adipose tissue using naturally occurring AAV serotypes is less successful compared to liver and muscle. Here, we demonstrate that oral administration of an engineered serotype Rec2 led to preferential transduction of brown fat with absence of transduction in the gastrointestinal track. Among the six natural and engineered serotypes being compared, Rec2 was the most efficient serotype achieving high level transduction at a dose 1~2 orders lower than reported doses for systemic administration. Overexpressing vascular endothelial growth factor (VEGF) in brown fat via oral administration of Rec2-VEGF vector increased the brown fat mass and enhanced thermogenesis. In contrast, knockdown VEGF in brown fat of VEGF (loxP) mice via Rec2-Cre vector hampered cold response and decreased brown fat mass. Oral administration of Rec2 vector provides a novel tool to genetically manipulate brown fat for research and therapeutic applications. PMID:26857843

  9. Generation of Recombinant Capripoxvirus Vectors for Vaccines and Gene Knockout Function Studies.

    PubMed

    Boshra, Hani; Cao, Jingxin; Babiuk, Shawn

    2016-01-01

    The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses.

  10. Generation of Recombinant Capripoxvirus Vectors for Vaccines and Gene Knockout Function Studies.

    PubMed

    Boshra, Hani; Cao, Jingxin; Babiuk, Shawn

    2016-01-01

    The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses. PMID:26458835

  11. [Construction of recombinant human nerve growth factor (rh-β-NGF) eukaryotic vector and its expression in HEK293 cells].

    PubMed

    Li, Jingchuan; Xue, Bofu; Yuan, Yuan; Ma, Mo; Zhu, Lin; Milburn, Rebecca; Le, Li; Hu, Peizhen; Ye, Jing

    2015-03-01

    Human nerve growth factor (NGF) is a nerve cell growth regulation factor, which can provide nutrition for the neurons and promote the neurites outgrowth. In order to produce large-scale recombinant human nerve growth factor (rh-beta-NGF), we constructed a plasmid vector, which can stably express the rh-beta-NGF in the HEK293 cell lines. First, the plasmid of pCMV-beta-NGF-IRES-dhfr was constructed and transformed into HEK293 cells. Then MTX pressurized filter and limiting dilution methods were used to obtain monoclonal HEK293 cell lines. After stepwise reducing serum in culture media, the cells eventually adapted to serum-free medium and secreted rh-beta-NGF. SDS-PAGE analysis revealed that the expression product owned a molecular weight of about 13 kDa and a purity of more than 50%. The peptide mapping sequencing analysis demonstrated the sequences of rh-beta-NGF matched with the theoretical ones. Later we purified this protein by ion exchange and molecular sieve chromatograph. Finally, our experimental results exhibited that the recombinant cell lines can stably express rh-beta-NGF with a high efficiency of more than 20 pg/cell x day. In addition, this protein could successfully induce differentiation of PC12 cells. In summary, our recombinant HEK293 cells can express bio-active rh-beta-NGF with great efficiency and stability, which supply a valid basis to large-scale production of rh-beta-NGF.

  12. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    SciTech Connect

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M. . E-mail: david_knipe@hms.harvard.edu

    2007-01-20

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli {beta}-galactosidase induced durable {beta}-gal-specific IgG and CD8{sup +} T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes.

  13. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG.

    PubMed

    Fuchs, Sebastian P; Martinez-Navio, José M; Gao, Guangping; Desrosiers, Ronald C

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5-2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG. PMID:27332822

  14. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG

    PubMed Central

    Fuchs, Sebastian P.; Martinez-Navio, José M.; Gao, Guangping; Desrosiers, Ronald C.

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5–2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG. PMID:27332822

  15. Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system

    PubMed Central

    Buclez, Pierre-Olivier; Dias Florencio, Gabriella; Relizani, Karima; Beley, Cyriaque; Garcia, Luis; Benchaouir, Rachid

    2016-01-01

    Recombinant adeno-associated viruses (rAAV) are largely used for gene transfer in research, preclinical developments, and clinical trials. Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. Upstream processes able to produce large amounts of rAAV were developed, particularly those using baculovirus expression vector system. In parallel, downstream processes present a large panel of purification methods, often including multiple and time consuming steps. Here, we show that simple tangential flow filtration, coupled with an optimized iodixanol-based isopycnic density gradient, is sufficient to purify several liters of crude lysate produced by baculovirus expression vector system in only one working day, leading to high titers and good purity of rAAV products. Moreover, we show that the viral vectors retain their in vitro and in vivo functionalities. Our results demonstrate that simple, rapid, and relatively low-cost methods can easily be implemented for obtaining a high-quality grade of gene therapy products based on rAAV technology. PMID:27226971

  16. A Recombinant Chimeric Ad5/3 Vector Expressing a Multistage Plasmodium Antigen Induces Protective Immunity in Mice Using Heterologous Prime-Boost Immunization Regimens.

    PubMed

    Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Zhao, Chunxia; Makarova, Natalia; Dmitriev, Igor; Curiel, David T; Blackwell, Jerry; Moreno, Alberto

    2016-10-01

    An ideal malaria vaccine should target several stages of the parasite life cycle and induce antiparasite and antidisease immunity. We have reported a Plasmodium yoelii chimeric multistage recombinant protein (P. yoelii linear peptide chimera/recombinant modular chimera), engineered to express several autologous T cell epitopes and sequences derived from the circumsporozoite protein and the merozoite surface protein 1. This chimeric protein elicits protective immunity, mediated by CD4(+) T cells and neutralizing Abs. However, experimental evidence, from pre-erythrocytic vaccine candidates and irradiated sporozoites, has shown that CD8(+) T cells play a significant role in protection. Recombinant viral vectors have been used as a vaccine platform to elicit effective CD8(+) T cell responses. The human adenovirus (Ad) serotype 5 has been tested in malaria vaccine clinical trials with excellent safety profile. Nevertheless, a major concern for the use of Ad5 is the high prevalence of anti-vector neutralizing Abs in humans, hampering its immunogenicity. To minimize the impact of anti-vector pre-existing immunity, we developed a chimeric Ad5/3 vector in which the knob region of Ad5 was replaced with that of Ad3, conferring partial resistance to anti-Ad5 neutralizing Abs. Furthermore, we implemented heterologous Ad/protein immunization regimens that include a single immunization with recombinant Ad vectors. Our data show that immunization with the recombinant Ad5/3 vector induces protective efficacy indistinguishable from that elicited by Ad5. Our study also demonstrates that the dose of the Ad vectors has an impact on the memory profile and protective efficacy. The results support further studies with Ad5/3 for malaria vaccine development. PMID:27574299

  17. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors.

    PubMed

    Chen, Sifeng; Kapturczak, Matthias; Loiler, Scott A; Zolotukhin, Sergei; Glushakova, Olena Y; Madsen, Kirsten M; Samulski, Richard J; Hauswirth, William W; Campbell-Thompson, Martha; Berns, Kenneth I; Flotte, Terence R; Atkinson, Mark A; Tisher, C Craig; Agarwal, Anupam

    2005-02-01

    Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human alpha1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding beta-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p < 0.001) at 7 days posttransduction. Interestingly, expression was increased in cells transduced with rAAV5 to levels surpassing rAAV1 by day 14 and 21. Transduction with rAAV1 was completely inhibited by removal of sialic acid with sialidase, while heparin had no effect. These studies are the first demonstration that sialic acid residues are required for rAAV1 transduction in endothelial cells. Transduction of rat aortic segments ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies.

  18. Novel recombinant adenoviral vector that targets the interleukin-13 receptor alpha2 chain permits effective gene transfer to malignant glioma.

    PubMed

    Ulasov, Ilya V; Tyler, Matthew A; Han, Yu; Glasgow, Joel N; Lesniak, Maciej S

    2007-02-01

    Transduction of malignant glioma with adenovirus serotype 5 (Ad5) vectors is limited by the low levels of coxsackievirus and adenovirus receptor (CAR) on tumor cells. However, malignant brain tumors have been found to overexpress a glioma-associated receptor, interleukin-13 receptor alpha2 chain (IL-13Ralpha2), a marker of both glial transformation and tumor grade. To selectively target Ad5 to IL-13Ralpha2, we constructed a replication-deficient adenoviral vector that possesses an IL-13 ligand presented by a T4 phage fibritin shaft, and designated the new virus LU-13. Western blot and sequence analyses confirmed proper trimerization and ligand presentation by the T4 fibritin shaft. Confocal microscopy analysis of primary glioma suspensions incubated with viral recombinants showed that LU-13 colocalized with IL-13Ralpha2. Luciferase transduction assays conducted in both primary and passaged glioma cell cultures exhibited at least 10-fold enhanced gene transduction. Moreover, the virus preferentially bound to glioma cells, as documented by increased adenoviral E4 DNA copy number. In vitro competition assays performed with anti-human IL-13 monoclonal antibody confirmed significant attenuation of LU-13 transduction. These results were further confirmed in vivo, where LU-13 showed a 300-fold increase in transgene expression. In summary, we describe here the development of a novel and targeted adenoviral vector that binds IL-13Ralpha2. Our findings confirm the ability of LU-13 to bind IL-13Ralpha2 and increase transgene expression, making it an attractive gene therapy vector for the treatment of malignant glioma in a clinical setting.

  19. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors

    PubMed Central

    Yan, Jingyi; Dong, Jianing; Wu, Jiaxin; Zhu, Rui; Wang, Zhen; Wang, Baoming; Wang, Lizheng; Wang, Zixuan; Zhang, Haihong; Wu, Hui; Yu, Bin; Kong, Wei; Yu, Xianghui

    2016-01-01

    The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors. PMID:26934960

  20. Three-year duration of immunity in dogs vaccinated with a canarypox-vectored recombinant canine distemper virus vaccine.

    PubMed

    Larson, L J; Schultz, R D

    2007-01-01

    Two studies evaluated the duration of serologic response to the recombinant, canarypox-vectored canine distemper virus vaccine (Recombitek, Merial). Serologic duration of immunity was shown to be at least 36 months. Thus, Recombitek provides protection when administered less frequently than the manufacturer's label. After the initial vaccination protocol of two or more doses administered approximately 4 weeks apart, with the last dose given at 12 to 16 weeks of age or older, and re-vaccination at 1 year of age, Recombitek can confidently be readministered every 3 years with assurance of protection in immunocompetent dogs. This allows the vaccine to be administered in accordance with the recommendations of the American Animal Hospital Association Canine Vaccine Task Force and others. PMID:17616944

  1. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    PubMed

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.

  2. Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors.

    PubMed

    Hart, Bryan E; Asrican, Rose; Lim, So-Yon; Sixsmith, Jaimie D; Lukose, Regy; Souther, Sommer J R; Rayasam, Swati D G; Saelens, Joseph W; Chen, Ching-Ju; Seay, Sarah A; Berney-Meyer, Linda; Magtanong, Leslie; Vermeul, Kim; Pajanirassa, Priyadharshini; Jimenez, Amanda E; Ng, Tony W; Tobin, David M; Porcelli, Steven A; Larsen, Michelle H; Schmitz, Joern E; Haynes, Barton F; Jacobs, William R; Lee, Sunhee; Frothingham, Richard

    2015-07-01

    The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches. PMID:25924766

  3. Progress with Recombinant Adeno-Associated Virus Vectors for Gene Therapy of Alpha-1 Antitrypsin Deficiency.

    PubMed

    Gruntman, Alisha M; Flotte, Terence R

    2015-06-01

    The pathway to a clinical gene therapy product often involves many changes of course and strategy before obtaining successful results. Here we outline the methodologies, both clinical and preclinical, that went into developing a gene therapy approach to the treatment of alpha-1 antitrypsin deficiency lung disease using muscle-targeted recombinant adeno-associated virus. From initial gene construct development in mouse models through multiple rounds of safety and biodistribution studies in rodents, rabbits, and nonhuman primates to ultimate human trials, this review seeks to provide insight into what clinical translation entails and could thereby inform the process for future investigators.

  4. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector1

    PubMed Central

    Bolinger, Beatrice; Sims, Stuart; O’Hara, Geraldine; de Lara, Catherine; Tchilian, Elma; Firner, Sonja; Engeler, Daniel; Ludewig, Burkhard; Klenerman, Paul

    2013-01-01

    CD8+ T cell memory inflation, first described in murine cytomegalovirus (MCMV) infection, is characterized by the accumulation of high-frequency, functional antigen-specific CD8+ T cell pools with an effector-memory phenotype and enrichment in peripheral organs. Although persistence of antigen is considered essential, the rules underpinning memory inflation are still unclear. The MCMV model is, however, complicated by the virus’s low-level persistence, and stochastic reactivation. We developed a new model of memory inflation based upon a βgal-recombinant adenovirus vector (Ad-LacZ). After i.v. administration in C57BL/6 mice we observe marked memory inflation in the βgal96 epitope, while a second epitope, βgal497, undergoes classical memory formation. The inflationary T cell responses show kinetics, distribution, phenotype and functions similar to those seen in MCMV and are reproduced using alternative routes of administration. Memory inflation in this model is dependent on MHC Class II. As in MCMV, only the inflating epitope showed immunoproteasome-independence. These data define a new model for memory inflation, which is fully replication-independent, internally controlled and reproduces the key immunologic features of the CD8+ T cell response. This model provides insight into the mechanisms responsible for memory inflation, and since it is based on a vaccine vector, also is relevant to novel T cell-inducing vaccines in humans. PMID:23509359

  5. Recombinant Staphylococcus Strains as Live Vectors for the Induction of Neutralizing Anti-Diphtheria Toxin Antisera

    PubMed Central

    Fromen-Romano, Cécile; Drevet, Pascal; Robert, Alain; Ménez, André; Léonetti, Michel

    1999-01-01

    We have investigated whether the nonpathogenic gram-positive bacteria Staphylococcus xylosus and S. carnosus can display a whole domain of a toxic protein on their surface and if such vectors are suitable for immunization of BALB/c mice. The nucleotide sequence encoding the receptor-binding domain (DTR; amino acids 382 to 535) of diphtheria toxin (DT) was inserted into plasmids pSE′mp18ABPXM and pSPPmABPXM, which were designed to display heterologous proteins on S. xylosus and S. carnosus cell surfaces, respectively. Western blot analysis of the resulting bacterial lysates indicates that DTR is produced by each expression system. However, analysis of rabbit anti-DTR antisera binding to the transformed live bacteria shows that DTR is not displayed on the surface of S. xylosus cells whereas it is efficiently exposed on S. carnosus. A significant anti-DT antibody response was raised in BALB/c mice immunized intraperitoneally with S. carnosus displaying DTR, and the antisera abolished DT cytotoxicity on Vero cells. Thus, only S. carnosus can display a whole domain of a toxic protein and represents a potential vector for humoral vaccination. PMID:10496871

  6. Recombinant adeno-associated virus vectors in the treatment of rare diseases

    PubMed Central

    Hastie, Eric; Samulski, R. Jude

    2016-01-01

    Introduction An estimated 25 million Americans are living with rare diseases. Adeno-associated virus (AAV)-mediated gene therapy is an emerging therapeutic option for the more than 7,000 identified rare diseases. This paper highlights the benefits of AAV therapy compared to conventional small molecules, discusses current pre-clinical and clinical applications of AAV-mediated gene therapy, and offers insights into cutting edge research that will shape the future of AAV for broad therapeutic use. Areas covered In this review the biology of AAV and our ability to generate disease-specific variants is summarized. Limitations of current therapy are reviewed, with an emphasis on immune detection of virus, viral tropism and tissue targeting, and limitations of gene expression. Information for this review was found using PubMed and clinicaltrials.gov. Expert opinion Currently the scope of clinical trials of AAV gene therapy is concentrated in an array of phase I/II safety trials with less than two dozen rare diseases featured. Pre-clinical, translational studies are expanding in number as developments within the last decade have made generation of improved AAV vectors available to more researchers. Further, one bottleneck that is being overcome is the availability of disease models, which will allow for improved preclinical testing and advancement of AAV to more clinical applications.

  7. Recombinant adeno-associated virus vectors in the treatment of rare diseases

    PubMed Central

    Hastie, Eric; Samulski, R. Jude

    2016-01-01

    Introduction An estimated 25 million Americans are living with rare diseases. Adeno-associated virus (AAV)-mediated gene therapy is an emerging therapeutic option for the more than 7,000 identified rare diseases. This paper highlights the benefits of AAV therapy compared to conventional small molecules, discusses current pre-clinical and clinical applications of AAV-mediated gene therapy, and offers insights into cutting edge research that will shape the future of AAV for broad therapeutic use. Areas covered In this review the biology of AAV and our ability to generate disease-specific variants is summarized. Limitations of current therapy are reviewed, with an emphasis on immune detection of virus, viral tropism and tissue targeting, and limitations of gene expression. Information for this review was found using PubMed and clinicaltrials.gov. Expert opinion Currently the scope of clinical trials of AAV gene therapy is concentrated in an array of phase I/II safety trials with less than two dozen rare diseases featured. Pre-clinical, translational studies are expanding in number as developments within the last decade have made generation of improved AAV vectors available to more researchers. Further, one bottleneck that is being overcome is the availability of disease models, which will allow for improved preclinical testing and advancement of AAV to more clinical applications. PMID:27668135

  8. In vivo analysis of fibroin heavy chain signal peptide of silkworm Bombyx mori using recombinant baculovirus as vector

    SciTech Connect

    Wang Shengpeng; Guo Tingqing; Guo Xiuyang; Huang Junting; Lu Changde . E-mail: cdlu@sibs.ac.cn

    2006-03-24

    In order to investigate the functional signal peptide of silkworm fibroin heavy chain (FibH) and the effect of N- and C-terminal parts of FibH on the secretion of FibH in vivo, N- and C-terminal segments of fibh gene were fused with enhanced green fluorescent protein (EGFP) gene. The fused gene was then introduced into silkworm larvae and expressed in silk gland using recombinant AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) as vector. The fluorescence of EGFP was observed with fluorescence microscope. FibH-EGFP fusion proteins extracted from silk gland were analyzed by Western blot. Results showed that the two alpha helices within N-terminal 163 amino acid residues and the C-terminal 61 amino acid residues were not necessary for cleavage of signal peptide and secretion of the fusion protein into silk gland. Then the C-terminal 61 amino acid residues were substituted with a His-tag in the fusion protein to facilitate the purification. N-terminal sequencing of the purified protein showed that the signal cleavage site is between position 21 and 22 amino acid residues.

  9. Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system.

    PubMed

    Hermens, W T; ter Brake, O; Dijkhuizen, P A; Sonnemans, M A; Grimm, D; Kleinschmidt, J A; Verhaagen, J

    1999-07-20

    Recombinant adeno-associated virus (rAAV) vectors have become attractive tools for in vivo gene transfer. The production and purification of high-titer rAAV vector stocks for experimental and therapeutic gene transfer continue to undergo improvement. Standard rAAV vector purification protocols include the purification of the vector by cesium chloride (CsCl)-density gradient centrifugation followed by extensive desalination via dialysis against a physiological buffer for in vivo use. These procedures are extremely time consuming and frequently result in a substantial loss of the infectious vector titer. As an alternative to CsCl we have investigated the use of Iodixanol, an X-ray contrast solution, as the density-gradient medium. Purification of rAAV vectors by Iodixanol shortened the centrifugation period to 3 hr and resulted in reproducible concentration and purification of rAAV-vector stocks. We show that injection of rAAV derived from an Iodixanol gradient can be used for in vivo gene transfer applications in the brain and spinal cord without detectable cytopathic effects and directing stable transgene expression for at least 2 months.

  10. Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification.

    PubMed

    Heng, Boon Chin; Fussenegger, Martin

    2014-01-01

    Stem cells are envisaged to be integral components of multicellular systems engineered for therapeutic applications. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) via recombinant expression of a limited number of transcription factors, which was first achieved by Yamanaka and colleagues in 2007, heralded a major breakthrough in the stem cell field. Since then, there has been rapid progress in the field of iPSC generation, including the identification of various small molecules that can enhance reprogramming efficiency and reduce the number of different transcription factors required for reprogramming. Nevertheless, the major obstacles facing clinical applications of iPSCs are safety concerns associated with the use of viral vectors and recombinant DNA for expressing the appropriate transcription factors during reprogramming. In particular, permanent genetic modifications to newly reprogrammed iPSCs have to be avoided in order to meet stringent safety requirements for clinical therapy. These safety challenges can be overcome by new technology platforms that enable cellular reprogramming to iPSCs without the need to utilize either recombinant DNA or viral vectors. The use of recombinant cell-penetrating peptides and direct transfection of synthetic mRNA encoding appropriate transcription factors have both been shown to successfully reprogram somatic cells to iPSCs. It has also been shown more recently that the direct transfection of certain miRNA species can reprogram somatic cells to pluripotency without the need for any of the transcription factors commonly utilized for iPSC generation. This chapter describes protocols for iPSC generation with these new techniques, which would obviate the use of recombinant DNA and viral vectors in cellular reprogramming, thus avoiding permanent genetic modification to the reprogrammed cells.

  11. High-level recombinant protein production in CHO cells using an adenoviral vector and the cumate gene-switch.

    PubMed

    Gaillet, Bruno; Gilbert, Rénald; Amziani, Rachid; Guilbault, Claire; Gadoury, Christine; Caron, Antoine W; Mullick, Alaka; Garnier, Alain; Massie, Bernard

    2007-01-01

    To facilitate and accelerate the production of eukaryotic proteins with correct post-translational modifications, we have developed a protein production system based on the transduction of Chinese hamster ovary (CHO) cells using adenovirus vectors (AdVs). We have engineered a CHO cell line (CHO-cTA) that stably expresses the transactivator (cTA) of our newly developed cumate gene-switch transcription system. This cell line is adapted to suspension culture and can grow in serum-free and protein-free medium. To increase the transduction level of AdVs, we have also generated a cell line (CHO-cTA-CAR) that expresses additional amounts of the coxackievirus and adenovirus receptor (CAR) on its surface. Recombinant protein production was tested using an AdV carrying the secreted alkaline phosphatase (SEAP) under the control of the CR5 promoter, which is strongly and specifically activated by binding to cTA. The SEAP expression was linked to the expression of the green fluorescent protein (GFP) through an internal ribosome entry site (IRES) to facilitate titration of the AdV. We monitored SEAP expression on a daily basis for 9 days after transduction of CHO-cTA and CHO-cTA-CAR using different quantities of AdVs at 37 and 30 degrees C. Incubation at the latter temperature increased the production of SEAP at least 10-fold, and the presence of CAR increased the transduction level of the AdV. Maximum SEAP production (63 mg/L) was achieved at 6-7 days post-infection at 30 degrees C by transducing CHO-cTA-CAR with 500 infectious particles/cell. Because numerous AdVs can now be generated within a few weeks and large-scale production of AdVs is now a routine procedure, this system could be used to produce rapidly milligram quantities of a battery of recombinant proteins as well as for large-scale protein production.

  12. Evolutionary genetics and vector adaptation of recombinant viruses of the western equine encephalitis antigenic complex provides new insights into alphavirus diversity and host switching

    PubMed Central

    Allison, Andrew B.; Stallknecht, David E.; Holmes, Edward C.

    2014-01-01

    Western equine encephalitis virus (WEEV), Highlands J virus (HJV), and Fort Morgan virus (FMV) are the sole representatives of the WEE antigenic complex of the genus Alphavirus, family Togaviridae, that are endemic to North America. All three viruses have their ancestry in a recombination event involving eastern equine encephalitis virus (EEEV) and a Sindbis (SIN)-like virus that gave rise to a chimeric alphavirus that subsequently diversified into the present-day WEEV, HJV, and FMV. Here, we present a comparative analysis of the genetic, ecological, and evolutionary relationships among these recombinant-origin viruses, including the description of a nsP4 polymerase mutation in FMV that allows it to circumvent the host range barrier to Asian tiger mosquito cells, a vector species that is normally refractory to infection. Notably, we also provide evidence that the recombination event that gave rise to these three WEEV antigenic complex viruses may have occurred in North America. PMID:25463613

  13. Evolutionary genetics and vector adaptation of recombinant viruses of the western equine encephalitis antigenic complex provides new insights into alphavirus diversity and host switching.

    PubMed

    Allison, Andrew B; Stallknecht, David E; Holmes, Edward C

    2015-01-01

    Western equine encephalitis virus (WEEV), Highlands J virus (HJV), and Fort Morgan virus (FMV) are the sole representatives of the WEE antigenic complex of the genus Alphavirus, family Togaviridae, that are endemic to North America. All three viruses have their ancestry in a recombination event involving eastern equine encephalitis virus (EEEV) and a Sindbis (SIN)-like virus that gave rise to a chimeric alphavirus that subsequently diversified into the present-day WEEV, HJV, and FMV. Here, we present a comparative analysis of the genetic, ecological, and evolutionary relationships among these recombinant-origin viruses, including the description of a nsP4 polymerase mutation in FMV that allows it to circumvent the host range barrier to Asian tiger mosquito cells, a vector species that is normally refractory to infection. Notably, we also provide evidence that the recombination event that gave rise to these three WEEV antigenic complex viruses may have occurred in North America.

  14. Overcoming inefficient secretion of recombinant VEGF-C in baculovirus expression vector system by simple purification of the protein from cell lysate.

    PubMed

    Klaus, Tomasz; Kulesza, Małgorzata; Bzowska, Monika; Wyroba, Barbara; Kilarski, Witold W; Bereta, Joanna

    2015-06-01

    The first reports about successfully expressed recombinant proteins with the use of a baculovirus vector were published over 30years ago. Despite the long time of refining this expression system, early problems with the production of baculovirus-derived secretory proteins are still not satisfactorily solved. The high expression level driven by baculoviral promoters often does not result in the desired yield of secreted recombinant proteins, which frequently accumulate inside insect cells and are only partially processed. During our attempts to produce vascular endothelial growth factor C (VEGF-C) with the use of a baculovirus vector we also faced an inefficient secretion of the recombinant protein to culture medium. We were not able to improve the outcome and obtain an acceptable concentration of VEGF-C in the medium by changing the culture conditions or utilizing different signal peptides. However, as a significant amount of native VEGF-C was detected inside the baculovirus-infected cells, we developed a simple method to purify recombinant, glycosylated VEGF-C from a lysate of the cells. The presented results indicate that the lack of a secretory protein in the insect cell culture medium after baculovirus infection does not necessarily signify failure in the production of the protein. As demonstrated by us and contrary to generally accepted views, the lysate of baculovirus-infected cells may constitute a valuable source of the biologically active, secretory protein.

  15. Functional analysis of N-linked glycosylation mutants of the measles virus fusion protein synthesized by recombinant vaccinia virus vectors.

    PubMed Central

    Alkhatib, G; Shen, S H; Briedis, D; Richardson, C; Massie, B; Weinberg, R; Smith, D; Taylor, J; Paoletti, E; Roder, J

    1994-01-01

    The role of N-linked glycosylation in the biological activity of the measles virus (MV) fusion (F) protein was analyzed by expressing glycosylation mutants with recombinant vaccinia virus vectors. There are three potential N-linked glycosylation sites located on the F2 subunit polypeptide of MV F, at asparagine residues 29, 61, and 67. Each of the three potential glycosylation sites was mutated separately as well as in combination with the other sites. Expression of mutant proteins in mammalian cells showed that all three sites are used for the addition of N-linked oligosaccharides. Cell surface expression of mutant proteins was reduced by 50% relative to the wild-type level when glycosylation at either Asn-29 or Asn-61 was abolished. Despite the similar levels of cell surface expression, the Asn-29 and Asn-61 mutant proteins had different biological activities. While the Asn-61 mutant was capable of inducing syncytium formation, the Asn-29 mutant protein did not exhibit any significant cell fusion activity. Inactivation of the Asn-67 glycosylation site also reduced cell surface transport of mutant protein but had little effect on its ability to cause cell fusion. However, when the Asn-67 mutation was combined with mutations at either of the other two sites, cleavage-dependent activation, cell surface expression, and cell fusion activity were completely abolished. Our data show that the loss of N-linked oligosaccharides markedly impaired the proteolytic cleavage, stability, and biological activity of the MV F protein. The oligosaccharide side chains in MV F are thus essential for optimum conformation of the extracellular F2 subunit that is presumed to bind cellular membranes. Images PMID:8107215

  16. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector

    PubMed Central

    Piras, Bryan A; Drury, Jason E; Morton, Christopher L; Spence, Yunyu; Lockey, Timothy D; Nathwani, Amit C; Davidoff, Andrew M; Meagher, Michael M

    2016-01-01

    With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV) to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII) in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development. PMID:27069949

  17. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector.

    PubMed

    Piras, Bryan A; Drury, Jason E; Morton, Christopher L; Spence, Yunyu; Lockey, Timothy D; Nathwani, Amit C; Davidoff, Andrew M; Meagher, Michael M

    2016-01-01

    With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV) to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII) in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development. PMID:27069949

  18. Construction of infectious cDNA clone derived from a classical swine fever virus field isolate in BAC vector using in vitro overlap extension PCR and recombination.

    PubMed

    Kamboj, Aman; Saini, Mohini; Rajan, Lekshmi S; Patel, Chhabi Lal; Chaturvedi, V K; Gupta, Praveen K

    2015-12-15

    To develop reverse genetics system of RNA viruses, cloning of full-length viral genome is required which is often challenging due to many steps involved. In this study, we report cloning of full-length cDNA from an Indian field isolate (CSFV/IVRI/VB-131) of classical swine fever virus (CSFV) using in vitro overlap extension PCR and recombination which drastically reduced the number of cloning steps. The genome of CSFV was amplified in six overlapping cDNA fragments, linked by overlap extension PCR and cloned in a bacterial artificial chromosome (BAC) vector using in vitro recombination method to generate full-length cDNA clone. The full-length CSFV cDNA clone was found stable in E. coli Stellar and DH10B cells. The full-length RNA was transcribed in vitro using T7 RNA polymerase and transfected in PK15 cells using Neon-tip electroporator to rescue infectious CSFV. The progeny CSFV was propagated in PK15 cells and found indistinguishable from the parent virus. The expression of CSFV proteins were detected in cytoplasm of PK15 cells infected with progeny CSFV at 72 h post-infection. We concluded that the in vitro overlap extension PCR and recombination method is useful to construct stable full-length cDNA clone of RNA virus in BAC vector.

  19. Construction of infectious cDNA clone derived from a classical swine fever virus field isolate in BAC vector using in vitro overlap extension PCR and recombination.

    PubMed

    Kamboj, Aman; Saini, Mohini; Rajan, Lekshmi S; Patel, Chhabi Lal; Chaturvedi, V K; Gupta, Praveen K

    2015-12-15

    To develop reverse genetics system of RNA viruses, cloning of full-length viral genome is required which is often challenging due to many steps involved. In this study, we report cloning of full-length cDNA from an Indian field isolate (CSFV/IVRI/VB-131) of classical swine fever virus (CSFV) using in vitro overlap extension PCR and recombination which drastically reduced the number of cloning steps. The genome of CSFV was amplified in six overlapping cDNA fragments, linked by overlap extension PCR and cloned in a bacterial artificial chromosome (BAC) vector using in vitro recombination method to generate full-length cDNA clone. The full-length CSFV cDNA clone was found stable in E. coli Stellar and DH10B cells. The full-length RNA was transcribed in vitro using T7 RNA polymerase and transfected in PK15 cells using Neon-tip electroporator to rescue infectious CSFV. The progeny CSFV was propagated in PK15 cells and found indistinguishable from the parent virus. The expression of CSFV proteins were detected in cytoplasm of PK15 cells infected with progeny CSFV at 72 h post-infection. We concluded that the in vitro overlap extension PCR and recombination method is useful to construct stable full-length cDNA clone of RNA virus in BAC vector. PMID:26478540

  20. Safety and Biodistribution Evaluation in Cynomolgus Macaques of rAAV2tYF-CB-hRS1, a Recombinant Adeno-Associated Virus Vector Expressing Retinoschisin

    PubMed Central

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Miller, Paul E.; Sharma, Alok K.; Ver Hoeve, James N.; Howard, Kellie; Knop, David R.; Neuringer, Martha; McGill, Trevor; Stoddard, Jonathan; Chulay, Jeffrey D.

    2015-01-01

    Applied Genetic Technologies Corporation is developing rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus (rAAV) vector for treatment of X-linked retinoschisis (XLRS), an inherited retinal disease characterized by splitting (schisis) of retinal layers causing poor vision. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-CB-hRS1 in normal cynomolgus macaques. Three groups of male animals (n = 6 per group) received an intravitreal injection in one eye of either vehicle, or rAAV2tYF-CB-hRS1 at one of two dose levels (4 × 1010 or 4 × 1011 vg/eye). Half the animals were sacrificed after 14 days and the others after 91 or 115 days. The intravitreal injection procedure was well tolerated in all groups. Serial ophthalmic examinations demonstrated a dose-related anterior and posterior segment inflammatory response that improved over time. There were no test article-related effects on intraocular pressure, electroretinography, visual evoked potential, hematology, coagulation, clinical chemistry, or gross necropsy observations. Histopathological examination demonstrated minimal or moderate mononuclear infiltrates in 6 of 12 vector-injected eyes. Immunohistochemical staining showed RS1 labeling of the ganglion cell layer at the foveal slope in vector-injected eyes at both dose levels. Serum anti-AAV antibodies were detected in 4 of 6 vector-injected animals at the day 15 sacrifice and all vector-injected animals at later time points. No animals developed antibodies to RS1. Biodistribution studies demonstrated high levels of vector DNA in the injected eye but minimal or no vector DNA in any other tissue. These results support the use of rAAV2tYF-CB-hRS1 in clinical studies in patients with XLRS. PMID:26390090

  1. Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of African horse sickness virus.

    PubMed

    Guthrie, Alan J; Quan, Melvyn; Lourens, Carina W; Audonnet, Jean-Christophe; Minke, Jules M; Yao, Jiansheng; He, Ling; Nordgren, Robert; Gardner, Ian A; Maclachlan, N James

    2009-07-16

    We describe the development and preliminary characterization of a recombinant canarypox virus vectored (ALVAC) vaccine for protective immunization of equids against African horse sickness virus (AHSV) infection. Horses (n=8) immunized with either of two concentrations of recombinant canarypox virus vector (ALVAC-AHSV) co-expressing synthetic genes encoding the outer capsid proteins (VP2 and VP5) of AHSV serotype 4 (AHSV-4) developed variable titres (<10-80) of virus-specific neutralizing antibodies and were completely resistant to challenge infection with a virulent strain of AHSV-4. In contrast, a horse immunized with a commercial recombinant canarypox virus vectored vaccine expressing the haemagglutinin genes of two equine influenza H3N8 viruses was seronegative to AHSV and following infection with virulent AHSV-4 developed pyrexia, thrombocytopenia and marked oedema of the supraorbital fossae typical of the "dikkop" or cardiac form of African horse sickness. AHSV was detected by virus isolation and quantitative reverse transcriptase polymerase chain reaction in the blood of the control horse from 8 days onwards after challenge infection whereas AHSV was not detected at any time in the blood of the ALVAC-AHSV vaccinated horses. The control horse seroconverted to AHSV by 2 weeks after challenge infection as determined by both virus neutralization and ELISA assays, whereas six of eight of the ALVAC-AHSV vaccinated horses did not seroconvert by either assay following challenge infection with virulent AHSV-4. These data confirm that the ALVAC-AHSV vaccine will be useful for the protective immunization of equids against African horse sickness, and avoids many of the problems inherent to live-attenuated AHSV vaccines.

  2. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection.

    PubMed

    Hu, Hui-Mei; Chen, Hsin-Wei; Hsiao, Yu-Ju; Wu, Szu-Hsien; Chung, Han-Hsuan; Hsieh, Chun-Hsiang; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2016-07-01

    Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine. PMID:26901482

  3. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates.

    PubMed

    Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-09-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses.

  4. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors

    PubMed Central

    Bandaranayake, Ashok D.; Correnti, Colin; Ryu, Byoung Y.; Brault, Michelle; Strong, Roland K.; Rawlings, David J.

    2011-01-01

    A key challenge for the academic and biopharmaceutical communities is the rapid and scalable production of recombinant proteins for supporting downstream applications ranging from therapeutic trials to structural genomics efforts. Here, we describe a novel system for the production of recombinant mammalian proteins, including immune receptors, cytokines and antibodies, in a human cell line culture system, often requiring <3 weeks to achieve stable, high-level expression: Daedalus. The inclusion of minimized ubiquitous chromatin opening elements in the transduction vectors is key for preventing genomic silencing and maintaining the stability of decigram levels of expression. This system can bypass the tedious and time-consuming steps of conventional protein production methods by employing the secretion pathway of serum-free adapted human suspension cell lines, such as 293 Freestyle. Using optimized lentiviral vectors, yields of 20–100 mg/l of correctly folded and post-translationally modified, endotoxin-free protein of up to ~70 kDa in size, can be achieved in conventional, small-scale (100 ml) culture. At these yields, most proteins can be purified using a single size-exclusion chromatography step, immediately appropriate for use in structural, biophysical or therapeutic applications. PMID:21911364

  5. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors.

    PubMed

    Bandaranayake, Ashok D; Correnti, Colin; Ryu, Byoung Y; Brault, Michelle; Strong, Roland K; Rawlings, David J

    2011-11-01

    A key challenge for the academic and biopharmaceutical communities is the rapid and scalable production of recombinant proteins for supporting downstream applications ranging from therapeutic trials to structural genomics efforts. Here, we describe a novel system for the production of recombinant mammalian proteins, including immune receptors, cytokines and antibodies, in a human cell line culture system, often requiring <3 weeks to achieve stable, high-level expression: Daedalus. The inclusion of minimized ubiquitous chromatin opening elements in the transduction vectors is key for preventing genomic silencing and maintaining the stability of decigram levels of expression. This system can bypass the tedious and time-consuming steps of conventional protein production methods by employing the secretion pathway of serum-free adapted human suspension cell lines, such as 293 Freestyle. Using optimized lentiviral vectors, yields of 20-100 mg/l of correctly folded and post-translationally modified, endotoxin-free protein of up to ~70 kDa in size, can be achieved in conventional, small-scale (100 ml) culture. At these yields, most proteins can be purified using a single size-exclusion chromatography step, immediately appropriate for use in structural, biophysical or therapeutic applications. PMID:21911364

  6. Toxicity and Biodistribution of the Serotype 2 Recombinant Adeno-Associated Viral Vector, Encoding Aquaporin-1, after Retroductal Delivery to a Single Mouse Parotid Gland

    PubMed Central

    Yin, Hongen; Elbekai, Reem H.; Vallant, Molly; Chiorini, John A.

    2014-01-01

    In preparation for testing the safety of using serotype 2 recombinant adeno-associated vector, encoding Aquaporin-1 to treat radiation-induced salivary gland damage in a phase 1 clinical trial, we conducted a 13 week GLP biodistribution and toxicology study using Balb/c mice. To best assess the safety of rAAV2hAQP1 as well as resemble clinical delivery, vector (108, 109, 1010, or 4.4×1010 vector particles/gland) or saline was delivered to the right parotid gland of mice via retroductal cannulation. Very mild surgically induced inflammation was caused by this procedure, seen in 3.6% of animals for the right parotid gland, and 5.3% for the left parotid gland. Long term distribution of vector appeared to be localized to the site of cannulation as well as the right and left draining submandibular lymph nodes at levels >50 copies/μg in some animals. As expected, there was a dose-related increase in neutralizing antibodies produced by day 29. Overall, animals appeared to thrive, with no differences in mean body weight, food or water consumption between groups. There were no significant adverse effects due to treatment noted by clinical chemistry and pathology evaluations. Hematology assessment of serum demonstrated very limited changes to the white blood cell, segmented neutrophils, and hematocrit levels and were concluded to not be vector-associated. Indicators for liver, kidney, cardiac functions and general tissue damage showed no changes due to treatment. All of these indicators suggest the treatment is clinically safe. PMID:24667436

  7. Comparative Analysis of Cesium Chloride- and Iodixanol-Based Purification of Recombinant Adeno-Associated Viral Vectors for Preclinical Applications.

    PubMed

    Strobel, Benjamin; Miller, Felix D; Rist, Wolfgang; Lamla, Thorsten

    2015-08-01

    Cesium chloride (CsCl)- and iodixanol-based density gradients represent the core step in most protocols for serotype-independent adeno-associated virus (AAV) purification established to date. However, despite controversial reports about the purity and bioactivity of AAV vectors derived from each of these protocols, systematic comparisons of state-of-the-art variants of these methods are sparse. To define exact conditions for such a comparison, we first fractionated both gradients to analyze the distribution of intact, bioactive AAVs and contaminants, respectively. Moreover, we tested four different polishing methods (ultrafiltration, size-exclusion chromatography, hollow-fiber tangential flow filtration, and polyethylene glycol precipitation) implemented after the iodixanol gradient for their ability to deplete iodixanol and protein contaminations. Last, we conducted a side-by-side comparison of the CsCl and iodixanol/ultrafiltration protocol. Our results demonstrate that iodixanol-purified AAV preparations show higher vector purity but harbor more (∼20%) empty particles as compared with CsCl-purified vectors (<1%). Using mass spectrometry, we analyzed prominent protein impurities in the AAV vector product, thereby identifying known and new, possibly AAV-interacting proteins as major contaminants. Thus, our study not only provides a helpful guide for the many laboratories entering the AAV field, but also builds a basis for further investigation of cellular processes involved in AAV vector assembly and trafficking.

  8. Novel recombinant binary vectors harbouring Basta (bar) gene as a plant selectable marker for genetic transformation of plants.

    PubMed

    Nada, Reham M

    2016-04-01

    Genetic transformation is one of the most widely used technique in crop improvement. However, most of the binary vectors used in this technique, especially cloning based, contain antibiotic genes as selection marker that raise serious consumer and environmental concerns; moreover, they could be transferred to non-target hosts with deleterious effects. Therefore, the goal of this study was reconstruction of the widely used pBI121 binary vector by substituting the harmful antibiotic selection marker gene with a less-harmful selection marker, Basta (herbicide resistance gene). The generated vectors were designated as pBI121NB and pBI121CB, in which Basta gene was expressed under the control of Nos or CaMV 35S promoter, respectively. The successful integration of the new inserts into both the vectors was confirmed by PCR, restriction digestion and sequencing. Both these vectors were used in transforming Arabidopsis, Egyptian wheat and barley varieties using LBA4404 and GV3101 Agrobacterium strains. The surfactant Tween-20 resulted in an efficient transformation and the number of Arabidopsis transformants was about 6-9 %. Soaked seeds of wheat and barley were transformed with Agrobacterium to introduce the bacteria to the growing shoot apices. The percentage of transgenic lines was around 16-17 and 14-15 % for wheat and barley, respectively. The quantitative studies presented in this work showed that both LBA4404 and GV3101 strains were suitable for transforming Egyptian wheat and barley. PMID:27436915

  9. Novel recombinant binary vectors harbouring Basta (bar) gene as a plant selectable marker for genetic transformation of plants.

    PubMed

    Nada, Reham M

    2016-04-01

    Genetic transformation is one of the most widely used technique in crop improvement. However, most of the binary vectors used in this technique, especially cloning based, contain antibiotic genes as selection marker that raise serious consumer and environmental concerns; moreover, they could be transferred to non-target hosts with deleterious effects. Therefore, the goal of this study was reconstruction of the widely used pBI121 binary vector by substituting the harmful antibiotic selection marker gene with a less-harmful selection marker, Basta (herbicide resistance gene). The generated vectors were designated as pBI121NB and pBI121CB, in which Basta gene was expressed under the control of Nos or CaMV 35S promoter, respectively. The successful integration of the new inserts into both the vectors was confirmed by PCR, restriction digestion and sequencing. Both these vectors were used in transforming Arabidopsis, Egyptian wheat and barley varieties using LBA4404 and GV3101 Agrobacterium strains. The surfactant Tween-20 resulted in an efficient transformation and the number of Arabidopsis transformants was about 6-9 %. Soaked seeds of wheat and barley were transformed with Agrobacterium to introduce the bacteria to the growing shoot apices. The percentage of transgenic lines was around 16-17 and 14-15 % for wheat and barley, respectively. The quantitative studies presented in this work showed that both LBA4404 and GV3101 strains were suitable for transforming Egyptian wheat and barley.

  10. Comparative Analysis of Cesium Chloride- and Iodixanol-Based Purification of Recombinant Adeno-Associated Viral Vectors for Preclinical Applications.

    PubMed

    Strobel, Benjamin; Miller, Felix D; Rist, Wolfgang; Lamla, Thorsten

    2015-08-01

    Cesium chloride (CsCl)- and iodixanol-based density gradients represent the core step in most protocols for serotype-independent adeno-associated virus (AAV) purification established to date. However, despite controversial reports about the purity and bioactivity of AAV vectors derived from each of these protocols, systematic comparisons of state-of-the-art variants of these methods are sparse. To define exact conditions for such a comparison, we first fractionated both gradients to analyze the distribution of intact, bioactive AAVs and contaminants, respectively. Moreover, we tested four different polishing methods (ultrafiltration, size-exclusion chromatography, hollow-fiber tangential flow filtration, and polyethylene glycol precipitation) implemented after the iodixanol gradient for their ability to deplete iodixanol and protein contaminations. Last, we conducted a side-by-side comparison of the CsCl and iodixanol/ultrafiltration protocol. Our results demonstrate that iodixanol-purified AAV preparations show higher vector purity but harbor more (∼20%) empty particles as compared with CsCl-purified vectors (<1%). Using mass spectrometry, we analyzed prominent protein impurities in the AAV vector product, thereby identifying known and new, possibly AAV-interacting proteins as major contaminants. Thus, our study not only provides a helpful guide for the many laboratories entering the AAV field, but also builds a basis for further investigation of cellular processes involved in AAV vector assembly and trafficking. PMID:26222983

  11. Pre-Clinical Development of a Recombinant, Replication-Competent Adenovirus Serotype 4 Vector Vaccine Expressing HIV-1 Envelope 1086 Clade C

    PubMed Central

    Alexander, Jeff; Mendy, Jason; Vang, Lo; Avanzini, Jenny B.; Garduno, Fermin; Manayani, Darly J.; Ishioka, Glenn; Farness, Peggy; Ping, Li-Hua; Swanstrom, Ronald; Parks, Robert; Liao, Hua-Xin; Haynes, Barton F.; Montefiori, David C.; LaBranche, Celia; Smith, Jonathan; Gurwith, Marc; Mayall, Tim

    2013-01-01

    Background There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated. Methods The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets. Results Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization. Conclusions The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical

  12. Evaluation of the immune response to Anaplasma marginale MSP5 protein using a HSV-1 amplicon vector system or recombinant protein.

    PubMed

    Palacios, Carlos; Torioni de Echaide, Susana; Mattion, Nora

    2014-12-01

    Anaplasma marginale is an intraerythrocytic vector-borne infectious agent of cattle. Immunization with the current vaccine, based on parasitized erythrocytes with live Anaplasma centrale, shows some constraints and confers partial protection, suggesting the feasibility for the development of new generation of vaccines. The aim of the present study was to assess the effect of sequential immunization of BALB/c mice, with herpesvirus amplicon vector-based vaccines combined with protein-based vaccines, on the quality of the immune response against the major surface protein 5 of A. marginale. The highest antibody titers against MSP5 were elicited in mice that received two doses of adjuvanted recombinant protein (p < 0.0001). Mice treated with a heterologous prime-boost strategy generated sustained antibody titers at least up to 200 days, and a higher specific cellular response. The results presented here showed that sequential immunization with HSV-based vectors and purified antigen enhances the quality of the immune response against A. marginale. PMID:25458492

  13. Evaluation of the immune response to Anaplasma marginale MSP5 protein using a HSV-1 amplicon vector system or recombinant protein.

    PubMed

    Palacios, Carlos; Torioni de Echaide, Susana; Mattion, Nora

    2014-12-01

    Anaplasma marginale is an intraerythrocytic vector-borne infectious agent of cattle. Immunization with the current vaccine, based on parasitized erythrocytes with live Anaplasma centrale, shows some constraints and confers partial protection, suggesting the feasibility for the development of new generation of vaccines. The aim of the present study was to assess the effect of sequential immunization of BALB/c mice, with herpesvirus amplicon vector-based vaccines combined with protein-based vaccines, on the quality of the immune response against the major surface protein 5 of A. marginale. The highest antibody titers against MSP5 were elicited in mice that received two doses of adjuvanted recombinant protein (p < 0.0001). Mice treated with a heterologous prime-boost strategy generated sustained antibody titers at least up to 200 days, and a higher specific cellular response. The results presented here showed that sequential immunization with HSV-based vectors and purified antigen enhances the quality of the immune response against A. marginale.

  14. Increasing the efficiency of homologous recombination vector-mediated end joining repair by inhibition of Lig4 gene using siRNA in sheep embryo fibroblasts.

    PubMed

    Wei, Wang; Yushuang, Wang; Lanlan, Huang; Zijian, Jian; Xinhua, Wang; Shouren, Liu; Wenhui, Pi

    2016-09-01

    In animal cells, inhibition of non-homologous end joining (NHEJ) pathway improves the efficiency of homologous recombination (HR)-mediated double-strand brakes (DSBs) repair. To improve the efficiency of HR in sheep embryo fibroblasts, the NHEJ key molecule DNA ligase 4 (Lig4) was suppressed by siRNA interference. Four pairs of siRNA targeting Lig4 were designed and chemically synthesized. These siRNA were electro-transferred into sheep embryo fibroblasts respectively. Compared with the control groups, two pairs of siRNA were identified to effectively inhibit the expression of sheep Lig4 gene by qRT-PCR and Western blotting. The plasmid rejoining assay was adopted for examining the efficiency of HR-mediated DSB repair. I-SceⅠ endonuclease linearized vector and siRNA were co-transfected into sheep embryo fibroblasts. Flow cytometry analysis of cells after transfection for 72 h showed that suppression of Lig4 using siRNAs increased the rejoining efficiency of HR vector by 3-4 times compared with the control groups. Therefore, enhanced HR vector rejoining frequency by instant inhabition of Lig4 gene provides theoretical basis for improving gene targeting efficiency of sheep embryo fibroblasts. PMID:27644744

  15. Evaluation of Readministration of a Recombinant Adeno-Associated Virus Vector Expressing Acid Alpha-Glucosidase in Pompe Disease: Preclinical to Clinical Planning

    PubMed Central

    Corti, Manuela; Cleaver, Brian; Clément, Nathalie; Conlon, Thomas J.; Faris, Kaitlyn J.; Wang, Gensheng; Benson, Janet; Tarantal, Alice F.; Fuller, Davis; Herzog, Roland W.; Byrne, Barry J.

    2015-01-01

    A recombinant serotype 9 adeno-associated virus (rAAV9) vector carrying a transgene that expresses codon-optimized human acid alpha-glucosidase (hGAA, or GAA) driven by a human desmin (DES) promoter (i.e., rAAV9-DES-hGAA) has been generated as a clinical candidate vector for Pompe disease. The rAAV9-DES-hGAA vector is being developed as a treatment for both early- and late-onset Pompe disease, in which patients lack sufficient lysosomal alpha-glucosidase leading to glycogen accumulation. In young patients, the therapy may need to be readministered after a period of time to maintain therapeutic levels of GAA. Administration of AAV-based gene therapies is commonly associated with the production of neutralizing antibodies that may reduce the effectiveness of the vector, especially if readministration is required. Previous studies have demonstrated the ability of rAAV9-DES-hGAA to correct cardiac and skeletal muscle pathology in Gaa−/− mice, an animal model of Pompe disease. This article describes the IND-enabling preclinical studies supporting the program for a phase I/II clinical trial in adult patients with Pompe. These studies were designed to evaluate the toxicology, biodistribution, and potential for readministration of rAAV9-DES-hGAA injected intramuscularly into the tibialis anterior muscle using an immune modulation strategy developed for this study. In the proposed clinical study, six adult participants with late-onset Pompe disease will be enrolled. The goal of the immune modulation strategy is to ablate B-cells before the initial exposure of the study agent in one leg and the subsequent exposure of the same vector to the contralateral leg four months after initial dosing. The dosing of the active agent is accompanied by a control injection of excipient dosing in the contralateral leg to allow for blinding and randomization of dosing, which may also strengthen the evidence generated from gene therapy studies in the future. Patients will act as their own

  16. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    PubMed

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure. PMID:23171359

  17. Enhanced immunity against classical swine fever in pigs induced by prime-boost immunization using an alphavirus replicon-vectored DNA vaccine and a recombinant adenovirus.

    PubMed

    Sun, Yuan; Li, Na; Li, Hong-Yu; Li, Miao; Qiu, Hua-Ji

    2010-09-15

    Classical swine fever (CSF) - caused by the classical swine fever virus (CSFV) - is a fatal disease of pigs that is responsible for extensive losses to the swine industry worldwide. We had demonstrated previously that a prime-boost vaccination strategy using an alphavirus (Semliki Forest virus, SFV) replicon-vectored DNA vaccine (pSFV1CS-E2) and a recombinant adenovirus (rAdV-E2) expressing the E2 glycoprotein of CSFV induced enhanced immune responses in a mouse model. In this study, we evaluated further the efficacy of the heterologous prime-boost immunization approach in pigs, the natural host of CSFV. The results showed that the pigs (n=5) receiving pSFV1CS-E2/rAdV-E2 heterologous prime-boost immunization developed significantly higher titers of CSFV-specific neutralizing antibodies and comparable CD4(+) and CD8(+) T-cell proliferation, compared to the pigs receiving double immunizations with rAdV-E2 alone. When challenged with virulent CSFV Shimen strain, the pigs of the heterologous prime-boost group did not show clinical symptoms or viremia, which were observed in one of the 5 pigs immunized with rAdV-E2 alone and all the 5 control pigs immunized with an empty adenovirus. The results demonstrate that the heterologous DNA prime and recombinant adenovirus boost strategy can induce solid protective immunity.

  18. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    PubMed

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-01

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1.

  19. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    PubMed

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-01

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. PMID:27523740

  20. pUNISHER: a high-level expression cassette for use with recombinant viral vectors for rapid and long term in vivo neuronal expression in the CNS.

    PubMed

    Montesinos, Monica S; Chen, Zuxin; Young, Samuel M

    2011-12-01

    Fast onset and high-level neurospecific transgene expression in vivo is of importance for many areas in neuroscience, from basic to translational, and can significantly reduce the amount of vector load required to maintain transgene expression in vivo. In this study, we tested various cis elements to optimize transgene expression at transcriptional, posttranscriptional, and posttranslational levels and combined them together to create the high-level neuronal transgene expression cassette pUNISHER. Using a second-generation adenoviral vector system in combination with the pUNISHER cassette, we characterized its rate of onset of detectable expression and levels of expression compared with a neurospecific expression cassette driven by the 470-bp human synapsin promoter in vitro and in vivo. Our results demonstrate in primary neurons that the pUNISHER cassette, in a recombinant adenovirus type 5 background, led to a faster rate of onset of detectable transgene expression and higher level of transgene expression. More importantly, this cassette led to highly correlated neuronal expression in vivo and to stable transgene expression up to 30 days in the auditory brain stem with no toxicity on the characteristics of synaptic transmission and plasticity at the calyx of Held synapse. Thus the pUNISHER cassette is an ideal high-level neuronal expression cassette for use in vivo for neuroscience applications. PMID:21957229

  1. Hybrid Lentivirus-phiC31-int-NLS Vector Allows Site-Specific Recombination in Murine and Human Cells but Induces DNA Damage

    PubMed Central

    Grandchamp, Nicolas; Altémir, Dorothée; Philippe, Stéphanie; Ursulet, Suzanna; Pilet, Héloïse; Serre, Marie-Claude; Lenain, Aude; Serguera, Che; Mallet, Jacques; Sarkis, Chamsy

    2014-01-01

    Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable. PMID:24956106

  2. Hybrid lentivirus-phiC31-int-NLS vector allows site-specific recombination in murine and human cells but induces DNA damage.

    PubMed

    Grandchamp, Nicolas; Altémir, Dorothée; Philippe, Stéphanie; Ursulet, Suzanna; Pilet, Héloïse; Serre, Marie-Claude; Lenain, Aude; Serguera, Che; Mallet, Jacques; Sarkis, Chamsy

    2014-01-01

    Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable. PMID:24956106

  3. Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats.

    PubMed

    Widjojoatmodjo, Myra N; Bogaert, Lies; Meek, Bob; Zahn, Roland; Vellinga, Jort; Custers, Jerome; Serroyen, Jan; Radošević, Katarina; Schuitemaker, Hanneke

    2015-10-01

    RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants.

  4. Three-year duration of immunity in cats vaccinated with a canarypox-vectored recombinant rabies virus vaccine.

    PubMed

    Jas, D; Coupier, C; Toulemonde, C Edlund; Guigal, P-M; Poulet, H

    2012-11-19

    Despite the availability of efficacious vaccines for animals and humans, rabies is still a major zoonosis. Prevention of rabies in dogs and cats is key for reducing the risk of transmission of this deadly disease to humans. Most veterinary vaccines are adjuvanted inactivated vaccines and have been shown to provide one to four-year duration of immunity. In response to debates about the safety of adjuvanted vaccines in cats, a non-adjuvanted feline rabies vaccine with one-year duration of immunity claim was specifically developed using the canarypoxvirus vector technology. The objective of this study was to validate a vaccination program based on primary vaccination, revaccination one year later and boosters every three years. Seronegative cats were vaccinated at 12 weeks of age and received a booster vaccination one year later. This vaccination regimen induced a strong and sustained antibody response, and all vaccinated animals were protected against virulent rabies challenge carried out 3 years after vaccination. These results validated 3-year duration of immunity after a complete basic vaccination program consisting in primary vaccination from 12 weeks of age followed by revaccination one year later with a non-adjuvanted canarypox-vectored vaccine. PMID:23059358

  5. Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate agent for rAd5-FMDV vaccines in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...

  6. Cre Activated and Inactivated Recombinant Adeno-Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation

    PubMed Central

    Saunders, Arpiar

    2015-01-01

    Recombinant adeno-associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre-On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre-Off) can be used in conjunction with Cre-On rAAVs or genomic Cre-reporter alleles to study brain circuits. Intracranial injection of Cre-On/Cre-Off rAAVs into spatially intermingled Cre+ and Cre- neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre+ neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre-Off rAAV systems, including caveats and methods of validation. PMID:26131660

  7. Development of a competitive PCR method for physical titration of recombinant EBV vector in a helper-dependent packaging system.

    PubMed

    Wang, J; Vos, J M

    2001-06-01

    Epstein-Barr virus (EBV) is a gamma-herpesvirus with B lymphotropism and a double-stranded DNA genome of 172 kb that is episomally maintained in permissive cells during latency. EBV-based vectors containing minimal cis elements for replication, amplification, and helper-dependent packaging in a producer cell line HH514 have been developed to deliver therapeutic/suicide transgenes as infectious viral particles (miniEBV) to EBV-transformed B lymphoblastoid cells or B lymphoma cells. A quantitative, competitive PCR-based assay was developed to determine the relative packaging efficiencies of miniEBV and helper P3HR1 coproduced in HH514 cells. This provides a rapid and accurate quantitation of the physical titer of the virus preparation, which helps preserve the biological titer of the virus preparation and increase the efficiency of transgene delivery by miniEBV infection. In addition, it provides a sensitive and accurate way to evaluate future development of a helper-free packaging system by detecting any possible helper virus contamination.

  8. Suppression effect of recombinant adenovirus vector containing hIL-24 on Hep-2 laryngeal carcinoma cells

    PubMed Central

    CHEN, XUEMEI; LIU, DI; WANG, JUNFU; SU, QINGHONG; ZHOU, PENG; LIU, JINSHENG; LUAN, MENG; XU, XIAOQUN

    2014-01-01

    The melanoma differentiation-associated gene-7 [MDA-7; renamed interleukin (IL)-24] was isolated from human melanoma cells induced to terminally differentiate by treatment with interferon and mezerein. MDA-7/IL-24 functions as a multimodality anticancer agent, possessing proapoptotic, antiangiogenic and immunostimulatory properties. All these attributes make MDA-7/IL-24 an ideal candidate for cancer gene therapy. In the present study, the human MDA-7/IL-24 gene was transfected into the human laryngeal cancer Hep-2 cell line and human umbilical vein endothelial cells (HUVECs) with a replication-incompetent adenovirus vector. Reverse transcription polymerase chain reaction and western blot analysis confirmed that the Ad-hIL-24 was expressed in the two cells. The expression of the antiapoptotic gene, Bcl-2, was significantly decreased and the IL-24 receptor was markedly expressed in Hep-2 cells following infection with Ad-hIL-24, but not in HUVECs. In addition, the expression of the proapoptotic gene, Bax, was induced and the expression of caspase-3 was increased in the Hep-2 cells and HUVECs. Methyl thiazolyl tetrazolium assay indicated that Ad-hIL-24 may induce growth suppression in Hep-2 cells but not in HUVECs. In conclusion, Ad-hIL-24 selectively inhibits proliferation and induces apoptosis in Hep-2 cells. No visible damage was found in HUVECs. Therefore, the results of the current study indicated that Ad-hIL-24 may have a potent suppressive effect on human laryngeal carcinoma cell lines, but is safe for healthy cells. PMID:24527085

  9. Recombinant baculovirus isolation.

    PubMed

    King, Linda A; Hitchman, Richard; Possee, Robert D

    2007-01-01

    Although there are several different methods available of making recombinant baculovirus expression vectors (reviewed in Chapter 3), all require a stage in which insect cells are transfected with either the virus genome alone (Bac-to-Bac or BaculoDirect, Invitrogen) or virus genome and transfer vector. In the latter case, this allows the natural process of homologous recombination to transfer the foreign gene, under control of the polyhedrin or other baculovirus gene promoter, from the transfer vector to the virus genome to create the recombinant virus. Additionally, many systems require a plaque-assay to separate parental and recombinant virus prior to amplification and use of the recombinant virus. This chapter provides an overview of the historical development of increasingly more efficient systems for the isolation of recombinant baculoviruses (Chapter 3 provides a full account of the different systems and transfer vectors available). The practical details cover: transfection of insect cells with either virus DNA or virus DNA and plasmid transfer vector; a reliable plaque-assay method that can be used to separate recombinant virus from parental (nonrecombinant) virus where this is necessary; methods for the small-scale amplification of recombinant virus; and subsequent titration by plaque-assay. Methods unique to the Bac-to-Bac system are also covered and include the transformation of bacterial cells and isolation of bacmid DNA ready for transfection of insect cells.

  10. Stable expression of Shigella sonnei form I O-polysaccharide genes recombineered into the chromosome of live Salmonella oral vaccine vector Ty21a.

    PubMed

    Dharmasena, Madushini N; Hanisch, Brock W; Wai, Tint T; Kopecko, Dennis J

    2013-04-01

    Live, attenuated Salmonella enterica serovar Typhi strain Ty21a, a licensed oral typhoid fever vaccine, has also been employed for use as a vector to deliver protective antigens of Shigella and other pathogens. Importantly, lipopolysaccharide (LPS) alone has been shown to be a potent antigen for specific protection against shigellosis. We reported previously the plasmid cloning of heterologous LPS biosynthetic genes and the expression in Ty21a of either S. sonnei or of S. dysenteriae 1 LPS's. The resulting plasmids encoding Shigella LPS's were reasonably stable for >50 generations of growth in nonselective media, but still contained an antibiotic resistance marker that is objectionable to vaccine regulatory authorities. Deletion of this antibiotic-resistance marker inexplicably resulted in significant plasmid instability. Thus, we sought a method to insert the large ∼12kb S. sonnei LPS gene region into the chromosome, that would allow for subsequent removal of a selectable marker and would result in 100% genetic stability. Toward this objective, we optimized an existing recombination method to mediate the insertion of a ∼12kb region encoding the S. sonnei LPS genes into the Ty21a genome in a region that is nonfunctional due to mutation. The resulting strain Ty21a-Ss simultaneously expresses both homologous Ty21a and heterologous S. sonnei O-antigens. This chromosomal insert was shown to be 100% genetically stable in vitro and in vivo. Moreover, Ty21a-Ss elicited strong dual anti-LPS serum immune responses and 100% protection in mice against a virulent S. sonnei challenge. This new vaccine candidate, absolutely stable for vaccine manufacture, should provide combined protection against enteric fevers due to Salmonella serovar Typhi as shown previously (and some Paratyphi infections) and against shigellosis due to S. sonnei. PMID:23474241

  11. A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences.

    PubMed

    Chong, H; Starkey, W; Vile, R G

    1998-04-01

    Previously we reported the presence of a replication-competent retrovirus in supernatant from a vector-producing line derived from a widely used split-function amphotropic packaging cell line. Rigorous routine screening of all retroviral stocks produced in our laboratory has not, previously or since, indicated the presence of such a virus. Replication-competent retroviruses have never previously been used in our laboratory, and stringent screening of all routinely used cell lines has not revealed the presence of any helper viruses. Therefore, it is highly unlikely that this virus represents an adventitious cross-contaminant or had been imported unknowingly with our cell line stocks. PCR studies with DNA from infected cell lines and Northern blot analysis and reverse transcriptase PCR with RNA from infected cells suggest that the helper virus arose by recombination events, at sites of partial homology, between sequences in the vector, one of the packaging constructs, and endogenous retroviral elements. These recombinations were not present in stocks of the packaging cell line or in an initial stock of the vector-producing line, indicating that these events occurred while the vector-producing line was being passaged for harvest of supernatant stocks. PMID:9525583

  12. Construction of a Baculovirus-Silkworm Multigene Expression System and Its Application on Producing Virus-Like Particles

    PubMed Central

    Su, Shuo; Yao, Ning; He, Jian; Peng, Li; Sun, Jingchen

    2012-01-01

    A new baculovirus-silkworm multigene expression system named Bombyx mori MultiBac is developed and described here, by which multiple expression cassettes can be introduced into the Bombyx mori nuclear polyhedrosis virus (BmNPV) genome efficiently. The system consists of three donor vectors (pCTdual, pRADM and pUCDMIG) and an invasive diaminopimelate (DAP) auxotrophic recipient E. coli containing BmNPV-Bacmid (BmBacmid) with a homologous recombination region, an attTn7 site and a loxp site. Two genes carried by pCTdual are firstly inserted into BmBacmid by homologous recombination, while the other eight genes in pRADM and pUCDMIG are introduced into BmBacmid through Tn7 transposition and cre-loxp recombination. Then the invasive and DAP auxotrophic E. coli carrying recombinant BmBacmid is directly injected into silkworm for expressing heterologous genes in larvae or pupae. Three structural genes of rotavirus and three fluorescent genes have been simultaneously expressed in silkworm larvae using our new system, resulting in the formation of virus-like particles (VLPs) of rotavirus and the color change of larvae. The VLPs were purified from hemolymph by ultracentrifugation using CsCl gradients, with a yield of 12.7 µg per larva. For the great capacity of foreign genes and the low cost of feeding silkworm, this high efficient BmMultiBac expression system provides a suitable platform to produce VLPs or protein complexes. PMID:22403668

  13. Targeted Inhibitory Effect of Lenti-SM22alpha-p27-EGFP Recombinant Lentiviral Vectors on Proliferation of Vascular Smooth Muscle Cells without Compromising Re-Endothelialization in a Rat Carotid Artery Balloon Injury Model

    PubMed Central

    Zhang, Shuangshuang; Xie, Minjie; Tian, Daishi; Luo, Xiang; Wang, Daowen; Ning, Qin; Lü, Jiagao; Wang, Wei

    2015-01-01

    Aims In-stent restenosis remains a serious problem after the implantation of drug-eluting stents, which is attributable to neointima formation and re-endothelialization. Here, we tried to find a new method which aims at selectively inhibiting proliferation of vascular smooth muscle cells (VSMC) proliferation without inhibition of re-endothelialization. Methods and Results We used the smooth muscle-specific SM22alpha promoter in a recombinant lentiviral vector to drive overexpression of cell-cycle inhibitor, p27, in VSMCs. p27 effectively inhibited VSMC proliferation mediated by cell cycle arrest at the G0/G1 checkpoint. The SM22alpha-p27 lentiviral vector inhibited VSMC proliferation more effectively than paclitaxel. Rats infected with Lenti-SM22alpha-p27 had a significantly lower intima/media (I/M) ratio and also showed inhibition of restenosis on day 28 after balloon injury. Moreover, the repair of injured endothelium, and re-endothelialization of the carotid artery wall, was not affected by the smooth muscle cell-specific expression of p27. Conclusion A recombinant lentiviral vector carrying the SM22alpha promoter was used to effectively infect and selectively overexpress p27 protein in VSMCs, leading to inhibition of intimal hyperplasia without compromising endothelial repair. PMID:25760326

  14. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors.

    PubMed Central

    Bertran, J; Miller, J L; Yang, Y; Fenimore-Justman, A; Rueda, F; Vanin, E F; Nienhuis, A W

    1996-01-01

    Adeno-associated virus has a broad host range, is nonpathogenic, and integrates into a preferred location on chromosome 19, features that have fostered development of recombinant adeno-associated viruses (rAAV) as gene transfer vectors for therapeutic applications. We have used an rAAV to transfer and express the murine cationic amino acid transporter which functions as the ecotropic retroviral receptor, thereby rendering human cells conditionally susceptible to infection by an ecotropic retroviral vector. The proportion of human HeLa cells expressing the receptor at 60 h varied as a function of the multiplicity of infection (MOI) with the rAAV. Cells expressing the ecotropic receptor were efficiently transduced with an ecotropic retroviral vector encoding a nucleus-localized form of beta-galactosidase. Cells coexpressing the ecotropic receptor and nucleus-localized beta-galactosidase were isolated by fluorescence-activated cell sorting, and cell lines were recovered by cloning at limiting dilution. After growth in culture, all clones contained the retroviral vector genome, but fewer than 10% (3 of 47) contained the rAAV genome and continued to express the ecotropic receptor. The ecotropic receptor coding sequences in the rAAV genome were under the control of a tetracycline-modulated promoter. In the presence of tetracycline, receptor expression was low and the proportion of cells transduced by the ecotropic retroviral vector was decreased. Modulation of receptor expression was achieved with both an episomal and an integrated form of the rAAV genome. These data establish that functional gene expression from an rAAV genome can occur transiently without genome integration. PMID:8794313

  15. The recombinant adeno-associated virus vector (rAAV2)-mediated apolipoprotein B mRNA-specific hammerhead ribozyme: a self-complementary AAV2 vector improves the gene expression

    PubMed Central

    Zhong, Shumei; Sun, Shihua; Teng, Ba-Bie

    2004-01-01

    Background In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. Methods We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. Results The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene

  16. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy. PMID:26443873

  17. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy.

  18. Comparative Analysis of the Magnitude, Quality, Phenotype and Protective Capacity of SIV Gag-Specific CD8+ T Cells Following Human-, Simian- and Chimpanzee-Derived Recombinant Adenoviral Vector Immunisation

    PubMed Central

    Quinn, Kylie M.; Costa, Andreia Da; Yamamoto, Ayako; Berry, Dana; Lindsay, Ross W.B.; Darrah, Patricia A.; Wang, Lingshu; Cheng, Cheng; Kong, Wing-Pui; Gall, Jason G.D.; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A.; Gomez, Carmen E.; Esteban, Mariano; Wyatt, Linda S.; Moss, Bernard; Morgan, Cecilia; Roederer, Mario; Bailer, Robert T.; Nabel, Gary J.; Koup, Richard A.; Seder, Robert A.

    2013-01-01

    Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8+ T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. Here we show low seroreactivity in humans against simian- (sAd11, sAd16), or chimpanzee-derived (chAd3, chAd63) compared to human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype and protective capacity of CD8+ T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 107 to 109 PU), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8+ T cell responses, from most to least as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFNγ+TNFα+IL-2+ and KLRG1+CD127- CD8+ T cells, but strikingly ~30–80% of memory CD8+ T cells co-expressed CD127 and KLRG1. To further optimise CD8+ T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ~60% of total CD8+ T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8+ T cell responses compared to prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory, respectively. PMID:23390298

  19. Safety and Biodistribution Evaluation in CNGB3-Deficient Mice of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia.

    PubMed

    Ye, Guo-jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Miller, Paul E; McPherson, Leslie; Ver Hoeve, James N; Smith, Leia M; Arndt, Tara; Mandapati, Savitri; Robinson, Paulette M; Calcedo, Roberto; Knop, David R; Hauswirth, William W; Chulay, Jeffrey D

    2016-03-01

    Applied Genetic Technologies Corporation (AGTC) is developing rAAV2tYF-PR1.7-hCNGB3, a recombinant adeno-associated virus (rAAV) vector expressing the human CNGB3 gene, for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. We report here results of a study evaluating safety and biodistribution of rAAV2tYF-PR1.7-hCNGB3 in CNGB3-deficient mice. Three groups of animals (n = 35 males and 35 females per group) received a subretinal injection in one eye of 1 μl containing either vehicle or rAAV2tYF-PR1.7-hCNGB3 at one of two dose concentrations (1 × 10(12) or 4.2 × 10(12) vg/ml) and were euthanized 4 or 13 weeks later. There were no test-article-related changes in clinical observations, body weights, food consumption, ocular examinations, clinical pathology parameters, organ weights, or macroscopic observations at necropsy. Cone-mediated electroretinography (ERG) responses were detected after vector administration in the treated eyes in 90% of animals in the higher dose group and 31% of animals in the lower dose group. Rod-mediated ERG responses were reduced in the treated eye for all groups, with the greatest reduction in males given the higher dose of vector, but returned to normal by the end of the study. Microscopic pathology results demonstrated minimal mononuclear cell infiltrates in the retina and vitreous of some animals at the interim euthanasia and in the vitreous of some animals at the terminal euthanasia. Serum anti-AAV antibodies developed in most vector-injected animals. No animals developed antibodies to hCNGB3. Biodistribution studies demonstrated high levels of vector DNA in vector-injected eyes but little or no vector DNA in nonocular tissue. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia caused by CNGB3 mutations. PMID:27003752

  20. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme.

    PubMed

    Knecht, W; Bergjohann, U; Gonski, S; Kirschbaum, B; Löffler, M

    1996-08-15

    Human mitochondrial dihydroorotate dehydrogenase (the fourth enzyme of pyrimidine de novo synthesis) has been overproduced by means of a recombinant baculovirus that contained the human cDNA fragment for this protein. After virus infection and protein expression in Trichoplusia ni cells (BTI-Tn-5B1-4), the subcellular distribution of the recombinant dihydroorotate dehydrogenase was determined by two distinct enzyme-activity assays and by Western blot analysis with anti-(dihydroorotate dehydrogenase) Ig. The targeting of the recombinant protein to the mitochondria of the insect cells was verified. The activity of the recombinant enzyme in the mitochondria of infected cells was about 740-fold above the level of dihydroorotate dehydrogenase in human liver mitochondria. In a three-step procedure, dihydroorotate dehydrogenase was purified to a specific activity of greater than 50 U/mg. Size-exclusion chromatography showed a molecular mass of 42 kDa and confirmed the existence of the fully active enzyme as a monomeric species. Fluorimetric cofactor analysis revealed the presence of FMN in recombinant dihydroorotate dehydrogenase. By kinetics analysis, Km values for dihydroorotate and ubiquinone-50 were found to be 4 microM and 9.9 microM, respectively, while Km values for dihydroorotate and decylubiquinone were 9.4 microM and 13.7 microM, respectively. The applied expression system will allow preparation of large quantities of the enzyme for structure and function studies. Purified recombinant human dihytdroorotate dehydrogenase was tested for its sensitivity to a reported inhibitor A77 1726 (2-hydroxyethyliden-cyanoacetic acid 4-trifluoromethyl anilide), which is the active metabolite of the isoxazole derivative leflunomide [5-methyl-N-(4-trifluoromethyl-phenyl)-4-isoxazole carboximide]. An IC50 value of 1 microM was determined for A77 1726. Detailed kinetics experiments revealed uncompetitive inhibition with respect to dihydroorotate (Kiu = 0.94 microM) and non

  1. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients

    PubMed Central

    Odunsi, Kunle; Matsuzaki, Junko; Karbach, Julia; Neumann, Antje; Mhawech-Fauceglia, Paulette; Miller, Austin; Beck, Amy; Morrison, Carl D.; Ritter, Gerd; Godoy, Heidi; Lele, Shashikant; duPont, Nefertiti; Edwards, Robert; Shrikant, Protul; Old, Lloyd J.; Gnjatic, Sacha; Jäger, Elke

    2012-01-01

    Recombinant poxviruses (vaccinia and fowlpox) expressing tumor-associated antigens are currently being evaluated in clinical trials as cancer vaccines to induce tumor-specific immune responses that will improve clinical outcome. To test whether a diversified prime and boost regimen targeting NY-ESO-1 will result in clinical benefit, we conducted two parallel phase II clinical trials of recombinant vaccinia-NY-ESO-1 (rV-NY-ESO-1), followed by booster vaccinations with recombinant fowlpox-NY-ESO-1 (rF-NY-ESO-1) in 25 melanoma and 22 epithelial ovarian cancer (EOC) patients with advanced disease who were at high risk for recurrence/progression. Integrated NY-ESO-1-specific antibody and CD4+ and CD8+ T cells were induced in a high proportion of melanoma and EOC patients. In melanoma patients, objective response rate [complete and partial response (CR+PR)] was 14%, mixed response was 5%, and disease stabilization was 52%, amounting to a clinical benefit rate (CBR) of 72% in melanoma patients. The median PFS in the melanoma patients was 9 mo (range, 0–84 mo) and the median OS was 48 mo (range, 3–106 mo). In EOC patients, the median PFS was 21 mo (95% CI, 16–29 mo), and median OS was 48 mo (CI, not estimable). CD8+ T cells derived from vaccinated patients were shown to lyse NY-ESO-1-expressing tumor targets. These data provide preliminary evidence of clinically meaningful benefit for diversified prime and boost recombinant pox-viral-based vaccines in melanoma and ovarian cancer and support further evaluation of this approach in these patient populations. PMID:22454499

  2. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients.

    PubMed

    Odunsi, Kunle; Matsuzaki, Junko; Karbach, Julia; Neumann, Antje; Mhawech-Fauceglia, Paulette; Miller, Austin; Beck, Amy; Morrison, Carl D; Ritter, Gerd; Godoy, Heidi; Lele, Shashikant; duPont, Nefertiti; Edwards, Robert; Shrikant, Protul; Old, Lloyd J; Gnjatic, Sacha; Jäger, Elke

    2012-04-10

    Recombinant poxviruses (vaccinia and fowlpox) expressing tumor-associated antigens are currently being evaluated in clinical trials as cancer vaccines to induce tumor-specific immune responses that will improve clinical outcome. To test whether a diversified prime and boost regimen targeting NY-ESO-1 will result in clinical benefit, we conducted two parallel phase II clinical trials of recombinant vaccinia-NY-ESO-1 (rV-NY-ESO-1), followed by booster vaccinations with recombinant fowlpox-NY-ESO-1 (rF-NY-ESO-1) in 25 melanoma and 22 epithelial ovarian cancer (EOC) patients with advanced disease who were at high risk for recurrence/progression. Integrated NY-ESO-1-specific antibody and CD4(+) and CD8(+) T cells were induced in a high proportion of melanoma and EOC patients. In melanoma patients, objective response rate [complete and partial response (CR+PR)] was 14%, mixed response was 5%, and disease stabilization was 52%, amounting to a clinical benefit rate (CBR) of 72% in melanoma patients. The median PFS in the melanoma patients was 9 mo (range, 0-84 mo) and the median OS was 48 mo (range, 3-106 mo). In EOC patients, the median PFS was 21 mo (95% CI, 16-29 mo), and median OS was 48 mo (CI, not estimable). CD8(+) T cells derived from vaccinated patients were shown to lyse NY-ESO-1-expressing tumor targets. These data provide preliminary evidence of clinically meaningful benefit for diversified prime and boost recombinant pox-viral-based vaccines in melanoma and ovarian cancer and support further evaluation of this approach in these patient populations.

  3. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice

    PubMed Central

    Marangoni, Dario; Bush, Ronald A; Zeng, Yong; Wei, Lisa L; Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bartoe, Joshua T; Palyada, Kiran; Santos, Maria; Hiriyanna, Suja; Wu, Zhijian; Colosi, Peter; Sieving, Paul A

    2016-01-01

    X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS.

  4. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice

    PubMed Central

    Marangoni, Dario; Bush, Ronald A; Zeng, Yong; Wei, Lisa L; Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bartoe, Joshua T; Palyada, Kiran; Santos, Maria; Hiriyanna, Suja; Wu, Zhijian; Colosi, Peter; Sieving, Paul A

    2016-01-01

    X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS. PMID:27626041

  5. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice.

    PubMed

    Marangoni, Dario; Bush, Ronald A; Zeng, Yong; Wei, Lisa L; Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bartoe, Joshua T; Palyada, Kiran; Santos, Maria; Hiriyanna, Suja; Wu, Zhijian; Colosi, Peter; Sieving, Paul A

    2016-01-01

    X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS. PMID:27626041

  6. [Construction of recombinant retroviral vector carrying Lab gene of foot-and-mouth disease virus and its expression in bovine kidney (MDBK) cells].

    PubMed

    Cong, Guozheng; Zhou, Jianhua; Gao, Shandian; Du, Junzheng; Shao, Junjun; Lin, Tong; Chang, Huiyun; Xie, Qingge

    2008-05-01

    In this study, foot-and-mouth disease virus (FMDV) strain OA/58 RNAs were used as templates for RT-PCR. By the molecular cloning, the Lab gene encoding leader protease called Lpro were cloned in retroviral vector pBPSTR1 to obtain reconstruction retroviral vector termed pBPSTR1-Lab. At different concentrations of puromycin and tetracycline respectively in the cell culture mediums, the growth of bovine kidney cells (MDBK) showed that the optimal puromycin resistant selection concentration was 3 microg/mL and tetracycline regulatory concentration was 1 microg/mL. Pseudotyped retroviral virus particles were produced by transiently co-tansfecting GP2-293 cells with a retroviral vector DNA and VSV-G plasmid. Then MDBK cells were infected by pseudotyped retroviral virus and were continually seeded in the medium at the optimal tetracycline regulatory concentration and puromycin selection concentration for 12 days to obtain puromycin resistant colonies whose genomes contained the Lab gene. After tetracycline removal, synthesis of Lpro induced severe morphological changes in the puromycin resistant MDBK cells. PCR and Western blotting proved that a stable MDBK cell line inducibly expressing the Lab gene under the control of tetracycline was obtained. The experiment might provide a basis for studying that Lpro of FMDV plays an important role in MDBK cell pathogenesis.

  7. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    PubMed

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections.

  8. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    PubMed

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections. PMID:26821205

  9. Canine recombinant adenovirus vector induces an immunogenicity-related gene expression profile in skin-migrated CD11b⁺ -type DCs.

    PubMed

    Contreras, Vanessa; Urien, Céline; Jouneau, Luc; Bourge, Mickael; Bouet-Cararo, Coraline; Bonneau, Michel; Zientara, Stephan; Klonjkowski, Bernard; Schwartz-Cornil, Isabelle

    2012-01-01

    Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs) could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2) as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b(+) -type and CD103(+) -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b(+) -type DCs was far higher and broader than in the CD103(+) -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b(+) -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b(+) DC type is more responsive to CAV2 than the CD103(+) DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness. PMID:23300693

  10. Canine Recombinant Adenovirus Vector Induces an Immunogenicity-Related Gene Expression Profile in Skin-Migrated CD11b+ -Type DCs

    PubMed Central

    Jouneau, Luc; Bourge, Mickael; Bouet-Cararo, Coraline; Bonneau, Michel; Zientara, Stephan; Klonjkowski, Bernard; Schwartz-Cornil, Isabelle

    2012-01-01

    Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs) could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2) as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b+ -type and CD103+ -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b+ -type DCs was far higher and broader than in the CD103+ -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b+ -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b+ DC type is more responsive to CAV2 than the CD103+ DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness. PMID:23300693

  11. Construction of a stable plasmid vector for industrial production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by a recombinant Cupriavidus necator H16 strain.

    PubMed

    Sato, Shunsuke; Fujiki, Tetsuya; Matsumoto, Keiji

    2013-12-01

    A new stable plasmid vector (pCUP3) was developed for high and stable production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) using Cupriavidus necator H16 as the host strain. In pCUP3, it was found that the plasmid partition and replication region of the megaplasmid pMOL28 in the Cupriavidus metallidurans CH34 strain plays an important role in plasmid stability in C. necator H16. Moreover, the partition locus (comprising parA28 and parB28 and the parS28 region) is essential for plasmid maintenance under high-PHBH-accumulation. PHBH productivity by the C. necator H16/ds strain (phaC1 deactivated mutant strain) harboring a phaCAc NSDG within pCUP3 was identical to the productivity of poly(3-hydroxybutyrate) by the C. necator H16 strain when palm kernel oil was used as the sole carbon source without any antibiotics. This new vector is important for industrial mass production of polyhydroxyalkanoates using the C. necator H16 strain as the host, dispensing the necessity of the application of selective pressure such as antibiotics.

  12. A Comparison of Target Gene Silencing using Synthetically Modified siRNA and shRNA That Express Recombinant Lentiviral Vectors.

    PubMed

    Spirin, P V; Baskaran, D; Rubtsov, P M; Zenkova, M A; Vlassov, V V; Chernolovskaya, E L; Prassolov, V S

    2009-07-01

    RNA-interference is an effective natural mechanism of post-transcriptional modulation of gene expression. RNA-interference mechanism exist as in high eukaryotes both animals and plants as well in lower eukaryotes and viruses. RNA-interference is now used as a powerful tool in study of functional gene activity and many essential for fundamental biology results was obtained with this approach. Also it's widely believed that RNA-interference could be used in working out of new therapeutic medicine against malignant, infectious and hereditary diseases. One of the main problems of these developments is search of effective methods of siRNA transfer into the target cells. At present time for these purpose different sorts of transfect ions or viral transduction are used. At present article the results of comparison of inhibition of expression of oncogene AML-ET O by synthetic siRNA and by recombinant lentiviruses coding for corresponding shRNA are presented.

  13. A Comparison of Target Gene Silencing using Synthetically Modified siRNA and shRNA That Express Recombinant Lentiviral Vectors

    PubMed Central

    Spirin, P.V.; Baskaran, D.; Rubtsov, P.M.; Zenkova, M.A.; Vlassov, V.V.; Chernolovskaya, E.L.

    2009-01-01

    RNA-interference is an effective natural mechanism of post-transcriptional modulation of gene expression. RNA-interference mechanism exist as in high eukaryotes both animals and plants as well in lower eukaryotes and viruses. RNA-interference is now used as a powerful tool in study of functional gene activity and many essential for fundamental biology results was obtained with this approach. Also it's widely believed that RNA-interference could be used in working out of new therapeutic medicine against malignant, infectious and hereditary diseases. One of the main problems of these developments is search of effective methods of siRNA transfer into the target cells. At present time for these purpose different sorts of transfect ions or viral transduction are used. At present article the results of comparison of inhibition of expression of oncogene AML-ET O by synthetic siRNA and by recombinant lentiviruses coding for corresponding shRNA are presented. PMID:22649608

  14. Improvement of Ethanol Production in Saccharomyces cerevisiae by High-Efficient Disruption of the ADH2 Gene Using a Novel Recombinant TALEN Vector

    PubMed Central

    Ye, Wei; Zhang, Weimin; Liu, Taomei; Tan, Guohui; Li, Haohua; Huang, Zilei

    2016-01-01

    Bioethanol is becoming increasingly important in energy supply and economic development. However, the low yield of bioethanol and the insufficiency of high-efficient genetic manipulation approaches limit its application. In this study, a novel transcription activator-like effector nuclease (TALEN) vector containing the left and right arms of TALEN was electroporated into Saccharomyces cerevisiae strain As2.4 to sequence the alcohol dehydrogenase gene ADH2 and the hygromycin-resistant gene hyg. Western blot analysis using anti-FLAG monoclonal antibody proved the successful expression of TALE proteins in As2.4 strains. qPCR and sequencing demonstrated the accurate knockout of the 17 bp target gene with 80% efficiency. The TALEN vector and ADH2 PCR product were electroporated into ΔADH2 to complement the ADH2 gene (ADH2+ As2.4). LC–MS and GC were employed to detect ethanol yields in the native As2.4, ΔADH2 As2.4, and ADH2+ As2.4 strains. Results showed that ethanol production was improved by 52.4 ± 5.3% through the disruption of ADH2 in As2.4. The bioethanol yield of ADH2+ As2.4 was nearly the same as that of native As2.4. This study is the first to report on the disruption of a target gene in S. cerevisiae by employing Fast TALEN technology to improve bioethanol yield. This work provides a novel approach for the disruption of a target gene in S. cerevisiae with high efficiency and specificity, thereby promoting the improvement of bioethanol production in S. cerevisiae by metabolic engineering. PMID:27462304

  15. Improvement of Ethanol Production in Saccharomyces cerevisiae by High-Efficient Disruption of the ADH2 Gene Using a Novel Recombinant TALEN Vector.

    PubMed

    Ye, Wei; Zhang, Weimin; Liu, Taomei; Tan, Guohui; Li, Haohua; Huang, Zilei

    2016-01-01

    Bioethanol is becoming increasingly important in energy supply and economic development. However, the low yield of bioethanol and the insufficiency of high-efficient genetic manipulation approaches limit its application. In this study, a novel transcription activator-like effector nuclease (TALEN) vector containing the left and right arms of TALEN was electroporated into Saccharomyces cerevisiae strain As2.4 to sequence the alcohol dehydrogenase gene ADH2 and the hygromycin-resistant gene hyg. Western blot analysis using anti-FLAG monoclonal antibody proved the successful expression of TALE proteins in As2.4 strains. qPCR and sequencing demonstrated the accurate knockout of the 17 bp target gene with 80% efficiency. The TALEN vector and ADH2 PCR product were electroporated into ΔADH2 to complement the ADH2 gene (ADH2 (+) As2.4). LC-MS and GC were employed to detect ethanol yields in the native As2.4, ΔADH2 As2.4, and ADH2 (+) As2.4 strains. Results showed that ethanol production was improved by 52.4 ± 5.3% through the disruption of ADH2 in As2.4. The bioethanol yield of ADH2 (+) As2.4 was nearly the same as that of native As2.4. This study is the first to report on the disruption of a target gene in S. cerevisiae by employing Fast TALEN technology to improve bioethanol yield. This work provides a novel approach for the disruption of a target gene in S. cerevisiae with high efficiency and specificity, thereby promoting the improvement of bioethanol production in S. cerevisiae by metabolic engineering. PMID:27462304

  16. Oral Immunization with a Salmonella typhimurium Vaccine Vector Expressing Recombinant Enterotoxigenic Escherichia coli K99 Fimbriae Elicits Elevated Antibody Titers for Protective Immunity

    PubMed Central

    Ascón, Miguel A.; Hone, David M.; Walters, Nancy; Pascual, David W.

    1998-01-01

    Bovine enterotoxigenic Escherichia coli (ETEC) continues to cause mortality in piglets and newborn calves. In an effort to develop a safe and effective vaccine for the prevention of F5+ ETEC infections, a balanced lethal asd+ plasmid carrying the complete K99 operon was constructed and designated pMAK99-asd+. Introduction of this plasmid into an attenuated Salmonella typhimurium Δaro Δasd strain, H683, resulted in strain AP112, which stably expresses E. coli K99 fimbriae. A single oral immunization of BALB/c and CD-1 mice with strain AP112 elicited significant mucosal immunoglobulin A (IgA) titers that remained elevated for >11 weeks. IgA and IgG responses in serum specific for K99 fimbriae were also induced, with a prominent IgG1, as well as IgG2a and IgG2b, titer. To assess the derivation of these antibodies, a K99 isotype-specific B-cell ELISPOT analysis was conducted by using mononuclear cells from the lamina propria of the small intestines (LP), Peyer’s patches (PP), and spleens of vaccinated and control BALB/c mice. This analysis revealed elevated numbers of K99 fimbria-specific IgA-producing cells in the LP, PP, and spleen, whereas elevated K99 fimbria-specific IgG-producing cells were detected only in the PP and spleen. These antibodies were important for protective immunity. One-day-old neonates from dams orally immunized with AP112 were provided passive protection against oral challenge with wild-type ETEC, in contrast to challenged neonates from unvaccinated dams or from dams vaccinated with a control Salmonella vector. These results confirm that oral Salmonella vaccine vectors effectively deliver K99 fimbriae to mucosal inductive sites for sustained elevation of IgA and IgG antibodies and for eliciting protective immunity. PMID:9784559

  17. Introducing Vectors.

    ERIC Educational Resources Information Center

    Roche, John

    1997-01-01

    Suggests an approach to teaching vectors that promotes active learning through challenging questions addressed to the class, as opposed to subtle explanations. Promotes introducing vector graphics with concrete examples, beginning with an explanation of the displacement vector. Also discusses artificial vectors, vector algebra, and unit vectors.…

  18. Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions

    PubMed Central

    Backliwal, Gaurav; Hildinger, Markus; Chenuet, Sebastien; Wulhfard, Sarah; De Jesus, Maria; Wurm, Florian M.

    2008-01-01

    Transient transfection allows for fast production of recombinant proteins. However, the current bottlenecks in transient transfection are low titers and low specific productivity compared to stable cell lines. Here, we report an improved transient transfection protocol that yields titers exceeding 1 g/l in HEK293E cells. This was achieved by combining a new highly efficient polyethyleneimine (PEI)-based transfection protocol, optimized gene expression vectors, use of cell cycle regulators p18 and p21, acidic Fibroblast Growth Factor, exposure of cells to valproic acid and consequently the maintenance of cells at high cell densities (4 million cells/ml). This protocol was reproducibly scaled-up to a working volume of 2 l, thus delivering >1 g of purified protein just 2 weeks after transfection. This is the fastest approach to gram quantities of protein ever reported from cultivated mammalian cells and could initiate, upon further scale-up, a paradigm shift in industrial production of such proteins for any application in biotechnology. PMID:18617574

  19. Immunization with Recombinant Adenoviral Vectors Expressing HCV Core or F Proteins Leads to T Cells with Reduced Effector Molecules Granzyme B and IFN-γ: A Potential New Strategy for Immune Evasion in HCV Infection.

    PubMed

    Samrat, Subodh Kumar; Vedi, Satish; Singh, Shakti; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2015-01-01

    Multispecific, broad, and potent T cell responses have been correlated with viral clearance in hepatitis C virus (HCV) infection. However, the majority of infected patients develop chronic infection, suggesting that natural infection mostly leads to development of inefficient T cell immunity. Multiple mechanisms of immune modulation and evasion have been shown in HCV infection through various investigations. This study examined the generation and modulation of T cell responses against core and frameshift (F) proteins of HCV. A single immunization of mice with replication incompetent recombinant adenovirus vectors encoding for F or core antigens induces poor T cell responses and leads to generation of CD4+ and CD8+ T cells with low granzyme B (GrB) expression. These T cells have impaired GrB enzyme activity and are unable to kill peptide loaded target cells. The low intracellular expression of GrB is not due to degranulation of cytotoxic granules containing cytotoxic T cells. Addition of exogenous IL-2 in in vitro cultures leads to partial recovery of GrB production, whereas immunization with the Toll-like receptor (TLR) agonist poly I:C leads to complete restoration of GrB expression in both CD4+ and CD8+ T cells. Thus, a possible new strategy of T cell modulation is recognized wherein effector T cells are caused to be dysfunctional by HCV-derived antigens F or core, and strategies are also delineated to overcome this dysfunction. These studies are important in the investigation of prophylactic vaccine and immunotherapy strategies for HCV infection.

  20. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  1. Innovation by homologous recombination.

    PubMed

    Trudeau, Devin L; Smith, Matthew A; Arnold, Frances H

    2013-12-01

    Swapping fragments among protein homologs can produce chimeric proteins with a wide range of properties, including properties not exhibited by the parents. Computational methods that use information from structures and sequence alignments have been used to design highly functional chimeras and chimera libraries. Recombination has generated proteins with diverse thermostability and mechanical stability, enzyme substrate specificity, and optogenetic properties. Linear regression, Gaussian processes, and support vector machine learning have been used to model sequence-function relationships and predict useful chimeras. These approaches enable engineering of protein chimeras with desired functions, as well as elucidation of the structural basis for these functions.

  2. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed. PMID:24442504

  3. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.

  4. Gene targeting with retroviral vectors

    SciTech Connect

    Ellis, J.; Bernstein, A. )

    1989-04-01

    The authors have designed and constructed integration-defective retroviral vectors to explore their potential for gene targeting in mammalian cells. Two nonoverlapping deletion mutants of the bacterial neomycin resistance (neo) gene were used to detect homologous recombination events between viral and chromosomal sequences. Stable neo gene correction events were selected at a frequency of approximately 1 G418/sup r/ cell per 3 x 10/sup 6/ infected cells. Analysis of the functional neo gene in independent targeted cell clones indicated that unintegrated retroviral linear DNA recombined with the target by gene conversion for variable distances into regions of nonhomology. In addition, transient neo gene correction events which were associated with the complete loss of the chromosomal target sequences were observed. These results demonstrated that retroviral vectors can recombine with homologous chromosomal sequences in rodent and human cells.

  5. Gateway vectors for transformation of cereals.

    PubMed

    Karimi, Mansour; Inzé, Dirk; Van Lijsebettens, Mieke; Hilson, Pierre

    2013-01-01

    Until now, the availability of vectors for transgenic research in cereal crops has been rather limited. We present a novel collection of Agrobacterium tumefaciens binary T-DNA vectors compatible with Gateway recombinational cloning that facilitate the modular assembly of genes of interest together with new regulatory sequences, such as strong constitutive or endosperm-specific Brachypodium distachyon promoters. This resource aims at streamlining the creation of vectors and transgenes designed to explore gene functions in vital monocotyledonous crops.

  6. Generation of Lymphocytic Choriomeningitis Virus Based Vaccine Vectors.

    PubMed

    Ring, Sandra; Flatz, Lukas

    2016-01-01

    Vaccination with a recombinant LCMV based vector expressing tumor-associated or viral antigens is a safe and versatile method to induce an immune response against tumors or viral infections. Here, we describe the generation of recombinant LCMV vectors in which the gene encoding the viral LCMV-GP was substituted with a gene of interest (vaccine antigen). This renders the vaccine vector propagation-incompetent while it preserves the property of eliciting a strong cytotoxic T cell response. PMID:27076310

  7. Effect of gamma radiation on retroviral recombination.

    PubMed

    Hu, W S; Temin, H M

    1992-07-01

    To elucidate the mechanism(s) of retroviral recombination, we exposed virions to gamma radiation prior to infecting target cells. By using previously described spleen necrosis virus-based vectors containing multiple markers, recombinant proviruses were studied after a single round of retrovirus replication. The current models of retroviral recombination predict that breaking virion RNA should promote minus-strand recombination (forced copy-choice model), decrease or not affect plus-strand recombination (strand displacement/assimilation model), and shift plus-strand recombination towards the 3' end of the genome. However, we found that while gamma irradiation of virions reduced the amount of recoverable viral RNA, it did not primarily cause breaks. Thus, the frequency of selected recombinants was not significantly altered with greater doses of radiation. In spite of this, the irradiation did decrease the number of recombinants with only one internal template switch. As a result, the average number of additional internal template switches in the recombinant proviruses increased from 0.7 to 1.4 as infectivity decreased to 6%. The unselected internal template switches tended to be 5' of the selected crossover even in the recombinants from irradiated viruses, inconsistent with a plus-strand recombination mechanism.

  8. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  9. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  10. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  11. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  12. Lentiviral vectors.

    PubMed

    Giry-Laterrière, Marc; Verhoeyen, Els; Salmon, Patrick

    2011-01-01

    Lentiviral vectors have evolved over the last decade as powerful, reliable, and safe tools for stable gene transfer in a wide variety of mammalian cells. Contrary to other vectors derived from oncoretroviruses, they allow for stable gene delivery into most nondividing primary cells. In particular, lentivectors (LVs) derived from HIV-1 have gradually evolved to display many desirable features aimed at increasing both their safety and their versatility. This is why lentiviral vectors are becoming the most useful and promising tools for genetic engineering, to generate cells that can be used for research, diagnosis, and therapy. This chapter describes protocols and guidelines, for production and titration of LVs, which can be implemented in a research laboratory setting, with an emphasis on standardization in order to improve transposability of results between laboratories. We also discuss latest designs in LV technology.

  13. Attenuated Vesicular Stomatitis Viruses as Vaccine Vectors

    PubMed Central

    Roberts, Anjeanette; Buonocore, Linda; Price, Ryan; Forman, John; Rose, John K.

    1999-01-01

    We showed previously that a single intranasal vaccination of mice with a recombinant vesicular stomatitis virus (VSV) expressing an influenza virus hemagglutinin (HA) protein provided complete protection from lethal challenge with influenza virus (A. Roberts, E. Kretzschmar, A. S. Perkins, J. Forman, R. Price, L. Buonocore, Y. Kawaoka, and J. K. Rose, J. Virol. 72:4704–4711, 1998). Because some pathogenesis was associated with the vector itself, in the present study we generated new VSV vectors expressing HA which are completely attenuated for pathogenesis in the mouse model. The first vector has a truncation of the cytoplasmic domain of the VSV G protein and expresses influenza virus HA (CT1-HA). This nonpathogenic vector provides complete protection from lethal influenza virus challenge after intranasal administration. A second vector with VSV G deleted and expressing HA (ΔG-HA) is also protective and nonpathogenic and has the advantage of not inducing neutralizing antibodies to the vector itself. PMID:10196265

  14. [Methods for construction of transgenic plant expression vector: a review].

    PubMed

    Zhang, Yangpu; Yang, Shushen

    2015-03-01

    Construction of recombinant plasmid vector for gene expression is a key step in making transgenic plants and important to study gene function and plant genetic engineering. A right choice of gene construction method can be cost-effective and achieve more diverse recombinant plasmids. In addition to the traditional methods in construction of plant gene expression vectors, such as Gateway technology, three DNA method and one step cloning, a few novel methods have been developed in recent years. These methods include oligonucleotide synthesis-based construction of small fragment gene expression vectors via competitive connection; construction of small RNA expression vector using pre-microRNA; recombination-fusion PCR method which inserts DNA fragments of multiple restriction sites into the target vector; and insertion of a DNA fragment into any region of a linear vector via In-Fusion Kit. Construction of complex vectors with many fragments uses sequence and ligation-independent cloning method, Gibson isothermal assembly or Golden Gate assembly. This paper summarizes our working experience in the area of recombinant vector construction and reports from others with an intention to disseminate ideas about currently widely used DNA recombination methods for plant transformation.

  15. Good manufacturing practice production of adenoviral vectors for clinical trials.

    PubMed

    Lusky, Monika

    2005-03-01

    The increasing importance of recombinant adenoviral vectors for gene therapy, cancer therapy, and the development of prophylactic and therapeutic vaccines has led to worldwide efforts toward scalable process development suitable for commercial manufacturing of replication-deficient adenoviral vectors. This review focuses on the manufacturing of adenovirus for clinical trials in the context of good manufacturing practice conditions and regulations. PMID:15812223

  16. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  17. A generic strategy for subcloning antibody variable regions from the scFv phage display vector pCANTAB 5 E into pASK85 permits the economical production of F(ab) fragments and leads to improved recombinant immunoglobulin stability.

    PubMed

    Kramer, Karl; Fiedler, Markus; Skerra, Arne; Hock, Bertold

    2002-04-01

    Apart from the decisive sensitivity and specificity of immunosensors, the employed antibodies essentially contribute to additional key factors like fabrication costs for sensor chips and sensor stability. A production scheme for recombinant antibody fragments has been optimised with respect to these particular issues of biosensor development. The phagemid vector pCANTAB 5 E is widely used for the selection of antibody fragments from corresponding libraries. However, large-scale production of the selected single-chain F(v) (scFv) fragments is substantially restricted by the high cost for the inducer IPTG and the anti-E-tag antibody. The latter is needed in significant amounts for the purification of the recombinant protein. A generic strategy was established for subcloning scFv variable regions from pCANTAB 5 E into the plasmid pASK85 for the expression of F(ab) fragments. pASK85 bears coding sequences for murine constant domains including a His(6) tag at the carboxyl-terminal end of the constant heavy chain domain. The anti-s-triazine antibody K47H served as a model system in this study. Biosynthesis of the F(ab) fragment in a high cell density fermenter was induced by addition of anhydrotetracycline. The F(ab) fragment was subsequently purified from the periplasmic extract in a single step by immobilized metal affinity chromatography (IMAC). A yield of 100 microg/lxOD(550) purified F(ab) fragment was obtained employing a standard fermentation scheme. The sensitivity and cross-reactivity of the F(ab) was comparable to the parent scFv when assayed by enzyme immunoassay. However, the F(ab) fragment exhibited significantly improved long-term stability.

  18. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine.

    PubMed

    Okamba, Faust René; Arella, Maximilien; Music, Nedzad; Jia, Jian Jun; Gottschalk, Marcelo; Gagnon, Carl A

    2010-07-01

    Mycoplasma hyopneumoniae causes severe economic losses to the swine industry worldwide and the prevention of its related disease, enzootic porcine pneumonia, remains a challenge. The P97 adhesin protein of M. hyopneumoniae should be a good candidate for the development of a subunit vaccine because antibodies produced against P97 could prevent the adhesion of the pathogen to the respiratory epithelial cells in vitro. In the present study, a P97 recombinant replication-defective adenovirus (rAdP97c) subunit vaccine efficiency was evaluated in pigs. The rAdP97c vaccine was found to induce both strong P97 specific humoral and cellular immune responses. The rAdP97c vaccinated pigs developed a lower amount of macroscopic lung lesions (18.5 + or - 9.6%) compared to the unvaccinated and challenged animals (45.8 + or - 11.5%). rAdP97c vaccine reduced significantly the severity of inflammatory response and the amount of M. hyopneumoniae in the respiratory tract. Furthermore, the average daily weight gain was slightly improved in the rAdP97c vaccinated pigs (0.672 + or - 0.068 kg/day) compared to the unvaccinated and challenged animals (0.568 + or - 0.104 kg/day). A bacterin-based commercial vaccine (Suvaxyn MH-one) was more efficient to induce a protective immune response than rAdP97c even if it did not evoke a P97 specific immune response. These results suggest that immunodominant antigens other than P97 adhesin are also important in the induction of a protective immune response and should be taken into account in the future development of M. hyopneumoniae subunit vaccines. PMID:20472025

  19. Infection with an H2 recombinant herpes simplex virus vector results in expression of MHC class I antigens on the surfaces of human neuroblastoma cells in vitro and mouse sensory neurons in vivo.

    PubMed

    Abendroth, A; Simmons, A; Efstathiou, S; Pereira, R A

    2000-10-01

    The majority of neurons in herpes simplex virus (HSV)-infected murine sensory ganglia are transiently induced to express MHC-I antigens at the cell surface, whereas only a minority are themselves productively infected. The aim of the current work was to determine whether MHC-I antigens can be expressed on the surfaces of infected neurons in addition to their uninfected neighbours. To address this aim a recombinant HSV type 1 strain, S-130, was used to deliver a mouse H2K(d) gene, under control of the HCMV IE-1 promoter/enhancer, into human neuroblastoma cells in vitro and mouse primary sensory neurons in vivo. S-130 expressed H2K(d) antigens on the surfaces of IMR-32 cells, a human neuroblastoma cell line that expresses very low levels of MHC-I constitutively. In K562 cells, which do not express MHC-I constitutively, H2K(d) and beta(2)-microglobulin (beta(2)m) were shown to be co-expressed at the cell surface following S-130 infection. This observation was taken as evidence that class I heavy chain (alphaC) molecules encoded by the expression cassette in the HSV genome were transported to the cell surface as stable complexes with beta(2)m. Significantly, after introduction of S-130 into flank skin, H2K(d) antigens were detected on the surfaces of primary sensory neurons in ganglia innervating the inoculation site. Our data show that HSV-infected murine primary sensory neurons and human neuroblastoma cells are capable of expressing cell-surface MHC-I molecules encoded by a transgene. From this, we infer that up-regulation of alphaC expression is, in principle, sufficient to overcome potential impediments to neuronal cell surface expression of MHC-I complexes.

  20. The impact of minimally oversized adeno-associated viral vectors encoding human factor VIII on vector potency in vivo

    PubMed Central

    Kyostio-Moore, Sirkka; Berthelette, Patricia; Piraino, Susan; Sookdeo, Cathleen; Nambiar, Bindu; Jackson, Robert; Burnham, Brenda; O’Riordan, Catherine R; Cheng, Seng H; Armentano, Donna

    2016-01-01

    Recombinant adeno-associated viral (rAAV) vectors containing oversized genomes provide transgene expression despite low efficiency packaging of complete genomes. Here, we characterized the properties of oversized rAAV2/8 vectors (up to 5.4 kb) encoding human factor VIII (FVIII) under the transcriptional control of three liver promoters. All vectors provided sustained production of active FVIII in mice for 7 months and contained comparable levels of vector genomes and complete expression cassettes in liver. Therefore, for the 5.4 kb genome size range, a strong expression cassette was more important for FVIII production than the vector genome size. To evaluate the potency of slightly oversized vectors, a 5.1 kb AAVrh8R/FVIII vector was compared to a 4.6 kb (wild-type size) vector with an identical expression cassette (but containing a smaller C1-domain deleted FVIII) for 3 months in mice. The 5.1 kb vector had twofold to threefold lower levels of plasma FVIII protein and liver vector genomes than that obtained with the 4.6 kb vector. Vector genomes for both vectors persisted equally and existed primarily as high molecular weight concatemeric circular forms in liver. Taken together, these results indicate that the slightly oversized vectors containing heterogeneously packaged vector genomes generated a functional transgene product but exhibited a twofold to threefold lower in vivo potency. PMID:26958574

  1. Recombinant bacteria for mosquito control.

    PubMed

    Federici, B A; Park, H-W; Bideshi, D K; Wirth, M C; Johnson, J J

    2003-11-01

    Bacterial insecticides have been used for the control of nuisance and vector mosquitoes for more than two decades. Nevertheless, due primarily to their high cost and often only moderate efficacy, these insecticides remain of limited use in tropical countries where mosquito-borne diseases are prevalent. Recently, however, recombinant DNA techniques have been used to improve bacterial insecticide efficacy by markedly increasing the synthesis of mosquitocidal proteins and by enabling new endotoxin combinations from different bacteria to be produced within single strains. These new strains combine mosquitocidal Cry and Cyt proteins of Bacillus thuringiensis with the binary toxin of Bacillus sphaericus, improving efficacy against Culex species by 10-fold and greatly reducing the potential for resistance through the presence of Cyt1A. Moreover, although intensive use of B. sphaericus against Culex populations in the field can result in high levels of resistance, most of this can be suppressed by combining this bacterial species with Cyt1A; the latter enables the binary toxin of this species to enter midgut epithelial cells via the microvillar membrane in the absence of a midgut receptor. The availability of these novel strains and newly discovered mosquitocidal proteins, such as the Mtx toxins of B. sphaericus, offers the potential for constructing a range of recombinant bacterial insecticides for more effective control of the mosquito vectors of filariasis, Dengue fever and malaria. PMID:14506223

  2. [Recombinant protein production in Escherichia coli].

    PubMed

    Nuc, Przemysław; Nuc, Katarzyna

    2006-01-01

    Growing needs for efficient recombinant production pose new challenges; starting from cell growth optimization under overexpression conditions, improving vectors, gene and protein sequence to suit them to protein biosynthesis machinery of the host, through extending the knowledge of protein folding, fusion protein construction, and coexpression systems, to improvements in protein purification and renaturation technologies. Hitherto Escherichia coli is the most defined and the cheapest protein biosynthesis system. With its wealth of available mutants tested is the best suited to economically test new gene constructs and to scale up the recombinant protein production.

  3. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia

    SciTech Connect

    Meyn, M.S. )

    1993-05-28

    Ataxia-telangiectasia (A-T) is an inherited human disease associated with neurologic degeneration, immune dysfunctions, and high cancer risk. It has been proposed that the underlying abnormality in A-T is a defect in genetic recombination that interferes with immune gene rearrangements and the repair of DNA damage. Recombination was studied in A-T and control human fibroblast lines by means of two recombination vectors. Unexpectedly, spontaneous intrachromosomal recombination rates were 30 to 200 times higher in A-T fibroblast lines than in normal cells, whereas extrachromosomal recombination frequencies were near normal. Increased recombination is thus a component of genetic instability in A-T and may contribute to the cancer risk seen in A-T patients. 2 refs., 1 fig., 3 tabs.

  4. Recombinant DNA products: Insulin, interferon and growth hormone

    SciTech Connect

    Bollon, A.P.

    1984-01-01

    This book provides the discussion of products of biotechnology of recombinant DNA. The contents include: Recombinant DNA techniques; isolation, cloning, and expression of genes; from somatostatin to human insulin; yeast; an alternative organism for foreign protein production; background in human interferon; preclinical assessment of biological properties of recombinant DNA derived human interferons; human clinical trials of bacteria-derived human ..cap alpha.. interferon.f large scale production of human alpha interferon from bacteria; direct expression of human growth hormone in escherichia coli with the lipoprotein promoter; biological actions in humans of recombinant DNA synthesized human growth hormone; NIH guidelines for research involving recombinant DNA molecules; appendix; viral vectors and the NHY guidelines; FDA's role in approval and regulation of recombinant DNA drugs; and index.

  5. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  6. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  7. Engineering HSV-1 vectors for gene therapy.

    PubMed

    Goins, William F; Huang, Shaohua; Cohen, Justus B; Glorioso, Joseph C

    2014-01-01

    Virus vectors have been employed as gene transfer vehicles for various preclinical and clinical gene therapy applications, and with the approval of Glybera (alipogene tiparvovec) as the first gene therapy product as a standard medical treatment (Yla-Herttuala, Mol Ther 20: 1831-1832, 2013), gene therapy has reached the status of being a part of standard patient care. Replication-competent herpes simplex virus (HSV) vectors that replicate specifically in actively dividing tumor cells have been used in Phase I-III human trials in patients with glioblastoma multiforme, a fatal form of brain cancer, and in malignant melanoma. In fact, T-VEC (talimogene laherparepvec, formerly known as OncoVex GM-CSF) displayed efficacy in a recent Phase III trial when compared to standard GM-CSF treatment alone (Andtbacka et al. J Clin Oncol 31: sLBA9008, 2013) and may soon become the second FDA-approved gene therapy product used in standard patient care. In addition to the replication-competent oncolytic HSV vectors like T-VEC, replication-defective HSV vectors have been employed in Phase I-II human trials and have been explored as delivery vehicles for disorders such as pain, neuropathy, and other neurodegenerative conditions. Research during the last decade on the development of HSV vectors has resulted in the engineering of recombinant vectors that are totally replication defective, nontoxic, and capable of long-term transgene expression in neurons. This chapter describes methods for the construction of recombinant genomic HSV vectors based on the HSV-1 replication-defective vector backbones, steps in their purification, and their small-scale production for use in cell culture experiments as well as preclinical animal studies.

  8. The uses of poxviruses as vectors.

    PubMed

    Vanderplasschen, A; Pastoret, P-P

    2003-12-01

    Poxviruses have played an amazing role in the development of virology, immunology and vaccinology. In 1796, deliberate inoculation of cowpox virus to humans was proved by Dr. Edward Jenner to protect against the antigenically related smallpox virus (variola). This discovery founded the science of immunology and eventually led to smallpox eradication from the earth in 1980 after a world wide vaccination campaign with vaccinia virus (another poxvirus). Paradoxically, despite the eradication of smallpox, there has been an explosion of interest in vaccinia virus in the eighties. This interest has stemmed in part from the application of molecular genetics to clone and express foreign genes from recombinant vaccinia virus. The use of these recombinant vaccinia viruses as efficacious in vitro expression system and live vaccine has raised concerns about their safety. The work of the scientific community of the last 20 years has contributed to improve drastically the safety of poxvirus derived vectors. Firstly, the safety of vaccinia virus has been enhanced by production of genetically attenuated strains. Secondly, alternative poxvirus vectors, such as avipoxviruses, were proved to be extremely safe and efficacious non-replicating vectors when used in non avian species. In the present chapter, the basic concepts of poxvirus biology required to assess the safety of a poxvirus derived vector are provided. The principal poxvirus vectors available to date are described in regards to their biosafety. PMID:14683453

  9. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  10. Targeting gene therapy vectors to CNS malignancies.

    PubMed

    Spear, M A; Herrlinger, U; Rainov, N; Pechan, P; Weissleder, R; Breakefield, X O

    1998-04-01

    Gene therapy offers significant advantages to the field of oncology with the addition of specifically and uniquely engineered mechanisms of halting malignant proliferation through cytotoxicity or reproductive arrest. To confer a true benefit to the therapeutic ratio (the relative toxicity to tumor compared to normal tissue) a vector or the transgene it carries must selectively affect or access tumor cells. Beyond the selective toxicities of many transgene products, which frequently parallel that of contemporary chemotherapeutic agents, lies the potential utility of targeting the vector. This review presents an overview of current and potential methods for designing vectors targeted to CNS malignancies through selective delivery, cell entry, transport or transcriptional regulation. The topic of delivery encompasses physical and pharmaceutic means of increasing the relative exposure of tumors to vector. Cell entry based methodologies are founded on increasing relative uptake of vector through the chemical or recombinant addition of ligand and antibody domains which selectively bind receptors expressed on target cells. Targeted transport involves the potential for using cells to selectively carry vectors or transgenes into tumors. Finally, promoter and enhancer systems are discussed which have potential for selectivity activating transcription to produce targeted transgene expression or vector propagation. PMID:9584951

  11. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  12. Magnetic field spectrum at cosmological recombination revisited

    NASA Astrophysics Data System (ADS)

    Saga, Shohei; Ichiki, Kiyotomo; Takahashi, Keitaro; Sugiyama, Naoshi

    2015-06-01

    If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, nonlinear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, k ≳10 h Mpc-1 , is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about Brec=5.0 ×10-24 Gauss on k =5.0 ×10-1 h Mpc-1 . Finally, we discuss the reason for the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.

  13. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  14. Utilization of Site-Specific Recombination in Biopharmaceutical Production.

    PubMed

    Ahmadi, Maryam; Damavandi, Narges; Akbari Eidgahi, Mohammad Reza; Davami, Fatemeh

    2016-01-01

    Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and process development, expression level is unpredictable and unstable because of the random location of integration in the genome. Site-specific recombination techniques are capable of producing stable and high producer clonal cells; therefore, they are gaining more importance in the biopharmaceutical production. Site-specific recombination methods increase the recombinant protein production by specifically inserting a vector at a locus with specific expression trait. The present review focused on the latest developments in site-specific recombination techniques, their specific features and comparisons.

  15. Utilization of Site-Specific Recombination in Biopharmaceutical Production

    PubMed Central

    Ahmadi, Maryam; Damavandi, Narges; Akbari, Mohammad Reza; Davami, Fatemeh

    2016-01-01

    Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and process development, expression level is unpredictable and unstable because of the random location of integration in the genome. Site-specific recombination techniques are capable of producing stable and high producer clonal cells; therefore, they are gaining more importance in the biopharmaceutical production. Site-specific recombination methods increase the recombinant protein production by specifically inserting a vector at a locus with specific expression trait. The present review focused on the latest developments in site-specific recombination techniques, their specific features and comparisons. PMID:26602035

  16. Production and secretion of recombinant proteins in Dictyostelium discoideum.

    PubMed

    Dittrich, W; Williams, K L; Slade, M B

    1994-06-01

    We have expressed useful amounts of three recombinant proteins in a new eukaryotic host/vector system. The cellular slime mold Dictyostelium discoideum efficiently secreted two recombinant products, a soluble form of the normally cell surface associated D. discoideum glycoprotein (PsA) and the heterologous protein glutathione-S-transferase (GST) from Schistosoma japonicum, while the enzyme beta-glucuronidase (GUS) from Escherichia coli was cell associated. Up to 20mg/l of recombinant PsA and 1mg/l of GST were obtained after purification from a standard, peptone based growth medium. The secretion signal peptide was correctly cleaved from the recombinant GST- and PsA-proteins and the expression of recombinant PsA was shown to be stable for at least one hundred generations in the absence of selection. PMID:7764951

  17. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  18. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  19. Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures

    SciTech Connect

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2014-09-30

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  20. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  1. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  2. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  3. Recombinant lentivector as a genetic immunization vehicle for antitumor immunity

    PubMed Central

    He, Yukai; Munn, David; Falo, Louis D

    2011-01-01

    Summary Encouraged by remarkable successes in preventing infectious diseases and by the well established potential of immune system for controlling tumor growth, active therapeutic immunization approaches hold great promise for treating malignant tumors. In recent years, engineered recombinant viral vectors have been carefully examined as genetic immunization vehicles and have been demonstrated to induce potent T cell mediated immune responses that can control tumor growth. Very recent efforts suggest that lentivectors possess important advantages over other candidate recombinant viral vectors for genetic immunization. Here we review the development of recombinant lentivectors and the characteristics of T cell immune responses elicited by lentivector immunization, including the mechanism of T cell priming with a focus on the role of skin dendritic cells (DC) and potential applications for tumor immunotherapy. PMID:18377355

  4. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOEpatents

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  5. Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates.

    PubMed Central

    Balasubramanian, V; Pavelka, M S; Bardarov, S S; Martin, J; Weisbrod, T R; McAdam, R A; Bloom, B R; Jacobs, W R

    1996-01-01

    Genetic studies of Mycobacterium tuberculosis have been greatly hampered by the inability to introduce specific chromosomal mutations. Whereas the ability to perform allelic exchanges has provided a useful method of gene disruption in other organisms, in the clinically important species of mycobacteria, such as M. tuberculosis and Mycobacterium bovis, similar approaches have thus far been unsuccessful. In this communication, we report the development of a shuttle mutagenesis strategy that involves the use of long linear recombination substrates to reproducibly obtain recombinants by allelic exchange in M. tuberculosis. Long linear recombination substrates, approximately 40 to 50 kb in length, were generated by constructing libraries in the excisable cosmid vector pYUB328. The cosmid vector could be readily excised from the recombinant cosmids by digestion with PacI, a restriction endonuclease for which there exist few, if any, sites in mycobacterial genomes. A cosmid containing the mycobacterial leuD gene was isolated, and a selectable marker conferring resistance to kanamycin was inserted into the leuD gene in the recombinant cosmid by interplasmid recombination in Escherichia coli. A long linear recombination substrate containing the insertionally mutated leuD gene was generated by PacI digestion. Electroporation of this recombination substrate containing the insertionally mutated leuD allele resulted in the generation of leucine auxotrophic mutants by homologous recombination in 6% of the kanamycin-resistant transformants for both the Erdman and H37Rv strains of M. tuberculosis. The ability to perform allelic exchanges provides an important approach for investigating the biology of this pathogen as well as developing new live-cell M. tuberculosis-based vaccines. PMID:8550428

  6. A novel and simple method for construction of recombinant adenoviruses.

    PubMed

    Tan, Rong; Li, Chunhua; Jiang, Sijing; Ma, Lixin

    2006-07-19

    Recombinant adenoviruses have been widely used for various applications, including protein expression and gene therapy. We herein report a new and simple cloning approach to an efficient and robust construction of recombinant adenoviral genomes based on the mating-assisted genetically integrated cloning (MAGIC) strategy. The production of recombinant adenovirus serotype 5-based vectors was greatly facilitated by the use of the MAGIC procedure and the development of the Adeasy adenoviral vector system. The recombinant adenoviral plasmid can be generated by a direct and seamless substitution, which replaces the stuff fragment in a full-length adenoviral genome with the gene of interest in a small plasmid in Escherichia coli. Recombinant adenoviral plasmids can be rapidly constructed in vivo by using the new method, without manipulations of the large adenoviral genome. In contrast to other traditional systems, it reduces the need for multiple in vitro manipulations, such as endonuclease cleavage, ligation and transformation, thus achieving a higher efficiency with negligible background. This strategy has been proven to be suitable for constructing an adenoviral cDNA expression library. In summary, the new method is highly efficient, technically less demanding and less labor-intensive for constructing recombinant adenoviruses, which will be beneficial for functional genomic and proteomic researches in mammalian cells.

  7. Recombination and Replication

    PubMed Central

    Syeda, Aisha H.; Hawkins, Michelle; McGlynn, Peter

    2014-01-01

    The links between recombination and replication have been appreciated for decades and it is now generally accepted that these two fundamental aspects of DNA metabolism are inseparable: Homologous recombination is essential for completion of DNA replication and vice versa. This review focuses on the roles that recombination enzymes play in underpinning genome duplication, aiding replication fork movement in the face of the many replisome barriers that challenge genome stability. These links have many conserved features across all domains of life, reflecting the conserved nature of the substrate for these reactions, DNA. PMID:25341919

  8. Construction and characterization of novel fowlpox virus shuttle vectors.

    PubMed

    Du, Shouwen; Liu, Cunxia; Zhu, Yilong; Wang, Yuhang; Ren, Dayong; Wang, Maopeng; Tan, Peng; Li, Xiao; Tian, Mingyao; Zhang, Yanfang; Li, Jinze; Zhao, Fei; Li, Chang; Jin, Ningyi

    2015-02-01

    Viral vectors are important vehicles in vaccine research. Avipoxviruses including fowlpox virus (FPV) play major roles in viral vaccine vector development for the prevention and therapy of human and other veterinary diseases due to their immunomodulatory effects and safety profile. Recently, we analyzed the genomic and proteomic backgrounds of the Chinese FPV282E4 strain. Based on analysis of the whole genome of FPV282E4, the FPV150 and FPV193 loci were chosen as insertion sites for foreign genes, and two shuttle vectors with a triple-gene expression cassette were designed and constructed. Homologous recombination between the FPV virus genome and sequences within the shuttle plasmids in infected cells was confirmed. The recombinants were obtained through several rounds of plaque purification using enhanced green fluorescent protein as a reporter and evaluated for the correct expression of foreign genes in vitro using RT-PCR, real-time PCR and Western blotting. Morphogenesis and growth kinetics were assayed via transmission electron microscopy and viral titering, respectively. Results showed that recombinant viruses were generated and correctly expressed foreign genes in CEF, BHK-21 and 293T cells. At least three different exogenous genes could be expressed simultaneously and stably over multiple passages. Additionally, the FPV150 mutation, FPV193 deletion and insertion of foreign genes did not affect the morphogenesis, replication and proliferation of recombinant viruses in cells. Our study contributes to the improvement of FPV vectors for multivalent vaccines.

  9. Simian virus-40 as a gene therapy vector.

    PubMed

    Vera, Maria; Fortes, Puri

    2004-05-01

    Simian virus-40 (SV40), an icosahedral papovavirus, has recently been modified to serve as a gene delivery vector. Recombinant SV40 vectors (rSV40) are good candidates for gene transfer, as they display some unique features: SV40 is a well-known virus, nonreplicative vectors are easy-to-make, and can be produced in titers of 10(12) IU/ml. They also efficiently transduce both resting and dividing cells, deliver persistent transgene expression to a wide range of cell types, and are nonimmunogenic. Present disadvantages of rSV40 vectors for gene therapy are a small cloning capacity and the possible risks related to random integration of the viral genome into the host genome. Considerable efforts have been devoted to modifing this virus and setting up protocols for viral production. Preliminary therapeutic results obtained both in tissue culture cells and in animal models for heritable and acquired diseases indicate that rSV40 vectors are promising gene transfer vehicles. This article reviews the work performed with SV40 viruses as recombinant vectors for gene transfer. A summary of the structure, genomic organization, and life cycle of wild-type SV40 viruses is presented. Furthermore, the strategies utilized for the development, production, and titering of rSV40 vectors are discussed. Last, the therapeutic applications developed to date are highlighted. PMID:15169607

  10. Activated recombinant adenovirus proteinases

    SciTech Connect

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  11. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  12. Index Sets and Vectorization

    SciTech Connect

    Keasler, J A

    2012-03-27

    Vectorization is data parallelism (SIMD, SIMT, etc.) - extension of ISA enabling the same instruction to be performed on multiple data items simultaeously. Many/most CPUs support vectorization in some form. Vectorization is difficult to enable, but can yield large efficiency gains. Extra programmer effort is required because: (1) not all algorithms can be vectorized (regular algorithm structure and fine-grain parallelism must be used); (2) most CPUs have data alignment restrictions for load/store operations (obey or risk incorrect code); (3) special directives are often needed to enable vectorization; and (4) vector instructions are architecture-specific. Vectorization is the best way to optimize for power and performance due to reduced clock cycles. When data is organized properly, a vector load instruction (i.e. movaps) can replace 'normal' load instructions (i.e. movsd). Vector operations can potentially have a smaller footprint in the instruction cache when fewer instructions need to be executed. Hybrid index sets insulate users from architecture specific details. We have applied hybrid index sets to achieve optimal vectorization. We can extend this concept to handle other programming models.

  13. Helper-Dependent Adenoviral Vectors and Their Use for Neuroscience Applications.

    PubMed

    Montesinos, Mónica S; Satterfield, Rachel; Young, Samuel M

    2016-01-01

    Neuroscience research has been revolutionized by the use of recombinant viral vector technology from the basic, preclinical and clinical levels. Currently, multiple recombinant viral vector types are employed with each having its strengths and weaknesses depending on the proposed application. Helper-dependent adenoviral vectors (HdAd) are emerging as ideal viral vectors that solve a major need in the neuroscience field: (1) expression of transgenes that are too large to be packaged by other viral vectors and (2) rapid onset of transgene expression in the absence of cytotoxicity. Here, we describe the methods for large-scale production of HdAd viral vectors for in vivo use with neurospecific transgene expression. PMID:27515075

  14. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  15. Retroviral vector production.

    PubMed

    Miller, A Dusty

    2014-01-01

    In this unit, the basic protocol generates stable cell lines that produce retroviral vectors that carry selectable markers. Also included are an alternate protocol that applies when the retroviral vector does not carry a selectable marker, and another alternate protocol for rapidly generating retroviral vector preparations by transient transfection. A support protocol describes construction of the retroviral vectors. The methods for generating virus from retroviral vector plasmids rely on the use of packaging cells that synthesize all of the retroviral proteins but do not produce replication-competent virus. Additional protocols detail plasmid transfection, virus titration, assay for replication-competent virus, and histochemical staining to detect transfer of a vector encoding alkaline phosphatase.

  16. Vectorization of a Treecode

    NASA Astrophysics Data System (ADS)

    Makino, Junichiro

    1990-03-01

    Vectorized algorithms for the force calculation and tree construction in the Barnes-Hut tree algorithm are described. The basic idea for the vectorization of the force calculation is to vectorize the tree traversal across particles, so that all particles in the system traverse the tree simultaneously. The tree construction algorithm also makes use of the fact that particles can be treated in parallel. Thus these algorithms take advantage of the internal parallelism in the N-body system and the tree algorithm most effectively. As a natural result, these algorithms can be used on a wide range of vector/parallel architectures, including current supercomputers and highly parallel architectures such as the Connection Machine. The vectorized code runs about five times faster than the non-vector code on a Cyber 205 for an N-body system with N = 8192.

  17. Support vector tracking.

    PubMed

    Avidan, Shai

    2004-08-01

    Support Vector Tracking (SVT) integrates the Support Vector Machine (SVM) classifier into an optic-flow-based tracker. Instead of minimizing an intensity difference function between successive frames, SVT maximizes the SVM classification score. To account for large motions between successive frames, we build pyramids from the support vectors and use a coarse-to-fine approach in the classification stage. We show results of using SVT for vehicle tracking in image sequences.

  18. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG).

    PubMed

    Chen, Robert T; Carbery, Baevin; Mac, Lisa; Berns, Kenneth I; Chapman, Louisa; Condit, Richard C; Excler, Jean-Louis; Gurwith, Marc; Hendry, Michael; Khan, Arifa S; Khuri-Bulos, Najwa; Klug, Bettina; Robertson, James S; Seligman, Stephen J; Sheets, Rebecca; Williamson, Anna-Lise

    2015-01-01

    Recombinant viral vectors provide an effective means for heterologous antigen expression in vivo and thus represent promising platforms for developing novel vaccines against human pathogens from Ebola to tuberculosis. An increasing number of candidate viral vector vaccines are entering human clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to improve our ability to anticipate potential safety issues and meaningfully assess or interpret safety data, thereby facilitating greater public acceptance when licensed.

  19. Vectorized Monte Carlo

    SciTech Connect

    Brown, F.B.

    1981-01-01

    Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes.

  20. Baculovirus as versatile vectors for protein expression in insect and mammalian cells.

    PubMed

    Kost, Thomas A; Condreay, J Patrick; Jarvis, Donald L

    2005-05-01

    Today, many thousands of recombinant proteins, ranging from cytosolic enzymes to membrane-bound proteins, have been successfully produced in baculovirus-infected insect cells. Yet, in addition to its value in producing recombinant proteins in insect cells and larvae, this viral vector system continues to evolve in new and unexpected ways. This is exemplified by the development of engineered insect cell lines to mimic mammalian cell glycosylation of expressed proteins, baculovirus display strategies and the application of the virus as a mammalian-cell gene delivery vector. Novel vector design and cell engineering approaches will serve to further enhance the value of baculovirus technology.

  1. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  2. Gene delivery into plant cells for recombinant protein production.

    PubMed

    Chen, Qiang; Lai, Huafang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  3. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  4. Accelerated homologous recombination and subsequent genome modification in Drosophila.

    PubMed

    Baena-Lopez, Luis Alberto; Alexandre, Cyrille; Mitchell, Alice; Pasakarnis, Laurynas; Vincent, Jean-Paul

    2013-12-01

    Gene targeting by 'ends-out' homologous recombination enables the deletion of genomic sequences and concurrent introduction of exogenous DNA with base-pair precision without sequence constraint. In Drosophila, this powerful technique has remained laborious and hence seldom implemented. We describe a targeting vector and protocols that achieve this at high frequency and with very few false positives in Drosophila, either with a two-generation crossing scheme or by direct injection in embryos. The frequency of injection-mediated gene targeting can be further increased with CRISPR-induced double-strand breaks within the region to be deleted, thus making homologous recombination almost as easy as conventional transgenesis. Our targeting vector replaces genomic sequences with a multifunctional fragment comprising an easy-to-select genetic marker, a fluorescent reporter, as well as an attP site, which acts as a landing platform for reintegration vectors. These vectors allow the insertion of a variety of transcription reporters or cDNAs to express tagged or mutant isoforms at endogenous levels. In addition, they pave the way for difficult experiments such as tissue-specific allele switching and functional analysis in post-mitotic or polyploid cells. Therefore, our method retains the advantages of homologous recombination while capitalising on the mutagenic power of CRISPR.

  5. Bacteriophage lambda as a cloning vector.

    PubMed

    Chauthaiwale, V M; Therwath, A; Deshpande, V V

    1992-12-01

    Extensive research has been directed toward the development of multipurpose lambda vectors for cloning ever since the potential of using coliphage lambda as a cloning vector was recognized in the late 1970s. An understanding of the intrinsic molecular organization and of the genetic events which determine lysis or lysogeny in lambda has allowed investigators to modify it to suit the specific requirements of gene manipulations. Unwanted restriction sites have been altered and arranged together into suitable polylinkers. The development of a highly efficient in vitro packaging system has permitted the introduction of chimeric molecules into hosts. Biological containment of recombinants has been achieved by introducing amber mutations into the lambda genome and by using specific amber suppressor hosts. Taking advantage of the limited range of genome size (78 to 105% of the wild-type size) for its efficient packaging, an array of vectors has been devised to accommodate inserts of a wide size range, the limit being 24 kbp in Charon 40. The central dispensable fragment of the lambda genome can be replaced by a fragment of heterologous DNA, leading to the construction of replacement vectors such as Charon and EMBL. Alternatively, small DNA fragments can be inserted without removing the dispensable region of the lambda genome, as in lambda gt10 and lambda gt11 vectors. In addition, the introduction of many other desirable properties, such as NotI and SfiI sites in polylinkers (e.g., lambda gt22), T7 and T3 promoters for the in vitro transcription (e.g., lambda DASH), and the mechanism for in vivo excision of the intact insert (e.g., lambda ZAP), has facilitated both cloning and subsequent analysis. In most cases, the recombinants can be differentiated from the parental phages by their altered phenotype. Libraries constructed in lambda vectors are screened easily with antibody or nucleic acid probes since several thousand clones can be plated on a single petri dish. Besides

  6. [Transfection of HL-60 cells by Venus lentiviral vector].

    PubMed

    Li, Zheng; Hu, Shao-Yan; Cen, Jian-Nong; Chen, Zi-Xing

    2013-06-01

    In order to study the potential of Venus, lentiviral vector, applied to acute myeloid leukemia, the recombinant vector Venus-C3aR was transfected into 293T packing cells by DNA-calcium phosphate coprecipitation. All virus stocks were collected and transfected into HL-60, the GFP expression in HL-60 cells was measured by flow cytometry. The expression level of C3aR1 in transfected HL-60 cells was identified by RT-PCR and flow cytometry. The lentiviral toxicity on HL-60 was measured by using CCK-8 method and the ability of cell differentiation was observed. The results indicated that the transfection efficacy of lentiviral vector on HL-60 cells was more than 95%, which meets the needs for further study. C3aR1 expression on HL-60 cells increased after being transfected with recombinant lentiviral vector. Before and after transfection, the proliferation and differentiation of cells were not changed much. It is concluded that the lentiviral vector showed a high efficacy to transfect AML cells and can be integrated in genome of HL-60 cells to realize the stable expression of interest gene. Meanwhile, lentiviral vector can not affect HL-60 cell ability to proliferate and differentiate.

  7. Vector processing unit

    SciTech Connect

    Garcia, L.C.; Tjon-Pian-Gi, D.C.; Tucker, S.G.; Zajac, M.W.

    1988-12-13

    This patent describes a data processing system comprising: memory means for storing instruction words of operands; a central processing unit (CPU) connected to the memory means for fetching and decoding instructions and controlling execution of instructions, including transfer of operands to and from the memory means, the control of execution of instructions is effected by a CPU clock and microprogram control means connected to the CPU clock for generating periodic execution control signals in synchronism with the CPU clock; vector processing means tightly coupled to the CPU for effecting data processing on vector data; and interconnection means, connecting the CPU and the vector processing means, including operand transfer lines for transfer of vector data between the CPU and the vector processing means, control lines, status lines for signalling conditions of the vector processor means to the CPU, and a vector timing signal line connected to one of the execution control signals from the microprogram control means, whereby the vector processing means receives periodic execution control signals at the clock rate and is synchronized with the CPU clock on a clock pulse by clock pulse basis during execution of instructions.

  8. Development of expression vectors based on pepino mosaic virus

    PubMed Central

    2011-01-01

    Background Plant viruses are useful expression vectors because they can mount systemic infections allowing large amounts of recombinant protein to be produced rapidly in differentiated plant tissues. Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae), a widespread plant virus, is a promising candidate expression vector for plants because of its high level of accumulation in its hosts and the absence of severe infection symptoms. We report here the construction of a stable and efficient expression vector for plants based on PepMV. Results Agroinfectious clones were produced from two different PepMV genotypes (European and Chilean), and these were able to initiate typical PepMV infections. We explored several strategies for vector development including coat protein (CP) replacement, duplication of the CP subgenomic promoter (SGP) and the creation of a fusion protein using the foot-and-mouth disease virus (FMDV) 2A catalytic peptide. We found that CP replacement vectors were unable to move systemically and that vectors with duplicated SGPs (even heterologous SGPs) suffered from significant transgene instability. The fusion protein incorporating the FMDV 2A catalytic peptide gave by far the best results, maintaining stability through serial passages and allowing the accumulation of GFP to 0.2-0.4 g per kg of leaf tissue. The possible use of PepMV as a virus-induced gene silencing vector to study gene function was also demonstrated. Protocols for the use of this vector are described. Conclusions A stable PepMV vector was generated by expressing the transgene as a CP fusion using the sequence encoding the foot-and-mouth disease virus (FMDV) 2A catalytic peptide to separate them. We have generated a novel tool for the expression of recombinant proteins in plants and for the functional analysis of virus and plant genes. Our experiments have also highlighted virus requirements for replication in single cells as well as intercellular and long

  9. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  10. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  11. Vector theories in cosmology

    SciTech Connect

    Esposito-Farese, Gilles; Pitrou, Cyril; Uzan, Jean-Philippe

    2010-03-15

    This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field models involving both a general function of the Faraday tensor and its dual, f(F{sup 2},FF-tilde), as well as a Proca potential for the vector field, V(A{sup 2}). In particular it is demonstrated that theories involving only f(F{sup 2}) do not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established that theories involving Rf(A{sup 2}) or Rf(F{sup 2}) are generically pathologic. To finish, we exhibit a model where the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-curvature coupling which maintains second-order field equations. The relevance of such models for cosmology is discussed.

  12. Vector generator scan converter

    SciTech Connect

    Moore, J.M.; Leighton, J.F.

    1990-04-17

    This patent describes high printing speeds for graphics data that are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  13. Generation and Selection of Orf Virus (ORFV) Recombinants.

    PubMed

    Rziha, Hanns-Joachim; Rohde, Jörg; Amann, Ralf

    2016-01-01

    Orf virus (ORFV) is an epitheliotropic poxvirus, which belongs to the genus Parapoxvirus. Among them the highly attenuated, apathogenic strain D1701-V is regarded as a promising candidate for novel virus vector vaccines. Our recent work demonstrated that those ORFV-based recombinants were able to induce protective, long-lasting immunity in various hosts that are non-permissive for ORFV. In this chapter we describe procedures for the generation, selection, propagation, and titration of ORFV recombinants as well as transgene detection by PCR or immunohistochemical staining.

  14. Meiotic recombination mechanisms.

    PubMed

    Grelon, Mathilde

    2016-01-01

    Meiosis is a specialized cell division at the origin of the haploid cells that eventually develop into the gametes. It therefore lies at the heart of Mendelian heredity. Recombination and redistribution of the homologous chromosomes arising during meiosis constitute an important source of genetic diversity, conferring to meiosis a particularly important place in the evolution and the diversification of the species. Our understanding of the molecular mechanisms governing meiotic recombination has considerably progressed these last decades, benefiting from complementary approaches led on various model species. An overview of these mechanisms will be provided as well as a discussion on the implications of these recent discoveries. PMID:27180110

  15. Line Integral of a Vector.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed booklet is designed for the engineering student who understands and can use vector and unit vector notation, components of a vector, parallel law of vector addition, and the dot product of two vectors. Content begins with work done by a force in moving a body a certain distance along some path. For each of the examples and problem…

  16. Generation of RCAS vectors useful for functional genomic analyses.

    PubMed

    Loftus, S K; Larson, D M; Watkins-Chow, D; Church, D M; Pavan, W J

    2001-10-31

    Avian leukosis type A virus-derived retroviral vectors have been used to introduce genes into cells expressing the corresponding avian receptor tv-a. This includes the use of Replication-Competent Avian sarcoma-leukosis virus (ASLV) long terminal repeat (LTR) with Splice acceptor (RCAS) vectors in the analysis of avian development, human and murine cell cultures, murine cell lineage studies and cancer biology. Previously, cloning of genes into this virus was difficult due to the large size of the vector and sparse cloning sites. To overcome some of the disadvantages of traditional cloning using the RCASBP-Y vector, we have modified the RCASBP-Y to incorporate "Gateway" site-specific recombination cloning of genes into the construct, either with or without HA epitope tags. We have found the repetitive "att" sequences, which are the targets for site-specific recombination, do not impair the production of infectious viral particles or the expression of the gene of interest. This is the first instance of site-specific recombination being used to generate retroviral gene constructs. These viral constructs will allow for the efficient transfer and expression of cDNAs needed for functional genomic analyses. PMID:11759842

  17. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  18. Recombineering Pseudomonas syringae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  19. Recombinant renewable polyclonal antibodies.

    PubMed

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  20. [Knock out of bovine beta casein gene by homologous recombination].

    PubMed

    Xue, Ke; Li, Feng; Luo, Guang-Bin; Huang, Wei-Wei; Chen, Xue-Jin

    2007-05-01

    It has been reported that homologous recombination with Red system has been successfully used for knock-out. We try to work on the construction of the expression vector of Mammary Gland with Red system. This study takes CSN2 as a vector for gene target, which contains the complete bovine beta casein gene. Different homologous arms were designed and the CDS region of the beta casein gene was successfully knocked out. The efficiency was also explored for knocking out different DNA fragment. Based on the study, it is very convenient for making a deep research of the foreign gene expression under the regulation of CSN2 flanking region.

  1. Polycistronic viral vectors.

    PubMed

    de Felipe, P

    2002-09-01

    Traditionally, vectors for gene transfer/therapy experiments were mono- or bicistronic. In the latter case, vectors express the gene of interest coupled with a marker gene. An increasing demand for more complex polycistronic vectors has arisen in recent years to obtain complex gene transfer/therapy effects. In particular, this demand is stimulated by the hope of a more powerful effect from combined gene therapy than from single gene therapy in a process whose parallels lie in the multi-drug combined therapies for cancer or AIDS. In the 1980's we had only splicing signals and internal promoters to construct such vectors: now a new set of biotechnological tools enables us to design new and more reliable bicistronic and polycistronic vectors. This article focuses on the description and comparison of the strategies for co-expression of two genes in bicistronic vectors, from the oldest to the more recently described: internal promoters, splicing, reinitiation, IRES, self-processing peptides (e.g. foot-and-mouth disease virus 2A), proteolytic cleavable sites (e.g. fusagen) and fusion of genes. I propose a classification of these strategies based upon either the use of multiple transcripts (with transcriptional mechanisms), or single transcripts (using translational/post-translational mechanisms). I also examine the different attempts to utilize these strategies in the construction of polycistronic vectors and the main problems encountered. Several potential uses of these polycistronic vectors, both in basic research and in therapy-focused applications, are discussed. The importance of the study of viral gene expression strategies and the need to transfer this knowledge to vector design is highlighted.

  2. Fractal vector optical fields.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field. PMID:27420485

  3. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  4. Development of Streptococcus pneumoniae Vaccines Using Live Vectors

    PubMed Central

    Wang, Shifeng; Curtiss, Roy

    2014-01-01

    Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines. PMID:25309747

  5. Attenuated Measles Virus as a Vaccine Vector

    PubMed Central

    Zuniga, Armando; Wang, ZiLi; Liniger, Matthias; Hangartner, Lars; Caballero, Michael; Pavlovic, Jovan; Wild, Peter; Viret, Jean Francois; Glueck, Reinhard; Billeter, Martin A.; Naim, Hussein Y.

    2013-01-01

    Live attenuated measles virus (MV) vaccines have an impressive record of safety, efficacy and ability to induce life-long immunity against measles infection. Using reverse genetics technology, such negative-strand RNA viruses can now be rescued from cloned DNA. This technology allows the insertion of exogenous genes encoding foreign antigens into the MV genome in such a way that they can be expressed by the MV vaccine strain, without affecting virus structure, propagation and cell targeting. Recombinant viruses rescued from cloned cDNA induce immune responses against both measles virus and the cloned antigens. The tolerability of MV to gene(s) insertion makes it an attractive flexible vector system, especially if broad immune responses are required. The fact that measles replication strictly occurs in the cytoplasm of infected cells without DNA intermediate has important biosafety implications and adds to the attractiveness of MV as a vector. In this article we report the characteristics of reporter gene expression (GFP, LacZ and CAT) and the biochemical, biophysical and immunological properties of recombinant MV expressing heterologous antigens of simian immunogeficiency virus (SIV). PMID:17303293

  6. Bloch vector projection noise

    NASA Technical Reports Server (NTRS)

    Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.

    1994-01-01

    In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.

  7. Poynting-vector filter

    SciTech Connect

    Carrigan, Charles R.

    2011-08-02

    A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.

  8. Distribution of Brugia malayi larvae and DNA in vector and non-vector mosquitoes: implications for molecular diagnostics

    PubMed Central

    2009-01-01

    Background The purpose of this study was to extend prior studies of molecular detection of Brugia malayi DNA in vector (Aedes aegypti- Liverpool) and non-vector (Culex pipiens) mosquitoes at different times after ingestion of infected blood. Results Parasite DNA was detected over a two week time course in 96% of pooled thoraces of vector mosquitoes. In contrast, parasite DNA was detected in only 24% of thorax pools from non-vectors; parasite DNA was detected in 56% of midgut pools and 47% of abdomen pools from non-vectors. Parasite DNA was detected in vectors in the head immediately after the blood meal and after 14 days. Parasite DNA was also detected in feces and excreta of the vector and non-vector mosquitoes which could potentially confound results obtained with field samples. However, co-housing experiments failed to demonstrate transfer of parasite DNA from infected to non-infected mosquitoes. Parasites were also visualized in mosquito tissues by immunohistololgy using an antibody to the recombinant filarial antigen Bm14. Parasite larvae were detected consistently after mf ingestion in Ae. aegypti- Liverpool. Infectious L3s were seen in the head, thorax and abdomen of vector mosquitoes 14 days after Mf ingestion. In contrast, parasites were only detected by histology shortly after the blood meal in Cx. pipiens, and these were not labeled by the antibody. Conclusion This study provides new information on the distribution of filarial parasites and parasite DNA in vector and non-vector mosquitoes. This information should be useful for those involved in designing and interpreting molecular xenomonitoring studies. PMID:19922607

  9. Limited human infection due to recombinant raccoon pox virus

    USGS Publications Warehouse

    Rocke, T.E.; Dein, F.J.; Fuchsberger, M.; Fox, B.C.; Stinchcomb, D.T.; Osorio, J.G.

    2004-01-01

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  10. Easy and efficient protocols for working with recombinant vaccinia virus MVA.

    PubMed

    Kremer, Melanie; Volz, Asisa; Kreijtz, Joost H C M; Fux, Robert; Lehmann, Michael H; Sutter, Gerd

    2012-01-01

    Modified vaccinia virus Ankara (MVA) is a highly attenuated and replication-deficient strain of vaccinia virus that is increasingly used as vector for expression of recombinant genes in the research laboratory and in biomedicine for vaccine development. Major benefits of MVA include the clear safety advantage compared to conventional vaccinia viruses, the longstanding experience in the genetic engineering of the virus, and the availability of established procedures for virus production at an industrial scale. MVA vectors can be handled under biosafety level 1 conditions, and a multitude of recombinant MVA vaccines has proven to be immunogenic and protective when delivering various heterologous antigens in animals and humans. In this chapter we provide convenient state-of-the-art protocols for generation, amplification, and purification of recombinant MVA viruses. Importantly, we include methodology for rigid quality control to obtain best possible vector viruses for further investigations including clinical evaluation. PMID:22688761

  11. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  12. Chromatography purification of canine adenoviral vectors.

    PubMed

    Segura, María Mercedes; Puig, Meritxell; Monfar, Mercè; Chillón, Miguel

    2012-06-01

    Canine adenovirus vectors (CAV2) are currently being evaluated for gene therapy, oncolytic virotherapy, and as vectors for recombinant vaccines. Despite the need for increasing volumes of purified CAV2 preparations for preclinical and clinical testing, their purification still relies on the use of conventional, scale-limited CsCl ultracentrifugation techniques. A complete downstream processing strategy for CAV2 vectors based on membrane filtration and chromatography is reported here. Microfiltration and ultra/diafiltration are selected for clarification and concentration of crude viral stocks containing both intracellular and extracellular CAV2 particles. A DNase digestion step is introduced between ultrafiltration and diafiltration operations. At these early stages, concentration of vector stocks with good recovery of viral particles (above 80%) and removal of a substantial amount of protein and nucleic acid contaminants is achieved. The ability of various chromatography techniques to isolate CAV2 particles was evaluated. Hydrophobic interaction chromatography using a Fractogel propyl tentacle resin was selected as a first chromatography step, because it allows removal of the bulk of contaminating proteins with high CAV2 yields (88%). An anion-exchange chromatography step using monolithic supports is further introduced to remove the remaining contaminants with good recovery of CAV2 particles (58-69%). The main CAV2 viral structural components are visualized in purified preparations by electrophoresis analyses. Purified vector stocks contained intact icosahedral viral particles, low contamination with empty viral capsids (10%), and an acceptable total-to-infectious particle ratio (below 30). The downstream processing strategy that was developed allows preparation of large volumes of high-quality CAV2 stocks. PMID:22799886

  13. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    PubMed

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  14. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  15. The recombination epoch revisited

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons.

  16. Hygromycin-resistance vectors for gene expression in Pichia pastoris.

    PubMed

    Yang, Junjie; Nie, Lei; Chen, Biao; Liu, Yingmiao; Kong, Yimeng; Wang, Haibin; Diao, Liuyang

    2014-04-01

    Pichia pastoris is a common host organism for heterologous protein expression and metabolic engineering. Zeocin-, G418-, nourseothricin- and blasticidin-resistance genes are the only dominant selectable markers currently available for selecting P. pastoris transformants. We describe here new P. pastoris expression vectors that confer a hygromycin resistance base on the Klebsiella pneumoniae hph gene. To demonstrate the application of the vectors for intracellular and secreted protein expression, green fluorescent protein (GFP) and human serum albumin (HSA) were cloned into the vectors and transformed into P. pastoris cells. The resulting strains expressed GFP and HSA constitutively or inducibly. The hygromycin resistance marker was also suitable for post-transformational vector amplication (PTVA) for obtaining strains with high plasmid copy numbers. A strain with multiple copies of the HSA expression cassette after PTVA had increased HSA expression compared with a strain with a single copy of the plasmid. To demonstrate compatibility of the new vectors with other vectors bearing antibiotic-resistance genes, P. pastoris was transformed with the Saccharomyces cerevisiae genes GSH1, GSH2 or SAM2 on plasmids containing genes for resistance to Zeocin, G418 or hygromycin. The resulting strain produced glutathione and S-adenosyl-L-methionine at levels approximately twice those of the parent strain. The new hygromycin-resistance vectors allow greater flexibility and potential applications in recombinant protein production and other research using P. pastoris. PMID:24822243

  17. Vector platforms for gene therapy of inherited retinopathies

    PubMed Central

    Trapani, Ivana; Puppo, Agostina; Auricchio, Alberto

    2014-01-01

    Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina’s compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs’ limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations. PMID:25124745

  18. Constraining primordial vector mode from B-mode polarization

    SciTech Connect

    Saga, Shohei; Ichiki, Kiyotomo; Shiraishi, Maresuke E-mail: maresuke.shiraishi@pd.infn.it

    2014-10-01

    The B-mode polarization spectrum of the Cosmic Microwave Background (CMB) may be the smoking gun of not only the primordial tensor mode but also of the primordial vector mode. If there exist nonzero vector-mode metric perturbations in the early Universe, they are known to be supported by anisotropic stress fluctuations of free-streaming particles such as neutrinos, and to create characteristic signatures on both the CMB temperature, E-mode, and B-mode polarization anisotropies. We place constraints on the properties of the primordial vector mode characterized by the vector-to-scalar ratio r{sub v} and the spectral index n{sub v} of the vector-shear power spectrum, from the Planck and BICEP2 B-mode data. We find that, for scale-invariant initial spectra, the ΛCDM model including the vector mode fits the data better than the model including the tensor mode. The difference in χ{sup 2} between the vector and tensor models is Δχ{sup 2} = 3.294, because, on large scales the vector mode generates smaller temperature fluctuations than the tensor mode, which is preferred for the data. In contrast, the tensor mode can fit the data set equally well if we allow a significantly blue-tilted spectrum. We find that the best-fitting tensor mode has a large blue tilt and leads to an indistinct reionization bump on larger angular scales. The slightly red-tilted vector mode supported by the current data set can also create O(10{sup -22})-Gauss magnetic fields at cosmological recombination. Our constraints should motivate research that considers models of the early Universe that involve the vector mode.

  19. Recombinant Gene Expression in vivo within Endothelial Cells of the Arterial Wall

    NASA Astrophysics Data System (ADS)

    Nabel, Elizabeth G.; Plautz, Gregory; Boyce, Frederick M.; Stanley, James C.; Nabel, Gary J.

    1989-06-01

    A technique for the transfer of endothelial cells and expression of recombinant genes in vivo could allow the introduction of proteins of therapeutic value in the management of cardiovascular diseases. Porcine endothelial cells expressing recombinant β -galactosidase from a murine amphotropic retroviral vector were introduced with a catheter into denuded iliofemoral arteries of syngeneic animals. Arterial segments explanted 2 to 4 weeks later contained endothelial cells expressing β -galactosidase, an indication that they were successfully implanted on the vessel wall.

  20. Vector and Axial Vector Pion Form Factors

    NASA Astrophysics Data System (ADS)

    Vitz, Michael; PEN Collaboration

    2015-04-01

    Radiative pion decay π+ -->e+ νγ (RPD) provides critical input to chiral perturbation theory (χPT). Aside from the uninteresting ``inner bremsstrahlung'' contribution from QED, the RPD rate contains ``structure dependent'' terms given by FV and FA, the vector and axial-vector pion form factors, respectively. The two appear in the decay rate in combinations FV -FA and FV +FA , i.e., in the so-called SD- and SD+ terms, respectively. The latter has been measured to high precision by the PIBETA collaboration. We report on the analysis of new data, measured by the PEN collaboration in runs between 2008 and 2010 at the Paul Scherrer Institute, Switzerland. We particularly focus on the possibility of improvement in the determination of the SD- term. Precise determinations of FV and FA test the validity of the CVC hypothesis, provide numerical input for the l9 +l10 terms in the χPT lagrangian, and constrain potential non-(V - A) terms, such as a possible tensor term FT. NSF grants PHY-0970013, 1307328, and others.

  1. Bunyavirus-vector interactions.

    PubMed

    Beaty, B J; Bishop, D H

    1988-06-01

    Recent advances in the genetics and molecular biology of bunyaviruses have been applied to understanding bunyavirus-vector interactions. Such approaches have revealed which virus gene and gene products are important in establishing infections in vectors and in transmission of viruses. However, much more information is required to understand the molecular mechanisms of persistent infections of vectors which are lifelong but apparently exert no untoward effect. In fact, it seems remarkable that LAC viral antigen can be detected in almost every cell in an ovarian follicle, yet no untoward effect on fecundity and no teratology is seen. Similarly the lifelong infection of the vector would seem to provide ample opportunity for bunyavirus evolution by genetic drift and, under the appropriate circumstances, by segment reassortment. The potential for bunyavirus evolution by segment reassortment in vectors certainly exists. For example the Group C viruses in a small forest in Brazil seem to constitute a gene pool, with the 6 viruses related alternately by HI/NT and CF reactions, which assay respectively M RNA and S RNA gene products (Casals and Whitman, 1960; Shope and Causey, 1962). Direct evidence for naturally occurring reassortant bunyaviruses has also been obtained. Oligonucleotide fingerprint analyses of field isolates of LAC virus and members of the Patois serogroup of bunyaviruses have demonstrated that reassortment does occur in nature (El Said et al., 1979; Klimas et al., 1981; Ushijima et al., 1981). Determination of the genotypic frequencies of viruses selected by the biological interactions of viruses and vectors after dual infection and segment reassortment is an important issue. Should a virus result that efficiently interacts with alternate vector species, the virus could be expressed in different circumstances with serious epidemiologic consequences. Dual infection of vectors with different viruses is not unlikely, because many bunyaviruses are sympatric in

  2. Simultaneous expression of the Lassa virus N and GPC genes from a single recombinant vaccinia virus.

    PubMed

    Morrison, H G; Goldsmith, C S; Regnery, H L; Auperin, D D

    1991-03-01

    A new transfer vector was constructed that directs the insertion of two heterologous genes into the vaccinia virus thymidine kinase (TK) gene during a single recombination event. This vector, pDAVAC2, contains bidirectional vaccinia P7.5 early/late promoter elements and two unique cloning sites. cDNA clones containing the complete coding sequences for the Lassa virus (Josiah strain) nucleoprotein (N) and glycoprotein (GPC) genes were inserted into the vaccinia TK gene using this transfer vector. The recombinant virus, V-LSGN-II, expressed proteins in cell culture that appeared to be authentic with respect to electrophoretic mobility, glycosylation, and post-translational cleavage. Indirect immunofluorescence (IFA) of recombinant virus-infected cells demonstrated both the bright granular and diffuse patterns of staining characteristic of the Lassa nucleoprotein and glycoprotein, respectively. Electron-dense inclusion bodies typical of arenavirus-infected cells were observed by electron microscopy in V-LSN and V-LSGN-II-infected cells, but not in V-LSGPC-infected cells. Mice inoculated with V-LSGN-II by intraperitoneal injection developed serum antibodies that reacted with authentic Lassa proteins in immunofluorescence and radioimmune precipitation assays. This recombinant virus represents an additional candidate for a Lassa fever vaccine and demonstrates the feasibility of expressing any two genes of interest in a single recombinant vaccinia virus through the use of the transfer vector pDAVAC2.

  3. Applications of pox virus vectors to vaccination: an update.

    PubMed

    Paoletti, E

    1996-10-15

    Recombinant pox viruses have been generated for vaccination against heterologous pathogens. Amongst these, the following are notable examples. (i) The engineering of the Copenhagen strain of vaccinia virus to express the rabies virus glycoprotein. When applied in baits, this recombinant has been shown to vaccinate the red fox in Europe and raccoons in the United States, stemming the spread of rabies virus infection in the wild. (ii) A fowlpox-based recombinant expressing the Newcastle disease virus fusion and hemagglutinin glycoproteins has been shown to protect commercial broiler chickens for their lifetime when the vaccine was administered at 1 day of age, even in the presence of maternal immunity against either the Newcastle disease virus or the pox vector. (iii) Recombinants of canarypox virus, which is restricted for replication to avian species, have provided protection against rabies virus challenge in cats and dogs, against canine distemper virus, feline leukemia virus, and equine influenza virus disease. In humans, canarypox virus-based recombinants expressing antigens from rabies virus, Japanese encephalitis virus, and HIV have been shown to be safe and immunogenic. (iv) A highly attenuated vaccinia derivative, NYVAC, has been engineered to express antigens from both animal and human pathogens. Safety and immunogenicity of NYVAC-based recombinants expressing the rabies virus glycoprotein, a polyprotein from Japanese encephalitis virus, and seven antigens from Plasmodium falciparum have been demonstrated to be safe and immunogenic in early human vaccine studies. PMID:8876138

  4. Improved vector for promoter screening in lactococci.

    PubMed Central

    Bojovic, B; Djordjevic, G; Topisirovic, L

    1991-01-01

    Fragments of Lactococcus lactis subsp. lactis NP45 chromosomal DNA provided promoter activity in Escherichia coli when cloned into the promoter probe vector pGKV210. Only 13% of these recombinant plasmids promoted detectable cat-86 activity when transferred to L. lactis, i.e., expressed chloramphenicol resistance. In these promoter-containing versions of pGKV210, the cat-86 gene specifies chloramphenicol-inducible chloramphenicol acetyltransferase expression. This could be a limiting factor for cloning of promoters with lower activity in L. lactis. Therefore, we have constructed a new promoter probe vector, pBV5030, with the mutated version of the cat-86 gene, which is constitutively expressed when transcriptionally activated by the insertion of a promoter. We found that in L. lactis IL1403 the constitutively expressed cat-86 gene (on a pBV5030 derivative) has four times higher activity than the inducible version of the same gene (on a pGKV210 derivative) when both have the same promoter inserted upstream of the cat-86 gene. These results suggest that plasmid pBV5030 could be a more efficient vector for the cloning of promoters from lactococci. PMID:1901705

  5. Live bacterial vaccine vectors: An overview

    PubMed Central

    da Silva, Adilson José; Zangirolami, Teresa Cristina; Novo-Mansur, Maria Teresa Marques; Giordano, Roberto de Campos; Martins, Elizabeth Angélica Leme

    2014-01-01

    Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology. PMID:25763014

  6. Efficiency of insertion versus replacement vector targeting varies at different chromosomal loci.

    PubMed Central

    Hasty, P; Crist, M; Grompe, M; Bradley, A

    1994-01-01

    We have analyzed the targeting frequencies and recombination products generated with isogenic vectors at the fah and fgr loci in embryonic stem cells. A single vector which could be linearized at different sites to generate either a replacement or an insertion vector was constructed for each locus. A replacement event predominated when the vectors were linearized at the edge of the homologous sequences, while an insertion event predominated when the vectors were linearized within the homologous sequences. However, the ratio of the targeting frequencies exhibited by the different vector configurations differed for the two loci. When the fgr vector was linearized as an insertion vector, the ratio of targeted to random integrations was four- to eightfold greater than when the vector was linearized as a replacement vector. By contrast, the ratio of targeted to random integrations at the fah locus did not vary with the linearization site of the vector. The different relationships between the targeting frequency and the vector configuration at the fgr and fah loci may indicate a DNA sequence or chromatin structure preference for different targeting pathways. Images PMID:7969173

  7. Methods of treating Parkinson's disease using viral vectors

    DOEpatents

    Bankiewicz, Krys; Cunningham, Janet

    2012-11-13

    Methods of delivering viral vectors, particularly recombinant AAV virions, to the central nervous system (CNS) are provided for the treatment of CNS disorders, particularly those disorders which involve the neurotransmitter dopamine. The methods entail providing rAAV virions that comprise a transgene encoding aromatic amino acid decarboxylase (AADC) and administering the virions to the brain of a mammal using a non-manual pump.

  8. Vector financial rogue waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  9. Vectorized garbage collection

    SciTech Connect

    Appel, A.W.; Bendiksen, A.

    1988-01-01

    Garbage collection can be done in vector mode on supercomputers like the Cray-2 and the Cyber 205. Both copying collection and mark-and-sweep can be expressed as breadth-first searches in which the queue can be processed in parallel. The authors have designed a copying garbage collector whose inner loop works entirely in vector mode. The only significant limitation of the algorithm is that if the size of the records is not constant, the implementation becomes much more complicated. The authors give performance measurements of the algorithm as implemented for Lisp CONS cells on the Cyber 205. Vector-mode garbage collection performs up to 9 times faster than scalar-mode collection.

  10. Bunyavirus-Vector Interactions

    PubMed Central

    Horne, Kate McElroy; Vanlandingham, Dana L.

    2014-01-01

    The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172

  11. Integration-deficient Lentiviral Vectors: A Slow Coming of Age

    PubMed Central

    Wanisch, Klaus; Yáñez-Muñoz, Rafael J

    2009-01-01

    Lentiviral vectors are very efficient at transducing dividing and quiescent cells, which makes them highly useful tools for genetic analysis and gene therapy. Traditionally this efficiency was considered dependent on provirus integration in the host cell genome; however, recent results have challenged this view. So called integration-deficient lentiviral vectors (IDLVs) can be produced through the use of integrase mutations that specifically prevent proviral integration, resulting in the generation of increased levels of circular vector episomes in transduced cells. These lentiviral episomes lack replication signals and are gradually lost by dilution in dividing cells, but are stable in quiescent cells. Compared to integrating lentivectors, IDLVs have a greatly reduced risk of causing insertional mutagenesis and a lower risk of generating replication-competent recombinants (RCRs). IDLVs can mediate transient gene expression in proliferating cells, stable expression in nondividing cells in vitro and in vivo, specific immune responses, RNA interference, homologous recombination (gene repair, knock-in, and knock-out), site-specific recombination, and transposition. IDLVs can be converted into replicating episomes, suggesting that if a clinically applicable system can be developed they would also become highly appropriate for stable transduction of proliferating tissues in therapeutic applications. PMID:19491821

  12. Dielectronic recombination theory

    SciTech Connect

    LaGattuta, K.J.

    1991-12-31

    A theory now in wide use for the calculation of dielectronic recombination cross sections ({sigma}{sup DR}) and rate coefficients ({alpha}{sup DR}) was one introduced originally by Feshbach for nuclear physics applications, and then later adapted for atomic scattering problems by Hahn. In the following, we briefly review this theory in a very general form, which allows one to account for the effects of overlapping and interacting resonances, as well as continuum-continuum coupling. An extension of our notation will then also allow for the inclusion of the effects of direct radiative recombination, along with a treatment of the interference between radiative and dielectronic recombination. Other approaches to the calculation of {sigma}{sup DR} have been described by Fano and by Seaton. We will not consider those theories here. Calculations of {alpha}{sup DR} have progressed considerably over the last 25 years, since the early work of Burgess. Advances in the reliability of theoretical predictions have also been promoted recently b a variety of direct laboratory measurements of {sigma}{sup DR}. While the measurements of {sigma}{sup DR} for {delta}n {ne} 0 excitations have tended to agree very well with calculations, the case of {delta}n = 0 has been much problematic. However, by invoking a mechanism originally proposed by Jacobs, which takes into account the effect of stray electric fields on high Rydberg states (HRS) participating in the DR process, new calculations have improved the agreement between theory and experiment for these cases. Nevertheless, certain discrepancies still remain.

  13. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  14. A novel adenovirus vector for easy cloning in the E3 region downstream of the CMV promoter.

    PubMed

    Mailly, Laurent; Boulade-Ladame, Charlotte; Orfanoudakis, Georges; Deryckere, François

    2008-01-01

    The construction of expression vectors derived from the human adenovirus type 5 (Ad5), usually based on homologous recombination, is time consuming as a shuttle plasmid has to be selected before recombination with the viral genome. Here, we describe a method allowing direct cloning of a transgene in the E3 region of the Ad5 genome already containing the immediate early CMV promoter upstream of three unique restriction sites. This allowed the construction of recombinant adenoviral genomes in just one step, reducing considerably the time of selection and, of course, production of the corresponding vectors. Using this vector, we produced recombinant adenoviruses, each giving high-level expression of the transgene in the transduced cells. PMID:18538014

  15. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae.

    PubMed

    Oey, Melanie; Ross, Ian L; Hankamer, Ben

    2014-01-01

    With a rising world population, demand will increase for food, energy and high value products. Renewable production systems, including photosynthetic microalgal biotechnologies, can produce biomass for foods, fuels and chemical feedstocks and in parallel allow the production of high value protein products, including recombinant proteins. Such high value recombinant proteins offer important economic benefits during startup of industrial scale algal biomass and biofuel production systems, but the limited markets for individual recombinant proteins will require a high throughput pipeline for cloning and expression in microalgae, which is currently lacking, since genetic engineering of microalgae is currently complex and laborious. We have introduced the recombination based Gateway® system into the construction process of chloroplast transformation vectors for microalgae. This simplifies the vector construction and allows easy, fast and flexible vector design for the high efficiency protein production in microalgae, a key step in developing such expression pipelines. PMID:24523866

  16. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae.

    PubMed

    Oey, Melanie; Ross, Ian L; Hankamer, Ben

    2014-01-01

    With a rising world population, demand will increase for food, energy and high value products. Renewable production systems, including photosynthetic microalgal biotechnologies, can produce biomass for foods, fuels and chemical feedstocks and in parallel allow the production of high value protein products, including recombinant proteins. Such high value recombinant proteins offer important economic benefits during startup of industrial scale algal biomass and biofuel production systems, but the limited markets for individual recombinant proteins will require a high throughput pipeline for cloning and expression in microalgae, which is currently lacking, since genetic engineering of microalgae is currently complex and laborious. We have introduced the recombination based Gateway® system into the construction process of chloroplast transformation vectors for microalgae. This simplifies the vector construction and allows easy, fast and flexible vector design for the high efficiency protein production in microalgae, a key step in developing such expression pipelines.

  17. Adenoviral-vector-mediated gene transfer to dendritic cells.

    PubMed

    Song, W; Crystal, R G

    2001-01-01

    Dendritic cells (DC) are the most potent antigen presenting cells capable of initiating T-cell-dependent immune responses (1-5). This biologic potential can be harnessed to elicit effective antigen-specific immune responses by transferring the relevant antigens to the DC. Once the DC have been mobilized and purified, the relevant antigens can be transferred to the DC as intact proteins, or as peptides representing specific epitopes, or with gene transfer using sequences of DNA or RNA coding for the pertinent antigen(s) (6-15). Theoretically, genetically modifying DC with genes coding for specific antigens has potential advantages over pulsing the DC with peptides repeating the antigen or antigen fragment. First, the genetically modified DC may present previously unknown epitopes in association with different MHC molecules. Second, gene transfer to DC ensures that the gene product is endogenously processed, leading to the generation of MHC class I-restricted cytotoxic T lymphocytes (CTL), the effector arm of cell-mediated immune responses. Finally, in addition to genes coding for the antigen(s), genetic modification of the DC can induce genes coding for mediators relevant to generation of the immune response to the antigen(s), further boosting host responses to the antigens presented by the modified DC. Different gene transfer approaches have been explored to genetically modify DC, including retroviral vectors (16-18), recombinant vaccinia virus vectors (19), and recombinant adenovirus (Ad) vectors (19-23). The focus of this chapter is on using recombinant Ad vectors to transfer genes to murine DC. We have used a similar strategy to transfer genes to human DC (24). As an example of the power of this technology, we will describe the use of Ad-vector-modified DC to suppress the growth of tumor cells modified to express a specific antigen.

  18. Recombinant host cells and media for ethanol production

    DOEpatents

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  19. Recombination spot identification Based on gapped k-mers.

    PubMed

    Wang, Rong; Xu, Yong; Liu, Bin

    2016-01-01

    Recombination is crucial for biological evolution, which provides many new combinations of genetic diversity. Accurate identification of recombination spots is useful for DNA function study. To improve the prediction accuracy, researchers have proposed several computational methods for recombination spot identification. The k-mer feature is one of the most useful features for modeling the properties and function of DNA sequences. However, it suffers from the inherent limitation. If the value of word length k is large, the occurrences of k-mers are closed to a binary variable, with a few k-mers present once and most k-mers are absent. This usually causes the sparse problem and reduces the classification accuracy. To solve this problem, we add gaps into k-mer and introduce a new feature called gapped k-mer (GKM) for identification of recombination spots. By using this feature, we present a new predictor called SVM-GKM, which combines the gapped k-mers and Support Vector Machine (SVM) for recombination spot identification. Experimental results on a widely used benchmark dataset show that SVM-GKM outperforms other highly related predictors. Therefore, SVM-GKM would be a powerful predictor for computational genomics. PMID:27030570

  20. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  1. Vector potential methods

    NASA Technical Reports Server (NTRS)

    Hafez, M.

    1989-01-01

    Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed.

  2. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  3. Production of lentiviral vectors

    PubMed Central

    Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara

    2016-01-01

    Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581

  4. Gene transfer vector

    SciTech Connect

    Puhler, A.; Simon, R.

    1987-08-11

    A Tn-Mob vector is described comprising: (a) A replicon functional E. coli; and (b) A Tn-Mob element comprising a transposon containing (i) a functional selection marker, and (ii) a Mob-site and oriT located in a region of the transposon that is not essential to transposability.

  5. Redshifts and Killing vectors

    NASA Astrophysics Data System (ADS)

    Harvey, Alex; Schucking, Engelbert; Surowitz, Eugene J.

    2006-11-01

    Current approaches to physics stress the importance of conservation laws due to spacetime and internal symmetries. In special and general relativity the generators of these symmetries are known as Killing vectors. We use them for the rigorous determination of gravitational and cosmological redshifts.

  6. Vector-borne diseases.

    PubMed

    Gubler, D J

    2009-08-01

    Vector-borne diseases have been the scourge of man and animals since the beginning of time. Historically, these are the diseases that caused the great plagues such as the 'Black Death' in Europe in the 14th Century and the epidemics of yellow fever that plagued the development of the New World. Others, such as Nagana, contributed to the lack of development in Africa for many years. At the turn of the 20th Century, vector-borne diseases were among the most serious public and animal health problems in the world. For the most part, these diseases were controlled by the middle of the 20th Century through the application of knowledge about their natural history along with the judicious use of DDT (dichlorodiphenyltrichloroethane) and other residual insecticides to interrupt the transmission cycle between arthropod and vertebrate host. However, this success initiated a period of complacency in the 1960s and 1970s, which resulted in the redirection of resources away from prevention and control of vector-borne diseases. The 1970s was also a time in which there were major changes to public health policy. Global trends, combined with changes in animal husbandry, urbanisation, modern transportation and globalisation, have resulted in a global re-emergence of epidemic vector-borne diseases affecting both humans and animals over the past 30 years. PMID:20128467

  7. Vector-borne diseases.

    PubMed

    Gubler, D J

    2009-08-01

    Vector-borne diseases have been the scourge of man and animals since the beginning of time. Historically, these are the diseases that caused the great plagues such as the 'Black Death' in Europe in the 14th Century and the epidemics of yellow fever that plagued the development of the New World. Others, such as Nagana, contributed to the lack of development in Africa for many years. At the turn of the 20th Century, vector-borne diseases were among the most serious public and animal health problems in the world. For the most part, these diseases were controlled by the middle of the 20th Century through the application of knowledge about their natural history along with the judicious use of DDT (dichlorodiphenyltrichloroethane) and other residual insecticides to interrupt the transmission cycle between arthropod and vertebrate host. However, this success initiated a period of complacency in the 1960s and 1970s, which resulted in the redirection of resources away from prevention and control of vector-borne diseases. The 1970s was also a time in which there were major changes to public health policy. Global trends, combined with changes in animal husbandry, urbanisation, modern transportation and globalisation, have resulted in a global re-emergence of epidemic vector-borne diseases affecting both humans and animals over the past 30 years.

  8. Singular Vectors' Subtle Secrets

    ERIC Educational Resources Information Center

    James, David; Lachance, Michael; Remski, Joan

    2011-01-01

    Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.

  9. Gene Therapy with Helper-Dependent Adenoviral Vectors: Current Advances and Future Perspectives

    PubMed Central

    Vetrini, Francesco; Ng, Philip

    2010-01-01

    Recombinant Adenoviral vectors represent one of the best gene transfer platforms due to their ability to efficiently transduce a wide range of quiescent and proliferating cell types from various tissues and species. The activation of an adaptive immune response against the transduced cells is one of the major drawbacks of first generation Adenovirus vectors and has been overcome by the latest generation of recombinant Adenovirus, the Helper-Dependent Adenoviral (HDAd) vectors. HDAds have innovative features including the complete absence of viral coding sequences and the ability to mediate high level transgene expression with negligible chronic toxicity. This review summarizes the many aspects of HDAd biology and structure with a major focus on in vivo gene therapy application and with an emphasis on the unsolved issues that these vectors still presents toward clinical application. PMID:21994713

  10. Biosafety considerations for attenuated measles virus vectors used in virotherapy and vaccination

    PubMed Central

    Baldo, Aline; Galanis, Evanthia; Tangy, Frédéric; Herman, Philippe

    2016-01-01

    ABSTRACT Attenuated measles virus (MV) is one of the most effective and safe vaccines available, making it attractive candidate vector to prevent infectious diseases. Attenuated MV have acquired the ability to use the complement regulator CD46 as a major receptor to mediate virus entry and intercellular fusion. Therefore, attenuated MV strains preferentially infect and destroy a wide variety of cancer cells making them also attractive oncolytic vectors. The use of recombinant MV vector has to comply with various regulatory requirements, particularly relating to the assessment of potential risks for human health and the environment. The present article highlights the main characteristics of MV and recombinant MV vectors used for vaccination and virotherapy and discusses these features from a biosafety point of view. PMID:26631840

  11. Production of recombinant proteins by yeast cells.

    PubMed

    Celik, Eda; Calık, Pınar

    2012-01-01

    Yeasts are widely used in production of recombinant proteins of medical or industrial interest. For each individual product, the most suitable expression system has to be identified and optimized, both on the genetic and fermentative level, by taking into account the properties of the product, the organism and the expression cassette. There is a wide range of important yeast expression hosts including the species Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe, Yarrowia lipolytica and Arxula adeninivorans, with various characteristics such as being thermo-tolerant or halo-tolerant, rapidly reaching high cell densities or utilizing unusual carbon sources. Several strains were also engineered to have further advantages, such as humanized glycosylation pathways or lack of proteases. Additionally, with a large variety of vectors, promoters and selection markers to choose from, combined with the accumulated knowledge on industrial-scale fermentation techniques and the current advances in the post-genomic technology, it is possible to design more cost-effective expression systems in order to meet the increasing demand for recombinant proteins and glycoproteins. In this review, the present status of the main and most promising yeast expression systems is discussed. PMID:21964262

  12. Recombinant antigens for immunodiagnosis of cystic echinococcosis

    PubMed Central

    Li, Jun; Zhang, Wen-Bao

    2004-01-01

    Three cDNAs, termed EpC1, TPxEg and EgG5, were isolated by immunoscreening from an Echinococcus granulosus cDNA library. The recombinant phages exhibited strong reactivity with sera from humans with confirmed cystic echinococcosis (CE) and with sera from mice infected with E. granulosus oncospheres. The cDNAs were subcloned into a pET vector, expressed as fusion proteins tagged with GST and affinity purified against the GST tag. Of the three recombinant proteins, EpC1 achieved the highest performance for serodiagnosis of CE in Western blot analysis using a panel of clinically defined human sera to initially address the sensitivity and specificity of the molecules. The protein yielded an overall sensitivity of 92.2% and specificity of 95.6%, levels unprecedented taking into account the large panel of 896 human sera that were tested. The strategy used may also prove suitable for improved immunodiagnosis of other parasitic infections. PMID:15188015

  13. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  14. Recombinant electric storage battery

    SciTech Connect

    Flicker, R.P.; Fenstermacher, S.

    1989-10-10

    This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

  15. Recombination Hotspot/Coldspot Identification Combining Three Different Pseudocomponents via an Ensemble Learning Approach.

    PubMed

    Liu, Bingquan; Liu, Yumeng; Huang, Dong

    2016-01-01

    Recombination presents a nonuniform distribution across the genome. Genomic regions that present relatively higher frequencies of recombination are called hotspots while those with relatively lower frequencies of recombination are recombination coldspots. Therefore, the identification of hotspots/coldspots could provide useful information for the study of the mechanism of recombination. In this study, a new computational predictor called SVM-EL was proposed to identify hotspots/coldspots across the yeast genome. It combined Support Vector Machines (SVMs) and Ensemble Learning (EL) based on three features including basic kmer (Kmer), dinucleotide-based auto-cross covariance (DACC), and pseudo dinucleotide composition (PseDNC). These features are able to incorporate the nucleic acid composition and their order information into the predictor. The proposed SVM-EL achieves an accuracy of 82.89% on a widely used benchmark dataset, which outperforms some related methods. PMID:27648451

  16. Recombination Hotspot/Coldspot Identification Combining Three Different Pseudocomponents via an Ensemble Learning Approach

    PubMed Central

    Liu, Yumeng; Huang, Dong

    2016-01-01

    Recombination presents a nonuniform distribution across the genome. Genomic regions that present relatively higher frequencies of recombination are called hotspots while those with relatively lower frequencies of recombination are recombination coldspots. Therefore, the identification of hotspots/coldspots could provide useful information for the study of the mechanism of recombination. In this study, a new computational predictor called SVM-EL was proposed to identify hotspots/coldspots across the yeast genome. It combined Support Vector Machines (SVMs) and Ensemble Learning (EL) based on three features including basic kmer (Kmer), dinucleotide-based auto-cross covariance (DACC), and pseudo dinucleotide composition (PseDNC). These features are able to incorporate the nucleic acid composition and their order information into the predictor. The proposed SVM-EL achieves an accuracy of 82.89% on a widely used benchmark dataset, which outperforms some related methods.

  17. Recombination Hotspot/Coldspot Identification Combining Three Different Pseudocomponents via an Ensemble Learning Approach

    PubMed Central

    Liu, Yumeng; Huang, Dong

    2016-01-01

    Recombination presents a nonuniform distribution across the genome. Genomic regions that present relatively higher frequencies of recombination are called hotspots while those with relatively lower frequencies of recombination are recombination coldspots. Therefore, the identification of hotspots/coldspots could provide useful information for the study of the mechanism of recombination. In this study, a new computational predictor called SVM-EL was proposed to identify hotspots/coldspots across the yeast genome. It combined Support Vector Machines (SVMs) and Ensemble Learning (EL) based on three features including basic kmer (Kmer), dinucleotide-based auto-cross covariance (DACC), and pseudo dinucleotide composition (PseDNC). These features are able to incorporate the nucleic acid composition and their order information into the predictor. The proposed SVM-EL achieves an accuracy of 82.89% on a widely used benchmark dataset, which outperforms some related methods. PMID:27648451

  18. [Expression, refolding and biological activity of recombinant type-I metalloproteinase acutolysin a from Agkistrodon acutus].

    PubMed

    Xiang, Kai-Jun; Yu, Hong-Xiu; Zou, Chun-Sen; Yuan, Pei-Hua; Liu, Jing

    2002-09-01

    Type-I snake venom metalloproteinase acutolysin A gene was cloned into the prokaryotic expression vector pBAD/gIIIA and the resulting recombinant plasmid pDS was obtained. By the induction with 0.02% L-(+)-arabinose, the recombinant metalloproteinase was expressed in insoluble inclusion body in E. coli TOP10 and reached up to 5%--10% of total bacterial proteins. The recombinant metalloproteinase has an additional sequence of N-terminal 22 amino acids and C-terminal 8 amino acids (housing 6 histidines), both of which derived from the vector. The purified inclusion body was solubilized by 8 mol/L urea or 6 mol/L guanidine-HCl and the denatured soluble recombinant metalloproteinase was allowed to refold in vitro. Western blotting and ELISA obviously showed that the renatured recombinant metalloproteinase possessed strong immune reactivity very closely related to natural acutolysin A. Animal experiments showed that the refolded recombinant metalloproteinase had an obvious hemorrhagic activity. Except PMSF, 1 mmol/L EDTA, 1 mmol/L EGTA, and 3 mmol/L imidazole could inhibit the hemorrhagic activity of the recombinant and the natural metalloproteinases to different extent. Based on the investigations of others and our experimental results, the hemorrhagic mechanism of snake metalloproteinases was discussed.

  19. Heterologous protein production using euchromatin-containing expression vectors in mammalian cells.

    PubMed

    Zboray, Katalin; Sommeregger, Wolfgang; Bogner, Edith; Gili, Andreas; Sterovsky, Thomas; Fauland, Katharina; Grabner, Beatrice; Stiedl, Patricia; Moll, Herwig P; Bauer, Anton; Kunert, Renate; Casanova, Emilio

    2015-09-18

    Upon stable cell line generation, chromosomal integration site of the vector DNA has a major impact on transgene expression. Here we apply an active gene environment, rather than specified genetic elements, in expression vectors used for random integration. We generated a set of Bacterial Artificial Chromosome (BAC) vectors with different open chromatin regions, promoters and gene regulatory elements and tested their impact on recombinant protein expression in CHO cells. We identified the Rosa26 BAC as the most efficient vector backbone showing a nine-fold increase in both polyclonal and clonal production of the human IgG-Fc. Clonal protein production was directly proportional to integrated vector copy numbers and remained stable during 10 weeks without selection pressure. Finally, we demonstrated the advantages of BAC-based vectors by producing two additional proteins, HIV-1 glycoprotein CN54gp140 and HIV-1 neutralizing PG9 antibody, in bioreactors and shake flasks reaching a production yield of 1 g/l.

  20. Adenoviral vector-mediated gene transfer for human gene therapy.

    PubMed

    Breyer, B; Jiang, W; Cheng, H; Zhou, L; Paul, R; Feng, T; He, T C

    2001-07-01

    Human gene therapy promises to change the practice of medicine by treating the causes of disease rather than the symptoms. Since the first clinical trial made its debut ten years ago, there are over 400 approved protocols in the United States alone, most of which have failed to show convincing data of clinical efficacy. This setback is largely due to the lack of efficient and adequate gene transfer vehicles. With the recent progress in elucidating the molecular mechanisms of human diseases and the imminent arrival of the post genomic era, there are increasing numbers of therapeutic genes or targets that are available for gene therapy. Therefore, the urgency and need for efficacious gene therapies are greater than ever. Clearly, the current fundamental obstacle is to develop delivery vectors that exhibit high efficacy and specificity of gene transfer. Recombinant adenoviruses have provided a versatile system for gene expression studies and therapeutic applications. Of late, there has been a remarkable increase in adenoviral vector-based clinical trials. Recent endeavors in the development of recombinant adenoviral vectors have focused on modification of virus tropism, accommodation of larger genes, increase in stability and control of transgene expression, and down-modulation of host immune responses. These modifications and continued improvements in adenoviral vectors will provide a great opportunity for human gene therapy to live up to its enormous potential in the second decade.

  1. Generation of a vector suite for protein solubility screening

    PubMed Central

    Correa, Agustín; Ortega, Claudia; Obal, Gonzalo; Alzari, Pedro; Vincentelli, Renaud; Oppezzo, Pablo

    2014-01-01

    Recombinant protein expression has become an invaluable tool for academic and biotechnological projects. With the use of high-throughput screening technologies for soluble protein production, uncountable target proteins have been produced in a soluble and homogeneous state enabling the realization of further studies. Evaluation of hundreds conditions requires the use of high-throughput cloning and screening methods. Here we describe a new versatile vector suite dedicated to the expression improvement of recombinant proteins (RP) with solubility problems. This vector suite allows the parallel cloning of the same PCR product into the 12 different expression vectors evaluating protein expression under different promoter strength, different fusion tags as well as different solubility enhancer proteins. Additionally, we propose the use of a new fusion protein which appears to be a useful solubility enhancer. Above all we propose in this work an economic and useful vector suite to fast track the solubility of different RP. We also propose a new solubility enhancer protein that can be included in the evaluation of the expression of RP that are insoluble in classical expression conditions. PMID:24616717

  2. Gene transfer into neural cells in vitro using adenoviral vectors.

    PubMed

    Southgate, T D; Kingston, P A; Castro, M G

    2001-05-01

    Adenoviruses (Ads) have become a very attractive and versatile vector system for delivering genes into brain cells in vitro and in vivo. One of the main attractions of Ads is that they can mediate gene transfer into post-mitotic cells, i.e. neurons. Ads are easy to grow and manipulate, stable, and their biology is very well understood. This unit is designed to help newcomers into the field, to design, prepare and grow replication-defective recombinant adenovirus vectors with the aim of transferring genes into neurons and glial cells in primary culture. It provides step-by-step methods describing the preparation of brain cell cultures, their infection using recombinant adenovirus vectors and also the assessment of transgene expression using a variety of techniques including fluorescence immunocytochemistry and fluorescence activated cell-sorting (FACS) analysis. The methods described will be useful to scientists wishing to enter the adenovirus field to construct adenovirus vectors to be used for gene transfer into neural cells.

  3. Ad 2.0: a novel recombineering platform for high-throughput generation of tailored adenoviruses

    PubMed Central

    Mück-Häusl, Martin; Solanki, Manish; Zhang, Wenli; Ruzsics, Zsolt; Ehrhardt, Anja

    2015-01-01

    Recombinant adenoviruses containing a double-stranded DNA genome of 26–45 kb were broadly explored in basic virology, for vaccination purposes, for treatment of tumors based on oncolytic virotherapy, or simply as a tool for efficient gene transfer. However, the majority of recombinant adenoviral vectors (AdVs) is based on a small fraction of adenovirus types and their genetic modification. Recombineering techniques provide powerful tools for arbitrary engineering of recombinant DNA. Here, we adopted a seamless recombineering technology for high-throughput and arbitrary genetic engineering of recombinant adenoviral DNA molecules. Our cloning platform which also includes a novel recombination pipeline is based on bacterial artificial chromosomes (BACs). It enables generation of novel recombinant adenoviruses from different sources and switching between commonly used early generation AdVs and the last generation high-capacity AdVs lacking all viral coding sequences making them attractive candidates for clinical use. In combination with a novel recombination pipeline allowing cloning of AdVs containing large and complex transgenes and the possibility to generate arbitrary chimeric capsid-modified adenoviruses, these techniques allow generation of tailored AdVs with distinct features. Our technologies will pave the way toward broader applications of AdVs in molecular medicine including gene therapy and vaccination studies. PMID:25609697

  4. The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors.

    PubMed

    Emery, David W

    2011-06-01

    The therapeutic application of recombinant retroviruses and other integrating gene transfer vectors has been limited by problems of vector expression and vector-mediated genotoxicity. These problems arise in large part from the interactions between vector sequences and the genomic environment surrounding sites of integration. Strides have been made in overcoming both of these problems through the modification of deleterious vector sequences, the inclusion of better enhancers and promoters, and the use of alternative virus systems. However, these modifications often add other restrictions on vector design, which in turn can further limit therapeutic applications. As an alternative, several groups have been investigating a class of DNA regulatory elements known as chromatin insulators. These elements provide a means of blocking the interaction between an integrating vector and the target cell genome in a manner that is independent of the vector transgene, regulatory elements, or virus of origin. This review outlines the background, rationale, and evidence for using chromatin insulators to improve the expression and safety of gene transfer vectors. Also reviewed are topological factors that constrain the use of insulators in integrating gene transfer vectors, alternative sources of insulators, and the role of chromatin insulators as one of several components for optimal vector design.

  5. Increasing protein production by directed vector backbone evolution

    PubMed Central

    2013-01-01

    Recombinant protein production in prokaryotic and eukaryotic organisms was a key enabling technology for the rapid development of industrial and molecular biotechnology. However, despite all progress the improvement of protein production is an ongoing challenge and of high importance for cost-effective enzyme production. With the epMEGAWHOP mutagenesis protocol for vector backbone optimization we report a novel directed evolution based approach to increase protein production levels by randomly introducing mutations in the vector backbone. In the current study we validate the epMEGAWHOP mutagenesis protocol for three different expression systems. The latter demonstrated the general applicability of the epMEGAWHOP method. Cellulase and lipase production was doubled in one round of directed evolution by random mutagenesis of pET28a(+) and pET22b(+) vector backbones. Protease production using the vector pHY300PLK was increased ~4-times with an average of ~1.25 mutations per kb vector backbone. The epMEGAWHOP does not require any rational understanding of the expression machinery and can generally be applied to enzymes, expression vectors and related hosts. epMEGAWHOP is therefore from our point of view a robust, rapid and straight forward alternative for increasing protein production in general and for biotechnological applications. PMID:23890095

  6. Generation of stable Drosophila cell lines using multicistronic vectors.

    PubMed

    González, Monika; Martín-Ruíz, Itziar; Jiménez, Silvia; Pirone, Lucia; Barrio, Rosa; Sutherland, James D

    2011-01-01

    Insect cell culture is becoming increasingly important for applications including recombinant protein production and cell-based screening with chemical or RNAi libraries. While stable mammalian cell lines expressing a protein of interest can be efficiently prepared using IRES-based vectors or viral-based approaches, options for stable insect cell lines are more limited. Here, we describe pAc5-STABLEs, new vectors for use in Drosophila cell culture to facilitate stable transformation. We show that viral-derived 2A-like (or "CHYSEL") peptides function in Drosophila cells and can mediate the multicistronic expression of two or three proteins of interest under control of the Actin5C constitutive promoter. The current vectors allow mCherry and/or GFP fusions to be generated for positive selection by G418 resistance in cells and should serve as a flexible platform for future applications. PMID:22355594

  7. Therapeutic Use of Native and Recombinant Enteroviruses

    PubMed Central

    Ylä-Pelto, Jani; Tripathi, Lav; Susi, Petri

    2016-01-01

    Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy. PMID:26907330

  8. Therapeutic Use of Native and Recombinant Enteroviruses.

    PubMed

    Ylä-Pelto, Jani; Tripathi, Lav; Susi, Petri

    2016-02-23

    Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these "viral" receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.

  9. Unraveling recombination rate evolution using ancestral recombination maps

    PubMed Central

    Munch, Kasper; Schierup, Mikkel H; Mailund, Thomas

    2014-01-01

    Recombination maps of ancestral species can be constructed from comparative analyses of genomes from closely related species, exemplified by a recently published map of the human-chimpanzee ancestor. Such maps resolve differences in recombination rate between species into changes along individual branches in the speciation tree, and allow identification of associated changes in the genomic sequences. We describe how coalescent hidden Markov models are able to call individual recombination events in ancestral species through inference of incomplete lineage sorting along a genomic alignment. In the great apes, speciation events are sufficiently close in time that a map can be inferred for the ancestral species at each internal branch - allowing evolution of recombination rate to be tracked over evolutionary time scales from speciation event to speciation event. We see this approach as a way of characterizing the evolution of recombination rate and the genomic properties that influence it. PMID:25043668

  10. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  11. Tomorrow's vector vaccines for small ruminants.

    PubMed

    Kyriakis, C S

    2015-12-14

    Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats.

  12. Primordial magnetogenesis before recombination

    NASA Astrophysics Data System (ADS)

    Fabre, Ophélia; Shankaranarayanan, S.

    2016-04-01

    The origin of large magnetic fields in the Universe remains currently unknown. We investigate here a mechanism before recombination based on known physics. The source of the vorticity is due to the changes in the photon distribution function caused by the fluctuations in the background photons. We show that the magnetic field generated in the MHD limit, due to the Coulomb scattering, is of the order 10-49 G on a coherence scale of 10 kpc. We explicitly show that the magnetic fields generated from this process are sustainable and are not erased by resistive diffusion. We compare the results with current observations and discuss the implications. Our seed magnetic fields are generated on small scales whereas the main mechanisms studied in the literature are on scale bigger than 1 Mpc. However, compared to more exotic theories generating seed magnetic fields on similar scales, the strength of our fields are generally smaller.

  13. Recombinant Human Erythropoietin

    PubMed Central

    Bartels, Claudia; Späte, Kira; Krampe, Henning

    2008-01-01

    Treatment of multiple sclerosis (MS) is still unsatisfactory and essentially non-existing for the progressive course of the disease. Recombinant human erythropoietin (EPO) may be a promising neuroprotective/neuroregenerative treatment of MS. In the nervous system, EPO acts anti-apoptotic, antioxidative, anti-inflammatory, neurotrophic and plasticity-modulating. Beneficial effects have been shown in animal models of various neurological and psychiatric diseases, including different models of experimental autoimmune encephalomyelitis. EPO is also effective in human brain disease, as shown in double-blind placebo-controlled clinical studies on ischemic stroke and chronic schizophrenia. An exploratory study on chronic progressive MS yielded lasting improvement in motor and cognitive performance upon high-dose long-term EPO treatment. PMID:21180577

  14. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  15. [Vector control and malaria control].

    PubMed

    Carnevale, P; Mouchet, J

    1990-01-01

    Vector control is an integral part of malaria control. Limiting parasite transmission vector control must be considered as one of the main preventive measure. Indeed it prevents transmission of Plasmodium from man to vector and from vector to man. But vector control must be adapted to local situation to be efficient and feasible. Targets of vector control can be larval and/or adults stages. In both cases 3 main methods are currently available: physical (source reduction), chemical (insecticides) and biological tolls. Antilarval control is useful only in some particular circumstances (unstable malaria, island, oasis...) Antiadult control is mainly based upon house-spraying while pyrethroid treated bed nets is advocated regarding efficiency, simple technique and cheap price. Vector control measures could seem restricted but can be very efficient if political will is added to a right choice of adapted measures, a good training of involved personal and a large information of the population concerned with vector control.

  16. The recombination of genetic material

    SciTech Connect

    Low, K.B.

    1988-01-01

    Genetic recombination is the major mechanism by which new arrangements of genetic elements are produced in all living organisms, from the simplest bacterial viruses to humans. This volume presents an overview of the types of recombination found in prokaryotes and eukaryotes.

  17. [Immune efficacy of rabies virus glycoprotein expressed by baculovirus vector].

    PubMed

    Chen, Qi; Zhang, Shou-Feng; Liu, Ye; Fu, Yun-Hong; Sun, Cheng-Long; Yang, Yang; Gong, Ting; Song, Fei-Fei; Hu, Rong-Liang

    2012-09-01

    To construct a recombinant baculovirus expressing glycoprotein (GP) of RV SRV9 strain and test the immunological efficacy in mice, open reading frame of rabies virus GP gene of SRV9 strain was cloned into the shuttle vector Bacmid to construct the recombinant shuttle plasmid Bacmid-G and transfection was performed into S f9 cells with the recombinant shuttle plasmid. CPE appeared in cell cultures was identified by electronmicroscopy. Western-blot, IFA and immunity tests in mice were performed to identify the immunoreactivity and immunogenicity of the expression products. Our results showed a recombinant baculovirus expressing GP protein of rabies virus SRV9 was obtained. The expression products possessed a favorable immunogenicity and fall immunized mice could develop 100% protective level of anti-rabies neutralizing antibody. In conclusion, The SRV9 glycoprotein expressed by the recombinant baculovirus in this study had good immunogenicity and could induce anti-rabies neutralizing antibody, which laid the foundation of further development of rabies subunit vaccine.

  18. [Comparison of expression and antibacterial activities of recombinant porcine lactoferrin expressed in four Lactobacillus species].

    PubMed

    Yu, Hui; Jiang, Yanping; Cui, Wen; Wu, Xiao; He, Jia; Qiao, Xinyuan; Li, Yijing; Tang, Lijie

    2014-09-01

    The coding sequence for the mature peptide of porcine lactoferrin (Plf) was synthesized according to the codon usage of lactobacillus, to establish optimized porcine lactoferrin Lactobacillus expression system. The gene was ligated into the Xho I/BamH I site of Lactobacillus expression vector pPG612.1 and the recombinant plasmid pPG612.1-plf was transformed individually into Lactobacillus casei ATCC393, Lactobacillus pentosus KLDS1.0413, Lactobacillus plantarum KLDS1.0344 or Lactobacillus paracasei KLDS1.0652 by electroporation. After induction with xylose, expression of the recombinant proteins was detected by Western blotting and confocal laser scanning microscopy. Secretion of recombinant Plf proteins from four recombinant species was determined quantitatively by ELISA. The antibacterial activities of recombinant proteins were measured by agar diffusion method. The result shows that Plf was correctly expressed in four species of recombinant lactobacillus, with molecular weight of about 73 kDa. The expression levels in recombinant Lactobacillus casei, Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus paracasei were 9.6 μg/mL, 10.8 μg/mL, 12.5 μg/mL and 9.9 μg/mL, respectively. Antimicrobial activity experiment shows that the recombinant proteins were active against E. coli, Staphylococcus aureus, Salmonella typhimurium, Listeria, Pasteurella. The recombinant Plf expressed by recombinant Lactobacillus plantarum showed the best antibacterial activity among all recombinant lactobacillus species. These data represent a basis for the development and application of porcine lactoferrin from recombinant lactobacillus.

  19. Within-host dynamics of the emergence of Tomato yellow leaf curl virus recombinants.

    PubMed

    Urbino, Cica; Gutiérrez, Serafin; Antolik, Anna; Bouazza, Nabila; Doumayrou, Juliette; Granier, Martine; Martin, Darren P; Peterschmitt, Michel

    2013-01-01

    Tomato yellow leaf curl virus (TYLCV) is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV) has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi), and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci. We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection-a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our results

  20. Elusive vector glueball

    SciTech Connect

    Suzuki, Mahiko

    2002-05-01

    If the vector glueball {Omicron} exists in the mass range that theory suggests, its resonant production cross section can be detected in e{sup +}e{sup -} annihilation only if the decay width is very narrow ({le} a few MeV). Otherwise {Omicron} will be observed only indirectly through its mixing with {psi}{prime}. We propose a few tests of the {Omicron}-{psi}{prime} mixing for future charm factories.

  1. Vector soliton fission.

    PubMed

    Lu, F; Lin, Q; Knox, W H; Agrawal, Govind P

    2004-10-29

    We investigate the vectorial nature of soliton fission in an isotropic nonlinear medium both theoretically and experimentally. As a specific example, we show that supercontinuum generation in a tapered fiber is extremely sensitive to the input state of polarization. Multiple vector solitons generated through soliton fission exhibit different states of elliptical polarization while emitting nonsolitonic radiation with complicated polarization features. Experiments performed with a tapered fiber agree with our theoretical description.

  2. Vector Magnetograph Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1996-01-01

    This report covers work performed during the period of November 1994 through March 1996 on the design of a Space-borne Solar Vector Magnetograph. This work has been performed as part of a design team under the supervision of Dr. Mona Hagyard and Dr. Alan Gary of the Space Science Laboratory. Many tasks were performed and this report documents the results from some of those tasks, each contained in the corresponding appendix. Appendices are organized in chronological order.

  3. Bimolecular recombination in organic photovoltaics.

    PubMed

    Lakhwani, Girish; Rao, Akshay; Friend, Richard H

    2014-01-01

    The recombination of electrons and holes is a major loss mechanism in photovoltaic devices that controls their performance. We review scientific literature on bimolecular recombination (BR) in bulk heterojunction organic photovoltaic devices to bring forward existing ideas on the origin and nature of BR and highlight both experimental and theoretical work done to quantify its extent. For these systems, Langevin theory fails to explain BR, and recombination dynamics turns out to be dependent on mobility, temperature, electric field, charge carrier concentration, and trapped charges. Relationships among the photocurrent, open-circuit voltage, fill factor, and morphology are discussed. Finally, we highlight the recent emergence of a molecular-level picture of recombination, taking into account the spin and delocalization of charges. Together with the macroscopic picture of recombination, these new insights allow for a comprehensive understanding of BR and provide design principles for future materials and devices.

  4. Variation of dislocation etch-pit geometry: An indicator of bulk microstructure and recombination activity in multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Castellanos, S.; Kivambe, M.; Hofstetter, J.; Rinio, M.; Lai, B.; Buonassisi, T.

    2014-05-01

    Dislocation clusters in multicrystalline silicon limit solar cell performance by decreasing minority carrier diffusion length. Studies have shown that the recombination strength of dislocation clusters can vary by up to two orders of magnitude, even within the same wafer. In this contribution, we combine a surface-analysis approach with bulk characterization techniques to explore the underlying root cause of variations in recombination strength among different clusters. We observe that dislocation clusters with higher recombination strength consist of dislocations with a larger variation of line vector, correlated with a higher degree of variation in dislocation etch-pit shapes (ellipticities). Conversely, dislocation clusters exhibiting the lowest recombination strength contain mostly dislocations with identical line vectors, resulting in very similar etch-pit shapes. The disorder of dislocation line vector in high-recombination clusters appears to be correlated with impurity decoration, possibly the cause of the enhanced recombination activity. Based on our observations, we conclude that the relative recombination activity of different dislocation clusters in the device may be predicted via an optical inspection of the distribution and shape variation of dislocation etch pits in the as-grown wafer.

  5. Cloning, Expression and Biological Analysis of Recombinant Chicken IFN-gamma Expressed in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interferon-gamma (CHIFN-') derived from the spleen cells of White Leghorns chicken, a local Chinese breeding species was amplified by RT-PCR. The gene encoding CHIFN-' with the deletion of the N-terminal signal peptide was cloned into prokaryotic expression vector pET30a, resulting in a recombin...

  6. S2 expressed from recombinant virus confers broad protection against infectious bronchitis virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously demonstrated that overexposing the IBV (infectious bronchitis virus) S2 to the chicken immune system by means of a vectored vaccine, followed by boost with whole virus, protects chickens against IBV showing dissimilar S1. We developed recombinant Newcastle disease virus (NDV) LaSota (...

  7. Retroviral recombination during reverse transcription.

    PubMed

    Goodrich, D W; Duesberg, P H

    1990-03-01

    After mixed infection, up to half of related retroviruses are recombinants. During infection, retroviral RNA genomes are first converted to complementary DNA (cDNA) and then to double-stranded DNA. Thus recombination could occur during reverse transcription, by RNA template switching, or after reverse transcription, by breakage and reunion of DNA. It has not been possible to distinguish between these two potential mechanisms of recombination because both single-stranded cDNA and double-stranded proviral DNA exist in infected cells during the eclipse period. Therefore we have analyzed for recombinant molecules among cDNA products transcribed in vitro from RNA of disrupted virions. Since recombinants from allelic parents can only be distinguished from parental genomes by point mutations, we have examined the cDNAs from virions with distinct genetic structures for recombinant-specific size and sequence markers. The parents share a common internal allele that allows homology-directed recombination, but each contains specific flanking sequences. One parent is a synthetically altered Harvey murine sarcoma virus RNA that lacks a retroviral 3' terminus but carries a Moloney murine retrovirus-derived envelope gene (env) fragment 3' of its transforming ras gene. The other parent is intact Moloney virus. Using a Harvey-specific 5' primer and a Moloney-specific 3' primer, we have found recombinant cDNAs with the polymerase chain reaction, proving directly that retroviruses can recombine during reverse transcription unassisted by cellular enzymes, probably by template switching during cDNA synthesis. The recombinants that were obtained in vitro were identical with those obtained in parallel experiments in vivo.

  8. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    PubMed

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination.

  9. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    PubMed

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination. PMID:27349114

  10. Positive-selection and ligation-independent cloning vectors for large scale in planta expression for plant functional genomics.

    PubMed

    Oh, Sang-Keun; Kim, Saet-Byul; Yeom, Seon-In; Lee, Hyun-Ah; Choi, Doil

    2010-12-01

    Transient expression is an easy, rapid and powerful technique for producing proteins of interest in plants. Recombinational cloning is highly efficient but has disadvantages, including complicated, time consuming cloning procedures and expensive enzymes for large-scale gene cloning. To overcome these limitations, we developed new ligation-independent cloning (LIC) vectors derived from binary vectors including tobacco mosaic virus (pJL-TRBO), potato virus X (pGR106) and the pBI121 vector-based pMBP1. LIC vectors were modified to enable directional cloning of PCR products without restriction enzyme digestion or ligation reactions. In addition, the ccdB gene, which encodes a potent cell-killing protein, was introduced between the two LIC adapter sites in the pJL-LIC, pGR-LIC, and pMBP-LIC vectors for the efficient selection of recombinant clones. This new vector does not require restriction enzymes, alkaline phosphatase, or DNA ligase for cloning. To clone, the three LIC vectors are digested with SnaBI and treated with T4 DNA polymerase, which includes 3' to 5' exonuclease activity in the presence of only one dNTP (dGTP for the inserts and dCTP for the vector). To make recombinants, the vector plasmid and the insert PCR fragment were annealed at room temperature for 20 min prior to transformation into the host. Bacterial transformation was accomplished with 100% efficiency. To validate the new LIC vector systems, we were used to coexpressed the Phytophthora AVR and potato resistance (R) genes in N. benthamiana by infiltration of Agrobacterium. Coexpressed AVR and R genes in N. benthamiana induced the typical hypersensitive cell death resulting from in vivo interaction of the two proteins. These LIC vectors could be efficiently used for high-throughput cloning and laboratory-scale in planta expression. These vectors could provide a powerful tool for high-throughput transient expression assays for functional genomic studies in plants. PMID:21340673

  11. Vector representation of tourmaline compositions

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1989-01-01

    The vector method for representing mineral compositions of amphibole and mica groups is applied to the tourmaline group. Consideration is given to the methods for drawing the relevant vector diagrams, relating the exchange vectors to one another, and contouring the diagrams for constant values of Na, Ca, Li, Fe, Mg, Al, Si, and OH. The method is used to depict a wide range of possible tourmaline end-member compositions and solid solutions, starting from a single point. In addition to vector depictions of multicomponent natural tourmalines, vectors are presented for simpler systems such as (Na,Al)-tourmalines, alkali-free tourmalines, and elbaites.

  12. An improved cosmid vector for the cloning of equine herpesvirus DNA.

    PubMed

    Nicolson, L; Rafferty, E L; Brawley, A; Onions, D E

    1994-12-15

    We have modified the commercial cosmid vector, triple helix vector (THV), such that I-Sce-I restriction endonuclease sites flank the cloning site. I-Sce-I is a rare-cutting endonuclease which recognizes an 18-bp sequence. It does not restrict the genome of either of the equine herpesvirus 1 or 4 (EHV-1 and EHV-4) strains we have cosmid cloned. Thus, cosmid-cloned EHV fragments can be excised intact from the vector by I-Sce-I digestion, facilitating production of large overlapping EHV fragments for use in transfections to produce recombinant virus. PMID:7821817

  13. Vector ecology of equine piroplasmosis.

    PubMed

    Scoles, Glen A; Ueti, Massaro W

    2015-01-01

    Equine piroplasmosis is a disease of Equidae, including horses, donkeys, mules, and zebras, caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick vectors, and although they have inherent differences they are categorized together because they cause similar pathology and have similar morphologies, life cycles, and vector relationships. To complete their life cycle, these parasites must undergo a complex series of developmental events, including sexual-stage development in their tick vectors. Consequently, ticks are the definitive hosts as well as vectors for these parasites, and the vector relationship is restricted to a few competent tick species. Because the vector relationship is critical to the epidemiology of these parasites, we highlight current knowledge of the vector ecology of these tick-borne equine pathogens, emphasizing tick transmissibility and potential control strategies to prevent their spread.

  14. Recombinant production of mecasermin in E. coli expression system

    PubMed Central

    Jafari, S.; Babaeipour, V.; Seyedi, H.A. Eslampanah; Rahaie, M.; Mofid, M.R.; Haddad, L.; Namvaran, M.M.; Fallah, J.

    2014-01-01

    Human Insulin-like growth factor 1 (hIGF-1) consists of 70 amino acids in a single chain with three intermolecular disulfide bridges possessing valuable therapeutic effects. To date, numerous variants of specifically engineered hIGF-1 have been produced so as to improve hIGF-1 biological activity, stability and stronger binding to IGF-1 receptor. Mecasermin is one of the modified variants with one amino acid substitution near the N-terminal (T4I) approved for the treatment of growth failure diabetes, wound healing, amyotrophic lateral sclerosis and severe primary IGF-1 deficiency. No scientific report for recombinant production of mecasermin in Escherichia coli (E. coli) expression system has been sofar reported. In the present study, we therefore investigated the overexpression of mecasermin in two different E. coli strains in order to obtain higher yield of recombinant protein. To achieve this goal, mecasermin DNA encoding sequence was designed based on polypeptide sequence, optimized according to E. coli codon preference, and cloned in pET15b. Recombinant vector, pET15-mecasermin, transferred into two E. coli strains rigami B (DE3) and BL21 (DE3) and induced for expression in a small scale. Results revealed the E. coli Origami B (DE3) expression system was a preferable host for mecasermin production due to its high expression level being around twice as much as BL21 (DE3). Large scale mecasermin production was performed in batch culture and produced recombinant protein specifically confirmed by western blotting and mass spectroscopy. Since major part of recombinant mecasermin was expressed as inclusion body, isolation and refolding was accomplished through developed purification procedure, and finally recombinant protein was successfully purified by gel filtration chromatography. PMID:26339260

  15. Delayed recombination and standard rulers

    SciTech Connect

    De Bernardis, Francesco; Melchiorri, Alessandro; Bean, Rachel; Galli, Silvia; Silk, Joseph I.; Verde, Licia

    2009-02-15

    Measurements of baryonic acoustic oscillations (BAOs) in galaxy surveys have been recognized as a powerful tool for constraining dark energy. However, this method relies on the knowledge of the size of the acoustic horizon at recombination derived from cosmic microwave background (CMB) anisotropy measurements. This estimate is typically derived assuming a standard recombination scheme; additional radiation sources can delay recombination altering the cosmic ionization history and the cosmological inferences drawn from CMB and BAO data. In this paper we quantify the effect of delayed recombination on the determination of dark energy parameters from future BAO surveys such as the Baryon Oscillation Spectroscopic Survey and the Wide-Field Multi-Object Spectrograph. We find the impact to be small but still not negligible. In particular, if recombination is nonstandard (to a level still allowed by CMB data), but this is ignored, future surveys may incorrectly suggest the presence of a redshift-dependent dark energy component. On the other hand, in the case of delayed recombination, adding to the analysis one extra parameter describing deviations from standard recombination does not significantly degrade the error bars on dark energy parameters and yields unbiased estimates. This is due to the CMB-BAO complementarity.

  16. Analysis of interchromosomal mitotic recombination.

    PubMed

    McGill, C B; Shafer, B K; Higgins, D R; Strathern, J N

    1990-07-01

    A novel synthetic locus is described that provides a simple assay system for characterizing mitotic recombinants. The locus consists of the TRP1 and HIS3 genes inserted into chromosome III of S. cerevisiae between the CRY1 and MAT loci. Defined trp1 and his3 alleles have been generated that allow the selection of interchromosomal recombinants in this interval. Trp+ or His+ recombinants can be divided into several classes based on coupling of the other alleles in the interval. The tight linkage of the CRY1 and MAT loci, combined with the drug resistance and cell type phenotypes that they respectively control, facilitates the classification of the recombinants without resorting to tetrad dissection. We present the distribution of spontaneous recombinants among the classes defined by this analysis. The data suggest that the recombination intermediate can have regions of symmetric strand exchange and that co-conversion tracts can extend over 1-3 kb. Continuous conversion tracts are favored over discontinuous tracts. The distribution among the classes defined by this analysis is altered in recombinants induced by UV irradiation.

  17. Generation of a p10-based baculovirus expression vector in yeast with infectivity for insect larvae and insect cells.

    PubMed

    Heldens, J G; Kester, H A; Zuidema, D; Vlak, J M

    1997-10-01

    A new, versatile baculovirus vector was developed for the generation of recombinants in the yeast Saccharomyces cerevisiae and for the expression of foreign proteins in both insect larvae and in insect cells. This vector is based on Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) and exploits the 10-kDa protein promoter (p10) for the expression of the foreign gene. The p10 locus was used for the insertion of a yeast-selectable marker system (ARS-URA-URA3) and of a gene for screening and titration of recombinants in insect cells (beta-galactosidase). The polyhedron-positive phenotype of this vector is maintained allowing its use in insect larvae, by feeding polyhedra, and in insect cells, by infecting with budded virus. The generation of this baculovirus vector requires a single recombination step in yeast prior to infection of insect cells, but has the advantage over the vector designed previously (Patel et al., A new method for the isolation of recombinant baculovirus, Nucleic Acids Research 20 (1992) 97-104) that these vectors can also be used in insects.

  18. Aspergillus: sex and recombination.

    PubMed

    Varga, János; Szigeti, Gyöngyi; Baranyi, Nikolett; Kocsubé, Sándor; O'Gorman, Céline M; Dyer, Paul S

    2014-12-01

    The genus Aspergillus is one of the most widespread groups of fungi on Earth, comprised of about 300-350 species with very diverse lifestyles. Most species produce asexual propagula (conidia) on conidial heads. Despite their ubiquity, a sexual cycle has not yet been identified for most of the aspergilli. Where sexual reproduction is present, species exhibit either homothallic (self fertile) or heterothallic (obligate outcrossing) breeding systems. A parasexual cycle has also been described in some Aspergillus species. As in other fungi, sexual reproduction is governed by mating-type (MAT) genes, which determine sexual identity and are involved in regulating later stages of sexual development. Previous population genetic studies have indicated that some supposedly asexual aspergilli exhibit evidence of a recombining population structure, suggesting the presence of a cryptic sexual cycle. In addition, genome analyses have revealed networks of genes necessary for sexual reproduction in several Aspergillus species, again consistent with latent sexuality in these fungi. Knowledge of MAT gene presence has then successfully been applied to induce sexual reproduction between MAT1-1 and MAT1-2 isolates of certain supposedly asexual aspergilli. Recent progress in understanding the extent and significance of sexual reproduction is described here, with special emphasis on findings that are relevant to clinically important aspergilli.

  19. Aspergillus: sex and recombination.

    PubMed

    Varga, János; Szigeti, Gyöngyi; Baranyi, Nikolett; Kocsubé, Sándor; O'Gorman, Céline M; Dyer, Paul S

    2014-12-01

    The genus Aspergillus is one of the most widespread groups of fungi on Earth, comprised of about 300-350 species with very diverse lifestyles. Most species produce asexual propagula (conidia) on conidial heads. Despite their ubiquity, a sexual cycle has not yet been identified for most of the aspergilli. Where sexual reproduction is present, species exhibit either homothallic (self fertile) or heterothallic (obligate outcrossing) breeding systems. A parasexual cycle has also been described in some Aspergillus species. As in other fungi, sexual reproduction is governed by mating-type (MAT) genes, which determine sexual identity and are involved in regulating later stages of sexual development. Previous population genetic studies have indicated that some supposedly asexual aspergilli exhibit evidence of a recombining population structure, suggesting the presence of a cryptic sexual cycle. In addition, genome analyses have revealed networks of genes necessary for sexual reproduction in several Aspergillus species, again consistent with latent sexuality in these fungi. Knowledge of MAT gene presence has then successfully been applied to induce sexual reproduction between MAT1-1 and MAT1-2 isolates of certain supposedly asexual aspergilli. Recent progress in understanding the extent and significance of sexual reproduction is described here, with special emphasis on findings that are relevant to clinically important aspergilli. PMID:25118872

  20. Intraparenchymal Stereotaxic Delivery of rAAV and Special Considerations in Vector Handling.

    PubMed

    Benskey, Matthew J; Manfredsson, Fredric P

    2016-01-01

    Stereotaxic surgery enables precise and consistent microinjections to discrete neural nuclei. Using stereotaxic surgery to deliver viral vectors is a powerful tool that provides the ability to manipulate gene expression in specific regions, or even specific cell types in the brain. Here, we describe the proper handling and stereotaxic delivery of recombinant adeno-associated virus to various neuroanatomical structures of the rodent brain.

  1. Plasmid Vectors for Proteomic Analyses in Giardia: Purification of Virulence Factors and Analysis of the Proteasome

    PubMed Central

    Stadelmann, Britta; Birkestedt, Sandra; Hellman, Ulf; Svärd, Staffan G.

    2012-01-01

    In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide–glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG–tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes. PMID:22611020

  2. Isolation of recombinant MVA using F13L selection.

    PubMed

    Sánchez-Puig, Juana M; Lorenzo, María M; Blasco, Rafael

    2012-01-01

    Modified vaccinia virus Ankara (MVA) has become a widely used vector for vaccine and laboratory purposes. Despite significant advances in recombinant MVA technology, the isolation of recombinant viruses remains a tedious and difficult process. This chapter describes the use of an efficient and easy-to-use selection system adapted for MVA. The system is based on the requirement of the viral gene F13L for efficient virus spread in cell culture, which results in a severe block in virus transmission when F13L gene is deleted (Blasco R, Moss B. J Virol 65:5910-5920, 1991; Blasco R, Moss B. J Virol 66:4170-4179, 1992). The insertion of foreign genes in the MVA genome is accomplished by recombination of a transfected plasmid carrying the foreign genes and the F13L with the genome of an F13L knockout virus. Subsequently, selection of virus recombinants is carried out by serial passage and/or plaque purification of viruses that have recovered the F13L gene.

  3. Optimizing transient recombinant protein expression in mammalian cells.

    PubMed

    Hopkins, Ralph F; Wall, Vanessa E; Esposito, Dominic

    2012-01-01

    Transient gene expression (TGE) in mammalian cells has become a routine process for expressing recombinant proteins in cell lines such as human embryonic kidney 293 and Chinese hamster ovary cells. The rapidly increasing need for recombinant proteins requires further improvements in TGE technology. While a great deal of focus has been directed toward optimizing the secretion of antibodies and other naturally secreted targets, much less work has been done on ways to improve cytoplasmic expression in mammalian cells. The benefits to protein production in mammalian cells, particularly for eukaryotic proteins, should be very significant - glycosylation and other posttranslational modifications will likely be native or near-native, solubility and protein folding would likely improve overexpression in heterologous hosts, and expression of proteins in their proper intracellular compartments is much more likely to occur. Improvements in this area have been slow, however, due to limited development of the cell culture processes needed for low-cost, higher-throughput expression in mammalian cells, and the relatively low diversity of DNA vectors for protein production in these systems. Here, we describe how the use of recombinational cloning, coupled with improvements in transfection protocols which increase speed and lower cost, can be combined to make mammalian cells much more amenable for routine recombinant protein expression. PMID:21987258

  4. Thrust vectoring systems

    NASA Technical Reports Server (NTRS)

    King, H. J.; Schnelker, D.; Ward, J. W.; Dulgeroff, C.; Vahrenkamp, R.

    1972-01-01

    The design, fabrication, and testing of thrust vectorable ion optical systems capable of controlling the thrust direction from both 5- and 30-cm diameter ion thrusters is described. Both systems are capable of greater than 10 deg thrust deflection in any azimuthal direction. The 5-cm system is electrostatic and hence has a short response time and minimal power consumption. It has recently been tested for more than 7500 hours on an operational thruster. The 30-cm system is mechanical, has a response time of the order of 1 min, and consumes less than 0.3% of the total system input power at full deflection angle.

  5. Vector potential photoelectron microscopy

    SciTech Connect

    Browning, R.

    2011-10-15

    A new class of electron microscope has been developed for the chemical microanalysis of a wide range of real world samples using photoelectron spectroscopy. Highly structured, three-dimensional samples, such as fiber mats and fracture surfaces can be imaged, as well as insulators and magnetic materials. The new microscope uses the vector potential field from a solenoid magnet as a spatial reference for imaging. A prototype instrument has demonstrated imaging of uncoated silk, magnetic steel wool, and micron-sized single strand tungsten wires.

  6. Vector-mediated antibody gene transfer for infectious diseases.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2015-01-01

    This chapter discusses the emerging field of vector-mediated antibody gene transfer as an alternative vaccine for infectious disease, with a specific focus on HIV. However, this methodology need not be confined to HIV-1; the general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets like hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. This approach is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. With vector-mediated gene transfer, the antibody gene is delivered to the host, via a recombinant adeno-associated virus (rAAV) vector; this in turn results in long-term endogenous antibody expression from the injected muscle that confers protective immunity. Vector-mediated antibody gene transfer can rapidly move existing, potent broadly cross-neutralizing HIV-1-specific antibodies into the clinic. The gene transfer products demonstrate a potency and breadth identical to the original product. This strategy eliminates the need for immunogen design and interaction with the adaptive immune system to generate protection, a strategy that so far has shown limited promise.

  7. Recombinant protein production from stable mammalian cell lines and pools.

    PubMed

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced.

  8. Genetically Engineered Poxviruses for Recombinant Gene Expression, Vaccination, and Safety

    NASA Astrophysics Data System (ADS)

    Moss, Bernard

    1996-10-01

    Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure--function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.

  9. Recombinant protein production from stable mammalian cell lines and pools.

    PubMed

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. PMID:27322762

  10. Recombinant production of TEV cleaved human parathyroid hormone.

    PubMed

    Audu, Christopher O; Cochran, Jared C; Pellegrini, Maria; Mierke, Dale F

    2013-08-01

    The parathyroid hormone, PTH, is responsible for calcium and phosphate ion homeostasis in the body. The first 34 amino acids of the peptide maintain the biological activity of the hormone and is currently marketed for calcium imbalance disorders. Although several methods for the production of recombinant PTH(1-34) have been reported, most involve the use of cleavage conditions that result in a modified peptide or unfavorable side products. Herein, we detail the recombinant production of (15) N-enriched human parathyroid hormone, (15) N PTH(1-34), generated via a plasmid vector that gives reasonable yield, low-cost protease cleavage (leaving the native N-terminal serine in its amino form), and purification by affinity and size exclusion chromatography. We characterize the product by multidimensional, heteronuclear NMR, circular dichroism, and LC/MS. PMID:23794508

  11. Virus-Derived Gene Expression and RNA Interference Vector for Grapevine

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.

    2012-01-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553

  12. Virus-derived gene expression and RNA interference vector for grapevine.

    PubMed

    Kurth, Elizabeth G; Peremyslov, Valera V; Prokhnevsky, Alexey I; Kasschau, Kristin D; Miller, Marilyn; Carrington, James C; Dolja, Valerian V

    2012-06-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests.

  13. Engineering Hepadnaviruses as Reporter-Expressing Vectors: Recent Progress and Future Perspectives.

    PubMed

    Bai, Weiya; Cui, Xiaoxian; Xie, Youhua; Liu, Jing

    2016-01-01

    The Hepadnaviridae family of small, enveloped DNA viruses are characterized by a strict host range and hepatocyte tropism. The prototype hepatitis B virus (HBV) is a major human pathogen and constitutes a public health problem, especially in high-incidence areas. Reporter-expressing recombinant viruses are powerful tools in both studies of basic virology and development of antiviral therapeutics. In addition, the highly restricted tropism of HBV for human hepatocytes makes it an ideal tool for hepatocyte-targeting in vivo applications such as liver-specific gene delivery. However, compact genome organization and complex replication mechanisms of hepadnaviruses have made it difficult to engineer replication-competent recombinant viruses that express biologically-relevant cargo genes. This review analyzes difficulties associated with recombinant hepadnavirus vector development, summarizes and compares the progress made in this field both historically and recently, and discusses future perspectives regarding both vector design and application. PMID:27171106

  14. Engineering Hepadnaviruses as Reporter-Expressing Vectors: Recent Progress and Future Perspectives

    PubMed Central

    Bai, Weiya; Cui, Xiaoxian; Xie, Youhua; Liu, Jing

    2016-01-01

    The Hepadnaviridae family of small, enveloped DNA viruses are characterized by a strict host range and hepatocyte tropism. The prototype hepatitis B virus (HBV) is a major human pathogen and constitutes a public health problem, especially in high-incidence areas. Reporter-expressing recombinant viruses are powerful tools in both studies of basic virology and development of antiviral therapeutics. In addition, the highly restricted tropism of HBV for human hepatocytes makes it an ideal tool for hepatocyte-targeting in vivo applications such as liver-specific gene delivery. However, compact genome organization and complex replication mechanisms of hepadnaviruses have made it difficult to engineer replication-competent recombinant viruses that express biologically-relevant cargo genes. This review analyzes difficulties associated with recombinant hepadnavirus vector development, summarizes and compares the progress made in this field both historically and recently, and discusses future perspectives regarding both vector design and application. PMID:27171106

  15. Controlled release from recombinant polymers.

    PubMed

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-09-28

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.

  16. Controlled Release from Recombinant Polymers

    PubMed Central

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  17. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  18. Recombinant DNA means and method

    SciTech Connect

    Alford, B.L.; Mao, J.I.; Moir, D.T.; Taunton-Rigby, A.; Vovis, G.F.

    1987-05-19

    This patent describes a transformed living cell selected from the group consisting of fungi, yeast and bacteria, and containing genetic material derived from recombinant DNA material and coding for bovine rennin.

  19. Recombination system for storage batteries

    SciTech Connect

    Bopp, B.; Ledjeff, K.; Winsel, A.

    1983-03-29

    A recombination system for catalytic oxidation of hydrogen in storage battery gases includes a gas supply duct which makes it possible for the combustible gas flowing through it to aspirate from the ambient the necessary combustion air, following the principle of a bunsen burner, and to entrain it to the recombination catalyst. In case of over-supply of gas, an acid separator positioned in the gas supply pipe counteracts the gas aspiration by means of its flow impedance and thereby makes the recombination system safe from overload. It can also be connected following a conventional recombiner, thereby increasing its effectiveness, by receiving the excess hydrogen from same and reacting it with the aid of the air aspiration.

  20. Influenza Vaccine, Inactivated or Recombinant

    MedlinePlus

    ... die from flu, and many more are hospitalized.Flu vaccine can:keep you from getting flu, make flu ... inactivated or recombinant influenza vaccine?A dose of flu vaccine is recommended every flu season. Children 6 months ...

  1. Recombination device for storage batteries

    DOEpatents

    Kraft, Helmut; Ledjeff, Konstantin

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  2. Recombination device for storage batteries

    DOEpatents

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  3. Adenoviral vector DNA for accurate genome editing with engineered nucleases.

    PubMed

    Holkers, Maarten; Maggio, Ignazio; Henriques, Sara F D; Janssen, Josephine M; Cathomen, Toni; Gonçalves, Manuel A F V

    2014-10-01

    Engineered sequence-specific nucleases and donor DNA templates can be customized to edit mammalian genomes via the homologous recombination (HR) pathway. Here we report that the nature of the donor DNA greatly affects the specificity and accuracy of the editing process following site-specific genomic cleavage by transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nucleases. By applying these designer nucleases together with donor DNA delivered as protein-capped adenoviral vector (AdV), free-ended integrase-defective lentiviral vector or nonviral vector templates, we found that the vast majority of AdV-modified human cells underwent scarless homology-directed genome editing. In contrast, a significant proportion of cells exposed to free-ended or to covalently closed HR substrates were subjected to random and illegitimate recombination events. These findings are particularly relevant for genome engineering approaches aiming at high-fidelity genetic modification of human cells.

  4. Investigations in the field of recombinant DNA technology performed in the "Stefan S. Nicolau" Institute of Virology.

    PubMed

    Popa, L M; Repanovici, R; Iliescu, R

    1984-01-01

    A brief review is provided of the investigations in the field of recombinant DNA technology started in 1979 in the Central Laboratory for Nucleic Acids within the "Stefan S. Nicolau" Institute of Virology. The research efforts have been focused on the following main objectives: optimization of vector extraction, isolation and purification of restriction enzymes and of DNA ligase T4, transformation and transfection experiments, construction of recombinant DNA. PMID:6097023

  5. Dengue vaccine: an update on recombinant subunit strategies.

    PubMed

    Martin, J; Hermida, L

    2016-03-01

    Dengue is an increasing public health problem worldwide, with the four serotypes of the virus infecting over 390 million people annually. There is no specific treatment or antiviral drug for dengue, and prevention is largely limited to controlling the mosquito vectors or disrupting the human-vector contact. Despite the considerable progress made in recent years, an effective vaccine against the virus is not yet available. The development of a dengue vaccine has been hampered by many unique challenges, including the need to ensure the absence of vaccine-induced enhanced severity of disease. Recombinant protein subunit vaccines offer a safer alternative to other vaccine approaches. Several subunit vaccine candidates are presently under development, based on different structural and non-structural proteins of the virus. Novel adjuvants or immunopotentiating strategies are also being tested to improve their immunogenicity. This review summarizes the current status and development trends of subunit dengue vaccines.

  6. Delayed recombination and cosmic parameters

    SciTech Connect

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-09-15

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n{sub s}, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z{sub *}=1078{+-}11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1{sigma} to R=1.734{+-}0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: {epsilon}{sub {alpha}}<0.39 and {epsilon}{sub i}<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  7. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  8. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  9. Delayed recombination and cosmic parameters

    NASA Astrophysics Data System (ADS)

    Galli, Silvia; Bean, Rachel; Melchiorri, Alessandro; Silk, Joseph

    2008-09-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, ns, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z*=1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: γα<0.39 and γi<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  10. Characteristic element of matrix attachment region mediates vector attachment and enhances nerve growth factor expression in Chinese hamster ovary cells.

    PubMed

    Wang, X Y; Zhang, J H; Sun, Q L; Yao, Z Y; Deng, B G; Guo, W Y; Wang, L; Dong, W H; Wang, F; Zhao, C P; Wang, T Y

    2015-08-07

    Preliminary studies have suggested that a characteristic element of the matrix attachment region (MAR) in human interferon-β mediates the adhesion of vectors to Chinese hamster ovary (CHO) cells. In this study, we investigated if vector adhesion increased nerve growth factor (NGF) expression in CHO cells. The MAR characteristic element sequence of human interferon-β was inserted into the multiple-cloning site of the pEGFP-C1 vector. The target NGF gene was inserted upstream of the MAR characteristic element sequence to construct the MAR/NGF expression vector. The recombinant plasmid was transfected into CHO cells and stable monoclonal cells were selected using G418. NGF mRNA and protein expression was detected by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Plasmid reduction experiments were used to determine the state of transfected plasmid in mammalian cells. The insertion of MAR into the vector increased NGF expression levels in CHO cells (1.93- fold) compared to the control. The recombinant plasmid expressing the MAR sequence was digested into a linear space vector. The inserted MAR and NGF sequences were consistent with those inserted into the plasmid before recombination. Therefore, we concluded that the MAR characteristic element mediates vector adhesion to CHO cells and enhances the stability and efficiency of the target gene expression.

  11. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus

    SciTech Connect

    Kaur, Amitinder . E-mail: amitinder_kaur@hms.harvard.edu; Sanford, Hannah B.; Garry, Deirdre; Lang, Sabine; Klumpp, Sherry A.; Watanabe, Daisuke; Bronson, Roderick T.; Lifson, Jeffrey D.; Rosati, Margherita; Pavlakis, George N.; Felber, Barbara K.; Knipe, David M.; Desrosiers, Ronald C.

    2007-01-20

    The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNA in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS.

  12. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  13. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein.

    PubMed

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F; Nam, Ho-Woo

    2016-04-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  14. Active immunization with recombinant V antigen from Yersinia pestis protects mice against plague.

    PubMed Central

    Leary, S E; Williamson, E D; Griffin, K F; Russell, P; Eley, S M; Titball, R W

    1995-01-01

    The gene encoding V antigen from Yersinia pestis was cloned into the plasmid expression vector pGEX-5X-2. When electroporated into Escherichia coli JM109, the recombinant expressed V antigen as a stable fusion protein with glutathione S-transferase. The glutathione S-transferase-V fusion protein was isolated from recombinant E. coli and cleaved with factor Xa to yield purified V antigen as a stable product. Recombinant V antigen was inoculated intraperitoneally into mice and shown to induce a protective immune response against a subcutaneous challenge with 3.74 x 10(6) CFU of virulent Y. pestis. Protection correlated with the induction of a high titer of serum antibodies and a T-cell response specific for recombinant V antigen. These results indicate that V antigen should be a major component of an improved vaccine for plague. PMID:7622205

  15. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein

    PubMed Central

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F.; Nam, Ho-Woo

    2016-01-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  16. Data presenting a modified bacterial expression vector for expressing and purifying Nus solubility-tagged proteins.

    PubMed

    Gupta, Nidhi; Wu, Heng; Terman, Jonathan R

    2016-09-01

    Bacteria are the predominant source for producing recombinant proteins but while many exogenous proteins are expressed, only a fraction of those are soluble. We have found that a new actin regulatory enzyme Mical is poorly soluble when expressed in bacteria but the use of a Nus fusion protein tag greatly increases its solubility. However, available vectors containing a Nus tag have been engineered in a way that hinders the separation of target proteins from the Nus tag during protein purification. We have now used recombinant DNA approaches to overcome these issues and reengineer a Nus solubility tag-containing bacterial expression vector. The data herein present a modified bacterial expression vector useful for expressing proteins fused to the Nus solubility tag and separating such target proteins from the Nus tag during protein purification. PMID:27547802

  17. Directional and direct cloning strategy for high-throughput generation of recombinant baculoviruses.

    PubMed

    Ma, Qi; Zhou, Li; Ma, Lixin; Huo, Keke

    2006-10-01

    The baculovirus expression vector system (BEVS) has become one of the most widely used systems for routine protein expression. We have developed an improved strategy to clone foreign genes directionally and directly into the baculovirus genome vector via a one-step procedure to generate recombinant viruses in a week. In this work, we constructed a host strain Escherichia coli DH10BacHB1.1, which contains the modified baculovirus shuttle genome vector pHBMBacmid1.1 for the cloning vector. The treated PCR products of foreign genes were ligated with the Bsu36I-digested vector. Then Spodoptera frugiperda (Sf9) cells were transfected directly with the ligation mixture. Using this method, the DsRed fluorescence protein and mannanase genes have been cloned in the baculovirus genome and expressed in the Sf9 cells. This strategy not only provides a means for high-throughput construction of recombinant baculoviruses, but also offers an idea of constructing other large plasmids and DNA virus-based expression vectors.

  18. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli

    PubMed Central

    Ali, Syed A.; Chew, Yik Wei; Omar, Tasyriq Che; Azman, Nizuwan

    2015-01-01

    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system. PMID:26642325

  19. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli.

    PubMed

    Ali, Syed A; Chew, Yik Wei; Omar, Tasyriq Che; Azman, Nizuwan

    2015-01-01

    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system.

  20. Improved self-inactivating retroviral vectors derived from spleen necrosis virus.

    PubMed Central

    Olson, P; Nelson, S; Dornburg, R

    1994-01-01

    Self-inactivating (SIN) retroviral vectors contain a deletion spanning most of the right long terminal repeat's (LTR's) U3 region. Reverse transcription copies this deletion to both LTRs. As a result, there is no transcription from the 5' LTR, preventing further replication. Many previously developed SIN vectors, however, had reduced titers or were genetically unstable. Earlier, we reported that certain SIN vectors derived from spleen necrosis virus (SNV) experienced reconstitution of the U3-deleted LTR at high frequencies. This reconstitution occurred on the DNA level and appeared to be dependent on defined vector sequences. To study this phenomenon in more detail, we developed an almost completely U3-free retroviral vector. The promoter and enhancer of the left LTR were replaced with those of the cytomegalovirus immediate-early genes. This promoter swap did not impair the level of transcription or alter its start site. Our data indicate that SNV contains a strong initiator which resembles that of human immunodeficiency virus. We show that the vectors replicate with efficiencies similar to those of vectors possessing two wild-type LTRs. U3-deleted vectors carrying the hygromycin B phosphotransferase gene did not observably undergo LTR reconstitution, even when replicated in helper cells containing SNV-LTR sequences. However, vectors carrying the neomycin resistance gene did undergo LTR reconstitution with the use of homologous helper cell LTR sequences as template. This supports our earlier finding that sequences within the neomycin resistance gene can trigger recombination. Images PMID:7933088

  1. Covariant Lyapunov vectors

    NASA Astrophysics Data System (ADS)

    Ginelli, Francesco; Chaté, Hugues; Livi, Roberto; Politi, Antonio

    2013-06-01

    Recent years have witnessed a growing interest in covariant Lyapunov vectors (CLVs) which span local intrinsic directions in the phase space of chaotic systems. Here, we review the basic results of ergodic theory, with a specific reference to the implications of Oseledets’ theorem for the properties of the CLVs. We then present a detailed description of a ‘dynamical’ algorithm to compute the CLVs and show that it generically converges exponentially in time. We also discuss its numerical performance and compare it with other algorithms presented in the literature. We finally illustrate how CLVs can be used to quantify deviations from hyperbolicity with reference to a dissipative system (a chain of Hénon maps) and a Hamiltonian model (a Fermi-Pasta-Ulam chain). This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’.

  2. Solar imaging vector magnetograph

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.

    1993-01-01

    This report describes an instrument which has been constructed at the University of Hawaii to make observations of the magnetic field in solar active regions. Detailed knowledge of active region magnetic structures is crucial to understanding many solar phenomena, because the magnetic field both defines the morphology of structures seen in the solar atmosphere and is the apparent energy source for solar flares. The new vector magnetograph was conceived in response to a perceived discrepancy between the capabilities of X ray imaging telescopes to be operating during the current solar maximum and those of existing magnetographs. There were no space-based magnetographs planned for this period; the existing ground-based instruments variously suffered from lack of sensitivity, poor time resolution, inadequate spatial resolution or unreliable sites. Yet the studies of flares and their relationship to the solar corona planned for the 1991-1994 maximum absolutely required high quality vector magnetic field measurements. By 'vector' measurements we mean that the observation attempts to deduce the complete strength and direction of the field at the measurement site, rather than just the line of sight component as obtained by a traditional longitudinal magnetograph. Knowledge of the vector field permits one to calculate photospheric electric currents, which might play a part in heating the corona, and to calculate energy stored in coronal magnetic fields as the result of such currents. Information about the strength and direction of magnetic fields in the solar atmosphere can be obtained in a number of ways, but quantitative data is best obtained by observing Zeeman-effect polarization in solar spectral lines. The technique requires measuring the complete state of polarization at one or more wavelengths within a magnetically sensitive line of the solar spectrum. This measurement must be done for each independent spatial point for which one wants magnetic field data. All the

  3. Recombination at the DNA level. Abstracts

    SciTech Connect

    Not Available

    1984-01-01

    Abstracts of papers in the following areas are presented: (1) chromosome mechanics; (2) yeast systems; (3) mammalian homologous recombination; (4) transposons; (5) Mu; (6) plant transposons/T4 recombination; (7) topoisomerase, resolvase, and gyrase; (8) Escherichia coli general recombination; (9) recA; (10) repair; (11) eucaryotic enzymes; (12) integration and excision of bacteriophage; (13) site-specific recombination; and (14) recombination in vitro. (ACR)

  4. Delivery of Echinococcus granulosus antigen EG95 to mice and sheep using recombinant vaccinia virus.

    PubMed

    Dutton, S; Fleming, S B; Ueda, N; Heath, D D; Hibma, M H; Mercer, A A

    2012-06-01

    The tapeworm Echinococcus granulosus is the causative agent of hydatid disease and affects sheep, cattle, dogs and humans worldwide. It has a two-stage life cycle existing as worms in the gut of infected dogs (definitive host) and as cysts in herbivores and humans (intermediate host). The disease is debilitating and can be life threatening where the cysts interfere with organ function. Interruption of the hydatid life cycle in the intermediate host by vaccination may be a way to control the disease, and a protective oncosphere antigen EG95 has been shown to protect animals against challenge with E. granulosus eggs. We explored the use of recombinant vaccinia virus as a delivery vehicle for EG95. Mice and sheep were immunized with the recombinant vector, and the result monitored at the circulating antibody level. In addition, sera from immunized mice were assayed for the ability to kill E. granulosus oncospheres in vitro. Mice immunized once intranasally developed effective oncosphere-killing antibody by day 42 post-infection. Antibody responses and oncosphere killing were correlated and were significantly enhanced by boosting mice with either EG95 protein or recombinant vector. Sheep antibody responses to the recombinant vector or to EG95 protein mirrored those in mice.

  5. Effects of an adenoviral vector containing a suicide gene fusion on growth characteristics of breast cancer cells.

    PubMed

    Kong, Heng; Liu, Chunli; Zhu, Ting; Huang, Zonghai; Yang, Liucheng; Li, Qiang

    2014-12-01

    The herpes simplex virus thymidine kinase/ganciclovir (HSV‑TK/GCV) and the cytosine deaminase/5‑fluorocytosine (CD/5‑FC) systems have been widely applied in suicide gene therapy for cancer. Although suicide gene therapy has been successfully used in vitro and in vivo studies, the number of studies on the effects of recombinant adenoviruses (Ads) containing suicide genes on target cancer cells is limited. The aim of this study was to examine whether recombinant Ads containing the CD/TK fusion gene affect cell proliferation of breast cancer cells in vitro. In the present study, we explored the use of a recombinant adenoviral vector to deliver the CD/TK fusion gene to the breast cancer cell line MCF‑7. We found that the recombinant adenoviral vector efficiently infected MCF‑7 cells. Western blot analysis revealed that CD and TK proteins are expressed in the infected cells. The infected breast cancer cells did not show any significant changes in morphology, ultrastructure, cell growth, and cell‑cycle distribution compared to the uninfected cells. This study revealed that the Ad‑vascular endothelial growth factor promoter (VEGFp)‑CD/TK vector is non‑toxic to MCF‑7 cells at the appropriate titer. Our results indicate that it is feasible to use a recombinant adenoviral vector containing the CD/TK fusion gene in suicide gene therapy to target breast cancer cells. PMID:25323393

  6. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana.

    PubMed

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L; Arzola, Lucas; Lebrilla, Carlito B; Dandekar, Abhaya M; Falk, Bryce W; Nandi, Somen; Rodriguez, Raymond L; McDonald, Karen A

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  7. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana

    PubMed Central

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M.; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L.; Arzola, Lucas; Lebrilla, Carlito B.; Dandekar, Abhaya M.; Falk, Bryce W.; Nandi, Somen; Rodriguez, Raymond L.; McDonald, Karen A.

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  8. The effect of the unfolded protein response on the production of recombinant proteins in plants.

    PubMed

    Thomas, David Rhys; Walmsley, Amanda Maree

    2015-02-01

    Recombinant proteins are currently produced through a wide variety of host systems, including yeast, E. coli, insect and mammalian cells. One of the most recent systems developed uses plant cells. While considerable advances have been made in the yields and fidelity of plant-made recombinant proteins, many of these gains have arisen from the development of recombinant factors. This includes elements such as highly effective promoters and untranslated regions, deconstructed viral vectors, silencing inhibitors, and improved DNA delivery techniques. However, unlike other host systems, much of the work on recombinant protein production in plants uses wild-type hosts that have not been modified to facilitate recombinant protein expression. As such, there are still endogenous mechanisms functioning to maintain the health of the cell. The result is that these pathways, such as the unfolded protein response, can actively work to reduce recombinant protein production to maintain the integrity of the cell. This review examines how issues arising from the unfolded protein response have been addressed in other systems, and how these methods may be transferable to plant systems. We further identify several areas of host plant biology that present attractive targets for modification to facilitate recombinant protein production.

  9. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  10. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese. PMID:26341925

  11. A Gateway recombination herpesvirus cloning system with negative selection that produces vectorless progeny.

    PubMed

    Kunec, Dusan; van Haren, Sandra; Burgess, Shane C; Hanson, Larry A

    2009-01-01

    Crossover recombination based on the lambda phage integration/excision functions enables insertion of a gene of interest into a specific locus by a simple one-step in vitro recombination reaction. Recently, a highly efficient recombination system for targeted mutagenesis, which utilizes lambda phage crossover recombination cloning, has been described for a human herpesvirus 2 bacterial artificial chromosome (BAC). The disadvantages of the system are that it allows only neutral selection (loss of green fluorescent protein) of desired recombinants and that it regenerates herpesvirus progeny containing the BAC sequence inserted in the herpesvirus genome. In this study, the existing channel catfish herpesvirus (CCV) infectious clone (in the form of overlapping fragments) was modified to allow introduction of foreign genes by modified lambda phage crossover recombination cloning. This novel system enables negative and neutral selection and regenerates vectorless herpesvirus progeny. Construction of two CCV mutants expressing lacZ, one from the native CCV ORF5 promoter and the other from the immediate-early cytomegalovirus promoter, demonstrated the efficiency and reliability of this system. This novel cloning system enables rapid incorporation, direct delivery and high-level expression of foreign genes by a herpesvirus. This system has broad utility and could be used to facilitate development of recombinant viruses, viral vectors and better vaccines. PMID:18948138

  12. Construction and identification of recombinant adenovirus carrying human TIMP-1shRNA gene.

    PubMed

    Sun, Y L; Xie, H; Lin, H L; Feng, Q; Liu, Y

    2015-01-16

    The aim of this study was to construct the recombinant adenovirus carrying human TIMP-1shRNA gene expression system for preliminary identification to lay the foundation for the further study of gene therapy. Using the Adeno-X system, the recombinant adenovirus plasmid pAdeno-X green fluorescent protein (GFP)-tissue inhibitor of metalloprotease (TIMP)-1 small hairpin (1shRNA) was constructed by including the target gene fragment of the TIMP-1shRNA shuttle plasmid pShuttle2-GFP-TIMP-1shRNA and the backbone plasmid pAdeno-X by homologous recombination in Escherichia coli. Recombinant plasmids were transfected into HEK293A cells to package the recombinant adenovirus rvAdeno-XGFP-TIMP-1shRNA. The recombinant adenovirus was identified by polymerase chain reaction, and the viral titer and infection efficiency were detected using GFP. Polymerase chain reaction and restriction endonuclease digestion demonstrated that rvAdeno-XGFP-TIMP-1shRNA had been successfully constructed, which has a strong ability to infect the kidney. The TIMP-1shRNA adenovirus expression vector was successfully constructed using homologous recombination methods.

  13. The Ad5 [E1-, E2b-]-based vector: a new and versatile gene delivery platform

    NASA Astrophysics Data System (ADS)

    Jones, Frank R.; Gabitzsch, Elizabeth S.; Balint, Joseph P.

    2015-05-01

    Based upon advances in gene sequencing and construction, it is now possible to identify specific genes or sequences thereof for gene delivery applications. Recombinant adenovirus serotype-5 (Ad5) viral vectors have been utilized in the settings of gene therapy, vaccination, and immunotherapy but have encountered clinical challenges because they are recognized as foreign entities to the host. This recognition leads to an immunologic clearance of the vector that contains the inserted gene of interest and prevents effective immunization(s). We have reported on a new Ad5-based viral vector technology that can be utilized as an immunization modality to induce immune responses even in the presence of Ad5 vector immunity. We have reported successful immunization and immunotherapy results to infectious diseases and cancers. This improved recombinant viral platform (Ad5 [E1-, E2b-]) can now be utilized in the development of multiple vaccines and immunotherapies.

  14. Viral Vectors for In Vivo Gene Transfer in Parkinson’s disease: Properties and Clinical Grade Production

    PubMed Central

    Burger, Corinna; Snyder, Richard O.

    2009-01-01

    Because Parkinson’s disease is a progressive degenerative disorder that is mainly confined to the basal ganglia, gene transfer to deliver therapeutic molecules is an attractive treatment avenue. The present review focuses on direct in vivo gene transfer vectors that have been developed to a degree that they have been successfully used in animal model of Parkinson’s disease. Accordingly, the properties of recombinant adenovirus, recombinant adeno-associated virus, herpes simplex virus, and lentivirus are described and contrasted. In order for viral vectors to be developed into clinical grade reagents, they must be manufactured and tested to precise regulatory standards. Indeed, clinical lots of viral vectors can be produced in compliance with current Good Manufacturing Practices (cGMPs) regulations using industry accepted manufacturing methodologies, manufacturing controls, and quality systems. The viral vector properties themselves combined with physiological product formulations facilitate long-term storage and direct in vivo administration. PMID:17916354

  15. A simplified system for generating recombinant E3-deleted canine adenovirus-2.

    PubMed

    Yu, Zuo; Jiang, Qian; Liu, Jiasen; Guo, Dongchun; Quan, Chuansong; Li, Botao; Qu, Liandong

    2015-01-01

    Canine adenovirus type 2 (CAV-2) has been used extensively as a vector for studying gene therapy and vaccine applications. We describe a simple strategy for generating a replication-competent recombinant CAV-2 using a backbone vector and a shuttle vector. The backbone plasmid containing the full-length CAV-2 genome was constructed by homologous recombination in Escherichia coli strain BJ5183. The shuttle plasmid, which has a deletion of 1478 bp in the nonessential E3 viral genome region, was generated by subcloning a fusion fragment containing the flanking sequences of the CAV-2 E3 region and expression cassette sequences from pcDNA3.1(+) into modified pUC18. To determine system effectiveness, a gene for enhanced green fluorescent protein (EGFP) was inserted into the shuttle plasmid and cloned into the backbone plasmid using two unique NruI and SalI sites. Transfection of Madin-Darby canine kidney (MDCK) cells with the recombinant adenovirus genome containing the EGFP expression cassette resulted in infectious viral particles. This strategy provides a solid foundation for developing candidate vaccines using CAV-2 as a delivery vector. PMID:25450764

  16. Bicistronic expression plasmid for the rapid production of recombinant fused proteins in Escherichia coli.

    PubMed

    Yero, Daniel; Pajón, Rolando; Niebla, Olivia; Sardiñas, Gretel; Vivar, Isbel; Perera, Yasser; García, Darien; Delgado, Maité; Cobas, Karem

    2006-04-01

    In the post-genomic era, every aspect of the production of proteins must be accelerated. In this way, several vectors are currently exploited for rapid production of recombinant proteins in Escherichia coli. N-terminal fusions to the first 47 amino acids of the LpdA (dihydrolipoamide dehydrogenase A) protein of Neisseria meningitidis have been shown to increase the expression of recombinant proteins. Consequently, we have constructed a modified N-terminal LpdA fusion vector, introducing the blue/white colony selection by exploiting a bicistronic gene organization. In the new vector, the sequence encoding the first 47 amino acids of meningococcal LpdA and the alpha-peptide sequence of beta-galactosidase were connected via a ribosome-binding site, and two MCSs (multiple cloning sites) were located surrounding the latter, allowing efficient cloning by colour selection of recombinants. The vector was also improved with the addition of a C-terminal polyhistidine tag, and an EKS (enterokinase recognition sequence) immediately after the LpdA fusion sequence. The new plasmid was employed in the expression and purification of six different bacterial polypeptides. One of these recombinant proteins, P6 protein from Haemophilus influenzae, was used as a model and its N-terminal fusion sequence was totally removed from the recombinant version after incubation with the enterokinase protease, while the polyhistidine tail successfully allowed the purification of the unfused protein from the protease reaction. Two completely new neisserial vaccine candidates, NMB0088 and NMB1126 proteins, were cloned, expressed and purified using this system. To our knowledge, this constitutes the first report of the cloning and expression of these proteins in E. coli.

  17. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  18. Progenitors of Recombining Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  19. Electron-Beam Recombination Lasers

    NASA Astrophysics Data System (ADS)

    Rhoades, Robert Lewis

    1992-01-01

    The first known instance of electron-beam pumping of the 546.1 nm mercury laser is reported. This has been achieved using high-energy electrons to create intense ionization in a coaxial diode chamber containing a mixture of noble gases with a small amount of mercury vapor. Also reported are the results of a study of the 585.3 nm neon laser in He:Ne:Ar mixtures under similar experimental conditions. Both of these lasers are believed to be predominantly pumped by recombination. For the mercury laser, kinetic processes in the partially ionized plasma following the excitation pulse of high-energy electrons should favor the production of atomic mercury ions and molecular ions containing mercury. Subsequent recombination with electrons heavily favors the production of the 7^3S and 6^3 D states of Hg, of which 7^3S is the upper level of the reported laser. For the neon laser, the dominant recombining ion has been previously shown to be Ne_2^{+}. One of the dominant roles of helium in recombination lasers is inferred from the data for the neon laser at low helium concentrations. Helium appears to be necessary for the rapid relaxation of the electron energy which then increases the reaction rates for all known recombination processes thus increasing the pump rate into the upper state.

  20. A shuttle vector series for precise genetic engineering of Saccharomyces cerevisiae.

    PubMed

    Gnügge, Robert; Liphardt, Thomas; Rudolf, Fabian

    2016-03-01

    Shuttle vectors allow for an efficient transfer of recombinant DNA into yeast cells and are widely used in fundamental research and biotechnology. While available shuttle vectors are applicable in many experimental settings, their use in quantitative biology is hampered by insufficient copy number control. Moreover, they often have practical constraints, such as limited modularity and few unique restriction sites. We constructed the pRG shuttle vector series, consisting of single- and multi-copy integrative, centromeric and episomal plasmids with marker genes for the selection in all commonly used auxotrophic yeast strains. The vectors feature a modular design and a large number of unique restriction sites, enabling an efficient exchange of every vector part and expansion of the series. Integration into the host genome is achieved using a double-crossover recombination mechanism, resulting in stable single- and multi-copy modifications. As centromeric and episomal plasmids give rise to a heterogeneous cell population, an analysis of their copy number distribution and loss behaviour was performed. Overall, the shuttle vector series supports the efficient cloning of genes and their maintenance in yeast cells with improved copy number control.

  1. [Construction of PPENK-MIDGE-NLS gene vector and the expression in rat].

    PubMed

    Chen, Xi; Xu, Xuemin; Peng, Xijuan; Jiang, Wei; Yao, Linong

    2015-02-01

    Increasing the production and secretion of endogenous opioid peptide by immune cell can significantly induce myocardial protective effects against ischemia-reperfusion injury. Gene therapy is promising to increase endogenous enkephalin (ENK). However, classical viral and plasmid vectors for gene delivery are hampered by immunogenicity, gene recombination, oncogene activation, the production of antibacterial antibody and changes in physiological gene expression. Minimalistic immunologically defined gene expression (MIDGE) can overcome all the deficients of viral and plasmid vectors. The exon of rat's preproenkephalin (PPENK) gene was amplified by PCR and the fragments were cloned into pEGFP-N1 plasmids. The recombined plasmids were digested with enzymes to obtain a linear vector contained promoter, preproenkephalin gene, RNA stable sequences and oligodesoxy nucleotides (ODNs) added to both ends of the gene vector to protect gene vector from exonuclease degradation. A nuclear localization sequence (NLS) was attached to an ODN to ensure the effective transport to the nucleus and transgene expression. Flow cytometry, laser confocal microscopy and Western blotting demonstrated that PPENK-MIDGE-NLS can transfect leukocyte of rat in vivo, increase the expression of proenkephalin (PENK) in tissue, and the transfection efficiency depends on gene vector's dosage. These results indicate that PPENK-MIDGE-NLS could be an innovative method to protect and treatment of myocardial ischemia-reperfusion injury.

  2. Extracellular secretion of recombinant proteins

    SciTech Connect

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  3. Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5–based Constructs

    PubMed Central

    Alonso-Padilla, Julio; Papp, Tibor; Kaján, Győző L; Benkő, Mária; Havenga, Menzo; Lemckert, Angelique; Harrach, Balázs; Baker, Andrew H

    2016-01-01

    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes. PMID:26478249

  4. GPU Accelerated Vector Median Filter

    NASA Technical Reports Server (NTRS)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  5. Bubble vector in automatic merging

    NASA Technical Reports Server (NTRS)

    Pamidi, P. R.; Butler, T. G.

    1987-01-01

    It is shown that it is within the capability of the DMAP language to build a set of vectors that can grow incrementally to be applied automatically and economically within a DMAP loop that serves to append sub-matrices that are generated within a loop to a core matrix. The method of constructing such vectors is explained.

  6. Vectors on the Basketball Court

    ERIC Educational Resources Information Center

    Bergman, Daniel

    2010-01-01

    An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…

  7. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    PubMed

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein. PMID:24293828

  8. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    PubMed

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein.

  9. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein.

    PubMed

    Amann, Ralf; Rohde, Jörg; Wulle, Ulrich; Conlee, Douglas; Raue, Rudiger; Martinon, Olivier; Rziha, Hanns-Joachim

    2013-02-01

    The present study describes the generation of a new Orf virus (ORFV) recombinant, D1701-V-RabG, expressing the rabies virus (RABV) glycoprotein that is correctly presented on the surface of infected cells without the need of replication or production of infectious recombinant virus. One single immunization with recombinant ORFV can stimulate high RABV-specific virus-neutralizing antibody (VNA) titers in mice, cats, and dogs, representing all nonpermissive hosts for the ORFV vector. The protective immune response against severe lethal challenge infection was analyzed in detail in mice using different dosages, numbers, and routes for immunization with the ORFV recombinant. Long-term levels of VNA could be elicited that remained greater than 0.5 IU per ml serum, indicative for the protective status. Single applications of higher doses (10(7) PFU) can be sufficient to confer complete protection against intracranial (i.c.) challenge, whereas booster immunization was needed for protection by the application of lower dosages. Anamnestic immune responses were achieved by each of the seven tested routes of inoculation, including oral application. Finally, in vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T cell subpopulations during immunization and/or challenge infection attested the importance of CD4 T cells for the induction of protective immunity by D1701-V-RabG. This report demonstrates another example of the potential of the ORFV vector and also indicates the capability of the new recombinant for vaccination of animals. PMID:23175365

  10. Construction of a directional T vector for cloning PCR products and expression in Escherichia coli.

    PubMed

    Liang, Xiu-Yi; Liang, Zhi-Cheng; Zhang, Zhi; Zhou, Jiao-Jiao; Liu, Shi-Yu; Tian, Sheng-Li

    2015-05-01

    In order to clone PCR products and express them effectively in Escherichia coli, a directional cloning system was constructed by generating a T vector based on pQE-30Xa. The vector was prepared by inserting an XcmI cassette containing an endonuclease XcmI site, a kanamycin selective marker, a multiple-cloning-site (MCS) region and an opposite endonuclease XcmI site into the vector pQE-30Xa. The T vector pQE-T with single overhanging dT residues at both 3' ends was obtained by digesting with the restriction enzyme XcmI. For directional cloning, a BamHI site was introduced to the ends of the PCR products. A BamHI site was also located on the multiple cloning site of pQE-T. The PCR products were ligated with pQE-T. The directionally inserted recombinants were distinguished by using BamHI to digest the recombinants because there are two BamHI sites located on the both sides of PCR fragment. In order to identify the T-vector functions, the 14-3-3-ZsGreen and hRBP genes were amplified and a BamHI site was added to the ends of the genes to confirm this vector by ligation with pQE-T. Results showed that the 14-3-3-ZsGreen and hRBP were cloned to the vector pQE-T directly and corresponding proteins were successfully produced. It was here demonstrated that this directional vector is capable of gene cloning and is used to manipulate gene expression very easily. The methodology proposed here involves easy incorporation of the construct into other vectors in various hosts.

  11. In vivo model of adeno-associated virus vector persistence and rescue.

    PubMed Central

    Afione, S A; Conrad, C K; Kearns, W G; Chunduru, S; Adams, R; Reynolds, T C; Guggino, W B; Cutting, G R; Carter, B J; Flotte, T R

    1996-01-01

    Gene therapy vectors based on human DNA viruses could be mobilized or rescued from individuals who are subsequently infected with the corresponding wild-type (wt) helper viruses. This phenomenon has been effectively modeled in vitro with both adenovirus (Ad) and adeno-associated virus (AAV) vectors but has not previously been studied in vivo. In the current study, we have developed an in vivo model to study the interactions of a recombinant AAV vector (AAV-CFTR) with wt AAV type 2 (AAV2) and a host range mutant Ad (Ad2HR405) for which monkey cells are permissive (D.E.Brough, S.A.Rice, S.Sell, and D.F.Klessig, J. Virol. 55:206-212, 1985). AAV-CFTR was administered to the respiratory epithelium of the nose or lung of rhesus macaques. Primary cells were harvested from the infusion site at time points up to 3 months after vector administration to confirm vector DNA persistence. Vector DNA was present in episomal form and could be rescued in vitro only by addition of wt AAV2 and Ad. In in vivo rescue studies, vector was administered before or after wt-AAV2 and Ad2HR405 infection, and the shedding of AAV-CFTR was examined. Ad2HR405 and wt-AAV2 infections were established in the nose with concomitant administration. wt-AAV2 replication occurred in the lung when virus was administered directly at a high titer to the lower respiratory tract. AAV-CFTR vector rescue was also observed in the latter setting. Although these studies were performed with small numbers of animals within each group, it appears that AAV-CFTR DNA persists in the primate respiratory tract and that this model may be useful for studies of recombinant AAV vector rescue. PMID:8627804

  12. Rice Reoviruses in Insect Vectors.

    PubMed

    Wei, Taiyun; Li, Yi

    2016-08-01

    Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses. PMID:27296147

  13. A neural support vector machine.

    PubMed

    Jändel, Magnus

    2010-06-01

    Support vector machines are state-of-the-art pattern recognition algorithms that are well founded in optimization and generalization theory but not obviously applicable to the brain. This paper presents Bio-SVM, a biologically feasible support vector machine. An unstable associative memory oscillates between support vectors and interacts with a feed-forward classification pathway. Kernel neurons blend support vectors and sensory input. Downstream temporal integration generates the classification. Instant learning of surprising events and off-line tuning of support vector weights trains the system. Emotion-based learning, forgetting trivia, sleep and brain oscillations are phenomena that agree with the Bio-SVM model. A mapping to the olfactory system is suggested.

  14. Current Drive in Recombining Plasma

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2012-05-15

    The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

  15. DNA recombination: the replication connection.

    PubMed

    Haber, J E

    1999-07-01

    Chromosomal double-strand breaks (DSBs) arise after exposure to ionizing radiation or enzymatic cleavage, but especially during the process of DNA replication itself. Homologous recombination plays a critical role in repair of such DSBs. There has been significant progress in our understanding of two processes that occur in DSB repair: gene conversion and recombination-dependent DNA replication. Recent evidence suggests that gene conversion and break-induced replication are related processes that both begin with the establishment of a replication fork in which both leading- and lagging-strand synthesis occur. There has also been much progress in characterization of the biochemical roles of recombination proteins that are highly conserved from yeast to humans.

  16. The Dissociative Recombination of OH(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1995-01-01

    Theoretical quantum chemical calculations of the cross sections and rates for the dissociative recombination of the upsilon = 0 level of the ground state of OH(+) show that recombination occurs primarily along the 2 (2)Pi diabatic route. The products are 0((1)D) and a hot H atom with 6.1 eV kinetic energy. The coupling to the resonances is very small and the indirect recombination mechanism plays only a minor role. The recommended value for the rate coefficient is (6.3 +/- 0.7) x 10(exp -9)x (T(e)/1300)(exp -0.48) cu.cm/s for 10 less than T(e) less than 1000 K.

  17. Recombinant snake venom prothrombin activators.

    PubMed

    Lövgren, Ann

    2013-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need for additional cofactors, but does not discriminate non-carboxylated prothrombin from biologically active γ-carboxylated prothrombin. Here we report that recombinant trocarin and oscutarin could not efficiently generate thrombin without additional protein co-factors. We confirm that both trocarin and oscutarin are similar to human coagulation Factor X (FX), explaining the need for additional cofactors. Sequencing of a genomic fragment containing 7 out of the 8 exons coding for oscutarin further confirmed the similarity to human FX. PMID:23111318

  18. Functional insights into recombinant TROSPA protein from Ixodes ricinus.

    PubMed

    Figlerowicz, Marek; Urbanowicz, Anna; Lewandowski, Dominik; Jodynis-Liebert, Jadwiga; Sadowski, Czeslaw

    2013-01-01

    Lyme disease (also called borreliosis) is a prevalent chronic disease transmitted by ticks and caused by Borrelia burgdorferi s. l. spirochete. At least one tick protein, namely TROSPA from I. scapularis, commonly occurring in the USA, was shown to be required for colonization of the vector by bacteria. Located in the tick gut, TROSPA interacts with the spirochete outer surface protein A (OspA) and initiates the tick colonization. Ixodes ricinus is a primary vector involved in B. burgdorferi s. l. transmission in most European countries. In this study, we characterized the capacities of recombinant TROSPA protein from I. ricinus to interact with OspA from different Borrelia species and to induce an immune response in animals. We also showed that the N-terminal part of TROSPA (a putative transmembrane domain) is not involved in the interaction with OspA and that reduction of the total negative charge on the TROSPA protein impaired TROSPA-OspA binding. In general, the data presented in this paper indicate that recombinant TROSPA protein retains the capacity to form a complex with OspA and induces a significant level of IgG in orally immunized rats. Thus, I. ricinus TROSPA may be considered a good candidate component for an animal vaccine against Borrelia. PMID:24204685

  19. Progress on adenovirus-vectored universal influenza vaccines

    PubMed Central

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8+ T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides ‘self-adjuvanting’ activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches. PMID:25876176

  20. A set of modular binary vectors for transformation of cereals.

    PubMed

    Himmelbach, Axel; Zierold, Uwe; Hensel, Götz; Riechen, Jan; Douchkov, Dimitar; Schweizer, Patrick; Kumlehn, Jochen

    2007-12-01

    Genetic transformation of crop plants offers the possibility of testing hypotheses about the function of individual genes as well as the exploitation of transgenes for targeted trait improvement. However, in most cereals, this option has long been compromised by tedious and low-efficiency transformation protocols, as well as by the lack of versatile vector systems. After having adopted and further improved the protocols for Agrobacterium-mediated stable transformation of barley (Hordeum vulgare) and wheat (Triticum aestivum), we now present a versatile set of binary vectors for transgene overexpression, as well as for gene silencing by double-stranded RNA interference. The vector set is offered with a series of functionally validated promoters and allows for rapid integration of the desired genes or gene fragments by GATEWAY-based recombination. Additional in-built flexibility lies in the choice of plant selectable markers, cassette orientation, and simple integration of further promoters to drive specific expression of genes of interest. Functionality of the cereal vector set has been demonstrated by transient as well as stable transformation experiments for transgene overexpression, as well as for targeted gene silencing in barley.

  1. Progress on adenovirus-vectored universal influenza vaccines.

    PubMed

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  2. Tsetse flies: Genetics, evolution, and role as vectors

    PubMed Central

    Krafsur, E. S.

    2009-01-01

    Tsetse flies (Diptera: Glossinidae) are an ancient taxon of one genus, Glossina, and limited species diversity. All are exclusively haematophagous and confined to sub-Saharan Africa. The Glossina are the principal vectors of African trypanosomes Trypanosoma sp (Kinetoplastida: Trypanosomatidae) and as such, are of great medical and economic importance. Clearly tsetse flies and trypanosomes are coadapted and evolutionary interactions between them are manifest. Numerous clonally reproducing strains of Trypanosoma sp exist and their genetic diversities and spatial distributions are inadequately known. Here I review the breeding structures of the principle trypanosome vectors, G. morsitans s.l., G. pallidipes, G. palpalis s.l. and G. fuscipes fuscipes. All show highly structured populations among which there is surprisingly little detectable gene flow. Rather less is known of the breeding structure of T. brucei sensu lato vis à vis their vector tsetse flies but many genetically differentiated strains exist in nature. Genetic recombination in Trypanosoma via meiosis has recently been demonstrated in the laboratory thereby furnishing a mechanism of strain differentiation in addition to that of simple mutation. Spatially and genetically representative sampling of both trypanosome species and strains and their Glossina vectors is a major barrier to a comprehensive understanding of their mutual relationships. PMID:18992846

  3. Vector Network Analysis

    1997-10-20

    Vector network analyzers are a convenient way to measure scattering parameters of a variety of microwave devices. However, these instruments, unlike oscilloscopes for example, require a relatively high degree of user knowledge and expertise. Due to the complexity of the instrument and of the calibration process, there are many ways in which an incorrect measurement may be produced. The Microwave Project, which is part of Sandia National Laboratories Primary Standards Laboratory, routinely uses check standardsmore » to verify that the network analyzer is operating properly. In the past, these measurements were recorded manually and, sometimes, interpretation of the results was problematic. To aid our measurement assurance process, a software program was developed to automatically measure a check standard and compare the new measurements with an historical database of measurements of the same device. The program acquires new measurement data from selected check standards, plots the new data against the mean and standard deviation of prior data for the same check standard, and updates the database files for the check standard. The program is entirely menu-driven requiring little additional work by the user.« less

  4. Selenium incorporation using recombinant techniques

    SciTech Connect

    Walden, Helen

    2010-04-01

    An overview of techniques for recombinant incorporation of selenium and subsequent purification and crystallization of the resulting labelled protein. Using selenomethionine to phase macromolecular structures is common practice in structure determination, along with the use of selenocysteine. Selenium is consequently the most commonly used heavy atom for MAD. In addition to the well established recombinant techniques for the incorporation of selenium in prokaryal expression systems, there have been recent advances in selenium labelling in eukaryal expression, which will be discussed. Tips and things to consider for the purification and crystallization of seleno-labelled proteins are also included.

  5. A series of conditional shuttle vectors for targeted genomic integration in budding yeast.

    PubMed

    Chou, Chia-Ching; Patel, Michael T; Gartenberg, Marc R

    2015-05-01

    The capacity of Saccharomyces cerevisiae to repair exposed DNA ends by homologous recombination has long been used by experimentalists to assemble plasmids from DNA fragments in vivo. While this approach works well for engineering extrachromosomal vectors, it is not well suited to the generation, recovery and reuse of integrative vectors. Here, we describe the creation of a series of conditional centromeric shuttle vectors, termed pXR vectors, that can be used for both plasmid assembly in vivo and targeted genomic integration. The defining feature of pXR vectors is that the DNA segment bearing the centromere and origin of replication, termed CEN/ARS, is flanked by a pair of loxP sites. Passaging the vectors through bacteria that express Cre recombinase reduces the loxP-CEN/ARS-loxP module to a single loxP site, thereby eliminating the ability to replicate autonomously in yeast. Each vector also contains a selectable marker gene, as well as a fragment of the HO locus, which permits targeted integration at a neutral genomic site. The pXR vectors provide a convenient and robust method to assemble DNAs for targeted genomic modifications.

  6. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines

    PubMed Central

    Kim, Shin-Hee; Samal, Siba K.

    2016-01-01

    Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens. PMID:27384578

  7. Simultaneous cloning of open reading frames into several different expression vectors.

    PubMed

    Stanyon, Clement A; Limjindaporn, Thawornchai; Finley, Russell L

    2003-09-01

    Genomic sequencing has enabled the prediction of thousands of genes, most of which either cannot be assigned a function or can be only broadly categorized on the basis of sequence alone. High-throughput strategies for elucidating protein function are of high priority, and numerous approaches are being developed. Many of these approaches require the cloning of open reading frames (ORFs) into expression vectors that enable the encoded proteins to be tested for biological and biochemical activities. Typically, more than one type of vector must be employed, as different experiments require different conditions of protein production. Here we show that it is possible to simultaneously transfer a single ORF from a source vector to four target vectors using a commercially available in vitro recombination system. To test the approach, we constructed new vectors for expression of fusion proteins in yeast, including vectors for the LexA two-hybrid system. We show that individual ORFs can be efficiently transferred to four different vectors in a single in vitro reaction. The resulting expression plasmids can be separated using prototrophic markers specific to each vector. Using this system to produce multiple expression constructs simultaneously could greatly facilitate high-throughput subcloning and proteomic studies.

  8. Classifications and comparisons of multilocus recombination distributions

    PubMed Central

    Karlin, Samuel; Liberman, Uri

    1978-01-01

    Various classifications and representations of multilocus recombination structures are delineated based on generalized notions of linkage values and recombination rates. An important class of recombination distributions (called the count-location chiasma process) is parameterized by a distribution of the number of crossover events and, for each such crossover count, by a conditional distribution of crossover locations. A number of properties of this recombination structure are developed. A multilocus definition of a “natural” recombination range is set forth. Orderings among recombination distributions in the multilocus setting are also discussed. Comparisons are made in terms of complete linkage, free assortment and noninterference schemes serving as standards. PMID:16592601

  9. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  10. Expression and characterization of bovine lactoperoxidase by recombinant baculovirus.

    PubMed

    Tanaka, Tetsuya; Sato, Sanae; Kumura, Haruto; Shimazaki, Kei-ichi

    2003-10-01

    Lactoperoxidase (LPO) is a heme-containing oxidation-reduction enzyme present in milk. In this study, the gene encoding bovine lactoperoxidase (bLPO) was inserted into a baculovirus transfer vector, and a recombinant virus expressing bLPO was isolated. A bLPO-related recombinant baculovirus-expressed protein of 78 kDa was detected using anti-bLPO antibodies. After digestion with N-glycosidase F, the molecular weight of the recombinant bLPO (rbLPO) decreased. In addition, rbLPO reacted with lectin, indicating that the protein was glycosylated. The rbLPO activity and heme content in the culture supernatants increased upon addition of delta-aminolevulinic acid, which is a heme precursor. Differences in the delta-aminolevulinic acid-dependent circular dichroism spectrum and rbLPO pepsin hydrolysis were observed. These results suggest that the secondary structure and structural stability of rbLPO depends on the heme environment. Our data suggest that this bLPO expression system is useful for studying structure, catalytic mechanisms, and biological function.

  11. A multi-Fc-species system for recombinant antibody production

    PubMed Central

    Moutel, Sandrine; El Marjou, Ahmed; Vielemeyer, Ole; Nizak, Clément; Benaroch, Philippe; Dübel, Stefan; Perez, Franck

    2009-01-01

    Background Genomic, transcriptomic and proteomic projects often suffer from a lack of functional validation creating a strong demand for specific and versatile antibodies. Antibody phage display represents an attractive approach to select rapidly in vitro the equivalent of monoclonal antibodies, like single chain Fv antibodies, in an inexpensive and animal free way. However, so far, recombinant antibodies have not managed to impose themselves as efficient alternatives to natural antibodies. Results We developed a series of vectors that allow one to easily fuse single chain Fv antibodies to Fc domains of immunoglobulins, improving their sensitivity and facilitating their use. This series enables the fusion of single chain Fv antibodies with human, mouse or rabbit Fc so that a given antibody is no longer restricted to a particular species. This opens up unlimited multiplexing possibilities and gives additional value to recombinant antibodies. We also show that this multi-Fc species production system can be applied to natural monoclonal antibodies cloned as single chain Fv antibodies and we converted the widely used 9E10 mouse anti-Myc-tag antibody into a human and a rabbit antibody. Conclusion Altogether, this new expression system, that brings constant quality, sensitivity and unique versatility, will be important to broaden the use of recombinant and natural monoclonal antibodies both for laboratory and diagnosis use. PMID:19245715

  12. An improved semiclassical theory of radical pair recombination reactions.

    PubMed

    Manolopoulos, D E; Hore, P J

    2013-09-28

    We present a practical semiclassical method for computing the electron spin dynamics of a radical in which the electron spin is hyperfine coupled to a large number of nuclear spins. This can be used to calculate the singlet and triplet survival probabilities and quantum yields of radical recombination reactions in the presence of magnetic fields. Our method differs from the early semiclassical theory of Schulten and Wolynes [J. Chem. Phys. 68, 3292 (1978)] in allowing each individual nuclear spin to precess around the electron spin, rather than assuming that the hyperfine coupling-weighted sum of nuclear spin vectors is fixed in space. The downside of removing this assumption is that one can no longer obtain a simple closed-form expression for the electron spin correlation tensor: our method requires a numerical calculation. However, the computational effort increases only linearly with the number of nuclear spins, rather than exponentially as in an exact quantum mechanical calculation. The method is therefore applicable to arbitrarily large radicals. Moreover, it approaches quantitative agreement with quantum mechanics as the number of nuclear spins increases and the environment of the electron spin becomes more complex, owing to the rapid quantum decoherence in complex systems. Unlike the Schulten-Wolynes theory, the present semiclassical theory predicts the correct long-time behaviour of the electron spin correlation tensor, and it therefore correctly captures the low magnetic field effect in the singlet yield of a radical recombination reaction with a slow recombination rate. PMID:24089749

  13. Successive refinement lattice vector quantization.

    PubMed

    Mukherjee, Debargha; Mitra, Sanjit K

    2002-01-01

    Lattice Vector quantization (LVQ) solves the complexity problem of LBG based vector quantizers, yielding very general codebooks. However, a single stage LVQ, when applied to high resolution quantization of a vector, may result in very large and unwieldy indices, making it unsuitable for applications requiring successive refinement. The goal of this work is to develop a unified framework for progressive uniform quantization of vectors without having to sacrifice the mean- squared-error advantage of lattice quantization. A successive refinement uniform vector quantization methodology is developed, where the codebooks in successive stages are all lattice codebooks, each in the shape of the Voronoi regions of the lattice at the previous stage. Such Voronoi shaped geometric lattice codebooks are named Voronoi lattice VQs (VLVQ). Measures of efficiency of successive refinement are developed based on the entropy of the indices transmitted by the VLVQs. Additionally, a constructive method for asymptotically optimal uniform quantization is developed using tree-structured subset VLVQs in conjunction with entropy coding. The methodology developed here essentially yields the optimal vector counterpart of scalar "bitplane-wise" refinement. Unfortunately it is not as trivial to implement as in the scalar case. Furthermore, the benefits of asymptotic optimality in tree-structured subset VLVQs remain elusive in practical nonasymptotic situations. Nevertheless, because scalar bitplane- wise refinement is extensively used in modern wavelet image coders, we have applied the VLVQ techniques to successively refine vectors of wavelet coefficients in the vector set-partitioning (VSPIHT) framework. The results are compared against SPIHT and the previous successive approximation wavelet vector quantization (SA-W-VQ) results of Sampson, da Silva and Ghanbari.

  14. Vector and Axial-Vector Structures of the Θ+

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chul; Ledwig, Tim; Goeke, Klaus

    We present in this talk recent results of the vector and axial-vector transitions of the nucleon to the pentaquark baryon Θ+, based on the SU(3) chiral quark-soliton model. The results are summarized as follows: K*NΘ vector and tensor coupling constants turn out to be gK*NΘ ≃ 0.81 and fK*NΘ ≃ 0.84, respectively, and the KNΘ axial-vector coupling constant to be g*A ˜= 0.05. As a result, the total decay width for Θ+ → NK becomes very small: ΓΘ→NK ≃ 0.71 MeV, which is consistent with the DIANA result ΓΘ→NK = 0.36 ± 0.11 MeV.

  15. Colliders and brane vector phenomenology

    SciTech Connect

    Clark, T. E.; Love, S. T.; Xiong, C.; Nitta, Muneto; Veldhuis, T. ter

    2008-12-01

    Brane world oscillations manifest themselves as massive vector gauge fields. Their coupling to the standard model is deduced using the method of nonlinear realizations of the spontaneously broken higher dimensional space-time symmetries. Brane vectors are stable and weakly interacting and therefore escape particle detectors unnoticed. LEP and Tevatron data on the production of a single photon in conjunction with missing energy are used to delineate experimentally excluded regions of brane vector parameter space. The additional region of parameter space accessible to the LHC as well as a future lepton linear collider is also determined by means of this process.

  16. Initial conditions for vector inflation

    SciTech Connect

    Chiba, Takeshi

    2008-08-15

    Recently, a model of inflation using non-minimally coupled massive vector fields has been proposed. For a particular choice of non-minimal coupling parameter and for a flat Friedmann-Robertson-Walker model, the model is reduced to the model of chaotic inflation with massive scalar field. We study the effect of non-zero curvature of the universe on the onset of vector inflation. We find that in a curved universe the dynamics of vector inflation can be different from the dynamics of chaotic inflation, and the fraction of the initial conditions leading to inflationary solutions is reduced as compared with the chaotic inflation case.

  17. Genetic recombination and molecular evolution.

    PubMed

    Charlesworth, B; Betancourt, A J; Kaiser, V B; Gordo, I

    2009-01-01

    Reduced rates of genetic recombination are often associated with reduced genetic variability and levels of adaptation. Several different evolutionary processes, collectively known as Hill-Robertson (HR) effects, have been proposed as causes of these correlates of recombination. Here, we use DNA sequence polymorphism and divergence data from the noncrossing over dot chromosome of Drosophila to discriminate between two of the major forms of HR effects: selective sweeps and background selection. This chromosome shows reduced levels of silent variability and reduced effectiveness of selection. We show that neither model fits the data on variability. We propose that, in large genomic regions with restricted recombination, HR effects among nonsynonymous mutations undermine the effective strength of selection, so that their background selection effects are weakened. This modified model fits the data on variability and also explains why variability in very large nonrecombining genomes is not completely wiped out. We also show that HR effects of this type can produce an individual selection advantage to recombination, as well as greatly reduce the mean fitness of nonrecombining genomes and genomic regions.

  18. A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector.

    PubMed

    Yamaguchi, Shigeyuki; Kazuki, Yasuhiro; Nakayama, Yuji; Nanba, Eiji; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2011-01-01

    The production of cells capable of expressing gene(s) of interest is important for a variety of applications in biomedicine and biotechnology, including gene therapy and animal transgenesis. The ability to insert transgenes at a precise location in the genome, using site-specific recombinases such as Cre, FLP, and ΦC31, has major benefits for the efficiency of transgenesis. Recent work on integrases from ΦC31, R4, TP901-1 and Bxb1 phages demonstrated that these recombinases catalyze site-specific recombination in mammalian cells. In the present study, we examined the activities of integrases on site-specific recombination and gene expression in mammalian cells. We designed a human artificial chromosome (HAC) vector containing five recombination sites (ΦC31 attP, R4 attP, TP901-1 attP, Bxb1 attP and FRT; multi-integrase HAC vector) and de novo mammalian codon-optimized integrases. The multi-integrase HAC vector has several functions, including gene integration in a precise locus and avoiding genomic position effects; therefore, it was used as a platform to investigate integrase activities. Integrases carried out site-specific recombination at frequencies ranging from 39.3-96.8%. Additionally, we observed homogenous gene expression in 77.3-87.5% of colonies obtained using the multi-integrase HAC vector. This vector is also transferable to another cell line, and is capable of accepting genes of interest in this environment. These data suggest that integrases have high DNA recombination efficiencies in mammalian cells. The multi-integrase HAC vector enables us to produce transgene-expressing cells efficiently and create platform cell lines for gene expression. PMID:21390305

  19. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  20. Engineering human rhinovirus serotype-A1 as a vaccine vector.

    PubMed

    Tomusange, Khamis; Yu, Wenbo; Suhrbier, Andreas; Wijesundara, Danushka; Grubor-Bauk, Branka; Gowans, Eric J

    2015-05-01

    Herein we describe the construction of recombinant human rhinoviruses (rHRVs) encoding HIV Gag or Tat by inserting the full length tat gene or regions of the gag gene flanked by sequences encoding the HRV 2A protease cleavage site into the junction between HRV genes encoding structural (P1) and non-structural (P2) proteins. Most recombinants were unstable, but this was corrected by mutation of the flanking cleavage sites. Thereafter, all rHRV constructs retained the inserts throughout six passages. Such constructs may find utility as vaccine vectors to generate mucosal immunity.

  1. Recombinant DNA: History of the Controversy.

    ERIC Educational Resources Information Center

    Vigue, Charles L.; Stanziale, William G.

    1979-01-01

    The hazards associated with recombinant DNA research are presented along with some social implications and the development of recombinant DNA research guidelines by the National Institutes of Health. (SA)

  2. Meiotic Recombination: The Essence of Heredity.

    PubMed

    Hunter, Neil

    2015-10-28

    The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.

  3. Experiments With Magnetic Vector Potential

    ERIC Educational Resources Information Center

    Skinner, J. W.

    1975-01-01

    Describes the experimental apparatus and method for the study of magnetic vector potential (MVP). Includes a discussion of inherent errors in the calculations involved, precision of the results, and further applications of MVP. (GS)

  4. Electromagnetic structure of vector mesons

    NASA Astrophysics Data System (ADS)

    Adamuščín, C.; Dubnička, S.; Dubničková, A. Z.

    2014-11-01

    Electromagnetic structure of the complete nonet of vector mesons (ρ0, ρ+, ρ-, ω, ϕ, K*0, K*+, K¯*0, K*-) is investigated in the framework of the Unitary and Analytic model and insufficient experimental information on it is discussed.

  5. Polynomial interpretation of multipole vectors

    NASA Astrophysics Data System (ADS)

    Katz, Gabriel; Weeks, Jeff

    2004-09-01

    Copi, Huterer, Starkman, and Schwarz introduced multipole vectors in a tensor context and used them to demonstrate that the first-year Wilkinson microwave anisotropy probe (WMAP) quadrupole and octopole planes align at roughly the 99.9% confidence level. In the present article, the language of polynomials provides a new and independent derivation of the multipole vector concept. Bézout’s theorem supports an elementary proof that the multipole vectors exist and are unique (up to rescaling). The constructive nature of the proof leads to a fast, practical algorithm for computing multipole vectors. We illustrate the algorithm by finding exact solutions for some simple toy examples and numerical solutions for the first-year WMAP quadrupole and octopole. We then apply our algorithm to Monte Carlo skies to independently reconfirm the estimate that the WMAP quadrupole and octopole planes align at the 99.9% level.

  6. Brief history of vector Doppler

    NASA Astrophysics Data System (ADS)

    Dunmire, Barbrina; Beach, Kirk W.

    2001-05-01

    Since the development of the directional Doppler by McLeod in 1967, methods of acquiring, analyzing, and displaying blood velocity information have been under constant exploration. These efforts are motivated by a variety of interest and objectives including, to: a) simplify clinical examination, examiner training, and study interpretation, b) provide more hemodynamic information, and c) reduce examination variability and improve accuracy. The vector Doppler technique has been proposed as one potential avenue to achieve these objects. Vector Doppler systems are those that determine the true 2D or 3D blood flow velocity by combining multiple independent velocity component measurements. Most instruments can be divided into two broad categories: 1) cross-beam and 2) time-domain. This paper provides a brief synopsis of the progression of vector Doppler techniques, from its onset in 1970 to present, as well as possible avenues for future work. This is not intended to be a comprehensive review of all vector Doppler systems.

  7. Unsupervised learning of binary vectors

    NASA Astrophysics Data System (ADS)

    Copelli Lopes da Silva, Mauro

    In this thesis, unsupervised learning of binary vectors from data is studied using methods from Statistical Mechanics of disordered systems. In the model, data vectors are distributed according to a single symmetry-breaking direction. The aim of unsupervised learning is to provide a good approximation to this direction. The difference with respect to previous studies is the knowledge that this preferential direction has binary components. It is shown that sampling from the posterior distribution (Gibbs learning) leads, for general smooth distributions, to an exponentially fast approach to perfect learning in the asymptotic limit of large number of examples. If the distribution is non-smooth, then first order phase transitions to perfect learning are expected. In the limit of poor performance, a second order phase transition ("retarded learning") is predicted to occur if the data distribution is not biased. Using concepts from Bayesian inference, the center of mass of the Gibbs ensemble is shown to have maximal average (Bayes-optimal) performance. This upper bound for continuous vectors is extended to a discrete space, resulting in the clipped center of mass of the Gibbs ensemble having maximal average performance among the binary vectors. To calculate the performance of this best binary vector, the geometric properties of the center of mass of binary vectors are studied. The surprising result is found that the center of mass of infinite binary vectors which obey some simple constraints, is again a binary vector. When disorder is taken into account in the calculation, however, a vector with continuous components is obtained. The performance of the best binary vector is calculated and shown to always lie above that of Gibbs learning and below the Bayes-optimal performance. Making use of a variational approach under the replica symmetric ansatz, an optimal potential is constructed in the limits of zero temperature and mutual overlap 1. Minimization of this potential

  8. Contemporary issues: diseases with a food vector.

    PubMed Central

    Archer, D L; Young, F E

    1988-01-01

    Foodborne disease has become a contemporary issue. Several large, well-publicized outbreaks of foodborne disease have heightened public awareness that harmful microorganisms may be present in food and that chronic as well as acute disease may be caused by foodborne microbes. The field of food microbiology has likewise experienced a resurgence of interest. New tools, such as recombinant deoxyribonucleic acid technology and monoclonal antibody production, used to elucidate microbial virulence factors have facilitated identification of disease-causing microbes once thought to be harmless and demonstrated the complexity of individual virulence mechanisms previously considered to be well understood. Foodborne pathogens are also causing disease via some surprising food vectors, such as chopped, bottled garlic and sauteed onions. In addition to acute gastrointestinal disturbances, certain microorganisms may, through complex interactions with the human immune response, cause chronic diseases that affect several major organ systems. These microbes are serving as models in studies of molecular mimicry and genetic interrelatedness of procaryotes and eucaryotes. Other recently recognized attributes of foodborne microorganisms, such as the heat shock phenomenon and the possible nonculturability of some bacteria, may affect their ability to cause disease in humans. Because foodborne disease is a major cause of morbidity and mortality, the study of these diseases and their causative microorganisms presents a unique challenge to many professionals in the subdisciplines of microbiology, epidemiology, and clinical medicine. PMID:3069199

  9. Effective Masses of Vector Polarons

    NASA Astrophysics Data System (ADS)

    Foell, Charles; Clougherty, Dennis

    2006-03-01

    We consider the vector polarons of a one-dimensional model of an electron in a doubly (or nearly) degenerate band that couples to two elastic distortions, as described previously by Clougherty and Foell [1]. A variational approach is used to analytically and numerically calculate effective masses of the three types of vector polarons. [1] D. P. Clougherty and C. A. Foell, Phys. Rev. B 70, 052301 (2004).

  10. Axisymmetric Coanda-assisted vectoring

    NASA Astrophysics Data System (ADS)

    Allen, Dustin; Smith, Barton L.

    2009-01-01

    An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach < 0.3). The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r - θ directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets.

  11. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  12. Sustained expression from DNA vectors.

    PubMed

    Wong, Suet Ping; Argyros, Orestis; Harbottle, Richard P

    2015-01-01

    DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.

  13. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs

    PubMed Central

    Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV–LACK, rCDV–TSA, and rCDV–LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV–LACK showed markedly smaller nodules without ulceration. Although the rCDV–TSA- and rCDV–LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV–LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs. PMID:26162094

  14. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    PubMed

    Miura, Ryuichi; Kooriyama, Takanori; Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs. PMID:26162094

  15. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    PubMed

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. PMID:26021569

  16. An Efficient Procedure for Marker-Free Mutagenesis of S. coelicolor by Site-Specific Recombination for Secondary Metabolite Overproduction

    PubMed Central

    Dai, Ruixue; Yu, Meiying; Zhao, Guoping; Ding, Xiaoming

    2013-01-01

    Streptomyces bacteria are known for producing important natural compounds by secondary metabolism, especially antibiotics with novel biological activities. Functional studies of antibiotic-biosynthesizing gene clusters are generally through homologous genomic recombination by gene-targeting vectors. Here, we present a rapid and efficient method for construction of gene-targeting vectors. This approach is based on Streptomyces phage φBT1 integrase-mediated multisite in vitro site-specific recombination. Four ‘entry clones’ were assembled into a circular plasmid to generate the destination gene-targeting vector by a one-step reaction. The four ‘entry clones’ contained two clones of the upstream and downstream flanks of the target gene, a selectable marker and an E. coli-Streptomyces shuttle vector. After targeted modification of the genome, the selectable markers were removed by φC31 integrase-mediated in vivo site-specific recombination between pre-placed attB and attP sites. Using this method, part of the calcium-dependent antibiotic (CDA) and actinorhodin (Act) biosynthetic gene clusters were deleted, and the rrdA encoding RrdA, a negative regulator of Red production, was also deleted. The final prodiginine production of the engineered strain was over five times that of the wild-type strain. This straightforward φBT1 and φC31 integrase-based strategy provides an alternative approach for rapid gene-targeting vector construction and marker removal in streptomycetes. PMID:23409083

  17. Recombinant raccoon pox vaccine protects mice against lethal plague

    USGS Publications Warehouse

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7??104LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague. ?? 2002 Elsevier Science Ltd. All rights reserved.

  18. [Preparation of Recombinant Human Adenoviruses Labeled with miniSOG].

    PubMed

    Zou, Xiaohui; Xiao, Rong; Guo, Xiaojuan; Qu, Jianguo; Lu, Zhuozhuang; Hong, Tao

    2016-01-01

    We wished to study the intracellular transport of adenoviruses. We constructed a novel recombinant adenovirus in which the structural protein IX was labeled with a mini-singlet oxygen generator (miniSOG). The miniSOG gene was synthesized by overlapping extension polymerase chain reaction (PCR), cloned to the pcDNA3 vector, and expressed in 293 cells. Activation of miniSOG generated sufficient numbers of singlet oxygen molecules to catalyze polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by transmission electron microscopy (TEM). To construct miniSOG-labelled recombinant adenoviruses, the miniSOG gene was subcloned downstream of the IX gene in a pShuttle plasmid. Adenoviral plasmid pAd5-IXSOG was generated by homologous recombination of the modified shuttle plasmid (pShuttle-IXSOG) with the backbone plasmid (pAdeasy-1) in the BJ5183 strain of Eschericia coli. Adenovirus HAdV-5-IXSOG was rescued by transfection of 293 cells with the linearized pAd5-IXSOG. After propagation, virions were purified using the CsC1 ultracentrifugation method. Finally, HAdV-5-IXSOG in 2.0 mL with a particle titer of 6 x 1011 vp/mL was obtained. Morphology of HAdV-5-IXSOG was verified by TEM. Fusion of IX with the miniSOG gene was confirmed by PCR. In conclusion, miniSOG-labeled recombinant adenoviruses were constructed, which could be valuable tools for virus tracking by TEM. PMID:27295881

  19. Nondisjunction of chromosome 15: origin and recombination.

    PubMed Central

    Robinson, W P; Bernasconi, F; Mutirangura, A; Ledbetter, D H; Langlois, S; Malcolm, S; Morris, M A; Schinzel, A A

    1993-01-01

    Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N = 27) and Angelman syndrome patients (N = 5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination are utilized. Standard methods of centromere mapping are employed to determine the level of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, most paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome. PMID:8352279

  20. Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction.

    PubMed

    Coloma, M J; Hastings, A; Wims, L A; Morrison, S L

    1992-07-31

    A new family of vectors has been produced which facilitates the cloning and expression of immunoglobulin variable regions cloned by polymerase chain reaction (PCR). The vectors are designed to express the cloned variable regions joined to human constant regions and take advantage of priming in the leader sequence so that no amino acid changes will be introduced into the mature antibody molecule. Both the heavy chain and light chain vectors utilize a murine VH promoter provided with an EcoRV restriction site so that the amplified variable regions can be directly cloned into a functional promoter. For the heavy chain an NheI restriction site has been generated at the first two amino acids of CH1 and the cloned leader and variable region are fused directly to the CH1 domain of the constant region. When the leader and variable regions of the light chain were fused directly to C kappa, no expression was observed. Therefore the light chain expression vector was designed with a SalI restriction site for cloning into a splice junction 3' of the variable region; VL then is joined to C kappa by splicing. Both vectors direct the expression of functional, fully assembled immunoglobulin molecules with the expected molecular weight. Use of redundant oligomers to prime the PCR permits the cloning and expression of recombinant antibodies without any prior information as to their sequence and makes it possible to rapidly generate recombinant antibodies from any monoclonal antibody producing cell line.

  1. A modular cloning toolbox for the generation of chloroplast transformation vectors.

    PubMed

    Vafaee, Yavar; Staniek, Agata; Mancheno-Solano, Maria; Warzecha, Heribert

    2014-01-01

    Plastid transformation is a powerful tool for basic research, but also for the generation of stable genetically engineered plants producing recombinant proteins at high levels or for metabolic engineering purposes. However, due to the genetic makeup of plastids and the distinct features of the transformation process, vector design, and the use of specific genetic elements, a large set of basic transformation vectors is required, making cloning a tedious and time-consuming effort. Here, we describe the adoption of standardized modular cloning (GoldenBraid) to the design and assembly of the full spectrum of plastid transformation vectors. The modular design of genetic elements allows straightforward and time-efficient build-up of transcriptional units as well as construction of vectors targeting any homologous recombination site of choice. In a three-level assembly process, we established a vector fostering gene expression and formation of griffithsin, a potential viral entry inhibitor and HIV prophylactic, in the plastids of tobacco. Successful transformation as well as transcript and protein production could be shown. In concert with the aforesaid endeavor, a set of modules facilitating plastid transformation was generated, thus augmenting the GoldenBraid toolbox. In short, the work presented in this study enables efficient application of synthetic biology methods to plastid transformation in plants. PMID:25302695

  2. (A new method employing homologous recombination and YAC rescue to expedite gap filling long range mapping)

    SciTech Connect

    Not Available

    1991-01-01

    We have embarked on three areas of research relevant to the telomere rescue strategy mediated by homologous recombination described in this proposal. First, we have constructed the telomere rescue vector. Second, we have carried out tests in yeast and mammalian cells to ascertain whether the various crucial components function. Finally, we have begun to develop the molecular reagents required to target the telomeric regions of chromosome 16. The specific progress in each area is described briefly below.

  3. Construction of recombinant baculoviruses expressing hemagglutinin of H5N1 avian influenza and research on the immunogenicity

    PubMed Central

    Ge, Jingping; An, Qi; Gao, Dongni; Liu, Ying; Ping, Wenxiang

    2016-01-01

    Recombinant baculoviruses with different promoter and regulatory elements were constructed to enhance the expression of target protein and boost the efficacies of avian influenza vaccine. Hemagglutinin gene was cloned into the baculovirus transfer vectors driven by cytomegaloviru (CMV) and White spot syndrome virus immediate-early promoter one (WSSV ie1) promoter respectively, with different regulatory elements. The recombinant baculoviruses were directly used as vaccines to immunize specific pathogen-free chickens. The protein expression levels of recombinant baculoviruses BV-S-HA and BV-S-ITRs-HA were respectively 2.43 and 2.67 times than that of BV-S-con-HA, while the protein expression levels of BV-A-HA and BV-A-ITRs-HA were respectively 2.44 and 2.69 times than that of BV-S-con-HA. Immunoglobulin G (IgG) antibody levels induced by BV-A and BV-S series recombinant baculovirus were significantly higher than the commercialized vaccine group (P < 0.05). Among the groups with same promoter, the IgG antibody levels induced by the baculovirus containing regulatory elements were significantly higher than control group. Additionally, the immune effects induced by BV-A series recombinant baculoviruses with WSSV ie1 promoter were significantly stronger than the BV-S series recombinant baculoviruses with CMV promoter. The avian influenza vaccine prepared based on baculovirus vector can simultaneously stimulate the humoral and cellular immune responses. PMID:27063566

  4. [Modified vaccinia virus ankara (MVA)--development as recombinant vaccine and prospects for use in veterinary medicine].

    PubMed

    Volz, Asisa; Fux, Robert; Langenmayer, Martin C; Sutter, Gerd

    2015-01-01

    Poxviruses as expression vectors are widely used in medical research for the development of recombinant vaccines and molecular therapies. Here we review recent accomplishments in vaccine research using recombinant modified vaccinia virus ankara (MVA). MVA is a highly attenuated vaccinia virus strain that originated from serial tissue culture passage in chicken embryo fibroblasts more than 40 years ago. Growth adaptation to avian host cells caused deletions and mutations in the viral genome affecting about 15% of the original genetic information. In consequence, MVA is replication-deficient in cells of mammalian origin and fails to produce many of the virulence factors encoded by conventional vaccinia virus. Because of its safety for the general environment MVA can be handled under conditions of biosafety level one. Non-replicating MVA can enter any target cell and activate its molecular life cycle to express all classes of viral and recombinant genes. Therefore, recombinant MVA have been established as an extremely safe and efficient vector system for vaccine development in medical research. By now, various recombinant MVA vaccines have been found safe and immunogenic when used for phase I/II clinical testing in humans, and suitable for industrial scale production following good practice of manufacturing. Thus, there is an obvious usefulness of recombinant MVA vaccines for novel prophylactic and therapeutic approaches also in veterinary medicine. Results from first studies in companion and farm animals are highly promising.

  5. Are Bred Vectors The Same As Lyapunov Vectors?

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Corazza, M.; Cai, M.

    Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the

  6. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    ERIC Educational Resources Information Center

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  7. Induction of stable epigenetic gene silencing in plants using a virus vector.

    PubMed

    Kanazawa, Akira; Kasai, Megumi

    2015-01-01

    Gene silencing through transcriptional repression can be induced by double-stranded RNA targeted to a gene promoter, a process known as RNA-mediated transcriptional gene silencing (TGS). This phenomenon is associated with epigenetic changes involving cytosine methylation of the promoter. Plant virus vectors have been used to induce RNA-mediated TGS. Here, we describe methods relevant to the induction of epigenetic changes and RNA-mediated TGS in plants using a virus vector, which include inoculation of recombinant virus, detection of short interfering RNAs, bisulfite sequencing analysis, and nuclear run-on transcription assay. PMID:25740361

  8. Recombinant protein polymers in biomaterials.

    PubMed

    Kim, Wookhyun

    2013-01-01

    Naturally occurring protein-based materials have been found that function as critical components in biomechanical response, fibers and adhesives. A relatively small but growing number of recombinant protein-based materials that mimic the desired features of their natural sources, such as collagens, elastins and silks, are considered as an alternative to conventional synthetic polymers. Advances in genetic engineering have facilitated the synthesis of repetitive protein polymers with precise control of molecular weights which are designed by using synthetic genes encoding tandem repeats of oligopeptide originating from a modular domain of natural proteins. Many repeat sequences as protein polymer building blocks adopt a well-defined secondary structure and undergo self-assembly to result in physically cross-linked networks or with chemical cross-linking so that further form three-dimensional architectures similar to natural counterparts. In this review, recombinant protein polymers currently developed will be presented that have emerged as promising class of next generation biomaterials. PMID:23276922

  9. Recombinant bacteriophage lysins as antibacterials

    PubMed Central

    Fenton, Mark; Ross, Paul; McAuliffe, Olivia; O'Mahony, Jim

    2010-01-01

    With the increasing worldwide prevalence of antibiotic resistant bacteria, bacteriophage endolysins (lysins) represent a very promising novel alternative class of antibacterial in the fight against infectious disease. Lysins are phage-encoded peptidoglycan hydrolases which, when applied exogenously (as purified recombinant proteins) to Gram-positive bacteria, bring about rapid lysis and death of the bacterial cell. A number of studies have recently demonstrated the strong potential of these enzymes in human and veterinary medicine to control and treat pathogens on mucosal surfaces and in systemic infections. They also have potential in diagnostics and detection, bio-defence, elimination of food pathogens and control of phytopathogens. This review discusses the extensive research on recombinant bacteriophage lysins in the context of antibacterials, and looks forward to future development and potential. PMID:21327123

  10. Recombination Catalysts for Hypersonic Fuels

    NASA Technical Reports Server (NTRS)

    Chinitz, W.

    1998-01-01

    The goal of commercially-viable access to space will require technologies that reduce propulsion system weight and complexity, while extracting maximum energy from the products of combustion. This work is directed toward developing effective nozzle recombination catalysts for the supersonic and hypersonic aeropropulsion engines used to provide such access to space. Effective nozzle recombination will significantly reduce rk=le length (hence, propulsion system weight) and reduce fuel requirements, further decreasing the vehicle's gross lift-off weight. Two such catalysts have been identified in this work, barium and antimony compounds, by developing chemical kinetic reaction mechanisms for these materials and determining the engine performance enhancement for a typical flight trajectory. Significant performance improvements are indicated, using only 2% (mole or mass) of these compounds in the combustor product gas.

  11. Chemical kinetics of geminal recombination

    SciTech Connect

    Levin, P.P.; Khudyakov, I.V.; Brin, E.F.; Kuz'min, V.A.

    1988-09-01

    The kinetics of geminal recombination of triplet radical pairs formed in photoreduction of benzophenone by p-cresol in glycerin solution was studied by pulsed laser photolysis. The experiments were conducted at several temperatures and in a constant magnetic field of H = 0.34 T. The parameters in six kinetic equations describing geminal recombination were determined with a computer. The values of the sums of the squares of the residual deviations of the approximation were obtained. It was found that the kinetics are best described by the functions proposed by Noyes and Shushin. It was shown that it is necessary to use the mutual diffusion coefficient of the radicals, which is significantly smaller than the sum of the estimations of the experimental values of the radical diffusion coefficients, for describing the kinetics due to the correlations of the molecular motions of the radicals in the cage.

  12. [Expression, purification of recombinant cationic peptide AIK in Escherichia coli and its antitumor activity].

    PubMed

    Fan, Fangfang; Sun, Huiying; Xu, Hui; Liu, Jiawei; Zhang, Haiyuan; Li, Yilan; Ning, Xuelian; Sun, Yue; Bai, Jing; Fu, Songbin; Zhou, Chunshui

    2015-12-01

    AIK is a novel cationic peptide with potential antitumor activity. In order to construct the AIK expression vector by Gateway technology, and establish an optimal expression and purification method for recombinant AIK, a set of primers containing AttB sites were designed and used to create the AttB-TEV-FLAG-AIR fusion gene by overlapping PCR. The resulting fusion gene was cloned into the donor vector pDONR223 by attB and attP mediated recombination (BP reaction), then, transferred into the destination vector pDESTl 5 by attL and attR mediated recombination (LR reaction). All the cloning was verified by both colony PCR and DNA sequencing. The BL21 F. coli transformed by the GST-AIR expression plasmid was used to express the GST-AIK fusion protein with IPTG induction and the induction conditions were optimized. GST-AIR fusion protein was purified by glutathione magnetic beads, followed by rTEV cleavage to remove GST tag and MTS assay to test the growth inhibition activity of the recombinant AIR on human leukemia HL-60 cells. We found that a high level of soluble expression of GST-AIK protein (more than 30% out of the total bacterial proteins) was achieved upon 0.1 mmol/L ITPG induction for 4 h at 37 °C in the transformed BL21 F. coli with starting OD₆₀₀ at 1.0. Through GST affinity purification and rTEV cleavage, the purity of the resulting recombinant AIK was greater than 95%. And the MTS assays on HL-60 cells confirmed that the recombinant AIK retains an antitumor activity at a level similar to the chemically synthesized AIK. Taken together, we have established a method for expression and purification of recombinant AIK with a potent activity against tumor cells, which will be beneficial for the large-scale production and application of recombinant AIK in the future. PMID:27093838

  13. Infection and RNA recombination of Brome mosaic virus in Arabidopsis thaliana.

    PubMed

    Dzianott, Aleksandra; Bujarski, Jozef J

    2004-01-20

    Ecotypes of Arabidopsis thaliana supported the replication and systemic spread of Brome mosaic virus (BMV) RNAs. Infection was induced either by manual inoculation with viral RNA or by BMV virions, demonstrating that virus disassembly did not prevent infection. When in vitro-transcribed BMV RNAs 1-3 were used, production of subgenomic RNA4 was observed, showing that BMV RNA replication and transcription had occurred. Furthermore, inoculations of the transgenic Arabidopsis line that expressed a suppressor of RNA interference (RNAi) pathway markedly increased the BMV RNA concentrations. Inoculations with designed BMV RNA3 recombination vectors generated both homologous and nonhomologous BMV RNA-RNA recombinants. Thus, all cellular factors essential for BMV RNA replication, transcription, and RNA recombination were shown to be present in Arabidopsis. The current scope of understanding of the model Arabidopsis plant system should facilitate the identification of these factors governing the BMV life cycle.

  14. Recombinant human elastin-like magnetic microparticles for drug delivery and targeting.

    PubMed

    Ciofani, Gianni; Genchi, Giada Graziana; Guardia, Pablo; Mazzolai, Barbara; Mattoli, Virgilio; Bandiera, Antonella

    2014-05-01

    Bioinspired recombinant polypeptides represent a highly promising tool in biomedical research, being protein intrinsic constituents of both cells and their natural matrices. In this regard, a very interesting model is represented by polypeptides inspired by elastin, which naturally confers rubber-like elasticity to tissues, and is able to undergo wide deformations without rupture. In this paper, a microparticle system based on a recombinant human elastin-like polypeptide (HELP) is reported for drug delivery applications. HELP microparticles are prepared through a water-in-oil emulsion of an aqueous solution of recombinant polypeptide in isoctane, followed by enzymatic cross-linking. Superparamagnetic iron oxide nanoparticles are introduced in this system with the purpose of conferring magnetic properties to the microspheres, and thus controlling their targeting and tracking as drug vectors. The obtained microparticles are characterized in terms of morphology, structure, magnetic properties, drug release, and magnetic drivability, showing interesting and promising results for further biomedical applications. PMID:24318291

  15. A Polyclonal Antibody Against Recombinant Bovine Haptoglobin Expressed in Escherichia coli

    PubMed Central

    Guo, Donghua; Zhang, Hong; Li, Chunqiu

    2013-01-01

    The nucleotide sequence of the predicted immunodominant region of bovine haptoglobin (pirBoHp), without the signal peptide sequence, was synthesized based on the codon usage bias of Escherichia coli. The synthesized pirBoHp gene was cloned into the prokaryotic expression vector pET-32a (+), which contains a His-tag. The recombinant pirBoHp protein was successfully expressed in E. coli BL21 (DE3) cells. Western blot analysis showed that the purified recombinant pirBoHp protein could be recognized by an anti-His-tag monoclonal antibody. Further investigations indicated that a polyclonal antibody against the recombinant pirBoHp protein could recognize the α and β chains of native bovine haptoglobin in a pooled plasma sample from dairy cattle suffering from foot rot. PMID:24328747

  16. Rapid screening for the robust expression of recombinant proteins in algal plastids.

    PubMed

    Barrera, Daniel; Gimpel, Javier; Mayfield, Stephen

    2014-01-01

    Chlamydomonas reinhardtii has many advantages as a photosynthetic model organism. One of these is facile, targeted chloroplast transformation by particle bombardment. Functional recombinant proteins can be expressed to significant levels in this system, potentially outperforming higher plants in speed of scaling, cost, and space requirements. Several strategies and regulatory regions can be used for achieving transgene expression. Here we present two of those strategies: one makes use of the psbD promoter for expressing moderate levels of the recombinant protein in a photosynthetic background. The other strategy is based on the strong psbA promoter for obtaining high yields of the recombinant product in a non-photosynthetic strain. We herein describe the vectors, transformation procedures, and screening methods associated with these two strategies. PMID:24599869

  17. Black holes with vector hair

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying

    2016-09-01

    In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.

  18. Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia coli.

    PubMed

    Godiska, Ronald; Mead, David; Dhodda, Vinay; Wu, Chengcang; Hochstein, Rebecca; Karsi, Attila; Usdin, Karen; Entezam, Ali; Ravin, Nikolai

    2010-04-01

    Despite recent advances in sequencing, complete finishing of large genomes and analysis of novel proteins they encode typically require cloning of specific regions. However, many of these fragments are extremely difficult to clone in current vectors. Superhelical stress in circular plasmids can generate secondary structures that are substrates for deletion, particularly in regions that contain numerous tandem or inverted repeats. Common vectors also induce transcription and translation of inserted fragments, which can select against recombinant clones containing open reading frames or repetitive DNA. Conversely, transcription from cloned promoters can interfere with plasmid stability. We have therefore developed a novel Escherichia coli cloning vector (termed 'pJAZZ' vector) that is maintained as a linear plasmid. Further, it contains transcriptional terminators on both sides of the cloning site to minimize transcriptional interference between vector and insert. We show that this vector stably maintains a variety of inserts that were unclonable in conventional plasmids. These targets include short nucleotide repeats, such as those of the expanded Fragile X locus, and large AT-rich inserts, such as 20-kb segments of genomic DNA from Pneumocystis, Plasmodium, Oxytricha or Tetrahymena. The pJAZZ vector shows decreased size bias in cloning, allowing more uniform representation of larger fragments in libraries. PMID:20040575

  19. VectorBase: a home for invertebrate vectors of human pathogens.

    PubMed

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J; Bruggner, Robert V; Butler, Ryan; Campbell, Kathryn S; Christophides, George K; Christley, Scott; Dialynas, Emmanuel; Emmert, David; Hammond, Martin; Hill, Catherine A; Kennedy, Ryan C; Lobo, Neil F; MacCallum, M Robert; Madey, Greg; Megy, Karine; Redmond, Seth; Russo, Susan; Severson, David W; Stinson, Eric O; Topalis, Pantelis; Zdobnov, Evgeny M; Birney, Ewan; Gelbart, William M; Kafatos, Fotis C; Louis, Christos; Collins, Frank H

    2007-01-01

    VectorBase (http://www.vectorbase.org/) is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever.

  20. Use of simian virus 40 replication to amplify Epstein-Barr virus shuttle vectors in human cells.

    PubMed Central

    Heinzel, S S; Krysan, P J; Calos, M P; DuBridge, R B

    1988-01-01

    We have increased the copy number of Epstein-Barr virus vectors that also carry the origin of replication of simian virus 40 (SV40) by providing a transient dose of SV40 T antigen. T antigen was supplied in trans by transfection of a nonreplicating plasmid which expresses T antigen into cells carrying Epstein-Barr virus-SV40 vectors. A significant increase in vector copy number occurred over the next few days. We also observed a high frequency of intramolecular recombination when the vector carried a repeat segment in direct orientation, but not when the repeat was in inverted orientation or absent. Furthermore, by following the mutation frequency for a marker on the vector after induction of SV40 replication, it was determined that SV40 replication generates a detectable increase in the deletion frequency but no measurable increase in the frequency of point mutations. Images PMID:2843671