Sample records for creating genetically modified

  1. Engineer Novel Anticancer Bioagents

    DTIC Science & Technology

    2010-10-01

    selection (hence to create marker-free genetically modified organism – GMO as required by FDA regulations) have failed. The overall transformation...free genetically modified organism – GMO , as required by FDA regulations). Key Research Status 1. Reconstitution of a complete FK228 biosynthetic

  2. When gene medication is also genetic modification--regulating DNA treatment.

    PubMed

    Foss, Grethe S; Rogne, Sissel

    2007-07-26

    The molecular methods used in DNA vaccination and gene therapy resemble in many ways the methods applied in genetic modification of organisms. In some regulatory regimes, this creates an overlap between 'gene medication' and genetic modification. In Norway, an animal injected with plasmid DNA, in the form of DNA vaccine or gene therapy, currently is viewed as being genetically modified for as long as the added DNA is present in the animal. However, regulating a DNA-vaccinated animal as genetically modified creates both regulatory and practical challenges. It is also counter-intuitive to many biologists. Since immune responses can be elicited also to alter traits, the borderline between vaccination and the modification of properties is no longer distinct. In this paper, we discuss the background for the Norwegian interpretation and ways in which the regulatory challenge can be handled.

  3. Gone with the Wind: Conceiving of Moral Responsibility in the Case of GMO Contamination.

    PubMed

    Robaey, Zoë

    2016-06-01

    Genetically modified organisms are a technology now used with increasing frequency in agriculture. Genetically modified seeds have the special characteristic of being living artefacts that can reproduce and spread; thus it is difficult to control where they end up. In addition, genetically modified seeds may also bring about uncertainties for environmental and human health. Where they will go and what effect they will have is therefore very hard to predict: this creates a puzzle for regulators. In this paper, I use the problem of contamination to complicate my ascription of forward-looking moral responsibility to owners of genetically modified organisms. Indeed, how can owners act responsibly if they cannot know that contamination has occurred? Also, because contamination creates new and unintended ownership, it challenges the ascription of forward-looking moral responsibility based on ownership. From a broader perspective, the question this paper aims to answer is as follows: how can we ascribe forward-looking moral responsibility when the effects of the technologies in question are difficult to know or unknown? To solve this problem, I look at the epistemic conditions for moral responsibility and connect them to the normative notion of the social experiment. Indeed, examining conditions for morally responsible experimentation helps to define a range of actions and to establish the related epistemic virtues that owners should develop in order to act responsibly where genetically modified organisms are concerned.

  4. Genetically engineered foods

    MedlinePlus

    ... insert that gene into a cell of another plant or animal. ... Bioengineered foods; GMOs; Genetically modified foods ... also be moved from an animal to a plant or vice versa. Another ... organisms, or GMOs. The process to create GE foods is different ...

  5. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products.

    PubMed

    Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J; Kok, Esther; Shi, Jianxin; Zel, Jana

    2016-07-01

    The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.

  6. Elucidation of Genetic Backgrounds Necessary for Chlorophyll a Biosynthesis Toward Artificial Creation of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Tsukatani, Yusuke; Masuda, Shinji

    2015-09-01

    We succeeded to create the genetically modified purple photosynthetic bacterium capable of synthesizing chlorophyll a. The results indicate that not only chlorophyll synthase, but also an enzyme for galactolipid synthesis and reaction center proteins are required for accumulating chlorophyll a.

  7. [Genetically modified food--great unknown].

    PubMed

    Cichosz, G; Wiackowski, S K

    2012-08-01

    Genetically modified food (GMF) creates evident threat to consumers' health. In spite of assurances of biotechnologists, DNA of transgenic plants is instable, so, synthesis of foreign, allergenic proteins is possible. Due to high trypsin inhibitor content the GMF is digested much more slowly what, alike Bt toxin presence, increases probability of alimentary canal diseases. Next threats are bound to the presence of fitoestrogens and residues of Roundup pesticide, that can diminish reproductiveness; and even lead to cancerogenic transformation through disturbance of human hormonal metabolism. In spite of food producers and distributors assurances that food made of GMF raw materials is marked, de facto consumers have no choice. Moreover, along the food law products containing less than 0.9% of GMF protein are not included into genetically modified food.

  8. Genome engineering in cattle: recent technological advancements.

    PubMed

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered cattle for agricultural and biomedical applications.

  9. Gene targeting and cloning in pigs using fetal liver derived cells.

    PubMed

    Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph

    2011-12-01

    Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Dynamics of list-server discussion on genetically modified foods.

    PubMed

    Triunfol, Marcia L; Hines, Pamela J

    2004-04-01

    Computer-mediated discussion lists, or list-servers, are popular tools in settings ranging from professional to personal to educational. A discussion list on genetically modified food (GMF) was created in September 2000 as part of the Forum on Genetically Modified Food developed by Science Controversies: Online Partnerships in Education (SCOPE), an educational project that uses computer resources to aid research and learning around unresolved scientific questions. The discussion list "GMF-Science" was actively supported from January 2001 to May 2002. The GMF-Science list welcomed anyone interested in discussing the controversies surrounding GMF. Here, we analyze the dynamics of the discussions and how the GMF-Science list may contribute to learning. Activity on the GMF-Science discussion list reflected some but not all the controversies that were appearing in more traditional publication formats, broached other topics not well represented in the published literature, and tended to leave undiscussed the more technical research developments.

  11. Design of a DNA chip for detection of unknown genetically modified organisms (GMOs).

    PubMed

    Nesvold, Håvard; Kristoffersen, Anja Bråthen; Holst-Jensen, Arne; Berdal, Knut G

    2005-05-01

    Unknown genetically modified organisms (GMOs) have not undergone a risk evaluation, and hence might pose a danger to health and environment. There are, today, no methods for detecting unknown GMOs. In this paper we propose a novel method intended as a first step in an approach for detecting unknown genetically modified (GM) material in a single plant. A model is designed where biological and combinatorial reduction rules are applied to a set of DNA chip probes containing all possible sequences of uniform length n, creating probes capable of detecting unknown GMOs. The model is theoretically tested for Arabidopsis thaliana Columbia, and the probabilities for detecting inserts and receiving false positives are assessed for various parameters for this organism. From a theoretical standpoint, the model looks very promising but should be tested further in the laboratory. The model and algorithms will be available upon request to the corresponding author.

  12. Multiple transgene traits may create un-intended fitness effects in Brassica napus

    EPA Science Inventory

    Increasingly, genetically modified crops are being developed to express multiple “stacked” traits for different types of transgenes, for example, herbicide resistance, insect resistance, crop quality and resistance to environmental factors. The release of crops that express mult...

  13. Unraveling Genetic Modifiers in the Gria4 Mouse Model of Absence Epilepsy

    PubMed Central

    Frankel, Wayne N.; Mahaffey, Connie L.; McGarr, Tracy C.; Beyer, Barbara J.; Letts, Verity A.

    2014-01-01

    Absence epilepsy (AE) is a common type of genetic generalized epilepsy (GGE), particularly in children. AE and GGE are complex genetic diseases with few causal variants identified to date. Gria4 deficient mice provide a model of AE, one for which the common laboratory inbred strain C3H/HeJ (HeJ) harbors a natural IAP retrotransposon insertion in Gria4 that reduces its expression 8-fold. Between C3H and non-seizing strains such as C57BL/6, genetic modifiers alter disease severity. Even C3H substrains have surprising variation in the duration and incidence of spike-wave discharges (SWD), the characteristic electroencephalographic feature of absence seizures. Here we discovered extensive IAP retrotransposition in the C3H substrain, and identified a HeJ-private IAP in the Pcnxl2 gene, which encodes a putative multi-transmembrane protein of unknown function, resulting in decreased expression. By creating new Pcnxl2 frameshift alleles using TALEN mutagenesis, we show that Pcnxl2 deficiency is responsible for mitigating the seizure phenotype – making Pcnxl2 the first known modifier gene for absence seizures in any species. This finding gave us a handle on genetic complexity between strains, directing us to use another C3H substrain to map additional modifiers including validation of a Chr 15 locus that profoundly affects the severity of SWD episodes. Together these new findings expand our knowledge of how natural variation modulates seizures, and highlights the feasibility of characterizing and validating modifiers in mouse strains and substrains in the post-genome sequence era. PMID:25010494

  14. Co-downregulation of the hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Tong, Zongyong; Li, Heng; Zhang, Rongxue; Ma, Lei; Dong, Jiangli; Wang, Tao

    2015-10-01

    Lignin is a component of the cell wall that is essential for growth, development, structure and pathogen resistance in plants, but high lignin is an obstacle to the conversion of cellulose to ethanol for biofuel. Genetically modifying lignin and cellulose contents can be a good approach to overcoming that obstacle. Alfalfa (Medicago sativa L.) is rich in lignocellulose biomass and used as a model plant for the genetic modification of lignin in this study. Two key enzymes in the lignin biosynthesis pathway-hydroxycinnamoyl -CoA:shikimate hydroxycinnamoyl transferase (HCT) and coumarate 3-hydroxylase (C3H)-were co-downregulated. Compared to wild-type plants, the lignin content in the modified strain was reduced by 38%, cellulose was increased by 86.1%, enzyme saccharification efficiency was increased by 10.9%, and cell wall digestibility was increased by 13.0%. The modified alfalfa exhibited a dwarf phenotype, but normal above ground biomass. This approach provides a new strategy for reducing lignin and increasing cellulose contents and creates a new genetically modified crop with enhanced value for biofuel. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Gaps, inexperience, inconsistencies, and overlaps: crisis in the regulation of genetically modified plants and animals.

    PubMed

    Mandal, Gregory N

    2004-04-01

    The regulation of genetically modified products pursuant to statutes enacted decades prior to the advent of biotechnology has created a regulatory system that is passive rather than proactive about risks, has difficulty adapting to biotechnology advances, and is highly fractured and inefficient--transgenic plants and animals are governed by at least twelve different statutes and five different agencies or services. The deficiencies resulting from this piecemeal approach to regulation unnecessarily expose society and the environment to adverse risks of biotechnology and introduce numerous inefficiencies into the regulatory system. These risks and inefficiencies include gaps in regulation, duplicative and inconsistent regulation, unnecessary increases in the cost of and delay in the development and commercialization of new biotechnology products. These deficiencies also increase the risk of further unnecessary biotechnology scares, which may cause public overreaction against biotechnology products, preventing the maximization of social welfare. With science and society poised to soar from first-generation biotechnology (focused on crops modified for agricultural benefit), to next-generation developments (including transgenic fish, insects, and livestock, and pharmaceutical-producing and industrial compound-producing plants and animals), it is necessary to establish a comprehensive, efficient, and scientifically rigorous regulatory system. This Article details how to achieve such a result through fixing the deficiencies in, and risks created by, the current regulatory structure. Ignoring many details, the solutions can be summarized in two categories. First, statutory and regulatory gaps that are identified must be closed with new legislation and regulation. Second, regulation of genetically modified products must be shifted from a haphazard model based on statutes not intended to cover biotechnology to a system based upon agency expertise in handling particular types of risks.

  16. In defense of the dignity of being human.

    PubMed

    Gaylin, W

    1984-08-01

    The concept of human dignity is examined in terms of the religious belief that man is created in God's image and from the Kantian viewpoint that man's autonomy gives special value to our species. The theory of psychic determinism and the prospect of genetic engineering of humans are seen as attacks on self determination. Five additional attributes that make humans "special" are explored: conceptual thought, the capacity for technology, our range of emotions, "Lamarckian" environmental genetics, and the freedom to change and modify ourselves.

  17. Creating genetic resistance to HIV.

    PubMed

    Burnett, John C; Zaia, John A; Rossi, John J

    2012-10-01

    HIV/AIDS remains a chronic and incurable disease, in spite of the notable successes of combination antiretroviral therapy. Gene therapy offers the prospect of creating genetic resistance to HIV that supplants the need for antiviral drugs. In sight of this goal, a variety of anti-HIV genes have reached clinical testing, including gene-editing enzymes, protein-based inhibitors, and RNA-based therapeutics. Combinations of therapeutic genes against viral and host targets are designed to improve the overall antiviral potency and reduce the likelihood of viral resistance. In cell-based therapies, therapeutic genes are expressed in gene modified T lymphocytes or in hematopoietic stem cells that generate an HIV-resistant immune system. Such strategies must promote the selective proliferation of the transplanted cells and the prolonged expression of therapeutic genes. This review focuses on the current advances and limitations in genetic therapies against HIV, including the status of several recent and ongoing clinical studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The evolution of adenoviral vectors through genetic and chemical surface modifications.

    PubMed

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-02-17

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.

  19. Creating genetically modified pigs by using nuclear transfer

    PubMed Central

    Lai, Liangxue; Prather, Randall S

    2003-01-01

    Nuclear transfer (NT) is a procedure by which genetically identical individuals can be created. The technology of pig somatic NT, including in vitro maturation of oocytes, isolation and treatment of donor cells, artificial activation of reconstructed oocytes, embryo culture and embryo transfer, has been intensively studied in recent years, resulting in birth of cloned pigs in many labs. While it provides an efficient method for producing transgenic pigs, more importantly, it is the only way to produce gene-targeted pigs. So far pig cloning has been successfully used to produce transgenic pigs expressing the green fluorescence protein, expand transgenic pig groups and create gene targeted pigs which are deficient of alpha-1,3-galactosyltransferase. The production of pigs with genetic modification by NT is now in the transition from investigation to practical use. Although the efficiency of somatic cell NT in pig, when measured as development to term as a proportion of oocytes used, is not high, it is anticipated that the ability of making specific modifications to the swine genome will result in this technology having a large impact not only on medicine but also on agriculture. PMID:14613542

  20. School Librarians: Vital Educational Leaders

    ERIC Educational Resources Information Center

    Martineau, Pamela

    2010-01-01

    In the new millennium, school librarians are more likely to be found sitting behind a computer as they update the library web page or create a wiki on genetically modified organisms. Or they might be seen in the library computer lab as they lead students through tutorials on annotated bibliographies or Google docs. If adequately supported, school…

  1. Effect of genetic background on the dystrophic phenotype in mdx mice

    PubMed Central

    Coley, William D.; Bogdanik, Laurent; Vila, Maria Candida; Yu, Qing; Van Der Meulen, Jack H.; Rayavarapu, Sree; Novak, James S.; Nearing, Marie; Quinn, James L.; Saunders, Allison; Dolan, Connor; Andrews, Whitney; Lammert, Catherine; Austin, Andrew; Partridge, Terence A.; Cox, Gregory A.; Lutz, Cathleen; Nagaraju, Kanneboyina

    2016-01-01

    Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits. PMID:26566673

  2. What consumers don't know about genetically modified food, and how that affects beliefs.

    PubMed

    McFadden, Brandon R; Lusk, Jayson L

    2016-09-01

    In the debates surrounding biotechnology and genetically modified (GM) food, data from consumer polls are often presented as evidence for precaution and labeling. But how much do consumers actually know about the issue? New data collected from a nationwide U.S. survey reveal low levels of knowledge and numerous misperceptions about GM food. Nearly equal numbers of consumers prefer mandatory labeling of foods containing DNA as do those preferring mandatory labeling of GM foods. When given the option, the majority of consumers prefer that decisions about GM food be taken out of their hands and be made by experts. After answering a list of questions testing objective knowledge of GM food, subjective, self-reported knowledge declines somewhat, and beliefs about GM food safety increase slightly. Results suggest that consumers think they know more than they actually do about GM food, and queries about GM facts cause respondents to reassess how much they know. The findings question the usefulness of results from opinion polls as a motivation for creating public policy surrounding GM food.-McFadden, B. R., Lusk, J. L. What consumers don't know about genetically modified food, and how that affects beliefs. © FASEB.

  3. Telos, conservation of welfare, and ethical issues in genetic engineering of animals.

    PubMed

    Rollin, Bernard E

    2015-01-01

    The most long-lived metaphysics or view of reality in the history of Western thought is Aristotle's teleology, which reigned for almost 2,000 years. Biology was expressed in terms of function or telos, and accorded perfectly with common sense. The rise of mechanistic, Newtonian science vanquished teleological explanations. Understanding and accommodating animal telos was essential to success in animal husbandry, which involved respect for telos, and was presuppositional to our "ancient contract" with domestic animals. Telos was further abandoned with the rise of industrial agriculture, which utilized "technological fixes" to force animal into environments they were unsuited for, while continuing to be productive. Loss of husbandry and respect for telos created major issues for farm animal welfare, and forced the creation of a new ethic demanding respect for telos. As genetic engineering developed, the notion arose of modifying animals to fit their environment in order to avoid animal suffering, rather than fitting them into congenial environments. Most people do not favor changing the animals, rather than changing the conditions under which they are reared. Aesthetic appreciation of husbandry and virtue ethics militate in favor of restoring husbandry, rather than radically changing animal teloi. One, however, does not morally wrong teloi by changing them-one can only wrong individuals. In biomedical research, we do indeed inflict major pain, suffering and disease on animals. And genetic engineering seems to augment our ability to create animals to model diseases, particularly more than 3,000 known human genetic diseases. The disease, known as Lesch-Nyhan's syndrome or HPRT deficiency, which causes self-mutilation and mental retardation, provides us with a real possibility for genetically creating "animal models" of this disease, animals doomed to a life of great and unalleviable suffering. This of course creates a major moral dilemma. Perhaps one can use the very genetic engineering which creates this dilemma to ablate consciousness in such animal models, thereby escaping a moral impasse.

  4. Genome Editing in Human Pluripotent Stem Cells.

    PubMed

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  5. Programmable lab-on-a-chip system for single cell analysis

    NASA Astrophysics Data System (ADS)

    Thalhammer, S.

    2009-05-01

    The collection, selection, amplification and detection of minimum genetic samples became a part of everyday life in medical and biological laboratories, to analyze DNA-fragments of pathogens, patient samples and traces on crime scenes. About a decade ago, a handful of researchers began discussing an intriguing idea. Could the equipment needed for everyday chemistry and biology procedures be shrunk to fit on a chip in the size of a fingernail? Miniature devices for, say, analysing DNA and proteins should be faster and cheaper than conventional versions. Lab-on-a-chip is an advanced technology that integrates a microfluidic system on a microscale chip device. The "laboratory" is created by means of channels, mixers, reservoirs, diffusion chambers, integrated electrodes, pumps, valves and more. With lab-ona- chip technology, complete laboratories on a square centimetre can be created. Here, a multifunctional programmable Lab-on-a-Chip driven by nanofluidics and controlled by surface acoustic waves (SAW) is presented. This system combines serial DNA-isolation-, amplification- and array-detection-process on a modified glass-platform. The fluid actuation is controlled via SAW by interdigital transducers implemented in the chemical modified chip surface. The chemical surface modification allows fluid handling in the sub-microliter range. Minute amount of sample material is extracted by laser-based microdissection out of e.g. histological sections at the single cell level. A few picogram of genetic material are isolated and transferred via a low-pressure transfer system (SPATS) onto the chip. Subsequently the genetic material inside single droplets, which behave like "virtual" beaker, is transported to the reaction and analysis centers on the chip surface via surface acoustic waves, mainly known as noise dumping filters in mobile phones. At these "biological reactors" the genetic material is processed, e.g. amplified via polymerase chain reaction methods, and genetically characterized.

  6. A modified mass selection scheme for creating winter-hardy faba bean (Vicia faba L.) lines with a broad genetic base

    USDA-ARS?s Scientific Manuscript database

    Winter-hardy faba bean (Vicia faba L.) from northern Europe is represented by a rather narrow gene pool. Limited selection gains for overwintering beyond a maximum of -25°C have restricted the adoption of this crop. Therefore, the faba bean collection maintained by the USDA-ARS National Plant Germpl...

  7. Detection of Genetically Modified Food: Has Your Food Been Genetically Modified?

    ERIC Educational Resources Information Center

    Brandner, Diana L.

    2002-01-01

    Explains the benefits and risks of genetically-modified foods and describes methods for genetically modifying food. Presents a laboratory experiment using a polymerase chain reaction (PCR) test to detect foreign DNA in genetically-modified food. (Contains 18 references.) (YDS)

  8. Growth control of genetically modified cells using an antibody/c-Kit chimera.

    PubMed

    Kaneko, Etsuji; Kawahara, Masahiro; Ueda, Hiroshi; Nagamune, Teruyuki

    2012-05-01

    Gene therapy has been regarded as an innovative potential treatment against serious congenital diseases. However, applications of gene therapy remain limited, partly because its clinical success depends on therapeutic gene-transduced cells acquiring a proliferative advantage. To address this problem, we have developed the antigen-mediated genetically modified cell amplification (AMEGA) system, which uses chimeric receptors to enable the selective proliferation of gene-transduced cells. In this report, we describe mimicry of c-Kit signaling and its application to the AMEGA system. We created an antibody/c-Kit chimera in which the extracellular domain of c-Kit is replaced with an anti-fluorescein single-chain Fv antibody fragment and the extracellular D2 domain of the erythropoietin receptor. A genetically modified mouse pro-B cell line carrying this chimera showed selective expansion in the presence of fluorescein-conjugated BSA (BSA-FL) as a growth inducer. By further engineering the transmembrane domain of the chimera to reduce interchain interaction we attained stricter ligand-dependency. Since c-Kit is an important molecule in the expansion of hematopoietic stem cells (HSCs), this antibody/c-Kit chimera could be a promising tool for gene therapy targeting HSCs. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. From breeder reactors to butterflies: risk, culture, and biotechnology.

    PubMed

    Lomax, G P

    2000-10-01

    Social theories of risk suggest that a combination of scientific and cultural perspectives converge to influence risk perception. This article first surveys sociological perspectives suggesting that risks from modern technological development have become predominant concerns in the social consciousness. Particular attention is given to those theses describing how social elements work to create perception of risks in relation to new technologies. The themes that emerge from this survey are then related to contemporary debates concerning biotechnology. Specific attention is given to recent controversies regarding genetically modified crops, and parallels are drawn between debates over nuclear power and biotechnology. A procedural ethic for public discourse and decision making over the diffusion of genetically modified foods is offered. Ethical and social theories are linked with the hope that by recognizing the social dimensions of debates over new technologies a broader framework for conducting risk analysis may emerge.

  10. Looping Genomes: Diagnostic Change and the Genetic Makeup of the Autism Population.

    PubMed

    Navon, Daniel; Eyal, Gil

    2016-03-01

    This article builds on Hacking's framework of "dynamic nominalism" to show how knowledge about biological etiology can interact with the "kinds of people" delineated by diagnostic categories in ways that "loop" or modify both over time. The authors use historical materials to show how "geneticization" played a crucial role in binding together autism as a biosocial community and how evidence from genetics research later made an important contribution to the diagnostic expansion of autism. In the second part of the article, the authors draw on quantitative and qualitative analyses of autism rates over time in several rare conditions that are delineated strictly according to genomic mutations in order to demonstrate that these changes in diagnostic practice helped to both increase autism's prevalence and create its enormous genetic heterogeneity. Thus, a looping process that began with geneticization and involved the social effects of genetics research itself transformed the autism population and its genetic makeup.

  11. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    PubMed

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases

    PubMed Central

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J.; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-01-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%–5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. PMID:24989021

  13. Recommendations for Laboratory Containment and Management of Gene Drive Systems in Arthropods.

    PubMed

    Benedict, Mark Q; Burt, Austin; Capurro, Margareth L; De Barro, Paul; Handler, Alfred M; Hayes, Keith R; Marshall, John M; Tabachnick, Walter J; Adelman, Zach N

    2018-01-01

    Versatile molecular tools for creating driving transgenes and other invasive genetic factors present regulatory, ethical, and environmental challenges that should be addressed to ensure their safe use. In this article, we discuss driving transgenes and invasive genetic factors that can potentially spread after their introduction into a small proportion of individuals in a population. The potential of invasive genetic factors to increase their number in natural populations presents challenges that require additional safety measures not provided by previous recommendations regarding accidental release of arthropods. In addition to providing physical containment, invasive genetic factors require greater attention to strain management, including their distribution and identity confirmation. In this study, we focus on insects containing such factors with recommendations for investigators who are creating them, institutional biosafety committees charged with ensuring safety, funding agencies providing support, those managing insectaries handling these materials who are responsible for containment, and other persons who will be receiving insects-transgenic or not-from these facilities. We give specific examples of efforts to modify mosquitoes for mosquito-borne disease control, but similar considerations are relevant to other arthropods that are important to human health, the environment, and agriculture.

  14. Recommendations for Laboratory Containment and Management of Gene Drive Systems in Arthropods

    PubMed Central

    Burt, Austin; Capurro, Margareth L.; De Barro, Paul; Handler, Alfred M.; Hayes, Keith R.; Marshall, John M.; Tabachnick, Walter J.; Adelman, Zach N.

    2018-01-01

    Abstract Versatile molecular tools for creating driving transgenes and other invasive genetic factors present regulatory, ethical, and environmental challenges that should be addressed to ensure their safe use. In this article, we discuss driving transgenes and invasive genetic factors that can potentially spread after their introduction into a small proportion of individuals in a population. The potential of invasive genetic factors to increase their number in natural populations presents challenges that require additional safety measures not provided by previous recommendations regarding accidental release of arthropods. In addition to providing physical containment, invasive genetic factors require greater attention to strain management, including their distribution and identity confirmation. In this study, we focus on insects containing such factors with recommendations for investigators who are creating them, institutional biosafety committees charged with ensuring safety, funding agencies providing support, those managing insectaries handling these materials who are responsible for containment, and other persons who will be receiving insects—transgenic or not—from these facilities. We give specific examples of efforts to modify mosquitoes for mosquito-borne disease control, but similar considerations are relevant to other arthropods that are important to human health, the environment, and agriculture. PMID:29040058

  15. Event-specific qualitative and quantitative detection of five genetically modified rice events using a single standard reference molecule.

    PubMed

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Shin, Min-Ki; Moon, Gui-Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2017-07-01

    One novel standard reference plasmid, namely pUC-RICE5, was constructed as a positive control and calibrator for event-specific qualitative and quantitative detection of genetically modified (GM) rice (Bt63, Kemingdao1, Kefeng6, Kefeng8, and LLRice62). pUC-RICE5 contained fragments of a rice-specific endogenous reference gene (sucrose phosphate synthase) as well as the five GM rice events. An existing qualitative PCR assay approach was modified using pUC-RICE5 to create a quantitative method with limits of detection correlating to approximately 1-10 copies of rice haploid genomes. In this quantitative PCR assay, the square regression coefficients ranged from 0.993 to 1.000. The standard deviation and relative standard deviation values for repeatability ranged from 0.02 to 0.22 and 0.10% to 0.67%, respectively. The Ministry of Food and Drug Safety (Korea) validated the method and the results suggest it could be used routinely to identify five GM rice events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Benefits of gene transduction of granulocyte macrophage colony-stimulating factor in cancer vaccine using genetically modified dendritic cells.

    PubMed

    Ojima, Toshiyasu; Iwahashi, Makoto; Nakamura, Masaki; Matsuda, Kenji; Nakamori, Mikihito; Ueda, Kentaro; Naka, Teiji; Katsuda, Masahiro; Miyazawa, Motoki; Yamaue, Hiroki

    2007-10-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) is a key cytokine for the generation and stimulation of dendritic cells (DCs), and it may also play a pivotal role in promoting the survival of DCs. In this study, the feasibility of creating a cancer vaccine using DCs adenovirally transduced with the carcinoembryonic antigen (CEA) gene and the GM-CSF gene was examined. In addition, the effect of the co-transduction of GM-CSF gene on the lifespan of these genetically modified DCs was determined. A cytotoxic assay using peripheral blood mononuclear cell (PBMC)-derived cytotoxic T lymphocytes (CTLs) was performed in a 4-h 51Cr release assay. The apoptosis of DCs was examined by TdT-mediated dUTP-FITC nick end labeling (TUNEL) assay. CEA-specific CTLs were generated from PBMCs stimulated with genetically modified DCs expressing CEA. The cytotoxicity of these CTLs was augmented by co-transduction of DCs with the GM-CSF gene. Co-transduction of the GM-CSF gene into DCs inhibited apoptosis of these DCs themselves via up-regulation of Bcl-x(L) expression, leading to the extension of the lifespan of these DCs. Furthermore, the transduction of the GM-CSF gene into DCs also suppressed the incidence of apoptosis of DCs induced by transforming growth factor-beta1 (TGFbeta-1). Immunotherapy using these genetically modified DCs may therefore be useful with several advantages as follows: i) adenoviral toxicity to DCs can be reduced; ii) the lifespan of vaccinated DCs can be prolonged; and iii) GM-CSF may protect DCs from apoptosis induced by tumor-derived TGFbeta-1 in the regional lymph nodes.

  17. A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans

    PubMed Central

    Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.

    2018-01-01

    Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088

  18. Overview of Animal Models of Obesity

    PubMed Central

    Lutz, Thomas A.; Woods, Stephen C.

    2012-01-01

    This is a review of animal models of obesity currently used in research. We have focused upon more commonly utilized models since there are far too many newly created models to consider, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, we will not discuss the generation and use of inducible transgenic animals (induced knock-out or knock-in) even though they often bear significant advantages compared to traditional transgenic animals; influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this chapter. PMID:22948848

  19. The ethics of creating genetically modified children using genome editing.

    PubMed

    Ishii, Tetsuya

    2017-12-01

    To review the recent ethical, legal, and social issues surrounding human reproduction involving germline genome editing. Genome editing techniques, such as CRISPR/Cas9, have facilitated genetic modification in human embryos. The most likely purpose of germline genome editing is the prevention of serious genetic disease in offspring. However, complex issues still remain, including irremediable risks to fetuses and future generations, the role of women, the availability of alternatives, long-term follow-up, health insurance coverage, misuse for human enhancement, and the potential effects on adoption. Further discussions, a broad consensus, and appropriate regulations are required before human germline genome editing is introduced into the global society. Before germline genome editing is used for disease prevention, a broad consensus must be formed by carefully discussing its ethical, legal, and social issues.

  20. Using the Colored Eco-Genetic Relationship Map with children.

    PubMed

    Driessnack, Martha

    2009-01-01

    The Colored Eco-Genetic Relationship Map (CEGRM) is a hybridized assessment tool that combines the ecomap, the family genogram, and the genetic pedigree to produce a unique, participant-generated picture of an individual's social networks, information exchange patterns, and sources of support. To date, the CEGRM has been used successfully with adults, providing insights into their social networks and the communication patterns they use in the update and exchange of health-related information. To explore the feasibility and the utility of adapting elements of the CEGRM for use with children. Twenty children, 7 to 10 years of age, distributed by gender, socioeconomic status, and geographic heritage, participated in one-on-one sessions in which they created modified CEGRMs using adapted art directives. A qualitative descriptive design and approach to analysis were used. Children were able to create a modified CEGRM, and resultant discussions provided considerable insights. A focused analysis revealed a kaleidoscope of social networks being accessed by today's children as well as surprising information exchange sources and patterns. Although all the children included one parent, family composition varied. Extended family, other adults, peers, and media sources were not only prevalent but also often preferred over the nuclear family as sources of health information. Of particular interest, mothers were rarely identified as children's primary source of health-related information. Elements of the CEGRM are adapted easily for use with children using children's drawings and may prove to be an effective, adjunctive assessment and interventional tool for parents, researchers, educators, and providers working with young children.

  1. Attitudes to genetically modified food over time: How trust in organizations and the media cycle predict support.

    PubMed

    Marques, Mathew D; Critchley, Christine R; Walshe, Jarrod

    2015-07-01

    This research examined public opinion toward genetically modified plants and animals for food, and how trust in organizations and media coverage explained attitudes toward these organisms. Nationally representative samples (N=8821) over 10 years showed Australians were less positive toward genetically modified animals compared to genetically modified plants for food, especially in years where media coverage was high. Structural equation modeling found that positive attitudes toward different genetically modified organisms for food were significantly associated with higher trust in scientists and regulators (e.g. governments), and with lower trust in watchdogs (e.g. environmental movement). Public trust in scientists and watchdogs was a stronger predictor of attitudes toward the use of genetically modified plants for food than animals, but only when media coverage was low. Results are discussed regarding the moral acceptability of genetically modified organisms for food, the media's role in shaping public opinion, and the role public trust in organizations has on attitudes toward genetically modified organisms. © The Author(s) 2014.

  2. Farmers prevailing perception profiles regarding GM crops: A classification proposal.

    PubMed

    Almeida, Carla; Massarani, Luisa

    2018-04-01

    Genetically modified organisms have been at the centre of a major public controversy, involving different interests and actors. While much attention has been devoted to consumer views on genetically modified food, there have been few attempts to understand the perceptions of genetically modified technology among farmers. By investigating perceptions of genetically modified organisms among Brazilian farmers, we intend to contribute towards filling this gap and thereby add the views of this stakeholder group to the genetically modified debate. A comparative analysis of our data and data from other studies indicate there is a complex variety of views on genetically modified organisms among farmers. Despite this diversity, we found variations in such views occur within limited parameters, concerned principally with expectations or concrete experiences regarding the advantages of genetically modified crops, perceptions of risks associated with them, and ethical questions they raise. We then propose a classification of prevailing profiles to represent the spectrum of perceptions of genetically modified organisms among farmers.

  3. Health risks of genetically modified foods.

    PubMed

    Dona, Artemis; Arvanitoyannis, Ioannis S

    2009-02-01

    As genetically modified (GM) foods are starting to intrude in our diet concerns have been expressed regarding GM food safety. These concerns as well as the limitations of the procedures followed in the evaluation of their safety are presented. Animal toxicity studies with certain GM foods have shown that they may toxically affect several organs and systems. The review of these studies should not be conducted separately for each GM food, but according to the effects exerted on certain organs it may help us create a better picture of the possible health effects on human beings. The results of most studies with GM foods indicate that they may cause some common toxic effects such as hepatic, pancreatic, renal, or reproductive effects and may alter the hematological, biochemical, and immunologic parameters. However, many years of research with animals and clinical trials are required for this assessment. The use of recombinant GH or its expression in animals should be re-examined since it has been shown that it increases IGF-1 which may promote cancer.

  4. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  5. [Consumer reaction to information on the labels of genetically modified food].

    PubMed

    Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2014-02-01

    To analyze consumer opinion on genetically modified foods and the information included on the label. A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline - via PubMed -, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors "organisms, genetically modified" and "food labeling". The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modified products and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes new technologies.

  6. Towards social acceptance of plant breeding by genome editing.

    PubMed

    Araki, Motoko; Ishii, Tetsuya

    2015-03-01

    Although genome-editing technologies facilitate efficient plant breeding without introducing a transgene, it is creating indistinct boundaries in the regulation of genetically modified organisms (GMOs). Rapid advances in plant breeding by genome-editing require the establishment of a new global policy for the new biotechnology, while filling the gap between process-based and product-based GMO regulations. In this Opinion article we review recent developments in producing major crops using genome-editing, and we propose a regulatory model that takes into account the various methodologies to achieve genetic modifications as well as the resulting types of mutation. Moreover, we discuss the future integration of genome-editing crops into society, specifically a possible response to the 'Right to Know' movement which demands labeling of food that contains genetically engineered ingredients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering

    PubMed Central

    Zhang, Xiao-Hui; Tee, Louis Y; Wang, Xiao-Gang; Huang, Qun-Shan; Yang, Shi-Hua

    2015-01-01

    CRISPR/Cas9 is a versatile genome-editing technology that is widely used for studying the functionality of genetic elements, creating genetically modified organisms as well as preclinical research of genetic disorders. However, the high frequency of off-target activity (≥50%)—RGEN (RNA-guided endonuclease)-induced mutations at sites other than the intended on-target site—is one major concern, especially for therapeutic and clinical applications. Here, we review the basic mechanisms underlying off-target cutting in the CRISPR/Cas9 system, methods for detecting off-target mutations, and strategies for minimizing off-target cleavage. The improvement off-target specificity in the CRISPR/Cas9 system will provide solid genotype–phenotype correlations, and thus enable faithful interpretation of genome-editing data, which will certainly facilitate the basic and clinical application of this technology. PMID:26575098

  8. Acceptance of genetically modified foods: the relation between technology and evaluation.

    PubMed

    Tenbült, Petra; De Vries, Nanne K; van Breukelen, Gerard; Dreezens, Ellen; Martijn, Carolien

    2008-07-01

    This study investigates why consumers accept different genetically modified food products to different extents. The study shows that whether food products are genetically modified or not and whether they are processed or not are the two important features that affect the acceptance of food products and their evaluation (in terms of perceived healthiness, naturalness, necessity and tastiness). The extent to which these evaluation attributes and acceptance of a product are affected by genetic modification or processing depends on whether the product is negatively affected by the other technology: Any technological change to a 'natural' product (when nonprocessed products are genetically modified or when non-genetically modified products are processed) affect evaluation and acceptance stronger than a change to an technologically adapted product (when processed products are also genetically modified or vice versa). Furthermore, evaluation attributes appear to mediate the effects of genetic modification and processing on acceptance.

  9. Intervening in disease through genetically-modified bacteria.

    PubMed

    Ferreira, Adilson K; Mambelli, Lisley I; Pillai, Saravanan Y

    2017-12-01

    The comprehension of the molecular basis of different diseases is rapidly being dissected as a consequence of advancing technology. Consequently, proteins with potential therapeutic usefulness, including cytokines and signaling molecules have been identified in the last decades. However, their clinical use is hampered by disadvantageous functional and economic considerations. One of the most important of these considerations is targeted topical delivery and also the synthesis of such proteins, which for intravenous use requires rigorous purification whereas proteins often do not withstand digestive degradation and thus cannot be applied per os. Recently, the idea of using genetically modified bacteria has emerged as an attempt to evade these important barriers. Using such bacteria can deliver therapeutic proteins or other molecules at place of disease, especially when disease is at a mucosal surface. Further, whereas intravenously applied therapeutic proteins require expensive methodology in order to become endotoxin-free, this is not necessary for local application of therapeutic proteins in the intestine. In addition, once created further propagation of genetically modified bacteria is both cheap and requires relatively little in conditioning with respect to transport of the medication, making such organisms also suitable for combating disease in developing countries with poor infrastructure. Although first human trials with such bacteria were already performed more as a decade ago, the recent revolution in our understanding of the role of human gut microbiome in health and diseases has unleashed a revolution in this field resulting in a plethora of potential novel prophylactic and therapeutic intervention against disease onset and development employing such organisms. Today, the engineering of human microbiome for health benefits and related applications now chances many aspects of biology, nanotechnology and chemistry. Here, we review genetically modified bacteria methodology as possible carriers of drug delivering and provided the origin and inspirations for new drug delivery systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Genetically modified foods and allergy.

    PubMed

    Lee, T H; Ho, H K; Leung, T F

    2017-06-01

    2015 marked the 25th anniversary of the commercial use and availability of genetically modified crops. The area of planted biotech crops cultivated globally occupies a cumulative two billion hectares, equivalent to twice the land size of China or the United States. Foods derived from genetically modified plants are widely consumed in many countries and genetically modified soybean protein is extensively used in processed foods throughout the industrialised countries. Genetically modified food technology offers a possible solution to meet current and future challenges in food and medicine. Yet there is a strong undercurrent of anxiety that genetically modified foods are unsafe for human consumption, sometimes fuelled by criticisms based on little or no firm evidence. This has resulted in some countries turning away food destined for famine relief because of the perceived health risks of genetically modified foods. The major concerns include their possible allergenicity and toxicity despite the vigorous testing of genetically modified foods prior to marketing approval. It is imperative that scientists engage the public in a constructive evidence-based dialogue to address these concerns. At the same time, improved validated ways to test the safety of new foods should be developed. A post-launch strategy should be established routinely to allay concerns. Mandatory labelling of genetically modified ingredients should be adopted for the sake of transparency. Such ingredient listing and information facilitate tracing and recall if required.

  11. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU.

    PubMed

    Hartung, Frank; Schiemann, Joachim

    2014-06-01

    Several new plant breeding techniques (NPBTs) have been developed during the last decade, and make it possible to precisely perform genome modifications in plants. The major problem, other than technical aspects, is the vagueness of regulation concerning these new techniques. Since the definition of eight NPBTs by a European expert group in 2007, there has been an ongoing debate on whether the resulting plants and their products are covered by GMO legislation. Obviously, cover by GMO legislation would severely hamper the use of NPBT, because genetically modified plants must pass a costly and time-consuming GMO approval procedure in the EU. In this review, we compare some of the NPBTs defined by the EU expert group with classical breeding techniques and conventional transgenic plants. The list of NPBTs may be shortened (or extended) during the international discussion process initiated by the Organization for Economic Co-operation and Development. From the scientific point of view, it may be argued that plants developed by NPBTs are often indistinguishable from classically bred plants and are not expected to possess higher risks for health and the environment. In light of the debate on the future regulation of NPBTs and the accumulated evidence on the biosafety of genetically modified plants that have been commercialized and risk-assessed worldwide, it may be suggested that plants modified by crop genetic improvement technologies, including genetic modification, NPBTs or other future techniques, should be evaluated according to the new trait and the resulting end product rather than the technique used to create the new plant variety. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  12. Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.

    2018-03-01

    A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.

  13. Researchers use Modified CRISPR Systems to Modulate Gene Expression on a Genomic Scale | Office of Cancer Genomics

    Cancer.gov

    The genetic engineering system, clustered regularly interspaced short palindromic repeats (CRISPR), has conventionally been used to inactivate genes by making targeted double stranded cuts in DNA. While CRISPR is a useful tool, it can only be used to create loss-of-function modifications and often causes off-target effects due to the disruptive mechanism by which it works. CTD2 researchers at the University of California, San Francisco recently addressed these shortcomings in a publication in Cell.

  14. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease.

    PubMed

    Thein, Swee Lay

    2017-01-01

    β-thalassemia and sickle cell disease (SCD) are prototypical Mendelian single gene disorders, both caused by mutations affecting the adult β-globin gene. Despite the apparent genetic simplicity, both disorders display a remarkable spectrum of phenotypic severity and share two major genetic modifiers-α-globin genotype and innate ability to produce fetal hemoglobin (HbF, α 2 γ 2 ).This article provides an overview of the genetic basis for SCD and β-thalassemia, and genetic modifiers identified through phenotype correlation studies. Identification of the genetic variants modifying HbF production in combination with α-globin genotype provide some prediction of disease severity for β-thalassemia and SCD but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered.Nonetheless, genetic studies have been successful in characterizing some of the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation.

  15. Salient Features of Endonuclease Platforms for Therapeutic Genome Editing.

    PubMed

    Certo, Michael T; Morgan, Richard A

    2016-03-01

    Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications.

  16. Salient Features of Endonuclease Platforms for Therapeutic Genome Editing

    PubMed Central

    Certo, Michael T; Morgan, Richard A

    2016-01-01

    Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications. PMID:26796671

  17. Genetically modified proteins: functional improvement and chimeragenesis

    PubMed Central

    Balabanova, Larissa; Golotin, Vasily; Podvolotskaya, Anna; Rasskazov, Valery

    2015-01-01

    This review focuses on the emerging role of site-specific mutagenesis and chimeragenesis for the functional improvement of proteins in areas where traditional protein engineering methods have been extensively used and practically exhausted. The novel path for the creation of the novel proteins has been created on the farther development of the new structure and sequence optimization algorithms for generating and designing the accurate structure models in result of x-ray crystallography studies of a lot of proteins and their mutant forms. Artificial genetic modifications aim to expand nature's repertoire of biomolecules. One of the most exciting potential results of mutagenesis or chimeragenesis finding could be design of effective diagnostics, bio-therapeutics and biocatalysts. A sampling of recent examples is listed below for the in vivo and in vitro genetically improvement of various binding protein and enzyme functions, with references for more in-depth study provided for the reader's benefit. PMID:26211369

  18. Golden rice: scientific, regulatory and public information processes of a genetically modified organism.

    PubMed

    Moghissi, A Alan; Pei, Shiqian; Liu, Yinzuo

    2016-01-01

    Historically, agricultural development evolved in three phases. During the first phase the plants were selected on the basis of the availability of a plant with desirable properties at a specific location. The second phase provided the agricultural community with crossbreeding plants to achieve improvement in agricultural production. The evolution of biological knowledge has provided the ability to genetically engineer (GE) crops, one of the key processes within genetically modified organisms (GMO). This article uses golden rice, a species of transgenic Asian rice which contains a precursor of vitamin A in the edible part of the plant as an example of GE/GMO emphasizing Chinese experience in agricultural evolution. It includes a brief review of agricultural evolution to be followed by a description of golden rice development. Golden rice was created as a humanitarian project and has received positive comments by the scientific community and negative voices from certain environmental groups. In this article, we use the Best Available Science (BAS) Concept and Metrics for Evaluation of Scientific Claims (MESC) derived from it to evaluate claims and counter claims on scientific aspects of golden rice. This article concludes that opposition to golden rice is based on belief rather than any of its scientifically derived nutritional, safety or environmental properties.

  19. Systematic Analysis of the Genetic Variability That Impacts SUMO Conjugation and Their Involvement in Human Diseases

    NASA Astrophysics Data System (ADS)

    Xu, Hao-Dong; Shi, Shao-Ping; Chen, Xiang; Qiu, Jian-Ding

    2015-07-01

    Protein function has been observed to rely on select essential sites instead of requiring all sites to be indispensable. Small ubiquitin-related modifier (SUMO) conjugation or sumoylation, which is a highly dynamic reversible process and its outcomes are extremely diverse, ranging from changes in localization to altered activity and, in some cases, stability of the modified, has shown to be especially valuable in cellular biology. Motivated by the significance of SUMO conjugation in biological processes, we report here on the first exploratory assessment whether sumoylation related genetic variability impacts protein functions as well as the occurrence of diseases related to SUMO. Here, we defined the SUMOAMVR as sumoylation related amino acid variations that affect sumoylation sites or enzymes involved in the process of connectivity, and categorized four types of potential SUMOAMVRs. We detected that 17.13% of amino acid variations are potential SUMOAMVRs and 4.83% of disease mutations could lead to SUMOAMVR with our system. More interestingly, the statistical analysis demonstrates that the amino acid variations that directly create new potential lysine sumoylation sites are more likely to cause diseases. It can be anticipated that our method can provide more instructive guidance to identify the mechanisms of genetic diseases.

  20. Consumer Perception of Genetically Modified Organisms and Sources of Information123

    PubMed Central

    Wunderlich, Shahla; Gatto, Kelsey A

    2015-01-01

    Genetically modified organisms (GMOs) have been available for commercial purchase since the 1990s, allowing producers to increase crop yields through bioengineering that creates herbicide-resistant and insect-resistant varieties. However, consumer knowledge about GMOs has not increased at the same rate as the adoption of GMO crops. Consumers worldwide are displaying limited understanding, misconceptions, and even unfamiliarity with GMO food products. Many consumers report that they receive information about GMO food products from the media, Internet, and other news sources. These sources may be less reliable than scientific experts whom consumers trust more to present the facts. Although many in the United States support mandatory GMO labeling (similar to current European standards), consumer awareness of current GMO labeling is low. A distinction must also be made between GMO familiarity and scientific understanding, because those who are more familiar with it tend to be more resistant to bioengineering, whereas those with higher scientific knowledge scores tend to have less negative attitudes toward GMOs. This brings to question the relation between scientific literacy, sources of information, and overall consumer knowledge and perception of GMO foods. PMID:26567205

  1. A natural compromise: a moderate solution to the GMO & "natural" labeling disputes.

    PubMed

    Amaru, Stephanie

    2014-01-01

    In the United States, genetically modified (GM) foods are labeled no differently from their natural counterparts, leaving consumers with no mechanism for deciphering genetically modified food content. The Food and Drug Administration (FDA) has not formally defined the term "natural," which is frequently used on food labels despite consumer confusion as to what it means. The FDA should initiate a notice and comment rulemaking addressing the narrow issue of whether use of the word "natural" should be permitted oil GM food labels. Prohibition of the use of"natural" on genetically modified foods would mitigate consumer deception regarding genetically modified food content without significantly disadvantaging genetically modified food producers.

  2. [Genetically modified plants and food safety. State of the art and discussion in the European Union].

    PubMed

    Schauzu, M

    2004-09-01

    Placing genetically modified (GM) plants and derived products on the European Union's (EU) market has been regulated by a Community Directive since 1990. This directive was complemented by a regulation specific for genetically modified and other novel foods in 1997. Specific labelling requirements have been applicable for GM foods since 1998. The law requires a pre-market safety assessment for which criteria have been elaborated and continuously adapted in accordance with the state of the art by national and international bodies and organisations. Consequently, only genetically modified products that have been demonstrated to be as safe as their conventional counterparts can be commercialized. However, the poor acceptance of genetically modified foods has led to a de facto moratorium since 1998. It is based on the lack of a qualified majority of EU member states necessary for authorization to place genetically modified plants and derived foods on the market. New Community Regulations are intended to end this moratorium by providing a harmonized and transparent safety assessment, a centralised authorization procedure, extended labelling provisions and a traceability system for genetically modified organisms (GMO) and derived food and feed.

  3. Consumer reaction to information on the labels of genetically modified food

    PubMed Central

    Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2014-01-01

    OBJECTIVE To analyze consumer opinion on genetically modified foods and the information included on the label. METHODS A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline – via PubMed –, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors “organisms, genetically modified” and “food labeling”. The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. RESULTS Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. CONCLUSIONS Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modifiedproducts and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes new technologies. PMID:24789648

  4. Genetic Modifiers and Oligogenic Inheritance

    PubMed Central

    Kousi, Maria; Katsanis, Nicholas

    2015-01-01

    Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets. PMID:26033081

  5. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  6. Genetically Modified Porcine Skin Grafts for Treatment of Severe Burn Injuries

    DTIC Science & Technology

    2010-07-01

    TITLE: Genetically Modified Porcine Skin Grafts for Treatment of Severe Burn Injuries PRINCIPAL INVESTIGATOR: David H. Sachs, M.D...4. TITLE AND SUBTITLE Genetically Modified Porcine Skin Grafts for Treatment of 5a. CONTRACT NUMBER Severe Burn Injuries 5b. GRANT NUMBER...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Burns, skin grafts , genetic

  7. The Case of the "Tainted" Taco Shells: A Case Study on Genetically Modified Foods

    ERIC Educational Resources Information Center

    Taylor, Ann T. S.

    2004-01-01

    This case study introduces students to the use of genetically modified foods. Students learn how genetically modified plants are made, and then they read primary literature papers to evaluate the environmental, economic, and health issues. (Contains 2 figures.)

  8. Overview of the current status of genetically modified plants in Europe as compared to the USA.

    PubMed

    Brandt, Peter

    2003-07-01

    Genetically modified crops have been tested in 1,726 experimental releases in the EU member states and in 7,815 experimental releases in the USA. The global commercial cultivation area of genetically modified crops is likely to reach 50 million hectares in 2001, however, the commercial production of genetically modified crops in the EU amounts to only a few thousand hectares and accounts for only some 0.03% of the world production. A significant gap exists between the more than fifty genetically modified crop species already permitted to be cultivated and to be placed on the market in the USA, Canada and other countries and the five genetically modified crop species permitted for the same use in the EU member states, which are still pending inclusion in the Common Catalogue of agricultural plant species. The further development of the "green gene technology" in the EU will be a matter of public acceptance and administrative legislation.

  9. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    PubMed

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has become a key cell factory for the production of various bulk and fine chemicals. Successful metabolic engineering requires fine-tuned adjustments of metabolic fluxes and coordination of multiple pathways within the cell. This has mostly been achieved by controlling gene expression at the transcriptional level, i.e., by using promoters with appropriate strengths and regulatory properties. Here we present an overview of natural and modified promoters, which have been used in metabolic pathway engineering of S. cerevisiae. Recent developments in creating promoters with tailor-made properties are also discussed.

  10. A modified version of fluctuating asymmetry, potential for the analysis of Aesculus hippocastanum L. compound leaves.

    PubMed

    Velickovic, Miroslava

    2008-01-01

    My research interest was to create a new, simple and tractable mathematical framework for analyzing fluctuating asymmetry (FA) in Aesculus hippocastanum L. palmately compound leaves (each compound leaf with 7 obviate, serrate leaflets). FA, being random differences in the development of both sides of a bilaterally symmetrical character, has been proposed as an indicator of environmental and genetic stress. In the present paper the well-established Palmer's procedure for FA has been modified to improve the suitability of the chosen index (FA1) to be used in compound leaf asymmetry analysis. The processing steps are described in detail, allowing us to apply these modifications for the other Palmer's indices of FA as well as for the compound leaves of other plant species.

  11. Engineering Delivery Vehicles for Genome Editing.

    PubMed

    Nelson, Christopher E; Gersbach, Charles A

    2016-06-07

    The field of genome engineering has created new possibilities for gene therapy, including improved animal models of disease, engineered cell therapies, and in vivo gene repair. The most significant challenge for the clinical translation of genome engineering is the development of safe and effective delivery vehicles. A large body of work has applied genome engineering to genetic modification in vitro, and clinical trials have begun using cells modified by genome editing. Now, promising preclinical work is beginning to apply these tools in vivo. This article summarizes the development of genome engineering platforms, including meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas9, and their flexibility for precise genetic modifications. The prospects for the development of safe and effective viral and nonviral delivery vehicles for genome editing are reviewed, and promising advances in particular therapeutic applications are discussed.

  12. Reactive molecular simulation on the calcium silicate hydrates/polyethylene glycol composites

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Hou, Dongshuai; Jiang, Jinyang; She, Wei; Yu, Jiao

    2017-11-01

    Calcium silicate hydrates (C-S-H) may potentially exhibit extraordinary performance when modified by polymers, in which way the properties of cement-based materials can be improved from the genetic level. In this molecular dynamics simulation of the interaction between C-S-H and polyethylene glycol, apart from the H bond network connection in the interface, another chemical adsorption was observed. Calcium of C-S-H broke the Csbnd O bond of PEG and formed a new Casbnd C connection, which created a stronger link between the organic and inorganic phases.

  13. Regulating genetically modified food. Policy trajectories, political culture, and risk perceptions in the U.S., Canada, and EU.

    PubMed

    Wohlers, Anton E

    2010-09-01

    This paper examines whether national differences in political culture add an explanatory dimension to the formulation of policy in the area of biotechnology, especially with respect to genetically modified food. The analysis links the formulation of protective regulatory policies governing genetically modified food to both country and region-specific differences in uncertainty tolerance levels and risk perceptions in the United States, Canada, and European Union. Based on polling data and document analysis, the findings illustrate that these differences matter. Following a mostly opportunistic risk perception within an environment of high tolerance for uncertainty, policymakers in the United States and Canada modified existing regulatory frameworks that govern genetically modified food in their respective countries. In contrast, the mostly cautious perception of new food technologies and low tolerance for uncertainty among European Union member states has contributed to the creation of elaborate and stringent regulatory policies governing genetically modified food.

  14. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies.

    PubMed

    Hightower, Rylie M; Alexander, Matthew S

    2018-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018. © 2017 Wiley Periodicals, Inc.

  15. Genetic Modifiers of Duchenne and Facioscapulohumeral Muscular Dystrophies

    PubMed Central

    Hightower, Rylie M.; Alexander, Matthew S.

    2017-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing (NGS) has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost, have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes including age of loss of ambulation, steroid-responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. Here we review and highlight recent findings on genetic modifiers of Duchenne and Facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. PMID:28877560

  16. 77 FR 7172 - Sequoyah National Wildlife Refuge, Sequoyah, Muskogee, and Haskell Counties, OK; Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    .... Scoping for the environmental assessment (EA) on use of specified genetically modified crops in... of genetically modified crops in association with the cooperative farming program was released on... assessment of using specified genetically modified crops into the CCP and determined that an environmental...

  17. HYBRIDIZATION STUDY BETWEEN GENETICALLY MODIFIED BRASSICA NAPUS AND NON-GENETICALLY MODIFIED B. NAPUS AND B. RAPA

    EPA Science Inventory

    Gene exchange between cultivated crops and wild species has gained significance in recent years because of concerns regarding the potential for gene flow between genetically modified (GM) crops and their domesticated and wild relatives. As part of our ecological effects of gene ...

  18. MATERNAL EFFECTS IN ADVANCED HYBRIDS OF GENETICALLY MODIFIED AND NON-GENETICALLY MODIFIED BRASSICA SPECIES

    EPA Science Inventory

    Identification of fitness traits potentially impacted by gene flow from genetically modified (GM) crops to compatible relatives is of interest in risk assessments for GM crops. Reciprocal crosses were made between GM canola, Brassica napus cv. RaideRR that expresses CP4 EPSPS fo...

  19. Isocost Lines Describe the Cellular Economy of Genetic Circuits

    PubMed Central

    Gyorgy, Andras; Jiménez, José I.; Yazbek, John; Huang, Hsin-Ho; Chung, Hattie; Weiss, Ron; Del Vecchio, Domitilla

    2015-01-01

    Genetic circuits in living cells share transcriptional and translational resources that are available in limited amounts. This leads to unexpected couplings among seemingly unconnected modules, which result in poorly predictable circuit behavior. In this study, we determine these interdependencies between products of different genes by characterizing the economy of how transcriptional and translational resources are allocated to the production of proteins in genetic circuits. We discover that, when expressed from the same plasmid, the combinations of attainable protein concentrations are constrained by a linear relationship, which can be interpreted as an isocost line, a concept used in microeconomics. We created a library of circuits with two reporter genes, one constitutive and the other inducible in the same plasmid, without a regulatory path between them. In agreement with the model predictions, experiments reveal that the isocost line rotates when changing the ribosome binding site strength of the inducible gene and shifts when modifying the plasmid copy number. These results demonstrate that isocost lines can be employed to predict how genetic circuits become coupled when sharing resources and provide design guidelines for minimizing the effects of such couplings. PMID:26244745

  20. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  1. [Progress on biosafety assessment of marker genes in genetically modified foods].

    PubMed

    Yang, Lichen; Yang, Xiaoguang

    2003-05-01

    Marker genes are useful in facilitating the detection of genetically modified organisms(GMO). These genes play an important role during the early identification stage of GMO development, but they exist in the mature genetically modified crops. So the safety assessment of these genes could not be neglected. In this paper, all the study on the biosafety assessment of marker genes were reviewed, their possible hazards and risks were appraised, and the marker genes proved safe were list too. GMO Labeling the is one important regulations for the development of genetically modified foods in the market. The accurate detecting techniques for GMO are the basis for setting up labeling regulation. In addition, some methods used to remove marker genes in genetically modified foods were introduced in the paper, which can eliminate their biosafety concern thoroughly.

  2. Immunotoxicological evaluation of wheat genetically modified with TaDREB4 gene on BALB/c mice.

    PubMed

    Liang, Chun Lai; Zhang, Xiao Peng; Song, Yan; Jia, Xu Dong

    2013-08-01

    To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Female mice weighing 18-22 g were divided into five groups (10 mice/group), which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control group and positive control group were fed with AIN93G diet, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (the proportion is 76%) for 30 days, then body weight, absolute and relative weight of spleen and thymus, white blood cell count, histological examination of immune organ, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell, serum half hemolysis value, mitogen-induced splenocyte proliferation, delayed-type hypersensitivity reaction and phagocytic activities of phagocytes were detected. No immunotoxicological effects related to the consumption of the genetically modified wheat were observed in BALB/c mice when compared with parental wheat group, common wheat group and negative control group. From the immunotoxicological point of view, results from this study demonstrate that genetically modified wheat with TaDREB4 gene is as safe as the parental wheat. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  3. [Genetically modified food--unnecessary controversy?].

    PubMed

    Tchórz, Michał; Radoniewicz-Chagowska, Anna; Lewandowska-Stanek, Hanna; Szponar, Elzbieta; Szponar, Jarosław

    2012-01-01

    Fast development of genetic engineering and biotechnology allows use of genetically modified organisms (GMO) more and more in different branches of science and economy. Every year we can see an increase of food amount produced with the use of modification of genetic material. In our supermarkets we can find brand new types of plants, products including genetically modified ingredients or meat from animals fed with food containing GMO. This article presents general information about genetically modified organisms, it also explains the range of genetic manipulation, use of newly developed products and current field area for GMO in the world. Based on scientific data the article presents benefits from development of biotechnology in reference to modified food. It also presents the voice of skeptics who are extremely concerned about the impact of those organisms on human health and natural environment. Problems that appear or can appear as a result of an increase of GMO are very important not only from a toxicologist's or a doctor's point of view but first of all from the point of view of ordinary consumers--all of us.

  4. Multiple organ histopathological changes in broiler chickens fed on genetically modified organism.

    PubMed

    Cîrnatu, Daniela; Jompan, A; Sin, Anca Ileana; Zugravu, Cornelia Aurelia

    2011-01-01

    Diet can influence the structural characteristics of internal organs. An experiment involving 130 meat broilers was conducted during 42 days (life term for a meat broiler) to study the effect of feed with protein from genetically modified soy. The 1-day-old birds were randomly allocated to five study groups, fed with soy, sunflower, wheat, fish flour, PC starter. In the diet of each group, an amount of protein from soy was replaced with genetically modified soy (I - 0%, II - 25%, III - 50%, IV - 75%, V - 100% protein from genetically modified soy). The level of protein in soy, either modified, or non-modified, was the same. Organs and carcass weights were measured at about 42 days of age of the birds and histopathology exams were performed during May-June 2009. No statistically significant differences were observed in mortality, growth performance variables or carcass and organ yields between broilers consuming diets produced with genetically modified soybean fractions and those consuming diets produced with near-isoline control soybean fractions. Inflammatory and degenerative liver lesions, muscle hypertrophy, hemorrhagic necrosis of bursa, kidney focal tubular necrosis, necrosis and superficial ulceration of bowel and pancreatic dystrophies were found in tissues from broilers fed on protein from genetically modified soy. Different types of lesions found in our study might be due to other causes (parasites, viral) superimposed but their presence exclusively in groups fed with modified soy raises some serious questions about the consequences of use of this type of feed.

  5. Current issues connected with usage of genetically modified crops in production of feed and livestock feeding.

    PubMed

    Kwiatek, K; Mazur, M; Sieradzki, Z

    2008-01-01

    Progress, which is brought by new advances in modern molecular biology, allowed interference in the genome of live organisms and gene manipulation. Introducing new genes to the recipient organism enables to give them new features, absent before. Continuous increase in the area of the biotech crops triggers continuous discussion about safety of genetically modified (GM) crops, including food and feed derived from them. Important issue connected with cultivation of genetically modified crops is a horizontal gene transfer and a bacterial antibiotic resistance. Discussion about safety of GM crops concerns also food allergies caused by eating genetically modified food. The problem of genetic modifications of GM crops used for livestock feeding is widely discussed, taking into account Polish feed law.

  6. The use of genetic engineering techniques to improve the lipid composition in meat, milk and fish products: a review.

    PubMed

    Świątkiewicz, S; Świątkiewicz, M; Arczewska-Włosek, A; Józefiak, D

    2015-04-01

    The health-promoting properties of dietary long-chain n-3 polyunsaturated fatty acids (n-3 LCPUFAs) for humans are well-known. Products of animal-origin enriched with n-3 LCPUFAs can be a good example of functional food, that is food that besides traditionally understood nutritional value may have a beneficial influence on the metabolism and health of consumers, thus reducing the risk of various lifestyle diseases such as atherosclerosis and coronary artery disease. The traditional method of enriching meat, milk or eggs with n-3 LCPUFA is the manipulation of the composition of animal diets. Huge progress in the development of genetic engineering techniques, for example transgenesis, has enabled the generation of many kinds of genetically modified animals. In recent years, one of the aims of animal transgenesis has been the modification of the lipid composition of meat and milk in order to improve the dietetic value of animal-origin products. This article reviews and discusses the data in the literature concerning studies where techniques of genetic engineering were used to create animal-origin products modified to contain health-promoting lipids. These studies are still at the laboratory stage, but their results have demonstrated that the transgenesis of pigs, cows, goats and fishes can be used in the future as efficient methods of production of healthy animal-origin food of high dietetic value. However, due to high costs and a low level of public acceptance, the introduction of this technology to commercial animal production and markets seems to be a distant prospect.

  7. Clonal evolution in myelodysplastic syndromes

    PubMed Central

    da Silva-Coelho, Pedro; Kroeze, Leonie I.; Yoshida, Kenichi; Koorenhof-Scheele, Theresia N.; Knops, Ruth; van de Locht, Louis T.; de Graaf, Aniek O.; Massop, Marion; Sandmann, Sarah; Dugas, Martin; Stevens-Kroef, Marian J.; Cermak, Jaroslav; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; de Witte, Theo; Blijlevens, Nicole M. A.; Muus, Petra; Huls, Gerwin; van der Reijden, Bert A.; Ogawa, Seishi; Jansen, Joop H.

    2017-01-01

    Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide (follow-up 2.5–11 years). Whole-exome and targeted deep sequencing at multiple time points during the disease course reveals that both linear and branched evolutionary patterns occur with and without disease-modifying treatment. The application of disease-modifying therapy may create an evolutionary bottleneck after which more complex MDS, but also unrelated clones of haematopoietic cells, may emerge. In addition, subclones that acquired an additional mutation associated with treatment resistance (TP53) or disease progression (NRAS, KRAS) may be detected months before clinical changes become apparent. Monitoring the genetic landscape during the disease may help to guide treatment decisions. PMID:28429724

  8. Perspectives on genetically modified crops and food detection.

    PubMed

    Lin, Chih-Hui; Pan, Tzu-Ming

    2016-01-01

    Genetically modified (GM) crops are a major product of the global food industry. From 1996 to 2014, 357 GM crops were approved and the global value of the GM crop market reached 35% of the global commercial seed market in 2014. However, the rapid growth of the GM crop-based industry has also created controversies in many regions, including the European Union, Egypt, and Taiwan. The effective detection and regulation of GM crops/foods are necessary to reduce the impact of these controversies. In this review, the status of GM crops and the technology for their detection are discussed. As the primary gap in GM crop regulation exists in the application of detection technology to field regulation, efforts should be made to develop an integrated, standardized, and high-throughput GM crop detection system. We propose the development of an integrated GM crop detection system, to be used in combination with a standardized international database, a decision support system, high-throughput DNA analysis, and automated sample processing. By integrating these technologies, we hope that the proposed GM crop detection system will provide a method to facilitate comprehensive GM crop regulation. Copyright © 2015. Published by Elsevier B.V.

  9. A 90-day subchronic study of rats fed lean pork from genetically modified pigs with muscle-specific expression of recombinant follistatin.

    PubMed

    Zou, Shiying; Tang, Min; He, Xiaoyun; Cao, Yuan; Zhao, Jie; Xu, Wentao; Liang, Zhihong; Huang, Kunlun

    2015-11-01

    Because cardiovascular disease incidence has rapidly increased in recent years, people are choosing relatively healthier diets with low animal fat. A transgenic pig with low fat and a high percentage of lean meat was created in 2011; this pig overexpresses the follistatin (FST) gene. To evaluate the safety of lean pork derived from genetically modified (GM) pigs, a subchronic oral toxicity study was conducted using Sprague-Dawley rats. GM pork and non-GM pork were incorporated into the diet at levels of 3.75%, 7.5%, and 15% (w/w), and the main nutrients of the various diets were subsequently balanced. The safety of GM pork was assessed by comparison of the toxicology response variables in Sprague-Dawley rats consuming diets containing GM pork with those consuming non-GM pork. No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. The results demonstrate that GM pork is as safe for consumption as conventional pork. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India

    PubMed Central

    Kathage, Jonas; Qaim, Matin

    2012-01-01

    Despite widespread adoption of genetically modified crops in many countries, heated controversies about their advantages and disadvantages continue. Especially for developing countries, there are concerns that genetically modified crops fail to benefit smallholder farmers and contribute to social and economic hardship. Many economic studies contradict this view, but most of them look at short-term impacts only, so that uncertainty about longer-term effects prevails. We address this shortcoming by analyzing economic impacts and impact dynamics of Bt cotton in India. Building on unique panel data collected between 2002 and 2008, and controlling for nonrandom selection bias in technology adoption, we show that Bt has caused a 24% increase in cotton yield per acre through reduced pest damage and a 50% gain in cotton profit among smallholders. These benefits are stable; there are even indications that they have increased over time. We further show that Bt cotton adoption has raised consumption expenditures, a common measure of household living standard, by 18% during the 2006–2008 period. We conclude that Bt cotton has created large and sustainable benefits, which contribute to positive economic and social development in India. PMID:22753493

  11. Modifications of allergenicity linked to food technologies.

    PubMed

    Moneret-Vautrin, D A

    1998-01-01

    The prevalence of food allergies (FA) has increased over the past fifteen years. The reasons suggested are changes in dietary behaviour and the evolution of food technologies. New cases of FA have been described with chayote, rambutan, arguta, pumpkin seeds, custard apple, and with mycoproteins from Fusarium.... Additives using food proteins are at high risk: caseinates, lysozyme, cochineal red, papaïn, alpha-amylase, lactase etc. Heating can reduce allergenicity or create neo-allergens, as well as storage, inducing the synthesis of allergenic stress or PR proteins. Aeroallergens (miles, moulds) contaminate foods and can induce allergic reactions. Involuntary contamination by peanut proteins on production lines is a problem which is not yet solved. Genetically modified plants are at risk of allergenicity, requiring methodological steps of investigations: the comparison of the amino-acid sequence of the transferred protein with the sequence of known allergens, the evaluation of thermo degradability and of the denaturation by pepsin and trypsin are required, as well as the study with sera from patients allergic to the plant producing the gene. The combination of enzymatic hydrolysis, heating, or the development of genetically modified plants may offer new alternatives towards hypoallergenic foods (57 references).

  12. Consumer perception of genetically modified organisms and sources of information.

    PubMed

    Wunderlich, Shahla; Gatto, Kelsey A

    2015-11-01

    Genetically modified organisms (GMOs) have been available for commercial purchase since the 1990s, allowing producers to increase crop yields through bioengineering that creates herbicide-resistant and insect-resistant varieties. However, consumer knowledge about GMOs has not increased at the same rate as the adoption of GMO crops. Consumers worldwide are displaying limited understanding, misconceptions, and even unfamiliarity with GMO food products. Many consumers report that they receive information about GMO food products from the media, Internet, and other news sources. These sources may be less reliable than scientific experts whom consumers trust more to present the facts. Although many in the United States support mandatory GMO labeling (similar to current European standards), consumer awareness of current GMO labeling is low. A distinction must also be made between GMO familiarity and scientific understanding, because those who are more familiar with it tend to be more resistant to bioengineering, whereas those with higher scientific knowledge scores tend to have less negative attitudes toward GMOs. This brings to question the relation between scientific literacy, sources of information, and overall consumer knowledge and perception of GMO foods. © 2015 American Society for Nutrition.

  13. Detection and traceability of genetically modified organisms in the food production chain.

    PubMed

    Miraglia, M; Berdal, K G; Brera, C; Corbisier, P; Holst-Jensen, A; Kok, E J; Marvin, H J P; Schimmel, H; Rentsch, J; van Rie, J P P F; Zagon, J

    2004-07-01

    Both labelling and traceability of genetically modified organisms are current issues that are considered in trade and regulation. Currently, labelling of genetically modified foods containing detectable transgenic material is required by EU legislation. A proposed package of legislation would extend this labelling to foods without any traces of transgenics. These new legislations would also impose labelling and a traceability system based on documentation throughout the food and feed manufacture system. The regulatory issues of risk analysis and labelling are currently harmonised by Codex Alimentarius. The implementation and maintenance of the regulations necessitates sampling protocols and analytical methodologies that allow for accurate determination of the content of genetically modified organisms within a food and feed sample. Current methodologies for the analysis of genetically modified organisms are focused on either one of two targets, the transgenic DNA inserted- or the novel protein(s) expressed- in a genetically modified product. For most DNA-based detection methods, the polymerase chain reaction is employed. Items that need consideration in the use of DNA-based detection methods include the specificity, sensitivity, matrix effects, internal reference DNA, availability of external reference materials, hemizygosity versus homozygosity, extrachromosomal DNA, and international harmonisation. For most protein-based methods, enzyme-linked immunosorbent assays with antibodies binding the novel protein are employed. Consideration should be given to the selection of the antigen bound by the antibody, accuracy, validation, and matrix effects. Currently, validation of detection methods for analysis of genetically modified organisms is taking place. In addition, new methodologies are developed, including the use of microarrays, mass spectrometry, and surface plasmon resonance. Challenges for GMO detection include the detection of transgenic material in materials with varying chromosome numbers. The existing and proposed regulatory EU requirements for traceability of genetically modified products fit within a broader tendency towards traceability of foods in general and, commercially, towards products that can be distinguished from each other. Traceability systems document the history of a product and may serve the purpose of both marketing and health protection. In this framework, segregation and identity preservation systems allow for the separation of genetically modified and non-modified products from "farm to fork". Implementation of these systems comes with specific technical requirements for each particular step of the food processing chain. In addition, the feasibility of traceability systems depends on a number of factors, including unique identifiers for each genetically modified product, detection methods, permissible levels of contamination, and financial costs. In conclusion, progress has been achieved in the field of sampling, detection, and traceability of genetically modified products, while some issues remain to be solved. For success, much will depend on the threshold level for adventitious contamination set by legislation. Copryright 2004 Elsevier Ltd.

  14. [Assessment of allergenicity of genetically modified food crops].

    PubMed

    Schauzu, M; Pöting, A; Rubin, D; Lampen, A

    2012-03-01

    The placing on the European Union's market of genetically modified crops requires authorization by the European Commission which is based on the proof that the derived foods are as safe as their conventional counterparts. The assessment of potential allergenicity is part of the necessary investigations recommended in the updated Guidance Document of the Scientific Panel on Genetically Modified Organisms (GMO) of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. All genetically modified crops which so far have been authorized in the European Union were evaluated by the EFSA GMO Panel which considered it unlikely that their overall allergenicity has been altered.

  15. [Hypothetical link between endometriosis and xenobiotics-associated genetically modified food].

    PubMed

    Aris, A; Paris, K

    2010-12-01

    Endometriosis is an oestrogen-dependent inflammatory disease affecting 10 % of reproductive-aged women. Often accompanied by chronic pelvic pain and infertility, endometriosis rigorously interferes with women's quality of life. Although the pathophysiology of endometriosis remains unclear, a growing body of evidence points to the implication of environmental toxicants. Over the last decade, an increase in the incidence of endometriosis has been reported and coincides with the introduction of genetically modified foods in our diet. Even though assessments of genetically modified food risk have not indicated any hazard on human health, xenobiotics-associated genetically modified food, such as pesticides residues and xenoproteins, could be harmful in the long-term. The "low-dose hypothesis", accumulation and biotransformation of pesticides-associated genetically modified food and the multiplied toxicity of pesticides-formulation adjuvants support this hypothesis. This review summarizes toxic effects (in vitro and on animal models) of some xenobiotics-associated genetically modified food, such as glyphosate and Cry1Ab protein, and extrapolates on their potential role in the pathophysiology of endometriosis. Their roles as immune toxicants, pro-oxidants, endocrine disruptors and epigenetic modulators are discussed. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  16. A design for the control of apoptosis in genetically modified Saccharomyces cerevisiae.

    PubMed

    Nishida, Nao; Noguchi, Misa; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2014-01-01

    We have engineered a system that holds potential for use as a safety switch in genetically modified yeasts. Human apoptotic factor BAX (no homolog in yeast), under the control of the FBP1 (gluconeogenesis enzyme) promoter, was conditionally expressed to induce yeast cell apoptosis after glucose depletion. Such systems might prove useful for the safe use of genetically modified organisms.

  17. Disease-modifying genetic factors in cystic fibrosis.

    PubMed

    Marson, Fernando A L

    2018-05-01

    To compile data from the past 10 years regarding the role of modifying genes in cystic fibrosis (CF). CF is a model disease for understanding of the action of modifying genes. Although it is a monogenic (CFTR) autosomal recessive disease, CF presents with wide phenotypic variability. In CF, variability occurs with different intensity among patients by each organ, being organ-specific, resulting from the mutual interaction of environmental and genetic factors, including CFTR mutations and various other genes, most of which are associated with inflammatory processes. In individuals, using precision medicine, gene modification studies have revealed individualized responses to drugs depending on particular CFTR mutations and modifying genes, most of which are alternative ion channels. Studies of modifying genes in CF allow: understanding of clinical variability among patients with the same CFTR genotype; evaluation of precision medicine; understanding of environmental and genetic effects at the organ level; understanding the involvement of genetic variants in inflammatory responses; improvements in genetic counseling; understanding the involvement of genetic variants in inflammatory responses in lung diseases, such as asthma; and understanding the individuality of the person with the disease.

  18. 76 FR 78232 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... peer review of safety tests, and health effects of genetically modified organisms and glyphosate. APHIS...] Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified... that there is reason to believe are plant pests. Such genetically engineered organisms and products are...

  19. Germ-line variants identified by next generation sequencing in a panel of estrogen and cancer associated genes correlate with poor clinical outcome in Lynch syndrome patients.

    PubMed

    Jóri, Balazs; Kamps, Rick; Xanthoulea, Sofia; Delvoux, Bert; Blok, Marinus J; Van de Vijver, Koen K; de Koning, Bart; Oei, Felicia Trups; Tops, Carli M; Speel, Ernst Jm; Kruitwagen, Roy F; Gomez-Garcia, Encarna B; Romano, Andrea

    2015-12-01

    The risk to develop colorectal and endometrial cancers among subjects testing positive for a pathogenic Lynch syndrome mutation varies, making the risk prediction difficult. Genetic risk modifiers alter the risk conferred by inherited Lynch syndrome mutations, and their identification can improve genetic counseling. We aimed at identifying rare genetic modifiers of the risk of Lynch syndrome endometrial cancer. A family based approach was used to assess the presence of genetic risk modifiers among 35 Lynch syndrome mutation carriers having either a poor clinical phenotype (early age of endometrial cancer diagnosis or multiple cancers) or a neutral clinical phenotype. Putative genetic risk modifiers were identified by Next Generation Sequencing among a panel of 154 genes involved in endometrial physiology and carcinogenesis. A simple pipeline, based on an allele frequency lower than 0.001 and on predicted non-conservative amino-acid substitutions returned 54 variants that were considered putative risk modifiers. The presence of two or more risk modifying variants in women carrying a pathogenic Lynch syndrome mutation was associated with a poor clinical phenotype. A gene-panel is proposed that comprehends genes that can carry variants with putative modifying effects on the risk of Lynch syndrome endometrial cancer. Validation in further studies is warranted before considering the possible use of this tool in genetic counseling.

  20. Avoiding genetically modified foods in GMO Ground Zero: A reflective self-narrative.

    PubMed

    Edwards, Sachi

    2015-05-01

    I engage in a reflective self-narrative of my experience attempting to maintain a diet free of genetically modified organisms. Social tension over the genetically modified organism industry in Hawai'i, United States, has led to public debates over jobs and social identities. Drawing on local media sources, grassroots organizations, and blog posts, I describe the way this tension has shaped my experience with food, eating, and being with others as a genetically modified organism avoider. I utilize discursive positioning to make sense of my experiences by locating them within the ongoing public conversations that give structure to the daily lives of Hawai'i's residents. © The Author(s) 2015.

  1. How scary! An analysis of visual communication concerning genetically modified organisms in Italy.

    PubMed

    Ventura, Vera; Frisio, Dario G; Ferrazzi, Giovanni; Siletti, Elena

    2017-07-01

    Several studies provide evidence of the role of written communication in influencing public perception towards genetically modified organisms, whereas visual communication has been sparsely investigated. This article aims to evaluate the exposure of the Italian population to scary genetically modified organism-related images. A set of 517 images collected through Google are classified considering fearful attributes, and an index that accounts for the scary impact of these images is built. Then, through an ordinary least-squares regression, we estimate the relationship between the Scary Impact Index and a set of variables that describes the context in which the images appear. The results reveal that the first (and most viewed) Google result images contain the most frightful contents. In addition, the agri-food sector in Italy is strongly oriented towards offering a negative representation of genetically modified organisms. Exposure to scary images could be a factor that affects the negative perception of genetically modified organisms in Italy.

  2. Effects of genetically modified T2A-1 rice on the GI health of rats after 90-day supplement

    PubMed Central

    Yuan, Yanfang; Xu, Wentao; He, Xiaoyun; Liu, Haiyan; Cao, Sishuo; Qi, Xiaozhe; Huang, Kunlun; Luo, Yunbo

    2013-01-01

    Bacillus thuringiensis insecticidal toxin (Bt) rice will be commercialized as a main food source. Traditional safety assessments on genetically modified products pay little attention on gastrointestinal (GI) health. More data about GI health of Bt rice must be provided to dispel public' doubts about the potential effects on human health. We constructed an improved safety assessment animal model using a basic subchronic toxicity experiment, measuring a range of parameters including microflora composition, intestinal permeability, epithelial structure, fecal enzymes, bacterial activity, and intestinal immunity. Significant differences were found between rice-fed groups and AIN93G-fed control groups in several parameters, whereas no differences were observed between genetically modified and non-genetically modified groups. No adverse effects were found on GI health resulting from genetically modified T2A-1 rice. In conclusion, this study may offer a systematic safety assessment model for GM material with respect to the effects on GI health. PMID:23752350

  3. [Methods of identification and assessment of safety of genetically modified microorganisms in manufacture food production].

    PubMed

    Khovaev, A A; Nesterenko, L N; Naroditskiĭ, B S

    2011-01-01

    Methods of identification of genetically modified microorganisms (GMM), used in manufacture food on control probes are presented. Results of microbiological and molecular and genetic analyses of food products and their components important in microbiological and genetic expert examination of GMM in foods are considered. Examination of biosafety of GMM are indicated.

  4. Isocost Lines Describe the Cellular Economy of Genetic Circuits.

    PubMed

    Gyorgy, Andras; Jiménez, José I; Yazbek, John; Huang, Hsin-Ho; Chung, Hattie; Weiss, Ron; Del Vecchio, Domitilla

    2015-08-04

    Genetic circuits in living cells share transcriptional and translational resources that are available in limited amounts. This leads to unexpected couplings among seemingly unconnected modules, which result in poorly predictable circuit behavior. In this study, we determine these interdependencies between products of different genes by characterizing the economy of how transcriptional and translational resources are allocated to the production of proteins in genetic circuits. We discover that, when expressed from the same plasmid, the combinations of attainable protein concentrations are constrained by a linear relationship, which can be interpreted as an isocost line, a concept used in microeconomics. We created a library of circuits with two reporter genes, one constitutive and the other inducible in the same plasmid, without a regulatory path between them. In agreement with the model predictions, experiments reveal that the isocost line rotates when changing the ribosome binding site strength of the inducible gene and shifts when modifying the plasmid copy number. These results demonstrate that isocost lines can be employed to predict how genetic circuits become coupled when sharing resources and provide design guidelines for minimizing the effects of such couplings. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Update on HIPAA privacy: are you ready?

    PubMed

    Cole, Laura J; Fleisher, Lynn D

    2003-01-01

    The Health Insurance Portability and Accountability Act of 1996 (HIPAA) created new requirements for health care providers to protect the privacy and security of individually identifiable health information. Regulations to implement HIPAA's privacy provisions were published by the Department of Health and Human Services (HHS) in "final" form in December 2000 (the Privacy Rules). In March, 2002, HHS proposed modifications to the Privacy Rules, which were published on August 14, 2002. The modified final regulations differed from the 2000 regulations in a number of important respects. Most recently, on December 4, 2002, the Office of Civil Rights (OCR), which is charged with enforcement of HIPAA, published "Guidance Explaining Significant Aspects of the Privacy Rule." The Privacy Rules went into effect on April 14, 2003. This article provides a summary of the modified Privacy Rules, discusses some interesting aspects of OCR's "guidance," and highlights the requirements that are most likely to impact the practice of medical genetics.

  6. Replacements for Trans Fats—Will There Be an Oil Shortage?

    PubMed Central

    Klonoff, David C.

    2007-01-01

    Manufacturers use the process of hydrogenation to create trans fats in order to increase the shelf life of baked and fried foods. Ingestion of trans fats is associated with an increased risk of cardiovascular disease. A groundswell of public sentiment is causing regulatory bodies to ban the use of trans fats in foods. Alternatives to trans fats are needed now in order to preserve the freshness and provide an appealing texture of many packaged foods. As trans fats become phased out, there are eight types of approaches currently being developed to substitute for these fats as ingredients for baked and fried foods: (1) modified hydrogenation, (2) genetically modified seeds, (3) interesterification, (4) fractionation and blending, (5) butter and animal fat, (6) natural saturated oils, (7) natural unsaturated oils, and (8) fat substitutes. These alternatives to trans fats will require close scrutiny to ascertain whether they will also turn out to be linked with cardiovascular disease. PMID:19885099

  7. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  8. A Review of Living Collections with Special Emphasis on Sustainability and Its Impact on Research Across Multiple Disciplines

    PubMed Central

    2017-01-01

    Formal living collections have unique characteristics that distinguish them from other types of biorepositories. Comprising diverse resources, microbe culture collections, crop and biodiversity plant germplasm collections, and animal germplasm repositories are commonly allied with specific research communities or stakeholder groups. Among living collections, microbial culture collections have very long and unique life histories, with some being older than 100 years. Regulatory, financial, and technical developments have impacted living collections in many ways. International treaty obligations and restrictions on release of genetically modified organisms complicate the activities of living collections. Funding for living collections is a continuing challenge and threatens to create a two-tier system where medically relevant collections are well funded and all other collections are underfunded and hence understaffed. Molecular, genetic, and whole genome sequence analysis of contents of microbes and other living resource collections bring additional value to living collections. PMID:27869477

  9. A Review of Living Collections with Special Emphasis on Sustainability and Its Impact on Research Across Multiple Disciplines.

    PubMed

    McCluskey, Kevin

    2017-02-01

    Formal living collections have unique characteristics that distinguish them from other types of biorepositories. Comprising diverse resources, microbe culture collections, crop and biodiversity plant germplasm collections, and animal germplasm repositories are commonly allied with specific research communities or stakeholder groups. Among living collections, microbial culture collections have very long and unique life histories, with some being older than 100 years. Regulatory, financial, and technical developments have impacted living collections in many ways. International treaty obligations and restrictions on release of genetically modified organisms complicate the activities of living collections. Funding for living collections is a continuing challenge and threatens to create a two-tier system where medically relevant collections are well funded and all other collections are underfunded and hence understaffed. Molecular, genetic, and whole genome sequence analysis of contents of microbes and other living resource collections bring additional value to living collections.

  10. A comparative evaluation of the regulation of GM crops or products containing dsRNA and suggested improvements to risk assessments.

    PubMed

    Heinemann, Jack A; Agapito-Tenfen, Sarah Zanon; Carman, Judy A

    2013-05-01

    Changing the nature, kind and quantity of particular regulatory-RNA molecules through genetic engineering can create biosafety risks. While some genetically modified organisms (GMOs) are intended to produce new regulatory-RNA molecules, these may also arise in other GMOs not intended to express them. To characterise, assess and then mitigate the potential adverse effects arising from changes to RNA requires changing current approaches to food or environmental risk assessments of GMOs. We document risk assessment advice offered to government regulators in Australia, New Zealand and Brazil during official risk evaluations of GM plants for use as human food or for release into the environment (whether for field trials or commercial release), how the regulator considered those risks, and what that experience teaches us about the GMO risk assessment framework. We also suggest improvements to the process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Animal models to detect allergenicity to foods and genetically modified products: workshop summary.

    PubMed Central

    Tryphonas, Helen; Arvanitakis, George; Vavasour, Elizabeth; Bondy, Genevieve

    2003-01-01

    Respiratory allergy and allergy to foods continue to be important health issues. There is evidence to indicate that the incidence of food allergy around the world is on the rise. Current estimates indicate that approximately 5% of young children and 1-2% of adults suffer from true food allergy (Kagan 2003). Although a large number of in vivo and in vitro tests exist for the clinical diagnosis of allergy in humans, we lack validated animal models of allergenicity. This deficiency creates serious problems for regulatory agencies and industries that must define the potential allergenicity of foods before marketing. The emergence of several biotechnologically derived foods and industrial proteins, as well as their potential to sensitize genetically predisposed populations to develop allergy, has prompted health officials and regulatory agencies around the world to seek approaches and methodologies to screen novel proteins for allergenicity. PMID:12573909

  12. Transgenic and gene knockout mice in gastric cancer research

    PubMed Central

    Jiang, Yannan; Yu, Yingyan

    2017-01-01

    Mouse models are useful tool for carcinogenic study. They will greatly enrich the understanding of pathogenesis and molecular mechanisms for gastric cancer. However, only few of mice could develop gastric cancer spontaneously. With the development and improvement of gene transfer technology, investigators created a variety of transgenic and knockout/knockin mouse models of gastric cancer, such as INS-GAS mice and gastrin knockout mice. Combined with helicobacter infection and carcinogens treatment, these transgenic/knockout/knockin mice developed precancerous or cancerous lesions, which are proper for gene function study or experimental therapy. Here we review the progression of genetically engineered mouse models on gastric cancer research, and emphasize the effects of chemical carcinogens or infectious factors on carcinogenesis of genetically modified mouse. We also emphasize the histological examination on mouse stomach. We expect to provide researchers with some inspirations on this field. PMID:27713138

  13. Readiness of adolescents to use genetically modified organisms according to their knowledge and emotional attitude towards GMOs.

    PubMed

    Lachowski, Stanisław; Jurkiewicz, Anna; Choina, Piotr; Florek-Łuszczki, Magdalena; Buczaj, Agnieszka; Goździewska, Małgorzata

    2017-06-07

    Agriculture based on genetically modified organisms plays an increasingly important role in feeding the world population, which is evidenced by a considerable growth in the size of land under genetically modified crops (GM). Uncertainty and controversy around GM products are mainly due to the lack of accurate and reliable information, and lack of knowledge concerning the essence of genetic modifications, and the effect of GM food on the human organism, and consequently, a negative emotional attitude towards what is unknown. The objective of the presented study was to discover to what extent knowledge and the emotional attitude of adolescents towards genetically modified organisms is related with acceptance of growing genetically modified plants or breeding GM animals on own farm or allotment garden, and the purchase and consumption of GM food, as well as the use of GMOs in medicine. The study was conducted by the method of a diagnostic survey using a questionnaire designed by the author, which covered a group of 500 adolescents completing secondary school on the level of maturity examination. The collected material was subjected to statistical analysis. Research hypotheses were verified using chi-square test (χ 2 ), t-Student test, and stepwise regression analysis. Stepwise regression analysis showed that the readiness of adolescents to use genetically modified organisms as food or for the production of pharmaceuticals, the production of GM plants or animals on own farm, depends on an emotional-evaluative attitude towards GMOs, and the level of knowledge concerning the essence of genetic modifications.

  14. Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs

    PubMed Central

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2014-01-01

    Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489

  15. 40 CFR 172.45 - Requirement for a notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EXPERIMENTAL USE PERMITS Notification for Certain Genetically Modified Microbial Pesticides § 172.45... modified. (2) Nonindigenous microbial pesticides that have not been acted upon by the U.S. Department of... introduction of genetic material that has been deliberately modified. (ii) [Reserved] (2) Testing conducted in...

  16. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    NASA Astrophysics Data System (ADS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2017-01-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  17. Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Feng, Na; Shi, Deshi; Liu, Bang

    2016-03-01

    The qualitative and quantitative declaration of food ingredients is important to consumers, especially for genetically modified food as it experiences a rapid increase in sales. In this study, we designed an accurate and rapid detection system using colloidal gold immunochromatographic strip assay (GICA) methods to detect genetically modified cow milk. First, we prepared 2 monoclonal antibodies for human α-lactalbumin (α-LA) and measured their antibody titers; the one with the higher titer was used for further experiments. Then, we found the optimal pH value and protein amount of GICA for detection of pure milk samples. The developed strips successfully detected genetically modified cow milk and non-modified cow milk. To determine the sensitivity of GICA, a quantitative ELISA system was used to determine the exact amount of α-LA, and then genetically modified milk was diluted at different rates to test the sensitivity of GICA; the sensitivity was 10 μg/mL. Our results demonstrated that the applied method was effective to detect human α-LA in cow milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Emotional attitudes of young people completing secondary schools towards genetic modification of organisms (GMO) and genetically modified foods (GMF).

    PubMed

    Jurkiewicz, Anna; Zagórski, Jerzy; Bujak, Franciszek; Lachowski, Stanisław; Florek-Łuszczki, Magdalena

    2014-01-01

    The objective of the study was recognition of the opinions of adolescents completing secondary schools concerning genetically modified organisms and genetically modified food, especially the respondents' emotional attitude towards scientific achievements in the area of live genetically modified organisms. The study covered a group of 500 school adolescents completing secondary school at the level of maturity examination. The study was conducted by the method of a diagnostic survey using a self-designed questionnaire form. Knowledge concerning the possible health effects of consumption of food containing GMO among adolescents competing secondary schools is on a relatively low level; the adolescents examined 'know rather little' or 'very little know' about this problem. In respondents' opinions the results of reliable studies pertaining to the health effects of consumption of GMO 'rather do not exist'. The respondents are against the cultivation of GM plants and breeding of GM animals on own farm in the future. Secondary school adolescents considered that the production of genetically modified food means primarily the enrichment of biotechnological companies, higher income for food producers, and not the elimination of hunger in the world or elimination of many diseases haunting humans.

  19. [Safety assessment of foods derived from genetically modified plants].

    PubMed

    Pöting, A; Schauzu, M

    2010-06-01

    The placing of genetically modified plants and derived food on the market falls under Regulation (EC) No. 1829/2003. According to this regulation, applicants need to perform a safety assessment according to the Guidance Document of the Scientific Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. This article gives an overview of the underlying legislation as well as the strategy and scientific criteria for the safety assessment, which should generally be based on the concept of substantial equivalence and carried out in relation to an unmodified conventional counterpart. Besides the intended genetic modification, potential unintended changes also have to be assessed with regard to potential adverse effects for the consumer. All genetically modified plants and derived food products, which have been evaluated by EFSA so far, were considered to be as safe as products derived from the respective conventional plants.

  20. Programming cells by multiplex genome engineering and accelerated evolution.

    PubMed

    Wang, Harris H; Isaacs, Farren J; Carr, Peter A; Sun, Zachary Z; Xu, George; Forest, Craig R; Church, George M

    2009-08-13

    The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.

  1. Creating a bio-hybrid signal transduction pathway: opening a new channel of communication between cells and machines.

    PubMed

    Yarkoni, Orr; Donlon, Lynn; Frankel, Daniel

    2012-12-01

    Manipulation of signal transduction pathways presents a viable mechanism to interface cells with electronics. In this work, we present a two-step signal transduction pathway involving cellular and electronic transduction elements. In order to circumvent many of the conventional difficulties encountered when harnessing chemical signalling for the purpose of electronics communication, gaseous nitric oxide (NO) was selected as the signalling molecule. By genetic engineering of the nitric oxide synthase protein eNOS and insertion of light-oxygen-voltage (LOV) domains, we have created a photoactive version of the protein. The novel chimeric eNOS was found to be capable of producing NO in response to excitation by visible light. By coupling these mutant cells to a surface modified platinum electrode, it was possible to convert an optical signal into a chemical one, followed by subsequent conversion of the chemical signal into an electrical output.

  2. Delivering golden rice to developing countries.

    PubMed

    Mayer, Jorge E

    2007-01-01

    Micronutrient deficiencies create a vicious circle of malnutrition, poverty, and economic dependency that we must strive to break. Golden Rice offers a sustainable solution to reduce the prevalence of vitamin A deficiency-related diseases and mortality, a problem that affects the health of millions of children in all developing countries. The technology is based on the reconstitution of the carotenoid biosynthetic pathway by addition of 2 transgenes. The outcome of this high-tech approach will be provided to end users as nutrient-dense rice varieties that are agronomically identical to their own, locally adapted varieties. This intervention has the potential to reach remote rural populations without access to fortification and supplementation programs. As part of our delivery strategy, we are partnering with government and nongovernment, national and international agricultural institutions to navigate through cumbersome and expensive regulatory regimes that affect the release of genetically modified crops, and to create local demand for the biofortified rice varieties.

  3. Not all GMOs are crop plants: non-plant GMO applications in agriculture

    USDA-ARS?s Scientific Manuscript database

    In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...

  4. Identification of Associations Between Genetic Factors and Asthma that are Modified by Obesity

    DTIC Science & Technology

    2016-06-01

    AFRL-SA-WP-TR-2016-0010 Identification of Associations Between Genetic Factors and Asthma That Are Modified by Obesity Andrew T...Between Genetic Factors and Asthma That Are Modified by Obesity 5a. CONTRACT NUMBER FA8650-13-2-6371 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...among African American women in the Women’s Health Initiative study. 15. SUBJECT TERMS Body mass index, SNP, asthma, obesity , genome, genes 16

  5. Unscented Sampling Techniques For Evolutionary Computation With Applications To Astrodynamic Optimization

    DTIC Science & Technology

    2016-09-01

    to both genetic algorithms and evolution strategies to achieve these goals. The results of this research offer a promising new set of modified ...abs_all.jsp?arnumber=203904 [163] Z. Michalewicz, C. Z. Janikow, and J. B. Krawczyk, “A modified genetic algo- rithm for optimal control problems...Available: http://arc.aiaa.org/doi/abs/10.2514/ 2.7053 375 [166] N. Yokoyama and S. Suzuki, “ Modified genetic algorithm for constrained trajectory

  6. [Impacts of genetically modified soybean leaf residues on Folsomia candida.

    PubMed

    Zhou, Lin; Wang, Bai Feng; Liu, Xin Ying; Jiang, Ying; Wang, Da Ming; Feng, Shu Dan; Song, Xin Yuan

    2016-09-01

    When the genetically modified soybean is planted in the field, the expression product of exogenous gene could be exposed in the soil ecosystem and bring potential risk to the soil fauna, with the form of leaves and other debris. A few of genetically modified soybeans developed by China independently were used in our study as materials. They were Phytophthora-resistant soybean harboring hrpZm gene (B4J8049), leaf-feeding insect-resistant soybean harboring Cry1C gene (A2A8001) and Leguminivora glycinivorella-resistant soybean harboring Cry1Iem gene (C802). By feeding Folsomia candida with the three genetically modified soybeans for continuous 60 days, the surviving rate, reproductive rate and changes on the body length of F. candida were studied. The results showed that all the three genetically modified soybeans of B4J8049, A2A8001 and C802 had no significant adverse effects on the growth of F. candida, as an environmental indicator organism. It was initially inferred that they were environmentally safe under short-term exposure, which provided basic data of ecological safety for their wide cultivation.

  7. Genetic basis and detection of unintended effects in genetically modified crop plants

    USDA-ARS?s Scientific Manuscript database

    In January 2014, an international meeting sponsored by the International Life Sciences Institute/Health and Environmental Sciences Institute and the Canadian Food Inspection Agency titled “Genetic Basis of Unintended Effects in Modified Plants” was held in Ottawa, Canada, bringing together over 75 s...

  8. 76 FR 37771 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified Fatty Acid Profile... soybean designated as MON 87705, which has been genetically engineered to have a modified fatty acid... our regulations concerning the introduction of certain genetically engineered organisms and products...

  9. Genetic association studies in β-hemoglobinopathies.

    PubMed

    Thein, Swee Lay

    2013-01-01

    Characterization of the molecular basis of the β-thalassemias and sickle cell disease (SCD) clearly showed that individuals with the same β-globin genotypes can have extremely diverse clinical severity. Two key modifiers, an innate ability to produce fetal hemoglobin and coinheritance of α-thalassemia, both derived from family and population studies, affect the pathophysiology of both disorders at the primary level. In the past 2 decades, scientific research had applied genetic approaches to identify additional genetic modifiers. The review summarizes recent genetic studies and key genetic modifiers identified and traces the story of fetal hemoglobin genetics, which has led to an emerging network of globin gene regulation. The discoveries have provided insights on new targets for therapeutic intervention and raise possibilities of developing fetal hemoglobin predictive diagnostics for predicting disease severity in the newborn and for integration into prenatal diagnosis to better inform genetic counseling.

  10. Globalization’s unexpected impact on soybean production in South America: linkages between preferences for non-genetically modified crops, eco-certifications, and land use

    NASA Astrophysics Data System (ADS)

    Garrett, Rachael D.; Rueda, Ximena; Lambin, Eric F.

    2013-12-01

    The land use impacts of globalization and of increasing global food and fuel demand depend on the trade relationships that emerge between consuming and producing countries. In the case of soybean production, increasing trade between South American farmers and consumers in Asia and Europe has facilitated soybean expansion in the Amazon, Chaco, and Cerrado biomes. While these telecouplings have been well documented, there is little understanding of how quality preferences influence trade patterns and supply chains, incentivizing or discouraging particular land use practices. In this study we provide empirical evidence that Brazil’s continued production of non-genetically modified (GM) soybeans has increased its competitive advantage in European countries with preferences against GM foods. Brazil’s strong trade relationship with European consumers has facilitated an upgrading of the soybean supply chain. Upgraded soybean supply chains create new conservation opportunities by allowing farmers to differentiate their products based on environmental quality in order to access premiums in niche markets in Europe. These interactions between GM preferences, trade flows, and supply chain structure help to explain why Brazilian soybean farmers have adopted environmental certification programs on a larger scale than Argentinian, Bolivian, Paraguayan, and Uruguayan soybean producers.

  11. Evolving phage vectors for cell targeted gene delivery.

    PubMed

    Larocca, David; Burg, Michael A; Jensen-Pergakes, Kristen; Ravey, Edward Prenn; Gonzalez, Ana Maria; Baird, Andrew

    2002-03-01

    We adapted filamentous phage vectors for targeted gene delivery to mammalian cells by inserting a mammalian reporter gene expression cassette (GFP) into the vector backbone and fusing the pIII coat protein to a cell targeting ligand (i.e. FGF2, EGF). Like transfection with animal viral vectors, targeted phage gene delivery is concentration, time, and ligand dependent. Importantly, targeted phage particles are specific for the appropriate target cell surface receptor. Phage have distinct advantages over existing gene therapy vectors because they are simple, economical to produce at high titer, have no intrinsic tropism for mammalian cells, and are relatively simple to genetically modify and evolve. Initially transduction by targeted phage particles was low resulting in foreign gene expression in 1-2% of transfected cells. We increased transduction efficiency by modifying both the transfection protocol and vector design. For example, we stabilized the display of the targeting ligand to create multivalent phagemid-based vectors with transduction efficiencies of up to 45% in certain cell lines when combined with genotoxic treatment. Taken together, these studies establish that the efficiency of phage-mediated gene transfer can be significantly improved through genetic modification. We are currently evolving phage vectors with enhanced cell targeting, increased stability, reduced immunogenicity and other properties suitable for gene therapy.

  12. Genetically Modified Foods and Consumer Perspective.

    PubMed

    Boccia, Flavio; Sarnacchiaro, Pasquale

    2015-01-01

    Genetically modified food is able to oppose the world's hunger and preserve the environment, even if the patents in this matter are symptomatic of several doubts. And also, transgenic consumption causes problems and skepticism among consumers in several European countries, but above all in Italy, where there is a strong opposition over recent years. So, the present study conducted a research to study the consumption of genetically modified food products by Italian young generation. This research presented the following purposes: firstly, to analyze genetically modified products' consumption among a particular category of consumers; secondly, to implement a quantitative model to understand behaviour about this particular kind of consumption and identify the factors that determine their purchase. The proposed model shows that transgenic consumption is especially linked to knowledge and impact on environment and mankind's health.

  13. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer.

    PubMed

    Song, Qinxin; Wei, Guijiang; Zhou, Guohua

    2014-07-01

    A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Genetic improvement of breeding materials in tropical and sub- tropical maize].

    PubMed

    Sansern, Jampatong; Chaba, Jampatong

    2011-12-01

    In the present study, 122 maize local cultivars and adapted exotic germplasm from Thailand were used to develop open pollinate varieties (OPVs) using modified ear-to-row scheme, top-cross or test-cross programmes. Ten new maize OPVs with distinct characters were created based on the precise breeding objectives and directional design. The selection of breeding materials was based upon three factors: elite performance, broad adaptability, and genetic diversity. The synthesizing system provided four features: genetic mixing and recombination, equal comparable genetic contribution, mild selection pressure, and maximum intermating for genetic equilibrium (i.e., the female traits were close for the genetic com-positions). Subsequently, Suwan 1 composite and its deritives (Suwan 2, Suwan 3 composite, Suwan 5 and KS24 synthetics), KS6 and KS28 synthetics with the dent type of different origins, and Caripeno DMR composite, KS23, and KS27 synthetics with the dent type of Non-Suwan 1 origin were developed. These OPVs had been improved for 2~13 cycles using S1 recurrent selection method. About 50 inbred lines were developed from these OPVs, and 16 elite single (three-way) crosses were combined and released from these inbred lines. At present, at least one parental inbred line of all the tropical hybrids was derived from Suwan (KS) germplasm in Thailand. Based on the theory of the synthesizing OPVs and developing inbred lines, this paper discussed the genetic moderate diversity, relationship, heterotic group, and patterns for synthesizing OPVs, and inspiration for composed OPVs to heterosis breeding.

  15. Generating mouse lines for lineage tracing and knockout studies.

    PubMed

    Kraus, Petra; Sivakamasundari, V; Xing, Xing; Lufkin, Thomas

    2014-01-01

    In 2007 Capecchi, Evans, and Smithies received the Nobel Prize in recognition for discovering the principles for introducing specific gene modifications in mice via embryonic stem cells, a technology, which has revolutionized the field of biomedical science allowing for the generation of genetically engineered animals. Here we describe detailed protocols based on and developed from these ground-breaking discoveries, allowing for the modification of genes not only to create mutations to study gene function but additionally to modify genes with fluorescent markers, thus permitting the isolation of specific rare wild-type and mutant cell types for further detailed analysis at the biochemical, pathological, and genomic levels.

  16. ENU mutagenesis to generate genetically modified rat models.

    PubMed

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  17. Safety assessment, detection and traceability, and societal aspects of genetically modified foods. European Network on Safety Assessment of Genetically Modified Food Crops (ENTRANSFOOD). Concluding remarks.

    PubMed

    Kuiper, H A; König, A; Kleter, G A; Hammes, W P; Knudsen, I

    2004-07-01

    The most important results from the EU-sponsored ENTRANSFOOD Thematic Network project are reviewed, including the design of a detailed step-wise procedure for the risk assessment of foods derived from genetically modified crops based on the latest scientific developments, evaluation of topical risk assessment issues, and the formulation of proposals for improved risk management and public involvement in the risk analysis process. Copyright 2004 Elsevier Ltd.

  18. Genetic Modifiers of Sickle Cell Disease

    PubMed Central

    Steinberg, Martin H.; Sebastiani, Paola

    2015-01-01

    Sickle cell anemia is associated with unusual clinical heterogeneity for a Mendelian disorder. Fetal hemoglobin concentration and coincident ∝ thalassemia, both which directly affect the sickle erythrocyte, are the major modulators of the phenotype of disease. Understanding the genetics underlying the heritable subphenotypes of sickle cell anemia would be prognostically useful, could inform personalized therapeutics, and might help the discovery of new “druggable” pathophysiologic targets. Genotype-phenotype association studies have been used to identify novel genetic modifiers. In the future, whole genome sequencing with its promise of discovering hitherto unsuspected variants could add to our understanding of the genetic modifiers of this disease. PMID:22641398

  19. Modifying Knowledge, Emotions, and Attitudes Regarding Genetically Modified Foods

    ERIC Educational Resources Information Center

    Heddy, Benjamin C.; Danielson, Robert W.; Sinatra, Gale M.; Graham, Jesse

    2017-01-01

    The purpose of this study was to explore whether conceptual change predicted emotional and attitudinal change while learning about genetically modified foods (GMFs). Participants were 322 college students; half read a refutation text designed to shift conceptual knowledge, emotions, and attitudes, while the other half served as a control group.…

  20. Modifier genes in Mendelian disorders: the example of cystic fibrosis

    PubMed Central

    Cutting, Garry R.

    2011-01-01

    In the past three decades, scientists have had immense success in identifying genes and their variants that contribute to an array of diseases. While the identification of such genetic variants has informed our knowledge of the etiologic bases of diseases, there continues to be a substantial gap in our understanding of the factors that modify disease severity. Monogenic diseases provide an opportunity to identify modifiers as they have uniform etiology, detailed phenotyping of affected individuals, and familial clustering. Cystic fibrosis (CF) is among the more common life-shortening recessive disorders that displays wide variability in clinical features and survival. Considerable progress has been made in elucidating the contribution of genetic and nongenetic factors to CF. Allelic variation in CFTR, the gene responsible for CF, correlates with some aspects of the disease. However, lung function, neonatal intestinal obstruction, diabetes, and anthropometry display strong genetic control independent of CFTR, and candidate gene studies have revealed genetic modifiers underlying these traits. The application of genome-wide techniques holds great promise for the identification of novel genetic variants responsible for the heritable features and complications of CF. Since the genetic modifiers are known to alter the course of disease, their protein products become immediate targets for therapeutic intervention. PMID:21175684

  1. ASSESSING POSSIBLE ECOLOGICAL RISKS OF GENETICALLY MODIFIED CROPS: GENE EXPRESSION ASSAYS AND GENETIC MONITORING OF NON-TARGET ORGANISMS

    EPA Science Inventory

    Widespread planting of genetically modified crops with the Bt transgene pesticide has led to concern over non-target effects of Bt compounds in agroecosystems. While some research suggests that non-target organisms exposed to Bt toxin exhibit reduced fecundity and increased morta...

  2. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  3. Generation and genetic modification of induced pluripotent stem cells.

    PubMed

    Schambach, Axel; Cantz, Tobias; Baum, Christopher; Cathomen, Toni

    2010-07-01

    The generation of induced pluripotent stem cells (iPSCs) enabled by exogenous expression of the canonical Oct4, Sox2, Klf4 and c-Myc reprogramming factors has opened new ways to create patient- or disease-specific pluripotent cells. iPSCs represent an almost inexhaustible source of cells for targeted differentiation into somatic effector cells and hence are likely to be invaluable for therapeutic applications and disease-related research. After an introduction on the biology of reprogramming we cover emerging technological advances, including new reprogramming approaches, small-molecule compounds and tailored genetic modification, and give an outlook towards potential clinical applications of iPSCs. Although this field is progressing rapidly, reprogramming is still an inefficient process. The reader will learn about innovative tools to generate patient-specific iPSCs and how to modify these established lines in a safe way. Ideally, the disease-causing mutation is edited directly in the genome using novel technologies based on artificial nucleases, such as zinc-finger nucleases. Human iPSCs create fascinating options with regard to disease modeling, drug testing, developmental studies and therapeutic applications. However, important hurdles have to be taken and more efficient protocols to be established to achieve the ambitious goal of bringing iPSCs into clinical use.

  4. A novel approach for monitoring genetically engineered microorganisms by using artificial, stable RNAs

    NASA Technical Reports Server (NTRS)

    Pitulle, C.; Hedenstierna, K. O.; Fox, G. E.

    1995-01-01

    Further improvements in technology for efficient monitoring of genetically engineered microorganisms (GEMs) in the environment are needed. Technology for monitoring rRNA is well established but has not generally been applicable to GEMs because of the lack of unique rRNA target sequences. In the work described herein, it is demonstrated that a deletion mutant of a plasmid-borne Vibrio proteolyticus 5S rRNA gene continues to accumulate to high levels in Escherichia coli although it is no longer incorporated into 70S ribosomes. This deletion construct was subsequently modified by mutagenesis to create a unique recognition site for the restriction endonuclease BstEII, into which new sequences could be readily inserted. Finally, a novel 17-nucleotide identifier sequence from Pennisetum purpureum was embedded into the construct to create an RNA identification cassette. The artificial identifier RNA, expressed from this cassette in vivo, accumulated in E. coli to levels comparable to those of wild-type 5S rRNA without being seriously detrimental to cell survival in laboratory experiments and without entering the ribosomes. These results demonstrate that artificial, stable RNAs containing sequence segments remarkably different from those present in any known rRNA can be designed and that neither the deleted sequence segment nor ribosome incorporation is essential for accumulation of an RNA product.

  5. 40 CFR 158.2100 - Microbial pesticides definition and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to which the organism has been genetically modified. (4) Pest control organisms such as insect... and supported by data required in this subpart. (3) Genetically modified microbial pesticides may be...

  6. [Genetically modified food and allergies - an update].

    PubMed

    Niemann, Birgit; Pöting, Annette; Braeuning, Albert; Lampen, Alfonso

    2016-07-01

    Approval by the European Commission is mandatory for placing genetically modified plants as food or feed on the market in member states of the European Union (EU). The approval is preceded by a safety assessment based on the guidance of the European Food Safety Authority EFSA. The assessment of allergenicity of genetically modified plants and their newly expressed proteins is an integral part of this assessment process. Guidance documents for the assessment of allergenicity are currently under revision. For this purpose, an expert workshop was conducted in Brussels on June 17, 2015. There, methodological improvements for the assessment of coeliac disease-causing properties of proteins, as well as the use of complex models for in vitro digestion of proteins were discussed. Using such techniques a refinement of the current, proven system of allergenicity assessment of genetically modified plants can be achieved.

  7. EFSA's scientific activities and achievements on the risk assessment of genetically modified organisms (GMOs) during its first decade of existence: looking back and ahead.

    PubMed

    Devos, Yann; Aguilera, Jaime; Diveki, Zoltán; Gomes, Ana; Liu, Yi; Paoletti, Claudia; du Jardin, Patrick; Herman, Lieve; Perry, Joe N; Waigmann, Elisabeth

    2014-02-01

    Genetically modified organisms (GMOs) and derived food and feed products are subject to a risk analysis and regulatory approval before they can enter the market in the European Union (EU). In this risk analysis process, the role of the European Food Safety Authority (EFSA), which was created in 2002 in response to multiple food crises, is to independently assess and provide scientific advice to risk managers on any possible risks that the use of GMOs may pose to human and animal health and the environment. EFSA's scientific advice is elaborated by its GMO Panel with the scientific support of several working groups and EFSA's GMO Unit. This review presents EFSA's scientific activities and highlights its achievements on the risk assessment of GMOs for the first 10 years of its existence. Since 2002, EFSA has issued 69 scientific opinions on genetically modified (GM) plant market registration applications, of which 62 for import and processing for food and feed uses, six for cultivation and one for the use of pollen (as or in food), and 19 scientific opinions on applications for marketing products made with GM microorganisms. Several guidelines for the risk assessment of GM plants, GM microorganisms and GM animals, as well as on specific issues such as post-market environmental monitoring (PMEM) were elaborated. EFSA also provided scientific advice upon request of the European Commission on safeguard clause and emergency measures invoked by EU Member States, annual PMEM reports, the potential risks of new biotechnology-based plant breeding techniques, evaluations of previously assessed GMOs in the light of new scientific publications, and the use of antibiotic resistance marker genes in GM plants. Future challenges relevant to the risk assessment of GMOs are discussed. EFSA's risk assessments of GMO applications ensure that data are analysed and presented in a way that facilitates scientifically sound decisions that protect human and animal health and the environment.

  8. Genetically Modified Plants: Public and Scientific Perceptions

    PubMed Central

    2013-01-01

    The potential of genetically modified plants to meet the requirements of growing population is not being recognized at present. This is a consequence of concerns raised by the public and the critics about their applications and release into the environment. These include effect on human health and environment, biosafety, world trade monopolies, trustworthiness of public institutions, integrity of regulatory agencies, loss of individual choice, and ethics as well as skepticism about the real potential of the genetically modified plants, and so on. Such concerns are enormous and prevalent even today. However, it should be acknowledged that most of them are not specific for genetically modified plants, and the public should not forget that the conventionally bred plants consumed by them are also associated with similar risks where no information about the gene(s) transfer is available. Moreover, most of the concerns are hypothetical and lack scientific background. Though a few concerns are still to be disproved, it is viewed that, with proper management, these genetically modified plants have immense potential for the betterment of mankind. In the present paper, an overview of the raised concerns and wherever possible reasons assigned to explain their intensity or unsuitability are reviewed. PMID:25937981

  9. Evaluation of genetically-improved (glandless) and genetically-modified low-gossypol cottonseed meal as alternative protein sources in the diet of juvenile southern flounder Paralichthys lethostigma reared in a recirculating

    USDA-ARS?s Scientific Manuscript database

    Cottonseed meal (CSM) proteins from genetically-improved (glandless) seed (GI-CSM, 52.1% crude protein, CP), genetically-modified low-gossypol seed (GMO-CSM, 56.0% CP) and from an untreated regular (glanded) seed (R-CSM 49.9% CP) were evaluated to replace fish meal (FM) protein (59.5% CP) in juvenil...

  10. Testing for Genetically Modified Foods Using PCR

    ERIC Educational Resources Information Center

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  11. Genetically Modified Crops and Nuisance: Exploring the Role of Precaution in Private Law

    ERIC Educational Resources Information Center

    Craik, Neil; Culver, Keith; Siebrasse, Norman

    2007-01-01

    This article critically considers calls for the precautionary principle to inform judicial decision making in a private law context in light of the Hoffman litigation, where it is alleged that the potential for genetic contamination from genetically modified (GM) crops causes an unreasonable interference with the rights of organic farmers to use…

  12. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    ERIC Educational Resources Information Center

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-01-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about…

  13. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  14. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  15. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  16. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  17. Between myth and reality: genetically modified maize, an example of a sizeable scientific controversy.

    PubMed

    Wisniewski, Jean-Pierre; Frangne, Nathalie; Massonneau, Agnès; Dumas, Christian

    2002-11-01

    Maize is a major crop plant with essential agronomical interests and a model plant for genetic studies. With the development of plant genetic engineering technology, many transgenic strains of this monocotyledonous plant have been produced over the past decade. In particular, field-cultivated insect-resistant Bt-maize hybrids are at the centre of an intense debate between scientists and organizations recalcitrant to genetically modified organisms (GMOs). This debate, which addresses both safety and ethical aspects, has raised questions about the impact of genetically modified (GM) crops on the biodiversity of traditional landraces and on the environment. Here, we review some of the key points of maize genetic history as well as the methods used to stably transform this cereal. We describe the genetically engineered Bt-maizes available for field cultivation and we investigate the controversial reports on their impacts on non-target insects such as the monarch butterfly and on the flow of transgenes into Mexican maize landraces.

  18. Genetic diversity and genetic structure of an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified agricultural landscape: implications for conservation.

    PubMed

    Sunny, Armando; Monroy-Vilchis, Octavio; Zarco-González, Martha M; Mendoza-Martínez, Germán David; Martínez-Gómez, Daniel

    2015-12-01

    It is necessary to determine genetic diversity of fragmented populations in highly modified landscapes to understand how populations respond to land-use change. This information will help guide future conservation and management strategies. We conducted a population genetic study on an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified landscape near the Toluca metropolitan area, in order to provide crucial information for the conservation of this species. There was medium levels of genetic diversity, with a few alleles and genotypes. We identified three genetically differentiated clusters, likely as a result of different habitat cover type. We also found evidence of an ancestral genetic bottleneck and medium values of effective population size. Inbreeding coefficients were low and there was a moderate gene flow. Our results can be used as a basis for future research and C. triseriatus conservation efforts, particularly considering that the Trans-Mexican Volcanic Belt is heavily impacted by destructive land-use practices.

  19. In Vivo Selection of Transplanted Hepatocytes by Pharmacological Inhibition of Fumarylacetoacetate Hydrolase in Wild-type Mice

    PubMed Central

    Paulk, Nicole K; Wursthorn, Karsten; Haft, Annelise; Pelz, Carl; Clarke, Gregory; Newell, Amy H; Olson, Susan B; Harding, Cary O; Finegold, Milton J; Bateman, Raymond L; Witte, John F; McClard, Ronald; Grompe, Markus

    2012-01-01

    Genetic fumarylacetoacetate hydrolase (Fah) deficiency is unique in that healthy gene-corrected hepatocytes have a strong growth advantage and can repopulate the diseased liver. Unfortunately, similar positive selection of gene-corrected cells is absent in most inborn errors of liver metabolism and it is difficult to reach the cell replacement index required for therapeutic benefit. Therefore, methods to transiently create a growth advantage for genetically modified hepatocytes in any genetic background would be advantageous. To mimic the selective pressure of Fah deficiency in normal animals, an efficient in vivo small molecule inhibitor of FAH, 4-[(2-carboxyethyl)-hydroxyphosphinyl]-3-oxobutyrate (CEHPOBA) was developed. Microarray analysis demonstrated that pharmacological inhibition of FAH produced highly similar gene expression changes to genetic deficiency. As proof of principle, hepatocytes lacking homogentisic acid dioxygenase (Hgd) and hence resistant to FAH inhibition were transplanted into sex-mismatched wild-type recipients. Time course analyses of 4–6 weeks of CEHPOBA administration after transplantation showed a linear relationship between treatment length and replacement index. Compared to controls, recipients treated with the FAH-inhibitor had 20–100-fold increases in liver repopulation. We conclude that pharmacological inhibition of FAH is a promising approach to in vivo selection of hepatocytes. PMID:22871666

  20. USEPA Resistance Management Research

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for future planted acreages approaching 80% of total corn plantings in 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  2. An intein with genetically selectable markers provides a new approach to internally label proteins with GFP.

    PubMed

    Ramsden, Richard; Arms, Luther; Davis, Trisha N; Muller, Eric G D

    2011-06-27

    Inteins are proteins that catalyze their own removal from within larger precursor proteins. In the process they splice the flanking protein sequences, termed the N-and C-terminal exteins. Large inteins frequently have a homing endonuclease that is involved in maintaining the intein in the host. Splicing and nuclease activity are independent and distinct domains in the folded structure. We show here that other biochemical activities can be incorporated into an intein in place of the endonuclease without affecting splicing and that these activities can provide genetic selection for the intein. We have coupled such a genetically marked intein with GFP as the N-terminal extein to create a cassette to introduce GFP within the interior of a targeted protein. The Pch PRP8 mini-intein of Penicillium chrysogenum was modified to include: 1) aminoglycoside phosphotransferase; 2) imidazoleglycerol-phosphate dehydratase, His5 from S. pombe ; 3) hygromycin B phosphotransferase; and 4) the transcriptional activator LexA-VP16. The proteins were inserted at the site of the lost endonuclease. When expressed in E. coli, all of the modified inteins spliced at high efficiency. Splicing efficiency was also greater than 96% when expressed from a plasmid in S. cerevisiae. In addition the inteins conferred either G418 or hygromycin resistance, or histidine or leucine prototropy, depending on the inserted marker and the yeast genetic background. DNA encoding the marked inteins coupled to GFP as the N-terminal extein was PCR amplified with ends homologous to an internal site in the yeast calmodulin gene CMD1. The DNA was transformed into yeast and integrants obtained by direct selection for the intein's marker. The His5-marked intein yielded a fully functional calmodulin that was tagged with GFP within its central linker. Inteins continue to show their flexibility as tools in molecular biology. The Pch PRP8 intein can successfully tolerate a variety of genetic markers and still retain high splicing efficiency. We have shown that a genetically marked intein can be used to insert GFP in one-step within a target protein in vivo.

  3. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    PubMed

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  4. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    PubMed

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  5. MS-based analytical methodologies to characterize genetically modified crops.

    PubMed

    García-Cañas, Virginia; Simó, Carolina; León, Carlos; Ibáñez, Elena; Cifuentes, Alejandro

    2011-01-01

    The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart. Copyright © 2010 Wiley Periodicals, Inc.

  6. [Plant genetic engineering in Monsanto company: from the first laboratory experiments to worldwide practical use].

    PubMed

    Konov, A L; Velchev, M; Parcel, D

    2005-01-01

    The history of modern biotechnology of agricultural plants is briefly considered in the article. Methods of genetic transformation and regeneration of transgenic plants as well as the mechanisms of resistance of genetically modified plants to herbicides and pests are discussed. By the example of genetically modified varieties and hybrids there are shown the ways of solving the problem of weeds and pests. The questions of biosafety legislation in different countries are considered.

  7. Germline modification of domestic animals

    PubMed Central

    Tang, L.; González, R.; Dobrinski, I.

    2016-01-01

    Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation. As the genetic change is introduced into the male germ line just before the onset of spermatogenesis, the time required for the production of genetically modified sperm is significantly shorter using germ cell transplantation compared to cloning or embryonic stem (ES) cell based technology. Moreover, the GSC-mediated germline modification circumvents problems associated with embryo manipulation and nuclear reprogramming. Currently, engineering targeted mutations in domestic animals using GSCs remains a challenge as GSCs from those animals are difficult to maintain in vitro for an extended period of time. Recent advances in genome editing techniques such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) greatly enhance the efficiency of engineering targeted genetic change in domestic animals as demonstrated by the generation of several gene knock-out pig and cattle models using those techniques. The potential of GSC-mediated germline modification in making targeted genetic modifications in domestic animal models will be maximized if those genome editing techniques can be applied in GSCs. PMID:27390591

  8. Chemical characteristics and volatile profile of genetically modified peanut cultivars.

    PubMed

    Ng, Ee Chin; Dunford, Nurhan T; Chenault, Kelly

    2008-10-01

    Genetic engineering has been used to modify peanut cultivars for improving agronomic performance and pest resistance. Food products developed through genetic engineering have to be assessed for their safety before approval for human consumption. Preservation of desirable chemical, flavor and aroma attributes of the peanut cultivars during the genetic modifications is critical for acceptance of genetically modified peanuts (GMP) by the food industry. Hence, the main objective of this study is to examine chemical characteristics and volatile profile of GMP. The genetically modified peanut cultivars, 188, 540 and 654 were obtained from the USDA-ARS in Stillwater, Oklahoma. The peanut variety Okrun was examined as a control. The volatile analysis was performed using a gas chromatograph/mass spectrometer (GC/MS) equipped with an olfactory detector. The peanut samples were also analyzed for their moisture, ash, protein, sugar and oil compositions. Experimental results showed that the variations in nutritional composition of peanut lines examined in this study were within the values reported for existing cultivars. There were minor differences in volatile profile among the samples. The implication of this study is significant, since it shows that peanut cultivars with greater pest and fungal resistance were successfully developed without major changes in their chemical characteristics.

  9. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation.

    PubMed

    Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V

    2015-08-22

    Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture.

  10. Resistance Management Research for PIP Crops

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for future planted acreages approaching 80% of total corn plantings in 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is...

  11. Genetic engineering applied to agriculture has a long row to hoe.

    PubMed

    Miller, Henry I

    2018-01-02

    In spite of the lack of scientific justification for skepticism about crops modified with molecular techniques of genetic engineering, they have been the most scrutinized agricultural products in human history. The assumption that "genetically engineered" or "genetically modified" is a meaningful - and dangerous - classification has led to excessive and dilatory regulation. The modern molecular techniques are an extension, or refinement, of older, less precise, less predictable methods of genetic modification, but as long as today's activists and regulators remain convinced that so called "GMOs" represent a distinct and dangerous category of research and products, genetic engineering will fall short of its potential.

  12. Genetically Modified Food: Knowledge and Attitude of Teachers and Students

    NASA Astrophysics Data System (ADS)

    Mohapatra, Animesh K.; Priyadarshini, Deepika; Biswas, Antara

    2010-10-01

    The concepts behind the technology of genetic modification of organisms and its applications are complex. A diverse range of opinions, public concern and considerable media interest accompanies the subject. This study explores the knowledge and attitudes of science teachers and senior secondary biology students about the application of a rapidly expanding technology, genetic engineering, to food production. The results indicated significant difference in understanding of concepts related with genetically engineered food stuffs between teachers and students. The most common ideas about genetically modified food were that cross bred plants and genetically modified plants are not same, GM organisms are produced by inserting a foreign gene into a plant or animal and are high yielding. More teachers thought that genetically engineered food stuffs were unsafe for the environment. Both teachers and students showed number of misconceptions, for example, the pesticidal proteins produced by GM organisms have indirect effects through bioaccumulation, induces production of allergic proteins, genetic engineering is production of new genes, GM plants are leaky sieves and that transgenes are more likely to introgress into wild species than mutated species. In general, more students saw benefits while teachers were cautious about the advantages of genetically engineered food stuffs.

  13. Detection of Genetically Modified Maize in Processed Foods Sold Commercially in Iran by Qualitative PCR

    PubMed Central

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer’s right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses. PMID:24250568

  14. Detection of genetically modified maize in processed foods sold commercially in iran by qualitative PCR.

    PubMed

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer's right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses.

  15. Aquaculture: Incorporating risk assessment and risk management into public policies on genetically modified finfish and shellfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallerman, E.M.; Kapuscinski, A.R.

    Genetically modified finfish and shellfish pose economic benefits to aquaculture, but also pose ecological and genetic risks to ecosystems receiving such organisms. Realization of benefits with minimization of risks posed by a new technology can be addressed through the processes of risk assessment and risk management. Public policies adopted by individual countries will reflect differences in the outocme of risk assessment and risk management processes resulting from differences among the receiving ecosystems and sets of human values at issue. A number of countries and international institutions have begun development of policies for oversight of genetically modified aquatic organisms. In themore » United States, a working group commissioned by the U.S. Department of Agriculture incorporated risk assessment and risk management principles into draft performance standards for safely conducting research with genetically modified finfish and shellfish. The performance standards address research with a broad range of aquatic GMO`s and compliance is intended to be voluntary. In contrast, the Canadian policy mandates adherence to specified guidelines for experiments with transgenic aquatic organisms; establishment as national policy is expended soon.« less

  16. Resistance Management Monitoring For the US Corn Crop

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  17. Implantation of Vascular Grafts Lined with Genetically Modified Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Wilson, James M.; Birinyi, Louis K.; Salomon, Robert N.; Libby, Peter; Callow, Allan D.; Mulligan, Richard C.

    1989-06-01

    The possibility of using the vascular endothelial cell as a target for gene replacement therapy was explored. Recombinant retroviruses were used to transduce the lacZ gene into endothelial cells harvested from mongrel dogs. Prosthetic vascular grafts seeded with the genetically modified cells were implanted as carotid interposition grafts into the dogs from which the original cells were harvested. Analysis of the graft 5 weeks after implantation revealed genetically modified endothelial cells lining the luminal surface of the graft. This technology could be used in the treatment of atherosclerosis disease and the design of new drug delivery systems.

  18. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury

    PubMed Central

    Quattrocelli, Mattia; Capote, Joanna; Ohiri, Joyce C.; Warner, James L.; Vo, Andy H.; Hadhazy, Michele; Demonbreun, Alexis R.; Spencer, Melissa J.; McNally, Elizabeth M.

    2017-01-01

    Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy. PMID:29065150

  19. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury.

    PubMed

    Quattrocelli, Mattia; Capote, Joanna; Ohiri, Joyce C; Warner, James L; Vo, Andy H; Earley, Judy U; Hadhazy, Michele; Demonbreun, Alexis R; Spencer, Melissa J; McNally, Elizabeth M

    2017-10-01

    Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy.

  20. Synthetic biology devices and circuits for RNA-based 'smart vaccines': a propositional review.

    PubMed

    Andries, Oliwia; Kitada, Tasuku; Bodner, Katie; Sanders, Niek N; Weiss, Ron

    2015-02-01

    Nucleic acid vaccines have been gaining attention as an alternative to the standard attenuated pathogen or protein based vaccine. However, an unrealized advantage of using such DNA or RNA based vaccination modalities is the ability to program within these nucleic acids regulatory devices that would provide an immunologist with the power to control the production of antigens and adjuvants in a desirable manner by administering small molecule drugs as chemical triggers. Advances in synthetic biology have resulted in the creation of highly predictable and modular genetic parts and devices that can be composed into synthetic gene circuits with complex behaviors. With the recent advent of modified RNA gene delivery methods and developments in the RNA replicon platform, we foresee a future in which mammalian synthetic biologists will create genetic circuits encoded exclusively on RNA. Here, we review the current repertoire of devices used in RNA synthetic biology and propose how programmable 'smart vaccines' will revolutionize the field of RNA vaccination.

  1. Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System.

    PubMed

    Koo, Ok Jae; Park, Sol Ji; Lee, Choongil; Kang, Jung Taek; Kim, Sujin; Moon, Joon Ho; Choi, Ji Yei; Kim, Hyojin; Jang, Goo; Kim, Jin-Soo; Kim, Seokjoong; Lee, Byeong-Chun

    2014-03-01

    To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP(+)/eGFP(+)) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

  2. A Parallel Approach To Optimum Actuator Selection With a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    2000-01-01

    Recent discoveries in smart technologies have created a variety of aerodynamic actuators which have great potential to enable entirely new approaches to aerospace vehicle flight control. For a revolutionary concept such as a seamless aircraft with no moving control surfaces, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements. The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement Maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. Genetic algorithms have been instrumental in achieving good solutions to discrete optimization problems, such as the actuator placement problem. As a proof of concept, a genetic has been developed to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control for a simplified, untapered, unswept wing model. To find the optimum placement by searching all possible combinations would require 1,100 hours. Formulating the problem and as a multi-objective problem and modifying it to take advantage of the parallel processing capabilities of a multi-processor computer, reduces the optimization time to 22 hours.

  3. Generation of Genetically Modified Organotypic Skin Cultures Using Devitalized Human Dermis.

    PubMed

    Li, Jingting; Sen, George L

    2015-12-14

    Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

  4. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation

    PubMed Central

    Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V

    2015-01-01

    Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture. DOI: http://dx.doi.org/10.7554/eLife.09178.001 PMID:26297805

  5. Relative Contribution of Genetic and Non-genetic Modifiers to Intestinal Obstruction in Cystic Fibrosis

    PubMed Central

    Blackman, Scott M.; Deering-Brose, Rebecca; McWilliams, Rita; Naughton, Kathleen; Coleman, Barbara; Lai, Teresa; Algire, Marilyn; Beck, Suzanne; Hoover-Fong, Julie; Hamosh, Ada; Fallin, M. Daniele; West, Kristen; Arking, Dan E.; Chakravarti, Aravinda; Cutler, David J.; Cutting, Garry R

    2006-01-01

    Background & Aims Neonatal intestinal obstruction (meconium ileus or MI) occurs in 15% of patients with cystic fibrosis (CF). Our aim was to determine the relative contribution of genetic and non-genetic modifiers to the development of this major complication of CF. Methods Using clinical data and DNA collected by the CF Twin and Sibling Study, 65 monozygous twin pairs, 23 dizygous twin/triplet sets, and 349 sets of siblings with CF were analyzed for MI status, significant covariates, and genome-wide linkage. Results Specific mutations in CFTR, the gene responsible for CF, correlated with MI indicating a role for CFTR genotype. Monozygous twins showed substantially greater concordance for MI than dizygous twins and siblings (p=1×10−5) demonstrating that modifier genes independent of CFTR contribute substantially to this trait. Regression analysis revealed that MI was correlated with distal intestinal obstruction syndrome (DIOS; p=8×10−4). Unlike MI, concordance analysis indicated that the risk for development of DIOS in CF patients is primarily due to non-genetic factors. Regions of suggestive linkage (logarithm of the odds of linkage >2.0) for modifier genes that cause MI (chromosomes 4q35.1, 8p23.1, and 11q25) or protect from MI (chromosomes 20p11.22 and 21q22.3) were identified by genome-wide analyses. These analyses did not support the existence of a major modifier gene within the CFM1 region on chromosome 19 that had previously been linked to MI. Conclusions The CFTR gene along with two or more modifier genes are the major determinants of intestinal obstruction in newborn CF patients, while intestinal obstruction in older CF patients is primarily due to non-genetic factors. PMID:17030173

  6. The evolution of modern agriculture and its future with biotechnology.

    PubMed

    Harlander, Susan K

    2002-06-01

    Since the dawn of agriculture, humans have been manipulating crops to enhance their quality and yield. Via conventional breeding, seed producers have developed the modern corn hybrids and wheat commonly grown today. Newer techniques, such as radiation breeding, enhanced the seed producers' ability to develop new traits in crops. Then in the 1980's-1990's, scientists began applying genetic engineering techniques to improve crop quality and yield. In contrast to earlier breeding methods, these techniques raised questions about their safety to consumers and the environment. This paper provides an overview of the kinds of genetically modified crops developed and marketed to date and the value they provide farmers and consumers. The safety assessment process required for these crops is contrasted with the lack of a formal process required for traditionally bred crops. While European consumers have expressed concern about foods and animal feeds containing ingredients from genetically modified crops, Americans have largely been unconcerned or unaware of the presence of genetically modified foods on the market. This difference in attitude is reflected in Europe's decision to label foods containing genetically modified ingredients while no such labeling is required in the U.S. In the future, genetic modification will produce a variety of new products with enhanced nutritional or quality attributes.

  7. Detection of HbsAg and hATIII genetically modified goats (Caprahircus) by loop-mediated isothermal amplification.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Zhai, Shanli; Liu, Bang

    2013-11-01

    In this study, sensitive and rapid detection systems were designed using a loop-mediated isothermal amplification (LAMP) method to detect the genetically modified goats. A set of 4 primers were designed for each exogenous nucleic acids HBsAg and hATIII. The DNA samples were first amplified with the outer and inner primers and released a single-stranded DNA,of which both ends were stem-loop structure. Then one inner primer hybridized with the loop, and initiated displacement synthesis in less than 1 h. The result could be visualized by both agarose gel electrophoresis and unaided eyes directly after adding SYBR GREEN 1. The detection limit of LAMP was ten copies of target molecules, indicating that LAMP was tenfold more sensitive than the classical PCR. Furthermore, all the samples of genetically modified goats were tested positively by LAMP, and the results demonstrated that the LAMP was a rapid and sensitive method for detecting the genetically modified organism.

  8. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food

    PubMed Central

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-01-01

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China’s major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans. PMID:26380899

  9. Dual-reporter surrogate systems for efficient enrichment of genetically modified cells.

    PubMed

    Ren, Chonghua; Xu, Kun; Liu, Zhongtian; Shen, Juncen; Han, Furong; Chen, Zhilong; Zhang, Zhiying

    2015-07-01

    Isolation of genetically modified cells generated by designed nucleases are challenging, since they are often phenotypically indistinguishable from their parental cells. To efficiently enrich genetically modified cells, we developed two dual-reporter surrogate systems, namely NHEJ-RPG and SSA-RPG based on NHEJ and SSA repair mechanisms, respectively. Repair and enrichment efficiencies of these two systems were compared using different nucleases. In both CRISPR-Cas9- and ZFNs-induced DSB repair studies, we found that the efficiency and sensitivity of the SSA-RPG reporter with direct repeat length more than 200 bp were much higher than the NHEJ-RPG reporter. By utilizing the SSA-RPG reporter, we achieved the enrichment for indels in several endogenous loci with 6.3- to 34.8-fold of non-selected cells. Thus, the highly sensitive SSA-RPG reporter can be used for activity validation of designed nucleases and efficient enrichment of genetically modified cells. Besides, our systems offer alternative enrichment choices either by puromycin selection or FACS.

  10. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food.

    PubMed

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-09-18

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China's major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans.

  11. Legal protection of public health through control over genetically modified food.

    PubMed

    Gutorova, Nataliya; Batyhina, Olena; Trotska, Maryna

    2018-01-01

    Introduction: Science is constantly being developed which leads to both positive and negative changes in public health and the environment. One of the results of scientific progress is introduction of food based on genetically modified organisms whose effects on human health, to date, remain scantily studied and are ambiguous. The aim: to determine how human health can be influenced by food production based on genetically modified organisms. Materials and methods: international acts, data of international organizations and conclusions of scientists have been examined and used in the study. The article also summarizes information from scientific journals and monographs from a medical and legal point of view with scientific methods. This article is based on dialectical, comparative, analytic, synthetic and comprehensive research methods. Conclusions: Genetically modified organisms are specific human-made organisms being a result of using modern biotechnology techniques. They have both positive and negative effects on human health and the environment. The main disadvantage is not sufficient study of them in various spheres of public life.

  12. Expression and Activation of Horseradish Peroxidase-Protein A/G Fusion Protein in Silkworm Larvae for Diagnostic Purposes.

    PubMed

    Xxxx, Patmawati; Minamihata, Kosuke; Tatsuke, Tsuneyuki; Lee, Jae Man; Kusakabe, Takahiro; Kamiya, Noriho

    2018-06-01

    Recombinant protein production can create artificial proteins with desired functions by introducing genetic modifications to the target proteins. Horseradish peroxidase (HRP) has been used extensively as a reporter enzyme in biotechnological applications; however, recombinant production of HRP has not been very successful, hampering the utilization of HRP with genetic modifications. A fusion protein comprising an antibody binding protein and HRP will be an ideal bio-probe for high-quality HRP-based diagnostic systems. A HRP-protein A/G fusion protein (HRP-pAG) is designed and its production in silkworm (Bombyx mori) is evaluated for the first time. HRP-pAG is expressed in a soluble apo form, and is activated successfully by incubating with hemin. The activated HRP-pAG is used directly for ELISA experiments and retains its activity over 20 days at 4 °C. Moreover, HRP-pAG is modified with biotin by the microbial transglutaminase (MTG) reaction. The biotinylated HRP-pAG is conjugated with streptavidin to form a HRP-pAG multimer and the multimeric HRP-pAG produced higher signals in the ELISA system than monomeric HRP-pAG. The successful production of recombinant HRP in silkworm will contribute to creating novel HRP-based bioconjugates as well as further functionalization of HRP by applying enzymatic post-translational modifications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. In vitro modeling of HIV proviral activity in microglia.

    PubMed

    Campbell, Lee A; Richie, Christopher T; Zhang, Yajun; Heathward, Emily J; Coke, Lamarque M; Park, Emily Y; Harvey, Brandon K

    2017-12-01

    Microglia, the resident macrophages of the brain, play a key role in the pathogenesis of HIV-associated neurocognitive disorders (HAND) due to their productive infection by HIV. This results in the release of neurotoxic viral proteins and pro-inflammatory compounds which negatively affect the functionality of surrounding neurons. Because models of HIV infection within the brain are limited, we aimed to create a novel microglia cell line with an integrated HIV provirus capable of recreating several hallmarks of HIV infection. We utilized clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing technology and integrated a modified HIV provirus into CHME-5 immortalized microglia to create HIV-NanoLuc CHME-5. In the modified provirus, the Gag-Pol region is replaced with the coding region for NanoLuciferase (NanoLuc), which allows for the rapid assay of HIV long terminal repeat activity using a luminescent substrate, while still containing the necessary genetic material to produce established neurotoxic viral proteins (e.g. tat, nef, gp120). We confirmed that HIV-NanoLuc CHME-5 microglia express NanoLuc, along with the HIV viral protein Nef. We subsequently exposed these cells to a battery of experiments to modulate the activity of the provirus. Proviral activity was enhanced by treating the cells with pro-inflammatory factors lipopolysaccharide (LPS) and tumor necrosis factor alpha and by overexpressing the viral regulatory protein Tat. Conversely, genetic modification of the toll-like receptor-4 gene by CRISPR/Cas9 reduced LPS-mediated proviral activation, and pharmacological application of NF-κB inhibitor sulfasalazine similarly diminished proviral activity. Overall, these data suggest that HIV-NanoLuc CHME-5 may be a useful tool in the study of HIV-mediated neuropathology and proviral regulation. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. A Novel Hybrid Classification Model of Genetic Algorithms, Modified k-Nearest Neighbor and Developed Backpropagation Neural Network

    PubMed Central

    Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy

    2014-01-01

    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659

  15. The impact of a scheduling change on ninth grade high school performance on biology benchmark exams and the California Standards Test

    NASA Astrophysics Data System (ADS)

    Leonardi, Marcelo

    The primary purpose of this study was to examine the impact of a scheduling change from a trimester 4x4 block schedule to a modified hybrid schedule on student achievement in ninth grade biology courses. This study examined the impact of the scheduling change on student achievement through teacher created benchmark assessments in Genetics, DNA, and Evolution and on the California Standardized Test in Biology. The secondary purpose of this study examined the ninth grade biology teacher perceptions of ninth grade biology student achievement. Using a mixed methods research approach, data was collected both quantitatively and qualitatively as aligned to research questions. Quantitative methods included gathering data from departmental benchmark exams and California Standardized Test in Biology and conducting multiple analysis of covariance and analysis of covariance to determine significance differences. Qualitative methods include journal entries questions and focus group interviews. The results revealed a statistically significant increase in scores on both the DNA and Evolution benchmark exams. DNA and Evolution benchmark exams showed significant improvements from a change in scheduling format. The scheduling change was responsible for 1.5% of the increase in DNA benchmark scores and 2% of the increase in Evolution benchmark scores. The results revealed a statistically significant decrease in scores on the Genetics Benchmark exam as a result of the scheduling change. The scheduling change was responsible for 1% of the decrease in Genetics benchmark scores. The results also revealed a statistically significant increase in scores on the CST Biology exam. The scheduling change was responsible for .7% of the increase in CST Biology scores. Results of the focus group discussions indicated that all teachers preferred the modified hybrid schedule over the trimester schedule and that it improved student achievement.

  16. Diabetes Genetic Risk Score Modifies Effect of Bisphenol A Exposure on Deterioration in Glucose Metabolism.

    PubMed

    Bi, Yufang; Wang, Weiqing; Xu, Min; Wang, Tiange; Lu, Jieli; Xu, Yu; Dai, Meng; Chen, Yuhong; Zhang, Di; Sun, Wanwan; Ding, Lin; Chen, Ying; Huang, Xiaolin; Lin, Lin; Qi, Lu; Lai, Shenghan; Ning, Guang

    2016-01-01

    Epidemiology studies showed inconsistent results regarding the relationship between bisphenol A (BPA) exposure and risk of type 2 diabetes (T2D). This study sought to prospectively investigate associations of BPA with incident T2D risk and the longitudinal changes in glycemic traits, particularly examining the interaction between gene and BPA exposure on the associations. A community-based study was conducted at baseline in 2009, including 2209 nondiabetic middle-age and elderly subjects followed for 4 y. Urinary BPA levels were measured at baseline. A genetic risk score (GRS) based on 34 T2D common variants that identified and validated in East Asians was created. Incident T2D was defined according to the 1999 World Health Organization criteria. Fasting (FPG) and 2-h post-loading plasma glucose were measured at baseline and followup. Multivariable logistic regression analysis demonstrated no significant association of risk of incident T2D with BPA while with increase in the weighted T2D-GRS (odds ratio, 1.89; 95% confidence interval, 1.31-2.72 for each 10-point increment). Similar results were found in 4-y changes of FPG and 2-h post-loading plasma glucose. The GRS modified the effect of BPA exposure on 4-y changes in FPG (P for interaction = .01). Each 1 unit of Log_BPA was associated with 0.1 mmol/L increase in FPG (P = .007) in the highest quartile of GRS; no associations were found in the lower three quartiles of GRS. The T2D genetic susceptibility significantly modulated the association of BPA exposure with longitudinal increase in FPG levels.

  17. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems

    PubMed Central

    JIN, Li-Fang; LI, Jin-Song

    2016-01-01

    With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251

  18. Endogenous Reference Genes and Their Quantitative Real-Time PCR Assays for Genetically Modified Bread Wheat (Triticum aestivum L.) Detection.

    PubMed

    Yang, Litao; Quan, Sheng; Zhang, Dabing

    2017-01-01

    Endogenous reference genes (ERG) and their derivate analytical methods are standard requirements for analysis of genetically modified organisms (GMOs). Development and validation of suitable ERGs is the primary step for establishing assays that monitoring the genetically modified (GM) contents in food/feed samples. Herein, we give a review of the ERGs currently used for GM wheat analysis, such as ACC1, PKABA1, ALMT1, and Waxy-D1, as well as their performances in GM wheat analysis. Also, we discussed one model for developing and validating one ideal RG for one plant species based on our previous research work.

  19. Resistance Management Monitoring for the US Corn Crop to the Illinois Corn Growers Association

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  20. TRACKING GENE FLOW FROM A GENETICALLY MODIFIED CREEPING BENTGRASS -- METHODS, MEASURES AND LESSONS LEARNED

    EPA Science Inventory

    Creeping bentgrass (CBG) expressing an engineered gene for resistance to glyphosate herbicide is one of the first genetically modified (GM) perennial crops to undergo regulatory review for commercial release by the US Department of Agriculture Animal Plant Health and Inspection S...

  1. 40 CFR 172.48 - Data requirements for a notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS EXPERIMENTAL USE PERMITS Notification for Certain Genetically Modified Microbial Pesticides § 172... methods used to genetically modify the microbial pesticide. (h) The identity and location of the gene... organisms. (d) Information on survival and the ability of the microbial pesticide to increase in numbers...

  2. Electrotransformation and clonal isolation of Rickettsia species

    PubMed Central

    Riley, Sean P; Macaluso, Kevin R; Martinez, Juan J

    2015-01-01

    Genetic manipulation of obligate intracellular bacteria of the genus Rickettsia is currently undergoing a rapid period of change. The development of viable genetic tools, including replicative plasmids, transposons, homologous recombination, fluorescent protein-encoding genes, and antibiotic selectable markers has provided the impetus for future research development. This unit is designed to coalesce the basic methods pertaining to creation of genetically modified Rickettsia. The unit describes a series of methods, from inserting exogenous DNA into Rickettsia to the final isolation of genetically modified bacterial clones. Researchers working towards genetic manipulation of Rickettsia or similar obligate intracellular bacteria will find these protocols to be a valuable reference. PMID:26528784

  3. Environmental biosafety and transgenic potato in a centre of diversity for this crop.

    PubMed

    Celis, Carolina; Scurrah, Maria; Cowgill, Sue; Chumbiauca, Susana; Green, Jayne; Franco, Javier; Main, Gladys; Kiezebrink, Daan; Visser, Richard G F; Atkinson, Howard J

    2004-11-11

    The Nuffield Council on Bioethics suggests that introgression of genetic material into related species in centres of crop biodiversity is an insufficient justification to bar the use of genetically modified crops in the developing world. They consider that a precautionary approach to forgo the possible benefits invokes the fallacy of thinking that doing nothing is itself without risk to the poor. Here we report findings relevant to this and other aspects of environmental biosafety for genetically modified potato in its main centre of biodiversity, the central Andes. We studied genetically modified potato clones that provide resistance to nematodes, principal pests of Andean potato crops. We show that there is no harm to many non-target organisms, but gene flow occurs to wild relatives growing near potato crops. If stable introgression were to result, the fitness of these wild species could be altered. We therefore transformed the male sterile cultivar Revolucion to provide a genetically modified nematode-resistant potato to evaluate the benefits that this provides until the possibility of stable introgression to wild relatives is determined. Thus, scientific progress is possible without compromise to the precautionary principle.

  4. A modifier of Huntington's disease onset at the MLH1 locus.

    PubMed

    Lee, Jong-Min; Chao, Michael J; Harold, Denise; Abu Elneel, Kawther; Gillis, Tammy; Holmans, Peter; Jones, Lesley; Orth, Michael; Myers, Richard H; Kwak, Seung; Wheeler, Vanessa C; MacDonald, Marcy E; Gusella, James F

    2017-10-01

    Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in HTT. Many clinical characteristics of HD such as age at motor onset are determined largely by the size of HTT CAG repeat. However, emerging evidence strongly supports a role for other genetic factors in modifying the disease pathogenesis driven by mutant huntingtin. A recent genome-wide association analysis to discover genetic modifiers of HD onset age provided initial evidence for modifier loci on chromosomes 8 and 15 and suggestive evidence for a locus on chromosome 3. Here, genotyping of candidate single nucleotide polymorphisms in a cohort of 3,314 additional HD subjects yields independent confirmation of the former two loci and moves the third to genome-wide significance at MLH1, a locus whose mouse orthologue modifies CAG length-dependent phenotypes in a Htt-knock-in mouse model of HD. Both quantitative and dichotomous association analyses implicate a functional variant on ∼32% of chromosomes with the beneficial modifier effect that delays HD motor onset by 0.7 years/allele. Genomic DNA capture and sequencing of a modifier haplotype localize the functional variation to a 78 kb region spanning the 3'end of MLH1 and the 5'end of the neighboring LRRFIP2, and marked by an isoleucine-valine missense variant in MLH1. Analysis of expression Quantitative Trait Loci (eQTLs) provides modest support for altered regulation of MLH1 and LRRFIP2, raising the possibility that the modifier affects regulation of both genes. Finally, polygenic modification score and heritability analyses suggest the existence of additional genetic modifiers, supporting expanded, comprehensive genetic analysis of larger HD datasets. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. ASSESSMENT OF ALLERGENIC POTENTIAL OF GENETICALLY MODIFIED FOODS: AN AGENDA FOR FUTURE RESEARCH

    EPA Science Inventory

    Abstract
    Speakers and participants in the Workshop Assessment of the Allergenic Potential of Genetically Modified Foods met in breakout groups to discuss a number of issues including needs for future research. There was agreement that research should move forward quickly in t...

  6. 78 FR 25297 - Programmatic Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... environmental assessment (PEA) to evaluate the effects of the cultivation and use of genetically modified crops... genetically modified crops (GMCs) on our Refuge System lands. Our PEA will concentrate on the refuges in our... lands are those that have been evaluated and deregulated by the Animal and Plant Health Inspection...

  7. Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease

    EPA Science Inventory

    There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been ...

  8. Evidence for the establishment and persistence of genetically modified canola populations in the U.S.

    EPA Science Inventory

    Background/Questions/Methods Concerns surrounding the commercial release of genetically modified crops include the risks of escape from cultivation, naturalization, and the transfer of beneficial traits to native and weedy species. Among the crops commonly grown in the U.S., a l...

  9. Use of spectral imaging for insect resistance monitoring: EPA research on stewardship of Bt crops

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for future growing seasons. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to increase. As part of the FIFRA regist...

  10. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats

    PubMed Central

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten BH; Kurtz, Joachim

    2012-01-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences. PMID:22833789

  11. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats.

    PubMed

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten Bh; Kurtz, Joachim

    2012-06-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.

  12. Chemical and Biological Tools for the Preparation of Modified Histone Proteins

    PubMed Central

    Howard, Cecil J.; Yu, Ruixuan R.; Gardner, Miranda L.; Shimko, John C.; Ottesen, Jennifer J.

    2016-01-01

    Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through, a large network of dynamic post-translational modifications (PTMs) exists to ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to better understand the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools that have been developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. Additionally, we will cover the chemical ligation techniques that have been invaluable in the generation of complex modified histones that are indistinguishable from the natural counterparts. Finally, we will end with a prospectus on future directions of synthetic chromatin in living systems. PMID:25863817

  13. Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States.

    PubMed

    Scott, Sydney E; Inbar, Yoel; Rozin, Paul

    2016-05-01

    Public opposition to genetic modification (GM) technology in the food domain is widespread (Frewer et al., 2013). In a survey of U.S. residents representative of the population on gender, age, and income, 64% opposed GM, and 71% of GM opponents (45% of the entire sample) were "absolutely" opposed-that is, they agreed that GM should be prohibited no matter the risks and benefits. "Absolutist" opponents were more disgust sensitive in general and more disgusted by the consumption of genetically modified food than were non-absolutist opponents or supporters. Furthermore, disgust predicted support for legal restrictions on genetically modified foods, even after controlling for explicit risk-benefit assessments. This research suggests that many opponents are evidence insensitive and will not be influenced by arguments about risks and benefits. © The Author(s) 2016.

  14. Genetic modifiers of Velo- cardio- facial syndrome/DiGeorge syndrome

    PubMed Central

    Aggarwal, Vimla S.; Morrow, Bernice E.

    2009-01-01

    Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that Tbx1, a T- box containing transcription factor present on the deleted region, is likely responsible for the etiology of the syndrome. Furthermore, mutations in TBX1 have been found in rare non-deleted patients. Despite having the same sized deletion, most VCFS/DGS patients exhibit significant clinical variability. Stochastic, environmental and genetic factors likely modify the phenotype of patients with the disorder. Here, we review mouse genetics studies which may help identify genetic modifiers for VCFS/DGS. PMID:18636633

  15. Review: Genetically modified plants for the promotion of human health.

    PubMed

    Yonekura-Sakakibara, Keiko; Saito, Kazuki

    2006-12-01

    Plants are attractive biological resources because of their ability to produce a huge variety of chemical compounds, and the familiarity of production in even the most rural settings. Genetic engineering gives plants additional characteristics and value for cultivation and post-harvest. Genetically modified (GM) plants of the "first generation" were conferred with traits beneficial to producers, whereas GM plants in subsequent "generations" are intended to provide beneficial traits for consumers. Golden Rice is a promising example of a GM plant in the second generation, and has overcome a number of obstacles for practical use. Furthermore, consumer-acceptable plants with health-promoting properties that are genetically modified using native genes are being developed. The emerging technology of metabolomics will also support the commercial realization of GM plants by providing comprehensive analyzes of plant biochemical components.

  16. A Novel Method to Generate and Expand Clinical-Grade, Genetically Modified, Tumor-Infiltrating Lymphocytes

    PubMed Central

    Forget, Marie-Andrée; Tavera, René J.; Haymaker, Cara; Ramachandran, Renjith; Malu, Shuti; Zhang, Minying; Wardell, Seth; Fulbright, Orenthial J.; Toth, Chistopher Leroy; Gonzalez, Audrey M.; Thorsen, Shawne T.; Flores, Esteban; Wahl, Arely; Peng, Weiyi; Amaria, Rodabe N.; Hwu, Patrick; Bernatchez, Chantale

    2017-01-01

    Following the clinical success achieved with the first generation of adoptive cell therapy (ACT) utilizing in vitro expanded tumor-infiltrating lymphocytes (TILs), the second and third generations of TIL ACT are evolving toward the use of genetically modified TIL. TIL therapy generally involves the transfer of a high number of TIL, ranging from 109 to 1011 cells. One of the technical difficulties in genetically modifying TIL, using a retroviral vector, is the ability to achieve large expansion of transduced TIL, while keeping the technique suitable to a Good Manufacturing Practices (GMP) environment. Consequently, we developed and optimized a novel method for the efficient production of large numbers of GMP-grade, gene-modified TIL for the treatment of patients with ACT. The chemokine receptor CXCR2 was used as the gene of interest for methodology development. The optimized procedure is currently used in the production of gene-modified TIL for two clinical trials for the treatment of metastatic melanoma at MD Anderson Cancer Center. PMID:28824634

  17. Rationalizing the GMO Debate: The Ordonomic Approach to Addressing Agricultural Myths

    PubMed Central

    Hielscher, Stefan; Pies, Ingo; Valentinov, Vladislav; Chatalova, Lioudmila

    2016-01-01

    The public discourse on the acceptability of genetically modified organisms (GMOs) is not only controversial, but also infused with highly emotional and moralizing rhetoric. Although the assessment of risks and benefits of GMOs must be a scientific exercise, many debates on this issue seem to remain impervious to scientific evidence. In many cases, the moral psychology attributes of the general public create incentives for both GMO opponents and proponents to pursue misleading public campaigns, which impede the comprehensive assessment of the full spectrum of the risks and benefits of GMOs. The ordonomic approach to economic ethics introduced in this research note is helpful for disentangling the socio-economic and moral components of the GMO debate by re- and deconstructing moral claims. PMID:27171102

  18. Rationalizing the GMO Debate: The Ordonomic Approach to Addressing Agricultural Myths.

    PubMed

    Hielscher, Stefan; Pies, Ingo; Valentinov, Vladislav; Chatalova, Lioudmila

    2016-05-09

    The public discourse on the acceptability of genetically modified organisms (GMOs) is not only controversial, but also infused with highly emotional and moralizing rhetoric. Although the assessment of risks and benefits of GMOs must be a scientific exercise, many debates on this issue seem to remain impervious to scientific evidence. In many cases, the moral psychology attributes of the general public create incentives for both GMO opponents and proponents to pursue misleading public campaigns, which impede the comprehensive assessment of the full spectrum of the risks and benefits of GMOs. The ordonomic approach to economic ethics introduced in this research note is helpful for disentangling the socio-economic and moral components of the GMO debate by re- and deconstructing moral claims.

  19. Environmental Effects of Agricultural Practices - Summary of Workshop Held on June 14-16, 2005

    USGS Publications Warehouse

    ,

    2006-01-01

    A meeting between the U.S. Geological Survey (USGS) and its partners was held June 14-16, 2005, in Denver, CO, to discuss science issues and needs related to agricultural practices. The goals of the meeting were to learn about the (1) effects of agricultural practices on the environment and (2) tools for identifying and quantifying those effects. Achieving these goals required defining the environmental concerns, developing scientific actions to address assessment of environmental effects, and creating collaborations to identify future research requirements and technical gaps. Five areas of concern were discussed-emerging compounds; water availability; genetically modified organisms; effects of conservation practices on ecosystems; and data, methods, and tools for assessing effects of agricultural practices.

  20. Compositions and methods for increased ethanol titer from biomass

    DOEpatents

    Jessen, Holly J.; Yi, Jian

    2016-11-15

    The present application discloses the identification of novel I. orientalis ADH1, ADHa, and ADHb genes, and the production and characterization of genetically modified yeast cells in which these genes were altered. Provided herein are isolated I. orientalis ADH1, ADHa, and ADHb polynucleotides and polypeptides, genetically modified yeast cells that overexpress I. orientalis ADH1 and/or contain deletions or disruptions of ADHa and/or ADHb, and methods of using culturing these modified cells to produce ethanol.

  1. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction.

    PubMed

    Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G

    2009-10-08

    When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs.

  2. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  3. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction

    PubMed Central

    Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G

    2009-01-01

    Background When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. Results We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). Conclusion We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs. PMID:19814792

  4. KEY ISSUES FOR THE ASSESSMENT OF THE ALLERGENIC POTENTIAL OF GENETICALLY MODIFIED FOODS: BREAKOUT GROUP REPORTS

    EPA Science Inventory

    Abstract
    On the final afternoon of the Workshop, Assessment of the Allergenic Potential of Genetically Modified Foods, speakers and participants met in breakout groups to discuss specific questions in the areas of 1) Use of Human Clinical Data; 2) Animal Models to Assess Food ...

  5. DEVELOPMENT OF A MULTI-TIERED INSECT RESISTANCE MANAGEMENT PROGRAM FOR GENETICALLY MODIFIED CORN HYBRIDS EXPRESSING THE PLANT INCORPORATED PROTECTANT, BACILLUS THURINGIENSIS

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for the 2007 growing season with future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with ma...

  6. L-malate production by metabolically engineered escherichia coli

    DOEpatents

    Zhang, Xueli; Wang, Xuan; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2015-11-17

    A process for the production of malic acid in commercially significant quantities from the carbon compounds by genetically modified bacterial strains (GMBS; also referred to as biocatalysts or genetically modified microorganisms) is disclosed. Microorganisms suitable for the production of malic acid can be cultured in one or two-step processes as disclosed herein.

  7. Pulmonary arterial hypertension associated to systemic erythematous lupus: molecular characterization of 3 cases.

    PubMed

    Pousada, Guillermo; Lago-Docampo, Mauro; Baloira, Adolfo; Valverde, Diana

    2018-03-08

    Pulmonary arterial hypertension associated with systemic lupus erythematosus (PAH-SLE) is a rare disease with a low incidence rate. In this study, PAH related genes and genetic modifiers were characterised molecularly in patients with PAH-SLE. Three patients diagnosed with PAH-SLE and 100 control individuals were analysed after signing an informed consent. Two out of the three analysed patients with PAH-SLE were carriers of pathogenic mutations in the genes BMPR2 and ENG. After an in silico analysis, pathogenic mutations were searched for in control individuals and different databases, with negative results, and they were thus functionally analysed. The third patients only showed polymorphisms in the genes BMPR2, ACVRL1 and ENG. Several genetic variants and genetic modifiers were identified in the three analysed patients. These modifiers, along with the pathogenic mutations, could lead to a more severe clinical course in patients with PAH. We present, for the first time, patients with PAH-SLE carrying pathogenic mutations in the main genes related to PAH and alterations in the genetic modifiers. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  8. Knowlege of, attitudes toward, and acceptance of genetically modified organisms among prospective teachers of biology, home economics, and grade school in Slovenia.

    PubMed

    Sorgo, Andrej; Ambrožič-Dolinšek, Jana

    2010-05-01

    The objective of this study was to investigate knowledge, opinions, and attitudes toward, as well as readiness to accept genetically modified organisms (GMOs) among prospective primary and secondary Slovene teachers. Our findings are that prospective teachers want to take an active role in rejecting or supporting individual GMOs and are aware of the importance of education about genetically modified organism (GMO) items and their potential significance for society. Through cluster analysis, we recognized four clusters of GMOs, separated by degree of genetically modified acceptability. GM plants and microorganisms which are recognized as useful are accepted. They are undecided about organisms used in research or medicine and reject organisms used for food consumption and for fun. There are only weak correlations between knowledge and attitudes and knowledge and acceptance of GMOs, and a strong correlation between attitudes and acceptance. The appropriate strategies and actions for improving university courses in biotechnology are discussed. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  9. DNA degradation in genetically modified rice with Cry1Ab by food processing methods: implications for the quantification of genetically modified organisms.

    PubMed

    Xing, Fuguo; Zhang, Wei; Selvaraj, Jonathan Nimal; Liu, Yang

    2015-05-01

    Food processing methods contribute to DNA degradation, thereby affecting genetically modified organism detection and quantification. This study evaluated the effect of food processing methods on the relative transgenic content of genetically modified rice with Cry1Ab. In steamed rice and rice noodles, the levels of Cry1Ab were ⩾ 100% and <83%, respectively. Frying and baking in rice crackers contributed to a reduction in Pubi and Cry1Ab, while microwaving caused a decrease in Pubi and an increase in Cry1Ab. The processing methods of sweet rice wine had the most severe degradation effects on Pubi and Cry1Ab. In steamed rice and rice noodles, Cry1Ab was the most stable, followed by SPS and Pubi. However, in rice crackers and sweet rice wine, SPS was the most stable, followed by Cry1Ab and Pubi. Therefore, Cry1Ab is a better representative of transgenic components than is Pubi because the levels of Cry1Ab were less affected compared to Pubi. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. How Landscape Plants Modify the Environment.

    ERIC Educational Resources Information Center

    Blankenship, Sylvia; Wise, Kevin

    1993-01-01

    Presents three experiments that provide examples of how plants modify their surroundings and create microenvironments. Examples demonstrate (1) how types of ground cover influence water quality; (2) how plants can create a thermal microenvironment; and (3) how plants can serve as barriers to wind. (MDH)

  11. Attitudes towards genetically modified and organic foods.

    PubMed

    Saher, Marieke; Lindeman, Marjaana; Hursti, Ulla-Kaisa Koivisto

    2006-05-01

    Finnish students (N=3261) filled out a questionnaire on attitudes towards genetically modified and organic food, plus the rational-experiential inventory, the magical thinking about food and health scale, Schwartz's value survey and the behavioural inhibition scale. In addition, they reported their eating of meat. Structural equation modelling of these measures had greater explanatory power for attitudes towards genetically modified (GM) foods than for attitudes towards organic foods (OF). GM attitudes were best predicted by natural science education and magical food and health beliefs, which mediated the influence of thinking styles. Positive attitudes towards organic food, on the other hand, were more directly related to such individual differences as thinking styles and set of values. The results of the study indicate that OF attitudes are rooted in more fundamental personal attributes than GM attitudes, which are embedded in a more complex but also in a more modifiable network of characteristics.

  12. Mechanisms and Modifiers of Methylmercury-Induced Neurotoxicity

    PubMed Central

    Fretham, Stephanie JB; Caito, Samuel; Martinez-Finley, Ebany J; Aschner, Michael

    2016-01-01

    The neurotoxic consequences of methylmercury (MeHg) exposure have long been known, however a complete understanding of the mechanisms underlying this toxicity is elusive. Recent epidemiological and experimental studies have provided many mechanistic insights, particularly into the contribution of genetic and environmental factors that interact with MeHg to modify toxicity. This review will outline cellular processes directly and indirectly affected by MeHg, including oxidative stress, cellular signaling and gene expression, and discuss genetic, environmental and nutritional factors capable of modifying MeHg toxicity. PMID:27795823

  13. Rapid construction of capsid-modified adenoviral vectors through bacteriophage lambda Red recombination.

    PubMed

    Campos, Samuel K; Barry, Michael A

    2004-11-01

    There are extensive efforts to develop cell-targeting adenoviral vectors for gene therapy wherein endogenous cell-binding ligands are ablated and exogenous ligands are introduced by genetic means. Although current approaches can genetically manipulate the capsid genes of adenoviral vectors, these approaches can be time-consuming and require multiple steps to produce a modified viral genome. We present here the use of the bacteriophage lambda Red recombination system as a valuable tool for the easy and rapid construction of capsid-modified adenoviral genomes.

  14. Genetic Modification of Human Pancreatic Progenitor Cells Through Modified mRNA.

    PubMed

    Lu, Song; Chow, Christie C; Zhou, Junwei; Leung, Po Sing; Tsui, Stephen K; Lui, Kathy O

    2016-01-01

    In this chapter, we describe a highly efficient genetic modification strategy for human pancreatic progenitor cells using modified mRNA-encoding GFP and Neurogenin-3. The properties of modified mRNA offer an invaluable platform to drive protein expression, which has broad applicability in pathway regulation, directed differentiation, and lineage specification. This approach can also be used to regulate expression of other pivotal transcription factors during pancreas development and might have potential therapeutic values in regenerative medicine.

  15. Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect.

    PubMed

    Wegmann, Udo; Carvalho, Ana Lucia; Stocks, Martin; Carding, Simon R

    2017-05-23

    The use of live, genetically modified bacteria as delivery vehicles for biologics is of considerable interest scientifically and has attracted significant commercial investment. We have pioneered the use of the commensal gut bacterium Bacteroides ovatus for the oral delivery of therapeutics to the gastrointestinal tract. Here we report on our investigations of the biological safety of engineered B. ovatus bacteria that includes the use of thymineless death as a containment strategy and the potential for the spread of transgenes in vivo in the mammalian gastrointestinal tract. We demonstrate the ability of GM-strains of Bacteroides to survive thymine starvation and overcome it through the exchange of genetic material. We also provide evidence for horizontal gene transfer in the mammalian gastrointestinal tract resulting in transgene-carrying wild type bacteria. These findings sound a strong note of caution on the employment of live genetically modified bacteria for the delivery of biologics.

  16. [Genetically modified organisms in food--production, detection and risks].

    PubMed

    Zeljezić, Davor

    2004-11-01

    The first genetically modified plant (GMP) was a tobacco resistant to antibiotics in 1983. In 1996, the first genetically altered crop, a delayed-ripening tomato was commercially released. In the year 2003, the estimated global area of GM crops for was 67.7 million hectares. To produce such a plant a gene of interest has to be isolated from the donor. Together with a promoter, terminator sequence and marker gene it has to be introduced into the plant cell which is then stimulated to generate a whole GMP expressing new characteristics (herbicide/insect resistance, delayed ripening). The last few months have seen a strong public debate over genetically modified organisms which has raised scientific, economic, political, and ethical issues. Some questions concerning the safety of GMPs are still to be answered, and decisions about their future should be based on scientifically validated information.

  17. Genetically engineered T cells to target EGFRvIII expressing glioblastoma.

    PubMed

    Bullain, Szofia S; Sahin, Ayguen; Szentirmai, Oszkar; Sanchez, Carlos; Lin, Ning; Baratta, Elizabeth; Waterman, Peter; Weissleder, Ralph; Mulligan, Richard C; Carter, Bob S

    2009-09-01

    Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-zeta). After in vitro selection and expansion, MR1-zeta genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-gamma secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-zeta) or signaling (MR1-delzeta). MR1-zeta expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications.

  18. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    PubMed Central

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B.; Rudolph, Anja; Schmutzler, Rita K.; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A.; Easton, Douglas F.; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A.; Schmidt, Marjanka K; van der Baan, Frederieke H.; Spurdle, Amanda B.; Walker, Logan C.; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Gómez Garcia, Encarna B.; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K.; Miron, Alex; Southey, Melissa C.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Ding, Yuan Chun; Neuhausen, Susan L.; Hansen, Thomas V. O.; Gerdes, Anne-Marie; Ejlertsen, Bent; Jønson, Lars; Osorio, Ana; Martínez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E.; Blazer, Kathleen R.; Weitzel, Jeffrey N.; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E.; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D. Gareth R.; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V.; Ellis, Steve; Cole, Trevor; Godwin, Andrew K.; Claes, Kathleen; Van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M.; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L.; Rodriguez, Gustavo C.; Copeland, Larry J; de la Hoya, Miguel; Segura, Pedro Perez; Nevanlinna, Heli; Aittomäki, Kristiina; van Os, Theo A.M.; Meijers-Heijboer, Hanne E.J.; van der Hout, Annemarie H.; Vreeswijk, Maaike P.G.; Hoogerbrugge, Nicoline; Ausems, Margreet G.E.M.; van Doorn, Helena C.; Collée, J. Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R.; Olswold, Curtis; Couch, Fergus J.; Lindor, Noralane M.; Wang, Xianshu; Szabo, Csilla I.; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E.; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng M.; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L.; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Åke; Kuchenbaecker, Karoline B.; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D.P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Friedman, Eitan

    2014-01-01

    Background BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and non-genetic modifying factors. In this study we evaluated the putative role of variants in many candidate modifier genes. Methods Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n=3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. Results The observed p-values of association ranged between 0.005-1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. Conclusion There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Impact Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies. PMID:25336561

  19. Spectroscopy detection of green and red fluorescent proteins in genetically modified plants using a fiber optics system

    NASA Astrophysics Data System (ADS)

    Liew, Oi Wah; Asundi, Anand K.; Chen, Jun-Wei; Chew, Yiwen; Yu, Shangjuan; Yeo, Gare H.

    2001-05-01

    In this paper, fiber optic spectroscopy is developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in vivo. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fiber optic spectroscopy. Fluorescence at the appropriate emission wavelengths could be detected up to 64X dilution for EGFP and 40X dilution for DsRED. To determine the capability of spectroscopy detection in vivo, transgenic potato hairy roots expressing EGFP and DsRED were regenerated. This was achieved by cloning the EGFP and DsRED genes into the plant binary vector, pTMV35S, to create the recombinant vectors pGLOWGreen and pGLOWRed. These latter binary vectors were introduced into Agrobacterium rhizogenes strain A4T. Infection of potato cells with transformed agrobacteria was used to insert the fluorescent protein genes into the potato genome. Genetically modified potato cells were then regenerated into hairy roots. A panel of transformed hairy roots expressing varying levels of fluorescent proteins was selected by fluorescence microscopy. We are now assessing the capability of spectroscopic detection system for in vivo quantification of green and red fluorescence levels in transformed roots.

  20. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    PubMed

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  1. Refining the Genetic Alphabet: A Late-Period Selection Pressure?

    PubMed Central

    Tor, Yitzhak

    2012-01-01

    Abstract The transition from genomic ribonucleic acid (RNA) to deoxyribonucleic acid (DNA) in primitive cells may have created a selection pressure that refined the genetic alphabet, resulting from the global weakening of the N-glycosyl bonds. Hydrolytic rupture of these bonds, termed deglycosylation, leaves an abasic site that is the single greatest threat to the stability and integrity of genomic DNA. The rates of deglycosylation are highly dependent on the identity of the nucleobases. Modifications made to the bases, such as deamination, oxidation, and alkylation, can further increase deglycosylation reaction rates, suggesting that the native bases provide optimum N-glycosyl bond stability. To protect their genomes, cells have evolved highly specific enzymes called glycosylases, associated with DNA repair, that detect and remove these damaged bases. In RNA, however, the occurrence of many of these modified bases is deliberate. The dichotomous behavior that cells exhibit toward base modifications may have originated in the RNA world. Modified bases would have been advantageous for the functional and structural repertoire of catalytic RNAs. Yet in an early DNA world, the utility of these heterocycles was greatly diminished, and their presence posed a distinct liability to the stability of cells' genomes. A natural selection for bases exhibiting the greatest resistance to deglycosylation would have ensured the viability of early DNA life, along with the recruitment of DNA repair. Key Words: DNA—Nucleic acids—RNA world—Asteroid—Chemical evolution—Ribozymes. Astrobiology 12, 884–891. PMID:22984873

  2. Genetically modified crops: success, safety assessment, and public concern.

    PubMed

    Singh, Om V; Ghai, Shivani; Paul, Debarati; Jain, Rakesh K

    2006-08-01

    With the emergence of transgenic technologies, new ways to improve the agronomic performance of crops for food, feed, and processing applications have been devised. In addition, ability to express foreign genes using transgenic technologies has opened up options for producing large quantities of commercially important industrial or pharmaceutical products in plants. Despite this high adoption rate and future promises, there is a multitude of concerns about the impact of genetically modified (GM) crops on the environment. Potential contamination of the environment and food chains has prompted detailed consideration of how such crops and the molecules that they produce can be effectively isolated and contained. One of the reasonable steps after creating a transgenic plant is to evaluate its potential benefits and risks to the environment and these should be compared to those generated by traditional agricultural practices. The precautionary approach in risk management of GM plants may make it necessary to monitor significant wild and weed populations that might be affected by transgene escape. Effective risk assessment and monitoring mechanisms are the basic prerequisites of any legal framework to adequately address the risks and watch out for new risks. Several agencies in different countries monitor the release of GM organisms or frame guidelines for the appropriate application of recombinant organisms in agro-industries so as to assure the safe use of recombinant organisms and to achieve sound overall development. We feel that it is important to establish an internationally harmonized framework for the safe handling of recombinant DNA organisms within a few years.

  3. Synapse alterations in autism: Review of animal model findings.

    PubMed

    Zatkova, Martina; Bakos, Jan; Hodosy, Julius; Ostatnikova, Daniela

    2016-06-01

    Recent research has produced an explosion of experimental data on the complex neurobiological mechanisms of developmental disorders including autism. Animal models are one approach to studying the phenotypic features and molecular basis of autism. In this review, we describe progress in understanding synaptogenesis and alterations to this process with special emphasis on the cell adhesion molecules and scaffolding proteins implicated in autism. Genetic mouse model experiments are discussed in relation to alterations to selected synaptic proteins and consequent behavioral deficits measured in animal experiments. Pubmed databases were used to search for original and review articles on animal and human clinical studies on autism. The cell adhesion molecules, neurexin, neurolignin and the Shank family of proteins are important molecular targets associated with autism. The heterogeneity of the autism spectrum of disorders limits interpretation of information acquired from any single animal model or animal test. We showed synapse-specific/ model-specific defects associated with a given genotype in these models. Characterization of mouse models with genetic variations may help study the mechanisms of autism in humans. However, it will be necessary to apply new analytic paradigms in using genetically modified mice for understanding autism etiology in humans. Further studies are needed to create animal models with mutations that match the molecular and neural bases of autism.

  4. Transgenic mouse models in the study of reproduction: insights into GATA protein function.

    PubMed

    Tevosian, Sergei G

    2014-07-01

    For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or 'floxed' by loxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent. © 2014 Society for Reproduction and Fertility.

  5. The Importance of Source: A Mixed Methods Analysis of Undergraduate Students' Attitudes toward Genetically Modified Food

    ERIC Educational Resources Information Center

    Ruth, Taylor K.; Rumble, Joy N.; Gay, Keegan D.; Rodriguez, Mary T.

    2016-01-01

    Even though science says genetically modified (GM) foods are safe, many consumers remain skeptical of the technology. Additionally, the scientific community has trouble communicating to the public, causing consumers to make uninformed decisions. The Millennial Generation will have more buying power than any other generation before them, and more…

  6. METHODS FOR DETERMINING EXPOSURE TO AND POTENTIAL ECOLOGICAL EFFECTS OF GENE FLOW FROM GENETICALLY MODIFIED CROPS TO COMPATIBLE RELATIVES

    EPA Science Inventory

    SCIENCE QUESTIONS:

    -Does gene flow occur from genetically modified (GM) crop plants to compatible plants?

    -How can it be measured?

    -Are there ecological consequences of GM crop gene flow to plant communities?



    RESEARCH:

    The objectives ...

  7. Assessing Website Quality in Context: Retrieving Information about Genetically Modified Food on the Web

    ERIC Educational Resources Information Center

    McInerney, Claire R.; Bird, Nora J.

    2005-01-01

    Introduction: Knowing the credibility of information about genetically modified food on the Internet is critical to the everyday life information seeking of consumers as they form opinions about this nascent agricultural technology. The Website Quality Evaluation Tool (WQET) is a valuable instrument that can be used to determine the credibility of…

  8. Geobacteraceae strains and methods

    DOEpatents

    Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

    2015-07-07

    Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

  9. News Media Use, Informed Issue Evaluation, and South Koreans' Support for Genetically Modified Foods

    ERIC Educational Resources Information Center

    Kim, Sei-Hill; Kim, Jeong-Nam; Choi, Doo-Hun; Jun, Sangil

    2015-01-01

    Analyzing survey data on the issue of genetically modified foods in South Korea, this study explores the role of news media in facilitating informed issue evaluation. Respondents who read a newspaper more often were more knowledgeable about the issue. Also, heavy newspaper readers were more able than light readers to hold "consistent"…

  10. Opinion Building on a Socio-Scientific Issue: The Case of Genetically Modified Plants

    ERIC Educational Resources Information Center

    Ekborg, Margareta

    2008-01-01

    This paper presents results from a study with the following research questions: (a) are pupils' opinions on genetically modified organisms (GMOs) influenced by biology teaching; and (b) what is important for the opinion pupils hold and how does knowledge work together with other parameters such as values? 64 pupils in an upper secondary school…

  11. Class Teacher Candidates' Opinions on Genetically Modified Organisms (GMO)

    ERIC Educational Resources Information Center

    Ural Keles, Pinar; Aydin, Suleyman

    2017-01-01

    This study was conducted to determine the Class teacher candidates' opinions on Genetically Modified Organisms. The study was carried out with 101 teacher candidates who were studying in the 3rd grade of Agri Ibrahim Çeçen University Classroom Teacher Department in 2016-2017 academic year. Of the students who participated in the survey, 56 were…

  12. Learning to Argue as a Biotechnologist: Disprivileging Opposition to Genetically Modified Food

    ERIC Educational Resources Information Center

    Solli, Anne; Bach, Frank; Åkerman, Björn

    2014-01-01

    In the public discussion of genetically modified (GM) food the representations of science as a social good, conducted in the public interest to solve major problems are being subjected to intense scrutiny and questioning. Scientists working in these areas have been seen to struggle for the position of science in society. However few in situ…

  13. Minimizing use of fish meal in sunshine bass diets using standard and new varieties of non-genetically modified soybeans

    USDA-ARS?s Scientific Manuscript database

    Improved plant ingredients are needed to support sustainable culture of carnivorous fish, such as hybrid striped bass (HSB). We are evaluating meals made from new strains of non-genetically-modified soybeans (non-GMO) with high protein and reduced anti-nutritional factors (ANFs) on HSB nutrient dige...

  14. 40 CFR 158.2170 - Experimental use permit data requirements-microbial pesticides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for genetically modified microbial pesticides may include but are not limited to: genetic... genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...

  15. 40 CFR 158.2170 - Experimental use permit data requirements-microbial pesticides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for genetically modified microbial pesticides may include but are not limited to: genetic... genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...

  16. 40 CFR 158.2170 - Experimental use permit data requirements-microbial pesticides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for genetically modified microbial pesticides may include but are not limited to: genetic... genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...

  17. 40 CFR 158.2170 - Experimental use permit data requirements-microbial pesticides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for genetically modified microbial pesticides may include but are not limited to: genetic... genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...

  18. Automated DNA extraction from genetically modified maize using aminosilane-modified bacterial magnetic particles.

    PubMed

    Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi

    2006-09-18

    A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.

  19. Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle.

    PubMed

    Petree, Jessica R; Yehl, Kevin; Galior, Kornelia; Glazier, Roxanne; Deal, Brendan; Salaita, Khalid

    2018-01-19

    Modifying RNA through either splicing or editing is a fundamental biological process for creating protein diversity from the same genetic code. Developing novel chemical biology tools for RNA editing has potential to transiently edit genes and to provide a better understanding of RNA biochemistry. Current techniques used to modify RNA include the use of ribozymes, adenosine deaminase, and tRNA endonucleases. Herein, we report a nanozyme that is capable of splicing virtually any RNA stem-loop. This nanozyme is comprised of a gold nanoparticle functionalized with three enzymes: two catalytic DNA strands with ribonuclease function and an RNA ligase. The nanozyme cleaves and then ligates RNA targets, performing a splicing reaction that is akin to the function of the spliceosome. Our results show that the three-enzyme reaction can remove a 19 nt segment from a 67 nt RNA loop with up to 66% efficiency. The complete nanozyme can perform the same splice reaction at 10% efficiency. These splicing nanozymes represent a new promising approach for gene manipulation that has potential for applications in living cells.

  20. Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm.

    PubMed

    Beloufa, Fayssal; Chikh, M A

    2013-10-01

    In this study, diagnosis of diabetes disease, which is one of the most important diseases, is conducted with artificial intelligence techniques. We have proposed a novel Artificial Bee Colony (ABC) algorithm in which a mutation operator is added to an Artificial Bee Colony for improving its performance. When the current best solution cannot be updated, a blended crossover operator (BLX-α) of genetic algorithm is applied, in order to enhance the diversity of ABC, without compromising with the solution quality. This modified version of ABC is used as a new tool to create and optimize automatically the membership functions and rules base directly from data. We take the diabetes dataset used in our work from the UCI machine learning repository. The performances of the proposed method are evaluated through classification rate, sensitivity and specificity values using 10-fold cross-validation method. The obtained classification rate of our method is 84.21% and it is very promising when compared with the previous research in the literature for the same problem. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Nonclassical Regulation of Transcription: Interchromosomal Interactions at the Malic enzyme Locus of Drosophila melanogaster

    PubMed Central

    Lum, Thomas E.; Merritt, Thomas J. S.

    2011-01-01

    Regulation of transcription can be a complex process in which many cis- and trans-interactions determine the final pattern of expression. Among these interactions are trans-interactions mediated by the pairing of homologous chromosomes. These trans-effects are wide ranging, affecting gene regulation in many species and creating complex possibilities in gene regulation. Here we describe a novel case of trans-interaction between alleles of the Malic enzyme (Men) locus in Drosophila melanogaster that results in allele-specific, non-additive gene expression. Using both empirical biochemical and predictive bioinformatic approaches, we show that the regulatory elements of one allele are capable of interacting in trans with, and modifying the expression of, the second allele. Furthermore, we show that nonlocal factors—different genetic backgrounds—are capable of significant interactions with individual Men alleles, suggesting that these trans-effects can be modified by both locally and distantly acting elements. In sum, these results emphasize the complexity of gene regulation and the need to understand both small- and large-scale interactions as more complete models of the role of trans-interactions in gene regulation are developed. PMID:21900270

  2. Monogenic Mouse Models of Autism Spectrum Disorders: Common Mechanisms and Missing Links

    PubMed Central

    Hulbert, Samuel W.; Jiang, Yong-hui

    2016-01-01

    Autism Spectrum Disorders (ASDs) present unique challenges in the fields of genetics and neurobiology because of the clinical and molecular heterogeneity underlying these disorders. Genetic mutations found in ASD patients provide opportunities to dissect the molecular and circuit mechanisms underlying autistic behaviors using animal models. Ongoing studies of genetically modified models have offered critical insight into possible common mechanisms arising from different mutations, but links between molecular abnormalities and behavioral phenotypes remain elusive. The challenges encountered in modeling autism in mice demand a new analytic paradigm that integrates behavioral analysis with circuit-level analysis in genetically modified models with strong construct validity. PMID:26733386

  3. [Detection of genetically modified soy (Roundup-Ready) in processed food products].

    PubMed

    Hagen, M; Beneke, B

    2000-01-01

    In this study, the application of a qualitative and a quantitative method of analysis to detect genetically modified RR-Soy (Roundup-Ready Soy) in processed foods is described. A total of 179 various products containing soy such as baby food and diet products, soy drinks and desserts, tofu and tofu products, soy based meat substitutes, soy protein, breads, flour, granules, cereals, noodles, soy bean sprouts, fats and oils as well as condiments were investigated following the pattern of the section 35 LMBG-method L 23.01.22-1. The DNA was extracted from the samples and analysed using a soybean specific lectin gene PCR as well as a PCR, specific for the genetic modification. Additional, by means of PCR in combination with fluorescence-detection (TaqMan 5'-Nuclease Assay), suspicious samples were subjected to a real-time quantification of the percentage of genetically modified RR-Soy. The methods of analysis proved to be extremely sensitive and specific in regard to the food groups checked. The fats and oils, as well as the condiments were the exceptions in which amplifiable soy DNA could not be detected. The genetic modification of RR-Soy was detected in 34 samples. Eight of these samples contained more than 1% of RR-Soy. It is necessary to determine the percentage of transgenic soy in order to assess whether genetically modified ingredients were deliberately added, or whether they were caused by technically unavoidable contamination (for example during transportation and processing).

  4. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections.

    PubMed

    Carvalho, Carla; Costa, Ana Rita; Silva, Filipe; Oliveira, Ana

    2017-09-01

    Nowadays, the world is facing an increasing emergence of antibiotic resistant bacteria. Simultaneously, the banning of some existing antibiotics and the lack of development of new antimicrobials have created an urgent need to find new alternatives against animal infections. Bacteriophages (phages) are naturally occurring predators of bacteria, ubiquitous in the environment, with high host specificity and harmless to animals. For these reasons, phages and their derivatives are being considered valuable antimicrobial alternatives and an opportunity to reduce the current use of antibiotics in agri-food production, increasing animal productivity and providing environmental protection. Furthermore, the possibility of combining phage genetic material with foreign genes encoding peptides of interest has enabled their use as vaccine delivery tools. In this case, besides bacterial infections, they might be used to prevent viral infections. This review explores current data regarding advances on the use of phages and phage-encoded proteins, such as endolysins, exolysins and depolymerases, either for therapeutic or prophylactic applications, in animal husbandry. The use of recombinant phage-derived particles or genetically modified phages, including phage vaccines, will also be reviewed.

  5. A change of ploidy can modify epigenetic silencing.

    PubMed Central

    Mittelsten Scheid, O; Jakovleva, L; Afsar, K; Maluszynska, J; Paszkowski, J

    1996-01-01

    A silent transgene in Arabidopsis thaliana was reactivated in an outcross but not upon selfing of hemizygous plants. This result could only be explained by assuming a genetic difference between the transgene-free gametes of the wild-type and hemizygous transgenic plants, respectively, and led to the discovery of ploidy differences between the parental plants. To investigate whether a change of ploidy by itself can indeed influence gene expression, we performed crosses of diploid or tetraploid plants with a strain containing a single copy of a transgenic resistance gene in an active state. We observed reduced gene expression of the transgene in triploid compared with diploid hybrids. This led to loss of the resistant phenotype at various stages of seedling development in part of the population. The gene inactivation was reversible. Thus, an increased number of chromosomes can result in a new type of epigenetic gene inactivation, creating differences in gene expression patterns. We discuss the possible impact of this finding for genetic diploidization in the light of widespread, naturally occurring polyploidy and polysomaty in plants. Images Fig. 1 Fig. 2 PMID:8692954

  6. Blastocyst microinjection automation.

    PubMed

    Mattos, Leonardo S; Grant, Edward; Thresher, Randy; Kluckman, Kimberly

    2009-09-01

    Blastocyst microinjections are routinely involved in the process of creating genetically modified mice for biomedical research, but their efficiency is highly dependent on the skills of the operators. As a consequence, much time and resources are required for training microinjection personnel. This situation has been aggravated by the rapid growth of genetic research, which has increased the demand for mutant animals. Therefore, increased productivity and efficiency in this area are highly desired. Here, we pursue these goals through the automation of a previously developed teleoperated blastocyst microinjection system. This included the design of a new system setup to facilitate automation, the definition of rules for automatic microinjections, the implementation of video processing algorithms to extract feedback information from microscope images, and the creation of control algorithms for process automation. Experimentation conducted with this new system and operator assistance during the cells delivery phase demonstrated a 75% microinjection success rate. In addition, implantation of the successfully injected blastocysts resulted in a 53% birth rate and a 20% yield of chimeras. These results proved that the developed system was capable of automatic blastocyst penetration and retraction, demonstrating the success of major steps toward full process automation.

  7. Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly

    NASA Astrophysics Data System (ADS)

    Mozhdehi, Davoud; Luginbuhl, Kelli M.; Simon, Joseph R.; Dzuricky, Michael; Berger, Rüdiger; Varol, H. Samet; Huang, Fred C.; Buehne, Kristen L.; Mayne, Nicholas R.; Weitzhandler, Isaac; Bonn, Mischa; Parekh, Sapun H.; Chilkoti, Ashutosh

    2018-05-01

    Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials—fatty-acid-modified elastin-like polypeptides—using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a β-sheet-forming peptide that is post-translationally functionalized with a C14 alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.

  8. Transforming exoelectrogens for biotechnology using synthetic biology.

    PubMed

    TerAvest, Michaela A; Ajo-Franklin, Caroline M

    2016-04-01

    Extracellular electron transfer pathways allow certain bacteria to transfer energy between intracellular chemical energy stores and extracellular solids through redox reactions. Microorganisms containing these pathways, exoelectrogens, are a critical part of microbial electrochemical technologies that aim to impact applications in bioenergy, biosensing, and biocomputing. However, there are not yet any examples of economically viable microbial electrochemical technologies due to the limitations of naturally occurring exoelectrogens. Here we first briefly summarize recent discoveries in understanding extracellular electron transfer pathways, then review in-depth the creation of customized and novel exoelectrogens for biotechnological applications. We analyze engineering efforts to increase current production in native exoelectrogens, which reveals that modulating certain processes within extracellular electron transfer are more effective than others. We also review efforts to create new exoelectrogens and highlight common challenges in this work. Lastly, we summarize work utilizing engineered exoelectrogens for biotechnological applications and the key obstacles to their future development. Fueled by the development of genetic tools, these approaches will continue to expand and genetically modified organisms will continue to improve the outlook for microbial electrochemical technologies. © 2015 Wiley Periodicals, Inc.

  9. Possibility of modifying the growth trajectory in Raeini Cashmere goat.

    PubMed

    Ghiasi, Heydar; Mokhtari, M S

    2018-03-27

    The objective of this study was to investigate the possibility of modifying the growth trajectory in Raeini Cashmere goat breed. In total, 13,193 records on live body weight collected from 4788 Raeini Cashmere goats were used. According to Akanke's information criterion (AIC), the sing-trait random regression model included fourth-order Legendre polynomial for direct and maternal genetic effect; maternal and individual permanent environmental effect was the best model for estimating (co)variance components. The matrices of eigenvectors for (co)variances between random regression coefficients of direct additive genetic were used to calculate eigenfunctions, and different eigenvector indices were also constructed. The obtained results showed that the first eigenvalue explained 79.90% of total genetic variance. Therefore, changing the body weights applying the first eigenfunction will be obtained rapidly. Selection based on the first eigenvector will cause favorable positive genetic gains for all body weight considered from birth to 12 months of age. For modifying the growth trajectory in Raeini Cashmere goat, the selection should be based on the second eigenfunction. The second eigenvalue accounted for 14.41% of total genetic variance for body weights that is low in comparison with genetic variance explained by the first eigenvalue. The complex patterns of genetic change in growth trajectory observed under the third and fourth eigenfunction and low amount of genetic variance explained by the third and fourth eigenvalues.

  10. EFFECTS OF A MODIFIED VITRECTOMY PROBE IN SMALL-GAUGE VITRECTOMY: An Experimental Study on the Flow and on the Traction Exerted on the Retina.

    PubMed

    Rizzo, Stanislao; Fantoni, Gualtiero; de Santis, Giovanni; Lue, Jaw-Chyng Lormen; Ciampi, Jonathan; Palla, Michele; Genovesi Ebert, Federica; Savastano, Alfonso; De Maria, Carmelo; Vozzi, Giovanni; Brant Fernandes, Rodrigo A; Faraldi, Francesco; Criscenti, Giuseppe

    2017-09-01

    Thorough this experimental study, the physic features of a modified 23-gauge vitrectomy probe were evaluated in vitro. A modified vitrectomy probe to increase vitreous outflow rate with a small-diameter probe, that also minimized tractional forces on the retina, was created and tested. The "new" probe was created by drilling an opening into the inner duct of a traditional 23-gauge probe with electrochemical or electrodischarge micromachining. Both vitreous outflow and tractional forces on the retina were examined using experimental models of vitreous surgery. The additional opening allowed the modified probe to have a cutting rate of 5,000 cuts per minute, while sustaining an outflow approximately 45% higher than in conventional 23-gauge probes. The modified probe performed two cutting actions per cycle, not one, as in standard probes. Because tractional force is influenced by cutting rate, retinal forces were 2.2 times lower than those observed with traditional cutters. The modified probe could be useful in vitreoretinal surgery. It allows for faster vitreous removal while minimizing tractional forces on the retina. Moreover, any available probe can be modified by creating a hole in the inner duct.

  11. GPFrontend and GPGraphics: graphical analysis tools for genetic association studies.

    PubMed

    Uebe, Steffen; Pasutto, Francesca; Krumbiegel, Mandy; Schanze, Denny; Ekici, Arif B; Reis, André

    2010-09-21

    Most software packages for whole genome association studies are non-graphical, purely text based programs originally designed to run with UNIX-like operating systems. Graphical output is often not intended or supposed to be performed with other command line tools, e.g. gnuplot. Using the Microsoft .NET 2.0 platform and Visual Studio 2005, we have created a graphical software package to analyze data from microarray whole genome association studies, both for a DNA-pooling based approach as well as regular single sample data. Part of this package was made to integrate with GenePool 0.8.2, a previously existing software suite for GNU/Linux systems, which we have modified to run in a Microsoft Windows environment. Further modifications cause it to generate some additional data. This enables GenePool to interact with the .NET parts created by us. The programs we developed are GPFrontend, a graphical user interface and frontend to use GenePool and create metadata files for it, and GPGraphics, a program to further analyze and graphically evaluate output of different WGA analysis programs, among them also GenePool. Our programs enable regular MS Windows users without much experience in bioinformatics to easily visualize whole genome data from a variety of sources.

  12. Why Gene Editors Like CRISPR/Cas May Be a Game-Changer for Neuroweapons

    PubMed Central

    Giordano, James

    2017-01-01

    This year marks the Eighth Review Conference (RevCon) of the Biological Toxins and Weapons Convention (BWC). At the same time, ongoing international efforts to further and more deeply investigate the brain's complex neuronal circuitry are creating unprecedented capabilities to both understand and control neurological processes of thought, emotion, and behavior. These advances have tremendous promise for human health, but the potential for their misuse has also been noted, with most discussions centering on research and development of agents that are addressed by existing BWC and Chemical Weapons Convention (CWC) proscriptions. In this article, we discuss the dual-use possibilities fostered by employing emergent biotechnologic techniques and tools—specifically, novel gene editors like clustered regular interspaced short palindromic repeats (CRISPR)—to produce neuroweapons. Based on our analyses, we posit the strong likelihood that development of genetically modified or created neurotropic substances will advance apace with other gene-based therapeutics, and we assert that this represents a novel—and realizable—path to creating potential neuroweapons. In light of this, we propose that it will be important to re-address current categorizations of weaponizable tools and substances, so as to better inform and generate tractable policy to enable improved surveillance and governance of novel neuroweapons. PMID:28574731

  13. f-treeGC: a questionnaire-based family tree-creation software for genetic counseling and genome cohort studies.

    PubMed

    Tokutomi, Tomoharu; Fukushima, Akimune; Yamamoto, Kayono; Bansho, Yasushi; Hachiya, Tsuyoshi; Shimizu, Atsushi

    2017-07-14

    The Tohoku Medical Megabank project aims to create a next-generation personalized healthcare system by conducting large-scale genome-cohort studies involving three generations of local residents in the areas affected by the Great East Japan Earthquake. We collected medical and genomic information for developing a biobank to be used for this healthcare system. We designed a questionnaire-based pedigree-creation software program named "f-treeGC," which enables even less experienced medical practitioners to accurately and rapidly collect family health history and create pedigree charts. f-treeGC may be run on Adobe AIR. Pedigree charts are created in the following manner: 1) At system startup, the client is prompted to provide required information on the presence or absence of children; f-treeGC is capable of creating a pedigree up to three generations. 2) An interviewer fills out a multiple-choice questionnaire on genealogical information. 3) The information requested includes name, age, gender, general status, infertility status, pregnancy status, fetal status, and physical features or health conditions of individuals over three generations. In addition, information regarding the client and the proband, and birth order information, including multiple gestation, custody, multiple individuals, donor or surrogate, adoption, and consanguinity may be included. 4) f-treeGC shows only marriages between first cousins via the overlay function. 5) f-treeGC automatically creates a pedigree chart, and the chart-creation process is visible for inspection on the screen in real time. 6) The genealogical data may be saved as a file in the original format. The created/modified date and time may be changed as required, and the file may be password-protected and/or saved in read-only format. To enable sorting or searching from the database, the file name automatically contains the terms typed into the entry fields, including physical features or health conditions, by default. 7) Alternatively, family histories are collected using a completed foldable interview paper sheet named "f-sheet", which is identical to the questionnaire in f-treeGC. We developed a questionnaire-based family tree-creation software, named f-treeGC, which is fully compliant with international recommendations for standardized human pedigree nomenclature. The present software simplifies the process of collecting family histories and pedigrees, and has a variety of uses, from genome cohort studies or primary care to genetic counseling.

  14. Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies

    PubMed Central

    Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.

    2015-01-01

    The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980

  15. Genetically Modified Food in Perspective: An Inquiry-Based Curriculum to Help Middle School Students Make Sense of Tradeoffs. Research Report

    ERIC Educational Resources Information Center

    Seethaler, Sherry; Linn, Marcia

    2004-01-01

    To understand how students learn about science controversy, this study examines students' reasoning about tradeoffs in the context of a technology-enhanced curriculum about genetically modified food. The curriculum was designed and refined based on the Scaffolded Knowledge Integration Framework to help students sort and integrate their initial…

  16. Awareness and support of release of genetically modified "sterile" mosquitoes, Key West, Florida, USA.

    PubMed

    Ernst, Kacey C; Haenchen, Steven; Dickinson, Katherine; Doyle, Michael S; Walker, Kathleen; Monaghan, Andrew J; Hayden, Mary H

    2015-02-01

    After a dengue outbreak in Key West, Florida, during 2009-2010, authorities, considered conducting the first US release of male Aedes aegypti mosquitoes genetically modified to prevent reproduction. Despite outreach and media attention, only half of the community was aware of the proposal; half of those were supportive. Novel public health strategies require community engagement.

  17. Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab

    USDA-ARS?s Scientific Manuscript database

    Evolution of resistance in pests threatens the long-term success of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and ...

  18. The Development and Validation of the GMOAS, an Instrument Measuring Secondary School Students' Attitudes towards Genetically Modified Organisms

    ERIC Educational Resources Information Center

    Herodotou, Christothea; Kyza, Eleni A.; Nicolaidou, Iolie; Hadjichambis, Andreas; Kafouris, Dimitris; Terzian, Freda

    2012-01-01

    Genetically modified organisms (GMOs) is a rapidly evolving area of scientific innovation and an issue receiving global attention. Attempts to devise usable instruments that assess people's attitudes towards this innovation have been rare and non-systematic. The aim of this paper is to present the development and validation of the genetically…

  19. Three-generation reproduction toxicity study of genetically modified rice with insect resistant genes.

    PubMed

    Hu, Yichun; Zhuo, Qin; Gong, Zhaolong; Piao, Jianhua; Yang, Xiaoguang

    2017-01-01

    In the present work, we evaluated the three generation reproductive toxicity of the genetically modified rice with insectresistant cry1Ac and sck genes. 120 Sprague-Dawley (SD) rats were divided into three groups which were fed with genetically modified rice diet (GM group), parental control rice diet (PR group) and AIN-93 control diet (both used as negative control) respectively. Bodyweight, food consumption, reproductive data, hematological parameters, serum chemistry, relative organ weights and histopathology for each generation were examined respectively. All the hematology and serum chemistry parameters, organ/body weight indicators were within the normal range or no change to the adverse direction was observed, although several differences in hematology and serum chemistry parameters (WBC, BUN, LDH of male rat, PLT, PCT, MPV of female rats), reproductive data (rate of morphologically abnormal sperm) were observed between GM rice group and two control groups. No macroscopic or histological adverse effects were found or considered as treatment-related, either. Overall, the three generation study of genetically modified rice with cry1Ac and sck genes at a high level showed no unintended adverse effects on rats's reproductive system. Copyright © 2016. Published by Elsevier Ltd.

  20. Preliminary assessment of framework conditions for release of genetically modified mosquitoes in Burkina Faso.

    PubMed

    De Freece, Chenoa; Paré Toé, Léa; Esposito, Fulvio; Diabaté, Abdoulaye; Favia, Guido

    2014-09-01

    Genetically modified mosquitoes (GMMs) are emerging as a measure to control mosquito-borne diseases, but before any genetically modified organisms (GMOs) are released into the environment, it is imperative to establish regulatory standards incorporating public engagement. A previous project in Burkina Faso introduced a type of genetically modified cotton [Bacillus thuringiensis (Bt)] cotton) that produces insecticide, and incorporated policies on public engagement. We explored the perspectives of Burkinabè (citizens of Burkina Faso) on bio-agricultural exposure to GMOs and their receptiveness to the use of GMOs. Interviews were conducted in a village (Bondoukuy) and with representatives from stakeholder organizations. The population may be very receptive to the use of GMMs against malaria, but may voice unfounded concerns that GMMs can transmit other diseases. It is important to constantly supply the population with correct and factual information. Investigating the application of Burkina Faso's biotechnology policies with regard to Bt cotton has shown that it may be conceivable in the future to have open discussions about the merits of GMM release. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Electrochemical sensor for multiplex screening of genetically modified DNA: identification of biotech crops by logic-based biomolecular analysis.

    PubMed

    Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie

    2013-12-15

    Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics

    ERIC Educational Resources Information Center

    Freidenreich, Hava Bresler; Duncan, Ravit Golan; Shea, Nicole

    2011-01-01

    Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc.…

  3. Metabolomics of Genetically Modified Crops

    PubMed Central

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  4. BIOTECHNOLOGY/ECORISK

    EPA Science Inventory

    This research effort is designed to provide the risk assessment community with modern genetic tools for evaluating long-term risks of genetically modified (GM) crops. Molecular population genetic data can potentially reveal information about long-term trends in both pest populat...

  5. sup 31 P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brindle, K.; Braddock, P.; Fulton, S.

    1990-04-03

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06more » and 0.1 measured directly in cell extracts.« less

  6. Challenges and opportunities for improving food quality and nutrition through plant biotechnology.

    PubMed

    Francis, David; Finer, John J; Grotewold, Erich

    2017-04-01

    Plant biotechnology has been around since the advent of humankind, resulting in tremendous improvements in plant cultivation through crop domestication, breeding and selection. The emergence of transgenic approaches involving the introduction of defined DNA sequences into plants by humans has rapidly changed the surface of our planet by further expanding the gene pool used by plant breeders for plant improvement. Transgenic approaches in food plants have raised concerns on the merits, social implications, ecological risks and true benefits of plant biotechnology. The recently acquired ability to precisely edit plant genomes by modifying native genes without introducing new genetic material offers new opportunities to rapidly exploit natural variation, create new variation and incorporate changes with the goal to generate more productive and nutritious plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Regulation of GMOs in China.

    PubMed

    Liu, Yinliang

    2008-12-01

    Genetically modified organisms (GMOs) are created by biotechnology to serve people with much benefit while may impose risks to ecological environment and human health and therefore need careful regulation. During the past two decades, GMOs have been well developed in China and so has their corresponding regulation. This paper reviews and comments the multiple aspects of mainly the agricultural GMOs, including their safety assessment, control measures, trade activities, import, labels, and GM food, which have been prescribed by the corresponding laws, regulations and administrative measures. It is held that till present a framework for regulation of agricultural GMOs and GM food has been established basically in China, while a more comprehensive system for regulation of all kinds of GMOs and all kinds of related activities is still needed at present and in the future.

  8. Bone Marrow Transplantation in Mice as a Tool to Generate Genetically Modified Animals

    NASA Astrophysics Data System (ADS)

    Rőszer, Tamás; Pintye, Éva; Benkő, Ilona

    2008-12-01

    Transgenic mice can be used either as models of known inherited human diseases or can be applied to perform phenotypic tests of genes with unknown function. In some special applications of gene modification we have to create a tissue specific mutation of a given gene. In some cases however the gene modification can be lethal in the intrauterine life, therefore we should engraft the mutated cells in the postnatal life period. After total body irradiation transplantation of bone marrow cells can be a solution to introduce mutant hematopoietic stem cells into a mature animal. Bone marrow transplantation is a useful and novel tool to study the role of hematopoietic cells in the pathogenesis of inflammation, autoimmune syndromes and many metabolic alterations coupled recently to leukocyte functions.

  9. Analytical criteria for performance characteristics of IgE binding methods for evaluating safety of biotech food products.

    PubMed

    Holzhauser, Thomas; Ree, Ronald van; Poulsen, Lars K; Bannon, Gary A

    2008-10-01

    There is detailed guidance on how to perform bioinformatic analyses and enzymatic degradation studies for genetically modified crops under consideration for approval by regulatory agencies; however, there is no consensus in the scientific community on the details of how to perform IgE serum studies. IgE serum studies are an important safety component to acceptance of genetically modified crops when the introduced protein is novel, the introduced protein is similar to known allergens, or the crop is allergenic. In this manuscript, we describe the characteristics of the reagents, validation of assay performance, and data analysis necessary to optimize the information obtained from serum testing of novel proteins and genetically modified (GM) crops and to make results more accurate and comparable between different investigations.

  10. Standards for gene therapy clinical trials based on pro-active risk assessment in a London NHS Teaching Hospital Trust.

    PubMed

    Bamford, K B; Wood, S; Shaw, R J

    2005-02-01

    Conducting gene therapy clinical trials with genetically modified organisms as the vectors presents unique safety and infection control issues. The area is governed by a range of legislation and guidelines, some unique to this field, as well as those pertinent to any area of clinical work. The relevant regulations covering gene therapy using genetically modified vectors are reviewed and illustrated with the approach taken by a large teaching hospital NHS Trust. Key elements were Trust-wide communication and involvement of staff in a pro-active approach to risk management, with specific emphasis on staff training and engagement, waste management, audit and record keeping. This process has led to the development of proposed standards for clinical trials involving genetically modified micro-organisms.

  11. Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?

    PubMed

    Bermúdez-Humarán, Luis G; Langella, Philippe

    2017-09-01

    Probiotics are live, nonpathogenic microorganisms that confer benefits to human health when administered in adequate amounts. Among the frequent proposed health benefits attributed to probiotics, their ability to interact with the host immune system is now well demonstrated. Although history has revealed that probiotics were part of fermented foods in the past, clinicians have started to use them therapeutically in regular diets. Moreover, the use of genetically modified probiotics to deliver molecules of therapeutic interest is gaining importance as an extension of the probiotic concept. This chapter summarizes some of the recent findings and perspectives on the use of both traditional and genetically modified probiotics to treat human diseases as well as what the future may hold concerning the use of these probiotics in humans.

  12. [Labeling of food containing genetically modified organisms: international policies and Brazilian legislation].

    PubMed

    Costa, Thadeu Estevam Moreira Maramaldo; Marin, Victor Augustus

    2011-08-01

    The increase in surface area planted with genetically modified crops, with the subsequent transfer of such crops into the general environment for commercial trade, has raised questions about the safety of these products. The introduction of the Cartagena Protocol on Biosafety has led to the need to produce information and ensure training in this area for the implementation of policies on biosafety and for decision-making on the part of governments at the national, regional and international level. This article presents two main standpoints regarding the labeling of GM products (one adopted by the United States and the other by the European Union), as well as the position adopted by Brazil and its current legislation on labeling and commercial release of genetically modified (GM) products.

  13. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  14. Application of laws, policies, and guidance from the United States and Canada to the regulation of food and feed derived from genetically modified crops: interpretation of composition data.

    PubMed

    Price, William D; Underhill, Lynne

    2013-09-04

    With the development of recombinant DNA techniques for genetically modifying plants to exhibit beneficial traits, laws and regulations were adopted to ensure the safety of food and feed derived from such plants. This paper focuses on the regulation of genetically modified (GM) plants in Canada and the United States, with emphasis on the results of the compositional analysis routinely utilized as an indicator of possible unintended effects resulting from genetic modification. This work discusses the mandate of Health Canada and the Canadian Food Inspection Agency as well as the U.S. Food and Drug Administration's approach to regulating food and feed derived from GM plants. This work also addresses how publications by the Organisation for Economic Co-operation and Development and Codex Alimentarius fit, particularly with defining the importance and purpose of compositional analysis. The importance of study design, selection of comparators, use of literature, and commercial variety reference values is also discussed.

  15. Genetic technologies and ethics.

    PubMed

    Ardekani, Ali M

    2009-01-01

    In the past decade, the human genome has been completely sequenced and the knowledge from it has begun to influence the fields of biological and social sciences in fundamental ways. Identification of about 25000 genes in the human genome is expected to create great benefits in diagnosis and treatment of diseases in the coming years. However, Genetic technologies have also created many interesting and difficult ethical issues which can affect the human societies now and in the future. Application of genetic technologies in the areas of stem cells, cloning, gene therapy, genetic manipulation, gene selection, sex selection and preimplantation diagnosis has created a great potential for the human race to influence and change human life on earth as we know it today. Therefore, it is important for leaders of societies in the modern world to pay attention to the advances in genetic technologies and prepare themselves and those institutions under their command to face the challenges which these new technologies induce in the areas of ethics, law and social policies.

  16. Genome-wide association study to identify potential genetic modifiers in a canine model for Duchenne muscular dystrophy.

    PubMed

    Brinkmeyer-Langford, Candice; Balog-Alvarez, Cynthia; Cai, James J; Davis, Brian W; Kornegay, Joe N

    2016-08-22

    Duchenne muscular dystrophy (DMD) causes progressive muscle degeneration, cardiomyopathy and respiratory failure in approximately 1/5,000 boys. Golden Retriever muscular dystrophy (GRMD) resembles DMD both clinically and pathologically. Like DMD, GRMD exhibits remarkable phenotypic variation among affected dogs, suggesting the influence of modifiers. Understanding the role(s) of genetic modifiers of GRMD may identify genes and pathways that also modify phenotypes in DMD and reveal novel therapies. Therefore, our objective in this study was to identify genetic modifiers that affect discrete GRMD phenotypes. We performed a linear mixed-model (LMM) analysis using 16 variably-affected dogs from our GRMD colony (8 dystrophic, 8 non-dystrophic). All of these dogs were either full or half-siblings, and phenotyped for 19 objective, quantitative biomarkers at ages 6 and 12 months. Each biomarker was individually assessed. Gene expression profiles of 59 possible candidate genes were generated for two muscle types: the cranial tibialis and medial head of the gastrocnemius. SNPs significantly associated with GRMD biomarkers were identified on multiple chromosomes (including the X chromosome). Gene expression levels for candidate genes located near these SNPs correlated with biomarker values, suggesting possible roles as GRMD modifiers. The results of this study enhance our understanding of GRMD pathology and represent a first step toward the characterization of GRMD modifiers that may be relevant to DMD pathology. Such modifiers are likely to be useful for DMD treatment development based on their relationships to GRMD phenotypes.

  17. Managing major data of genetically modified mice: from scientific demands to legal obligations.

    PubMed

    Staudt, Michael; Trauth, Jürgen; Hindi, Iris El; Galuschka, Claudia; Sitek, Dagmar; Schenkel, Johannes

    2012-10-01

    The number of genetically modified mice is increasing rapidly. Several limitations when working with these animals are to be considered: small colonies, the continued danger of loss, often a limited breeding-success, the need to keep those mutants in stock, difficult and costly import-procedures, and also a major (scientific) value of those mutants often available only with major restrictions. To gather relevant information about all active and archived genetically modified mouse lines available in-house (>1.500) and to deal with a unique resource for several, quite different purposes, a data base was developed enabling optimum knowledge management and easy access. The data base covers also legal restraints and is being linked with the institutional publication repository. To identify the lines available detailed information is provided for each line, as the international designation, a short name, the characterization/description, and the genetic modification including the technique used therefore. The origin of the mutation (gene-ID# and donor organism), the origin of regulatory elements and their donors are listed as well as the genetic background, back-cross generation, phenotype, possible publications, keywords, and some in-house information. Also aspects of animal welfare, obligations to record genetically modified organisms, and technology transfer are displayed; the latter to make licenses possible (if legally permitted). Material transfer agreements, patents, or legal restrictions are listed. This data base helps to avoid double-imports, saves animals and costs since a redundant generation or import can be omitted. However, this is a contribution to the 3R principles developed by Russell and Burch.

  18. Genetically modified foods and social concerns.

    PubMed

    Maghari, Behrokh Mohajer; Ardekani, Ali M

    2011-07-01

    Biotechnology is providing us with a wide range of options for how we can use agricultural and commercial forestry lands. The cultivation of genetically modified (GM) crops on millions of hectares of lands and their injection into our food chain is a huge global genetic experiment involving all living beings. Considering the fast pace of new advances in production of genetically modified crops, consumers, farmers and policymakers worldwide are challenged to reach a consensus on a clear vision for the future of world food supply. The current food biotechnology debate illustrates the serious conflict between two groups: 1) Agri-biotech investors and their affiliated scientists who consider agricultural biotechnology as a solution to food shortage, the scarcity of environmental resources and weeds and pests infestations; and 2) independent scientists, environmentalists, farmers and consumers who warn that genetically modified food introduces new risks to food security, the environment and human health such as loss of biodiversity; the emergence of superweeds and superpests; the increase of antibiotic resistance, food allergies and other unintended effects. This article reviews major viewpoints which are currently debated in the food biotechnology sector in the world. It also lays the ground-work for deep debate on benefits and risks of Biotech-crops for human health, ecosystems and biodiversity. In this context, although some regulations exist, there is a need for continuous vigilance for all countries involved in producing genetically engineered food to follow the international scientific bio-safety testing guidelines containing reliable pre-release experiments and post-release track of transgenic plants to protect public health and avoid future environmental harm.

  19. Awareness and Support of Release of Genetically Modified “Sterile” Mosquitoes, Key West, Florida, USA

    PubMed Central

    Haenchen, Steven; Dickinson, Katherine; Doyle, Michael S.; Walker, Kathleen; Monaghan, Andrew J.; Hayden, Mary H.

    2015-01-01

    After a dengue outbreak in Key West, Florida, during 2009–2010, authorities, considered conducting the first US release of male Aedes aegypti mosquitoes genetically modified to prevent reproduction. Despite outreach and media attention, only half of the community was aware of the proposal; half of those were supportive. Novel public health strategies require community engagement. PMID:25625795

  20. Physical activity modifies the associations between genetic variants and blood pressure in European adolescents.

    PubMed

    de Moraes, Augusto César Ferreira; Fernández-Alvira, Juan Miguel; Carvalho, Heráclito Barbosa; Meirhaeghe, Aline; Dallongeville, Jean; Kafatos, Anthony; Marcos, Ascensión; Molnar, Dénes; Manios, Yannis; Ruiz, Jonatan R; Labayen, Idoia; Widhalm, Kurt; Breidenassel, Christina; Gonzalez-Gróss, Marcela; Moreno, Luis A

    2014-11-01

    We hypothesized that physical activity and sedentary behavior could modify the associations between known genetic variants blood pressure-associated genes in European adolescents. Meeting current physical activity recommendations (≥ 60 minutes/day) was able attenuate the deleterious effect of the NOS3 rs3918227 polymorphism on systolic blood pressure in European adolescents. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Knowledge of, Attitudes toward, and Acceptance of Genetically Modified Organisms among Prospective Teachers of Biology, Home Economics, and Grade School in Slovenia

    ERIC Educational Resources Information Center

    Sorgo, Andrej; Ambrozic-Dolinsek, Jana

    2010-01-01

    The objective of this study was to investigate knowledge, opinions, and attitudes toward, as well as readiness to accept genetically modified organisms (GMOs) among prospective primary and secondary Slovene teachers. Our findings are that prospective teachers want to take an active role in rejecting or supporting individual GMOs and are aware of…

  2. The Effects of Different Types of Text and Individual Differences on View Complexity about Genetically Modified Organisms

    ERIC Educational Resources Information Center

    Dinsmore, Daniel L.; Zoellner, Brian P.; Parkinson, Meghan M.; Rossi, Anthony M.; Monk, Mary J.; Vinnachi, Jenelle

    2017-01-01

    View change about socio-scientific issues has been well studied in the literature, but the change in the complexity of those views has not. In the current study, the change in the complexity of views about a specific scientific topic (i.e. genetically modified organisms; GMOs) and use of evidence in explaining those views was examined in relation…

  3. Basic-Education Mexican Teachers' Knowledge of Biotechnology and Attitudes about the Consumption of Genetically Modified Foods

    ERIC Educational Resources Information Center

    Jiménez-Salas, Zacarías; Campos-Góngora, Eduardo; González-Martínez, Blanca E.; Tijerina-Sáenz, Alexandra; Escamilla-Méndez, Angélica D.; Ramírez-López, Erik

    2017-01-01

    Over the past few years, a new research field has emerged, focusing on the social-scientific criteria for the study of opinions toward genetically modified foods (GMFs), since these may be limiting factors for the success or failure of these products. Basic education is the first step in the Mexican education system, and teachers may wield an…

  4. REGION-WIDE GENETIC STRUCTURE OF THE CENTRAL STONEROLLER (CAMPOSTOMA ANOMALUM) AND THE RELATIONSHIP OF GENETIC DIVERSITY TO ENVIRONMENTAL QUALITY

    EPA Science Inventory

    Anthropogenic stressors that reduce population size, alter migration corridors or modify mutational and selective forces on populations are expected to leave a lasting genetic footprint on the distribution of intraspecific genetic variation. Thus, the pattern of intraspecific gen...

  5. Genetic modification of Anopheles stephensi for resistance to multiple Plasmodium falciparum strains does not influence susceptibility to o'nyong'nyong virus or insecticides, or Wolbachia-mediated resistance to the malaria parasite.

    PubMed

    Pike, Andrew; Dimopoulos, George

    2018-01-01

    Mosquitoes that have been genetically engineered for resistance to human pathogens are a potential new tool for controlling vector-borne disease. However, genetic modification may have unintended off-target effects that could affect the mosquitoes' utility for disease control. We measured the resistance of five genetically modified Plasmodium-suppressing Anopheles stephensi lines to o'nyong'nyong virus, four classes of insecticides, and diverse Plasmodium falciparum field isolates and characterized the interactions between our genetic modifications and infection with the bacterium Wolbachia. The genetic modifications did not alter the mosquitoes' resistance to either o'nyong'nyong virus or insecticides, and the mosquitoes were equally resistant to all tested P. falciparum strains, regardless of Wolbachia infection status. These results indicate that mosquitoes can be genetically modified for resistance to malaria parasite infection and remain compatible with other vector-control measures without becoming better vectors for other pathogens.

  6. The origin of human complex diversity: Stochastic epistatic modules and the intrinsic compatibility between distributional robustness and phenotypic changeability.

    PubMed

    Ijichi, Shinji; Ijichi, Naomi; Ijichi, Yukina; Imamura, Chikako; Sameshima, Hisami; Kawaike, Yoichi; Morioka, Hirofumi

    2018-01-01

    The continuing prevalence of a highly heritable and hypo-reproductive extreme tail of a human neurobehavioral quantitative diversity suggests the possibility that the reproductive majority retains the genetic mechanism for the extremes. From the perspective of stochastic epistasis, the effect of an epistatic modifier variant can randomly vary in both phenotypic value and effect direction among the careers depending on the genetic individuality, and the modifier careers are ubiquitous in the population distribution. The neutrality of the mean genetic effect in the careers warrants the survival of the variant under selection pressures. Functionally or metabolically related modifier variants make an epistatic network module and dozens of modules may be involved in the phenotype. To assess the significance of stochastic epistasis, a simplified module-based model was employed. The individual repertoire of the modifier variants in a module also participates in the genetic individuality which determines the genetic contribution of each modifier in the career. Because the entire contribution of a module to the phenotypic outcome is consequently unpredictable in the model, the module effect represents the total contribution of the related modifiers as a stochastic unit in the simulations. As a result, the intrinsic compatibility between distributional robustness and quantitative changeability could mathematically be simulated using the model. The artificial normal distribution shape in large-sized simulations was preserved in each generation even if the lowest fitness tail was un-reproductive. The robustness of normality beyond generations is analogous to the real situations of human complex diversity including neurodevelopmental conditions. The repeated regeneration of the un-reproductive extreme tail may be inevitable for the reproductive majority's competence to survive and change, suggesting implications of the extremes for others. Further model-simulations to illustrate how the fitness of extreme individuals can be low through generations may be warranted to increase the credibility of this stochastic epistasis model.

  7. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize.

    PubMed

    Roda, A; Mirasoli, M; Guardigli, M; Michelini, E; Simoni, P; Magliulo, M

    2006-03-01

    Proteins from the Cry 1 family, in particular Cry 1Ab, are commonly expressed in genetically modified Bt maize in order to control chewing insect pests. A sensitive chemiluminescent sandwich enzyme immunoassay for the detection of Cry1Ab protein from genetically modified Bt maize has been developed and validated. A Cry1Ab protein-specific antibody was immobilized on 96- or 384-well microtiter plates in order to capture the Cry1Ab toxin in the sample; the bound toxin was then detected by employing a second anti-Cry1Ab antibody and a horseradish peroxidase-labeled anti-antibody, followed by measurement of the enzyme activity with an enhanced chemiluminescent system. The chemiluminescent assay fulfilled all the requirements of accuracy and precision and exhibited limits of detection of a few pg mL(-1) Cry1Ab (3 or 5 pg mL(-1), depending on the assay format), which are significantly lower than that achievable using conventional colorimetric detection of peroxidase activity and also represent an improvement compared to previously developed Cry1Ab immunoassays. High-throughput analysis can be performed using the 384-well microtiter plate format immunoassay, which also allows one to reduce the consumption of samples and reagents. Validation of the assay, performed by analyzing certified reference materials, proved that the immunoassay is able to detect the presence of the Cry1Ab protein in certified reference samples containing as low as 0.1% of MON 810 genetically modified Bt maize. This value is below the threshold requiring mandatory labeling of foods containing genetically modified material according to the actual EU regulation.

  8. Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells.

    PubMed

    Miranda, Ana F; Taha, Mohamed; Wrede, Digby; Morrison, Paul; Ball, Andrew S; Stevenson, Trevor; Mouradov, Aidyn

    2015-01-01

    Numerous strategies have evolved recently for the generation of genetically modified or synthetic microalgae and cyanobacteria designed for production of ethanol, biodiesel and other fuels. In spite of their obvious attractiveness there are still a number of challenges that can affect their economic viability: the high costs associated with (1) harvesting, which can account for up to 50 % of the total biofuel's cost, (2) nutrients supply and (3) oil extraction. Fungal-assisted bio-flocculation of microalgae is gaining increasing attention due to its high efficiency, no need for added chemicals and low energy inputs. The implementation of renewable alternative carbon, nitrogen and phosphorus sources from agricultural wastes and wastewaters for growing algae and fungi makes this strategy economically attractive. This work demonstrates that the filamentous fungi, Aspergillus fumigatus can efficiently flocculate the unicellular cyanobacteria Synechocystis PCC 6803 and its genetically modified derivatives that have been altered to enable secretion of free fatty acids into growth media. Secreted free fatty acids are potentially used by fungal cells as a carbon source for growth and ex-novo production of lipids. For most of genetically modified strains the total lipid yields extracted from the fungal-cyanobacterial pellets were found to be higher than additive yields of lipids and total free fatty acids produced by fungal and Synechocystis components when grown in mono-cultures. The synergistic effect observed in fungal-Synechocystis associations was also found in bioremediation rates when animal husbandry wastewater was used an alternative source of nitrogen and phosphorus. Fungal assisted flocculation can complement and assist in large scale biofuel production from wild-type and genetically modified Synechocystis PCC 6803 strains by (1) efficient harvesting of cyanobacterial cells and (2) producing of high yields of lipids accumulated in fungal-cyanobacterial pellets.

  9. Do genetic modifiers of high-density lipoprotein cholesterol and triglyceride levels also modify their response to a lifestyle intervention in the setting of obesity and type-2 diabetes mellitus?: The Action for Health in Diabetes (Look AHEAD) study.

    PubMed

    Huggins, Gordon S; Papandonatos, George D; Erar, Bahar; Belalcazar, L Maria; Brautbar, Ariel; Ballantyne, Christie; Kitabchi, Abbas E; Wagenknecht, Lynne E; Knowler, William C; Pownall, Henry J; Wing, Rena R; Peter, Inga; McCaffery, Jeanne M

    2013-08-01

    High-density lipoprotein cholesterol (HDL-C) and triglycerides are cardiovascular risk factors susceptible to lifestyle behavior modification and genetics. We hypothesized that genetic variants identified by genome-wide association studies as associated with HDL-C or triglyceride levels modify 1-year treatment response to an intensive lifestyle intervention, relative to a usual care of diabetes mellitus support and education. We evaluated 82 single-nucleotide polymorphisms, which represent 31 loci demonstrated by genome-wide association studies to be associated with HDL-C and triglycerides, in 3561 participants who consented for genetic studies and met eligibility criteria. Variants associated with higher baseline HDL-C levels, cholesterol ester transfer protein (CETP) rs3764261 and hepatic lipase (LIPC) rs8034802, were found to be associated with HDL-C increases with intensive lifestyle intervention (P=0.0038 and 0.013, respectively) and had nominally significant treatment interactions (P=0.047 and 0.046, respectively). The fatty acid desaturase-2 rs1535 variant, associated with low baseline HDL-C (P=0.017), was associated with HDL-C increases with intensive lifestyle intervention (0.0037) and had a nominal treatment interaction (P=0.035). Apolipoprotein B (rs693) and LIPC (rs8034802) single-nucleotide polymorphisms showed nominally significant associations with HDL-C and triglyceride changes with intensive lifestyle intervention and a treatment interaction (P<0.05). Phosphatidylglycerophosphate synthase-1 single-nucleotide polymorphisms (rs4082919) showed the most significant triglyceride treatment interaction in the full cohort (P=0.0009). This is the first study to identify genetic variants modifying lipid responses to a randomized lifestyle behavior intervention in overweight or obese individuals with diabetes mellitus. The effects of genetic factors on lipid changes may differ from the effects on baseline lipids and are modifiable by behavioral intervention.

  10. Do Genetic Modifiers of HDL-C and Triglyceride Levels also Modify Their Response to a Lifestyle Intervention in the Setting of Obesity and Type-2 Diabetes Mellitus? The Look AHEAD Study

    PubMed Central

    Huggins, Gordon S.; Papandonatos, George D.; Erar, Bahar; Belalcazar, L. Maria; Brautbar, Ariel; Ballantyne, Christie; Kitabchi, Abbas E.; Wagenknecht, Lynne E.; Knowler, William C.; Pownall, Henry J.; Wing, Rena R.; Peter, Inga; McCaffery, Jeanne M.

    2014-01-01

    Background High-density lipoprotein cholesterol (HDL-C) and triglycerides are cardiovascular risk factors susceptible to lifestyle behavior modification and genetics. We hypothesized that genetic variants identified by genome-wide association studies (GWASs) as associated with HDL-C or triglyceride levels will modify 1-year treatment response to an intensive lifestyle intervention (ILI), relative to a usual care of diabetes support and education (DSE). Methods and Results We evaluated 82 SNPs, representing 31 loci demonstrated by GWAS to be associated with HDL-C and/or triglycerides, in 3,561 participants who consented for genetic studies and met eligibility criteria. Variants associated with higher baseline HDL-C levels, cholesterol ester transfer protein (CETP) rs3764261 and hepatic lipase (LIPC) rs8034802, were found to be associated with HDL-C increases with ILI (p=0.0038 and 0.013, respectively) and had nominally significant treatment interactions (p=0.047 and 0.046, respectively). The fatty acid desaturase-2 (FADS-2) rs1535 variant, associated with low baseline HDL-C (p=0.017), was associated with HDL-C increases with ILI (0.0037) and had a nominal treatment interaction (p= 0.035). ApoB (rs693) and LIPC (rs8034802) SNPs showed nominally significant associations with HDL-C and triglyceride changes with ILI and a treatment interaction (p<0.05). A PGS1 SNP (rs4082919) showed the most significant triglyceride treatment interaction in the full cohort (p=0.0009). Conclusions This is the first study to identify genetic variants modifying lipid responses to a randomized lifestyle behavior intervention in overweight/obese diabetic individuals. The effect of genetic factors on lipid changes may differ from the effects on baseline lipids and are modifiable by behavioral intervention. PMID:23861364

  11. Real-time quantitative polymerase chain reaction methods for four genetically modified maize varieties and maize DNA content in food.

    PubMed

    Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre

    2002-01-01

    Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.

  12. Mutational screening in genes related with porto-pulmonary hypertension: An analysis of 6 cases.

    PubMed

    Pousada, Guillermo; Baloira, Adolfo; Valverde, Diana

    2017-04-07

    Portopulmonary hypertension (PPH) is a rare disease with a low incidence and without a clearly-identified genetic component. The aim of this work was to check genes and genetic modifiers related to pulmonary arterial hypertension in patients with PPH in order to clarify the molecular basis of the pathology. We selected a total of 6 patients with PPH and amplified the exonic regions and intronic flanking regions of the relevant genes and regions of interest of the genetic modifiers. Six patients diagnosed with PPH were analyzed and compared to 55 healthy individuals. Potentially-pathogenic mutations were identified in the analyzed genes of 5 patients. None of these mutations, which are highly conserved throughout evolution, were detected in the control patients nor different databases analyzed (1000 Genomes, ExAC and DECIPHER). After analyzing for genetic modifiers, we found different variations that could favor the onset of the disease. The genetic analysis carried out in this small cohort of patients with PPH revealed a large number of mutations, with the ENG gene showing the greatest mutational frequency. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  13. Critical roles for a genetic code alteration in the evolution of the genus Candida.

    PubMed

    Silva, Raquel M; Paredes, João A; Moura, Gabriela R; Manadas, Bruno; Lima-Costa, Tatiana; Rocha, Rita; Miranda, Isabel; Gomes, Ana C; Koerkamp, Marian J G; Perrot, Michel; Holstege, Frank C P; Boucherie, Hélian; Santos, Manuel A S

    2007-10-31

    During the last 30 years, several alterations to the standard genetic code have been discovered in various bacterial and eukaryotic species. Sense and nonsense codons have been reassigned or reprogrammed to expand the genetic code to selenocysteine and pyrrolysine. These discoveries highlight unexpected flexibility in the genetic code, but do not elucidate how the organisms survived the proteome chaos generated by codon identity redefinition. In order to shed new light on this question, we have reconstructed a Candida genetic code alteration in Saccharomyces cerevisiae and used a combination of DNA microarrays, proteomics and genetics approaches to evaluate its impact on gene expression, adaptation and sexual reproduction. This genetic manipulation blocked mating, locked yeast in a diploid state, remodelled gene expression and created stress cross-protection that generated adaptive advantages under environmental challenging conditions. This study highlights unanticipated roles for codon identity redefinition during the evolution of the genus Candida, and strongly suggests that genetic code alterations create genetic barriers that speed up speciation.

  14. Mu opioid receptors in GABAergic forebrain neurons moderate motivation for heroin and palatable food

    PubMed Central

    Charbogne, Pauline; Gardon, Olivier; Martín-García, Elena; Keyworth, Helen L.; Matsui, Aya; Mechling, Anna E.; Bienert, Thomas; Nasseef, Taufiq; Robé, Anne; Moquin, Luc; Darcq, Emmanuel; Ben Hamida, Sami; Robledo, Patricia; Matifas, Audrey; Befort, Katia; Gavériaux-Ruff, Claire; Harsan, Laura-Adela; Von Everfeldt, Dominik; Hennig, Jurgen; Gratton, Alain; Kitchen, Ian; Bailey, Alexis; Alvarez, Veronica A.; Maldonado, Rafael; Kieffer, Brigitte L.

    2016-01-01

    BACKGROUND Mu opioid receptors (MORs) are central to pain control, drug reward and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in GABAergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. METHODS We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in GABAergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology and microdialysis, probed neuronal activation by c-Fos immunohistochemistry and resting state-functional magnetic resonance imaging, and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. RESULTS Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area (VTA), local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. CONCLUSIONS Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus beyond a well-established role in reward processing, operating at the level of local VTA neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors. PMID:28185645

  15. Parallel universes of Black Six biology.

    PubMed

    Kraev, Alexander

    2014-07-19

    Creation of lethal and synthetic lethal mutations in an experimental organism is a cornerstone of genetic dissection of gene function, and is related to the concept of an essential gene. Common inbred mouse strains carry background mutations, which can act as genetic modifiers, interfering with the assignment of gene essentiality. The inbred strain C57BL/6J, commonly known as "Black Six", stands out, as it carries a spontaneous homozygous deletion in the nicotinamide nucleotide transhydrogenase (Nnt) gene [GenBank: AH009385.2], resulting in impairment of steroidogenic mitochondria of the adrenal gland, and a multitude of indirect modifier effects, coming from alteration of glucocorticoid-regulated processes. Over time, the popular strain has been used, by means of gene targeting technology, to assign "essential" and "redundant" qualifiers to numerous genes, thus creating an internally consistent "parallel universe" of knowledge. It is unrealistic to suggest phasing-out of this strain, given the scope of shared resources built around it, however, continuing on the road of "strain-unawareness" will result in profound waste of effort, particularly where translational research is concerned. The review analyzes the historical roots of this phenomenon and proposes that building of "parallel universes" should be urgently made visible to a critical reader by obligatory use of unambiguous and persistent tags in publications and databases, such as hypertext links, pointing to a vendor's strain description web page, or to a digital object identifier (d.o.i.) of the original publication, so that any research done exclusively in C57BL/6J, could be easily identified. This article was reviewed by Dr. Neil Smalheiser and Dr. Miguel Andrade-Navarro.

  16. Genetic modifications for personal enhancement: a defence.

    PubMed

    Murphy, Timothy F

    2014-04-01

    Bioconservative commentators argue that parents should not take steps to modify the genetics of their children even in the name of enhancement because of the damage they predict for values, identities and relationships. Some commentators have even said that adults should not modify themselves through genetic interventions. One commentator worries that genetic modifications chosen by adults for themselves will undermine moral agency, lead to less valuable experiences and fracture people's sense of self. These worries are not justified, however, since the effects of modification will not undo moral agency as such. Adults can still have valuable experiences, even if some prior choices no longer seem meaningful. Changes at the genetic level will not always, either, alienate people from their own sense of self. On the contrary, genetic modifications can help amplify choice, enrich lives and consolidate identities. Ultimately, there is no moral requirement that people value their contingent genetic endowment to the exclusion of changes important to them in their future genetic identities. Through weighing risks and benefits, adults also have the power to consent to, and assume the risks of, genetic modifications for themselves in a way not possible in prenatal genetic interventions.

  17. Unintended Effects in Genetically Modified Food/Feed Safety: A Way Forward.

    PubMed

    Fernandez, Antonio; Paoletti, Claudia

    2018-04-20

    Identifying and assessing unintended effects in genetically modified food and feed are considered paramount by the Food and Agricultural Organization (FAO), World Health Organization (WHO), and Codex Alimentarius, despite heated debate. This paper addresses outstanding needs: building consensus on the history-of-safe-use concept, harmonizing criteria to select appropriate conventional counterparts, and improving endpoint selection to identify unintended effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Over-expression of a putative oxidoreductase (UcpA) for increasing furfural or 5-hydroxymethylfurfural tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.

    The subject invention pertains to overexpression of a putative oxidoreductase (ucpA) for increasing furfural tolerance in genetically modified microorganisms. Genetically modified microorganisms capable of overexpressing UcpA are also provided. Increased expression of ucpA was shown to increase furfural tolerance by 50%, and to permit the fermentation of sugars to products in the presence of 15 mM furfural.

  19. Growth promotion of genetically modified hematopoietic progenitors using an antibody/c-Mpl chimera.

    PubMed

    Kawahara, Masahiro; Chen, Jianhong; Sogo, Takahiro; Teng, Jinying; Otsu, Makoto; Onodera, Masafumi; Nakauchi, Hiromitsu; Ueda, Hiroshi; Nagamune, Teruyuki

    2011-09-01

    Thrombopoietin is a potent cytokine that exerts proliferation of hematopoietic stem cells (HSCs) through its cognate receptor, c-Mpl. Therefore, mimicry of c-Mpl signaling by a receptor recognizing an artificial ligand would be attractive to attain specific expansion of genetically modified HSCs. Here we propose a system enabling selective expansion of genetically modified cells using an antibody/receptor chimera that can be activated by a specific antigen. We constructed an antibody/c-Mpl chimera, in which single-chain Fv (ScFv) of an anti-fluorescein antibody was tethered to the extracellular D2 domain of the erythropoietin receptor and transmembrane/cytoplasmic domains of c-Mpl. When the chimera was expressed in interleukin (IL)-3-dependent pro-B cell line Ba/F3, genetically modified cells were selectively expanded in the presence of fluorescein-conjugated BSA (BSA-FL) as a specific antigen. Furthermore, highly purified mouse HSCs transduced with the retrovirus carrying antibody/c-Mpl chimera gene proliferated in vitro in response to BSA-FL, and the cells retained in vivo long-term repopulating abilities. These results demonstrate that the antibody/c-Mpl chimera is capable of signal transduction that mimics wild-type c-Mpl signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    PubMed

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.

  1. Genetically modified T cells in cancer therapy: opportunities and challenges

    PubMed Central

    Sharpe, Michaela; Mount, Natalie

    2015-01-01

    Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies. PMID:26035842

  2. Irradiation influence on the detection of genetic-modified soybeans

    NASA Astrophysics Data System (ADS)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Baldasso, J. G.; Aquino, S.; Konietzny, U.; Greiner, R.

    2004-09-01

    Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60Co facility at dose levels of 0, 500, 800, and 1000Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found.

  3. Modified UMS, Modified SemRep and SemMedDB-UTH | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Modified UMLS, modified SemRep and SemMedDB-UTH – these are resources (UMLS, SemMedDB-UT) and tools (SemRep) created and maintained by National Library of Medicine that we have modified for personalized cancer therapy and returned to the NLM.

  4. Molecular insights into seed dispersal mutualisms driving plant population recruitment

    NASA Astrophysics Data System (ADS)

    García, Cristina; Grivet, Delphine

    2011-11-01

    Most plant species require mutualistic interactions with animals to fulfil their demographic cycle. In this regard frugivory (i.e., the intake of fruits by animals) enhances natural regeneration by mobilizing a large amount of seeds from source trees to deposition sites across the landscape. By doing so, frugivores move propagules, and the genotypes they harbour creating the spatial, ecological, and genetic environment under which subsequent recruitment proceeds. Recruitment patterns can be envisioned as the result of two density- and distance-dependent processes: seed dispersal and seed/seedling survival (the Janzen-Connell model). Population genetic studies add another layer of complexity for understanding the fate of dispersed propagules: the genetic relatedness among neighbouring seeds within a seed clump, a major outcome of frugivore activity, modifies their chances of germinating and surviving. Yet, we virtually ignore how the spatial distribution of maternal progenies and recruitment patterns relate with each other in frugivore-generated seed rains. Here we focus on the critical role of frugivore-mediated seed dispersal in shaping the spatial distribution of maternal progenies in the seed rain. We first examine which genetic mechanisms underlying recruitment are influenced by the spatial distribution of maternal progenies. Next, we examine those studies depicting the spatial distribution of maternal progenies in a frugivore-generated seed rain. In doing so, we briefly review the most suitable analytical approaches applied to track the contribution of fruiting trees to the seed rain based on molecular data. Then we look more specifically at the role of distinct frugivore guilds in determining maternal genetic correlations and their expected consequences for recruitment patterns. Finally we posit some general conclusions and suggest future research directions that would provide a more comprehensive understanding of the ecological and evolutionary consequences of dispersal mutualisms in plant populations.

  5. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization.

    PubMed

    García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César

    2006-05-01

    In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator.

  6. Chimpanzees create and modify probe tools functionally: A study with zoo-housed chimpanzees.

    PubMed

    Hopper, Lydia M; Tennie, Claudio; Ross, Stephen R; Lonsdorf, Elizabeth V

    2015-02-01

    Chimpanzees (Pan troglodytes) use tools to probe for out-of-reach food, both in the wild and in captivity. Beyond gathering appropriately-sized materials to create tools, chimpanzees also perform secondary modifications in order to create an optimized tool. In this study, we recorded the behavior of a group of zoo-housed chimpanzees when presented with opportunities to use tools to probe for liquid foods in an artificial termite mound within their enclosure. Previous research with this group of chimpanzees has shown that they are proficient at gathering materials from within their environment in order to create tools to probe for the liquid food within the artificial mound. Extending beyond this basic question, we first asked whether they only made and modified probe tools when it was appropriate to do so (i.e. when the mound was baited with food). Second, by collecting continuous data on their behavior, we also asked whether the chimpanzees first (intentionally) modified their tools prior to probing for food or whether such modifications occurred after tool use, possibly as a by-product of chewing and eating the food from the tools. Following our predictions, we found that tool modification predicted tool use; the chimpanzees began using their tools within a short delay of creating and modifying them, and the chimpanzees performed more tool modifying behaviors when food was available than when they could not gain food through the use of probe tools. We also discuss our results in terms of the chimpanzees' acquisition of the skills, and their flexibility of tool use and learning. © 2014 Wiley Periodicals, Inc.

  7. Physical activity reduces the influence of genetic effects on BMI and waist circumference: a study in young adult twins.

    PubMed

    Mustelin, L; Silventoinen, K; Pietiläinen, K; Rissanen, A; Kaprio, J

    2009-01-01

    Both obesity and exercise behavior are influenced by genetic and environmental factors. However, whether obesity and physical inactivity share the same genetic vs environmental etiology has rarely been studied. We therefore analyzed these complex relationships, and also examined whether physical activity modifies the degree of genetic influence on body mass index (BMI) and waist circumference (WC). The FinnTwin16 Study is a population-based, longitudinal study of five consecutive birth cohorts (1975-1979) of Finnish twins. Data on height, weight, WC and physical activity of 4343 subjects at the average age of 25 (range, 22-27 years) years were obtained by a questionnaire and self-measurement of WC. Quantitative genetic analyses based on linear structural equations were carried out by the Mx statistical package. The modifying effect of physical activity on genetic and environmental influences was analyzed using gene-environment interaction models. The overall heritability estimates were 79% in males and 78% in females for BMI, 56 and 71% for WC and 55 and 54% for physical activity, respectively. There was an inverse relationship between physical activity and WC in males (r = -0.12) and females (r=-0.18), and between physical activity and BMI in females (r = -0.12). Physical activity significantly modified the heritability of BMI and WC, with a high level of physical activity decreasing the additive genetic component in BMI and WC. Physically active subjects were leaner than sedentary ones, and physical activity reduced the influence of genetic factors to develop high BMI and WC. This suggests that the individuals at greatest genetic risk for obesity would benefit the most from physical activity.

  8. Reproductive cloning combined with genetic modification.

    PubMed

    Strong, C

    2005-11-01

    Although there is widespread opposition to reproductive cloning, some have argued that its use by infertile couples to have genetically related children would be ethically justifiable. Others have suggested that lesbian or gay couples might wish to use cloning to have genetically related children. Most of the main objections to human reproductive cloning are based on the child's lack of unique nuclear DNA. In the future, it may be possible safely to create children using cloning combined with genetic modifications, so that they have unique nuclear DNA. The genetic modifications could be aimed at giving such children genetic characteristics of both members of the couple concerned. Thus, cloning combined with genetic modification could be appealing to infertile, lesbian, or gay couples who seek genetically related children who have genetic characteristics of both members. In such scenarios, the various objections to human reproductive cloning that are based on the lack of genetic uniqueness would no longer be applicable. The author argues that it would be ethically justifiable for such couples to create children in this manner, assuming these techniques could be used safely.

  9. Risk, regulation and biotechnology: the case of GM crops.

    PubMed

    Smyth, Stuart J; Phillips, Peter W B

    2014-07-03

    The global regulation of products of biotechnology is increasingly divided. Regulatory decisions for genetically modified (GM) crops in North America are predictable and efficient, with numerous countries in Latin and South America, Australia and Asia following this lead. While it might have been possible to argue that Europe's regulations were at one time based on real concerns about minimizing risks and ensuring health and safety, it is increasingly apparent that the entire European Union (EU) regulatory system for GM crops and foods is now driven by political agendas. Countries within the EU are at odds with each other as some have commercial production of GM crops, while others refuse to even develop regulations that could provide for the commercial release of GM crops. This divide in regulatory decision-making is affecting international grain trade, creating challenges for feeding an increasing global population.

  10. Validation studies and proficiency testing.

    PubMed

    Ankilam, Elke; Heinze, Petra; Kay, Simon; Van den Eede, Guy; Popping, Bert

    2002-01-01

    Genetically modified organisms (GMOs) entered the European food market in 1996. Current legislation demands the labeling of food products if they contain <1% GMO, as assessed for each ingredient of the product. To create confidence in the testing methods and to complement enforcement requirements, there is an urgent need for internationally validated methods, which could serve as reference methods. To date, several methods have been submitted to validation trials at an international level; approaches now exist that can be used in different circumstances and for different food matrixes. Moreover, the requirement for the formal validation of methods is clearly accepted; several national and international bodies are active in organizing studies. Further validation studies, especially on the quantitative polymerase chain reaction methods, need to be performed to cover the rising demand for new extraction methods and other background matrixes, as well as for novel GMO constructs.

  11. Improve T Cell Therapy in Neuroblastoma

    DTIC Science & Technology

    2012-07-01

    Epstein - Barr - virus (EBV)-specific cytotoxic T lymphocytes (EBV-CTLs) genetically modified to express a chimeric antigen receptor (CAR-GD2) targeting the...A. Krance, M. K. Brenner, and C. M. Rooney. 1996. Long-term restoration of immunity against Epstein - Barr virus infection by adoptive transfer of gene... Barr - virus (EBV)- specific cytotoxic T l ymphocytes (EBV-CTLs) genetically modified to express a c himeric antigen receptor (CAR-GD2) targeting the GD2

  12. Host cells and methods for producing isoprenyl alkanoates

    DOEpatents

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  13. The use of genetically modified Saccharomyces cerevisiae strains in the wine industry.

    PubMed

    Schuller, Dorit; Casal, Margarida

    2005-08-01

    In recent decades, science and food technology have contributed at an accelerated rate to the introduction of new products to satisfy nutritional, socio-economic and quality requirements. With the emergence of modern molecular genetics, the industrial importance of Saccharomyces cerevisiae, is continuously extended. The demand for suitable genetically modified (GM) S. cerevisiae strains for the biofuel, bakery and beverage industries or for the production of biotechnological products (e.g. enzymes, pharmaceutical products) will continuously grow in the future. Numerous specialised S. cerevisiae wine strains were obtained in recent years, possessing a wide range of optimised or novel oenological properties, capable of satisfying the demanding nature of modern winemaking practise. The unlocking of transcriptome, proteome and metabolome complexities will contribute decisively to the knowledge about the genetic make-up of commercial yeast strains and will influence wine strain improvement via genetic engineering. The most relevant advances regarding the importance and implications of the use of GM yeast strains in the wine industry are discussed in this mini-review. In this work, various aspects are considered including the strategies used for the construction of strains with respect to current legislation requirements, the environmental risk evaluations concerning the deliberate release of genetically modified yeast strains, the methods for detection of recombinant DNA and protein that are currently under evaluation, and the reasons behind the critical public perception towards the application of such strains.

  14. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  15. A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting.

    PubMed

    van den Wollenberg, D J M; van den Hengel, S K; Dautzenberg, I J C; Cramer, S J; Kranenburg, O; Hoeben, R C

    2008-12-01

    Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified sigma 1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the sigma 1 spike protein. This demonstrates that the C terminus of the sigma 1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.

  16. Genetically modified food in perspective: an inquiry-based curriculum to help middle school students make sense of tradeoffs

    NASA Astrophysics Data System (ADS)

    Seethaler, Sherry; Linn, Marcia

    To understand how students learn about science controversy, this study examines students' reasoning about tradeoffs in the context of a technology-enhanced curriculum about genetically modified food. The curriculum was designed and refined based on the Scaffolded Knowledge Integration Framework to help students sort and integrate their initial ideas and those presented in the curriculum. Pre-test and post-test scores from 190 students show that students made significant (p < 0.0001) gains in their understanding of the genetically modified food controversy. Analyses of students' final papers, in which they took and defended a position on what type of agricultural practice should be used in their geographical region, showed that students were able to provide evidence both for and against their positions, but were less explicit about how they weighed these tradeoffs. These results provide important insights into students' thinking and have implications for curricular design.

  17. Identification and quantification of genetically modified Moonshade carnation lines using conventional and TaqMan real-time polymerase chain reaction methods.

    PubMed

    Li, Peng; Jia, Junwei; Bai, Lan; Pan, Aihu; Tang, Xueming

    2013-07-01

    Genetically modified carnation (Dianthus caryophyllus L.) Moonshade was approved for planting and commercialization in several countries from 2004. Developing methods for analyzing Moonshade is necessary for implementing genetically modified organism labeling regulations. In this study, the 5'-transgene integration sequence was isolated using thermal asymmetric interlaced (TAIL)-PCR. Based upon the 5'-transgene integration sequence, conventional and TaqMan real-time PCR assays were established. The relative limit of detection for the conventional PCR assay was 0.05 % for Moonshade using 100 ng total carnation genomic DNA, corresponding to approximately 79 copies of the carnation haploid genome, and the limits of detection and quantification of the TaqMan real-time PCR assay were estimated to be 51 and 254 copies of haploid carnation genomic DNA, respectively. These results are useful for identifying and quantifying Moonshade and its derivatives.

  18. Development and Evaluation of Event-Specific Quantitative PCR Method for Genetically Modified Soybean MON87701.

    PubMed

    Tsukahara, Keita; Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Nishimaki-Mogami, Tomoko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event, MON87701. First, a standard plasmid for MON87701 quantification was constructed. The conversion factor (C f ) required to calculate the amount of genetically modified organism (GMO) was experimentally determined for a real-time PCR instrument. The determined C f for the real-time PCR instrument was 1.24. For the evaluation of the developed method, a blind test was carried out in an inter-laboratory trial. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr), respectively. The determined biases and the RSDr values were less than 30 and 13%, respectively, at all evaluated concentrations. The limit of quantitation of the method was 0.5%, and the developed method would thus be applicable for practical analyses for the detection and quantification of MON87701.

  19. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    PubMed

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  20. Development and interlaboratory validation of quantitative polymerase chain reaction method for screening analysis of genetically modified soybeans.

    PubMed

    Takabatake, Reona; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2013-01-01

    A novel real-time polymerase chain reaction (PCR)-based quantitative screening method was developed for three genetically modified soybeans: RRS, A2704-12, and MON89788. The 35S promoter (P35S) of cauliflower mosaic virus is introduced into RRS and A2704-12 but not MON89788. We then designed a screening method comprised of the combination of the quantification of P35S and the event-specific quantification of MON89788. The conversion factor (Cf) required to convert the amount of a genetically modified organism (GMO) from a copy number ratio to a weight ratio was determined experimentally. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDR), respectively. The determined RSDR values for the method were less than 25% for both targets. We consider that the developed method would be suitable for the simple detection and approximate quantification of GMO.

  1. Listened to, but not heard! The failure to represent the public in genetically modified food policies.

    PubMed

    Lassen, Jesper

    2018-04-01

    'In the mid-1990s, a mismatch was addressed between European genetically modified food policy, which focused primarily on risks and economic prospects, and public anxieties, which also included other concerns, and there was a development in European food policy toward the inclusion of what were referred to as "ethical aspects." Using parliamentary debates in Denmark in 2002 and 2015 as a case, this article examines how three storylines of concern that were visible in public discourse at the time were represented by the decision makers in parliament. It shows that core public concerns raising fundamental questions about genetically modified foods, and in particular their perceived unnaturalness, were not considered in the parliamentary debates. It is suggested that the failure of the parliament to represent the public may undermine the legitimacy of politicians and lead to disillusionment with parliamentary government.

  2. Regulatory science requirements of labeling of genetically modified food.

    PubMed

    Moghissi, A Alan; Jaeger, Lisa M; Shafei, Dania; Bloom, Lindsey L

    2018-05-01

    This paper provides an overview of the evolution of food labeling in the USA. It briefly describes the three phases of agricultural development consisting of naturally occurring, cross-bred, and genetically engineered, edited or modified crops, otherwise known as Genetically Modified Organisms (GMO). It uses the Best Available Regulatory Science (BARS) and Metrics for Evaluation of Regulatory Science Claims (MERSC) to evaluate the scientific validity of claims applicable to GMO and the Best Available Public Information (BAPI) to evaluate the pronouncements by public media and others. Subsequently claims on health risk, ecological risk, consumer choice, and corporate greed are evaluated based on BARS/MERSC and BAPI. The paper concludes by suggesting that labeling of food containing GMO should consider the consumer's choice, such as the food used by those who desire kosher and halal food. Furthermore, the consumer choice is already met by the exclusion of GMO in organic food.

  3. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25

    PubMed Central

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-01-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg−1 GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25. PMID:24804053

  4. [The EU law on genetically modified organisms: the European Commission changes the strategy in order to allow, restrict, or prohibit its culture].

    PubMed

    González Vaqué, Luis

    2010-01-01

    On July 13 2010, the European Commission adopted a series of measures which outline a new approach on Genetically Modified Organisms (GMOs) cultivation in the Member States. This proposal, which still retains the basis of the existing science-based GMO authorisation system, will be implemented through: a Communication from the Commission, explaining the new approach on the freedom for Member States to decide on the cultivation of genetically modified crops; the "Proposal for a Regulation of the European Parliament and of the Council amending Directive 2001/18/EC as regards the possibility for the Member States to restrict or prohibit the cultivation of GMOs in their territory"; and a new "European Commission Recommendation (2010/C 200/01) of 13 July 2010 on guidelines for the development of national co-existence measures to avoid the unintended presence of GMOs in conventional and organic crops".

  5. [Supervision of foods containing components of genetically modified organisms and the problems of labeling this type of products].

    PubMed

    Onishchenko, G G

    2010-01-01

    Commercial production of genetically modified (GM) crops as food or feed is regarded as a promising social area in the development of modern biotechnology. The Russian Federation has set up a governmental system to regulate the use of biotechnology products, which is based on Russian and foreign experience and the most up-to-date scientific approaches. The system for evaluating the quality and safety of GM foodstuffs envisages the postregistration monitoring of their circulation as an obligatory stage. For these purposes, the world community applies two methods: enzyme immunoassay and polymerase chain reaction. It should be noted that there are various approaches to GM food labeling in the world; this raises the question of whether the labeling of foods that are prepared from genetically modified organisms, but contain no protein or DNA is to be introduced in Russia, as in the European Union.

  6. Discrimination of genetically modified sugar beets based on terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-01

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.

  7. Hypothetical link between infertility and genetically modified food.

    PubMed

    Gao, Mingxia; Li, Bin; Yuan, Wenzhen; Zhao, Lihui; Zhang, Xuehong

    2014-01-01

    It is speculated that genetically modified food (GMF)/genetically modified organism (GMO) is responsible for infertility development. The risk linked with a wide use of GMFs/GMOs offers the basic elements for social criticism. However, to date, it has not been justified whether the bad effects are directly resulted from products of genetic modifications or trans-genesis process. Extensive experience with the risk assessment of whole foods has been applied recently on the safety and nutritional testing of GMFs/GMOs. Investigations have tested the safety of GMFs including sub-acute, chronic, reproductive, multi-generation and carcinogenicity studies. We extrapolated the potential risks associated with GMFs/GMOs on reproduction, and analyzed the multi-aspect linked between infertility and GMFs/GMOs. It could be conjectured that GMFs/GMOs could be potential hazard on reproduction, linking to the development of infertility through influencing the endocrine metabolism, endometriosis. However, little evidence shows the impaction on embryo or reproductive related tumor due to the limited literatures, and needs further research. The article presents some related patents on GMFs/GMOs, and some methods for tracking GMOs.

  8. Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed.

    PubMed

    Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich

    2013-10-30

    Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.

  9. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    NASA Astrophysics Data System (ADS)

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2017-04-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.

  10. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    NASA Astrophysics Data System (ADS)

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-06-01

    A large-scale cross-sectional study ( N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.

  11. The Flipside of the Power of Engineered T Cells: Observed and Potential Toxicities of Genetically Modified T Cells as Therapy.

    PubMed

    Bedoya, Felipe; Frigault, Matthew J; Maus, Marcela V

    2017-02-01

    Autologous T cells modified to recognize novel antigen targets are a novel form of therapy for cancer. We review the various potential forms of observed and hypothetical toxicities associated with genetically modified T cells. Despite the focus on toxicities in this review, re-directed T cells represent a powerful and highly effective form of anti-cancer therapy; we remain optimistic that the common toxicities will become routinely manageable and that some theoretical toxicity will be exceedingly rare, if ever observed. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  12. Mitral valve disease—morphology and mechanisms

    PubMed Central

    Levine, Robert A.; Hagége, Albert A.; Judge, Daniel P.; Padala, Muralidhar; Dal-Bianco, Jacob P.; Aikawa, Elena; Beaudoin, Jonathan; Bischoff, Joyce; Bouatia-Naji, Nabila; Bruneval, Patrick; Butcher, Jonathan T.; Carpentier, Alain; Chaput, Miguel; Chester, Adrian H.; Clusel, Catherine; Delling, Francesca N.; Dietz, Harry C.; Dina, Christian; Durst, Ronen; Fernandez-Friera, Leticia; Handschumacher, Mark D.; Jensen, Morten O.; Jeunemaitre, Xavier P.; Le Marec, Hervé; Le Tourneau, Thierry; Markwald, Roger R.; Mérot, Jean; Messas, Emmanuel; Milan, David P.; Neri, Tui; Norris, Russell A.; Peal, David; Perrocheau, Maelle; Probst, Vincent; Pucéat, Michael; Rosenthal, Nadia; Solis, Jorge; Schott, Jean-Jacques; Schwammenthal, Ehud; Slaugenhaupt, Susan A.; Song, Jae-Kwan; Yacoub, Magdi H.

    2016-01-01

    Mitral valve disease is a frequent cause of heart failure and death. Emerging evidence indicates that the mitral valve is not a passive structure, but—even in adult life—remains dynamic and accessible for treatment. This concept motivates efforts to reduce the clinical progression of mitral valve disease through early detection and modification of underlying mechanisms. Discoveries of genetic mutations causing mitral valve elongation and prolapse have revealed that growth factor signalling and cell migration pathways are regulated by structural molecules in ways that can be modified to limit progression from developmental defects to valve degeneration with clinical complications. Mitral valve enlargement can determine left ventricular outflow tract obstruction in hypertrophic cardiomyopathy, and might be stimulated by potentially modifiable biological valvular–ventricular interactions. Mitral valve plasticity also allows adaptive growth in response to ventricular remodelling. However, adverse cellular and mechanobiological processes create relative leaflet deficiency in the ischaemic setting, leading to mitral regurgitation with increased heart failure and mortality. Our approach, which bridges clinicians and basic scientists, enables the correlation of observed disease with cellular and molecular mechanisms, leading to the discovery of new opportunities for improving the natural history of mitral valve disease. PMID:26483167

  13. CARs: Driving T-cell specificity to enhance anti-tumor immunity

    PubMed Central

    Kebriaei, Partow; Kelly, Susan S.; Manuri, Pallavi; Jena, Bipulendu; Jackson, Rineka; Shpall, Elizabeth; Champlin, Richard; Cooper, Laurence J. N.

    2013-01-01

    Adoptive transfer of antigen-specific T cells is a compelling tool to treat cancer. To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens, robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve the potency of genetically modified T cells. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, antitumor activity, paving the way for multi-center trials to establish the efficacy of this novel T-cell therapy. PMID:22202074

  14. Old Fashioned vs. Ultra-Processed-Based Current Diets: Possible Implication in the Increased Susceptibility to Type 1 Diabetes and Celiac Disease in Childhood.

    PubMed

    Aguayo-Patrón, Sandra V; Calderón de la Barca, Ana M

    2017-11-15

    Ultra-processed foods are ready-to-heat and ready-to-eat products created to replace traditional homemade meals and dishes due to convenience and accessibility. Because of their low-fiber and high-fat and sugar composition, these foodstuffs could induce a negative impact on health. They are partially responsible for obesity and chronic non-transmissible diseases; additionally, they could impact in the prevalence of autoimmune diseases such as type 1 diabetes and celiac disease. The rationale is that the nutritional composition of ultra-processed foodstuffs can induce gut dysbiosis, promoting a pro-inflammatory response and consequently, a "leaky gut". These factors have been associated with increased risk of autoimmunity in genetically predisposed children. In addition, food emulsifiers, commonly used in ultra-processed products could modify the gut microbiota and intestinal permeability, which could increase the risk of autoimmunity. In contrast, unprocessed and minimally processed food-based diets have shown the capacity to promote gut microbiota eubiosis, anti-inflammatory response, and epithelial integrity, through bacterial butyrate production. Thus, to decrease the susceptibility to autoimmunity, genetically predisposed children should avoid ultra-processed food products and encourage the consumption of fresh and minimally processed foods.

  15. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B; Rudolph, Anja; Schmutzler, Rita K; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A; Easton, Douglas F; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A; Schmidt, Marjanka K; van der Baan, Frederieke H; Spurdle, Amanda B; Walker, Logan C; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Gómez Garcia, Encarna B; Olopade, Olufunmilayo I; Nussbaum, Robert L; Nathanson, Katherine L; Domchek, Susan M; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K; Miron, Alex; Southey, Melissa C; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Ding, Yuan Chun; Neuhausen, Susan L; Hansen, Thomas V O; Gerdes, Anne-Marie; Ejlertsen, Bent; Jønson, Lars; Osorio, Ana; Martínez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E; Blazer, Kathleen R; Weitzel, Jeffrey N; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D Gareth R; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E; Kennedy, M John; Rogers, Mark T; Porteous, Mary E; Morrison, Patrick J; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V; Ellis, Steve; Cole, Trevor; Godwin, Andrew K; Claes, Kathleen; Van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L; Rodriguez, Gustavo C; Copeland, Larry J; de la Hoya, Miguel; Segura, Pedro Perez; Nevanlinna, Heli; Aittomäki, Kristiina; van Os, Theo A M; Meijers-Heijboer, Hanne E J; van der Hout, Annemarie H; Vreeswijk, Maaike P G; Hoogerbrugge, Nicoline; Ausems, Margreet G E M; van Doorn, Helena C; Collée, J Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R; Olswold, Curtis; Couch, Fergus J; Lindor, Noralane M; Wang, Xianshu; Szabo, Csilla I; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng M; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Åke; Kuchenbaecker, Karoline B; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D P; Chenevix-Trench, Georgia; Antoniou, Antonis C; Friedman, Eitan

    2015-01-01

    BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In this study, we evaluated the putative role of variants in many candidate modifier genes. Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n = 3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. The observed P values of association ranged between 0.005 and 1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies. ©2014 American Association for Cancer Research.

  16. Genetically modified pigs produced with a nonviral episomal vector

    PubMed Central

    Manzini, Stefano; Vargiolu, Alessia; Stehle, Isa M; Bacci, Maria Laura; Cerrito, Maria Grazia; Giovannoni, Roberto; Zannoni, Augusta; Bianco, Maria Rosaria; Forni, Monica; Donini, Pierluigi; Papa, Michele; Lipps, Hans J; Lavitrano, Marialuisa

    2006-01-01

    Genetic modification of cells and animals is an invaluable tool for biotechnology and biomedicine. Currently, integrating vectors are used for this purpose. These vectors, however, may lead to insertional mutagenesis and variable transgene expression and can undergo silencing. Scaffold/matrix attachment region-based vectors are nonviral expression systems that replicate autonomously in mammalian cells, thereby making possible safe and reliable genetic modification of higher eukaryotic cells and organisms. In this study, genetically modified pig fetuses were produced with the scaffold/matrix attachment region-based vector pEPI, delivered to embryos by the sperm-mediated gene transfer method. The pEPI vector was detected in 12 of 18 fetuses in the different tissues analyzed and was shown to be retained as an episome. The reporter gene encoded by the pEPI vector was expressed in 9 of 12 genetically modified fetuses. In positive animals, all tissues analyzed expressed the reporter gene; moreover in these tissues, the positive cells were on the average 79%. The high percentage of EGFP-expressing cells and the absence of mosaicism have important implications for biotechnological and biomedical applications. These results are an important step forward in animal transgenesis and can provide the basis for the future development of germ-line gene therapy. PMID:17101993

  17. Weaving a Tapestry from Threads Spun by Geneticists: The Series Perspectives on Genetics, 1987-2008.

    PubMed

    Dove, William F

    2016-07-01

    The Perspectives column was initiated in 1987 when Jan Drake, Editor-in-Chief of GENETICS, invited Jim Crow and William Dove to serve as coeditors of "Anecdotal, Historical, and Critical Commentaries." As the series evolved over 21 years, under the guidance of Crow and Dove, the input of stories told by geneticists from many countries created a panorama of 20th-century genetics. Three recurrent themes are visible: how geneticists have created the science (as solitary investigators, in pairs, or in cooperative groups); how geneticists work hard, but find ways to have fun; and how public and private institutions have sustained the science of genetics, particularly in the United States. This article ends by considering how the Perspectives series and other communication formats can carry forward the core science of genetics from the 20th into the 21st century. Copyright © 2016 by the Genetics Society of America.

  18. Genetically engineered plants with increased vegetative oil content

    DOEpatents

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  19. Frankenfoods: Values about Genetics Embedded in a Metaphor.

    ERIC Educational Resources Information Center

    Flores, Vanessa S.; Tobin, Allan J.

    2002-01-01

    Presents an assay on genetically modified (GM) foods, also called Frankenfoods, that demonstrates ways to evaluate a scientific metaphor and facilitate discussion on students' values regarding GM foods. (YDS)

  20. Current perspectives on genetically modified crops and detection methods.

    PubMed

    Kamle, Madhu; Kumar, Pradeep; Patra, Jayanta Kumar; Bajpai, Vivek K

    2017-07-01

    Genetically modified (GM) crops are the fastest adopted commodities in the agribiotech industry. This market penetration should provide a sustainable basis for ensuring food supply for growing global populations. The successful completion of two decades of commercial GM crop production (1996-2015) is underscored by the increasing rate of adoption of genetic engineering technology by farmers worldwide. With the advent of introduction of multiple traits stacked together in GM crops for combined herbicide tolerance, insect resistance, drought tolerance or disease resistance, the requirement of reliable and sensitive detection methods for tracing and labeling genetically modified organisms in the food/feed chain has become increasingly important. In addition, several countries have established threshold levels for GM content which trigger legally binding labeling schemes. The labeling of GM crops is mandatory in many countries (such as China, EU, Russia, Australia, New Zealand, Brazil, Israel, Saudi Arabia, Korea, Chile, Philippines, Indonesia, Thailand), whereas in Canada, Hong Kong, USA, South Africa, and Argentina voluntary labeling schemes operate. The rapid adoption of GM crops has increased controversies, and mitigating these issues pertaining to the implementation of effective regulatory measures for the detection of GM crops is essential. DNA-based detection methods have been successfully employed, while the whole genome sequencing using next-generation sequencing (NGS) technologies provides an advanced means for detecting genetically modified organisms and foods/feeds in GM crops. This review article describes the current status of GM crop commercialization and discusses the benefits and shortcomings of common and advanced detection systems for GMs in foods and animal feeds.

  1. Microorganisms having enhanced tolerance to inhibitors and stress

    DOEpatents

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  2. The use of life-cycle assessment to evaluate the environmental impacts of growing genetically modified, nitrogen use-efficient canola.

    PubMed

    Strange, Alison; Park, Julian; Bennett, Richard; Phipps, Richard

    2008-05-01

    Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution.

  3. [Contamination with genetically modified maize MON863 of processed foods on the market].

    PubMed

    Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi

    2009-06-01

    Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.

  4. Peroxisome Mini-Libraries: Systematic Approaches to Study Peroxisomes Made Easy.

    PubMed

    Dahan, Noa; Schuldiner, Maya; Zalckvar, Einat

    2017-01-01

    High-throughput methodologies have been extensively used in the budding yeast, Saccharomyces cerevisiae, to uncover fundamental principles of cell biology. Over the years, several collections of yeast strains (libraries) were built to enable systematic exploration of cellular functions. However, using these libraries experimentally is often labor intensive and restricted to laboratories that hold high throughput platforms. Utilizing the available full genome libraries we handpicked a subset of strains that represent all known and predicted peroxisomal proteins as well as proteins that have central roles in peroxisome biology. These smaller collections of strains, mini-libraries, can be rapidly and easily used for complicated screens by any lab. Since one of the libraries is built such that it can be easily modified in the tag, promoter and selection, we also discuss how these collections form the basis for creating a diversity of new peroxisomal libraries for future studies. Using manual tools, available in any yeast lab, coupled with few simple genetic approaches, we will show how these libraries can be "mixed and matched" to create tailor made libraries for screening. These yeast collections may now be exploited to study uncharted territories in the biology of peroxisomes by anyone, anywhere.

  5. [Development of the next generation humanized mouse for drug discovery].

    PubMed

    Ito, Ryoji

    A humanized mouse, which is efficiently engrafted human cells and tissues, is an important tool to mimic human physiology for biomedical researches. Since 2000s, severe combined immunodeficient mouse strains such as NOG, BRG, and NSG mice have been generated. They are great recipients to create humanized mouse models compared to previous other immunodeficient strains due to their multiple dysfunctions of innate and acquired immunity. Especially, the transfer of human hematopoietic stem cells into these immunodeficient mice has been enabled to reconstitute human immune systems, because the mice show high engraftment level of human leukocyte in peripheral blood (~50%), spleen and bone marrow (60~90%) and generate well-differentiated multilineage human immune cells including lymphoid and myeloid lineage cells. Using these mice, several human disease models such as cancer, allergy, graft-versus-host disease (GVHD), and etc. have been established to understand the pathogenic mechanisms of the diseases and to evaluate the efficacy and safety of novel drugs. In this review, I provide an overview of recent advances in the humanized mouse technology, including generation of novel platforms of genetically modified NOG (next generation NOG) mice and some applications of them to create human disease models for drug discovery in preclinical researches.

  6. Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis.

    PubMed

    Riessland, Markus; Kaczmarek, Anna; Schneider, Svenja; Swoboda, Kathryn J; Löhr, Heiko; Bradler, Cathleen; Grysko, Vanessa; Dimitriadi, Maria; Hosseinibarkooie, Seyyedmohsen; Torres-Benito, Laura; Peters, Miriam; Upadhyay, Aaradhita; Biglari, Nasim; Kröber, Sandra; Hölker, Irmgard; Garbes, Lutz; Gilissen, Christian; Hoischen, Alexander; Nürnberg, Gudrun; Nürnberg, Peter; Walter, Michael; Rigo, Frank; Bennett, C Frank; Kye, Min Jeong; Hart, Anne C; Hammerschmidt, Matthias; Kloppenburg, Peter; Wirth, Brunhilde

    2017-02-02

    Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca 2+ -dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Mediation and modification of genetic susceptibility to obesity by eating behaviors.

    PubMed

    de Lauzon-Guillain, Blandine; Clifton, Emma Ad; Day, Felix R; Clément, Karine; Brage, Soren; Forouhi, Nita G; Griffin, Simon J; Koudou, Yves Akoli; Pelloux, Véronique; Wareham, Nicholas J; Charles, Marie-Aline; Heude, Barbara; Ong, Ken K

    2017-10-01

    Background: Many genetic variants show highly robust associations with body mass index (BMI). However, the mechanisms through which genetic susceptibility to obesity operates are not well understood. Potentially modifiable mechanisms, including eating behaviors, are of particular interest to public health. Objective: Here we explore whether eating behaviors mediate or modify genetic susceptibility to obesity. Design: Genetic risk scores for BMI (BMI-GRSs) were calculated for 3515 and 2154 adults in the Fenland and EDEN (Etude des déterminants pré et postnatals de la santé et du développement de l'enfant) population-based cohort studies, respectively. The eating behaviors-emotional eating, uncontrolled eating, and cognitive restraint-were measured through the use of a validated questionnaire. The mediating effect of each eating behavior on the association between the BMI-GRS and measured BMI was assessed by using the Sobel test. In addition, we tested for interactions between each eating behavior and the BMI-GRS on BMI. Results: The association between the BMI-GRS and BMI was mediated by both emotional eating (EDEN: P- Sobel = 0.01; Fenland: P- Sobel = 0.02) and uncontrolled eating (EDEN: P- Sobel = 0.04; Fenland: P -Sobel = 0.0006) in both sexes combined. Cognitive restraint did not mediate this association ( P -Sobel > 0.10), except among EDEN women ( P -Sobel = 0.0009). Cognitive restraint modified the relation between the BMI-GRS and BMI among men (EDEN: P -interaction = 0.0001; Fenland: P -interaction = 0.04) and Fenland women ( P -interaction = 0.0004). By tertiles of cognitive restraint, the association between the BMI-GRS and BMI was strongest in the lowest tertile of cognitive restraint, and weakest in the highest tertile. Conclusions: Genetic susceptibility to obesity was partially mediated by the "appetitive" eating behavior traits (uncontrolled and emotional eating) and, in 3 of the 4 population groups studied, was modified by cognitive restraint. High levels of cognitive control over eating appear to attenuate the genetic susceptibility to obesity. Future research into interventions designed to support restraint may help to protect genetically susceptible individuals from weight gain. © 2017 American Society for Nutrition.

  8. Understanding of Genetic Information in Higher Secondary Students in Northeast India and the Implications for Genetics Education

    ERIC Educational Resources Information Center

    Chattopadhyay, Ansuman

    2005-01-01

    Since the work of Watson and Crick in the mid-1950s, the science of genetics has become increasingly molecular. The development of recombinant DNA technologies by the agricultural and pharmaceutical industries led to the introduction of genetically modified organisms (GMOs). By the end of the twentieth century, reports of animal cloning and recent…

  9. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation

    PubMed Central

    Ambegaokar, Surendra S.; Jackson, George R.

    2011-01-01

    A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation. PMID:21949350

  10. Chimpanzees create and modify probe tools functionally: A study with zoo-housed chimpanzees

    PubMed Central

    Hopper, Lydia M; Tennie, Claudio; Ross, Stephen R; Lonsdorf, Elizabeth V

    2015-01-01

    Chimpanzees (Pan troglodytes) use tools to probe for out-of-reach food, both in the wild and in captivity. Beyond gathering appropriately-sized materials to create tools, chimpanzees also perform secondary modifications in order to create an optimized tool. In this study, we recorded the behavior of a group of zoo-housed chimpanzees when presented with opportunities to use tools to probe for liquid foods in an artificial termite mound within their enclosure. Previous research with this group of chimpanzees has shown that they are proficient at gathering materials from within their environment in order to create tools to probe for the liquid food within the artificial mound. Extending beyond this basic question, we first asked whether they only made and modified probe tools when it was appropriate to do so (i.e. when the mound was baited with food). Second, by collecting continuous data on their behavior, we also asked whether the chimpanzees first (intentionally) modified their tools prior to probing for food or whether such modifications occurred after tool use, possibly as a by-product of chewing and eating the food from the tools. Following our predictions, we found that tool modification predicted tool use; the chimpanzees began using their tools within a short delay of creating and modifying them, and the chimpanzees performed more tool modifying behaviors when food was available than when they could not gain food through the use of probe tools. We also discuss our results in terms of the chimpanzees’ acquisition of the skills, and their flexibility of tool use and learning. Am. J. Primatol. 77:162–170, 2015. © 2014 The Authors. American Journal of Primatology Published by Wiley Periodicals Inc. PMID:25220050

  11. APGEN Version 5.0

    NASA Technical Reports Server (NTRS)

    Maldague, Pierre; Page, Dennis; Chase, Adam

    2005-01-01

    Activity Plan Generator (APGEN), now at version 5.0, is a computer program that assists in generating an integrated plan of activities for a spacecraft mission that does not oversubscribe spacecraft and ground resources. APGEN generates an interactive display, through which the user can easily create or modify the plan. The display summarizes the plan by means of a time line, whereon each activity is represented by a bar stretched between its beginning and ending times. Activities can be added, deleted, and modified via simple mouse and keyboard actions. The use of resources can be viewed on resource graphs. Resource and activity constraints can be checked. Types of activities, resources, and constraints are defined by simple text files, which the user can modify. In one of two modes of operation, APGEN acts as a planning expert assistant, displaying the plan and identifying problems in the plan. The user is in charge of creating and modifying the plan. In the other mode, APGEN automatically creates a plan that does not oversubscribe resources. The user can then manually modify the plan. APGEN is designed to interact with other software that generates sequences of timed commands for implementing details of planned activities.

  12. Genetic structure and gene flow among Brazilian populations of Heliothis virescens (F.) (Lepidoptera: Noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Population genetic studies are essential to the better application of pest management strategies, including the monitoring of the evolution of resistance to insecticides and genetically modified plants. Bt-crops have been instrumental in controlling Heliothis virescens (F.), a pest that has develop...

  13. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    ERIC Educational Resources Information Center

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  14. Genetically altered mice for evaluation of mode-of-action (MOA)

    EPA Science Inventory

    Genetically altered mice for evaluation of mode-of-action (MOA). Barbara D. Abbott, Cynthia J. Wolf, Kaberi P. Das, Christopher S. Lau. (Presented by B. Abbott). This presentation provides an example of the use of genetically modified mice to determine the mode-of-action of r...

  15. Modifiable pathways in Alzheimer's disease: Mendelian randomisation analysis.

    PubMed

    Larsson, Susanna C; Traylor, Matthew; Malik, Rainer; Dichgans, Martin; Burgess, Stephen; Markus, Hugh S

    2017-12-06

    To determine which potentially modifiable risk factors, including socioeconomic, lifestyle/dietary, cardiometabolic, and inflammatory factors, are associated with Alzheimer's disease. Mendelian randomisation study using genetic variants associated with the modifiable risk factors as instrumental variables. International Genomics of Alzheimer's Project. 17 008 cases of Alzheimer's disease and 37 154 controls. Odds ratio of Alzheimer's per genetically predicted increase in each modifiable risk factor estimated with Mendelian randomisation analysis. This study included analyses of 24 potentially modifiable risk factors. A Bonferroni corrected threshold of P=0.002 was considered to be significant, and P<0.05 was considered suggestive of evidence for a potential association. Genetically predicted educational attainment was significantly associated with Alzheimer's. The odds ratios were 0.89 (95% confidence interval 0.84 to 0.93; P=2.4×10 -6 ) per year of education completed and 0.74 (0.63 to 0.86; P=8.0×10 -5 ) per unit increase in log odds of having completed college/university. The correlated trait intelligence had a suggestive association with Alzheimer's (per genetically predicted 1 SD higher intelligence: 0.73, 0.57 to 0.93; P=0.01). There was suggestive evidence for potential associations between genetically predicted higher quantity of smoking (per 10 cigarettes a day: 0.69, 0.49 to 0.99; P=0.04) and 25-hydroxyvitamin D concentrations (per 20% higher levels: 0.92, 0.85 to 0.98; P=0.01) and lower odds of Alzheimer's and between higher coffee consumption (per one cup a day: 1.26, 1.05 to 1.51; P=0.01) and higher odds of Alzheimer's. Genetically predicted alcohol consumption, serum folate, serum vitamin B 12 , homocysteine, cardiometabolic factors, and C reactive protein were not associated with Alzheimer's disease. These results provide support that higher educational attainment is associated with a reduced risk of Alzheimer's disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. 7 CFR 331.3 - PPQ select agents and toxins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Select agents and toxins listed in paragraph (b) of this section that have been genetically modified. (d... variegated chlorosis strain). (c) Genetic elements, recombinant nucleic acids, and recombinant organisms: (1...

  17. 42 CFR 73.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... genetically modified. (d) Overlap select agents or toxins that meet any of the following criteria are excluded... Equine Encephalitis virus (c) Genetic Elements, Recombinant Nucleic Acids, and Recombinant Organisms: (1...

  18. 7 CFR 331.3 - PPQ select agents and toxins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Select agents and toxins listed in paragraph (b) of this section that have been genetically modified. (d... variegated chlorosis strain). (c) Genetic elements, recombinant nucleic acids, and recombinant organisms: (1...

  19. Biocontainment of genetically modified organisms by synthetic protein design

    PubMed Central

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-01-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient either because they impose evolutionary pressure on the organism to eject the safeguard, because they can be circumvented by environmentally available compounds, or because they can be overcome by horizontal gene transfer (HGT). Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code to confer metabolic dependence on nonstandard amino acids for survival. The resulting GMOs cannot metabolically circumvent their biocontainment mechanisms using environmentally available compounds, and they exhibit unprecedented resistance to evolutionary escape via mutagenesis and HGT. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by reliance on synthetic metabolites. PMID:25607366

  20. The Influence of Genetics on Cystic Fibrosis Phenotypes

    PubMed Central

    Knowles, Michael R.; Drumm, Mitchell

    2012-01-01

    Technological advances in genetics have made feasible and affordable large studies to identify genetic variants that cause or modify a trait. Genetic studies have been carried out to assess variants in candidate genes, as well as polymorphisms throughout the genome, for their associations with heritable clinical outcomes of cystic fibrosis (CF), such as lung disease, meconium ileus, and CF-related diabetes. The candidate gene approach has identified some predicted relationships, while genome-wide surveys have identified several genes that would not have been obvious disease-modifying candidates, such as a methionine sulfoxide transferase gene that influences intestinal obstruction, or a region on chromosome 11 proximate to genes encoding a transcription factor and an apoptosis controller that associates with lung function. These unforeseen associations thus provide novel insight into disease pathophysiology, as well as suggesting new therapeutic strategies for CF. PMID:23209180

  1. The Detection of Genetically Modified Organisms: An Overview

    NASA Astrophysics Data System (ADS)

    Ovesná, Jaroslava; Demnerová, Kateřina; Pouchová, Vladimíra

    Genetically modified organisms (GMOs) are those whose genetic material has been altered by the insertion of a new gene or by the deletion of an existing one(s). Modern biotechnology, in particular, the rise of genetic engineering, has supported the development of GMOs suitable for research purposes and practical applications (Gepts, 2002; Novoselova,Meuwissen, & Huirne, 2007; Sakakibara & Saito, 2006). For over 20 years GM bacteria and other GM organisms have been used in laboratories for the study of gene functions (Maliga & Small, 2007; Ratledge & Kristiansen, 2006). Agricultural plants were the first GMOs to be released into the environment and placed on the market. Farmers around the world use GMsoybeans, GMcorn and GM cotton that are herbicide tolerant, or insect resistant, or combine several traits that reduce the costs associated with crop production (Corinne, Fernandez-Cornejo, & Goodhue, 2004).

  2. Biocontainment of genetically modified organisms by synthetic protein design.

    PubMed

    Mandell, Daniel J; Lajoie, Marc J; Mee, Michael T; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E; Gregg, Christopher J; Stoddard, Barry L; Church, George M

    2015-02-05

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  3. Biocontainment of genetically modified organisms by synthetic protein design

    NASA Astrophysics Data System (ADS)

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  4. Unified reduction principle for the evolution of mutation, migration, and recombination

    PubMed Central

    Altenberg, Lee; Liberman, Uri; Feldman, Marcus W.

    2017-01-01

    Modifier-gene models for the evolution of genetic information transmission between generations of organisms exhibit the reduction principle: Selection favors reduction in the rate of variation production in populations near equilibrium under a balance of constant viability selection and variation production. Whereas this outcome has been proven for a variety of genetic models, it has not been proven in general for multiallelic genetic models of mutation, migration, and recombination modification with arbitrary linkage between the modifier and major genes under viability selection. We show that the reduction principle holds for all of these cases by developing a unifying mathematical framework that characterizes all of these evolutionary models. PMID:28265103

  5. Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach.

    PubMed

    Kutyna, Dariusz R; Cordente, Antonio G; Varela, Cristian

    2014-01-01

    Gene modification of laboratory yeast strains is currently a very straightforward task thanks to the availability of the entire yeast genome sequence and the high frequency with which yeast can incorporate exogenous DNA into its genome. Unfortunately, laboratory strains do not perform well in industrial settings, indicating the need for strategies to modify industrial strains to enable strain development for industrial applications. Here we describe approaches we have used to genetically modify industrial strains used in winemaking.

  6. Plant biotechnology in China.

    PubMed

    Huang, Jikun; Rozelle, Scott; Pray, Carl; Wang, Qinfang

    2002-01-25

    A survey of China's plant biotechnologists shows that China is developing the largest plant biotechnology capacity outside of North America. The list of genetically modified plant technologies in trials, including rice, wheat, potatoes, and peanuts, is impressive and differs from those being worked on in other countries. Poor farmers in China are cultivating more area of genetically modified plants than are small farmers in any other developing country. A survey of agricultural producers in China demonstrates that Bacillus thuringiensis cotton adoption increases production efficiency and improves farmer health.

  7. African Security Challenges: Now and Over the Horizon. Food Security and Conflict: Current and Future Dimensions of the Challenge in Africa

    DTIC Science & Technology

    2010-04-01

    that area. Violence over Genetically-Modified Organisms ( GMOs ) While the experts agreed that there were not many, if any, major cases of...violent outbreaks over genetically-modified organism ( GMOs ) issues in Africa, there was some agreement that under certain circumstances, when combined...with other issues, these could be a trigger for riots and other forms of violent political protest. However, GMO issues should not be viewed as a

  8. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product.

    PubMed

    Pacher, Michael; Puchta, Holger

    2017-05-01

    Production of mutants of crop plants by the use of chemical or physical genotoxins has a long tradition. These factors induce the natural DNA repair machinery to repair damage in an error-prone way. In the case of radiation, multiple double-strand breaks (DSBs) are induced randomly in the genome, leading in very rare cases to a desirable phenotype. In recent years the use of synthetic, site-directed nucleases (SDNs) - also referred to as sequence-specific nucleases - like the CRISPR/Cas system has enabled scientists to use exactly the same naturally occurring DNA repair mechanisms for the controlled induction of genomic changes at pre-defined sites in plant genomes. As these changes are not necessarily associated with the permanent integration of foreign DNA, the obtained organisms per se cannot be regarded as genetically modified as there is no way to distinguish them from natural variants. This applies to changes induced by DSBs as well as single-strand breaks, and involves repair by non-homologous end-joining and homologous recombination. The recent development of SDN-based 'DNA-free' approaches makes mutagenesis strategies in classical breeding indistinguishable from SDN-derived targeted genome modifications, even in regard to current regulatory rules. With the advent of new SDN technologies, much faster and more precise genome editing becomes available at reasonable cost, and potentially without requiring time-consuming deregulation of newly created phenotypes. This review will focus on classical mutagenesis breeding and the application of newly developed SDNs in order to emphasize similarities in the context of the regulatory situation for genetically modified crop plants. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  9. Does Wheat Genetically Modified for Disease Resistance Affect Root-Colonizing Pseudomonads and Arbuscular Mycorrhizal Fungi?

    PubMed Central

    Foetzki, Andrea; Luginbühl, Carolin; Winzeler, Michael; Kneubühler, Yvan; Matasci, Caterina; Mascher-Frutschi, Fabio; Kalinina, Olena; Boller, Thomas; Keel, Christoph; Maurhofer, Monika

    2013-01-01

    This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology. PMID:23372672

  10. Mu Opioid Receptors in Gamma-Aminobutyric Acidergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food.

    PubMed

    Charbogne, Pauline; Gardon, Olivier; Martín-García, Elena; Keyworth, Helen L; Matsui, Aya; Mechling, Anna E; Bienert, Thomas; Nasseef, Taufiq; Robé, Anne; Moquin, Luc; Darcq, Emmanuel; Ben Hamida, Sami; Robledo, Patricia; Matifas, Audrey; Befort, Katia; Gavériaux-Ruff, Claire; Harsan, Laura-Adela; von Elverfeldt, Dominik; Hennig, Jurgen; Gratton, Alain; Kitchen, Ian; Bailey, Alexis; Alvarez, Veronica A; Maldonado, Rafael; Kieffer, Brigitte L

    2017-05-01

    Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Glycerol Hypersensitivity in a Drosophila Model for Glycerol Kinase Deficiency Is Affected by Mutations in Eye Pigmentation Genes

    PubMed Central

    Wightman, Patrick J.; Jackson, George R.; Dipple, Katrina M.

    2012-01-01

    Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency. PMID:22427807

  12. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    PubMed

    Meyer, Joana Beatrice; Song-Wilson, Yi; Foetzki, Andrea; Luginbühl, Carolin; Winzeler, Michael; Kneubühler, Yvan; Matasci, Caterina; Mascher-Frutschi, Fabio; Kalinina, Olena; Boller, Thomas; Keel, Christoph; Maurhofer, Monika

    2013-01-01

    This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

  13. Routine human-competitive machine intelligence by means of genetic programming

    NASA Astrophysics Data System (ADS)

    Koza, John R.; Streeter, Matthew J.; Keane, Martin

    2004-01-01

    Genetic programming is a systematic method for getting computers to automatically solve a problem. Genetic programming starts from a high-level statement of what needs to be done and automatically creates a computer program to solve the problem. The paper demonstrates that genetic programming (1) now routinely delivers high-return human-competitive machine intelligence; (2) is an automated invention machine; (3) can automatically create a general solution to a problem in the form of a parameterized topology; and (4) has delivered a progression of qualitatively more substantial results in synchrony with five approximately order-of-magnitude increases in the expenditure of computer time. Recent results involving the automatic synthesis of the topology and sizing of analog electrical circuits and controllers demonstrate these points.

  14. A risk-based classification scheme for genetically modified foods. I: Conceptual development.

    PubMed

    Chao, Eunice; Krewski, Daniel

    2008-12-01

    The predominant paradigm for the premarket assessment of genetically modified (GM) foods reflects heightened public concern by focusing on foods modified by recombinant deoxyribonucleic acid (rDNA) techniques, while foods modified by other methods of genetic modification are generally not assessed for safety. To determine whether a GM product requires less or more regulatory oversight and testing, we developed and evaluated a risk-based classification scheme (RBCS) for crop-derived GM foods. The results of this research are presented in three papers. This paper describes the conceptual development of the proposed RBCS that focuses on two categories of adverse health effects: (1) toxic and antinutritional effects, and (2) allergenic effects. The factors that may affect the level of potential health risks of GM foods are identified. For each factor identified, criteria for differentiating health risk potential are developed. The extent to which a GM food satisfies applicable criteria for each factor is rated separately. A concern level for each category of health effects is then determined by aggregating the ratings for the factors using predetermined aggregation rules. An overview of the proposed scheme is presented, as well as the application of the scheme to a hypothetical GM food.

  15. Genetic Determinants of Epigenetic Patterns: Providing Insight into Disease.

    PubMed

    Cazaly, Emma; Charlesworth, Jac; Dickinson, Joanne L; Holloway, Adele F

    2015-03-26

    The field of epigenetics and our understanding of the mechanisms that regulate the establishment, maintenance and heritability of epigenetic patterns continue to grow at a remarkable rate. This information is providing increased understanding of the role of epigenetic changes in disease, insight into the underlying causes of these epigenetic changes and revealing new avenues for therapeutic intervention. Epigenetic modifiers are increasingly being pursued as therapeutic targets in a range of diseases, with a number of agents targeting epigenetic modifications already proving effective in diseases such as cancer. Although it is well established that DNA mutations and aberrant expression of epigenetic modifiers play a key role in disease, attention is now turning to the interplay between genetic and epigenetic factors in complex disease etiology. The role of genetic variability in determining epigenetic profiles, which can then be modified by environmental and stochastic factors, is becoming more apparent. Understanding the interplay between genetic and epigenetic factors is likely to aid in identifying individuals most likely to benefit from epigenetic therapies. This goal is coming closer to realization because of continual advances in laboratory and statistical tools enabling improvements in the integration of genomic, epigenomic and phenotypic data.

  16. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models.

    PubMed

    Mallik, Moushami; Lakhotia, Subhash C

    2010-12-01

    Polyglutamine (polyQ) diseases, resulting from a dynamic expansion of glutamine repeats in a polypeptide, are a class of genetically inherited late onset neurodegenerative disorders which, despite expression of the mutated gene widely in brain and other tissues, affect defined subpopulations of neurons in a disease-specific manner. We briefly review the different polyQ-expansion-induced neurodegenerative disorders and the advantages of modelling them in Drosophila. Studies using the fly models have successfully identified a variety of genetic modifiers and have helped in understanding some of the molecular events that follow expression of the abnormal polyQ proteins. Expression of the mutant polyQ proteins causes, as a consequence of intra-cellular and inter-cellular networking, mis-regulation at multiple steps like transcriptional and posttranscriptional regulations, cell signalling, protein quality control systems (protein folding and degradation networks), axonal transport machinery etc., in the sensitive neurons, resulting ultimately in their death. The diversity of genetic modifiers of polyQ toxicity identified through extensive genetic screens in fly and other models clearly reflects a complex network effect of the presence of the mutated protein. Such network effects pose a major challenge for therapeutic applications.

  17. Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection

    PubMed Central

    Becker, Andrew E; Hernandez, Yasmin G; Frucht, Harold; Lucas, Aimee L

    2014-01-01

    Pancreatic cancer is the fourth most common cause of cancer-related deaths in the United States, with over 38000 deaths in 2013. The opportunity to detect pancreatic cancer while it is still curable is dependent on our ability to identify and screen high-risk populations before their symptoms arise. Risk factors for developing pancreatic cancer include multiple genetic syndromes as well as modifiable risk factors. Genetic conditions include hereditary breast and ovarian cancer syndrome, Lynch Syndrome, familial adenomatous polyposis, Peutz-Jeghers Syndrome, familial atypical multiple mole melanoma syndrome, hereditary pancreatitis, cystic fibrosis, and ataxia-telangiectasia; having a genetic predisposition can raise the risk of developing pancreatic cancer up to 132-fold over the general population. Modifiable risk factors, which include tobacco exposure, alcohol use, chronic pancreatitis, diet, obesity, diabetes mellitus, as well as certain abdominal surgeries and infections, have also been shown to increase the risk of pancreatic cancer development. Several large-volume centers have initiated such screening protocols, and consensus-based guidelines for screening high-risk groups have recently been published. The focus of this review will be both the genetic and modifiable risk factors implicated in pancreatic cancer, as well as a review of screening strategies and their diagnostic yields. PMID:25170203

  18. 78 FR 31815 - National Organic Program (NOP); Amendments to the National List of Allowed and Prohibited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... opposed the use of genetically modified organisms (GMOs), which is outside the scope of this rulemaking... consideration of the comments received, AMS determined that the substance's use annotation should be modified..., the use annotation for paragraph (i)(8) was modified as follows: ``Also permitted in hydrogen peroxide...

  19. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  20. Estimation of genetic parameters and their sampling variances of quantitative traits in the type 2 modified augmented design

    USDA-ARS?s Scientific Manuscript database

    We proposed a method to estimate the error variance among non-replicated genotypes, thus to estimate the genetic parameters by using replicated controls. We derived formulas to estimate sampling variances of the genetic parameters. Computer simulation indicated that the proposed methods of estimatin...

  1. Population-specific genetic modification of Huntington's disease in Venezuela.

    PubMed

    Chao, Michael J; Kim, Kyung-Hee; Shin, Jun Wan; Lucente, Diane; Wheeler, Vanessa C; Li, Hong; Roach, Jared C; Hood, Leroy; Wexler, Nancy S; Jardim, Laura B; Holmans, Peter; Jones, Lesley; Orth, Michael; Kwak, Seung; MacDonald, Marcy E; Gusella, James F; Lee, Jong-Min

    2018-05-01

    Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2-21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies.

  2. Population-specific genetic modification of Huntington's disease in Venezuela

    PubMed Central

    Chao, Michael J.; Kim, Kyung-Hee; Shin, Jun Wan; Lucente, Diane; Wheeler, Vanessa C.; Li, Hong; Roach, Jared C.; Hood, Leroy; Jardim, Laura B.; Jones, Lesley; Orth, Michael; Kwak, Seung; MacDonald, Marcy E.; Gusella, James F.

    2018-01-01

    Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2–21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies. PMID:29750799

  3. Non-genetic risk factors and their influence on the management of patients in the clinic.

    PubMed

    Álvarez, Teresa; Soto, Immaculada; Astermark, Jan

    2015-02-01

    The development of inhibitors is the most serious iatrogenic complication affecting patients with haemophilia. This complication is associated with impaired vital or functional prognosis, reduced quality of life and increased cost of treatment. The reasons why some patients develop antibodies to factor replacement and others do not remain unclear. It is however clear that inhibitor development results from a complex multifactorial interaction between genetic and non-genetic risk factors. Environmental influences implicated in increasing the risk of inhibitor formation can be viewed as modifiable risk factors. Therefore, identification of the non-genetic risk factors may offer the possibility of personalising haemophilia therapy by modifying treatment strategies in high-risk patients in the critical early phase of factor VIII exposure. In this article, we review the non-genetic factors reported as well as the potential impact of danger signals and the different scores for inhibitor development risk stratification. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. "It just goes against the grain." Public understandings of genetically modified (GM) food in the UK.

    PubMed

    Shaw, Alison

    2002-07-01

    This paper reports on one aspect of qualitative research on public understandings of food risks, focusing on lay understandings of genetically modified (GM) food in the UK context. A range of theoretical, conceptual, and empirical literature on food, risk, and the public understanding of science are reviewed. The fieldwork methods are outlined and empirical data from a range of lay groups are presented. Major themes include: varying "technical" knowledge of science, the relationship between knowledge and acceptance of genetic modification, the uncertainty of scientific knowledge, genetic modification as inappropriate scientific intervention in "nature", the acceptability of animal and human applications of genetic modification, the appropriate boundaries of scientific innovation, the necessity for GM foods, the uncertainty of risks in GM food, fatalism about avoiding risks, and trust in "experts" to manage potential risks in GM food. Key discussion points relating to a sociological understanding of public attitudes to GM food are raised and some policy implications are highlighted.

  5. Production of diabetic offspring using cryopreserved epididymal sperm by in vitro fertilization and intrafallopian insemination techniques in transgenic pigs.

    PubMed

    Umeyama, Kazuhiro; Honda, Kasumi; Matsunari, Hitomi; Nakano, Kazuaki; Hidaka, Tatsuro; Sekiguchi, Keito; Mochizuki, Hironori; Takeuchi, Yasuhiro; Fujiwara, Tsukasa; Watanabe, Masahito; Nagaya, Masaki; Nagashima, Hiroshi

    2013-12-17

    Somatic cell nuclear transfer (SCNT) is a useful technique for creating pig strains that model human diseases. However, production of numerous cloned disease model pigs by SCNT for large-scale experiments is impractical due to its complexity and inefficiency. In the present study, we aimed to establish an efficient procedure for proliferating the diabetes model pig carrying the mutant human hepatocyte nuclear factor-1α gene. A founder diabetes transgenic cloned pig was generated by SCNT and treated with insulin to allow for normal growth to maturity, at which point epididymal sperm could be collected for cryopreservation. In vitro fertilization and intrafallopian insemination using the cryopreserved epididymal sperm resulted in diabetes model transgenic offspring. These results suggest that artificial reproductive technology using cryopreserved epididymal sperm could be a practical option for proliferation of genetically modified disease model pigs.

  6. Production of Diabetic Offspring Using Cryopreserved Epididymal Sperm by In Vitro Fertilization and Intrafallopian Insemination Techniques in Transgenic Pigs

    PubMed Central

    UMEYAMA, Kazuhiro; HONDA, Kasumi; MATSUNARI, Hitomi; NAKANO, Kazuaki; HIDAKA, Tatsuro; SEKIGUCHI, Keito; MOCHIZUKI, Hironori; TAKEUCHI, Yasuhiro; FUJIWARA, Tsukasa; WATANABE, Masahito; NAGAYA, Masaki; NAGASHIMA, Hiroshi

    2013-01-01

    Abstract Somatic cell nuclear transfer (SCNT) is a useful technique for creating pig strains that model human diseases. However, production of numerous cloned disease model pigs by SCNT for large-scale experiments is impractical due to its complexity and inefficiency. In the present study, we aimed to establish an efficient procedure for proliferating the diabetes model pig carrying the mutant human hepatocyte nuclear factor-1α gene. A founder diabetes transgenic cloned pig was generated by SCNT and treated with insulin to allow for normal growth to maturity, at which point epididymal sperm could be collected for cryopreservation. In vitro fertilization and intrafallopian insemination using the cryopreserved epididymal sperm resulted in diabetes model transgenic offspring. These results suggest that artificial reproductive technology using cryopreserved epididymal sperm could be a practical option for proliferation of genetically modified disease model pigs. PMID:23979397

  7. Playing on a pathogen's weakness: using evolution to guide sustainable plant disease control strategies.

    PubMed

    Zhan, Jiasui; Thrall, Peter H; Papaïx, Julien; Xie, Lianhui; Burdon, Jeremy J

    2015-01-01

    Wild plants and their associated pathogens are involved in ongoing interactions over millennia that have been modified by coevolutionary processes to limit the spatial extent and temporal duration of disease epidemics. These interactions are disrupted by modern agricultural practices and social activities, such as intensified monoculture using superior varieties and international trading of agricultural commodities. These activities, when supplemented with high resource inputs and the broad application of agrochemicals, create conditions uniquely conducive to widespread plant disease epidemics and rapid pathogen evolution. To be effective and durable, sustainable disease management requires a significant shift in emphasis to overtly include ecoevolutionary principles in the design of adaptive management programs aimed at minimizing the evolutionary potential of plant pathogens by reducing their genetic variation, stabilizing their evolutionary dynamics, and preventing dissemination of pathogen variants carrying new infectivity or resistance to agrochemicals.

  8. Bioethical considerations in translational research: primate stroke.

    PubMed

    Sughrue, Michael E; Mocco, J; Mack, Willam J; Ducruet, Andrew F; Komotar, Ricardo J; Fischbach, Ruth L; Martin, Thomas E; Connolly, E Sander

    2009-05-01

    Controversy and activism have long been linked to the subject of primate research. Even in the midst of raging ethical debates surrounding fertility treatments, genetically modified foods and stem-cell research, there has been no reduction in the campaigns of activists worldwide. Playing their trade of intimidation aimed at ending biomedical experimentation in all animals, they have succeeded in creating an environment where research institutions, often painted as guilty until proven innocent, have avoided addressing the issue for fear of becoming targets. One area of intense debate is the use of primates in stroke research. Despite the fact that stroke kills more people each year than AIDS and malaria, and less than 5% of patients are candidates for current therapies, there is significant opposition to primate stroke research. A balanced examination of the ethics of primate stroke research is thus of broad interest to all areas of biomedical research.

  9. Risk, regulation and biotechnology: The case of GM crops

    PubMed Central

    Smyth, Stuart J; Phillips, Peter WB

    2014-01-01

    The global regulation of products of biotechnology is increasingly divided. Regulatory decisions for genetically modified (GM) crops in North America are predictable and efficient, with numerous countries in Latin and South America, Australia and Asia following this lead. While it might have been possible to argue that Europe's regulations were at one time based on real concerns about minimizing risks and ensuring health and safety, it is increasingly apparent that the entire European Union (EU) regulatory system for GM crops and foods is now driven by political agendas. Countries within the EU are at odds with each other as some have commercial production of GM crops, while others refuse to even develop regulations that could provide for the commercial release of GM crops. This divide in regulatory decision-making is affecting international grain trade, creating challenges for feeding an increasing global population. PMID:25437235

  10. Fiber-Optic Magnetometry and Thermometry Using Optically Detected Magnetic Resonance With Nitrogen-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Blakley, Sean Michael

    Nitrogen--vacancy diamond (NVD) quantum sensors are an emerging technology that has shown great promise in areas like high-resolution thermometry and magnetometry. Optical fibers provide attractive new application paradigms for NVD technology. A detailed description of the fabrication processes associated with the development of novel fiber-optic NVD probes are presented in this work. The demonstrated probes are tested on paradigmatic model systems designed to ascertain their suitability for use in challenging biological environments. Methods employing optically detected magnetic resonance (ODMR) are used to accurately measure and map temperature distributions of small objects and to demonstrate emergent temperature-dependent phenomena in genetically modified living organisms. These methods are also used to create detailed high resolution spatial maps of both magnetic scalar and magnetic vector field distributions of spatially localized weak field features in the presence of a noisy, high-field background.

  11. A Phase I/II adaptive design for heterogeneous groups with application to a stereotactic body radiation therapy trial.

    PubMed

    Wages, Nolan A; Read, Paul W; Petroni, Gina R

    2015-01-01

    Dose-finding studies that aim to evaluate the safety of single agents are becoming less common, and advances in clinical research have complicated the paradigm of dose finding in oncology. A class of more complex problems, such as targeted agents, combination therapies and stratification of patients by clinical or genetic characteristics, has created the need to adapt early-phase trial design to the specific type of drug being investigated and the corresponding endpoints. In this article, we describe the implementation of an adaptive design based on a continual reassessment method for heterogeneous groups, modified to coincide with the objectives of a Phase I/II trial of stereotactic body radiation therapy in patients with painful osseous metastatic disease. Operating characteristics of the Institutional Review Board approved design are demonstrated under various possible true scenarios via simulation studies. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Artificial selection increased body weight but induced increase of runs of homozygosity in Hanwoo cattle

    PubMed Central

    Kim, Kwondo; Jung, Jaehoon; Caetano-Anollés, Kelsey; Sung, Samsun; Yoo, DongAhn; Choi, Bong-Hwan; Kim, Hyung-Chul; Jeong, Jin-Young; Cho, Yong-Min; Park, Eung-Woo; Choi, Tae-Jeong; Park, Byoungho; Lim, Dajeong

    2018-01-01

    Artificial selection has been demonstrated to have a rapid and significant effect on the phenotype and genome of an organism. However, most previous studies on artificial selection have focused solely on genomic sequences modified by artificial selection or genomic sequences associated with a specific trait. In this study, we generated whole genome sequencing data of 126 cattle under artificial selection, and 24,973,862 single nucleotide variants to investigate the relationship among artificial selection, genomic sequences and trait. Using runs of homozygosity detected by the variants, we showed increase of inbreeding for decades, and at the same time demonstrated a little influence of recent inbreeding on body weight. Also, we could identify ~0.2 Mb runs of homozygosity segment which may be created by recent artificial selection. This approach may aid in development of genetic markers directly influenced by artificial selection, and provide insight into the process of artificial selection. PMID:29561881

  13. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  14. Development of a screening method for genetically modified soybean by plasmid-based quantitative competitive polymerase chain reaction.

    PubMed

    Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2008-07-23

    A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.

  15. Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    PubMed Central

    Hirai, Tadayoshi; Oikawa, Akira; Matsuda, Fumio; Fukushima, Atsushi; Arita, Masanori; Watanabe, Shin; Yano, Megumu; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi; Saito, Kazuki

    2011-01-01

    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms. PMID:21359231

  16. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extractsmore » are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.« less

  17. Thermophilic acetylxylan esterase genes and enzymes from alicyclobacillus acidocaldarius and related organisms and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Vicki S.; Thompson, David N.; Reed, David W.

    A genetically modified organism comprising at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharide, lignocellulose, hemicellulose, lignin, chitin, heteroxylan, and/or xylan-decorating group; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methodsmore » of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.« less

  18. Electrospun fiber membranes enable proliferation of genetically modified cells

    PubMed Central

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  19. Long-Term Monitoring of Field Trial Sites with Genetically Modified Oilseed Rape (Brassica napus L.) in Saxony-Anhalt, Germany. Fifteen Years Persistence to Date but No Spatial Dispersion

    PubMed Central

    Belter, Anke

    2016-01-01

    Oilseed rape is known to persist in arable fields because of its ability to develop secondary seed dormancy in certain agronomic and environmental conditions. If conditions change, rapeseeds are able to germinate up to 10 years later to build volunteers in ensuing crops. Extrapolations of experimental data acted on the assumption of persistence periods for more than 20 years after last harvest of rapeseed. Genetically-modified oilseed rape—cultivated widely in Northern America since 1996—is assumed not to differ from its conventional form in this property. Here, experimental data are reported from official monitoring activities that verify these assumptions. At two former field trial sites in Saxony-Anhalt genetically-modified herbicide-resistant oilseed rape volunteers are found up to fifteen years after harvest. Nevertheless, spatial dispersion or establishment of GM plants outside of the field sites was not observed within this period. PMID:26784233

  20. Applications of Gene Editing Technologies to Cellular Therapies.

    PubMed

    Rein, Lindsay A M; Yang, Haeyoon; Chao, Nelson J

    2018-03-27

    Hematologic malignancies are characterized by genetic heterogeneity, making classic gene therapy with a goal of correcting 1 genetic defect ineffective in many of these diseases. Despite initial tribulations, gene therapy, as a field, has grown by leaps and bounds with the recent development of gene editing techniques including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR) sequences and CRISPR-associated protein-9 (Cas9) nuclease or CRISPR/Cas9. These novel technologies have been applied to efficiently and specifically modify genetic information in target and effector cells. In particular, CRISPR/Cas9 technology has been applied to various hematologic malignancies and has also been used to modify and improve chimeric antigen receptor-modified T cells for the purpose of providing effective cellular therapies. Although gene editing is in its infancy in malignant hematologic diseases, there is much room for growth and application in the future. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  1. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.

  2. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  3. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  4. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms.

    PubMed

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-05

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.

  5. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2014-04-08

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  6. Development and Validation of A 48-Target Analytical Method for High-throughput Monitoring of Genetically Modified Organisms

    PubMed Central

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-01

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930

  7. [Application of DNA extraction kit, 'GM quicker' for detection of genetically modified soybeans].

    PubMed

    Sato, Noriko; Sugiura, Yoshitsugu; Tanaka, Toshitsugu

    2012-01-01

    Several DNA extraction methods have been officially introduced to detect genetically modified soybeans, but the choice of DNA extraction kits depend on the nature of the samples, such as grains or processed foods. To overcome this disadvantage, we examined whether the GM quicker kit is available for both grains and processed foods. We compared GM quicker with four approved DNA extraction kits in respect of DNA purity, copy numbers of lectin gene, and working time. We found that the DNA quality of GM quicker was superior to that of the other kits for grains, and the procedure was faster. However, in the case of processed foods, GM quicker was not superior to the other kits. We therefore investigated an unapproved GM quicker 3 kit, which is available for DNA extraction from processed foods, such as tofu and boiled soybeans. The GM quicker 3 kit provided good DNA quality from both grains and processed foods, so we made a minor modification of the GM quicker-based protocol that was suitable for processed foods, using GM quicker and its reagents. The modified method enhanced the performance of GM quicker with processed foods. We believe that GM quicker with the modified protocol is an excellent tool to obtain high-quality DNA from grains and processed foods for detection of genetically modified soybeans.

  8. A report template for molecular genetic tests designed to improve communication between the clinician and laboratory.

    PubMed

    Scheuner, Maren T; Hilborne, Lee; Brown, Julie; Lubin, Ira M

    2012-07-01

    Errors are most likely to occur during the pre- and postanalytic phases of the genetic testing process, which can contribute to underuse, overuse, and misuse of genetic tests. To mitigate these errors, we created a template for molecular genetic test reports that utilizes the combined features of synoptic reporting and narrative interpretation. A variation of the Delphi consensus process with an expert panel was used to create a draft report template, which was further informed by focus group discussions with primary care physicians. There was agreement that molecular genetic test reports should present information in groupings that flow in a logical manner, and most participants preferred the following order of presentation: patient and physician information, test performed, test results and interpretation, guidance on next steps, and supplemental information. We define data elements for the report as "required," "optional," "possible," and "not necessary"; provide recommendations regarding the grouping of these data elements; and describe the ideal design of the report template, including the preferred order of the report sections, formatting of data, and length of the report. With input from key stakeholders and building upon prior work, we created a template for molecular genetic test reports designed to improve clinical decision making at the point of care. The template design should lead to more effective communication between the laboratory and ordering clinician. Studies are needed to assess the usefulness and effectiveness of molecular genetic test reports generated using this template.

  9. Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia.

    PubMed

    Koehorst-van Putten, H J J; Sudarmonowati, E; Herman, M; Pereira-Bertram, I J; Wolters, A M A; Meima, H; de Vetten, N; Raemakers, C J J M; Visser, R G F

    2012-02-01

    The development and testing in the field of genetically modified -so called- orphan crops like cassava in tropical countries is still in its infancy, despite the fact that cassava is not only used for food and feed but is also an important industrial crop. As traditional breeding of cassava is difficult (allodiploid, vegetatively propagated, outbreeding species) it is an ideal crop for improvement through genetic modification. We here report on the results of production and field testing of genetically modified low-amylose transformants of commercial cassava variety Adira4 in Indonesia. Twenty four transformants were produced and selected in the Netherlands based on phenotypic and molecular analyses. Nodal cuttings of these plants were sent to Indonesia where they were grown under biosafety conditions. After two screenhouse tests 15 transformants remained for a field trial. The tuberous root yield of 10 transformants was not significantly different from the control. Starch from transformants in which amylose was very low or absent showed all physical and rheological properties as expected from amylose-free cassava starch. The improved functionality of the starch was shown for an adipate acetate starch which was made into a tomato sauce. This is the first account of a field trial with transgenic cassava which shows that by using genetic modification it is possible to obtain low-amylose cassava plants with commercial potential with good root yield and starch quality.

  10. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4.

    PubMed

    Pesavento, James J; Mizzen, Craig A; Kelleher, Neil L

    2006-07-01

    Here we show that fragment ion abundances from dissociation of ions created from mixtures of multiply modified histone H4 (11 kDa) or of N-terminal synthetic peptides (2 kDa) correspond to their respective intact ion abundances measured by Fourier transform mass spectrometry. Isomeric mixtures of modified forms of the same protein are resolved and quantitated with a precision of

  11. Advances in genetic modification of pluripotent stem cells.

    PubMed

    Fontes, Andrew; Lakshmipathy, Uma

    2013-11-15

    Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential. Choosing the right platform based on preferred length, strength, and context of transgene expression is a critical step. Random integration of the transgene into the genome can be complicated due to silencing or altered regulation of expression due to genomic effects. An alternative to this are site-specific methods that target transgenes followed by screening to identify the genomic loci that support long-term expression with stem cell proliferation and differentiation. A highly precise and accurate editing of the genome driven by homology can be achieved using traditional methods as well as the newer technologies such as zinc finger nuclease, TAL effector nucleases and CRISPR. In this review, we summarize the different genetic engineering methods that have been successfully used to create modified embryonic and induced pluripotent stem cells. © 2013. Published by Elsevier Inc. All rights reserved.

  12. Biodiversity and emerging diseases.

    PubMed

    Maillard, Jean-Charles; Gonzalez, Jean-Paul

    2006-10-01

    First we remind general considerations concerning biodiversity on earth and particularly the loss of genetic biodiversity that seems irreversible whether its origin is directly or indirectly linked to human activities. Urgent and considerable efforts must be made from now on to cataloge, understand, preserve, and enhance the value of biodiversity while ensuring food safety and human and animal health. Ambitious integrated and multifield research programs must be implemented in order to understand the causes and anticipate the consequences of loss of biodiversity. Such losses are a serious threat to sustainable development and to the quality of life of future generations. They have an influence on the natural balance of global biodiversity in particularly in reducing the capability of species to adapt rapidly by genetic mutations to survive in modified ecosystems. Usually, the natural immune systems of mammals (both human and animal), are highly polymorphic and able to adapt rapidly to new situations. We more specifically discuss the fact that if the genetic diversity of the affected populations is low the invading microorganisms, will suddenly expand and create epidemic outbreaks with risks of pandemic. So biodiversity appears to function as an important barrier (buffer), especially against disease-causing organisms, which can function in different ways. Finally, we discuss the importance of preserving biodiversity mainly in the wildlife ecosystems as an integrated and sustainable approach among others in order to prevent and control the emergence or reemergence of diseases in animals and humans (zoonosis). Although plants are also part of this paradigm, they fall outside our field of study.

  13. Cloning-independent plasmid construction for genetic studies in streptococci

    PubMed Central

    Xie, Zhoujie; Qi, Fengxia; Merritt, Justin

    2013-01-01

    Shuttle plasmids are among the few routinely utilized tools in the Streptococcus mutans genetic system that still require the use of classical cloning methodologies and intermediate hosts for genetic manipulation. Accordingly, it typically requires considerably less time and effort to introduce mutations onto the S. mutans chromosome than it does to construct shuttle vectors for expressing genes in trans. Occasionally, shuttle vector constructs also exhibit toxicity in E. coli, which prevents their proper assembly. To circumvent these limitations, we modified a prolonged overlap extension PCR (POE-PCR) protocol to facilitate direct plasmid assembly in S. mutans. Using solely PCR, we created the reporter vector pZX7, which contains a single minimal streptococcal replication origin and harbors a spectinomycin resistance cassette and the gusA gene encoding β-glucuronidase. We compared the efficiency of pZX7 assembly using multiple strains of S. mutans and were able to obtain from 5×103 – 2×105 CFU/μg PCR product. Likewise, we used pZX7 to further demonstrate that Streptococcus sanguinis and Streptococcus gordonii are also excellent hosts for cloning-independent plasmid assembly, which suggests that this system is likely to function in numerous other streptococci. Consequently, it should be possible to completely forgo the use of E. coli – Streptococcus shuttle vectors in many streptococcal species, thereby decreasing the time and effort required to assemble constructs and eliminating any toxicity issues associated with intermediate hosts. PMID:23673081

  14. Cloning-independent plasmid construction for genetic studies in streptococci.

    PubMed

    Xie, Zhoujie; Qi, Fengxia; Merritt, Justin

    2013-08-01

    Shuttle plasmids are among the few routinely utilized tools in the Streptococcus mutans genetic system that still require the use of classical cloning methodologies and intermediate hosts for genetic manipulation. Accordingly, it typically requires considerably less time and effort to introduce mutations onto the S. mutans chromosome than it does to construct shuttle vectors for expressing genes in trans. Occasionally, shuttle vector constructs also exhibit toxicity in Escherichia coli, which prevents their proper assembly. To circumvent these limitations, we modified a prolonged overlap extension PCR (POE-PCR) protocol to facilitate direct plasmid assembly in S. mutans. Using solely PCR, we created the reporter vector pZX7, which contains a single minimal streptococcal replication origin and harbors a spectinomycin resistance cassette and the gusA gene encoding β-glucuronidase. We compared the efficiency of pZX7 assembly using multiple strains of S. mutans and were able to obtain from 5 × 10³ to 2 × 10⁵ CFU/μg PCR product. Likewise, we used pZX7 to further demonstrate that Streptococcus sanguinis and Streptococcus gordonii are also excellent hosts for cloning-independent plasmid assembly, which suggests that this system is likely to function in numerous other streptococci. Consequently, it should be possible to completely forgo the use of E. coli-Streptococcus shuttle vectors in many streptococcal species, thereby decreasing the time and effort required to assemble constructs and eliminating any toxicity issues associated with intermediate hosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Mimosa caesalpiniifolia rhizobial isolates from different origins of the Brazilian Northeast.

    PubMed

    Martins, Paulo Geovani Silva; Junior, Mario Andrade Lira; Fracetto, Giselle Gomes Monteiro; da Silva, Maria Luiza Ribeiro Bastos; Vincentin, Rayssa Pereira; de Lyra, Maria do Carmo Catanho Pereira

    2015-04-01

    Biological nitrogen fixation from the legume-rhizobia symbiosis is one of the main sources of fixed nitrogen on land environments. Diazotrophic bacteria taxonomy has been substantially modified by the joint use of phenotypic, physiological and molecular aspects. Among these molecular tools, sequencing and genotyping of genomic regions such as 16S rDNA and repetitive conserved DNA regions have boosted the accuracy of species identification. This research is a phylogenetic study of diazotrophic bacteria from sabiá (Mimosa caesalpiniifolia Benth.), inoculated with soils from five municipalities of the Brazilian Northeast. After bacterial isolation and morphophysiological characterization, genotyping was performed using REP, ERIC and BOX oligonucleotides and 16S rDNA sequencing for genetic diversity identification. A 1.5b Kb fragment of the 16S rDNA was amplified from each isolate. Morphophysiological characterization of the 47 isolates created a dendrogram, where isolate PE-GR02 formed a monophyletic branch. The fingerprinting conducted with BOX, ERIC and REP shows distinct patterns, and their compilation created a dendrogram with diverse groups and, after blasting in GenBank, resulted in genetic identities ranging from 77 to 99 % with Burkholderia strains. The 16S rDNA phylogenetic tree constructed with these isolates and GenBank deposits of strains recommended for inoculant production confirm these isolates are distinct from the previously deposited strains, whereas isolates PE-CR02, PE-CR4, PE-CR07, PE-CR09 and PE-GE06 were the most distinct within the group. Morphophysiological characterization and BOX, ERIC and REP compilation enhanced the discrimination of the isolates, and the 16S rDNA sequences compared with GenBank confirmed the preference of Mimosa for Burkholderia diazotrophic bacteria.

  16. The Canadian Partnership for Tomorrow Project: a pan-Canadian platform for research on chronic disease prevention

    PubMed Central

    Awadalla, Philip; Boileau, Catherine; Craig, Camille; Fortier, Isabel; Goel, Vivek; Hicks, Jason M.T.; Jacquemont, Sébastien; Knoppers, Bartha Maria; Le, Nhu; McDonald, Treena; McLaughlin, John; Mes-Masson, Anne-Marie; Nuyt, Anne-Monique; Palmer, Lyle J.; Parker, Louise; Purdue, Mark; Robson, Paula J.; Spinelli, John J.; Thompson, David; Vena, Jennifer; Zawati, Ma’n

    2018-01-01

    BACKGROUND: Understanding the complex interaction of risk factors that increase the likelihood of developing common diseases is challenging. The Canadian Partnership for Tomorrow Project (CPTP) is a prospective cohort study created as a population-health research platform for assessing the effect of genetics, behaviour, family health history and environment (among other factors) on chronic diseases. METHODS: Volunteer participants were recruited from the general Canadian population for a confederation of 5 regional cohorts. Participants were enrolled in the study and core information obtained using 2 approaches: attendance at a study assessment centre for all study measures (questionnaire, venous blood sample and physical measurements) or completion of the core questionnaire (online or paper), with later collection of other study measures where possible. Physical measurements included height, weight, percentage body fat and blood pressure. Participants consented to passive follow-up through linkage with administrative health databases and active follow-up through recontact. All participant data across the 5 regional cohorts were harmonized. RESULTS: A total of 307 017 participants aged 30–74 from 8 provinces were recruited. More than half provided a venous blood sample and/or other biological sample, and 33% completed physical measurements. A total of 709 harmonized variables were created; almost 25% are available for all participants and 60% for at least 220 000 participants. INTERPRETATION: Primary recruitment for the CPTP is complete, and data and biosamples are available to Canadian and international researchers through a data-access process. The CPTP will support research into how modifiable risk factors, genetics and the environment interact to affect the development of cancer and other chronic diseases, ultimately contributing evidence to reduce the global burden of chronic disease. PMID:29891475

  17. The Canadian Partnership for Tomorrow Project: a pan-Canadian platform for research on chronic disease prevention.

    PubMed

    Dummer, Trevor J B; Awadalla, Philip; Boileau, Catherine; Craig, Camille; Fortier, Isabel; Goel, Vivek; Hicks, Jason M T; Jacquemont, Sébastien; Knoppers, Bartha Maria; Le, Nhu; McDonald, Treena; McLaughlin, John; Mes-Masson, Anne-Marie; Nuyt, Anne-Monique; Palmer, Lyle J; Parker, Louise; Purdue, Mark; Robson, Paula J; Spinelli, John J; Thompson, David; Vena, Jennifer; Zawati, Ma'n

    2018-06-11

    Understanding the complex interaction of risk factors that increase the likelihood of developing common diseases is challenging. The Canadian Partnership for Tomorrow Project (CPTP) is a prospective cohort study created as a population-health research platform for assessing the effect of genetics, behaviour, family health history and environment (among other factors) on chronic diseases. Volunteer participants were recruited from the general Canadian population for a confederation of 5 regional cohorts. Participants were enrolled in the study and core information obtained using 2 approaches: attendance at a study assessment centre for all study measures (questionnaire, venous blood sample and physical measurements) or completion of the core questionnaire (online or paper), with later collection of other study measures where possible. Physical measurements included height, weight, percentage body fat and blood pressure. Participants consented to passive follow-up through linkage with administrative health databases and active follow-up through recontact. All participant data across the 5 regional cohorts were harmonized. A total of 307 017 participants aged 30-74 from 8 provinces were recruited. More than half provided a venous blood sample and/or other biological sample, and 33% completed physical measurements. A total of 709 harmonized variables were created; almost 25% are available for all participants and 60% for at least 220 000 participants. Primary recruitment for the CPTP is complete, and data and biosamples are available to Canadian and international researchers through a data-access process. The CPTP will support research into how modifiable risk factors, genetics and the environment interact to affect the development of cancer and other chronic diseases, ultimately contributing evidence to reduce the global burden of chronic disease. © 2018 Joule Inc. or its licensors.

  18. Misconceptions of Synthetic Biology: Lessons from an Interdisciplinary Summer School

    NASA Technical Reports Server (NTRS)

    Verseux, Cyprien; Acevedo-Rocha, Carlos G.; Chizzolini, Fabio; Rothschild, Lynn J.

    2016-01-01

    In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part in this event. Most attendees mainly associated synthetic biology with contributions from the best-known public figures of the field, rarely mentioning other scientists. Media extrapolations of those contributions appeared to have created unrealistic expectations and irrelevant fears that were widely disconnected from the current research in synthetic biology. Another observation was that when debating developments in synthetic biology, semantics strongly mattered: depending on the terms used to present an application of synthetic biology, attendees reacted in radically different ways. For example, using the term "GMOs" (genetically modified organisms) rather than the term "genetic engineering" led to very different reactions. Stimulating debates also happened with participants having unanticipated points of view, for instance biocentrist ethicists who argued that engineered microbes should not be used for human purposes. Another communication challenge emerged from the connotations and inaccuracies surrounding the word "life", which impaired constructive debates, thus leading to misconceptions about the abilities of scientists to engineer or even create living organisms. Finally, it appeared that synthetic biologists tend to overestimate the knowledge of non-biologists, further affecting communication. The motivation and ability of synthetic biologists to communicate their work outside their research field needs to be fostered, notably towards policymakers who need a more accurate and technical understanding of the field to make informed decisions. Interdisciplinary events gathering scholars working in and around synthetic biology are an effective tool in addressing those issues.

  19. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.

    PubMed

    Lo, Te-Wen; Pickle, Catherine S; Lin, Steven; Ralston, Edward J; Gurling, Mark; Schartner, Caitlin M; Bian, Qian; Doudna, Jennifer A; Meyer, Barbara J

    2013-10-01

    Exploitation of custom-designed nucleases to induce DNA double-strand breaks (DSBs) at genomic locations of choice has transformed our ability to edit genomes, regardless of their complexity. DSBs can trigger either error-prone repair pathways that induce random mutations at the break sites or precise homology-directed repair pathways that generate specific insertions or deletions guided by exogenously supplied DNA. Prior editing strategies using site-specific nucleases to modify the Caenorhabditis elegans genome achieved only the heritable disruption of endogenous loci through random mutagenesis by error-prone repair. Here we report highly effective strategies using TALE nucleases and RNA-guided CRISPR/Cas9 nucleases to induce error-prone repair and homology-directed repair to create heritable, precise insertion, deletion, or substitution of specific DNA sequences at targeted endogenous loci. Our robust strategies are effective across nematode species diverged by 300 million years, including necromenic nematodes (Pristionchus pacificus), male/female species (Caenorhabditis species 9), and hermaphroditic species (C. elegans). Thus, genome-editing tools now exist to transform nonmodel nematode species into genetically tractable model organisms. We demonstrate the utility of our broadly applicable genome-editing strategies by creating reagents generally useful to the nematode community and reagents specifically designed to explore the mechanism and evolution of X chromosome dosage compensation. By developing an efficient pipeline involving germline injection of nuclease mRNAs and single-stranded DNA templates, we engineered precise, heritable nucleotide changes both close to and far from DSBs to gain or lose genetic function, to tag proteins made from endogenous genes, and to excise entire loci through targeted FLP-FRT recombination.

  20. The Tumor Necrosis Factor α (-308 A/G) Polymorphism Is Associated with Cystic Fibrosis in Mexican Patients

    PubMed Central

    Sanchez-Dominguez, Celia N.; Reyes-Lopez, Miguel A.; Bustamante, Adriana; Cerda-Flores, Ricardo M.; Villalobos-Torres, Maria del C.; Gallardo-Blanco, Hugo L.; Rojas-Martinez, Augusto; Martinez-Rodriguez, Herminia G.; Barrera-Saldaña, Hugo A.; Ortiz-Lopez, Rocio

    2014-01-01

    Environmental and genetic factors may modify or contribute to the phenotypic differences observed in multigenic and monogenic diseases, such as cystic fibrosis (CF). An analysis of modifier genes can be helpful for estimating patient prognosis and directing preventive care. The aim of this study is to determine the association between seven genetic variants of four modifier genes and CF by comparing their corresponding allelic and genotypic frequencies in CF patients (n = 81) and control subjects (n = 104). Genetic variants of MBL2 exon 1 (A, B, C and D), the IL-8 promoter (−251 A/T), the TNFα promoter (TNF1/TNF2), and SERPINA1 (PI*Z and PI*S) were tested in CF patients and control subjects from northeastern Mexico by PCR-RFLP. Results The TNF2 allele (P = 0.012, OR 3.43, 95% CI 1.25–9.38) was significantly associated with CF under the dominant and additive models but was not associated with CF under the recessive model. This association remained statistically significant after adjusting for multiple tests using the Bonferroni correction (P = 0.0482). The other tested variants and genotypes did not show any association with the disease. Conclusion An analysis of seven genetic variants of four modifier genes showed that one variant, the TNF2 allele, appears to be significantly associated with CF in Mexican patients. PMID:24603877

  1. Multigeneration reproductive and developmental toxicity study of bar gene inserted into genetically modified potato on rats.

    PubMed

    Rhee, Gyu Seek; Cho, Dae Hyun; Won, Yong Hyuck; Seok, Ji Hyun; Kim, Soon Sun; Kwack, Seung Jun; Lee, Rhee Da; Chae, Soo Yeong; Kim, Jae Woo; Lee, Byung Mu; Park, Kui Lea; Choi, Kwang Sik

    2005-12-10

    Each specific protein has an individual gene encoding it, and a foreign gene introduced to a plant can be used to synthesize a new protein. The identification of potential reproductive and developmental toxicity from novel proteins produced by genetically modified (GM) crops is a difficult task. A science-based risk assessment is needed in order to use GM crops as a conventional foodstuff. In this study, the specific characteristics of GM food and low-level chronic exposure were examined using a five-generation animal study. In each generation, rats were fed a solid pellet containing 5% GM potato and non-GM potato for 10 wk prior to mating in order to assess the potential reproductive and developmental toxic effects. In the multigeneration animal study, there were no GM potato-related changes in body weight, food consumption, reproductive performance, and organ weight. Polymerase chain reaction (PCR) was carried out using extracted genomic DNA to examine the possibility of gene persistence in the organ tissues after a long-term exposure to low levels of GM feed. In each generation, the gene responsible for bar was not found in any of the reproductive organs of the GM potato-treated male and female rats, and the litter-related indexes did not show any genetically modified organism (GMO)-related changes. The results suggest that genetically modified crops have no adverse effects on the multigeneration reproductive-developmental ability.

  2. Prevalence of genetically modified rice, maize, and soy in Saudi food products.

    PubMed

    Elsanhoty, Rafaat M; Al-Turki, A I; Ramadan, Mohamed Fawzy

    2013-10-01

    Qualitative and quantitative DNA-based methods were applied to detect genetically modified foods in samples from markets in the Kingdom of Saudi Arabia. Two hundred samples were collected from Al-Qassim, Riyadh, and Mahdina in 2009 and 2010. GMOScreen 35S and NOS test kits for the detection of genetically modified organism varieties in samples were used. The positive results obtained from GMOScreen 35S and NOS were identified using specific primer pairs. The results indicated that all rice samples gave negative results for the presence of 35S and NOS terminator. About 26 % of samples containing soybean were positive for 35S and NOS terminator and 44 % of samples containing maize were positive for the presence of 35S and/or NOS terminator. The results showed that 20.4 % of samples was positive for maize line Bt176, 8.8 % was positive for maize line Bt11, 8.8 % was positive for maize line T25, 5.9 % was positive for maize line MON 810, and 5.9 % was positive for StarLink maize. Twelve samples were shown to contain <3 % of genetically modified (GM) soy and 6 samples >10 % of GM soy. Four samples containing GM maize were shown to contain >5 % of GM maize MON 810. Four samples containing GM maize were shown to contain >1 % of StarLink maize. Establishing strong regulations and certified laboratories to monitor GM foods or crops in Saudi market is recommended.

  3. Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    PubMed Central

    Chang, Howard C.; Sen, Anindya; Kalloo, Geetika; Harris, Jevede; Barsby, Tom; Walsh, Melissa B.; Satterlee, John S.; Li, Chris; Van Vactor, David; Artavanis-Tsakonas, Spyros; Hart, Anne C.

    2010-01-01

    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species. PMID:21124729

  4. The Sociology of the Gene: Genetics and Education on the Eve of the Biotech Century.

    ERIC Educational Resources Information Center

    Rifkin, Jeremy

    1998-01-01

    Researchers in molecular biology are discovering an increasing genetic basis for a wide range of mental diseases, moods, behaviors, and personality traits. Findings are creating the context for a new sociobiology favoring a genetic interpretation of human motivations and drives. Genetic engineering will give some people unprecedented power over…

  5. Weaving a Tapestry from Threads Spun by Geneticists: The Series Perspectives on Genetics, 1987–2008

    PubMed Central

    Dove, William F.

    2016-01-01

    The Perspectives column was initiated in 1987 when Jan Drake, Editor-in-Chief of GENETICS, invited Jim Crow and William Dove to serve as coeditors of “Anecdotal, Historical, and Critical Commentaries.” As the series evolved over 21 years, under the guidance of Crow and Dove, the input of stories told by geneticists from many countries created a panorama of 20th-century genetics. Three recurrent themes are visible: how geneticists have created the science (as solitary investigators, in pairs, or in cooperative groups); how geneticists work hard, but find ways to have fun; and how public and private institutions have sustained the science of genetics, particularly in the United States. This article ends by considering how the Perspectives series and other communication formats can carry forward the core science of genetics from the 20th into the 21st century. PMID:27384024

  6. 75 FR 62096 - Agricultural Technical Advisory Committees for Trade in Tobacco, Cotton, Peanuts and Planting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... many of the issues that the GFO committee addresses, such as genetically modified organisms, new... modifying the existing structure of both the Agricultural Technical Advisory Committees (ATAC) for Trade in...

  7. 'To prove this is the industry's best hope': big tobacco's support of research on the genetics of nicotine addiction.

    PubMed

    Gundle, Kenneth R; Dingel, Molly J; Koenig, Barbara A

    2010-06-01

    New molecular techniques focus a genetic lens upon nicotine addiction. Given the medical and economic costs associated with smoking, innovative approaches to smoking cessation and prevention must be pursued; but can sound research be manipulated by the tobacco industry? The chronological narrative of this paper was created using iterative reviews of primary sources (the Legacy Tobacco Documents), supplemented with secondary literature to provide a broader context. The empirical data inform an ethics and policy analysis of tobacco industry-funded research. The search for a genetic basis for smoking is consistent with industry's decades-long plan to deflect responsibility away from the tobacco companies and onto individuals' genetic constitutions. Internal documents reveal long-standing support for genetic research as a strategy to relieve the tobacco industry of its legal responsibility for tobacco-related disease. Industry may turn the findings of genetics to its own ends, changing strategy from creating a 'safe' cigarette to defining a 'safe' smoker.

  8. Epigenetics and cardiovascular disease

    USDA-ARS?s Scientific Manuscript database

    Despite advances in the prevention and management of cardiovascular disease (CVD), this group of multifactorial disorders remains a leading cause of mortality worldwide. CVD is associated with multiple genetic and modifiable risk factors; however, known environmental and genetic influences can only...

  9. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics

    PubMed Central

    2012-01-01

    Background Foot-and-mouth disease (FMD) is the most economically important and highly contagious disease of cloven-hoofed animals worldwide. Control of the disease has been mainly based on large-scale vaccinations with whole-virus inactivated vaccines. In recent years, a series of outbreaks of type O FMD occurred in China (including Chinese Taipei, Chinese Hong Kong) posed a tremendous threat to Chinese animal husbandry. Its causative agent, type O FMDV, has evolved into three topotypes (East–South Asia (ME-SA), Southeast Asia (SEA), Cathay (CHY)) in these regions, which represents an important obstacle to disease control. The available FMD vaccine in China shows generally good protection against ME-SA and SEA topotype viruses infection, but affords insufficient protection against some variants of the CHY topotype. Therefore, the choice of a new vaccine strain is of fundamental importance. Results The present study describes the generation of a full-length infectious cDNA clone of FMDV vaccine strain and a genetically modified virus with some amino acid substitutions in antigenic sites 1, 3, and 4, based on the established infectious clone. The recombinant viruses had similar growth properties to the wild O/HN/CHA/93 virus. All swine immunized with inactivated vaccine prepared from the O/HN/CHA/93 were fully protected from challenge with the viruses of ME-SA and SEA topotypes and partially protected against challenge with the virus of CHY topotype at 28 days post-immunization. In contrast, the swine inoculated with the genetically modified vaccine were completely protected from the infection of viruses of the three topotypes. Conclusions Some amino acid substitutions in the FMDV vaccine strain genome did not have an effect on the ability of viral replication in vitro. The vaccine prepared from genetically modified FMDV by reverse genetics significantly improved the protective efficacy to the variant of the CHY topotype, compared with the wild O/HN/CHA/93 virus. Thus, the full-length cDNA clone of FMDV can be a useful tool to develop genetically engineered FMDV vaccine candidates to help control porcinophilic FMD epidemics in China. PMID:22591597

  10. Biocontainment of genetically modified organisms by synthetic protein design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. In this paper, we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass theirmore » biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. Finally, this work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.« less

  11. Biocontainment of genetically modified organisms by synthetic protein design

    DOE PAGES

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; ...

    2015-01-21

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. In this paper, we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass theirmore » biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. Finally, this work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.« less

  12. Germline Genetic Modification and Identity: the Mitochondrial and Nuclear Genomes.

    PubMed

    Scott, Rosamund; Wilkinson, Stephen

    2017-12-01

    In a legal 'first', the UK removed a prohibition against modifying embryos in human reproduction, to enable mitochondrial replacement techniques (MRTs), a move the Government distanced from 'germline genetic modification', which it aligned with modifying the nuclear genome. This paper (1) analyzes the uses and meanings of this term in UK/US legal and policy debates; and (2) evaluates related ethical concerns about identity. It shows that, with respect to identity, MRTs and nuclear genome editing techniques such as CRISPR/Cas-9 (now a policy topic), are not as different as has been supposed. While it does not follow that the two should be treated exactly alike, one of the central reasons offered for treating MRTs more permissively than nuclear genetic modification, and for not regarding MRTs as 'germline genetic modification', is thereby in doubt. Identity cannot, by itself, do the work thus far assigned to it, explicitly or otherwise, in law and policy.

  13. Development of FOCUS-GC: Framework for Outcomes of Clinical Communication Services in Genetic Counseling.

    PubMed

    Cragun, Deborah; Zierhut, Heather

    2018-02-01

    Conceptual frameworks bring together existing theories and models in order to identify, consolidate, and fill in gaps between theory, practice, and evidence. Given the vast number of possible outcomes that could be studied in genetic counseling, a framework for organizing outcomes and postulating relationships between communication services and genetic counseling outcomes was sought. Through an iterative approach involving literature review, thematic analysis, and consolidation, outcomes and processes were categorized to create and define components of a conceptual framework. The final product, "Framework for Outcomes of Clinical commUnication Services" (FOCUS) contains the following domains: communication strategy; communication process measures; patient care experience, patient changes, patient health; and family changes. A website was created to allow easier access and ongoing modifications to the framework. In addition, a step-by-step guide and two examples were created to show flexibility in how the framework can be used. FOCUS may help in conceptualizing, organizing and summarizing outcomes research related to risk communication and counseling in genetic service delivery as well as other healthcare settings.

  14. Evolutionary Data Mining Approach to Creating Digital Logic

    DTIC Science & Technology

    2010-01-01

    To deal with this problem a genetic program (GP) based data mining ( DM ) procedure has been invented (Smith 2005). A genetic program is an algorithm...that can operate on the variables. When a GP was used as a DM function in the past to automatically create fuzzy decision trees, the Report...rules represents an approach to the determining the effect of linguistic imprecision, i.e., the inability of experts to provide crisp rules. The

  15. Genetic and environmental factors associated with laboratory rearing affect survival and assortative mating but not overall mating success in Anopheles gambiae sensu stricto.

    PubMed

    Paton, Doug; Touré, Mahamoudou; Sacko, Adama; Coulibaly, Mamadou B; Traoré, Sékou F; Tripet, Frédéric

    2013-01-01

    Anopheles gambiae sensu stricto, the main vector of malaria in Africa, is characterized by its vast geographical range and complex population structure. Assortative mating amongst the reproductively isolated cryptic forms that co-occur in many areas poses unique challenges for programs aiming to decrease malaria incidence via the release of sterile or genetically-modified mosquitoes. Importantly, whether laboratory-rearing affects the ability of An. gambiae individuals of a given cryptic taxa to successfully mate with individuals of their own form in field conditions is still unknown and yet crucial for mosquito-releases. Here, the independent effects of genetic and environmental factors associated with laboratory rearing on male and female survival, mating success and assortative mating were evaluated in the Mopti form of An. gambiae over 2010 and 2011. In semi-field enclosures experiments and despite strong variation between years, the overall survival and mating success of male and female progeny from a laboratory strain was not found to be significantly lower than those of the progeny of field females from the same population. Adult progeny from field-caught females reared at the larval stage in the laboratory and from laboratory females reared outdoors exhibited a significant decrease in survival but not in mating success. Importantly, laboratory individuals reared as larvae indoors were unable to mate assortatively as adults, whilst field progeny reared either outdoors or in the laboratory, as well as laboratory progeny reared outdoors all mated significantly assortatively. These results highlight the importance of genetic and environment interactions for the development of An. gambiae's full mating behavioral repertoire and the challenges this creates for mosquito rearing and release-based control strategies.

  16. Yeast diversity and native vigor for flavor phenotypes.

    PubMed

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Could age modify the effect of genetic variants in IL6 and TNF-α genes in multiple myeloma?

    PubMed

    Martino, Alessandro; Buda, Gabriele; Maggini, Valentina; Lapi, Francesco; Lupia, Antonella; Di Bello, Domenica; Orciuolo, Enrico; Galimberti, Sara; Barale, Roberto; Petrini, Mario; Rossi, Anna Maria

    2012-05-01

    Cytokines play a central role in multiple myeloma (MM) pathogenesis thus genetic variations within cytokines coding genes could influence MM susceptibility and therapy outcome. We investigated the impact of 8 SNPs in these genes in 202 MM cases and 235 controls also evaluating their impact on therapy outcome in a subset of 91 patients. Despite the overall negative findings, we found a significant age-modified effect of IL6 and TNF-α SNPs, on MM risk and therapy outcome, respectively. Therefore, this observation suggests that genetic variation in inflammation-related genes could be an important mediator of the complex interplay between ageing and cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Genetic drift and collective dispersal can result in chaotic genetic patchiness.

    PubMed

    Broquet, Thomas; Viard, Frédérique; Yearsley, Jonathan M

    2013-06-01

    Chaotic genetic patchiness denotes unexpected patterns of genetic differentiation that are observed at a fine scale and are not stable in time. These patterns have been described in marine species with free-living larvae, but are unexpected because they occur at a scale below the dispersal range of pelagic larvae. At the scale where most larvae are immigrants, theory predicts spatially homogeneous, temporally stable genetic variation. Empirical studies have suggested that genetic drift interacts with complex dispersal patterns to create chaotic genetic patchiness. Here we use a co-ancestry model and individual-based simulations to test this idea. We found that chaotic genetic patterns (qualified by global FST and spatio-temporal variation in FST's between pairs of samples) arise from the combined effects of (1) genetic drift created by the small local effective population sizes of the sessile phase and variance in contribution among breeding groups and (2) collective dispersal of related individuals in the larval phase. Simulations show that patchiness levels qualitatively comparable to empirical results can be produced by a combination of strong variance in reproductive success and mild collective dispersal. These results call for empirical studies of the effective number of breeders producing larval cohorts, and population genetics at the larval stage. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.

  19. Telomerase RNA Component (TERC) genetic variants interact with the mediterranean diet modifying the inflammatory status and its relationship with aging: CORDIOPREV study

    USDA-ARS?s Scientific Manuscript database

    Background: Leukocyte telomere length (LTL) attrition has been associated with age-related diseases. Telomerase RNA Component (TERC) genetic variants have been associated with LTL; whereas fatty acids (FAs) can interact with genetic factors and influence in aging. We explore whether variability at t...

  20. Meta-analysis of interaction between dietary magnesium intake and genetic risk variants on diabetes phenotypes in the charge consortium

    USDA-ARS?s Scientific Manuscript database

    Little is known about whether genetic variation modifies the effect of magnesium (Mg) intake on two important diabetes risk factors: fasting glucose (FG) and insulin (FI). We examined interactions between dietary Mg and genetic variants associated with glucose (16 SNPs), insulin (2 SNPs), or Mg home...

  1. Cloning

    MedlinePlus

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  2. Genetic modification of the association between peripubertal dioxin exposure and pubertal onset in a cohort of Russian boys.

    PubMed

    Humblet, Olivier; Korrick, Susan A; Williams, Paige L; Sergeyev, Oleg; Emond, Claude; Birnbaum, Linda S; Burns, Jane S; Altshul, Larisa M; Patterson, Donald G; Turner, Wayman E; Lee, Mary M; Revich, Boris; Hauser, Russ

    2013-01-01

    Exposure to dioxins has been associated with delayed pubertal onset in both epidemiologic and animal studies. Whether genetic polymorphisms may modify this association is currently unknown. Identifying such genes could provide insight into mechanistic pathways. This is one of the first studies to assess genetic susceptibility to dioxins. We evaluated whether common polymorphisms in genes affecting either molecular responses to dioxin exposure or pubertal onset influence the association between peripubertal serum dioxin concentration and male pubertal onset. In this prospective cohort of Russian adolescent boys (n = 392), we assessed gene-environment interactions for 337 tagging single-nucleotide polymorphisms (SNPs) from 46 candidate genes and two intergenic regions. Dioxins were measured in the boys' serum at age 8-9 years. Pubertal onset was based on testicular volume and on genitalia staging. Statistical approaches for controlling for multiple testing were used, both with and without prescreening for marginal genetic associations. After accounting for multiple testing, two tag SNPs in the glucocorticoid receptor (GR/NR3C1) gene and one in the estrogen receptor-α (ESR1) gene were significant (q < 0.2) modifiers of the association between peripubertal serum dioxin concentration and male pubertal onset defined by genitalia staging, although not by testicular volume. The results were sensitive to whether multiple comparison adjustment was applied to all gene-environment tests or only to those with marginal genetic associations. Common genetic polymorphisms in the glucocorticoid receptor and estrogen receptor-α genes may modify the association between peripubertal serum dioxin concentration and pubertal onset. Further studies are warranted to confirm these findings.

  3. TSCA Environmental Release Application (TERA) for Modified Pseudomonas Fluorescens

    EPA Pesticide Factsheets

    TERA submitted by Micro Systems Technologies, LLC and given the tracking designations of R-02-0001. The microorganism has been genetically modified to contain a bioluminescent gene that is activated upon metabolism of naphthalene and/or methyl salicylate.

  4. The coupling hypothesis: why genome scans may fail to map local adaptation genes.

    PubMed

    Bierne, Nicolas; Welch, John; Loire, Etienne; Bonhomme, François; David, Patrice

    2011-05-01

    Genomic scans of multiple populations often reveal marker loci with greatly increased differentiation between populations. Often this differentiation coincides in space with contrasts in ecological factors, forming a genetic-environment association (GEA). GEAs imply a role for local adaptation, and so it is tempting to conclude that the strongly differentiated markers are themselves under ecologically based divergent selection, or are closely linked to loci under such selection. Here, we highlight an alternative and neglected explanation: intrinsic (i.e. environment-independent) pre- or post-zygotic genetic incompatibilities rather than local adaptation can be responsible for increased differentiation. Intrinsic genetic incompatibilities create endogenous barriers to gene flow, also known as tension zones, whose location can shift over time. However, tension zones have a tendency to become trapped by, and therefore to coincide with, exogenous barriers due to ecological selection. This coupling of endogenous and exogenous barriers can occur easily in spatially subdivided populations, even if the loci involved are unlinked. The result is that local adaptation explains where genetic breaks are positioned, but not necessarily their existence, which can be best explained by endogenous incompatibilities. More precisely, we show that (i) the coupling of endogenous and exogenous barriers can easily occur even when ecological selection is weak; (ii) when environmental heterogeneity is fine-grained, GEAs can emerge at incompatibility loci, but only locally, in places where habitats and gene pools are sufficiently intermingled to maintain linkage disequilibria between genetic incompatibilities, local-adaptation genes and neutral loci. Furthermore, the association between the locally adapted and intrinsically incompatible alleles (i.e. the sign of linkage disequilibrium between endogenous and exogenous loci) is arbitrary and can form in either direction. Reviewing results from the literature, we find that many predictions of our model are supported, including endogenous genetic barriers that coincide with environmental boundaries, local GEA in mosaic hybrid zones, and inverted or modified GEAs at distant locations. We argue that endogenous genetic barriers are often more likely than local adaptation to explain the majority of Fst-outlying loci observed in genome scan approaches - even when these are correlated to environmental variables. © 2011 Blackwell Publishing Ltd.

  5. What do consumer surveys and experiments reveal and conceal about consumer preferences for genetically modified foods?

    PubMed

    Colson, Gregory; Rousu, Matthew C

    2013-01-01

    Assessing consumer perceptions and willingness to pay for genetically modified (GM) foods has been one of the most active areas of empirical research in agricultural economics. Researchers over the past 15 years have delivered well over 100 estimates of consumers' willingness to pay for GM foods using surveys and experimental methods. In this review, we explore a number of unresolved issues related to three questions that are critical when considering the sum of the individual contributions that constitute the evidence on consumer preferences for GM foods.

  6. Recent patents on biosafety strategies of selectable marker genes in genetically modified crops.

    PubMed

    Jiang, Yiming; Hu, Xiaoning; Huang, Haiying

    2014-01-01

    Genetically modified crops (GMCs) have been planted world wide since 1990s, but the potential insecurity of selectable marker genes raises the questions about GMC safety. Therefore, several researches have been conducted on marker gene safety issues and recently several patents have been issued on this subject. There are two main approaches to achieve this goal: seeking the biosafety selectable marker and eliminating these insecure marker genes after transformation. Results show that these two systems are quite effective. Recent patents on the two ways are discussed in this review.

  7. Safety assessment of genetically modified plants with deliberately altered composition

    PubMed Central

    Halford, Nigel G; Hudson, Elizabeth; Gimson, Amy; Weightman, Richard; Shewry, Peter R; Tompkins, Steven

    2014-01-01

    The development and marketing of ‘novel’ genetically modified (GM) crops in which composition has been deliberately altered poses a challenge to the European Union (EU)'s risk assessment processes, which are based on the concept of substantial equivalence with a non-GM comparator. This article gives some examples of these novel GM crops and summarizes the conclusions of a report that was commissioned by the European Food Safety Authority on how the EU's risk assessment processes could be adapted to enable their safety to be assessed. PMID:24735114

  8. Genetically modified organisms (GMOs) and aquaculture.

    PubMed

    Beardmore, J A; Porter, Joanne S

    2003-01-01

    This paper reviews the nature of genetically modified organisms (GMOs), the range of aquatic species in which GMOs have been produced, the methods and target genes employed, the benefits to aquaculture, the problems attached to use of GMOs in aquatic species and the regulatory and other social frameworks surrounding them. A set of recommendations aimed at best practice is appended. This states the potential value of GMOs in aquaculture but also calls for improved knowledge particularly of sites of integration, risk analysis, progress in achieving sterility in fish for production and better dissemination of relevant information.

  9. [The lack of information on genetically modified organisms in Brazil].

    PubMed

    Ribeiro, Isabelle Geoffroy; Marin, Victor Augustus

    2012-02-01

    This article presents a review about the labeling of products that have Genetically Modified Organisms (GMO), also called transgenic elements in their composition. It addresses the conventions, laws and regulations relating to such products currently governing the market, the adequacy of these existing standards and their acceptance by society. It also examines the importance of the cautionary principle when assessing the application of new technologies or technologies where little is known or where there is no relevant scientific knowledge about the potential risks to the environment, human health and society.

  10. Epigenetics lights up the obesity field

    USDA-ARS?s Scientific Manuscript database

    Despite advances in the prevention and management of cardiovascular disease (CVD), this group of multifactorial disorders remains a leading cause of mortality worldwide. CVD is associated with multiple genetic and modifiable risk factors; however, known environmental and genetic influences can only ...

  11. Yellowstone bison genetics: let us move forward

    USGS Publications Warehouse

    Halbert, Natalie D.; Gogan, Peter J.P.; Hedrick, Philip W.; Wahl, Jacquelyn M.; Derr, James N.

    2012-01-01

    White and Wallen (2012) disagree with the conclusions and suggestions made in our recent assessment of population structure among Yellowstone National Park (YNP) bison based on 46 autosomal microsatellite loci in 661 animals (Halbert et al. 2012). First, they suggest that "the existing genetic substructure (that we observed) was artificially created." Specifically, they suggest that the substructure observed between the northern and central populations is the result of human activities, both historical and recent. In fact, the genetic composition of all known existing bison herds was created by, or has been influenced by, anthropogenic activities, although this obviously does not reduce the value of these herds for genetic conservation (Dratch and Gogan 2010). As perspective, many, if not most, species of conservation concern have been influenced by human actions and as a result currently exist as isolated populations. However, it is quite difficult to distinguish between genetic differences caused by human actions and important ancestral variation contained in separate populations without data from early time periods. Therefore, to not lose genetic variation that may be significant or indicative of important genetic variation, the generally acceptable management approach is to attempt to retain this variation based on the observed population genetic subdivision (Hedrick et al. 1986).

  12. Monitoring the agricultural landscape for insect resistance

    NASA Astrophysics Data System (ADS)

    Casas, Joseph; Glaser, J. A.; Copenhaver, Ken

    Farmers in 25 countries on six continents are using plant biotechnology to solve difficult crop production challenges and conserve the environment. In fact, 13.3 million farmers, which include 90 percent of the farming in developing countries, choose to plant biotech crops. Over the past decade, farmers increased area planted in genetically modified (GM) crops by more than 10 percent each year, thus increasing their farm income by more than 44 billion US dollars (1996-2007), and achieved economic, environmental and social benefits in crops such as soybeans, canola, corn and cotton. To date, total acres of biotech crops harvested exceed more than 2 billion with a proven 13-year history of safe use. Over the next decade, expanded adoption combined with current research on 57 crops in 63 countries will broaden the advantages of genetically modified foods for growers, consumers and the environment. Genetically modified (GM) crops with the ability to produce toxins lethal to specific insect pests are covering a larger percentage of the agricultural landscape every year. The United States department of Agriculture (USDA) estimated that 63 percent of corn and 65 percent of cotton contained these specific genetic traits in 2009. The toxins could protect billions of dollars of loss from insect damage for crops valued at greater than 165 billion US dollars in 2008. The stable and efficient production of these crops has taken on even more importance in recent years with their use, not only as a food source, but now also a source of fuel. It is in the best interest of the United States Environmental Protection Agency (USEPA) to ensure the continued efficacy of toxin producing GM crops as their use reduces pesticides harmful to humans and animals. However, population genetics models have indicated the risk of insect pests developing resistance to these toxins if a high percentage of acreage is grown in these crops. The USEPA is developing methods to monitor the agricultural landscape to ensure resistance is not developing. USEPA is teaming with NASA to perform this monitoring using models and NASA earth observation imagery from airborne and satellite platforms. Using multiple spatial, temporal and spectral resolutions, the project is monitoring the entire Midwestern "Corn Belt". By applying these methods, the project has successfully delineated insect infestations in genetically modified corn fields. Insect resistance development is expected to present itself as infestations thus indicating potential identification of resistance if it develops in genetically modified crops. The USEPA and NASA are currently considering the development of plans to potentially extend this aircraft research to other crops and develop a micro-satellite application.

  13. Changes in gene expression between a soybean F1 hybrid and its parents are associated with agronomically valuable traits

    USDA-ARS?s Scientific Manuscript database

    Plant breeding consists of creating phenotypic and genetic diversity by hybridizing diverse parents and selecting progeny which have new combinations of targeted traits. Soybean [Glycine max (L.) Merr.] genetic diversity is limited because domesticated soybean has undergone multiple genetic bottlene...

  14. Genetically shaping morphology of the filamentous fungus Aspergillus glaucus for production of antitumor polyketide aspergiolide A

    PubMed Central

    2014-01-01

    Background For filamentous fungi, the basic growth unit of hyphae usually makes it sensitive to shear stress which is generated from mechanical force and dynamic fluid in bioreactor, and it severely decreases microbial productions. The conventional strategies against shear-sensitive conundrum in fungal fermentation usually focus on adapting agitation, impeller type and bioreactor configuration, which brings high cost and tough work in industry. This study aims to genetically shape shear resistant morphology of shear-sensitive filamentous fungus Aspergillus glaucus to make it adapt to bioreactor so as to establish an efficient fermentation process. Results Hyphal morphology shaping by modifying polarized growth genes of A. glaucus was applied to reduce its shear-sensitivity and enhance aspergiolide A production. Degenerate PCR and genome walking were used to obtain polarized growth genes AgkipA and AgteaR, followed by construction of gene-deficient mutants by homologous integration of double crossover. Deletion of both genes caused meandering hyphae, for which, ΔAgkipA led to small but intense curves comparing with ΔAgteaR by morphology analysis. The germination of a second germ tube from conidiospore of the mutants became random while colony growth and development almost maintained the same. Morphology of ΔAgkipA and ΔAgteaR mutants turned to be compact pellet and loose clump in liquid culture, respectively. The curved hyphae of both mutants showed no remarkably resistant to glass bead grinding comparing with the wild type strain. However, they generated greatly different broth rheology which further caused growth and metabolism variations in bioreactor fermentations. By forming pellets, the ΔAgkipA mutant created a tank environment with low-viscosity, low shear stress and high dissolved oxygen tension, leading to high production of aspergiolide A (121.7 ± 2.3 mg/L), which was 82.2% higher than the wild type. Conclusions A new strategy for shaping fungal morphology by modifying polarized growth genes was applied in submerged fermentation in bioreactor. This work provides useful information of shaping fungal morphology for submerged fermentation by genetically modification, which could be valuable for morphology improvement of industrial filamentous fungi. PMID:24886193

  15. Landmarks in the history of cancer epidemiology.

    PubMed

    Greenwald, Peter; Dunn, Barbara K

    2009-03-15

    The application of epidemiology to cancer prevention is relatively new, although observations of the potential causes of cancer have been reported for more than 2,000 years. Cancer was generally considered incurable until the late 19th century. Only with a refined understanding of the nature of cancer and strategies for cancer treatment could a systematic approach to cancer prevention emerge. The 20th century saw the elucidation of clues to cancer causation from observed associations with population exposures to tobacco, diet, environmental chemicals, and other exogenous factors. With repeated confirmation of such associations, researchers entertained for the first time the possibility that cancer, like many of the infectious diseases of the time, might be prevented. By the mid-20th century, with antibiotics successfully addressing the majority of infectious diseases and high blood pressure treatment beginning to affect the prevalence of heart disease in a favorable direction, the focus of much of epidemiology shifted to cancer. The early emphasis was on exploring, in greater depth, the environmental, dietary, hormonal, and other exogenous exposures for their potential associations with increased cancer risk. The first major breakthrough in identifying a modifiable cancer risk factor was the documentation of an association between tobacco smoking and lung cancer. During the past four decades, epidemiologic studies have generated population data identifying risk factors for cancers at almost every body site, with many cancers having multiple risk factors. The development of technologies to identify biological molecules has facilitated the incorporation of these molecular manifestations of biological variation into epidemiologic studies, as markers of exposure as well as putative surrogate markers of cancer outcome. This technological trend has, during the past two decades, culminated in emphasis on the identification of genetic variants and their products as correlates of cancer risk, in turn, creating opportunities to incorporate the discipline of molecular/genetic epidemiology into the study of cancer prevention. Epidemiology will undoubtedly continue contributing to cancer prevention by using traditional epidemiologic study designs to address broad candidate areas of interest, with molecular/genetic epidemiology investigations honing in on promising areas to identify specific factors that can be modified with the goal of reducing risk.

  16. A genomically modified Escherichia coli strain carrying an orthogonal E. coli histidyl-tRNA synthetase•tRNAHis pair.

    PubMed

    Englert, Markus; Vargas-Rodriguez, Oscar; Reynolds, Noah M; Wang, Yane-Shih; Söll, Dieter; Umehara, Takuya

    2017-11-01

    Development of new aminoacyl-tRNA synthetase (aaRS)•tRNA pairs is central for incorporation of novel non-canonical amino acids (ncAAs) into proteins via genetic code expansion (GCE). The Escherichia coli and Caulobacter crescentus histidyl-tRNA synthetases (HisRS) evolved divergent mechanisms of tRNA His recognition that prevent their cross-reactivity. Although the E. coli HisRS•tRNA His pair is a good candidate for GCE, its use in C. crescentus is limited by the lack of established genetic selection methods and by the low transformation efficiency of C. crescentus. E. coli was genetically engineered to use a C. crescentus HisRS•tRNA His pair. Super-folder green fluorescent protein (sfGFP) and chloramphenicol acetyltransferase (CAT) were used as reporters for read-through assays. A library of 313 ncAAs coupled with the sfGFP reporter system was employed to investigate the specificity of E. coli HisRS in vivo. A genomically modified E. coli strain (named MEOV1) was created. MEVO1 requires an active C. crescentus HisRS•tRNA His pair for growth, and displays a similar doubling time as the parental E. coli strain. sfGFP- and CAT-based assays showed that the E. coli HisRS•tRNA His pair is orthogonal in MEOV1 cells. A mutation in the anticodon loop of E. coli tRNA His CUA elevated its suppression efficiency by 2-fold. The C. crescentus HisRS•tRNA His pair functionally complements an E. coli ΔhisS strain. The E. coli HisRS•tRNA His is orthogonal in MEOV1 cells. E. coli tRNA His CUA is an efficient amber suppressor in MEOV1. We developed a platform that allows protein engineering of E. coli HisRS that should facilitate GCE in E. coli. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Association between dietary fat intake and insulin resistance in Chinese child twins.

    PubMed

    Huang, Tao; Beaty, Terri; Li, Ji; Liu, Huijuan; Zhao, Wei; Wang, Youfa

    2017-01-01

    Dietary fat intake is correlated with increased insulin resistance (IR). However, it is unknown whether gene-diet interaction modulates the association. This study estimated heritability of IR measures and the related genetic correlations with fat intake, and tested whether dietary fat intake modifies the genetic influence on type 2 diabetes (T2D)-related traits in Chinese child twins. We included 622 twins aged 7-15 years (n 311 pairs, 162 monozygotic (MZ), 149 dizygotic (DZ)) from south-eastern China. Dietary factors were measured using FFQ. Structural equation models were fit using Mx statistical package. The intra-class correlation coefficients for all traits related to T2D were higher for MZ twins than for DZ twins. Dietary fat and fasting serum insulin (additive genetic correlation (r A) 0·20; 95 % CI 0·08, 0·43), glucose (r A 0·12; 95 % CI 0·01, 0·40), homoeostasis model of assessment-insulin resistance (Homa-IR) (r A 0·22; 95 % CI 0·10, 0·50) and the quantitative insulin sensitivity check index (Quicki) (r A -0·22; 95 % CI -0·40, 0·04) showed strong genetic correlations. Heritabilities of dietary fat intake, fasting glucose and insulin were estimated to be 52, 70 and 70 %, respectively. More than 70 % of the phenotypic correlations between dietary fat and insulin, glucose, Homa-IR and the Quicki index appeared to be mediated by shared genetic influence. Dietary fat significantly modified additive genetic effects on these quantitative traits associated with T2D. Analysis of Chinese twins yielded high estimates of heritability of dietary fat intake and IR. Genetic factors appear to contribute to a high proportion of the variance for both insulin sensitivity and IR. Dietary fat intake modifies the genetic influence on blood levels of insulin and glucose, Homa-IR and the Quicki index.

  18. The commercialization of genome-editing technologies.

    PubMed

    Brinegar, Katelyn; K Yetisen, Ali; Choi, Sun; Vallillo, Emily; Ruiz-Esparza, Guillermo U; Prabhakar, Anand M; Khademhosseini, Ali; Yun, Seok-Hyun

    2017-11-01

    The emergence of new gene-editing technologies is profoundly transforming human therapeutics, agriculture, and industrial biotechnology. Advances in clustered regularly interspaced short palindromic repeats (CRISPR) have created a fertile environment for mass-scale manufacturing of cost-effective products ranging from basic research to translational medicine. In our analyses, we evaluated the patent landscape of gene-editing technologies and found that in comparison to earlier gene-editing techniques, CRISPR has gained significant traction and this has established dominance. Although most of the gene-editing technologies originated from the industry, CRISPR has been pioneered by academic research institutions. The spinout of CRISPR biotechnology companies from academic institutions demonstrates a shift in entrepreneurship strategies that were previously led by the industry. These academic institutions, and their subsequent companies, are competing to generate comprehensive intellectual property portfolios to rapidly commercialize CRISPR products. Our analysis shows that the emergence of CRISPR has resulted in a fivefold increase in genome-editing bioenterprise investment over the last year. This entrepreneurial movement has spurred a global biotechnology revolution in the realization of novel gene-editing technologies. This global shift in bioenterprise will continue to grow as the demand for personalized medicine, genetically modified crops and environmentally sustainable biofuels increases. However, the monopolization of intellectual property, negative public perception of genetic engineering and ambiguous regulatory policies may limit the growth of these market segments.

  19. Synthetic biology: Novel approaches for microbiology.

    PubMed

    Padilla-Vaca, Felipe; Anaya-Velázquez, Fernando; Franco, Bernardo

    2015-06-01

    In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  20. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination

    PubMed Central

    Nicolas, Laura; Cols, Montserrat; Choi, Jee Eun; Chaudhuri, Jayanta; Vuong, Bao

    2018-01-01

    Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity. PMID:29744038

  1. Delivering the Goods for Genome Engineering and Editing.

    PubMed

    Skipper, Kristian Alsbjerg; Mikkelsen, Jacob Giehm

    2015-08-01

    A basic understanding of genome evolution and the life and impact of microorganisms, like viruses and bacteria, has been fundamental in the quest for efficient genetic therapies. The expanding tool box for genetic engineering now contains transposases, recombinases, and nucleases, all created from naturally occurring genome-modifying proteins. Whereas conventional gene therapies have sought to establish sustained expression of therapeutic genes, genomic tools are needed only in a short time window and should be delivered to cells ideally in a balanced "hit-and-run" fashion. Current state-of-the-art delivery strategies are based on intracellular production of protein from transfected plasmid DNA or in vitro-transcribed RNA, or from transduced viral templates. Here, we discuss advantages and challenges of intracellular production strategies and describe emerging approaches based on the direct delivery of protein either by transfer of recombinant protein or by lentiviral protein transduction. With focus on adapting viruses for protein delivery, we describe the concept of "all-in-one" lentiviral particles engineered to codeliver effector proteins and donor sequences for DNA transposition or homologous recombination. With optimized delivery methods-based on transferring DNA, RNA, or protein-it is no longer far-fetched that researchers in the field will indeed deliver the goods for somatic gene therapies.

  2. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.

  3. Old Fashioned vs. Ultra-Processed-Based Current Diets: Possible Implication in the Increased Susceptibility to Type 1 Diabetes and Celiac Disease in Childhood

    PubMed Central

    Aguayo-Patrón, Sandra V.; Calderón de la Barca, Ana M.

    2017-01-01

    Ultra-processed foods are ready-to-heat and ready-to-eat products created to replace traditional homemade meals and dishes due to convenience and accessibility. Because of their low-fiber and high-fat and sugar composition, these foodstuffs could induce a negative impact on health. They are partially responsible for obesity and chronic non-transmissible diseases; additionally, they could impact in the prevalence of autoimmune diseases such as type 1 diabetes and celiac disease. The rationale is that the nutritional composition of ultra-processed foodstuffs can induce gut dysbiosis, promoting a pro-inflammatory response and consequently, a “leaky gut”. These factors have been associated with increased risk of autoimmunity in genetically predisposed children. In addition, food emulsifiers, commonly used in ultra-processed products could modify the gut microbiota and intestinal permeability, which could increase the risk of autoimmunity. In contrast, unprocessed and minimally processed food-based diets have shown the capacity to promote gut microbiota eubiosis, anti-inflammatory response, and epithelial integrity, through bacterial butyrate production. Thus, to decrease the susceptibility to autoimmunity, genetically predisposed children should avoid ultra-processed food products and encourage the consumption of fresh and minimally processed foods. PMID:29140275

  4. The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches

    PubMed Central

    Pramstaller, Peter P.; Hicks, Andrew A.; Rossini, Alessandra

    2017-01-01

    Genome-editing technology has emerged as a powerful method that enables the generation of genetically modified cells and organisms necessary to elucidate gene function and mechanisms of human diseases. The clustered regularly interspaced short palindromic repeats- (CRISPR-) associated 9 (Cas9) system has rapidly become one of the most popular approaches for genome editing in basic biomedical research over recent years because of its simplicity and adaptability. CRISPR/Cas9 genome editing has been used to correct DNA mutations ranging from a single base pair to large deletions in both in vitro and in vivo model systems. CRISPR/Cas9 has been used to increase the understanding of many aspects of cardiovascular disorders, including lipid metabolism, electrophysiology and genetic inheritance. The CRISPR/Cas9 technology has been proven to be effective in creating gene knockout (KO) or knockin in human cells and is particularly useful for editing induced pluripotent stem cells (iPSCs). Despite these progresses, some biological, technical, and ethical issues are limiting the therapeutic potential of genome editing in cardiovascular diseases. This review will focus on various applications of CRISPR/Cas9 genome editing in the cardiovascular field, for both disease research and the prospect of in vivo genome-editing therapies in the future. PMID:29434642

  5. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development

    PubMed Central

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-01-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence. PMID:25568012

  6. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development.

    PubMed

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-Ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-09-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence.

  7. 78 FR 16622 - Gulf of the Farallones and Monterey Bay National Marine Sanctuaries Regulations on Introduced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... any organism that has been genetically modified (15 CFR 922.81). This final rule, combined with a... not apply if NOAA were willing and able to modify its regulations to except (i.e., allow) all state... Governor's concerns that would also meet NOAA's goals. For GFNMS, NOAA proposed to modify the regulations...

  8. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    PubMed

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. ©AlphaMed Press.

  9. Enhanced Genetic Modification of Adult Growth Factor Mobilized Peripheral Blood Hematopoietic Stem and Progenitor Cells With Rapamycin

    PubMed Central

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M.; Epps, Elizabeth W.; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui

    2014-01-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. PMID:25107584

  10. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    USDA-ARS?s Scientific Manuscript database

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  11. The Future of Genetics in Psychology and Psychiatry: Microarrays, Genome-Wide Association, and Non-Coding RNA

    ERIC Educational Resources Information Center

    Plomin, Robert; Davis, Oliver S. P.

    2009-01-01

    Background: Much of what we thought we knew about genetics needs to be modified in light of recent discoveries. What are the implications of these advances for identifying genes responsible for the high heritability of many behavioural disorders and dimensions in childhood? Methods: Although quantitative genetics such as twin studies will continue…

  12. A nursing theory-guided framework for genetic and epigenetic research.

    PubMed

    Maki, Katherine A; DeVon, Holli A

    2018-04-01

    The notion that genetics, through natural selection, determines innate traits has led to much debate and divergence of thought on the impact of innate traits on the human phenotype. The purpose of this synthesis was to examine how innate theory informs genetic research and how understanding innate theory through the lens of Martha Rogers' theory of unitary human beings can offer a contemporary view of how innate traits can inform epigenetic and genetic research. We also propose a new conceptual model for genetic and epigenetic research. The philosophical, theoretical, and research literatures were examined for this synthesis. We have merged philosophical and conceptual phenomena from innate theory with the theory of unitary beings into the University of Illinois at Chicago model for genetic and epigenetic research. Innate traits are the cornerstone of the framework but may be modified epigenetically by biological, physiological, psychological, and social determinants as they are transcribed. These modifiers serve as important links between the concept of innate traits and epigenetic modifications, and, like the theory of unitary human beings, the process is understood in the context of individual and environmental interaction that has the potential to evolve as the determinants change. © 2018 John Wiley & Sons Ltd.

  13. Genetic engineering including superseding microinjection: new ways to make GM pigs.

    PubMed

    Galli, Cesare; Perota, Andrea; Brunetti, Dario; Lagutina, Irina; Lazzari, Giovanna; Lucchini, Franco

    2010-01-01

    Techniques for genetic engineering of swine are providing genetically modified animals of importance for the field of xenotransplantation, animal models for human diseases and for a variety of research applications. Many of these modifications have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. A number of techniques are today available to engineering the genome of mammals, these range from the well established less efficient method of DNA microinjection into the zygote, the use of viral vectors, to the more recent use of somatic cell nuclear transfer. The use of enzymatic engineering that are being developed now will refine the precision of the genetic modification combined with the use of new vectors like transposons. The use of somatic cell nuclear transfer is currently the most efficient way to generate genetically modified pigs. The development of enzymatic engineering with zinc-finger nucleases, recombinases and transposons will revolutionize the field. Nevertheless, genetic engineering in large domesticated animals will remain a challenging task. Recent improvements in several fields of cell and molecular biology offer new promises and opportunities toward an easier, cost-effective and efficient generation of transgenic pigs. © 2010 John Wiley & Sons A/S.

  14. Genetic modifiers of Huntington's disease.

    PubMed

    Gusella, James F; MacDonald, Marcy E; Lee, Jong-Min

    2014-09-15

    Huntington's disease (HD) is a devastating neurodegenerative disorder that directly affects more than 1 in 10,000 persons in Western societies but, as a family disorder with a long, costly, debilitating course, it has an indirect impact on a far greater proportion of the population. Although some palliative treatments are used, no effective treatment exists for preventing clinical onset of the disorder or for delaying its inevitable progression toward premature death, approximately 15 years after diagnosis. Huntington's disease involves a movement disorder characterized by chorea, as well as a variety of psychiatric disturbances and intellectual decline, with a gradual loss of independence. A dire need exists for effective HD therapies to alleviate the suffering and costs to the individual, family, and health care system. In past decades, genetics, the study of DNA sequence variation and its consequences, provided the tools to map the HD gene to chromosome 4 and ultimately to identify its mutation as an expanded CAG trinucleotide repeat in the coding sequence of a large protein, dubbed huntingtin. Now, advances in genetic technology offer an unbiased route to the identification of genetic factors that are disease-modifying agents in human patients. Such genetic modifiers are expected to highlight processes capable of altering the course of HD and therefore to provide new, human-validated targets for traditional drug development, with the goal of developing rational treatments to delay or prevent onset of HD clinical signs. © 2014 International Parkinson and Movement Disorder Society.

  15. Multiple Genetic Modifiers of Bilirubin Metabolism Involvement in Significant Neonatal Hyperbilirubinemia in Patients of Chinese Descent.

    PubMed

    Yang, Hui; Wang, Qian; Zheng, Lei; Lin, Min; Zheng, Xiang-bin; Lin, Fen; Yang, Li-Ye

    2015-01-01

    The potential for genetic variation to modulate neonatal hyperbilirubinemia risk is increasingly being recognized. A case-control study was designed to assess comprehensive contributions of the multiple genetic modifiers of bilirubin metabolism on significant neonatal hyperbilirubinemia in Chinese descendents. Eleven common mutations and polymorphisms across five bilirubin metabolism genes, namely those encoding UGT1A1, HMOX1, BLVRA, SLCO1B1 and SLCO1B3, were determined using the high resolution melt (HRM) assay or PCR-capillary electrophoresis analysis. A total of 129 hyperbilirubinemic infants and 108 control subjects were evaluated. Breastfeeding and the presence of the minor A allele of rs4148323 (UGTA*6) were correlated with an increased risk of hyperbilirubinemia (OR=2.17, P=0.02 for breastfeeding; OR=9.776, P=0.000 for UGTA*6 homozygote; OR=3.151, P=0.000 for UGTA*6 heterozygote); whereas, increasing gestational age and the presence of -TA7 repeat variant of UGT1A1 decreased the risk (OR=0.721, P=0.003 for gestational age; OR=0.313, P=0.002 for heterozygote TA6/TA7). In addition, the SLCO1B1 and SLCO1B3 polymorphisms also contributed to an increased risk of hyperbilirubinemia. This detailed analysis revealed the impact of multiple genetic modifiers on neonatal hyperbilirubinemia. This may support the use of genetic tests for clinical risk assessment. Furthermore, the established HRM assay can serve as an effective method for large-scale investigation.

  16. Variable Gene Dispersal Conditions and Spatial Deforestation Patterns Can Interact to Affect Tropical Tree Conservation Outcomes

    PubMed Central

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention. PMID:26000951

  17. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes.

    PubMed

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention.

  18. Multi Stakeholders' Attitudes toward Bt rice in Southwest, Iran: Application of TPB and Multi Attribute Models.

    PubMed

    Ghoochani, Omid M; Ghanian, Mansour; Baradaran, Masoud; Azadi, Hossein

    2017-03-01

    Organisms that have been genetically engineered and modified (GM) are referred to as genetically modified organisms (GMOs). Bt crops are plants that have been genetically modified to produce certain proteins from the soil bacteria Bacillus thuringiensis (Bt), which makes these plants resistant to certain lepidopteran and coleopteran species. Genetically Modified (GM) rice was produced in 2006 by Iranian researchers from Tarom Mowla'ii and has since been called 'Bt rice'. As rice is an important source of food for over 3 billion inhabitants on Earth, this study aims to use a correlational survey in order to shed light on the predicting factors relating to the extent of stakeholders' behavioral intentions towards Bt rice. It is assumed and the results confirm that "attitudes toward GM crops" can be used as a bridge in the Attitude Model and the Behavioral Intention Model in order to establish an integrated model. To this end, a case study was made of the Southwest part of Iran in order to verify this research model. This study also revealed that as a part of the integrated research framework in the Behavior Intention Model both constructs of attitude and the subjective norm of the respondents serve as the predicting factors of stakeholders' intentions of working with Bt rice. In addition, the Attitude Model, as the other part of the integrated research framework, showed that the stakeholders' attitudes toward Bt rice can only be determined by the perceived benefits (e.g. positive outcomes) of Bt rice.

  19. A simple capillary gel electrophoresis approach for efficient and reproducible DNA separations. Analysis of genetically modified soy and maize.

    PubMed

    Sánchez, Laura; González, Ramón; Crego, Antonio L; Cifuentes, Alejandro

    2007-03-01

    It is generally assumed that in order to achieve suitable separations of DNA fragments, capillary gel electrophoresis (CGE)-coated capillaries should be used. In this work, a new method is presented that allows to obtain reproducible CGE separations of DNA fragments using bare fused-silica capillaries without any previous coating step. The proposed method only requires: (i) a capillary washing with 0.1 M hydrochloric acid between injections and (ii) a running buffer composed of Tris-phosphate-ethylenediamine tetraacetic acid (EDTA) and 4.5% of 2-hydroxyethyl cellulose (HEC) as sieving polymer. The use of this new CGE procedure gives highly resolved and reproducible separations of DNA fragments ranging from 50 to 750 bp. The separation of these DNA fragments is accomplished in less than 30 min with efficiencies up to 1.7 x 10(6) plates/m. Reproducibility values of migration times (given as %RSD) for the analyzed DNA fragments are better than 1.0% (n = 4) for the same day, 2.2% (n = 16) for four different days, and 2.3% (n = 16) for four different capillaries. The usefulness of this separation method is demonstrated by detecting genetically modified maize and genetically modified soy after DNA amplification by PCR. This new CGE procedure together with LIF as detector provides sensitive analysis of 0.9% of Bt11 maize, Mon810 maize, and Roundup Ready soy in flours with S/ N up to 542. These results demonstrate the usefulness of this procedure to fulfill the European regulation on detection of genetically modified organisms in foods.

  20. Farmers' valuation of incentives to produce genetically modified organism-free milk: Insights from a discrete choice experiment in Germany.

    PubMed

    Schreiner, J A; Latacz-Lohmann, U

    2015-11-01

    This paper investigates farmers' willingness to participate in a genetically modified organism (GMO)-free milk production scheme offered by some German dairy companies. The empirical analysis is based upon discrete choice experiments with 151 dairy farmers from 2 regions in Germany. A conditional logit estimation reveals a strong positive effect of the price premium on offer. Reliable feed monitoring and free technical support increase the likelihood of scheme adoption, the latter however only in farms that have been receiving technical support in other fields. By contrast, any interference with the entrepreneurial autonomy of farmers, through pre-arranged feed procurement or prescriptive advice on the part of the dairy company, lowers acceptance probabilities. Farmers' attitudes toward cultivation of genetically modified soy, their assessment of the market potential of GMO-free milk and future feed prices were found to be significant determinants of adoption, as are farmer age, educational status, and current feeding regimens. Respondents requested on average a mark-up of 0.80 eurocents per kilogram of milk to accept a contract. Comparison of the estimates for the 2 regions suggests that farmers in northern Germany are, on average, more likely to convert to genetically modified-free production; however, farmers in the south are, ceteris paribus, more responsive to an increase in the price premium offered. A latent class model reveals significant differences in the valuation of scheme attributes between 2 latent classes of adopters and nonadopters. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

Top