Science.gov

Sample records for creek biological monitoring

  1. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  2. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    SciTech Connect

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  3. Steel Creek zooplankton: L Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Starkel, W.M.; Chimney, M.J.

    1988-03-01

    The objectives of this portion of the Steel Creek Biological Monitoring Program were to analyze data on macrozooplankton taxonomy and density in the Steel Creek corridor and swamp/delta, and compare the composition of the post-impoundment macrozooplankton community with pre-impoundment conditions and communities from other stream and swamp systems. The data presented in the report cover the period January 1986 through December 1987. Macrozooplankton samples were collected monthly using an 80 ..mu..m mesh net at Stations 275, 280, and 290 in the Steel Creek corridor and Stations 310, 330, 350, and 370 in the Steel Creek delta/swamp. Macrozooplankton taxa richness was highest at the two Steel Creek corridor stations nearest the L-Lake dam (Stations 275 and 280); mean values were 10.6 and 7.2 taxa collected/month in 1986 vs 12.1 and 12.3 taxa collected/month in 1987. The lowest taxa richness occurred at Steel Creek swamp/delta stations; means ranged from 1.9 to 4.2 taxa collected/month during both years.

  4. BIOLOGICAL MONITORING PROGRAM FOR EAST FORK POPLAR CREEK

    SciTech Connect

    ADAMS, S.M.; ASHWOOD, T.L.; BEATY, T.W.; BRANDT, C.C.

    1997-10-24

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y- 12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  5. Biological monitoring program for East Fork Poplar Creek

    SciTech Connect

    Adams, S.M.; Ashwood, T.L.; Beaty, T.W.; Brandt, C.C.; Christensen, S.W.; Cicerone, D.S.; Greeley, M.S. Jr.; Hill, W.R.; Kszos, L.S.

    1997-04-18

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  6. BIOLOGICAL MONITORING PROGRAM FOR EAST FORK POPLAR CREEK

    SciTech Connect

    ADAMS, S.M.; BEATY, T.W.; BRANDT, C.C.; CHRISTENSEN, S.W.; CICERONE, D.S.

    1998-09-09

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  7. Biological Monitoring Program for East Fork Poplar Creek

    SciTech Connect

    Adams, S.M.; Christensen, S.W.; Greeley, M.S.jr; Hill, W.R.; Kszos, L.A.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    1998-10-15

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biologicai Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the compiex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC, These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumuiation studies, and (4) ecological surveys of the periphyton, benthic macro invertebrate, and fish communities. Monitoring is currently being conducted at five sites, although sites maybe excluded and/or others added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) concentration of mercury in the adjacent floodplain, (5) appropriate habitat distribution, and (6

  8. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Bowers, J.A.; Toole, M.A.; van Duyn, Y.

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  9. Steel Creek wildlife: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Giffin, M.A.; Patterson, K.K.

    1988-03-01

    Reptile and amphibian populations in Steel Creek below L-Lake were assessed in monthly or quarterly sampling programs. Thirty-eight species of reptiles or amphibians were collected during 1987 in the Steel Creek corridor below the L-Lake impoundment, and in the delta and channel. Juvenile turtles and alligators, and larval amphibians were observed or collected during the study, indicating continued reproduction in Steel Creek. The reptile and amphibian populations in Steel Creek show no indication of any effect due to the impoundment of the lake or the operation of L-Reactor. Waterfowl and associated birds in Steel Creek below L-Lake were observed, in conjunction with other sampling programs, during winter--spring and fall--winter migrations. Nine species of waterfowl and five species of associated birds were observed in 1987 in the Steel Creek corridor below the L-Lake impoundment and in the delta and channel.

  10. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  11. Quarterly Progress Report - Biological Monitoring Program for East Fork Poplar Creek

    SciTech Connect

    Adams, S.M.; Christensen, S.W.; Greeley, M.S.jr; Hill, W.R.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-04-18

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities. Monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) concentration of mercury in the adjacent floodplain, (5) appropriate habitat distribution, and

  12. Quarterly Progress Report - Biological Monitoring Program for East Fork Poplar Creek

    SciTech Connect

    Adams, S.M.; Christensen, S.W.; Greeley, M.S. jr; Hill, W.R.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-07-18

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities. Monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) concentration of mercury in the adjacent floodplain, (5) appropriate habitat distribution, and

  13. Quarterly Progress Report - Biological Monitoring Program for East Fork Poplar Creek

    SciTech Connect

    Adams, S.M.; Christensen, S.W.; Greeley, M.S.jr; Hill, W.R.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-10-18

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities. Monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) concentration of mercury in the adjacent floodplain, (5) appropriate habitat distribution, and

  14. Tennessee's East Fork Poplar Creek: A biological monitoring and abatement program

    SciTech Connect

    Halbrook, R.S. ); Loar, J.M.; Adams, S.M.; Black, M.C.; Boston, H.L.; Greeley, M.S. Jr.; Hill, W.R.; Hinzman, R.L.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Schilling, E.M.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. ); Gatz, A.J. )

    1991-01-01

    On May 1985, a Biological Monitoring Program was developed for East Fork Poplar Creek (EFPC) in eastern Tennessee, United States. This stream originates within the Oak Ridge Y-12 Plant that produces nuclear weapons components for the Department of Energy. Water and sediment in the stream contain metals, organic chemicals, and radionuclides from releases that have occurred over the past 45 years. The creek also receives urban and some agricultural runoff and effluent from the City of Oak Ridge's Wastewater Treatment Facility (WTF). The biological monitoring program includes four major tasks: (1) ambient toxicity testing: (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological monitoring of stream communities, including periphyton, benthic macroinvertebrates, and fish. Biological conditions are monitored at six sites on EFPC ranging from kilometer 24.4 near the headwaters to kilometer 6.3 near the month. A site on Brushy Fork, A stream just north of Oak Ridge, is used as reference. Ambient (instream) toxicity was monitored through the use of 7-day static-renewal tests that measured the survival and growth of fathead minnow (Pimephales promelas) larvae and the survival and reproduction of a microstrustacean (Ceriodaphnia dubia). Full-strength water from EFPC within the Y-12 Plant boundary was frequently toxic to Ceriodaphnia, but less frequently toxic to the minnow larvae. Chlorine has been identified as an important toxicant in upper EFPC. Water samples from six sites in EFPC downstream from the Y-12 Plant boundary were tested eight times with both species during a 2-year period (October, 1986 through October, 1988). These sites were ranked by the number of times they were best'' or worst'' for each species. Water samples collected for use in the ambient toxicity tests were routinely analyzed for conductivity, pH, alkalinity, hardness, total residual and free chlorine, and temperature.

  15. Tennessee`s East Fork Poplar Creek: A biological monitoring and abatement program

    SciTech Connect

    Halbrook, R.S.; Loar, J.M.; Adams, S.M.; Black, M.C.; Boston, H.L.; Greeley, M.S. Jr.; Hill, W.R.; Hinzman, R.L.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Schilling, E.M.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Gatz, A.J.

    1991-12-31

    On May 1985, a Biological Monitoring Program was developed for East Fork Poplar Creek (EFPC) in eastern Tennessee, United States. This stream originates within the Oak Ridge Y-12 Plant that produces nuclear weapons components for the Department of Energy. Water and sediment in the stream contain metals, organic chemicals, and radionuclides from releases that have occurred over the past 45 years. The creek also receives urban and some agricultural runoff and effluent from the City of Oak Ridge`s Wastewater Treatment Facility (WTF). The biological monitoring program includes four major tasks: (1) ambient toxicity testing: (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological monitoring of stream communities, including periphyton, benthic macroinvertebrates, and fish. Biological conditions are monitored at six sites on EFPC ranging from kilometer 24.4 near the headwaters to kilometer 6.3 near the month. A site on Brushy Fork, A stream just north of Oak Ridge, is used as reference. Ambient (instream) toxicity was monitored through the use of 7-day static-renewal tests that measured the survival and growth of fathead minnow (Pimephales promelas) larvae and the survival and reproduction of a microstrustacean (Ceriodaphnia dubia). Full-strength water from EFPC within the Y-12 Plant boundary was frequently toxic to Ceriodaphnia, but less frequently toxic to the minnow larvae. Chlorine has been identified as an important toxicant in upper EFPC. Water samples from six sites in EFPC downstream from the Y-12 Plant boundary were tested eight times with both species during a 2-year period (October, 1986 through October, 1988). These sites were ranked by the number of times they were ``best`` or ``worst`` for each species. Water samples collected for use in the ambient toxicity tests were routinely analyzed for conductivity, pH, alkalinity, hardness, total residual and free chlorine, and temperature.

  16. Quarterly Progress Report on the Biological Monitoring Program for East Fork Poplar Creek

    SciTech Connect

    Adams, S.M.; Ashwood, T.L.; Cicerone, D.S.; Greeley, M.S. Jr.; Hill, W.R.; Kszos, L.A.

    1996-12-30

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program ( BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  17. The Oak Ridge Y-12 Plant biological monitoring and abatement program for East Fork Poplar Creek

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Giddings, J.M.; McCarthy, J.F.; Southworth, G.R.; Smith, J.G.; Stewart, A.J.; Springborn Bionomics, Inc., Wareham, MA; Oak Ridge National Lab., TN )

    1989-10-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Oak Ridge Y-12 Plant, a nuclear weapons components production facility located in Oak Ridge, Tennessee, and operated by Martin Marietta Energy Systems, Inc., for the US Department of Energy. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Oak Ridge Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek), in particular, the growth and propagation of fish and aquatic life, as designated by the Tennessee Department of Health and Environment. A second purpose for the BMAP is to document the ecological effects resulting from implementation of a water pollution control program that will include construction of nine new wastewater treatment facilities over the next 4 years. Because of the complex nature of the effluent discharged to East Fork Poplar Creek and the temporal and spatial variability in the composition of the effluent (i.e., temporal variability related to various pollution abatement measures that will be implemented over the next several years and spatial variability caused by pollutant inputs downstream of the Oak Ridge Y-12 Plant), a comprehensive, integrated approach to biological monitoring was developed for the BMAP. 39 refs., 5 figs., 8 tabs.

  18. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    SciTech Connect

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  19. Quarterly Progress Report - Biological Monitoring Program for East Fork Poplar Creek

    SciTech Connect

    Adams, S. M.; Christensen, S. W.; Greeley, M.S. jr; McCracken, M.K.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth G. R.; Stewart, A. J.

    2001-01-19

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant). As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Complex protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Complex on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Complex discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities. Monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) concentration of mercury in the

  20. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  1. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina

    SciTech Connect

    Specht, W.L.

    1991-10-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  2. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  3. L-Lake zooplankton: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    SciTech Connect

    Bowers, J.A.; Bowen, M.

    1992-03-01

    The L- Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor affluent into L Lake will not inhibit the eventual establishment of a ``Balanced Biological Community`` (BBC) in at least 50% of the lake. This report details results of monitoring zooplankton populations in L-Lake.

  4. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.; Stout, J.G.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  5. L-Lake fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The L Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the re-start of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor effluent into L Lake will not inhibit the eventual establishment of a ``Balanced Biological Community`` (BBC) in at least 50% of the lake.

  6. L-Lake zooplankton: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Chimney, M.J.

    1988-03-01

    The objectives of this portion of the L-Lake Biological Monitoring Program are to provide an analysis of the zooplankton community in L-Lake that will help determine whether this ecosystem contains, or is developing in a manner that indicates that it will contain, a balanced biological community pursuant to the requirements for a successful 316(a) demonstration. The data presented in this report cover the period January 1986--December 1987. A total of 125 taxa were collected from the mixed zone of L-Lake in 1986 and 105 taxa from the mixed zone in 1987. Of the taxa identified, the microzooplankton accounted for 103 taxa (59 protozoans and 44 rotifers: 82.4% of all taxa) in 1986 and 88 taxa (53 protozoans and 35 rotifers: 83.8% of all taxa) in 1987. Taxa richness for each of the major taxonomic groups in the mixed zone ranged from 42 to 47 protozoans, 27 to 31 rotifers, eight to 11 cladocerans, seven to nine copepods, and one ostracod in each region in 1986 and 39 to 44 protozoans, 21 to 27 rotifers, seven to nine cladocerans, six to seven copepods and one ostracod in each region in 1987.

  7. Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    SciTech Connect

    Hinzman, R.L.; Adams, S.M.; Black, M.C.

    1993-06-01

    As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate.

  8. First report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Boston, H.L.; Huston, M.A.; McCarthy, J.F.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. ); Black, M.C. ); Gatz, A.J. Jr. ); Hinzman, R.L. ); Jimenez, B.D. (Puerto Rico Univ.,

    1992-07-01

    As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to document the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.

  9. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  10. Biological monitoring of Upper Three Runs Creek, Savannah River Site, Aiken County, South Carolina, March 1990--July 1991

    SciTech Connect

    Not Available

    1991-12-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Runs Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F/H area effluent on the creek, the study included qualitative and quantitative macroinvertebrate stream surveys at five sites (see map), chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. In a March 1990 study of the potential impact of F/H Area effluent on the macroinvertebrate communities of Upper Three Runs Creek was extended, with reductions in the number of sites to be sampled and in the frequency of water chemistry sampling. This report presents the results of macroinvertebrate stream surveys at three sites, chronic toxicity testing of the effluent and water chemistry analysis of the three stream sites and the effluent from March 1990 to July 1991.

  11. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  12. A Creek to Bay Biological Assessment in Oakland, California

    NASA Astrophysics Data System (ADS)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  13. Biological monitoring

    SciTech Connect

    Ho, M.H.; Dillon, H.K.

    1986-02-01

    Biological monitoring is defined as the measurement and assessment of workplace agents or their metabolites in tissues, secreta, excreta, expired air, or any combination of these to evaluate exposure and health risk compared to an appropriate reference. Biological monitoring offers several advantages: it takes into account individual variability in biological activity resulting from a chemical insult. It takes into account the effects of personal physical activity and individual life styles. It is a valuable adjunct to ambient monitoring and health surveillance. The importance of chemical speciation in the toxicity of pollutants is discussed. Basic protocols for lead, aluminum, cadmium, mercury, selenium, and nickel are presented. Basic criteria for biological monitoring methods are presented. 11 references, 1 table.

  14. L-Lake primary producers: L Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Starkel, W.M.; Nagle, J.H.; Chimney, M.J.

    1988-03-01

    The purpose of this portion of the L-Lake Biological Monitoring Program was to determine if effects of L-Reactor operation could be detected in the primary producer components of the different regions of L-Lake or in L-Lake when compared to other reservoirs in the area. The data in this report cover the period January 1986--December 1987. Little evidence could be found for a direct effect of the yearly cycle of reactor operation on the phytoplankton or periphyton of L-Lake. No direct effect of reactor operations upon the phytoplankton or periphyton of L-Lake could be inferred from differences among lake regions. The criteria for a ''balanced biological community'' may be addressed using data gathered on the phytoplankton and periphyton communities of L-Lake. The L-Lake phytoplankton was dominated by algae which are associated with nutrient enrichment, organic pollution, and other nuisance categories. About one-third of the dominant periphyton taxa in L-Lake are placed in nuisance categories.

  15. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest Service, USDA. ACTION: Notice of intent... continued livestock grazing ] within the Monitor-Hot Creek Rangeland Project area. The analysis will... conditions within the Monitor-Hot Creek Rangeland Project area towards desired conditions. The project...

  16. Biological Stream Survey of Lower Esopus Creek, Catskill Mountains, New York

    NASA Astrophysics Data System (ADS)

    Johnson, E. K.; Chowdhury, S. H.; Hughes, N. J.; Halton, C. R.; Putnam, S. M.

    2011-12-01

    Spillovers and releases from the Ashokan Reservoir into the Lower Esopus Creek have been observed to increase discharge, water level, and turbidity. Concerns about these effects on drinking water quality and stream ecology have spurred debate between the New York City Department of Environmental Protection (NYC DEP) and citizens living within the Esopus Creek watershed. This study was designed to assess Lower Esopus Creek health, compare current conditions to those in 2007, and identify controlling factors in benthic macroinvertebrate (BMI) distribution. Samples were collected, twice in July, at seven sites below the reservoir, six sites along Lower Esopus Creek and one on Sawkill creek (a tributary to Esopus Creek). Data was collected under both normal flow conditions and after a storm event. BMI and water samples were collected at each site. The BMI samples were collected, stored, and evaluated according to the 2009 New York State Department of Environmental Conservation (NYS DEC) protocol for Biological Monitoring of Surface Waters in New York State. Physical habitat and water chemistry parameters were also measured in the field. During this sampling period, the same methods were used at seven sites in the Stony Clove Creek and its tributaries. Non-parametric tests were used for analysis due to the small sample size and non-random nature of the sampling. The results showed no significant differences in BMI populations between normal and high flow conditions, or between 2007 and 2011. BMI population, total dissolved solids (TDS), turbidity, current, and dissolved oxygen (DO) were not significantly correlated to distance downstream from the reservoir. BMI population was significantly correlated to TDS and DO, but was not significantly correlated to turbidity. There are no significant longitudinal trends in Lower Esopus Creek; therefore stream ecology is probably more affected by local conditions than by impoundment effects from the Ashokan Reservoir.

  17. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina. Final report on macroinvertebrate stream assessments for F/H area ETF effluent discharge, July 1987--February 1990

    SciTech Connect

    Specht, W.L.

    1991-10-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  18. Biological monitors of pollution

    SciTech Connect

    Root, M.

    1990-02-01

    This article discusses the use of biological monitors to assess the biological consequences of toxicants in the environment, such as bioavailability, synergism, and bioaccumulation through the food web. Among the organisms discussed are fly larvae, worms, bees, shellfish, fishes, birds (starlings, owls, hawks, songbirds) and mammals (rabbits, field mice, shrews).

  19. Mercury Assessment and Monitoring Protocol for the Bear Creek Watershed, Colusa County, California

    USGS Publications Warehouse

    Suchanek, Thomas H.; Hothem, Roger L.; Rytuba, James J.; Yee, Julie L.

    2010-01-01

    This report summarizes the known information on the occurrence and distribution of mercury (Hg) in physical/chemical and biological matrices within the Bear Creek watershed. Based on these data, a matrix-specific monitoring protocol for the evaluation of the effectiveness of activities designed to remediate Hg contamination in the Bear Creek watershed is presented. The monitoring protocol documents procedures for collecting and processing water, sediment, and biota for estimation of total Hg (TotHg) and monomethyl mercury (MMeHg) in the Bear Creek watershed. The concurrent sampling of TotHg and MMeHg in biota as well as water and sediment from 10 monitoring sites is designed to assess the relative bioavailability of Hg released from Hg sources in the watershed and identify environments conducive to Hg methylation. These protocols are designed to assist landowners, land managers, water quality regulators, and scientists in determining whether specific restoration/mitigation actions lead to significant progress toward achieving water quality goals to reduce Hg in Bear and Sulphur Creeks.

  20. MONITORING THE ACCOTINK CREEK STREAM RESTORATION

    EPA Science Inventory

    Since the inception of the Clean Water Act (CWA) in 1972, the United States has made great efforts in restoring and preserving the physical, chemical, and biological integrity of the Nation’s waters. However, nearly half of the nation’s assessed surface water resource...

  1. Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Stogner, Robert W.

    2010-01-01

    In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental

  2. Water quality monitoring report for the White Oak Creek Embayment

    SciTech Connect

    Ford, C.J. ); Wefer, M.T. )

    1993-01-01

    Water quality monitoring activities that focused on the detection of resuspended sediments in the Clinch River were conducted in conjunction with the White Oak Creek Embayment (WOCE) time-critical Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to construct a sediment-retention structure at the mouth of White Oak Creek (WOC). Samples were collected by use of a 24-h composite sampler and through real-time water grab sampling of sediment plumes generated by the construction activities. Sampling stations were established both at the WOC mouth, immediately adjacent to the construction site, and at K-1513, the Oak Ridge K-25 Site drinking water intake approximately 9.6 km downstream in the Clinch River. Results are described.

  3. Biological monitoring for isocyanates.

    PubMed

    Cocker, John

    2011-03-01

    Isocyanates are reactive chemicals and thousands of workers may be exposed to them during their manufacture and use in a wide range of products. They are classed as sensitizers and are a major cause of occupational asthma in the UK. Workplace exposure limits are low and control of exposure often depends on personal respiratory protection. Biological monitoring is increasingly used to assess exposure and the efficacy of control measures, including the behavioural aspects of controls. Biological monitoring methods are available for the most common isocyanates hexamethylene diisocyanate, toluene diisocyanate, isophorone diisocyanate, and methylenediphenyl diisocyanate. They are based on the analysis of hexamethylene diamine, toluene diamine, isopherone diamine, and methylenediamine released after hydrolysis of isocyanate-protein adducts in urine or blood. Volunteer and occupational studies show good correlations between inhalation exposure to isocyanate monomers and isocyanate-derived diamines in urine or blood. However, occupational exposure to isocyanates is often to a mixture of monomers and oligomers so there is some uncertainty comparing biological monitoring results with airborne exposure to 'total NCO'. Nevertheless, there is a substantial body of work demonstrating the utility of biological monitoring as a tool to assess exposure and the efficacy of controls, including how they are used in practice. Non-health-based biological monitoring guidance values are available to help target when and where further action is required. Occupational hygienists will need to use their knowledge and experience to determine the relative contributions of different routes of exposure and how controls can be improved to reduced the risk of ill health.

  4. Characterization of water quality and biological communities, Fish Creek, Teton County, Wyoming, 2007-2011

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Edmiston, C. Scott; Taylor, Michelle L.; Leemon, Daniel J.

    2013-01-01

    relative abundance of Ephemeroptera, Plecoptera, and Trichoptera, which tend to be intolerant of water-quality degradation, decreased from April/May to August; the same time period saw a corresponding increase in Diptera and noninsects, particularly Oligochaeta (worms) that are more tolerant. Seasonal changes in macroinvertebrate functional feeding groups were significantly different. The relative abundance of gatherer-collector and scraper feeding groups decreased from April/May to August, accompanied by an increase in filterer-collector and shredders feeding groups. Seasonal changes in feeding groups might be due to the seasonal shift in aquatic plant communities, as indicated by comparison with other streams in the area that had fewer aquatic macrophytes than Fish Creek. Statistical tests of macroinvertebrate metrics indicated few differences between years or biological sampling sites on Fish Creek, although the site farthest upstream sometimes was different not only in terms of macroinvertebrates but also in streamflow, water quality, and aquatic plants. Potential effects of contributions of additional nutrients to the Fish Creek ecosystem beyond the conditions sampled during the study period are not known. However, because virtually all of the detectable dissolved nitrate commonly was consumed by aquatic plants in August (leaving dissolved nitrate less than the reporting level in water samples), it is possible that increased nutrient contributions could cause increased growth of aquatic plants. Additional long-term monitoring of the stream, with concurrent data analysis and interpretation would be needed to determine the effects of additional nutrients on the aquatic plant community and on higher levels of the food chain.

  5. Ocean breeze monitoring network at the Oyster Creek Nuclear Plant

    SciTech Connect

    Heck, W.

    1987-01-01

    The Oyster Creek Nuclear Generating Station (OCNGS) is located in New Jersey 10 km west of the Atlantic Ocean. Routine meteorological monitoring at the station has consisted of a single meteorological tower 120 m high and instrumented at the 10-m, 46-m, and 116-m levels. An analysis of 5 yr of data from this tower showed the OCNGS is affected by an ocean breeze approx. 1 day out of 4 during May through August. This suggested the need for meteorological monitoring in addition to the single met tower at OCNGS. As a result of the 1985 OCNGS meteorological monitoring study, GPU Nuclear established an ocean breeze monitoring network in the fall of 1986. It is a permanent part of OCNGS meteorological monitoring and consists of the same sites as used in the 1985 field study. Meteorological towers are located at the ocean site, the inland site, and at OCNGS. The ocean tower is 13 m (43 ft) high, the inland tower 10 m (33 ft), and the OCNGS tower 116 m (380 ft). Wind speed, wind direction, and temperature are measured on each tower; delta-temperature is also measured on the main tower. The instruments are calibrated in the spring, summer, and fall. The network is operated and maintained by GPU Nuclear Environmental Controls. The ocean breeze monitoring network and meteorological information system forms the basis for including the effects of the ocean breeze in OCNGS emergency off-site dose assessment.

  6. Blackbird Creek Monitoring Program to Study the impact of Climate Change and Land Use

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Chintapenta, L. K.; Roeske, K. P.; Stone, M.; Phalen, L.

    2014-12-01

    The Blackbird Creek Monitoring Program at Delaware State University continues to utilize various perspectives to study the dynamics of one of Delaware's most pristine ecosystems. The water quality of Blackbird Creek has been constantly monitored for 3 years and correlated with the rain and storm events. Soil nutrients composition has been studied by extracting the water associated with soil aggregates and analyzing the levels of different nutrients. Soil quality is also assessed for heavy metals to identify potential human impact that may affect the health of ecosystem. Within the Blackbird Creek there is a threat to native plant communities from invasive plant species as they alter the ecosystem dynamics. Saltmarsh cord grass (Spartina alterniflora) and common reed (Phragmites australius) are the common wetland plants. Aerial mapping of the creek has been conducted to determine the area covered by invasive plant species. The microbial community structure plays a key role in soil carbon and nitrogen cycles in the ecosystem. Molecular analysis has been performed to study the microbial diversity with respect to the type of marsh grasses. This program has also incorporated the use of diatoms as biological indicators to assess the health of ecosystem and correlate that data with physical and chemical water quality data. The abundance and diversity of macro fauna such as blue crabs, fish and other significant species has also been studied. Stable isotopic analysis of these macro fauna has also been performed to study the food web. The results from this program will be helpful in addressing environmental challenges and designing management strategies.

  7. Walnut creek watershed monitoring project, Iowa: Monitoring water quality in response to prairie restoration

    USGS Publications Warehouse

    Schilling, K.E.; Thompson, C.A.

    2000-01-01

    Land use and surface water data for nitrogen and pesticides (1995 to 1997) are reported for the Walnut Creek Watershed Monitoring Project, Jasper County Iowa. The Walnut Creek project was established in 1995 as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Service. The monitoring project utilizes a paired-watershed approach (Walnut and Squaw creeks) as well as upstream/downstream comparisons on Walnut for analysis and tracking of trends. From 1992 to 1997, 13.4 percent of the watershed was converted from row crop to native prairie in the Walnut Creek watershed. Including another 6 percent of watershed farmed on a cash-rent basis, land use changes have been implemented on 19.4 percent of the watershed by the USFWS. Nitrogen and pesticide applications were reduced an estimated 18 percent and 28 percent in the watershed from land use changes. Atrazine was detected most often in surface water with frequencies of detection ranging from 76-86 percent. No significant differences were noted in atrazine concentrations between Walnut and Squaw Creek. Nitrate-N concentrations measured in both watersheds were similar; both basins showed a similar pattern of detection and an overall reduction in nitrate-N concentrations from upstream to downstream monitoring sites. Water quality improvements are suggested by nitrate-N and chloride ratios less than one in the Walnut Creek watershed and low nitrate-N concentrations measured in the subbasin of Walnut Creek containing the greatest amount of land use changes. Atrazine and nitrate-N concentrations from the lower portion of the Walnut Creek watershed (including the prairie restoration area) may be decreasing in relation to the upstream untreated component of the watershed. The frequencies of pesticide detections and mean nitrate-N concentrations appear related to the percentage of

  8. Water-quality, bed-sediment, and biological data, for streams in the upper Prickly Pear Creek watershed, Montana, 2001

    USGS Publications Warehouse

    Klein, Terry L.; Thamke, Joanna N.; Harper, David D.; Farag, Aida M.; Nimick, David A.; Fey, David L.

    2003-01-01

    The upper Prickly Pear Creek watershed encompasses the upstream 15 miles of Prickly Pear Creek, south of Helena, Montana (fig. 1). The headwaters of Prickly Pear Creek and its tributaries (Beavertown Creek, Clancy Creek, Dutchman Creek, Golconda Creek, Lump Gulch, Spring Creek, and Warm Springs Creek) are primarily in the Helena National Forest, whereas the central part of the watershed primarily is within either Bureau of Land Management (BLM) or privately owned property. Three mining districts are present in the upper Prickly Pear Creek watershed: Alhambra, Clancy, and Colorado. Numerous prospects, adits, tailings piles, mills, dredge piles, and mines (mostly inactive) are located throughout the watershed. These districts contain polymetallic (Ag, Au, Cu, Pb, Zn) vein deposits and precious-metal (Au-Ag) vein and disseminated deposits that were exploited beginning in the 1860’s. Placer Au deposits in the major streams were extensively mined in the late 1800’s and early 1900’s.As part of a cooperative effort with Federal land management agencies, the U.S. Geological Survey (USGS) is currently using an integrated approach to investigate two mining impacted watersheds in the western United States (the Animas River in Colorado and the Boulder River in Montana). These studies provide the USDA Forest Service and BLM scientific data for implementing informed land-management decisions regarding cleanup of abandoned mine lands within each watershed. A similar integrated-science approach will be used to characterize the upper Prickly Pear Creek watershed with respect to water and streambed sediment chemistry, aquatic biota, and geologic framework. This integrated database presents data that will be used to identify important pathways of metals movement and biological impacts, thereby guiding resource management decisions of land-managers in several publications that are in preparation. Watershed-level characterization in terms of water quality, streambed sediment

  9. Biological monitoring of radiation exposure

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  10. Continuous fission-product monitor system at Oyster Creek. Final report

    SciTech Connect

    Collins, L.L.; Chulick, E.T.

    1980-10-01

    A continuous on-line fission product monitor has been installed at the Oyster Creek Nuclear Generating Station, Forked River, New Jersey. The on-line monitor is a minicomputer-controlled high-resolution gamma-ray spectrometer system. An intrinsic Ge detector scans a collimated sample line of coolant from one of the plant's recirculation loops. The minicomputer is a Nuclear Data 6620 system. Data were accumulated for the period from April 1979 through January 1980, the end of cycle 8 for the Oyster Creek plant. Accumulated spectra, an average of three a day, were stored on magnetic disk and subsequently analyzed for fisson products, Because of difficulties in measuring absolute detector efficiency, quantitative fission product concentrations in the coolant could not be determined. Data for iodine fission products are reported as a function of time. The data indicate the existence of fuel defects in the Oyster Creek core during cycle 8.

  11. The biology of Salt Wells Creek and its tributaries, southwestern Wyoming

    USGS Publications Warehouse

    Engelke, Morris J.

    1978-01-01

    A description of aquatic organisms and biological communities is presented for Salt Wells Creek, a plains stream in the Green River basin. The description includes seasonal population fluctuations of benthic organisms and algae, the food pyramid, and nutrient relations between various types of plants and animals. The algae and stream invertebrates were studied to determine baseline data and biological indicators of water quality. (Woodard-USGS).

  12. Monitoring and research at Walnut Creek National Wildlife Refuge

    USGS Publications Warehouse

    Roelle, James E.; Hamilton, David B.

    1993-01-01

    Walnut Creek National Wildlife Refuge-Prairie Learning Center (Walnut Creek or the Refuge) is one of the newest additions to the National Wildlife Refuge System, which consists of over 480 units throughout the United States operated by the U.S. Department of the Interior, Fish and Wildlife Service (the Service). Located about 20 miles east of Des Moines, Iowa, the Refuge has an approved acquisition boundary containing 8,654 acres (Figure 1). Acquisition is from willing sellers only, and to date the Service has purchased approximately 5,000 acres. The acquisition boundary encompasses about 43% of the watershed of Walnut Creek, which bisects the Refuge and drains into the Des Moines River to the southeast. Approximately 25%-30% of the Walnut Creek watershed is downstream of the Refuge. As authorized by Congress in 1990, the purposes of the Refuge are to (U.S. Fish and Wildlife Service 1992): • restore native tallgrass pairie, wetland, and woodland habitats for breeding and migratory waterfowl and resident wildlife; • serve as a major environmental education center providing opportunities for study; • provide outdoor recreation benefits to the public; and • provide assistance to local landowners to improve their lands for wildlife habitat. To implement these purposes authorized by Congress, the Refuge has established the goal of recreating as nearly as possible the natural communities that existed at the time of settlement by Euro-Americans (circa 1840). Current land use is largely agricultural, including 69% cropland, 17% grazed pasture, and 7.5% grassland (dominantly brome) enrolled in the Conservation Reserve Program). About 1,395 acres of relict native communities also exist on the Refuge, including prairie (725 acres), oak savanna and woodland (450 acres), and riparian or wetland areas (220 acres). Some of these relicts are highly restorable; others contain only a few prairie plants in a matrix of brome and will be more difficult to restore. When the

  13. Introduction to the biological monitoring and abatement program.

    PubMed

    Peterson, Mark J

    2011-06-01

    This paper provides an introduction to a long-term biological monitoring program and the Environmental Management special issue titled Long-term Biological Monitoring of an Impaired Stream: Implications for Environmental Management. The Biological Monitoring and Abatement Program, or BMAP, was implemented to assess biological impairment downstream of U.S. Department of Energy (DOE) facilities in Oak Ridge, Tennessee, beginning in 1985. Several of the unique aspects of the program include its long-term consistent sampling, a focus on evaluating the effectiveness of specific facility abatement and remedial actions, and the use of quantitative sampling protocols using a multidisciplinary approach. This paper describes the need and importance of long-term watershed-based biological monitoring strategies, in particular for addressing long-term stewardship goals at DOE sites, and provides a summary of the BMAP's objectives, spatial and temporal extent, and overall focus. The primary components of the biological monitoring program for East Fork Poplar Creek in Oak Ridge, Tennessee are introduced, as are the additional 9 papers in this Environmental Management special issue.

  14. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  15. Continuous Turbidity Monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Thousands of miles of natural gas pipelines are installed annually in the United States. These pipelines commonly cross streams, rivers, and other water bodies during pipeline construction. A major concern associated with pipelines crossing water bodies is increased sediment loading and the subsequent impact to the ecology of the aquatic system. Several studies have investigated the techniques used to install pipelines across surface-water bodies and their effect on downstream suspended-sediment concentrations. These studies frequently employ the evaluation of suspended-sediment or turbidity data that were collected using discrete sample-collection methods. No studies, however, have evaluated the utility of continuous turbidity monitoring for identifying real-time sediment input and providing a robust dataset for the evaluation of long-term changes in suspended-sediment concentration as it relates to a pipeline crossing. In 2006, the U.S. Geological Survey, in cooperation with East Tennessee Natural Gas and the U.S. Fish and Wildlife Service, began a study to monitor the effects of construction of the Jewell Ridge Lateral natural gas pipeline on turbidity conditions below pipeline crossings of Indian Creek and an unnamed tributary to Indian Creek, in Tazewell County, Virginia. The potential for increased sediment loading to Indian Creek is of major concern for watershed managers because Indian Creek is listed as one of Virginia's Threatened and Endangered Species Waters and contains critical habitat for two freshwater mussel species, purple bean (Villosa perpurpurea) and rough rabbitsfoot (Quadrula cylindrical strigillata). Additionally, Indian Creek contains the last known reproducing population of the tan riffleshell (Epioblasma florentina walkeri). Therefore, the objectives of the U.S. Geological Survey monitoring effort were to (1) develop a continuous turbidity monitoring network that attempted to measure real-time changes in suspended sediment (using

  16. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    SciTech Connect

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Hinzman, R.L.; Shoemaker, B.A.

    1993-04-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP is based on results of biological monitoring conducted from 1986 to 1992 and discussions held on November 12, 1992, between staff of Martin Marietta Energy Systems, Inc. (Oak Ridge National Laboratory and the K-25 Site), and the Tennessee Department of Environment and Conservation, Department of Energy Oversight Division. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  17. Asotin Creek Instream Habitat Alteration Projects : Habitat Evaluation, Adult and Juvenile Habitat Utilization and Water Temperature Monitoring : 2001 Progress Report.

    SciTech Connect

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  18. Ten-Year Monitored Natural Recovery of Lead-Contaminated Mine Tailing in Klity Creek, Kanchanaburi Province, Thailand

    PubMed Central

    Phenrat, Tanapon; Otwong, Ashijya; Chantharit, Aphichart; Lowry, Gregory V.

    2016-01-01

    Background: Klity Creek has become Thailand’s first official remediation ordered by the court in 2013, 15 years after the spill of lead (Pb)-contaminated mine tailing into the creek. The Pollution Control Department (PCD) decided to restore the creek through monitored natural recovery (MNR) since 2006 but has not been successful. Interestingly, the most recent remediation plan in 2015 will still apply MNR to five out of the seven portions of the creek, despite no scientific feasibility evaluation of using MNR to restore the creek. Objective: This study qualitatively and quantitatively evaluated the feasibility of using MNR to clean up the creek in order to protect the Klity children from excess Pb exposure. Methods: We analyzed the physical and chemical transformation of Pb contaminated sediment in the creek and developed a remedial action goal and cleanup level using the Integrated Exposure Uptake Biokinetic model (IEUBK). We empirically determined the natural recovery (NR) potentials and rates using 10 years of data monitoring the water and sediment samples from eight monitoring stations (KC1 to KC8). Results: Klity Creek has NR potential for water except at KC2, which is closest to the spill and the other improperly managed Pb sources. However, the creek has no NR potential for sediment except at the KC8 location (NR rate = 11.1 ± 3.0 × 10–3 month–1) farthest from the spill. Conclusion: The MNR method is not suitable to use as the sole remedial approach for Klity Creek (KC2 to KC7). Although MNR is applicable at KC8, it may require up to 377 ± 76 years to restore the sediment to the background Pb concentration. Citation: Phenrat T, Otwong A, Chantharit A, Lowry GV. 2016. Ten-year monitored natural recovery of lead-contaminated mine tailing in Klity Creek, Kanchanaburi Province, Thailand. Environ Health Perspect 124:1511–1520; http://dx.doi.org/10.1289/EHP215 PMID:27157823

  19. Impact of roadside ditch dredging on bacterial communities and biological contamination of a tidal creek

    NASA Astrophysics Data System (ADS)

    Jones, Chance E.; Barkovskii, Andrei L.

    2017-03-01

    Tidal creek networks form the primary hydrologic link between estuaries and land-based activities on barrier islands. A possible impact from the excavation of drainage ditch systems on bacterial communities and biological contamination was studied in the water column and sediments of headwater, mid-stream, and mouth sites of the intertidal Oakdale Creek on Sapelo Island, GA. Community analysis was performed using the MiSeq Illumina platform and revealed that dredging was the cause of a significant rise in Proteobacteria, especially γ-proteobacteria. Targeted biological contaminants included fecal indicator bacteria, Enterococcus spp. (Entero-1), pathogens, Shigella spp. (ipaH), and Salmonella spp (invA), virulence associated genes (VG's) of pathogenic E. coli (eaeA, hlyD, stx1, stx2, and set1B), integrons (intI1, intI2), and tetracycline resistance genes (TRGs). Incidence and gene concentrations of Shigella spp., eaeA and set1B, and of TRGs increased 3-20 folds after the onset of dredging, and followed the dredging schedule. Principal Component Analysis suggested possible common carriers for Shigella spp., some TRGs, and the pathogenic E. coli eaeA gene. At the site of dredging, all of the above contaminants were detected at high concentrations. We concluded that excavation of roadside ditches caused significant changes in bacterial composition and a rise in incidence and concentrations of biological contaminants in the creek. The authors suggest a different approach for the maintenance of this material be explored.

  20. Streamflow, water-quality, and biological conditions in the Big Black Creek basin, St. Clair County, Alabama, 1997

    USGS Publications Warehouse

    Journey, Celeste; Clark, Amy E.; Stricklin, Victor E.

    1998-01-01

    In 1997 synoptic streamflow, water-quality, and biological investi- gations in the Big Black Creek Basin were conducted by the U.S. Geological Survey in cooperation with the City of Moody, St. Clair County, and the Birmingham Water Works Board. Data obtained during these synoptic investigations provide a one-time look at the streamflow and water-quality conditions in the Big Black Creek Basin during a stable, base-flow period when streamflow originated only from ground-water discharge. These data were used to assess the degree of water-quality degradation in the Big Black Creek Basin from land-use activities in the basin, including leakage of leachate from the Acmar Regional Land- fill. Biological data from the benthic invertebrate community investigation provided an assessment of the cumulative effects of stream conditions on organisms in the basin. The synoptic measurement of streamflow at 28 sites was made during a period of baseflow on August 27, 1997. Two stream reaches above the landfill lost water to the ground-water system, but those below the landfill had significantly higher ground-water gains. If significant leakage of leachate from the landfill had occurred during the measurement period, the distribution of ground-water discharge suggests that leachate would travel relatively short distances before resurfacing as ground-water discharge to the stream. Benthic invertebrate communities were sampled at four sites in the Big Black Creek Basin during July 16-17, 1997. Based on Alabama Department of Environmental Management criteria and on comparison with a nearby unimparied reference site, the benthic invertebrate communities at the sites sampled were considered unimpaired or only slightly impaired during the sample period. This would imply that landfill and coal-mining activities did not have a detrimental effect on the benthic invertebrate communities at the time of the study. Synoptic water-column samples were collected at nine sites on Big Black Creek and

  1. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    SciTech Connect

    Kszos, L. A.; Adams, S. M.; Ashwood, T. L.; Blaylock, B. G.; Greeley, M. S.; Loar, J. M.; Peterson, M. J.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.; Shoemaker, B. A.; Hinzman, R. L.

    1993-02-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  2. Adult Chinook Salmon Abundance Monitoring in the Secesh River and Lake Creek, Idaho, 2000 Annual Report.

    SciTech Connect

    Faurot, Dave; Kucera, Paul A.

    2001-05-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control population under the Idaho Salmon Supplementation study. This project has demonstrated the successful application of underwater video adult salmon abundance monitoring technology in Lake Creek in 1998 and 1999. Emphasis of the project in 2000 was to determine if the temporary fish counting station could be installed early enough to successfully estimate adult spring and summer chinook salmon abundance in the Secesh River (a larger stream). Snow pack in the drainage was 93% of the average during the winter of 1999/2000, providing an opportunity to test the temporary count station structure. The temporary fish counting station was not the appropriate technology to determine adult salmon spawner abundance in the Secesh River. Due to its temporary nature it could not be installed early enough, due to high stream discharge, to capture the first upstream migrating salmon. A more permanent structure used with underwater video, or other technology needs to be utilized for accurate salmon escapement monitoring in the Secesh River. A minimum of 813 adult chinook salmon spawners migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. Of these fish, more than 324 migrated upstream into Lake Creek. The first upstream migrating adult chinook salmon passed the Secesh River and Lake Creek sites prior to operation of the fish counting stations on June 22. This was 17 and 19 days earlier than the first fish arrival at Lake Creek in 1998 and 1999

  3. Adult Chinook Salmon Abundance Monitoring in Lake Creek, Idaho, Annual Report 2001.

    SciTech Connect

    Faurot, Dave

    2002-12-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time- lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999 and 2001. The adult salmon spawner escapement estimate into Lake Creek in 2001 was 697 fish, the largest escapement since the project began. Jack salmon comprised 10% of the spring migration. Snow pack in the drainage was 38% of the average during the winter of 2000/2001. The first fish passage on Lake Creek was recorded on June 9, 19 days after installation of the fish counting station and two weeks earlier than previously reported. Peak net upstream movement of 52 adults occurred on June 22. Peak of total movement activity was July 3. The last fish passed through the Lake Creek fish counting station on September 6. Redd count expansion methods were compared to underwater video determined salmon spawner abundance in Lake Creek in 2001. Expanded index area redd count point estimates and intensive area redd counts in 2001, estimated from 1.3 percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers in Lake Creek have varied widely. In 2001 there were 2.07 fish per redd. In 1999, there were 3.58 fish per redd, and in 1998, with no jacks returning to spawn, there were 1.02 fish per redd. Migrating salmon in Lake Creek

  4. Postremediation monitoring program baseline assessment report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Greeley, M.S. Jr.; Ashwood, T.L.; Kszos, L.A.; Peterson, M.J.; Rash, C.D.; Southworth, G.R.; Phipps, T.L.

    1998-04-01

    Lower East Fork Poplar Creek (LEFPC) and its floodplain are contaminated with mercury (Hg) from ongoing and historical releases from the US Department of Energy (DOE) Oak Ridge Y-12 Plant. A remedial investigation and feasibility study of LEFPC resulted in the signing of a Record of Decision (ROD) in August 1995. In response to the ROD, soil contaminated with mercury above 400 mg/kg was removed from two sites in LEFPC and the floodplain during a recently completed remedial action (RA). The Postremediation Monitoring Program (PMP) outlined in the LEFPC Monitoring Plan was envisioned to occur in two phases: (1) a baseline assessment prior to remediation and (2) postremediation monitoring. The current report summarizes the results of the baseline assessment of soil, water, biota, and groundwater usage in LEFPC and its floodplain conducted in 1995 and 1996 by personnel of the Oak Ridge National Laboratory Biological Monitoring and Abatement Program (BMAP). This report also includes some 1997 data from contaminated sites that did not undergo remediation during the RA (i.e., sites where mercury is greater than 200 mg/kg but less than 400 mg/kg). The baseline assessment described in this document is distinct and separate from both the remedial investigation/feasibility study the confirmatory sampling conducted by SAIC during the RA. The purpose of the current assessment was to provide preremediation baseline data for the LEFPC PMP outlined in the LEFPC Monitoring Plan, using common approaches and techniques, as specified in that plan.

  5. Monitoring the Thermal Regime at Hot Creek and Vicinity, Long Valley Caldera, Eastern California

    NASA Astrophysics Data System (ADS)

    Clor, L. E.; Hurwitz, S.; Howle, J.

    2015-12-01

    Hot Creek Gorge contains the most obvious surface expression of the hydrothermal system in Long Valley Caldera, California, discharging 200-300 L/s of thermal water according to USGS measurements made since 1988. Formerly, Hot Creek was a popular public swimming area, but it was closed in 2006 due to unpredictable temperature fluctuations and sporadic geysering of thermal water within the creek (Farrar et al. USGS Fact Sheet2007-3045). The USGS has monitored the thermal regime in the area since the mid-1980s, including a long-term series of studies 0.6 km away at well CH-10b. Temperature measurements in the ~100 m deep well, which have been performed on an intermittent basis since it was drilled in 1983, reveal a complex temperature profile. Temperatures increase with depth to a maximum at about 45 meters below the ground surface, and then decrease steadily to the bottom of the well. The depth of the temperature maximum in the well (~45 m) corresponds to an elevation of ~2,120 m, roughly equivalent to the elevation of Hot Creek, and appears to sample the same hydrothermal flow system that supplies thermal features at the surface in the gorge. Starting in the early 1990s, the maximum temperature in CH-10b rose from 93.4°C to its peak in 2007 at 101.0°C. A cooling trend was observed beginning in 2009 and continues to present (99.3°C in June 2015). As the input into CH-10b is at the elevation of the creek, it exhibits the potential for response to thermal events at Hot Creek, and could provide a useful tool for monitoring future hazards. On short timescales, CH-10b also responds to large global earthquakes, greater than ~M7. These responses are captured with continuously logged high-frequency data (5s), and are usually characterized by a co-seismic water level drop of up to ten centimeters. Water levels tend to recover to pre-earthquake levels within a few hours to days.

  6. Water quality monitoring report for the White Oak Creek Embayment. Environmental Restoration Program

    SciTech Connect

    Ford, C.J.; Wefer, M.T.

    1993-01-01

    Water quality monitoring activities that focused on the detection of resuspended sediments in the Clinch River were conducted in conjunction with the White Oak Creek Embayment (WOCE) time-critical Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to construct a sediment-retention structure at the mouth of White Oak Creek (WOC). Samples were collected by use of a 24-h composite sampler and through real-time water grab sampling of sediment plumes generated by the construction activities. Sampling stations were established both at the WOC mouth, immediately adjacent to the construction site, and at K-1513, the Oak Ridge K-25 Site drinking water intake approximately 9.6 km downstream in the Clinch River. Results are described.

  7. A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek.

    PubMed

    DeLorenzo, Marie E; Thompson, Brian; Cooper, Emily; Moore, Janet; Fulton, Michael H

    2012-01-01

    Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to water-quality problems including nutrient enrichment, chemical contamination, and bacterial contamination. This study presents 5 years of monitoring data assessing water quality of a residential subdivision pond and adjacent tidal creek in coastal South Carolina, USA. The stormwater pond is eutrophic, as described by elevated concentrations of chlorophyll and phosphorus, and experiences periodic cyanobacterial blooms. A maximum monthly average chlorophyll concentration of 318.75 μg/L was measured in the stormwater pond and 227.63 μg/L in the tidal creek. Fecal coliform bacteria (FCB) levels were measured in both the pond and the tidal creek that exceeded health and safety standards for safe recreational use. A maximum monthly average FCB level of 1,247 CFU/100 mL was measured in the stormwater pond and 12,850 CFU/100 mL in the tidal creek. In addition, the presence of antibiotic resistant bacteria and pathogenic bacteria were detected. Low concentrations of herbicides (atrazine and 2,4-D: ), a fungicide (chlorothalonil), and insecticides (pyrethroids and imidacloprid) were measured. Seasonal trends were identified, with the winter months having the lowest concentrations of chlorophyll and FCB. Statistical differences between the stormwater pond and the tidal creek were also noted within seasons. The tidal creek had higher FCB levels than the stormwater pond in the spring and summer, whereas the stormwater pond had higher chlorophyll levels than the tidal creek in the summer and fall seasons. Chlorophyll and FCB levels in the stormwater pond were significantly correlated with monthly average temperature and total rainfall. Pesticide concentrations were also significantly correlated with temperature and rainfall. Pesticide concentrations in the stormwater pond were significantly correlated with

  8. Long-term water-quality changes in East Fork Poplar Creek, Tennessee: background, trends, and potential biological consequences.

    PubMed

    Stewart, Arthur J; Smith, John G; Loar, James M

    2011-06-01

    We review long-term changes that have occurred in factors affecting water quality in East Fork Poplar Creek (EFPC; in East Tennessee) over a nearly 25-year monitoring period. Historically, the stream has received wastewaters and pollutants from a major United States Department of Energy (DOE) facility on the headwaters of the stream. Early in the monitoring program, EFPC was perturbed chemically, especially within its headwaters; evidence of this perturbation extended downstream for many kilometers. The magnitude of this perturbation, and the concentrations of many biologically significant water-quality factors, has lessened substantially through time. The changes in water-quality factors resulted from a large number of operational changes and remedial actions implemented at the DOE facility. Chief among these were consolidation and elimination of many effluents, elimination of an unlined settling/flow equalization basin, reduction in amount of blow-down from cooling tower operations, dechlorination of effluents, and implementation of flow augmentation. Although many water-quality characteristics in upper EFPC have become more similar to those of reference streams, conditions remain far from pristine. Nutrient enrichment may be one of the more challenging problems remaining before further biological improvements occur.

  9. Using Caffeine as a Water Quality Indicator in the Ambient Monitoring Program for Third Fork Creek Watershed, Durham, North Carolina

    PubMed Central

    Spence, Porché L

    2015-01-01

    Caffeine has been suggested as a chemical indicator for domestic wastewater in freshwater systems, although it is not included in water quality monitoring programs. The Third Fork Creek watershed in Durham, NC, is highly urbanized, with a history of receiving untreated wastewater from leaking and overflowing sanitary sewers. The poor water quality originating in the Third Fork Creek watershed threatens its intended uses and jeopardizes drinking water, aquatic life, and recreational activities provided by Jordan Lake. Organic waste contaminants have been detected in both Third Fork Creek watershed and Jordan Lake; however, the sampling periods were temporary, resulting in a few samples collected during nonstorm periods. It is recommended that (1) the concentration of caffeine and other organic waste contaminants are determined during storm and nonstorm periods and (2) caffeine is monitored regularly with traditional water quality indicators to evaluate the health of Third Fork Creek watershed. PMID:26157335

  10. Characterization of water quality and biological communities, Fish Creek, Teton County, Wyoming, 2007-08

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.

    2010-01-01

    Fish Creek, a tributary to the Snake River, is about 25 river kilometers long and is located in Teton County in western Wyoming near the town of Wilson. Public concern about nuisance growths of aquatic plants in Fish Creek have been increasing in recent years. To address this concern, the U.S. Geological Survey conducted a study in cooperation with the Teton Conservation District to characterize the water quality and biological communities in Fish Creek. Water-quality samples were collected for analyses of physical properties and water chemistry (nutrients, nitrate isotopes, and wastewater chemicals) between March 2007 and October 2008 from seven surface-water sites and three groundwater wells. During this same period, aquatic plant and macroinvertebrate samples were collected and habitat characteristics were measured at the surface-water sites. The main objectives of this study were to (1) evaluate nutrient concentrations (that influence biological indicators of eutrophication) and potential sources of nutrients by using stable isotope analysis and other indicator chemicals (such as caffeine and disinfectants) that could provide evidence of anthropogenic sources, such as wastewater or septic tank contamination in Fish Creek and adjacent groundwater, and (2) characterize the algal, macrophyte, and macroinvertebrate communities and habitat of Fish Creek. Nitrate was the dominant species of dissolved nitrogen present in all samples and was the only bioavailable species detected at concentrations greater than the laboratory reporting level in all surface-water samples. Average concentrations of dissolved nitrate in surface water were largest in samples collected from the two sites with seasonal flow near Teton Village and decreased downstream; the smallest concentration was at downstream site A-Wck. Concentrations of dissolved nitrate in groundwater were consistently greater than concentrations in corresponding surface-water sites during the same sampling event

  11. Chinook Salmon Adult Abundance Monitoring in Lake Creek, Idaho, 2002 Annual Report.

    SciTech Connect

    Faurot, Dave; Kucera, Paul

    2003-11-01

    Underwater time- lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999, 2001 and 2002. The adult salmon spawner escapement into Lake Creek in 2002 was 410 fish. Jack salmon comprised 7.1 percent of the run. Estimated hatchery composition was 6.1 percent of the spawning run. The first fish passage on Lake Creek was recorded on June 26, 15 days after installation of the fish counting station. Peak net upstream movement of 41 adults occurred on July 8. Peak of total movement activity was August 18. The last fish passed through the Lake Creek fish counting station on September 2. Snow pack in the drainage was 91% of the average during the winter of 2001/2002. Video determined salmon spawner abundance was compared to redd count expansion method point estimates in Lake Creek in 2002. Expanded index area redd count and extensive area redd count point estimates in 2002, estimated from one percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion methods varied from two percent fewer to 55 percent greater in 2001, 11 to 46 percent fewer in 1999 and 104 to 214 percent greater in 1998. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers determined by video abundance and multiple pass redd counts of the larger extensive survey

  12. Aquatic biology of the Redwood Creek and Mill Creek drainage basins, Redwood National Park, Humboldt and Del Norte counties, California

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Averett, R.C.

    1981-01-01

    A 2-year study of the aquatic biota in the Redwood Creek and Mill Creek drainage basins of Redwood National Park indicated that the aquatic productivity is low. Densities of coliform bacteria were low except in Prairie Creek, a tributary to Redwood Creek, where a State park, county fish hatchery, grazing land, lumber mill, and scattered residential areas are potential sources of fecal coliform bacteria. Benthic invertebrate data indicated a diverse fauna which varied considerably between streams and among stream sections. Noteworthy findings include: (1) benthic invertebrates rapidly recolonized the streambed following a major storm, and (2) man-caused disruption or sedimentation of the streambed during low flow can result in drastic reductions of the benthic invertebrate community. Seven species of fish representing species typically found in northern California coastal streams were captured during the study. Nonparametric statistical tests indicate that condition factors of steelhead trout were significantly larger at sampling stations with more insolation, regardless of drainage basin land-use history. Periphyton and phytoplankton communities were diverse, variable in numbers, and dominated by diatoms. Seston concentrations were extremely variable between stations and at each station sampled. The seston is influenced seasonally by aquatic productivity at each station and amount of allochthonous material from the terrestrial ecosystem. Time-series analysis of some seston data indicated larger and sharper peak concentrations being flushed from the logged drainage basin than from the control drainage basin. (USGS)

  13. Stream Restoration Monitoring Utilizing an Unmanned Aerial Vehicle, Teton Creek, Idaho

    NASA Astrophysics Data System (ADS)

    Stegman, T.

    2014-12-01

    Stream restoration is a growing field in fluvial geomorphology. As demands on water resources increase the need for sustainable and healthy waterways becomes even more essential. This research investigates how an unmanned aerial vehicle (UAV) can be utilized for data collection necessary in stream restoration design and evaluation. UAV's offer an inexpensive method to collect information on channel geometry and map grain size distributions of the bed material. This data is critical in hydraulic flow modeling and engineering plans needed to create a restoration design, as well as evaluate if an implemented project has met its goals. This research utilized a UAV and structure-from-motion photogrammetry to monitor a recent stream restoration project designed to reduce erosion on a 1.9 km reach of Teton Creek in Eastern Idaho. A digital elevation model of difference was created from an as-built field survey and a UAV derived terrain model to identify areas of erosion and deposition in the restoration reach. The data has shown relatively small areas of channel instability in the restoration reach, and has also identified sections which may require additional restoration activities in Teton Creek. The grain size distribution of Teton Creek was also mapped utilizing a UAV and digital photosieving techniques, for use in sediment transport equations in the restoration reach. Data collected quickly and inexpensively from a UAV is valuable to river managers to monitor restoration work. This research identifies the methods and materials needed for river managers to conduct UAV surveys of streams for use in restoration design and monitoring.

  14. Elimination of redundant thermoluminescent dosemeter monitoring at Oyster Creek nuclear generating station

    SciTech Connect

    Schwartz, P.E.

    1989-01-01

    The Oyster Creek direct radiation monitoring network has long been operating using several time-scale measurements. This network is used to assess the radiation levels during normal plant operations as well as to set the background radiation levels used to determine the radiological impact of a nonroutine release of radioactivity from the plant. Through analysis of the behavior of the monthly and quarterly activity of several types of direct radiation monitoring, the successful elimination of redundant and artificially high measurement techniques has been done in concert with providing the community with most efficient direct radiation monitoring methods. Dose rates from external radiation sources are measured around licensed U.S. Nuclear Regulatory Commission (NRC) facilities using passive detectors known as thermoluminescent dosimeters (TLDs). These detectors provide a quantitative measurement of the radiation levels in the are in which they are placed. The detected radiation could be the result of cosmic or naturally occurring origin in the air and on the ground, prior nuclear weapons testing, and activity from a nuclear facility. This paper describes the TLD network placed around the Oyster Creek nuclear generating station (OCNGS) and the comparisons between TLDs of different manufacturers and of different resident times and the successful elimination of the less accurate monthly TLD for the purpose of cost containment.

  15. Stream restoration monitoring using Structure-from-Motion photogrammetry, Teton Creek, Idaho

    NASA Astrophysics Data System (ADS)

    Stegman, Tobin K.

    Stream restoration is a rapidly growing field in applied fluvial geomorphology. Monitoring provides an essential tool for tracking restoration project success, and can improve a project's effectiveness, but often is neglected due to budgetary limitations. This research investigates the potential of Structure-from-Motion photogrammetry to provide an inexpensive and accurate method for monitoring river restoration projects. Structure-from-Motion field survey data was collected in the summer of 2014 to evaluate the performance of a recent stream restoration project intended to reduce erosion along a 1.9 km reach of Teton Creek in eastern Idaho. Channel changes were quantified by creating a digital elevation model of difference that compared an initial, as-built Global Positioning System survey to Structure-from-Motion photogrammetry data collected one year after project completion. A morphological sediment budget and a two-dimensional flow model were used to investigate sediment transport within the study reach. We also used high resolution data derived from Structure-from-Motion point clouds to create continuous grain size maps for Teton Creek that in turn were used to estimate critical shear stresses for sediment entrainment. Our findings suggest Structure-from-Motion techniques provide valuable tools for river managers seeking to monitor restoration efforts. For example, we employed terrain products derived via Structure-from-Motion to verify that hardened riffle treatments effectively prevented erosion. Similarly, we demonstrated the utility of Structure-from-Motion for evaluating the sediment mass balance within the project area. This research establishes a framework for conducting Structure-from-Motion surveys of streams for use in restoration design and monitoring.

  16. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    SciTech Connect

    Loar, J. M.; Adams, S. M.; Blaylock, B. G.; Boston, H. L.; Frank, M. L.; Garten, C. T.; Houston, M. A.; Kimmel, B. L.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.; Stewart, A. J.; Walton, B. T.; Berry, J. B.; Talmage, S. S.; Amano, H.; Jimenez, B. D.; Kitchings, J. T.; Meyers-Schoene, L.; Mohrbacher, D. A.; Olsen, C. R.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  17. Preliminary Results of Subsurface Exploration and Monitoring at the Johnson Creek Landslide, Lincoln County, Oregon

    USGS Publications Warehouse

    Schulz, William H.; Ellis, William L.

    2007-01-01

    The Johnson Creek landslide is a translational, primarily bedrock landslide located along the Oregon coast about 5 km north of Newport. The landslide has damaged U.S. Highway 101 many times since construction of the highway and at least two geological and geotechnical investigations of the landslide have been performed by Oregon State agencies. In cooperation with the Oregon Department of Geology and Mineral Industries and the Oregon Department of Transportation, the U.S. Geological Survey upgraded landslide monitoring systems and installed additional monitoring devices at the landslide beginning in 2004. Monitoring devices at the landslide measured landslide displacement, rainfall, air temperature, shallow soil-water content, and ground-water temperature and pressure. The devices were connected to automatic dataloggers and read at one-hour and, more recently, 15-minute intervals. Monitoring results were periodically downloaded from the dataloggers using cellular telemetry. The purposes of this report are to describe and present preliminary monitoring data from November 19, 2004, to March 31, 2007.

  18. Calandar year 1996 annual groundwater monitoring report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The Bear Creek Regime encompasses a portion of Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid) that contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring in the Bear Creek Regime is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). This report contains the information and monitoring data required under the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Bear Creek Hydrogeologic Regime (post-closure permit), as modified and issued by the Tennessee Department of Environment and Conservation (TDEC) in September 1995 (permit no. TNHW-087). In addition to the signed certification statement and the RCRA facility information summarized below, permit condition II.C.6 requires the annual monitoring report to address groundwater monitoring activities at the three RCRA Hazardous Waste Disposal Units (HWDUs) in the Bear Creek Regime that are in post-closure corrective action status (the S-3 Site, the Oil Landfarm, and the Bear Creek Burial Grounds/Walk-In Pits).

  19. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  20. Long-term water quality and biological responses to multiple best management practices in Rock Creek, Idaho

    USGS Publications Warehouse

    Maret, T.R.; MacCoy, D.E.; Carlisle, D.M.

    2008-01-01

    Water quality and macroinvertebrate assemblage data from 1981 to 2005 were assessed to evaluate the water quality and biological responses of a western trout stream to the implementation of multiple best management practices (BMPs) on irrigated cropland. Data from Rock Creek near Twin Falls, Idaho, a long-term monitoring site, were assembled from state and federal sources to provide the evaluation. Seasonal loads of the nonpoint source pollutants suspended sediment (SS), total phosphorus (TP), and nitrate-nitrite (NN) were estimated using a regression model with time-series streamflow data and constituent concentrations. Trends in the macroinvertebrate assemblages were evaluated using a number of biological metrics and nonmetric multidimensional scaling ordination. Regression analysis found significant annual decreases in TP and SS flow-adjusted concentrations during the BMP implementation period from 1983 to 1990 of about 7 and 10%, respectively. These results are coincident with the implementation of multiple BMPs on about 75% of the irrigated cropland in the watershed. Macroinvertebrate assemblages during this time also responded with a change in taxa composition resulting in improved biotic index scores. Taxon specific TP and SS optima, empirically derived from a large national dataset, predicted a decrease in SS concentrations of about 37% (52 to 33 mg/l) and a decrease in TP concentrations of about 50% (0.20 to 0.10 mg/l) from 1981 to 1987. Decreasing trends in TP, SS, and NN pollutant loads were primarily the result of naturally low streamflow conditions during the BMP post-implementation period from 1993 to 2005. Trends in macroinvertebrate responses during 1993 to 2005 were confounded by the introduction of the New Zealand mudsnail (Potamopyrgus antipodarum), which approached densities of 100,000 per m 2 in riffle habitat. The occurrence of this invasive species appears to have caused a major shift in composition and function of the macroinvertebrate

  1. Y-12 National Security Complex Biological Monitoring and Abatement Program 2007 Calendar Yeare Report

    SciTech Connect

    Peterson, M.J.; Greeley, M. S. Jr.; Morris, G. W.; Roy, W. K.; Ryan, M. G.; Smith, J. G.; Southworth, G. R.

    2008-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located off

  2. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  3. [Biological monitoring in chromium-plating industry].

    PubMed

    Madsen, S W; Krue, S; Bonde, J P

    1992-05-25

    The purpose of the present investigation was to evaluate the role of biological monitoring as a means of surveillance of exposure in the Danish chromium-plating industry. We collected spot urine samples from 47 employees in five electro-plating plants near Aarhus and compared the results wide 40 non-exposed workers. We found no increase of chromium in urine during a work shift (mean = 0.11 nmol chromium/mmol creatinine, p = .46). The mean urine chromium value among the chromium workers was twice the mean value of the referent population (p = 0.001). There was, however, a considerable overlap between the two populations. All of the urine chromium values were much lower than the proposed American biological exposure indices. The results do not indicate any need for implementation of biological monitoring in the Danish chromium-plating industry, but longitudinal studies concerning possible accumulation of chromium at present occupational exposure levels should be carried out.

  4. Baseline and Postremediation Monitoring Program Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    SciTech Connect

    1996-04-01

    This report was prepared in accordance with CERCLA requirements to present the plan for baseline and postremediation monitoring as part of the selected remedy. It provides the Environmental Restoration Program with information about the requirements to monitor for soil and terrestrial biota in the Lower East Fork Poplar Creek (LEFPC) floodplain; sediment, surface water, and aquatic biota in LEFPC; wetland restoration in the LEFPC floodplain; and human use of shallow groundwater wells in the LEFPC floodplain for drinking water. This document describes the monitoring program that will ensure that actions taken under Phases I and II of the LEFPC remedial action are protective of human health and the environment.

  5. Y-12 National Security Complex Biological Monitoring And Abatement Program 2008 Calendar Year Report

    SciTech Connect

    Peterson, M. J.; Greeley Jr., M. S.; Mathews, T. J.; Morris, G. W.; Roy, W. K.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.

    2009-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located off

  6. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    SciTech Connect

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S.

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  7. Assessment and monitoring of nutrient loading in the sediments of tidal creeks receiving shrimp farm effluent in Quang Ninh, Vietnam.

    PubMed

    Bui, Thuyet D; Luong-Van, Jim; Maier, Stefan W; Austin, Chris M

    2013-10-01

    Coastal shrimp farming may lead to the contamination of sediments of surrounding estuarine and marine ecosystems as shrimp farm effluent often contains high levels of pollutants including a range of organic compounds (from uneaten feed, shrimp feces, and living and dead organisms) which can accumulate in the sediments of receiving waterways. The assessment and monitoring of sediment quality in tidal creeks receiving shrimp farm effluent can support environmental protection and decision making for sustainable development in coastal areas since sediment quality often shows essential information on long-term aquatic ecosystem health. Within this context, this paper investigates nutrient loadings in the sediments of tidal creeks receiving shrimp farm effluent in Quang Ninh, Vietnam, which now have a high concentration of intensive and semi-intensive shrimp farms. Sediment samples taken from inside creek sections directly receiving effluent from concentrated shrimp farms (IEC), from main creeks adjacent to points of effluent discharge outside concentrated shrimp farms (OEC), and few kilometers away from shrimp farms (ASF) as reference sites were collected and analyzed before and after shrimp crops to investigate spatial and temporal variation. The results showed that there were statistically significant differences in the concentrations of total nitrogen, total phosphorus, and total organic carbon among IEC, OEC, and ASF sites while the seasonal variation being limited over study times. A sediment nutrient index (SNI) computed from coefficient scores of the factor analysis efficiently summarizes sediment nutrient loads, which are high, albeit quite variable, in canals directly receiving effluents from farms but then decline sharply with distance from shrimp farms. The visualization and monitoring of sediment quality data including SNI on maps can strongly support managers to manage eutrophication at concentrated shrimp farming areas, contributing to sustainable

  8. Biological monitoring of chlorinated hydrocarbon solvents

    SciTech Connect

    Monster, A.C.

    1986-08-01

    The possibility of biological monitoring of exposure to some volatile, halogenated hydrocarbons will be discussed. Most of these agents are widely used as solvents. All agents act on the nervous system as narcotics and differ widely in toxicity. Most of the solvents undergo biotransformation to metabolites. This allows biological assessment of exposure by measurement of the solvent and/or metabolites in exhaled air, blood, and/or urine. However, the same metabolites may occur with exposure to different chlorinated hydrocarbons, eg, trichloroethanol and trichloroacetic acid from exposure to trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane. On the other hand, these agents differ widely in the percentage that is metabolized. There are large gaps in our knowledge, however, and much research will have to be carried out before even tentative data can be established for most of the solvents.

  9. Summary and interpretation of discrete and continuous water-quality monitoring data, Mattawoman Creek, Charles County, Maryland, 2000-11

    USGS Publications Warehouse

    Chanat, Jeffrey G.; Miller, Cherie V.; Bell, Joseph M.; Majedi, Brenda Feit; Brower, David P.

    2013-01-01

    sediment, indicating a common underlying physical control, likely acting in synchrony with seasonal biological controls on total nutrient concentrations. Speciation of phosphorus, including proportional concentration of the biologically available dissolved inorganic fraction, did not vary seasonally. The speciation of nitrogen reflected demand for inorganic nitrogen and associated transformation into organic nitrogen during the growing season. Stepwise regression models were developed, using continuous data corresponding to collection times for discrete samples as candidate surrogates for suspended sediment, total phosphorus, and total nitrogen. Turbidity and discharge were both included in the model for suspended sediment (R2 = 0.76, n = 185); only turbidity was selected as a robust predictor of total phosphorus and nitrogen (R2 = 0.68 and 0.61, respectively, n = 186 for both). Loads of sediment and nutrients to the downstream Mattawoman estuary were computed using the U.S. Geological Survey computer program LOADEST. Load estimation included comparison of a routinely applied seven-parameter regression model based on time, season, and discharge, with an eight-parameter model that also includes turbidity. Adding turbidity decreased total load estimates, based on hourly data for a fixed 2-month period, by 21, 8, and 3 percent for suspended sediment, total phosphorus, and total nitrogen, respectively, in addition to decreasing the standard error of prediction for all three constituents. The seasonal pattern in specific conductance, reflecting road salt application, is the strongest evidence of the effect of upstream development on water quality at Mattawoman Creek. Accordingly, ongoing continuous monitoring for trends in specific conductance would be the most reliable means of detecting further degradation associated with increased development.

  10. Orofino Creek Passage Project Biological and Engineering Feasibility Report: Completion Report 1988.

    SciTech Connect

    Huntington, Charles W.

    1988-10-01

    If implemented, the Orofino Creek Passage Project will provide adult fish passage at barrier waterfalls on Orofino Creek, Idaho, and give anadromous salmonids access to upstream habitat. Anadromous fish are currently blocked at Orofino Falls, 8.3 km above the stream's confluence with the Clearwater River. This report summarizes results of a study to determine the potential for increasing natural production of summer steelhead (Salmo gairdneri) and spring chinook salmon (Oncorhynchus tschawytscha) in the Orofino Creek drainage by enhancing adult fish passage. Data on fish habitat, migration barriers, stream temperatures and fish populations in the drainage were collected during 1987 and provided a basis for estimating the potential for self-sustaining anadromous salmonid production above Orofino Falls. Between 84.7 and 103.6 km of currently inaccessible streams would be available to anadromous fish following project implementation, depending on the level of passage enhancement above Orofino Falls. These streams contain habitat of poor to good quality for anadromous salmonids. Low summer flows and high water temperatures reduce habitat quality in lower mainstem Orofino Creek. Several streams in the upper watershed have habitat that is dominated by brook trout and may be poorly utilized by steelhead or salmon. 32 refs., 20 figs., 22 tabs.

  11. Linking physical monitoring to coho and Chinook salmon populations in the Redwood Creek Watershed, California—Summary of May 3–4, 2012 Workshop

    USGS Publications Warehouse

    Madej, Mary Ann; Torregrosa, Alicia; Woodward, Andrea

    2012-01-01

    On Thursday, May 3, 2012, a science workshop was held at the Redwood National and State Parks (RNSP) office in Arcata, California, with researchers and resource managers working in RNSP to share data and expert opinions concerning salmon populations and habitat in the Redwood Creek watershed. The focus of the workshop was to discuss how best to synthesize physical and biological data related to the freshwater and estuarine phases of salmon life cycles in order to increase the understanding of constraints on salmon populations. The workshop was hosted by the U.S. Geological Survey (USGS) Status and Trends (S&T) Program National Park Monitoring Project (http://www.fort.usgs.gov/brdscience/ParkMonitoring.htm), which supports USGS research on priority topics (themes) identified by the National Park Service (NPS) Inventory and Monitoring Program (I&M) and S&T. The NPS has organized more than 270 parks with significant natural resources into 32 Inventory and Monitoring (I&M) Networks (http://science.nature.nps.gov/im/networks.cfm) that share funding and core professional staff to monitor the status and long-term trends of selected natural resources (http://science.nature.nps.gov/im/monitor). All 32 networks have completed vital signs monitoring plans (available at http://science.nature.nps.gov/im/monitor/MonitoringPlans.cfm), containing background information on the important resources of each park, conceptual models behind the selection of vital signs for monitoring the condition of natural resources, and the selection of high priority vital signs for monitoring. Vital signs are particular physical, chemical, and biological elements and processes of park ecosystems that represent the overall health or condition of the park, known or hypothesized effects of stressors, or elements that have important human values (Fancy and others, 2009). Beginning in 2009, the I&M program funded projects to analyze and synthesize the biotic and abiotic data generated by vital signs

  12. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    SciTech Connect

    Rabe, Craig D.; Nelson, Douglas D.

    2008-11-17

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there

  13. Escapement Monitoring of Adult Chinook Salmon in the Secesh River and Lake Creek, Idaho, 1999 Annual Report.

    SciTech Connect

    Faurot, Dave; Kucera, Paul A.

    2001-04-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  14. Biological and Physical Inventory of Clear Creek, Orofino Creek, and the Potlatch River, Tributary Streams of the Clearwater River, Idaho, 1984 Technical Report.

    SciTech Connect

    Johnson, David B.

    1985-05-01

    Clear Creek, Orofino Creek, and Potlatch Creek, three of the largest tributaries of the lower Clearwater River Basin, were inventoried during 1984. The purpose of the inventory was to identify where anadromous salmonid production occurs and to recommend enhancement alternatives to increase anadromous salmonid habitat in these streams. Anadromous and fluvial salmonids were found in all three drainages. The lower reach of Clear Creek supported a low population of rainbow-steelhead, while the middle reach supported a much greater population of rainbow-steelhead. Substantial populations of cutthroat trout were also found in the headwaters of Clear Creek. Rainbow-steelhead and brook trout were found throughout Orofino Creek. A predominant population of brook trout was found in the headwaters while a predominant population of rainbow-steelhead was found in the mainstem and lower tributaries of Orofino Creek. Rainbow-steelhead and brook trout were also found in the Potlatch River. Generally, the greatest anadromous salmonid populations in the Potlatch River were found within the middle reach of this system. Several problems were identified which would limit anadromous salmonid production within each drainage. Problems affecting Clear Creek were extreme flows, high summer water temperature, lack of riparian habitat, and high sediment load. Gradient barriers prevented anadromous salmonid passage into Orofino Creek and they are the main deterrent to salmonid production in this system. Potlatch River has extreme flows, high summer water temperature, a lack of riparian habitat and high sediment loads. Providing passage over Orofino Falls is recommended and should be considered a priority for improving salmonid production in the lower Clearwater River Basin. Augmenting flows in the Potlatch River is also recommended as an enhancement measure for increasing salmonid production in the lower Clearwater River Basin. 18 refs., 5 figs., 85 tabs.

  15. Third report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    SciTech Connect

    Hinzman, R.L.; Adams, S.M.; Ashwood, T.L.

    1995-08-01

    As a condition of the modified National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Gaseous Diffusion Plant (ORGDP; now referred to as the Oak Ridge K-25 Site) on September 11, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream (Mitchell Branch or K-1700 stream). On October 1, 1992, a renewed NPDES permit was issued for the K-25 Site. A biological monitoring plan was submitted for Mitchell Branch, Poplar Creek, Poplar Creek Embayment of the Clinch River and any unnamed tributaries of these streams. The objectives of BMAP are to (1) demonstrate that the effluent limitations established for the Oak Ridge K-25 Site protect and maintain the use of Mitchell Branch for growth and propagation of fish and other aquatic life and (2) document the effects on stream biota resulting from operation of major new pollution abatement facilities, including the Central Neutralization Facility (CNF) and the Toxic Substances Control Act (TSCA) incinerator. The BMAP consists of four tasks: (1) toxicity monitoring; (2) bioaccumulation monitoring; (3) assessment of fish health; and (4) instream monitoring of biological communities, including benthic macroinvertebrates and fish. This document, the third in a series, reports on the results of the Oak Ridge K-25 Site BMAP; it describes studies that were conducted over various periods of time between June 1990 and December 1993, although monitoring conducted outside this time period is included, as appropriate.

  16. Monitoring biological aerosols using UV fluorescence

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.; Roselle, Dominick; Seaver, Mark E.

    1999-01-01

    An apparatus has been designed and constructed to continuously monitor the number density, size, and fluorescent emission of ambient aerosol particles. The application of fluorescence to biological particles suspended in the atmosphere requires laser excitation in the UV spectral region. In this study, a Nd:YAG laser is quadrupled to provide a 266 nm wavelength to excite emission from single micrometer-sized particles in air. Fluorescent emission is used to continuously identify aerosol particles of biological origin. For calibration, biological samples of Bacillus subtilis spores and vegetative cells, Esherichia coli, Bacillus thuringiensis and Erwinia herbicola vegetative cells were prepared as suspensions in water and nebulized to produce aerosols. Detection of single aerosol particles, provides elastic scattering response as well as fluorescent emission in two spectral bands simultaneously. Our efforts have focuses on empirical characterization of the emission and scattering characteristics of various bacterial samples to determine the feasibility of optical discrimination between different cell types. Preliminary spectroscopic evidence suggest that different samples can be distinguished as separate bio-aerosol groups. In addition to controlled sample results, we will also discuss the most recent result on the effectiveness of detection outdoor releases and variations in environmental backgrounds.

  17. A Long-term Reach-Scale Monitoring Network for Riparian Evapotranspiration, Rock Creek, Kansas

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Solis, J. A.; Whittemore, D. O.; Butler, J. J.; Reboulet, E.; Knobbe, S.; Dealy, M.

    2011-12-01

    Riparian evapotranspiration (RET) is an important component of basin-wide evapotranspiration (ET), especially in subhumid to semi-arid regions, with significant impact on water management and conservation. In narrow riparian zones, typical of much of the subhumid to semi-arid U.S., direct measurement of RET by eddy correlation is precluded by the limited fetch distance of riparian vegetation. Alternative approaches based on water balance analyses have a long history, but their accuracy is not well understood. Factors such as heterogeneity in soil properties and root distributions, and sparse measurements, introduce uncertainties in RET estimates. As part of a larger effort aimed at improving understanding of basin-wide RET using scaling theories, we installed a continuous monitoring system for water balance estimation at the scale of a single (~100 m long) reach along Rock Creek in the Whitewater Basin in central Kansas. The distinguishing features of this site include a vadose zone with fine-grained soils underlain by a phreatic zone of coarse gravel embedded in clay, overlying karst bedrock. Across the width (~40 m) of the riparian zone, we installed one transect of four wells screened at the bottom of the alluvium (6-7 m depth), each accompanied by a soil moisture profiler with capacitance sensors at 4 vertical levels above the local water-table elevation (~2.5 m depth) and a shallow well screened just below the water table. All wells were instrumented with pressure transducers for monitoring water levels. Additional sets of all sensors were installed at the upstream and downstream ends of the study reach. Initial results from the monitoring network suggest significant complexities in the behavior of the subsurface system at the site, including a high degree of heterogeneity. All deep wells show a rapid response to streamflow variations and nearby pumping. However, the shallow water-table wells do not respond rapidly to either. Both the shallow wells and soil

  18. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  19. High frequency monitoring of stable isotopes in Red Butte Creek, Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Tulley-Cordova, C. L.; Bowen, G. J.

    2013-12-01

    For several decades hydrologists have recognized that the stable isotope ratios of hydrogen and oxygen can be used to distinguish different sources of water contributing to stream discharge. The majority of these 'isotope hydrograph separation' studies have shown that old water (water stored within the catchment prior to a precipitation event) is the dominant contributor to storm event runoff in most stream systems, with small contributions of new water (storm precipitation). Limited data from urban systems show a stronger response to storm precipitation, but the main contributor to the stream continues to be groundwater. Our research examines the relationship between urban and natural systems by conducting isotopic research on Red Butte Creek, a small creek in Salt Lake City. We hypothesize the balance of old and new water contributions to runoff are different in the natural and urban stream sections, and hypothesize there is a change in the balance of old and new water contributions throughout seasonal cycles.

  20. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    SciTech Connect

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1995-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.

  1. Calendar Year 1997 Annual Groundwater Monitoring Report For The Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Jones, S.B.

    1998-02-01

    This report contains the groundwater and surface water monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCIU) post- closure permit (PCP) for the Bear Creek Hydrogeologic Regime (Bear Creek Regime), and as otherwise required by U.S. Department of Energy (DOE) Order 5400.1. In July 1997, the Temessee Department of Environment and Conservation (TDEC) approved several modifications to the RCRA post-closure corrective action monitoring requirements specified in the PCP. This report has been prepared in accordimce with these modified requirements.

  2. Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program Plan

    SciTech Connect

    Adams, S.M.; Brandt, C.C.; Christensen, S.W.; Greeley, M.S.JR.; Hill, W.R.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-09-01

    The revised Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted as required by the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995 and became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Science Division (ESD) at the Oak Ridge National Laboratory (ORNL) at the request of the Y-12 Plant. The revision to the BMAP plan is based on results of biological monitoring conducted during the period of 1985 to present. Details of the specific procedures used in the current routine monitoring program are provided; experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional bioaccumulation monitoring if results indicate unexpectedly high PCBs or Hg) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is still observed). The program scope will be re-evaluated annually. By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of Y-12 Plant operations (past and present) on the biota of EFPC and to document the ecological effects of remedial actions.

  3. [Biological monitoring of occupational exposure to sevoflurane].

    PubMed

    Imbriani, M; Zadra, P; Negri, S; Alessio, A; Maestri, L; Ghittori, S

    2001-01-01

    conditions for the MSD were the following: ion mass monitored = 131 m/e; dwell time = 50 msec; selected ion monitoring window time = 0.1 amu; electromultiplier = 400 V. Urine samples were collected near the end of the shift and were analyzed for HFIP by head-space gas chromatography after glucuronide hydrolysis. 0.5 ml of urine and 1.5 ml of 10 M sulfuric acid were added to 21.8 ml headspace vials. The vials were immediately capped, vortexed, and loaded into the headspace autosampler. Samples were maintained at 100 degrees C for 30 min, after which glucuronide hydrolysis was 99% complete. Analyses were performed on a GC equipped with a MSD. The analytical conditions for urine analysis were as follows: cross-linked 5% phenylmethylsilicon column (internal diameter 0.2 mm, length 25 m); column temperature = 35 degrees C; carrier gas = helium. The analytical conditions for the MSD were: monitored ions = 51.05 and 99; dwell time = 100 ms; selected ion monitoring window time = 0.1 amu; electromultiplier voltage = 2000 Volt. With our analytical procedure, the detection limit of HFIP in urine was 20 micrograms/L. The variation coefficient (CV) for HFIP measurement in urine was 8.7% (on 10 determinations; mean value = 1000 micrograms/L). The median value of CI was 0.77 ppm (Geometric Standard Deviation = 4.08; range = 0.05-27.9 ppm). The correlation between CI and HFIP (Cu, microgram/L) was: Log Cu (microgram/L) = 0.813 x Log CI (ppm) + 2.517 (r = 0.79, n = 145, p < 0.0001). On the basis of the equation it was possible to establish tentatively the biological limit values corresponding to the respective occupational exposure limit values proposed for sevoflurane. According to our experimental results, HFIP values of 488 micrograms/L and 160 micrograms/L correspond to airborne sevoflurane concentrations of 2 and 0.5 ppm respectively.

  4. OAK RIDGE Y-12 PLANT BIOLOGICAL MONITORING AND ABATEMENT PROGRAM (BMAP) PLAN

    SciTech Connect

    ADAMS, S.M.; BRANDT, C.C.; CHRISTENSEN, S.W.; CICERONE, D.S.; GREELEY, M.S.JR; HILL, W.R.; HUSTON, M.S.; KSZOS, L.A.; MCCARTHY, J.F.; PETERSON, M.J.; RYON, M.G.; SMITH, J.G.; SOUTHWORTH, G.R.; STEWART, A.J.

    1998-10-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y- 12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional toxicity testing if initial results indicate low survival or reproduction) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is observed). By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  5. Results of the F/H Effluent Treatment Facility biological monitoring program, July 1987--July 1991

    SciTech Connect

    Specht, W.L.

    1992-07-01

    As required by the South Carolina Department of Health and Environmental Control (SCDHEC) under NPDES Permit SCO000175, biological monitoring was conducted in Upper Three Runs Creek to determine if discharges from the F/H Effluent Treatment Facility have adversely impacted the biotic community of the receiving stream. Data included in this summary report encompass July 1987 through July 1991. As originally designed, the F/H ETF was not expected to remove all of the mercury from the wastewater; therefore, SCDHEC specified that studies be conducted to determine if mercury was bioaccumulating in aquatic biota. Subsequent to approval of the biological monitoring program, an ion exchange column was added to the F/H ETF specifically to remove mercury, which eliminated mercury from the F/H ETF effluent. The results of the biological monitoring program indicate that at the present rate of discharge, the F/H ETF effluent has not adversely affected the receiving stream with respect to any of the parameters that were measured. The effluent is not toxic at the in-stream waste concentration and there is no evidence of mercury bioaccumulation.

  6. Establishing a national biological laboratory safety and security monitoring program.

    PubMed

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  7. Human biological monitoring of suspected endocrine-disrupting compounds

    PubMed Central

    Faniband, Moosa; Lindh, Christian H; Jönsson, Bo AG

    2014-01-01

    Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends. PMID:24369128

  8. Long-Term Biological Monitoring of an Impaired Stream: Implications for Environmental Management [Special Issue

    SciTech Connect

    Adams, Marshall; Brandt, Craig C; Christensen, Sigurd W; Efroymson, Rebecca Ann; Greeley Jr, Mark Stephen; Ham, Kenneth; Kszos, Lynn A; Loar, James M; McCracken, Kitty; Morris, Gail Wright; Peterson, Mark J; Ryon, Michael G; Smith, John G; Southworth, George R; Stewart, Arthur J

    2011-01-01

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream in Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.

  9. Long-term Biological Monitoring of an Impaired Stream: Synthesis and Environmental Management Implications

    SciTech Connect

    Peterson, Mark J; Efroymson, Rebecca Ann; Adams, Marshall

    2011-01-01

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream in Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.

  10. Urban-Related Environmental Variables and Their Relation with Patterns in Biological Community Structure in the Fountain Creek Basin, Colorado, 2003-2005

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Evans, Erin E.; Stogner, Robert W.

    2007-01-01

    In 2003, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to evaluate the influence of urbanization on stream ecosystems. To accomplish this task, invertebrate, fish, stream discharge, habitat, water-chemistry, and land-use data were collected from 13 sites in the Fountain Creek basin from 2003 to 2005. The Hydrologic Index Tool was used to calculate hydrologic indices known to be related to urbanization. Response of stream hydrology to urbanization was evident among hydrologic variables that described stormflow. These indices included one measurement of high-flow magnitude, two measurements of high-flow frequency, and one measurement of stream flashiness. Habitat and selected nonstormflow water chemistry were characterized at each site. Land-use data were converted to estimates of impervious surface cover and used as the measure of urbanization annually. Correlation analysis (Spearman?s rho) was used to identify a suite of nonredundant streamflow, habitat, and water-chemistry variables that were strongly associated (rho > 0.6) with impervious surface cover but not strongly related to elevation (rho < 0.60). An exploratory multivariate analysis (BIO-ENV, PRIMER ver 6.1, Plymouth, UK) was used to create subsets of eight urban-related environmental variables that described patterns in biological community structure. The strongest and most parsimonious subset of variables describing patterns in invertebrate community structure included high flood pulse count, lower bank capacity, and nutrients. Several other combinations of environmental variables resulted in competing subsets, but these subsets always included the three variables found in the most parsimonious list. This study found that patterns in invertebrate community structure from 2003 to 2005 in the Fountain Creek basin were associated with a variety of environmental characteristics influenced by urbanization. These patterns were explained by a combination of

  11. Inventorying and monitoring wetland condition and restoration potential on a watershed basis with examples from spring creek watershed, Pennsylvania, USA.

    PubMed

    Brooks, Robert P; Wardrop, Denice Heller; Cole, Charles Andrew

    2006-10-01

    We developed an approach for inventorying wetland resources, assessing their condition, and determining restoration potential in a watershed context. This article outlines how this approach can be developed into a Wetland Monitoring Matrix (WMM) that can help resource management agencies make regulatory and nonregulatory decisions. The WMM can be embedded in a standard planning process (Wetlands, Wildlife, and Watershed Assessment Techniques for Evaluation and Restoration, or W3ATER) involving the setting of objectives, assessing the condition of the resource, prioritizing watersheds or sites, implementing projects, and evaluating progress. To that process we have added the concepts of reference, hydrogeomorphic (HGM) classification, and prioritization for protection and restoration by triage or adaptive management. Three levels of effort are possible, increasing in detail and diagnostic reliability as data collection shifts from remote sensing to intensive sampling on the ground. Of key importance is the use of a consistent set of monitoring protocols for conducting condition assessments, designing restoration and creation projects, and evaluating the performance of mitigation projects; the same variables are measured regardless of the intended use of the data. This approach can be tailored to any region by establishing a reference set of wetlands organized by HGM subclasses, prioritizing watersheds and individual wetlands, and implementing consistent monitoring protocols. Application of the approach is illustrated with examples from wetlands and streams of the Spring Creek Watershed in central Pennsylvania, USA.

  12. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    USGS Publications Warehouse

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was

  13. Water-quality monitoring for a pilot piling removal field evaluation, Coal Creek Slough, Washington, 2008-09

    USGS Publications Warehouse

    Nilsen, Elena B.; Alvarez, David A.

    2011-01-01

    Significant Findings Water and sediment quality monitoring was conducted before and after the removal of a piling field located in Coal Creek Slough near Longview, Washington. Passive chemical samplers and continuous water-quality monitoring instruments were deployed at the piling removal site, Coal Creek Slough Site 1 (CCS1), and at a comparison site, Coal Creek Slough Site 2 (CCS2), before (2008) and after (2009) piling removal. Surface and subsurface (core) sediment samples were collected before and after piling removal and were analyzed for grain size, organic carbon content, and chemicals of concern. Significant findings from this study include: * Phenanthrene was the only compound detected in wood piling samples analyzed for a large suite of semivolatile organic compounds and polycyclic aromatic hydrocarbons (PAHs). Metals potentially associated with wood treatment were detected in the wood piling samples at low concentrations. * Organic carbon was slightly lower in core samples from CCS1 in pre-removal (2008) and post-removal (2009) samples than in surface samples from both sites in both years. * Grain-size class distributions were relatively uniform between sites and years. * Thirty-four out of 110 chemicals of concern were detected in sediments. Eight of those detected were anthropogenic waste indicator (AWI) compounds, 18 were PAHs, 4 were sterols, and 4 were metals potentially associated with wood treatment. * Nearly all reported concentrations of chemicals of concern in sediments are qualified as estimates, primarily due to interferences in extracts resulting from complex sample matrices. Indole, perylene, and fluoranthene are reported without qualification for some of the samples, and the metals are reported without qualification for all samples. * The highest frequency of detection of chemicals of concern was seen in the pre-removal surface samples at both sites. * AWI compounds were detected less frequently and at lower concentrations during the post

  14. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    SciTech Connect

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring.

  15. Evaluation of biological data, Guanella Pass Area, Clear Creek and Park counties, Colorado, water years 1995-97

    USGS Publications Warehouse

    Cox-Lillis, Jennifer R.

    2000-01-01

    density, were Cyanophyta (blue-green algae), Chrysophyta (diatoms), Chlorophyta (green algae), Rhodophyta (red algae), and Euglenophyta (euglenoids). In general, diatom biovolumes dominated the algal assemblage, followed by blue-green algae, green algae, red algae, and euglenoids. Algal densities ranged from 3.1 X 102 to more than 4.7 X 106 cells per square centimeter, and algal biovolume ranged from 2.3 X 104 to 4.6 X 109 cells per cubic centimeter. Diversity values for diatoms ranged from 1.5 to 4.9. The pollution tolerance index (PTI) for diatoms ranged from 1.8 to 3.0. Sensitive diatoms were present at each site and ranged from 21 to 97 percent. The percentage of motile diatoms ranged from 0 to 13 percent. The presence of acid-tolerant diatoms ranged from less than 0.5 to greater than 20 percent. The percentage of community similarity between site pairs ranged from 1 to 97 percent. Overall, the biotic metrics that were evaluated during this study indicate that the macroinvertebrate and algal communities in the streams on Guanella Pass are not degraded by the existing road. Erosion may cause some localized effects but may not affect the overall health of the whole stream system. The degraded condition of Geneva Creek probably is due to natural effects as opposed to road effects. Although upper South Clear Creek, upstream from Naylor Creek, is located downstream from several sources of road runoff, the biological community at this site does not seem to be negatively affected.

  16. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir; Skookumchuck Creek Juvenile Bull Trout and Fish Habitat Monitoring Program, Annual Report 2002.

    SciTech Connect

    Cope, R.

    2003-06-01

    The Skookumchuck Creek juvenile bull trout (Salvelinus confluentus) and fish habitat-monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. This project was commissioned in planning for fish habitat protection and forest development within the Skookumchuck Creek watershed and was intended to expand upon similar studies initiated within the Wigwam River from 2000 to 2002. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes, especially as they relate to spawning and rearing habitat quality. The 2002 project year represents the first year of a long-term bull trout-monitoring program with current studies focused on collecting baseline information. This report provides a summary of results obtained to date. Bull trout represented 72.4% of the catch. Fry dominated the catch because site selection was biased towards electrofishing sample sites which favored high bull trout fry capture success. The mean density of all juvenile bull trout was estimated to be 6.6 fish/100m{sup 2}. This represents one-half the densities reported for the 2002 Wigwam River enumeration program, even though enumeration of bull trout redds was an order of magnitude higher for the Wigwam River. Typically, areas with combined fry and juvenile densities greater than 1.5 fish per 100 m{sup 2} are cited as critical rearing areas. Trends in abundance appeared to be related to proximity to spawning areas, bed material size, and water depth. Cover components utilized by juvenile and adult bull trout and cutthroat trout were interstices, boulder, depth, overhead vegetation and LWD. The range of morphological stream types encompass the stable and resilient spectrum (C3(1), C3 and B3c). The Skookumchuck can be generalized as a slightly entrenched, meandering, riffle-pool, cobble dominated

  17. Biological oscillations: Fluorescence monitoring by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chattoraj, Shyamtanu; Bhattacharyya, Kankan

    2016-09-01

    Fluctuations play a vital role in biological systems. Single molecule spectroscopy has recently revealed many new kinds of fluctuations in biological molecules. In this account, we focus on structural fluctuations of an antigen-antibody complex, conformational dynamics of a DNA quadruplex, effects of taxol on dynamics of microtubules, intermittent red-ox oscillations at different organelles in a live cell (mitochondria, lipid droplets, endoplasmic reticulum and cell membrane) and stochastic resonance in gene silencing. We show that there are major differences in these dynamics between a cancer cell and the corresponding non-cancer cell.

  18. Environmental and biological monitoring for lead exposure in California workplaces.

    PubMed Central

    Rudolph, L; Sharp, D S; Samuels, S; Perkins, C; Rosenberg, J

    1990-01-01

    Patterns of environmental and biological monitoring for lead exposure were surveyed in lead-using industries in California. Employer self-reporting indicates a large proportion of potentially lead-exposed workers have never participated in a monitoring program. Only 2.6 percent of facilities have done environmental monitoring for lead, and only 1.4 percent have routine biological monitoring programs. Monitoring practices vary by size of facility, with higher proportions in industries in which larger facilities predominate. Almost 80 percent of battery manufacturing employees work in job classifications which have been monitored, versus only 1 percent of radiator-repair workers. These findings suggest that laboratory-based surveillance for occupational lead poisoning may seriously underestimate the true number of lead poisoned workers and raise serious questions regarding compliance with key elements of the OSHA Lead Standard. PMID:2368850

  19. Habitat Restoration and Monitoring in Urban Streams: The Case of Tryon Creek in Portland, OR

    NASA Astrophysics Data System (ADS)

    Rios Touma, B. P.; Prescott, C.; Axtell, S.; Kondolf, G. M.

    2013-12-01

    Habitat enhancement in urban streams can be important for threatened species but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. In Portland (OR) restoration actions have been undertaken at the watershed scale (e.g.: storm water management, protection of sites with high watershed value) to improve water quality, and at reach scale, when water quality and quantity are adequate, to increase habitat heterogeneity and stabilize banks. To evaluate reach-scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre-project and over 4 years post- project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Although taxonomical diversity increased after restoration, but was still low compared to reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Variables such as substrate composition, canopy cover or large wood pieces did not change from pre- to post-project, so could not explain the changes in the community. This may have been partly attributable to insensitivity of the visual estimate methods used, but likely also reflects an importance influence of watershed variables on aquatic biota - suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions.

  20. Integrated Status and Effectiveness Monitoring Program; Expansion of Existing Smolt Trapping Program in Nason Creek, 2005 Annual Report.

    SciTech Connect

    Prevatte, Scott A.

    2006-03-01

    In the fall of 2004, as one part of a Basin-Wide Monitoring Program developed by the Upper Columbia Regional Technical Team and Upper Columbia Salmon Recovery Board, the Yakama Nation Fisheries Resource Management program began monitoring downstream migration of ESA listed Upper Columbia River spring chinook salmon and Upper Columbia River steelhead in Nason Creek, a tributary to the Wenatchee River. This report summarizes juvenile spring chinook salmon and steelhead trout migration data collected in Nason Creek during 2005 and also incorporates data from 2004. We used species enumeration at the trap and efficiency trials to describe emigration timing and to estimate population size. Data collection was divided into spring/early summer and fall periods with a break during the summer months occurring due to low stream flow. Trapping began on March 1st and was suspended on July 29th when stream flow dropped below the minimum (30 cfs) required to rotate the trap cone. The fall period began on September 28th with increased stream flow and ended on November 23rd when snow and ice began to accumulate on the trap. During the spring and early summer we collected 311 yearling (2003 brood) spring chinook salmon, 86 wild steelhead smolts and 453 steelhead parr. Spring chinook (2004 brood) outgrew the fry stage of fork length < 60 mm during June and July, 224 were collected at the trap. Mark-recapture trap efficiency trials were performed over a range of stream discharge stages whenever ample numbers of fish were being collected. A total of 247 spring chinook yearlings, 54 steelhead smolts, and 178 steelhead parr were used during efficiency trials. A statically significant relationship between stream discharge and trap efficiency has not been identified in Nason Creek, therefore a pooled trap efficiency was used to estimate the population size of both spring chinook (14.98%) and steelhead smolts (12.96%). We estimate that 2,076 ({+-} 119 95%CI) yearling spring chinook and 688

  1. Lung function, biological monitoring, and biological effect monitoring of gemstone cutters exposed to beryls

    PubMed Central

    Wegner, R.; Heinrich-Ramm, R.; Nowak, D.; Olma, K.; Poschadel, B.; Szadkowski, D.

    2000-01-01

    OBJECTIVES—Gemstone cutters are potentially exposed to various carcinogenic and fibrogenic metals such as chromium, nickel, aluminium, and beryllium, as well as to lead. Increased beryllium concentrations had been reported in the air of workplaces of beryl cutters in Idar-Oberstein, Germany. The aim of the survey was to study the excretion of beryllium in cutters and grinders with occupational exposure to beryls—for example, aquamarines and emeralds—to examine the prevalence of beryllium sensitisation with the beryllium lymphocyte transformation test (BeLT), to examine the prevalence of lung disease induced by beryllium, to describe the internal load of the respective metals relative to work process, and to screen for genotoxic effects in this particular profession.
METHODS—In a cross sectional investigation, 57 out of 100 gemstone cutters working in 12 factories in Idar-Oberstein with occupational exposure to beryls underwent medical examinations, a chest radiograph, lung function testing (spirometry, airway resistance with the interrupter technique), and biological monitoring, including measurements of aluminium, chromium, and nickel in urine as well as lead in blood. Beryllium in urine was measured with a newly developed direct electrothermal atomic absorption spectroscopy technique with a measurement limit of 0.06 µg/l. Also, cytogenetic tests (rates of micronuclei and sister chromatid exchange), and a BeLT were performed. Airborne concentrations of beryllium were measured in three factories. As no adequate local control group was available, the cutters were categorised into those with an exposure to beryls of >4 hours/week (group A) and ⩽4 hours/week (group B).
RESULTS—Clinical, radiological, or spirometric abnormalities indicating pneumoconiosis were detected in none of the gemstone cutters. Metal concentrations in biological material were far below the respective biological limit values, and beryllium in urine was only measurable in

  2. Biological versus ambient exposure monitoring of creosote facility workers.

    PubMed

    Borak, Jonathan; Sirianni, Greg; Cohen, Howard; Chemerynski, Susan; Jongeneelen, Frans

    2002-04-01

    Traditional methods for monitoring occupational creosote exposure have focused on inhalation. However, there is evidence that dermal exposure contributes importantly to total systemic dose, as measured by biological monitoring methods. This study was conducted to further characterize the relationships between inhalation and dermal exposures to creosote, and to compare traditional ambient exposure monitoring versus biological monitoring in 36 creosote-exposed wood treatment workers. Full-shift personal air samples were obtained, along with post-shift and next-day urine measurements for 1-hydroxypyrene. There was little or no correlation between airborne measures and urinary 1-hydroxypyrene (r2 = 0.05 to 0.35). More than 90% of 1-hydroxypyrene could be attributed to dermal exposure. These data indicate that traditional monitoring methods may be inappropriate for creosote workers, raising concerns about the adequacy of methods currently mandated by the Occupational Safety and Health Administration.

  3. Acid-leachable trace metals in sediments from an industrialized region (Ennore Creek) of Chennai City, SE coast of India: An approach towards regular monitoring

    NASA Astrophysics Data System (ADS)

    Jayaprakash, M.; Jonathan, M. P.; Srinivasalu, S.; Muthuraj, S.; Ram-Mohan, V.; Rajeshwara-Rao, N.

    2008-02-01

    The article presents the results for enrichment of acid-leachable trace metals (ALTMs) from Ennore Creek in north Chennai, a metropolis on the southeast coast of India. ALTMs Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd along with sediment texture, OC and CaCO 3 were analyzed in surface sediments collected during two different seasons, pre-monsoon (PRM) and post-monsoon (POM) seasons to identify and observe the input of trace metals in the creek from various sources in the city limits. The most prominent feature of the ALTMs is the enrichment of Fe, Cr, Cu, Ni, Pb and Zn in the sediments, which is mainly attributed to the intense industrial activities around Chennai, and to the rapid industrialization policies. The ALTMs also indicate their association with the finer fractions, OC and Fe-Mn oxyhydroxides. The enrichment is very well supported by the correlation, grouping and clustering of ALTMs in statistical analysis. The differential behavior of ALTMs in POM season compared to PRM season is possibly due to the excess level of industrial effluents in the channel feeding Ennore Creek. Comparative results of ALTMs with other estuarine regions also indicate that the study area has been enriched with trace metals during the past two decades. The results of the present study suggest the need for a regular monitoring program which will help to improve the quality of Ennore Creek.

  4. Overview and first results of ecological monitoring at the artificial watershed Chicken Creek (Germany)

    NASA Astrophysics Data System (ADS)

    Gerwin, W.; Schaaf, W.; Biemelt, D.; Winter, S.; Fischer, A.; Veste, M.; Hüttl, R. F.

    An artificial catchment of 6 ha was established in the Lusatian lignite mining district (Germany). A comprehensive monitoring program was launched immediately after the construction was finished in autumn 2005. The setup of the monitoring and first results of the period 2005-2008 are presented in this paper. From the monitoring measurements it is obvious that the establishing ecosystem is highly dynamic. In addition, important components of the artificially created system are governed by characteristic, often seasonal trends. These observations make clear that the performance of the artificial catchment is generally in agreement with naturally formed watersheds but the system is still in a very initial phase of establishment. Especially, soil properties, hydrological behaviour and vegetation succession illustrate that the development of the system started very close to “point zero”. Even if the construction of the site itself left different initial structures the starting conditions of the catchment can be characterized in general as relatively homogenous in comparison with other close to “point zero” systems. However, new structures emerging at the surface of the site but also in the sub-surface differentiated the system significantly soon after “point zero”.

  5. Biological monitoring of occupational exposure to tetrahydrofuran.

    PubMed Central

    Ong, C N; Chia, S E; Phoon, W H; Tan, K T

    1991-01-01

    Occupational exposure to tetrahydrofuran (THF) was studied by analysis of environmental air, blood, alveolar air, and urine from 58 workers in a video tape manufacturing plant. Head space gas chromatography (GC) with an FID detector was used for determination of THF concentration in alveolar air, urine, and blood. Environmental exposure to THF was measured by personal sampling with a carbon felt passive dosimeter. When the end of shift urinary THF concentrations were compared with environmental time weighted average (TWA) values, urinary THF concentration corrected for specific gravity correlated well with THF concentration in air (r = 0.88), and uncorrected urinary THF concentration gave a similar result (r = 0.86). Correction for creatinine in urine weakened the correlation (r = 0.56). For exposure at the TWA concentration of 200 ppm the extrapolated concentration of THF was 33 mumol/l in blood and 111.9 mumol/l (61 mumol/g creatinine) or 109 mumol/l at a specific gravity of 1.018 in urine. The correlation between exposure to THF and its concentration in exhaled breath and blood was low (r = 0.61 and 0.68 respectively). Laboratory methodological considerations together with the good correlation between urinary THF concentration and the environmental concentration suggest that THF concentration in urine is a useful biological indicator of occupational exposure to THF. PMID:1911404

  6. Monitoring biological diversity: strategies, tools, limitations, and challenges

    USGS Publications Warehouse

    Beever, E.A.

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity will likely be most successful when based upon clearly articulated goals and objectives and may be enhanced by including several key steps in the process. Ideally, monitoring of biological diversity will measure not only composition, but also structure and function at the spatial and temporal scales of interest. Although biodiversity monitoring has several key limitations as well as numerous theoretical and practical challenges, many tools and strategies are available to address or overcome such challenges; I summarize several of these. Due to the diversity of spatio-temporal scales and comprehensiveness encompassed by existing definitions of biological diversity, an effective monitoring design will reflect the desired sampling domain of interest and its key stressors, available funding, legal requirements, and organizational goals.

  7. Monitoring of biological diversity in space and time

    USGS Publications Warehouse

    Yoccoz, N.G.; Nichols, J.D.; Boulinier, T.

    2001-01-01

    Monitoring programmes are being used increasingly to assess spatial and temporal trends of biological diversity, with an emphasis on evaluating the efficiency of management policies. Recent reviews of the existing programmes, with a focus on their design in particular, have highlighted the main weaknesses: the lack of well-articulated objectives and the neglect of different sources of error in the estimation of biological diversity. We review recent developments in methods and designs that aim to integrate sources of error to provide unbiased estimates of change in biological diversity and to suggest the potential causes.

  8. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    SciTech Connect

    Kszos, L.A.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate.

  9. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1996

    SciTech Connect

    Kszos, L.A.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.

  10. [Environmental and biological monitoring in the plating industry].

    PubMed

    Cavallo, D M; Cattaneo, A

    2012-01-01

    The work environment in the electroplating industry is characterized by a large amount of chemical substances used in the production process. The present work is a brief review of the time evolution of methods and strategies for the assessment of exposures to chromium and nickel by means of environmental and biological monitoring.

  11. Dark cycle monitoring of biological specimens on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mian, Arshad; Chuang, Sherry

    1992-01-01

    The operational environment for biological research on Space Station Freedom will incorporate video technology for monitoring plant and animal subjects. The video coverage must include dark-cycle monitoring because early experiments will use rodents that are nocturnal and therefore most active during the dark part of the daily cycle. Scientific requirements for monitoring during the dark cycle are exacting. Infrared (IR) or near-IR sensors are required. The trade-offs between these two types of sensors are based on engineering constraints, sensitivity spectra, and the quality of imagery possible from each type. This paper presents results of a study conducted by the Biological Flight Research Projects Office in conjunction with the Spacecraft Data Systems Branch at ARC to investigate the use of charged-coupled-device and IR cameras to meet the scientific requirements. Also examined is the effect of low levels of near-IR illumination on the circadian rhythm in rats.

  12. L-Lake wildlife: L Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Patterson, K.K.; Giffin, M.A.

    1988-03-01

    Reptile and amphibian populations of L-Lake were assessed in monthly or quarterly sampling programs. Both the number of individuals and the number of species collected decreased from 1986 to 1987. The greatest difference between years occurred with amphibians. No new species were collected, less than 50% of the species collected in 1986 were collected in 1987, and only one-third as many individuals were collected. Lizard and snake populations appear unaffected by L-Lake or reactor operations. Turtles appeared to be less abundant in 1987 than in 1986. This may be due to a lack of suitable cover and food sources. With the development of macrophyte beds, the turtle populations should increase. Observations of alligators were more numerous in 1987 than 1986. Alligators successfully inhabit Par Pond, another cooling reservoir on the Savannah River Plant, and a resident population will probably become established in L-Lake.

  13. Combining Long-Term Watershed Monitoring at Buck Creek with Spatially Extensive Ecosystem Data to Understand the Processes of Acid Rain Effects and Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Ross, D. S.; Sullivan, T. J.; McDonnell, T. C.; Bailey, S. W.; Dukett, J. E.

    2014-12-01

    The Buck Creek Monitoring Watershed, in the western Adirondack Region of New York, has provided long-term data back to 1982 for tracking acid rain effects and recovery, and for supporting fundamental research on environmental change. At Buck Creek, monitoring acidic deposition effects as they worsened, then diminished, has advanced our understanding of key biogeochemical processes such as Al mobilization. Although Al mobilization has been one of the primary adverse effects of acidic deposition, in the recovery phase it is now affecting terrestrial and aquatic ecosystems in new ways that could be both positive and negative, as soils and surface waters respond to further declines in acidic deposition. Using stream Al measurements from Buck Creek over varying seasons and flows, a new index, the base cation surplus (BCS), was developed to account for dissolved organic carbon (DOC) effects on the relationship between ANC and inorganic Al. Mobilization of inorganic Al, the form toxic to biota, occurs below a BCS of zero, regardless of DOC concentrations. Soil and stream data from Adirondack surveys showed that a BCS value of zero corresponds to a soil base saturation value in the B horizon of approximately 12%. Additional Adirondack survey work indicated that, where sugar maple stands grew in soils with base saturation values below 12%, seedling regeneration was nearly zero, suggesting a link between Al mobilization and impairment of tree regeneration. In recovering Adirondack lakes, the BCS was also used to show that increasing trends in DOC were accelerating decreases of inorganic Al beyond what would be expected from the increasing trends of ANC. Similar decreases of inorganic Al in Buck Creek, were coupled with increases in organic Al concentrations, which resulted in no trend in total Al concentrations despite a strong increase in pH. Sampling of Buck Creek soils in 1997, and again in 2009-2010, indicated a substantial decrease in forest floor exchangeable Al, of

  14. [Biological monitoring in the molding of plastics and rubbers].

    PubMed

    Fustinoni, S; Campo, L; Cirla, A M; Cirla, P E; Cutugno, V; Lionetti, C; Martinotti, I; Mossini, E; Foà, V

    2007-01-01

    This survey was carried out in the molding of plastics and rubbers, in the "Professional Cancer Prevention Project" sponsored by the Lombardy region with the objective of developing and implementing protocols for evaluating exposure to carcinogens through the biological monitoring. The realities of molding the thermoplastic polymer ABS, rubber, and thermosetting plastics containing formaldehyde were examined. The carcinogenic substances identified in these processes were: 1,3-butadiene, acrylonitrile and styrene in molding ABS, polycyclic aromatic hydrocarbons (PAH) in molding rubber, and formaldehyde in molding the thermosetting plastics. Only for some of these substances biological indicators are available. The limited exposure to airborne chemicals in molding ABS and the intrinsic characteristics of biological indicators available for 1-3 butadiene have determined the non applicability of biological monitoring to this situation. The absence of a biological indicator of exposure to formaldehyde has made this situation not investigable. Exposure in the rubber molding was studied in 19 subjects applying the determination not metabolized PAH in urine. The levels of these indicators were similar to those measured in other groups of subjects without occupational exposure to PAH, confirming a low airborne contamination in this workplace.

  15. Operational Procedures for Collecting Water-Quality Samples at Monitoring Sites on Maple Creek Near Nickerson and the Platte River at Louisville, Eastern Nebraska

    USGS Publications Warehouse

    Johnson, Steven M.; Swanson, Robert B.

    1994-01-01

    Prototype stream-monitoring sites were operated during part of 1992 in the Central Nebraska Basins (CNBR) and three other study areas of the National Water-Quality Assessment (NAWQ) Program of the U.S. Geological Survey. Results from the prototype project provide information needed to operate a net- work of intensive fixed station stream-monitoring sites. This report evaluates operating procedures for two NAWQA prototype sites at Maple Creek near Nickerson and the Platte River at Louisville, eastern Nebraska. Each site was sampled intensively in the spring and late summer 1992, with less intensive sampling in midsummer. In addition, multiple samples were collected during two high- flow periods at the Maple Creek site--one early and the other late in the growing season. Water-samples analyses included determination of pesticides, nutrients, major ions, suspended sediment, and measurements of physical properties. Equipment and protocols for the water-quality sampling procedures were evaluated. Operation of the prototype stream- monitoring sites included development and comparison of onsite and laboratory sample-processing proce- dures. Onsite processing was labor intensive but allowed for immediate preservation of all sampled constituents. Laboratory processing required less field labor and decreased the risk of contamination, but allowed for no immediate preservation of the samples.

  16. Effects of removing Good Hope Mill Dam on selected physical, chemical, and biological characteristics of Conodoguinet Creek, Cumberland County, Pennsylvania

    USGS Publications Warehouse

    Chaplin, Jeffrey J.; Brightbill, Robin A.; Bilger, Michael D.

    2005-01-01

    The implications of dam removal on channel characteris-tics, water quality, benthic invertebrates, and fish are not well understood because of the small number of removals that have been studied. Comprehensive studies that document the effects of dam removal are just beginning to be published, but most research has focused on larger dams or on the response of a sin-gle variable (such as benthic invertebrates). This report, pre-pared in cooperation with the Conodoguinet Creek Watershed Association, provides an evaluation of how channel morphol-ogy, bed-particle-size distribution, water quality, benthic inver-tebrates, fish, and aquatic habitat responded after removal of Good Hope Mill Dam (a small 'run of the river' dam) from Conodoguinet Creek in Cumberland County, Pa. Good Hope Mill Dam was a 6-foot high, 220-foot wide concrete structure demolished and removed over a 3-day period beginning with the initial breach on November 2, 2001, at 10:00 a.m. eastern standard time. To isolate the effects of dam removal, data were collected before and after dam removal at five monitoring stations and over selected reaches upstream, within, and downstream of the impoundment. Stations 1, 2, and 5 were at free-flowing control locations 4.9 miles upstream, 2.5 miles upstream, and 5 miles downstream of the dam, respec-tively. Stations 3 and 4 were located where the largest responses were anticipated, 115 feet upstream and 126 feet downstream of the dam, respectively Good Hope Mill Dam was not an effective barrier to sedi-ment transport. Less than 3 inches of sediment in the silt/clay-size range (less than 0.062 millimeters) coated bedrock within the 7,160-foot (1.4-mile) impoundment. The bedrock within the impoundment was not incised during or after dam removal, and the limited sediment supply resulted in no measurable change in the thalweg elevation downstream of the dam. The cross-sec-tional areas at stations 3 and 4, measured 17 days and 23 months after dam removal, were within

  17. Real Time Monitoring of Signaling Pathways in Biological Cells

    DTIC Science & Technology

    2007-11-02

    cell signaling events by mediating the transport of molecules in and out of the cells . Cell surface receptors also function to...organic acceptor molecules in the plasma membrane and endocytic membranes of non -polarized MDCK cells . The EviTag-based FRET assay was designed to...02-2005 Final 27-07-2004 to 14-02-2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Real Time Monitoring of Signaling Pathways in Biological Cells

  18. Yucca Mountain biological resources monitoring program; Annual report FY92

    SciTech Connect

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  19. Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91

    SciTech Connect

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  20. Integrated Geophysical Monitoring Program to Study Flood Performance and Incidental CO2 Storage Associated with a CO2 EOR Project in the Bell Creek Oil Field

    NASA Astrophysics Data System (ADS)

    Burnison, S. A.; Ditty, P.; Gorecki, C. D.; Hamling, J. A.; Steadman, E. N.; Harju, J. A.

    2013-12-01

    The Plains CO2 Reduction (PCOR) Partnership, led by the Energy & Environmental Research Center, is working with Denbury Onshore LLC to determine the effect of a large-scale injection of carbon dioxide (CO2) into a deep clastic reservoir for the purpose of simultaneous CO2 enhanced oil recovery (EOR) and to study incidental CO2 storage at the Bell Creek oil field located in southeastern Montana. This project will reduce CO2 emissions by more than 1 million tons a year while simultaneously recovering an anticipated 30 million barrels of incremental oil. The Bell Creek project provides a unique opportunity to use and evaluate a comprehensive suite of technologies for monitoring, verification, and accounting (MVA) of CO2 on a large-scale. The plan incorporates multiple geophysical technologies in the presence of complementary and sometimes overlapping data to create a comprehensive data set that will facilitate evaluation and comparison. The MVA plan has been divided into shallow and deep subsurface monitoring. The deep subsurface monitoring plan includes 4-D surface seismic, time-lapse 3-D vertical seismic profile (VSP) surveys incorporating a permanent borehole array, and baseline and subsequent carbon-oxygen logging and other well-based measurements. The goal is to track the movement of CO2 in the reservoir, evaluate the recovery/storage efficiency of the CO2 EOR program, identify fluid migration pathways, and determine the ultimate fate of injected CO2. CO2 injection at Bell Creek began in late May 2013. Prior to injection, a monitoring and characterization well near the field center was drilled and outfitted with a distributed temperature-monitoring system and three down-hole pressure gauges to provide continuous real-time data of the reservoir and overlying strata. The monitoring well allows on-demand access for time-lapse well-based measurements and borehole seismic instrumentation. A 50-level permanent borehole array of 3-component geophones was installed in a

  1. The implications of the precautionary principle for biological monitoring

    NASA Astrophysics Data System (ADS)

    Macgarvin, M.

    1995-03-01

    Marine biological monitoring programmes frequently attempt to determine “safe” levels of contamination, based on assumptions about the assimilative capacity of the environment. This paper argues that such assumptions lack scientific rigour, and do not form the basis upon which a precautionary policy can be built. It notes the problems associated with assessing toxicological effects, but centres its attention on the crucial (yet far less discussed) weaknesses in theoretical ecology that make it extremely unlikely that biological monitoring can determine safe levels of contamination that leave ecosystems unaffected. It is argued that many marine biologists, if pressed, would concede these shortcomings but believe that, in the face of the technical difficulties and high costs of pollution prevention, we have no choice but to use such methods. This paper argues, with examples, that pollution prevention, often with considerable economic savings, is becoming a reality for even the most problematic substances. The difficulty is that the development of “clean production” methods lie outside the sphere of interest of those carrying out monitoring, so that measures that attempt to determine safe levels of contamination continue to be advocated. This gulf needs to be bridged so that the continuation of monitoring programmes that are part of dilute and disperse policies become regarded as inappropriate, indeed unethical. The paper concludes that this does not mean the end of marine monitoring. Instead, reliable methods for assessing physical levels of contamination will be required to determine whether the reduction targets set—as part of the introduction of clean production—are being met. Formidable difficulties will remain, requiring a precautious approach. Nevertheless, monitoring will no longer carry the burden of attempting to demonstrate that a particular level of environmental contamination is safe, which is currently destroying its scientific credibility.

  2. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek.

    PubMed

    Moody, Cheryl A; Martin, Jonathan W; Kwan, Wai Chi; Muir, Derek C G; Mabury, Scott A

    2002-02-15

    Perfluorinated surfactants have emerged as priority environmental contaminants due to recent reports of their detection in environmental and biological matrices as well as concerns regarding their persistence and toxicity. In June 2000, 22000 L of fire retardant foam containing perfluorinated surfactants was accidentally released at L. B. Pearson International Airport, Toronto, ON, and subsequently entered into Etobicoke Creek, a tributary to Lake Ontario. A suite of analytical tools that include liquid chromatography/tandem mass spectrometry (LC/MS/MS) and 19F NMR were employed to characterize fish (common shiner, Notropus cornutus) and surface water samples collected following the discharge of the perfluorinated material. Total perfluoroalkanesulfonate (4, 6, and 8 carbons) concentrations in fish liver samples ranged from 2.00 to 72.9 microg/g, and total perfluorocarboxylate (5-14 carbons) concentrations ranged from 0.07 to 1.02 microg/g. In addition to fish samples, total perfluoroalkanesulfonate (6 and 8 carbons) concentrations were detected in creek water samples by LC/MS/MS over a 153 day sampling period with concentrations ranging from <0.017 to 2260 microg/L; perfluorooctanoate concentrations (<0.009-11.3 microg/L) were lower than those observed for the perfluoroalkane-sulfonates. By 19F NMR, the total perfluorinated surfactant concentrations in surface water samples ranged from < 10 to 17000 microg/L. A bioaccumulation factor range of 6300-125000 was calculated for perfluorooctanesulfonate, based on concentrations in fish liver and surface water. The residence time of perfluorooctanesulfonate in Etobicoke Creek as well as the high bioaccumulation in fish liver suggests that perfluorinated surfactants will persist and bioaccumulate following release into the aquatic environment.

  3. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    PubMed

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  4. ``Recycling'' Geophysics: Monitoring and Isotopic Analysis of Engineered Biological Systems

    NASA Astrophysics Data System (ADS)

    Doherty, R.; Singh, K. P.; Ogle, N.; Ntarlagiannis, D.

    2010-12-01

    The emerging sub discipline of biogeophysics has provoked debate on the mechanisms of microbial processes that may contribute to geophysical signatures. At field scales geophysical signatures are often non unique due to the many parameters (physical, chemical, and biological) that are involved. It may be easier to apply geophysical techniques such as electrodic potential (EP), self potential (SP) and induced polarization (IP) to engineered biological systems where there is a degree of control over the design of the physical and chemical domain. Here we present results of a column experiment that was designed to anaerobically biodegrade dissolved organic matter in landfill leachate. The column utilises a recycled porous media (concrete) to help sequester organic carbon. Electrodic potential, self potential and induced polarisation are used in conjunction with chemical and isotopic techniques to monitor the effectiveness of this approach. Preliminary carbon and oxygen isotopic analysis on concrete from the column in contact with leachate show isotopic enrichment suggesting abiotic precipitation of carbonates.

  5. Measuring and monitoring biological diversity: Standard methods for amphibians

    USGS Publications Warehouse

    Heyer, W. Ronald; Donnelly, Maureen A.; McDiarmid, Roy W.; Hayek, Lee-Ann C.; Foster, Mercedes S.

    1994-01-01

    Measuring and Monitoring Biological Diversity is the first book to provide comprehensive coverage of standard methods for biodiversity sampling of amphibians, with information on analyzing and using data that will interest biologists in general.In this manual, nearly fifty herpetologists recommend ten standard sampling procedures for measuring and monitoring amphibian and many other populations. The contributors discuss each procedure, along with the circumstances for its appropriate use. In addition, they provide a detailed protocol for each procedure's implementation, a list of necessary equipment and personnel, and suggestions for analyzing the data.The data obtained using these standard methods are comparable across sites and through time and, as a result, are extremely useful for making decisions about habitat protection, sustained use, and restoration—decisions that are particularly relevant for threatened amphibian populations.

  6. Towards a biological monitoring guidance value for acrylamide.

    PubMed

    Sams, C; Jones, K; Warren, N; Cocker, J; Bell, S; Bull, P; Cain, M

    2015-08-19

    Acrylamide is classified as a potential human carcinogen and neurotoxicant. Biological monitoring is a useful tool for monitoring worker exposure. However, other sources of exposure to acrylamide (including cigarette smoke and diet) also need to be considered. This study has performed repeat measurements of the urinary mercapturic acids of acrylamide (AAMA) and its metabolite glycidamide (GAMA) and determined globin adducts in 20 production-plant workers at a UK acrylamide production facility. The relationship between biomarker levels and environmental monitoring data (air levels and hand washes) was investigated. Good correlations were found between all of the biomarkers (r(2)=0.86-0.91) and moderate correlations were found between the biomarkers and air levels (r(2) = 0.56-0.65). Our data show that urinary AAMA is a reliable biomarker of acrylamide exposure. Occupational hygiene data showed that acrylamide exposure at the company was well within the current UK Workplace Exposure Limit. The 90th percentile of urinary AAMA in non-smoking production-plant workers (537 μmol/mol creatinine (n = 59 samples)) is proposed as a possible biological monitoring guidance value. This 90th percentile increased to 798 μmol/mol if smokers were included (n = 72 samples). These values would be expected following an airborne exposure of less than 0.07 mg/m(3), well below the current UK workplace exposure limit of 0.3mg/m(3). Comparison of biomarker levels in non-occupationally exposed individuals suggests regional variations (between UK and Germany), possibly due to differences in diet.

  7. Calendar year 1996 annual groundwater monitoring report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1996. The East Fork Regime encompasses several confirmed and suspected sources of groundwater contamination within industrialized areas of the US Department of Energy (DOE) Oak Ridge Y-12 Plant in Bear Creek Valley (BCV) southeast of Oak Ridge, Tennessee. Groundwater and surface water monitoring in the East Fork Regime are performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit for the East Fork Regime issued by the Tennessee Department of Environment and Conservation (TDEC) on August 30, 1996. The post-closure permit addresses post-closure monitoring requirements for two closed RCRA-regulated surface impoundments: the S-3 Ponds and New Hope Pond.

  8. Linking chemical contamination to biological effects in coastal pollution monitoring.

    PubMed

    Beiras, Ricardo; Durán, Iria; Parra, Santiago; Urrutia, Miren B; Besada, Victoria; Bellas, Juan; Viñas, Lucía; Sánchez-Marín, Paula; González-Quijano, Amelia; Franco, María A; Nieto, Óscar; González, Juan J

    2012-01-01

    To establish the connection between pollutant levels and their harmful effects on living resources, coastal monitoring programmes have incorporated biological tools, such as the scope for growth (SFG) in marine mussels and benthic macrofauna community indices. Although the relation between oxygen-depleting anthropogenic inputs and the alteration of benthic communities is well described, the effects of chemical pollutants are unknown because they are not expected to favour any particular taxa. In this study, the combined efforts of five research teams involved in the investigative monitoring of marine pollution allowed the generation of a multiyear data set for Ría de Vigo (NW Iberian Peninsula). Multivariate analysis of these data allowed the identification of the chemical-matrix combinations responsible for most of the variability among sites and the construction of a chemical pollution index (CPI) that significantly (P < 0.01) correlated with biological effects at both the individual and the community levels. We report a consistent reduction in the physiological fitness of local populations of mussels as chemical pollution increases. The energy balance was more sensitive to pollution than individual physiological rates, but the reduction in the SFG was primarily due to significantly decreased clearance rates. We also found a decrease in benthic macrofauna diversity as chemical pollution increases. This diversity reduction resulted not from altered evenness, as the classic paradigm might suggest, but from a loss of species richness.

  9. Multisensor Instrument for Real-Time Biological Monitoring

    NASA Technical Reports Server (NTRS)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically

  10. Design tradeoffs for trend assessment in aquatic biological monitoring programs

    USGS Publications Warehouse

    Gurtz, Martin E.; Van Sickle, John; Carlisle, Daren M.; Paulsen, Steven G.

    2013-01-01

    Assessments of long-term (multiyear) temporal trends in biological monitoring programs are generally undertaken without an adequate understanding of the temporal variability of biological communities. When the sources and levels of variability are unknown, managers cannot make informed choices in sampling design to achieve monitoring goals in a cost-effective manner. We evaluated different trend sampling designs by estimating components of both short- and long-term variability in biological indicators of water quality in streams. Invertebrate samples were collected from 32 sites—9 urban, 6 agricultural, and 17 relatively undisturbed (reference) streams—distributed throughout the United States. Between 5 and 12 yearly samples were collected at each site during the period 1993–2008, plus 2 samples within a 10-week index period during either 2007 or 2008. These data allowed calculation of four sources of variance for invertebrate indicators: among sites, among years within sites, interaction among sites and years (site-specific annual variation), and among samples collected within an index period at a site (residual). When estimates of these variance components are known, changes to sampling design can be made to improve trend detection. Design modifications that result in the ability to detect the smallest trend with the fewest samples are, from most to least effective: (1) increasing the number of years in the sampling period (duration of the monitoring program), (2) decreasing the interval between samples, and (3) increasing the number of repeat-visit samples per year (within an index period). This order of improvement in trend detection, which achieves the greatest gain for the fewest samples, is the same whether trends are assessed at an individual site or an average trend of multiple sites. In multiple-site surveys, increasing the number of sites has an effect similar to that of decreasing the sampling interval; the benefit of adding sites is greater when

  11. Measuring and monitoring biological diversity: Standard methods for mammals

    USGS Publications Warehouse

    Wilson, Don E.; Cole, F. Russell; Nichols, James D.; Rudran, Rasanayagam; Foster, Mercedes S.

    1996-01-01

    Measuring and Monitoring Biological Diversity: Standard Methods for Mammals provides a comprehensive manual for designing and implementing inventories of mammalian biodiversity anywhere in the world and for any group, from rodents to open-country grazers. The book emphasizes formal estimation approaches, which supply data that can be compared across habitats and over time. Beginning with brief natural histories of the twenty-six orders of living mammals, the book details the field techniques—observation, capture, and sign interpretation—appropriate to different species. The contributors provide guidelines for study design, discuss survey planning, describe statistical techniques, and outline methods of translating field data into electronic formats. Extensive appendixes address such issues as the ethical treatment of animals in research, human health concerns, preserving voucher specimens, and assessing age, sex, and reproductive condition in mammals.Useful in both developed and developing countries, this volume and the Biological Diversity Handbook Series as a whole establish essential standards for a key aspect of conservation biology and resource management.

  12. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA, FOR CALENDAR YEAR 2004

    SciTech Connect

    BECHTEL NEVADA; NNSA NEVADA SITE OFFICE

    2005-04-01

    This post-closure inspection and monitoring report has been prepared according to the stipulations laid out in the Closure Report (CR) for Corrective Action Unit (CAU) 417, Central Nevada Test Area (CNTA)--Surface (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV], 2001), and the Federal Facility Agreement and Consent Order (FFACO, 1996). This report provides an analysis and summary of site inspections, subsidence surveys, meteorological information, and soil moisture monitoring data for CAU 417, which is located in Hot Creek Valley, Nye County, Nevada. This report covers Calendar Year 2004. Inspections at CAU 417 are conducted quarterly to document the physical condition of the UC-1, UC-3, and UC-4 soil covers, monuments, signs, fencing, and use restricted areas. The physical condition of fencing, monuments, and signs is noted, and any unusual conditions that could impact the integrity of the covers are reported. The objective of the soil moisture monitoring program is to monitor the stability of soil moisture conditions within the upper 1.2 meters (m) (4 feet [ft]) of the UC-1 Central Mud Pit (CMP) cover and detect changes that may be indicative of moisture movement exceeding the cover design performance expectations.

  13. Integrated Status and Effectiveness Monitoring Program Population Estimates for Juvenile Salmonids in Nason Creek, WA ; 2008 Annual Report.

    SciTech Connect

    Collins, Matthew; Murdoch, Keely

    2009-07-20

    This report summarizes juvenile coho, spring Chinook, and steelhead salmon migration data collected at a 1.5m diameter cone rotary fish trap on Nason Creek during 2008; providing abundance and freshwater productivity estimates. We used species enumeration at the trap and efficiency trials to describe emigration timing and to estimate the number of emigrants. Trapping began on March 2, 2008 and was suspended on December 11, 2008 when snow and ice accumulation prevented operation. During 2008, 0 brood year (BY) 2006 coho, 1 BY2007 coho, 906 BY2006 spring Chinook, 323 BY2007 fry Chinook, 2,077 BY2007 subyearling Chinook, 169 steelhead smolts, 414 steelhead fry and 2,390 steelhead parr were trapped. Mark-recapture trap efficiency trials were performed over a range of stream discharge stages. A total of 2,639 spring Chinook, 2,154 steelhead and 12 bull trout were implanted with Passive Integrated Transponder (PIT) tags. Most PIT tagged fish were used for trap efficiency trials. We were unable to identify a statistically significant relationship between stream discharge and trap efficiency, thus, pooled efficiency estimates specific to species and trap size/position were used to estimate the number of fish emigrating past the trap. We estimate that 5,259 ({+-} 359; 95% CI) BY2006 Chinook, 16,816 ({+-} 731; 95% CI) BY2007 Chinook, and 47,868 ({+-} 3,780; 95% CI) steelhead parr and smolts emigrated from Nason Creek in 2008.

  14. Calendar Year 1997 Annual Groundwater Monitoring Report For The Upper East Fork Poplar Creek Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation Wd Recovery Act (RCRA) post-closure permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) at the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. Issued by the Tennessee Department of Environment and Conservation (TDEC), the PCP defines the RCRA post-closure corrective action monitoring requirements for the portion of the groundwater contaminant plume that has migrated into the East Fork Regime ftom the S-3 Ponds, a closed RCW-regulated former surface impoundment located in Bear Creek Valley near the west end of the Y-12 Plant. In addition to the RCIL4 post-closure corrective action monitoring results, this report contains the groundwater and surface water monitoring data obtained during CY 1997 to fulfill requirements of DOE Order 5400.1.

  15. Biological monitoring of occupational exposure to inorganic arsenic

    PubMed Central

    Apostoli, P.; Bartoli, D.; Alessio, L.; Buchet, J. P.

    1999-01-01

    OBJECTIVES: This study was undertaken to assess reliable biological indicators for monitoring the occupational exposure to inorganic arsenic (iAs), taking into account the possible confounding role of arsenicals present in food and of the element present in drinking water. METHODS: 51 Glass workers exposed to As trioxide were monitored by measuring dust in the breathing zone, with personal air samplers. Urine samples at the end of work shift were analysed for biological monitoring. A control group of 39 subjects not exposed to As, and eight volunteers who drank water containing about 45 micrograms/l iAs for a week were also considered. Plasma mass spectrometry (ICP-MS) was used for the analysis of total As in air and urine samples, whereas the urinary As species (trivalent, As3; pentavalent, As5; monomethyl arsonic acid, MMA; dimethyl arsinic acid, DMA; arsenobetaine, AsB) were measured by liquid chromatography coupled with plasma mass spectrometry (HPLC-MS) RESULTS: Environmental concentrations of As in air varied widely (mean 84 micrograms/m3, SD 61, median 40) and also the sum of urinary iAs MMA and DMA, varied among the groups of exposed subjects (mean 106 micrograms/l, SD 84, median 65). AsB was the most excreted species (34% of total As) followed by DMA (28%), MMA (26%), and As3 + As5 (12%). In the volunteers who drank As in the water the excretion of MMA and DMA increased (from a median of 0.5 to 5 micrograms/day for MMA and from 4 to 13 micrograms/day for DMA). The best correlations between As in air and its urinary species were found for total iAs and As3 + As5. CONCLUSIONS: To avoid the effect of As from sources other than occupation on urinary species of the element, in particular on DMA, it is proposed that urinary As3 + As5 may an indicator for monitoring the exposure to iAs. For concentrations of 10 micrograms/m3 the current environmental limit for iAs, the limit for urinary As3 + As5 was calculated to be around 5 micrograms/l, even if the wide

  16. Biological Status Monitoring of European Fresh Water with Sentinel-2

    NASA Astrophysics Data System (ADS)

    Serra, Romain; Mangin, Antoine; Fanton d'Andon, Odile Hembise; Lauters, Francois; Thomasset, Franck; Martin-Lauzer, Francois-Regis

    2016-08-01

    Thanks to a widening range of sensors available, the observation of continental water quality for lakes and reservoirs is gaining more and more consistency and accuracy.Consistency because back in 2012, the only free sensor with a sufficient resolution (30m) was Landsat-7 which has truncated data since 2003 and a 16-day revisit time. But today, Landsat-8 and Sentinel-2A are now operating so depending on the latitude of interest, the combined revisit time dropped to 2 to 4 days which is more appropriate for such a monitoring (especially considering the cloud cover).Accuracy because Landsat-7 has a poor contrast over water whereas Landsat-8 and Sentinel-2A have a better radiometric sensitivity (more bit) and moreover Sentinel-2 offers additional spectral bands in the visible which are helpful for Chlorophyll-A concentration assessment. To sum up, with Sentinel-2, continental water quality monitoring capabilities are making a giant leap and it is important to exploit this potential the sooner. ACRI-HE has already built a strong basis to prepare Sentinel-2 by using Landsat data.Indeed, more than 600 lakes are already constantly monitored using Landsat data and their biological statuses are available on EyeOnWater (see eyeonwater.eu). Chlorophyll-A retrieval from (fresh) water leaving reflectances is the result of research activities conducted by ACRI-HE in parallel with EDF (Electricité de France) to respond to an emerging very demanding environmental monitoring through European regulations (typically the Water Framework Directive). Two parallel and complementary algorithms have thus been derived for Chlorophyll-a retrieval.Upstream of Eyeonwater, there is a complex and complete system automatically collecting images, extracting areas of interest around lakes, applying atmospheric correction (very sensitive part as atmosphere can contribute to 90% of the signal at sensor level) and then algorithms to retrieve water transparency (Secchi disk), turbidity and Chlorophyll

  17. Monitoring channel morphology and bluff erosion at two installations of flow-deflecting vanes, North Fish Creek, Wisconsin, 2000-03

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.; Schwar, Heather E.; Hoopes, John A.; Diebel, Matthew W.

    2005-01-01

    Flow-deflecting vanes were installed in the streambed along two meander bends with eroding bluffs in 2000 and 2001 in the upper main stem of North Fish Creek, a tributary to Lake Superior in Wisconsin. About 45 vanes were arranged in 15 arrays at each site to deflect the flow away from the eroding toe or base of the bluff (outside of a bend) and toward the point bar (inside of a bend). Channel cross-section and bluff-erosion surveys were done and streamflow and stage were measured before, during, and after vane installation to monitor changes in channel morphology and bluff erosion in the context of hydrologic conditions. There were two large floods in the study area in spring 2001 (recurrence interval of approximately 100 years) and in spring 2002 (recurrence intervals of approximately 50 years). Some maintenance and replacement of vanes were needed after the floods. Most of the channel-morphology changes resulted from the large floods, and fewer changes resulted from near-bankfull or at-bankfull flows (one in October 2002 and four in April and May 2003). At the bluff located 16.4 river miles upstream of the creek mouth (site 16.4), the vanes deflected flow and caused the channel to migrate away from the base of the bluff and toward the point bar, allowing sediment to deposit along the bluff base. The 361-foot reach at site 16.4 had a net gain of 6,740 cubic feet of sediment over the entire monitoring period (2000?03). Deposition (10,660 cubic feet) occurred mainly along the base of the bluff in the downstream part of the bend. Erosion occurred at site 16.4 along the streambed, the point bar side of the channel, and along a midchannel bar (1,220, 1,610, and 1,090 cubic feet, respectively). Less channel migration was observed during 2001-03 at another bluff located 12.2 river miles upstream of the creek mouth (site 12.2), which had a net loss of sediment through the 439-foot reach of 2,800 cubic feet over the monitored time period. The main volume of sediment was

  18. Drug-Encoded Biomarkers for Monitoring Biological Therapies

    PubMed Central

    Bedenk, Kristina; Zhang, Qian; Frentzen, Alexa; Cappello, Joseph; Fischer, Utz; Szalay, Aladar A.

    2015-01-01

    Blood tests are necessary, easy-to-perform and low-cost alternatives for monitoring of oncolytic virotherapy and other biological therapies in translational research. Here we assessed three candidate proteins with the potential to be used as biomarkers in biological fluids: two glucuronidases from E. coli (GusA) and Staphylococcus sp. RLH1 (GusPlus), and the luciferase from Gaussia princeps (GLuc). The three genes encoding these proteins were inserted individually into vaccinia virus GLV-1h68 genome under the control of an identical promoter. The three resulting recombinant viruses were used to infect tumor cells in cultures and human tumor xenografts in nude mice. In contrast to the actively secreted GLuc, the cytoplasmic glucuronidases GusA and GusPlus were released into the supernatants only as a result of virus-mediated oncolysis. GusPlus resulted in the most sensitive detection of enzyme activity under controlled assay conditions in samples containing as little as 1 pg/ml of GusPlus, followed by GusA (25 pg/ml) and GLuc (≥375 pg/ml). Unexpectedly, even though GusA had a lower specific activity compared to GusPlus, the substrate conversion in the serum of tumor-bearing mice injected with the GusA-encoding virus strains was substantially higher than that of GusPlus. This was attributed to a 3.2 fold and 16.2 fold longer half-life of GusA in the blood stream compared to GusPlus and GLuc respectively, thus a more sensitive monitor of virus replication than the other two enzymes. Due to the good correlation between enzymatic activity of expressed marker gene and virus titer, we conclude that the amount of the biomarker protein in the body fluid semiquantitatively represents the amount of virus in the infected tumors which was confirmed by low light imaging. We found GusA to be the most reliable biomarker for monitoring oncolytic virotherapy among the three tested markers. PMID:26348361

  19. USING HISTORICAL BIOLOGICAL DATA TO EVALUATE STATUS AND TRENDS IN THE BIG DARBY CREEK WATERSHED (OHIO, USA)

    EPA Science Inventory

    Assessment of watershed ecological status and trends is challenging for managers who lack randomly or consistently sampled data, or monitoring programs developed from a watershed perspective. This study investigated analytical approaches for assessment of status and trends using ...

  20. Pine Creek Ranch; Annual Report 2002.

    SciTech Connect

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  1. Biological monitoring and Biological Limit Values (BLV): the strategy of the European Union.

    PubMed

    Bolt, Hermann M; Thier, Ricarda

    2006-04-10

    Occupational standards concerning allowable concentrations of chemical compounds in the ambient air of workplaces have been established in several countries worldwide. With the integration of the European Union (EU), there has been a need of establishing harmonised Occupational Exposure Limits (OEL). The European Commission Directive 95/320/EC of 12 July 1995 has given the tasks to a Scientific Committee for Occupational Exposure Limits (SCOEL) to propose, based on scientific data and where appropriate, occupational limit values which may include the 8-h time-weighted average (TWA), short-term limits/excursion limits (STEL) and Biological Limit Values (BLVs). In 2000, the European Union issued a list of 62 chemical substances with Occupational Exposure Limits. Of these, 25 substances received a "skin" notation, indicating that toxicologically significant amounts may be taken up via the skin. For such substances, monitoring of concentrations in ambient air may not be sufficient, and biological monitoring strategies appear of potential importance in the medical surveillance of exposed workers. Recent progress has been made with respect to formulation of a strategy related to health-based BLVs.

  2. Assessment of temporal variance components and implications for trend assessment in biological monitoring programs

    EPA Science Inventory

    Assessment of temporal trends in biological monitoring programs is often undertaken without an understanding of temporal variability of biological communities. Typically, the within-site variance is unknown and included as part of sampling error. This investigation – designed jo...

  3. The future role of next-generation DNA sequencing and metagenetics in aquatic biology monitoring programs

    EPA Science Inventory

    The development of current biological monitoring and bioassessment programs was a drastic improvement over previous programs created for monitoring a limited number of specific chemical pollutants. Although these assessment programs are better designed to address the transient an...

  4. Maintenance and Monitoring of BMPS

    EPA Science Inventory

    Two best management practice (BMP) sites in the Staten Island Bluebelt in Richmond Creek Watershed are Richmond Creek 5 (RC-5) and Richmond Creek 4 (RC-4). This presentation includes site description, briefing of initial monitoring activity, representative maintenance activity, ...

  5. Monitoring of biological markers indicative of doping: the athlete biological passport.

    PubMed

    Saugy, Martial; Lundby, Carsten; Robinson, Neil

    2014-05-01

    The athlete biological passport (ABP) was recently implemented in anti-doping work and is based on the individual and longitudinal monitoring of haematological or urine markers. These may be influenced by illicit procedures performed by some athletes with the intent to improve exercise performance. Hence the ABP is a valuable tool in the fight against doping. Actually, the passport has been defined as an individual and longitudinal observation of markers. These markers need to belong to the biological cascade influenced by the application of forbidden hormones or more generally, affected by biological manipulations which can improve the performance of the athlete. So far, the haematological and steroid profile modules of the ABP have been implemented in major sport organisations, and a further module is under development. The individual and longitudinal monitoring of some blood and urine markers are of interest, because the intraindividual variability is lower than the corresponding interindividual variability. Among the key prerequisites for the implementation of the ABP is its prospect to resist to the legal and scientific challenges. The ABP should be implemented in the most transparent way and with the necessary independence between planning, interpretation and result management of the passport. To ensure this, the Athlete Passport Management Unit (APMU) was developed and the WADA implemented different technical documents associated to the passport. This was carried out to ensure the correct implementation of a profile which can also stand the challenge of any scientific or legal criticism. This goal can be reached only by following strictly important steps in the chain of production of the results and in the management of the interpretation of the passport. Various technical documents have been then associated to the guidelines which correspond to the requirements for passport operation. The ABP has been completed very recently by the steroid profile module

  6. Physical, chemical, and biological relations of four ponds in the Hidden Water Creek strip-mine area, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Wangsness, David J.

    1977-01-01

    The Hidden Water Creek area in Wyoming was mined from 1944 to 1955 and abandoned. The open pits filled with water and pond-type ecosystems developed. Light was transmitted to greater depths within two control ponds located outside the mine area. The lower light transmittance in the ponds within the mined area probably was due, in part, to the greater number of phytoplankton cells. Also, unconsolidated soil material within the mine area was observed to slough off the pond banks, which could add to the concentration of suspended sediments. Dissolved oxygen concentrations were lower in the ponds within the mined area. Most of the major ions (calcium, magnesium, sulfate, and sodium) were present in greater concentrations in the ponds within the mined area. Higher concentrations of bicarbonate and total hardness were in the water within the mined area. Biological communities were less diverse and chemical concentrations fluctuated more in the mined area than in the ponds outside the mined area. (Woodard-USGS)

  7. Co-evolving Physical and Biological Organization in Step-pool Channels: Experiments from a Restoration Reach on Wildcat Creek, California

    NASA Astrophysics Data System (ADS)

    Chin, A.; O'Dowd, A. P.; Mendez, P. K.; Velasco, K. Z.; Leventhal, R. D.; Storesund, R.; Laurencio, L. R.

    2014-12-01

    Step-pools are important features in fluvial systems. Through energy dissipation, step-pools provide stability in high-energy environments that otherwise may erode and degrade. Although research has focused on geomorphological aspects of step-pool channels, the ecological significance of step-pool streams is increasingly recognized. Step-pool streams often contain higher density and diversity of benthic macroinvertebrates and are critical habitats for organisms such as salmonids and tailed frogs. Step-pools are therefore increasingly used to restore eroding channels and improve ecological conditions. This paper addresses a restoration reach of Wildcat Creek in Berkeley, California that featured an installation of step-pools in 2012. The design framework recognized step-pool formation as a self-organizing process that produces a rhythmic morphology. After placing step particles at locations where step-pools are expected to form according to hydraulic theory, the self-organizing approach allowed fluvial processes to refine the rocks into adjusted sequences over time. In addition, a 30-meter "experimental" reach was created to explore the co-evolution of geomorphological and ecological characteristics. After constructing a plane bed channel, boulders and cobbles piled at the upstream end allowed natural flows to mobilize and sort them into step-pool sequences. Ground surveys and LiDAR recorded the development of step-pool sequences over several seasons. Concurrent sampling of benthic macroinvertebrates documented the formation of biological communities in conjunction with habitat. Biological sampling in an upstream reference reach provided a comparison with the restored reach over time. Results to date show an emergent step-pool channel with steps that segment the plane bed into initial step and pool habitats. Biological communities are beginning to form, showing more distinction among habitat types during some seasons, although they do not yet approach reference

  8. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  9. Biological monitoring of exposure to tebuconazole in winegrowers.

    PubMed

    Fustinoni, Silvia; Mercadante, Rosa; Polledri, Elisa; Rubino, Federico Maria; Mandic-Rajcevic, Stefan; Vianello, Giorgio; Colosio, Claudio; Moretto, Angelo

    2014-11-01

    Tebuconazole (TEB) is a fungicide widely used in vineyards and is a suspected teratogen for humans. The aim of this research was to identify urinary biomarkers and the best sampling time for the biological monitoring of exposure to TEB in agricultural workers. Seven vineyard workers of the Monferrato region, Piedemont, Italy, were investigated for a total of 12 workdays. They treated the vineyards with TEB for 1-2 consecutive days, one of them for 3 days. During each application coveralls, underwears, hand washing liquids and head coverings were used to estimate dermal exposure. For biomonitoring, spot samples of urine from each individual were collected starting from 24 h before the first application, continuing during the application, and again after the application for about 48 h. TEB and its metabolites TEB-OH and TEB-COOH were measured by liquid chromatography/triple quadrupole mass spectrometry. TEB contamination of coveralls and total dermal exposure showed median levels of 6180 and 1020 μg. Urinary TEB-OH was the most abundant metabolite; its excretion rate peaked within 24 h after product application (post 24 h). In this time frame, median levels of TEB-OH and TEB-COOH ranged from 8.0 to 387.8 μg/l and from 5.7 to 102.9 μg/l, respectively, with a ratio between the two metabolites of about 3.5. The total amount of urinary metabolites (U-TEBeq) post 24 h was significantly correlated with both TEB on coveralls and total dermal exposure (Pearson's r=0.756 and 0.577). The amount of metabolites excreted in urine represented about 17% of total dermal TEB exposure. Our results suggest that TEB-OH and TEB-COOH in post-exposure urine samples are promising candidates for biomonitoring TEB exposure in agricultural workers.

  10. Assessing possible thermal rearing restrictions for juvenile coho salmon (Oncorhynchus kisutch) through thermal infrared imaging and in-stream monitoring, Redwood Creek, California

    USGS Publications Warehouse

    Madej, M.A.; Currens, C.; Ozaki, V.; Yee, J.; Anderson, D.G.

    2006-01-01

    We quantified patterns in stream temperature in a northern coastal California river using thermal infrared (TIR) imaging and in-stream monitoring and related temperature patterns to the historical and present distributions of juvenile coho salmon (Oncorhynchus kisutch). In Redwood Creek, California, water temperature increased from the headwaters to about 60 km downstream, then gradually decreased over the next 40 km as the river approaches the Pacific Ocean. Despite the lack of fish migration barriers, juvenile coho are currently only observed in the downstream-most 20 km, whereas historically they were found in 90 km of river channel. Maximum daily temperatures and duration of elevated stream temperatures were not significantly different in the headwater and downstream reaches but were significantly higher in the 50 km long intervening reach, where maximum weekly maximum temperatures ranged from 23 to 27??C. An increase in stream temperatures in the middle basin during the last three decades as a result of channel aggradation, widening, and the removal of large riparian conifers may play an important role in restricting juvenile coho to one-fifth of their historical range. ?? 2006 NRC.

  11. Campylobacter spp. distribution in biofilms on different surfaces in an agricultural watershed (Elk Creek, British Columbia): using biofilms to monitor for Campylobacter.

    PubMed

    Maal-Bared, Rasha; Bartlett, Karen H; Bowie, William R; Hall, Eric R

    2012-04-01

    Despite its relevance to public health, presence and concentrations of Campylobacter spp. in biofilms in natural aquatic environments has not been investigated. This study examined the occurrence of Campylobacter spp. in biofilms on a variety of surfaces (river rock, slate rock, wood, Lexan™, sandpaper, and sediment) and in water from December 2005 to December 2006 to find a substratum that facilitated campylobacters detection in natural aquatic environments. Samples were collected at four sites in an agricultural watershed (Elk Creek, British Columbia). Campylobacter spp. presence was determined using culturing methods. Correlations between chemical, physical and microbiological water quality parameters and Campylobacter spp. distribution on different surface types were also investigated. Campylobacter spp. had a prevalence of 13% in the wet season, but was not recovered in the dry season. Its prevalence was highest in sediment (27%), followed by slate rock (22%), Lexan and wood (13%), river rock (9%) and water (8%), respectively. No Campylobacter spp. was found in sandpaper biofilms. Several other criteria were used to assess substrata effectiveness, such as correlation amongst Campylobacter spp., indicator bacteria and water quality parameters, cost and availability of substratum, potential for standardizing substratum, ease of biofilm removal and probability of substratum loss in situ. Results show that sediment, slate rock or wood could be used as substrata for Campylobacter spp. monitoring. The study also highlights the potential use of nitrates and enterococci as faecal contamination indicators to protect public health.

  12. The Beaver Creek story

    USGS Publications Warehouse

    Doyle, W.H.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  13. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and

  14. 1. EAGLE CREEK RECREATION AREA, VIEW OF EAGLE CREEK TRAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAGLE CREEK RECREATION AREA, VIEW OF EAGLE CREEK TRAIL REGISTRY BOOTH. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  15. Intensive survey of the bay creek watershed, July 1992

    SciTech Connect

    Short, M.B.; Kelly, T.G.; Hefley, J.E.

    1995-05-01

    During July 1992, the Illinois Environmental Protection Agency conducted an intensive survey of the Bay Creek basin, a fifth order tributary in the Mississippi River North Central Basin. Bay Creek drains approximately 176.4 square miles primarily in Pike and a small portion of Calhoun counties. Four stations were sampled on the Bay Creek main stem and one on Honey Creek. The survey focused on macroinvertebrate communities, fish populations, instream habitat, fish tissue, sediment and water chemistry, and land use as well as a review of ambient water quality data from IEPA station KCA-01 near Nebo, Illinois, as tools to document the biological and chemical status of Bay Creek.

  16. Optimiziing the laboratory monitoring of biological wastewater-purification systems

    SciTech Connect

    S.V. Gerasimov

    2009-05-15

    Optimization of the laboratory monitoring of biochemical wastewater-treatment systems at coke plants is considered, for the example of OAO Koks. By adopting a methodological approach to determine the necessary data from chemical analysis, it is possible to reduce the time, labor, and materials required for monitoring, without impairing the purification process or compromising the plant's environmental policies.

  17. Biological indicators for monitoring water quality of MTF canals system

    NASA Technical Reports Server (NTRS)

    Sethi, S. L.

    1975-01-01

    Biological models, diversity indexes, were developed to predict environmental effects of NASA's Mississippi test facility (MTF) chemical operations on canal systems in the area. To predict the effects on local streams, a physical model of unpolluted streams was established. The model is fed by artesian well water free of background levels of pollutants. The species diversity and biota composition of unpolluted MTF stream was determined; resulting information will be used to form baseline data for future comparisons. Biological modeling was accomplished by adding controlled quantities or kinds of chemical pollutants and evaluating the effects of these chemicals on the biological life of the stream.

  18. Air monitoring and detection of chemical and biological agents

    SciTech Connect

    Leonelli, J.; Althouse, M.L.

    1999-06-01

    This volume contains the proceedings of SPIE`s remote sensing symposium which was held November 2--3, 1998 in Boston, Massachusetts. Topics of discussion include the following: system simulations, atmospheric modeling, and performance prediction studies of chemical warfare remote sensing technologies; ultraviolet laser-induced fluorescence and aerosol detection methods for remote sensing of biological warfare agents; passive detection methods for remote detection of chemical warfare agents; and lidar-based system performance assessments, demonstrations, and new concepts for chemical warfare/biological warfare detection.

  19. Water Quality Monitoring: An Environmental Studies Unit for Biology 20/30. Student Manual.

    ERIC Educational Resources Information Center

    Alberta Environment, Edmonton. Environmental Education Resources Branch.

    The objective of this environmental studies unit is to establish a water quality monitoring project for high school students in Alberta while simultaneously providing a unit which meets the objectives of the Biology 20 program (and which may also be used in Biology 10 and 30). Through this project, students assist in the collection,…

  20. Water Quality Monitoring: An Environmental Studies Unit for Biology 20/30. Teacher's Guide.

    ERIC Educational Resources Information Center

    Alberta Environment, Edmonton. Environmental Education Resources Branch.

    The objective of this environmental studies unit is to establish a water quality monitoring project for high school students in Alberta while simultaneously providing a unit which meets the objectives of the Biology 20 program (and which may also be used in Biology 10 and 30). Through this project, students assist in the collection,…

  1. TYPES, USES, AND LOCATIONS OF REAL-TIME BIOLOGICAL MONITORING IN EUROPE AND THE US

    EPA Science Inventory

    Many dffferent types of real-time biological monitoring (fish behavior and current, daphnid dynamic and toximeter, clam monitors, algae, and luminescent bacteria) have been used in several countries (Germany, Netherlands, France, England( and many locations in Europe. Only a few ...

  2. Sequential decision plans, benthic macroinvertebrates, and biological monitoring programs

    NASA Astrophysics Data System (ADS)

    Jackson, John K.; Resh, Vincent H.

    1989-07-01

    A common obstacle to the inclusion of benthic macroinvertebrates in water quality monitoring programs is that numerous sample units must be examined in order to distinguish between impacted and unimpacted conditions, which can add significantly to the total cost of a monitoring program. Sequential decision plans can be used to reduce this cost because the number of sample units needed to classify a site as impacted or unimpacted is reduced by an average of 50%. A plan is created using definitions of unimpacted and impacted conditions, a description of the mathematical distribution of the data, and definitions of acceptable risks of type I and II errors. The applicability of using sequential decision plans and benthic macroinvertebrates in water quality monitoring programs is illustrated with several examples (e.g., identifying moderate and extreme changes in species richness in response to acid mine drainage; assessing the impact of a crude oil contamination on the density of two benthic populations; monitoring the effect of geothermal effluents on species diversity). These examples use data conforming to the negative binomial, Poisson, and normal distributions and define impact as changes in population density, species richness, or species diversity based on empirical data or the economic feasibility of the sequential decision plan. All mathematical formulae and intermediate values are provided for the step-by-step calculation of each sequential decision plan.

  3. Validation of Procedures for Monitoring Crewmember Immune Function - Short Duration Biological Investigation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra

    2008-01-01

    Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.

  4. [Progress of environmental monitoring and biological containment system on genetically engineered microorganisms].

    PubMed

    Li, Qin; Wu, Yijun

    2008-03-01

    With the development of biological technology, many genetically engineered microorganisms (GEMs) for special purposes have been constructed and developed, but their practical applications in the field are still limited because GEMs may cause new environmental contaminations. To minimize the potential risks, the organisms released to environment need to be monitored and restricted for their distribution. In the laboratory conditions, the GEMs can be wiped off when required using some new biological technologies. The recent progress of research on the monitoring methods and active biological containment system for GEMs were reviewed in this paper.

  5. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2001.

    SciTech Connect

    Baxter, James S.; Baxter, Jeremy

    2002-03-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing.

  6. Innovative biological approaches for monitoring and improving water quality

    PubMed Central

    Aracic, Sanja; Manna, Sam; Petrovski, Steve; Wiltshire, Jennifer L.; Mann, Gülay; Franks, Ashley E.

    2015-01-01

    Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages. PMID:26322034

  7. Biological monitoring of IFN-β therapy in Multiple Sclerosis.

    PubMed

    Bertolotto, A; Granieri, L; Marnetto, F; Valentino, P; Sala, A; Capobianco, M; Malucchi, S; Di Sapio, A; Malentacchi, M; Matta, M; Caldano, M

    2015-04-01

    Multiple Sclerosis (MS) is a heterogeneous disease and a variable percentage of patients are non-responders to common treatment. Early diagnosis of non-responders allows change to a more useful therapy for the patient and better allocates a large amount of financial resources. Quantification of Neutralizing antibodies (Nabs) and of biological activity of IFN-β are recognized approaches to identify immuno-pharmacological non-responders. A consistent number of studies have demonstrated that quantification of Myxovirus-induced protein A (MxA) is a valid biomarker to detect immune-pharmacological non responders after one year of treatment. Persistent high titre of Nabs and absence of biological activity predict abolition of IFN-β effects in disease activity measured through MRI, number of relapses and disability. Guidelines and flow-charts including both Nabs and MxA quantification are presented.

  8. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    NASA Technical Reports Server (NTRS)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  9. Piezo impedance sensors to monitor degradation of biological structure

    NASA Astrophysics Data System (ADS)

    Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav

    2010-04-01

    In some countries it is common to have wooden structures in their homes, especially Japan. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Re-visiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood (green material) was accepted as excellent rehabilitation material, after any disaster. In recent times, the recycling materials extracted from inorganic, biodegradable wastes are converted into blocks or sheets, and are also used to assist public in rehabilitation camps. The key issue which decreases the life of these rehabilitated structure including green materials (like wood) is unnecessary degradation or deterioration over time due to insect or acid attack or rain/ice fall. The recycling material also needs monitoring to protect them against acid or rain/ice attacks. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was subjected to degradation in presence of acids. Variations in mass of plank are studied.

  10. The Effect of Landuse and Other External Factors on Water Quality Within two Creeks in Northern Kentucky

    NASA Astrophysics Data System (ADS)

    Boateng, S.

    2006-05-01

    The purpose of this study was to monitor the water quality in two creeks in Northern Kentucky. These are the Banklick Creek in Kenton County and the Woolper Creek in Boone County, Kentucky. The objective was to evaluate the effect of landuse and other external factors on surface water quality. Landuse within the Banklick watershed is industrial, forest and residential (urban) whereas that of Woolper Creek is agricultural and residential (rural). Two testing sites were selected along the Banklick Creek; one site was upstream the confluence with an overflow stream from an adjacent lake; the second site was downstream the confluence. Most of the drainage into the lake is over a near-by industrial park and the urban residential areas of the cities of Elsmere and Erlanger, Kentucky. Four sampling locations were selected within the Woolper Creek watershed to evaluate the effect of channelization and subsequent sedimentation on the health of the creek. Water quality parameters tested for include dissolved oxygen, phosphates, chlorophyll, total suspended sediments (TSS), pH, oxidation reduction potential (ORP), nitrates, and electrical conductivity. Sampling and testing were conducted weekly and also immediately after storm events that occurred before the regular sampling dates. Sampling and testing proceeded over a period of 29 weeks. Biological impact was determined, only in Woolper Creek watershed, by sampling benthic macroinvertebrates once every four weeks. The results showed significant differences in the water quality between the two sites within the Banklick Creek. The water quality may be affected by the stream overflow from the dammed lake. Also, channelization in the Woolper Creek seemed to have adverse effects on the water quality. A retention pond, constructed to prevent sediments from flowing into the Woolper Creek, did not seem to be effective. This is because the water quality downstream of the retention pond was significantly worse than that of the

  11. Wearable System for Acquisition and Monitoring of Biological Signals

    NASA Astrophysics Data System (ADS)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  12. System for monitoring an industrial or biological process

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  13. Environmental and biological monitoring of workers exposed to inorganic lead.

    PubMed

    De Medinilla, J; Espigares, M

    1991-01-01

    A total of 20 workers who were exposed to inorganic lead in two local firms (M and N) were studied. Lead concentrations in the air (PbA) at firm M exceeded the threshold limit value (TLV) of 0.150 mg/m3 established by Spanish and EC legislation, while atmospheric lead at firm N exceeded the action level of 0.075 mg/m3. In the same population, biological exposure indices (BEI) were also determined; these included lead in whole blood (PbB), erythrocyte activity of aminolevulinic acid (ALA-D), urinary excretion of aminolevulinic acid (ALA-U) and zinc protoporphyrin (ZPP). The relationship between the exposure parameters (PbA, PbB) and the biological activity indices (ALA-D, ALA-U, ZPP) were analysed statistically in order to obtain levels of significance, coefficients of correlation and regression equations. The high coefficients of correlation found confirm the usefulness of BEI in evaluating exposure to lead fumes and lead dust.

  14. Impedance based sensor technology to monitor stiffness of biological structures

    NASA Astrophysics Data System (ADS)

    Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kishore Kumar

    2010-04-01

    In countries like USA or Japan it is not so uncommon to have wooden structures in their homes. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Revisiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood is accepted as excellent rehabilitation material, after any disaster. The recycling materials extracted from in-organic, biodegradable wastes, also can be used for rehabilitation. The key issue which dampens the life of these rehabilitated structure including green materials (like wood) is unnecessary deposits (nails, screws, bolts etc)/damages due to insect attack. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was used to study changes due to metallic (steel nails) deposits at various locations. A study of weight deposits on aluminum plate was used for comparisons.

  15. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2000.

    SciTech Connect

    Baxter, James S.; Baxter, Jeremy

    2001-02-01

    An enumeration fence and traps were installed on Skookumchuck Creek from September 7 th to October 16 th to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 252 bull trout were sampled through the enumeration fence. Length, weight, and sex were determined for all but one of the 252 bull trout captured. In total, one fish of undetermined sex, 63 males and 188 females were processed through the fence. A total of 67 bull trout were observed on a snorkel survey prior to the fence being removed on October 16 th . Coupled with the fence count, the total bull trout count during this project was 319 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout, Rocky Mountain whitefish, kokanee, sucker, and Eastern brook trout. Redds were observed during ground surveys in three different locations (river km 27.5- 28.5, km 29-30, and km 24-25). The largest concentration of redds were noted in the upper two sections which have served as the index sections over the past four years. A total of 197 bull trout redds were enumerated on the ground on October 4 th . The majority of redds (n=189) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past four years. The additional 8 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Skookumchuck Creek at km 39.5, and Skookumchuck Creek at the fence site suggested that water temperatures were within the range preferred by bull trout for spawning, egg incubation, and rearing.

  16. Water-quality assessment of Cache Creek, Yolo, Lake, and Colusa counties, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Elliott, Ann L.

    1981-01-01

    Cache Creek and its tributaries from Clear Lake to Yolo Bypass have been the subject of quality and quantity of water studies by several governmental agencies since the early 1900's. Water-quality data from these studies showed that water in the basin is of good quality for most of the beneficial uses defined by the California State Water Resources Control Board. Concentrations of dissolved constituents are substantially higher in the water in the two largest tributaries than in Cache Creek. Seasonal variations in dissolved constituents are also greater in the tributaries than in Cache Creek. Clear Lake has a major effect on water quality, resulting in little seasonal fluctuation in water quality in Cache Creek. Excessive voron and suspended-sediment concentrations are the greatest water-quality problems, according to existing data. Both of these problems are from natural sources. Water-quality monitoring is presently being conducted monthly at four sites by the California Department of Water Resurces and at several other sites by other agencies. Modifications in current monitoring are proposed to gain further information on diel dissolved-oxygen cycles, pesticides, and biological constituents that may adversely affect beneficial uses. (USGS)

  17. [Medical and biologic monitoring of Aral region population health].

    PubMed

    Mutaihan, Zh M; Ibrayeva, L K; Batyrbekova, L S; Aleshina, N Yu; Smagulova, B Zh; Abitayev, D S; Atshabarova, S Sh

    2015-01-01

    The article covers data on health state in dwellers of Shiely settlement in Kyzylorda region, evaluation of therapeutic morbidity by organ systems among the examined population. Findings are that 92% of the examinees are assigned to a morbid group, according to medical and biologic studies. As per nosology classes: first place was occupied by urogenital diseases, second place--by digestive diseases, third place--by blood and hemogenesis disorders. Comparative analysis by sex revealed no differences in first two rank places (urogenital diseases in males 78.7%, in females - 77.2%; digestive diseases--72.3% and 74.4% respectively), third place was occupied by circulatory diseases (15.7%) in males and by blood and hemogenesis disorders (26.4%) in females.

  18. Biological monitoring of toxic metals - steel workers respiratory health survey

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Almeida, A. Bugalho de; Alves, L.; Freitas, M. C.; Moniz, D.; Alvarez, E.; Monteiro, P.; Reis, M.

    1999-04-01

    The aim of this work is to search for respiratory system aggressors to which workers are submitted in their labouring activity. Workers from one sector of a steel plant in Portugal, Siderurgia Nacional (SN), were selected according to the number of years of exposure and labouring characteristics. The work reports on blood elemental content alterations and lung function tests to determine an eventual bronchial hyper-reactivity. Aerosol samples collected permit an estimate of indoor air quality and airborne particulate matter characterisation to further check whether the elemental associations and alterations found in blood may derive from exposure. Blood and aerosol elemental composition was determined by PIXE and INAA. Respiratory affections were verified for 24% of the workers monitored. There are indications that the occurrence of affections can be associated with the total working years. The influence of long-term exposure, health status parameters, and lifestyle factors in blood elemental variations found was investigated.

  19. LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.

    2002-11-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.

  20. Baseline channel morphology and bank erosion inventory of South Fork Campbell Creek at Campbell Tract, Anchorage, Alaska, 1999 and 2000

    USGS Publications Warehouse

    Curran, Janet H.

    2001-01-01

    South Fork Campbell Creek drains largely undeveloped land in Anchorage, Alaska, but supports heavy use near the Bureau of Land Management (BLM) Campbell Tract facility for recreation and environmental education. To help assess the impacts of human activities in the basin on biological communities, particularly aquatic and terrestrial biota, morphological changes to the channel bed and banks were monitored for 2 years. Erosion conditions and rates of change were measured and 11 transects were surveyed in three reaches of Campbell Creek near the BLM Campbell Creek Science Center in 1999. Repeat measurements at these 33 transects in 2000 documented noticeable differences between horizontal or vertical channel position at eight transects. Repeat measurements of 51 erosion pins at the survey transects provided details of bank erosion between the 2 years. Annual erosion rates at the erosion pins ranged from 0.81 foot per year of erosion to 0.16 foot per year of deposition.

  1. Biological monitoring IX: Concomitant exposure to medications and industrial chemicals

    SciTech Connect

    Rosenberg, J.

    1994-05-01

    A significant proportion of workers may be receiving prescription or nonprescription medications. In two surveys, one in the United States and the other in the Netherlands, 15 to 30 percent of workers reported current use of pharmaceuticals. In a viscose rayon factory in Belgium, 31 percent of 129 workers exposed to carbon disulfide and 19.8 percent of 81 control workers from other factories reported use of some medication. Some of the drugs may affect the relationship between the external exposure (dose) of a chemical and the concentration of that chemical or its metabolite(s) in a sampled biological medium (internal dose), and/or the relationship between external exposure and concentration at a receptor site. They may also modulate the response of the receptor, as suggested by the increased reports of neurological symptoms in carbon disulfide-exposed workers taking certain medications. There are two obvious differences between drugs and industrial chemicals: (1) The effects of drugs cover a wider spectrum and include effects not known to be the result of any industrial chemicals. Examples include selective destructive inhibition of hepatic enzymes (monoamine oxidase inhibitors, indomethacin) and alteration of hepatic blood flow (adrenergic agents, cimetidine). (2) Drugs are administered to produce specific therapeutic effects. 18 refs., 1 tab.

  2. Toxicity testing and instream biological monitoring in evaluating municipal effluents

    SciTech Connect

    Krier, K.; Pontasch, K.

    1995-12-31

    Twelve streams receiving municipal wastewater treatment plant effluents were evaluated in riffle areas above and below the outfall using the Environmental Protection Agency`s Rapid Bioassessment Protocols (RBPs) for benthic macroinvertebrates. Eight of the sites evaluated using RBP 1 exhibited stream health in the downstream riffles equaling or exceeding the upstream riffles. RBP 1 results suggested possible impacts at the remaining four sites, and these sites were more intensely evaluated using RBPs 2 and 3, acute effluent toxicity tests with Daphnia magna, and quantification of periphytic chlorophyll a and ash free dry weight (AFDW). Results from RBP 2 indicated three of the four sites evaluated have similar taxonomic richness above and below the outfall, while one site is heavily impacted by organic pollutants. Toxicity tests with 100% effluent resulted in no mortality with any of the four effluents tested. Relative to the respective upstream sites, chlorophyll a was significantly increased at one downstream site and significantly reduced at another. AFDW was similar above and below the outfalls in all streams. These results suggest that laboratory toxicity tests may not always be adequate predictors of instream biological effects.

  3. Development and investigation of MOEMS type displacement-pressure sensor for biological information monitoring

    NASA Astrophysics Data System (ADS)

    Ostasevicius, Vytautas; Malinauskas, Karolis; Janusas, Giedrius; Palevicius, Arvydas; Cekas, Elingas

    2016-04-01

    The aim of this paper is to develop and investigate MOEMS displacement-pressure sensor for biological information monitoring. Developing computational periodical microstructure models using COMSOL Multiphysics modeling software for modal and shape analysis and implementation of these results for design MOEMS displacement-pressure sensor for biological information monitoring was performed. The micro manufacturing technology of periodical microstructure having good diffraction efficiency was proposed. Experimental setup for characterisation of optical properties of periodical microstructure used for design of displacement-pressure sensor was created. Pulsating human artery dynamic characteristics in this paper were analysed.

  4. Biological monitoring of occupational exposure to lead with a zinc protoporphyrin (ZPP) meter.

    PubMed

    Mets, J T

    1981-12-05

    Recent literature dealing with biological monitoring of people exposed to lead at work is reviewed. The widespread trend to regard lower levels of lead in air or in the blood of workers as acceptable or as recommended upper limits is discussed. Based on practical experience over a 6-month period, it is concluded that the zinc protoporphyrin (ZPP) test is an adequate, convenient and inexpensive screening method for monitoring workers exposed to lead in a motor care manufacturing plant.

  5. Effects of wastewater effluent discharge on stream quality in Indian Creek, Johnson County, Kansas

    USGS Publications Warehouse

    Graham, Jennifer L.; Foster, Guy M.

    2014-01-01

    Contaminants from point and other urban sources affect stream quality in Indian Creek, which is one of the most urban drainage basins in Johnson County, Kansas. The Johnson County Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities discharge to Indian Creek. Data collected by the U.S. Geological Survey, in cooperation with Johnson County Wastewater, during June 2004 through June 2013 were used to evaluate stream quality in Indian Creek. This fact sheet summarizes the effects of wastewater effluent discharge on physical, chemical, and biological conditions in Indian Creek downstream from the Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities.

  6. Characterization of Fish Creek, Teton County, Wyoming, 2004-08

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.

    2010-01-01

    Fish Creek, a tributary to the Snake River, is about 15 river miles long and is located in Teton County in western Wyoming near the town of Wilson (fig. 1). Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address this concern, the U.S. Geological Survey, in cooperation with the Teton Conservation District, began studying Fish Creek in 2004 to describe the hydrology of the creek and later (2007?08) to characterize the water quality and the biological communities. The purpose of this fact sheet is to summarize the study results from 2004 to 2008.

  7. Multichannel seismic/oceanographic/biological monitoring of the oceans

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Leymarie, E.; Ogé, A.; Poteau, A.; Argentino, J.; Sukhovich, A.; Claustre, H.; Nolet, G.

    2011-12-01

    Delays in seismic P wave are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions. Free-drifting profiling floats that measure the temperature, salinity and current of the upper 2000 m of the ocean are used by physical oceanographers for continuous monitoring in the Argo program. Recently, seismologists developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. In project Globalseis, financed by a grant from the European Research Council (ERC), we have developed and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers' is approaching its final design and should become available off the shelf in 2012. In the meantime we initiated a collaboration between Globalseis and another ERC project, remOcean, for the acquisition of radiometric, bio-geochemical data and meteorological observations in addition to salinity and temperature (Bio-Argo program). In this collaboration of Geoazur and LOV (Laboratoire d'Océanologie de Villefranche sur mer), two laboratories located at the Observatory of Villefranche, we developed a multichannel acquisition hardware electronics called 'PAYLOAD' that allows commercial floats such as Apex (TWR) and Provor (NKE) to serve multiple observing missions simultaneously. Based on an algorithm using wavelet transforms PAYLOAD continuously analyzes acoustic signals to detect major seismic events and weather phenomena such rain, drizzle, open sea and ice during drift diving phase. The bio-geochemical and other parameters are recorded and analyzed during ascent

  8. Smart interactive electronic system for monitoring the electromagnetic activities of biological systems

    NASA Astrophysics Data System (ADS)

    Popa, Sorin G.; Shahinpoor, Mohsen

    2001-08-01

    A novel electronic device capable of sensing and monitoring the myoelectric, polarization wave and electromagnetic activities of the biological systems and in particular the human body is presented. It is known that all the physical and chemical processes within biological systems are associated with polarization, depolarization waves from the brain, neural signals and myoelectric processes that manifest themselves in ionic and dipole motion. The technology developed in our laboratory is based on certain charge motion sensitive electronics. The electronic system developed is capable of sensing the electromagnetic activities of biological systems. The information obtained is then processed by specialized software in order to interpret it from physical and chemical point of view.

  9. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods.

    PubMed

    Creely, K S; Hughson, G W; Cocker, J; Jones, K

    2006-08-01

    Isocyanates, as a chemical group, are considered to be the biggest cause of occupational asthma in the UK. Monitoring of airborne exposures to total isocyanate is costly, requiring considerable expertise, both in terms of sample collection and chemical analysis and cannot be used to assess the effectiveness of protection from wearing respiratory protective equipment (RPE). Biological monitoring by analysis of metabolites in urine can be a relatively simple and inexpensive way to assess exposure to isocyanates. It may also be a useful way to evaluate the effectiveness of control measures in place. In this study biological and inhalation monitoring were undertaken to assess exposure in a variety of workplaces in the non-motor vehicle repair sector. Companies selected to participate in the survey included only those judged to be using good working practices when using isocyanate formulations. This included companies that used isocyanates to produce moulded polyurethane products, insulation material and those involved in industrial painting. Air samples were collected by personal monitoring and were analysed for total isocyanate content. Urine samples were collected soon after exposure and analysed for the metabolites of different isocyanate species, allowing calculation of the total metabolite concentration. Details of the control measures used and observed contamination of exposed skin were also recorded. A total of 21 companies agreed to participate in the study, with exposure measurements being collected from 22 sites. The airborne isocyanate concentrations were generally very low (range 0.0005-0.066 mg m(-3)). A total of 50 of the 70 samples were <0.001 mg m(-3), the limit of quantification (LOQ), therefore samples below the LOQ were assigned a value of 1/2 LOQ (0.0005 mg m(-3)). Of the 70 samples, 67 were below the current workplace exposure limit of 0.02 mg m(-3). The highest inhalation exposures occurred during spray painting activities in a truck manufacturing

  10. Y-12 Groundwater Protection Program Calendar Year 2000 Groundwater Monitoring Data Evaluation Report for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2001-09-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained during calendar year (CY) 2000 in the Bear Creek Hydrogeologic Regime (Bear Creek Regime). The Bear Creek Regime encompasses many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee (Figure A.1). Prepared by the Y-12 Groundwater Protection Program (GWPP), this report addresses applicable provisions of DOE Order 5400.1 (General Environmental Protection Program) that require: (1) an evaluation of the quantity and quality of groundwater and surface water in areas that are, or could be, affected by Y-12 operations, (2) an evaluation of groundwater and surface water quality in areas where contaminants from Y-12 operations are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) an evaluation of long-term trends in groundwater quality at Y-12. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1 (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). Illustrations (maps and trend graphs) are presented in Appendix A. Brief data summary tables referenced in each section are contained within the sections. Supplemental information and extensive data tables are provided in Appendix B.

  11. Employing spatial information technologies to monitor biological control of saltcedar in West Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The saltcedar leaf beetle (Diorhadha spp.) has shown promise as a biocontrol agent for saltcedar (Tamarix spp.) invasions in the United States. In Texas, natural resource managers need assistance in monitoring biological control of invasive saltcedars. This study describes application of a medium fo...

  12. Glossary (for Measuring and Monitoring Biological Diversity: Standard Methods for Fungi)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 300 technical terms and 250 diagrammatic sketches and illustrations are provided for the Smithsonian Institution methods book, ‘Measuring and Monitoring Biological Diversity: Standard Methods for Fungi.’ Technical terms focus on traditional morphotaxonomy, ecology, and pathology. Als...

  13. EVALUATION OF REAL-TIME INNOVATIVE BIOLOGICAL AND CHEMICAL MONITORING SYSTEMS TO PROTECT SOURCE WATERS

    EPA Science Inventory

    Evaluation of Real-Time Innovative Biological and Chemical Monitoring Systems
    To Protect Source Waters

    Drinking water supplies have in recent years come under increasing pressure from regulatory concerns regarding TMDL designations and restoration strategies as well ...

  14. A simple convenient biological dosimeter for monitoring solar UV-B radiation

    SciTech Connect

    Wang, T.C. )

    1991-05-31

    The use of dry Bacillus subtilis spores as a biological dosimeter for the monitoring of solar UV-B (290-330 nm) radiation was described. Our field tests had supported the utility of this dosimeter as a reproducible and reliable sunlight dosimeter.

  15. Proposal for a biological environmental monitoring approach to be used in libraries and archives.

    PubMed

    Pasquarella, Cesira; Saccani, Elisa; Sansebastiano, Giuliano Ezio; Ugolotti, Manuela; Pasquariello, Giovanna; Albertini, Roberto

    2012-01-01

    In cultural-heritage-related indoor environments, biological particles represent a hazard not only for cultural property, but also for operators and visitors. Reliable environmental monitoring methods are essential for examining each situation and assessing the effectiveness of preventive measures. We propose an integrated approach to the study of biological pollution in indoor environments such as libraries and archives. This approach includes microbial air and surface sampling, as well as an investigation of allergens and pollens. Part of this monitoring plan has been applied at the Palatina Library in Parma, Italy. However, wider collections of data are needed to fully understand the phenomena related with biological contamination, define reliable contamination threshold values, and implement appropriate preventive measures.

  16. Dark-cycle monitoring of biological subjects on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chuang, Sherry; Mian, Arshad

    1992-01-01

    The operational environment for biological research on Space Station Freedom will incorporate video technology for monitoring plant and animal subjects. The video coverage must include dark-cycle monitoring because early experiments will use rodents that are nocturnal and therefore most active during the dark part of the daily cycle. Scientific requirements for monitoring during the dark cycle are exacting. Infrared (IR) or near-IR sensors are required. The trade-offs between these two types of sensors are based on engineering constraints, sensitivity spectra, and the quality of imagery possible from each type. This paper presents results of a study conducted by the Biological Flight Research Projects Office in conjunction with the Spacecraft Data Systems Branch at ARC to investigate the use of charged-coupled-device and IR cameras to meet the scientific requirements. Also examined is the effect of low levels of near-IR illumination on the circadian rhythm in rats.

  17. Benefits of a Biological Monitoring Program for Assessing Remediation Performance and Long-Term Stewardship - 12272

    SciTech Connect

    Peterson, Mark

    2012-07-01

    The Biological Monitoring and Abatement Program (BMAP) is a long-running program that was designed to evaluate biological conditions and trends in waters downstream of Department of Energy (DOE) facilities in Oak Ridge, Tennessee. BMAP monitoring has focused on aquatic pathways from sources to biota, which is consistent with the sites' clean water regulatory focus and the overall cleanup strategy which divided remediation areas into watershed administrative units. Specific programmatic goals include evaluating operational and legacy impacts to nearby streams and the effectiveness of implemented remediation strategies at the sites. The program is characterized by consistent, long-term sampling and analysis methods in a multidisciplinary and quantitative framework. Quantitative sampling has shown conclusively that at most Oak Ridge stream sites, fish and aquatic macro-invertebrate communities have improved considerably since the 1980s. Monitoring of mercury and PCBs in fish has shown that remedial and abatement actions have also improved stream conditions, although in some cases biological monitoring suggests further actions are needed. Follow-up investigations have been implemented by BMAP to identify sources or causes, consistent with an adaptive management approach. Biological monitoring results to date have not only been used to assess regulatory compliance, but have provided additional benefits in helping address other components of the DOE's mission, including facility operations, natural resource, and scientific goals. As a result the program has become a key measure of long-term trends in environmental conditions and of high value to the Oak Ridge environmental management community, regulators, and the public. Some of the BMAP lessons learned may be of value in the design, implementation, and application of other long-term monitoring and stewardship programs, and assist environmental managers in the assessment and prediction of the effectiveness of remedial

  18. A review of surface wipe sampling compared to biologic monitoring for occupational exposure to antineoplastic drugs.

    PubMed

    Kibby, Thomas

    2017-03-01

    The potential for adverse health effects from occupational exposure to antineoplastic drugs (AD) is well known. Control measures recommended by the NIOSH Alert ([3]) include medical and biologic monitoring, and environmental monitoring where available. At present no guidelines or published best practices exist to guide EHS managers on how to carry out this biologic or environmental monitoring. Studies investigating surface wipe sampling for AD have been numerous in the past decade, but very limited research exists to correlate surface contamination with actual absorption by pharmacists and nurses. This article reviews the studies with concurrent surface wipe sampling and urine monitoring for the same AD, and tests their correlation. Methodologic limitations are reviewed. Twenty-one studies were identified that concurrently measured surface contamination by AD by wipe sampling and AD absorption by urine monitoring. Two studies directly evaluated the AD by wipe sampling and urine levels and neither found a statistically significant correlation. Six studies reported a decrease in both surface and urine levels following interventions to reduce contamination or exposure. Only one study directly evaluated the personal protective equipment and handling techniques employed by the studied workers, which can be viewed as a major confounder of absorption. While no statistically significant correlation was found between wipe sampling and urine monitoring for AD, decreases in urine and wipe levels following interventions to reduce exposure were noted. Limitations in the data and recommendations for future research are reviewed.

  19. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA; FOR CALENDAR YEAR 2005

    SciTech Connect

    2006-04-01

    Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U. S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites CAS 58-09-02, Mud Pit and 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits 9, an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action. Quarterly post-closure inspections are performed at the CASs that were closed in place at UC-I, UC-3, and UC-4. During calendar year 2005, site inspections were performed on March 15, June 16, September 22, and December 7. The inspections conducted at the UC-1 CMP documented that the site was in good condition and continued to show integrity of the cover unit. No new cracks or fractures were observed until the December inspection. A crack on the west portion of the cover showed evidence of lateral expansion; however, it is not at an actionable level. The crack will be sealed by filling with

  20. Chemical and biological conditions in Bald Eagle Creek and prognosis of trophic characteristics of Foster Joseph Sayers Reservoir, Centre County, Pennsylvania

    USGS Publications Warehouse

    Flippo, Herbert N.

    1970-01-01

    Foster Joseph Sayers. Reservoir will b.e impounded on moderately fertile soils; however, its water source, Bald Eagle Creek, is a bicarbonate-water stream that is over~y-enriched with nutrients. About 650 of the 1,730 acres to be inundated in summer are subject to infestation with aquatic weeds. Nuisance algal "blooms" are expected to occur in summer. The reservoir will stratify in early summer and water · releas·ed for conservation purposes and acid neutralization will consist mostly of hypolimnetic water. This water will be nearly depleted in. dissolved oxygen and will, at times, contain relatively high concentrations of heavy metallic ions and hydrogen:!sulfide.

  1. Year-Round Monitoring of Contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and Assessment of Risks to Salmonids.

    PubMed

    Hapke, Whitney B; Morace, Jennifer L; Nilsen, Elena B; Alvarez, David A; Masterson, Kevin

    2016-01-01

    Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011-Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin's streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July-Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding

  2. Year-Round Monitoring of Contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and Assessment of Risks to Salmonids

    PubMed Central

    Hapke, Whitney B.; Morace, Jennifer L.; Nilsen, Elena B.; Alvarez, David A.; Masterson, Kevin

    2016-01-01

    Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011–Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin’s streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July–Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or

  3. Year-round monitoring of contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and assessment of risks to salmonids

    USGS Publications Warehouse

    Temple, Whitney B.; Morace, Jennifer L.; Nilsen, Elena B.; Alvarez, David; Masterson, Kevin

    2016-01-01

    Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011–Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin’s streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July–Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or

  4. Enhanced Gaussia luciferase blood assay for monitoring of in vivo biological processes.

    PubMed

    Bovenberg, M Sarah S; Degeling, M Hannah; Tannous, Bakhos A

    2012-01-17

    Secreted Gaussia luciferase (Gluc) has been shown to be a useful tool for ex vivo monitoring of in vivo biological processes. The Gluc level in the blood was used to detect tumor growth, metastasis and response to therapy, gene transfer, and circulating cells viability, as well as transcription factors activation, complementing in vivo bioluminescence imaging. The sensitivity of the Gluc blood assay is limited due to the absorption of blue light by pigmented molecules such as hemoglobin, resulting in quenching of the signal and therefore lower sensitivity. To overcome this problem, we designed an alternative microtiter well-based binding assay in which Gluc is captured first from blood using a specific antibody followed by the addition of coelenterazine and signal acquisition using a luminometer. This assay showed to be over 1 order of magnitude more sensitive in detecting Gluc in the blood as compared to the direct Gluc blood assay enhancing ex vivo monitoring of biological processes.

  5. Application of thermal desorption to the biological monitoring of organic compounds in exhaled breath.

    PubMed

    Periago, J F; Prado, C; Ibarra, I; Tortosa, J

    1993-12-24

    We have developed a thermal desorption-gas chromatographic method for the analysis of organic compounds in exhaled breath air, to be used in the biological monitoring of environmental exposure. The exhaled breath sampler is based on the concentration of compounds present in alveolar air in a solid sorbent material. Isoflurane (1-chloro-2,2,2-trifluoroethyl-difluoromethyl-ether), an inhaled anaesthetic used widely in surgery, and styrene, used in boat construction and the manufacture of fibreglass-reinforced plastics, are partially eliminated from the body in exhaled breath, samples of which can therefore be used to monitor biological exposure to these two organic compounds. Recoveries were tested in controlled atmospheres of isoflurane or styrene, with Chromosorb 106 or Tenax, respectively, as the adsorbent. We also investigated the influence of relative humidity, an important factor in breath sampling, on adsorption.

  6. Variability in biological monitoring of solvent exposure. I. Development of a population physiological model.

    PubMed Central

    Droz, P O; Wu, M M; Cumberland, W G; Berode, M

    1989-01-01

    Biological indicators of exposure to solvents are often characterised by a high variability that may be due either to fluctuations in exposure or individual differences in the workers. To describe and understand this variability better a physiological model for differing workers under variable industrial environments has been developed. Standard statistical distributions are used to simulate variability in exposure concentration, physical workload, body build, liver function, and renal clearance. For groups of workers exposed daily, the model calculates air monitoring indicators and biological monitoring results (expired air, blood, and urine). The results obtained are discussed and compared with measured data, both physiological (body build, cardiac output, alveolar ventilation) and toxicokinetic for six solvents: 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, benzene, toluene, styrene, and their main metabolites. Possible applications of this population physiological model are presented. PMID:2765418

  7. Passive acoustic monitoring of biological activity on coral reefs and in nearby waters

    NASA Astrophysics Data System (ADS)

    Lammers, Marc O.; Mooney, T. Aran; Brainard, Russell E.; Au, Whitlow W. L.

    2005-09-01

    Monitoring the changing state of coral reef habitats is a challenging task that is exacerbated when the reefs in question are in remote locations. Physical sensors provide a wide range of measurements of local environmental variables, but do not give an indication of biological activity. The preliminary findings of an effort to use the ambient sound field as a means of characterizing and monitoring biological activity on coral reefs and surrounding waters are reported. Moored recording systems were developed to sample the sound field of reefs on Oahu, Hawaii for 1-min periods, at 30-min intervals, for 10 days at a time. Snapping shrimp produce the dominant acoustic energy on the reefs examined and exhibit clear diel acoustic trends. Peaks in activity consistently occur during crepuscular periods. At frequencies below 2 kHz, many fish sounds occur, which also exhibit distinct temporal variability. Cetacean sounds are also common, indicating the occurrence of an apex predator in the area. Many sounds can be detected automatically, making the examination of the sound field an efficient means of tracking acoustically active species. The results indicate that acoustic monitoring may be an effective means of tracking biological activity at locations where traditional surveys are impractical.

  8. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  9. Partridge Creek Diversion Project

    EPA Pesticide Factsheets

    Goal: prevent mercury contamination by keeping the creek from flowing through a mine pit. The project improved brook trout habitat, green infrastructure, the local economy, and decreased human health risks. Includes before-and-after photos.

  10. Yucca Mountain Biological Resources Monitoring Program; Progress report, October 1992--December 1993

    SciTech Connect

    1994-05-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) from October 1992 through December 1993 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  11. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events

    PubMed Central

    Saylor, Rachel A.; Lunte, Susan M.

    2015-01-01

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods yields along with selective detection methods yields a “separation-based sensor” capable of monitoring multiple analytes in near real time. Analysis of microdialysis samples requires techniques that are fast (<1 min), have low volume requirements (nL–pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011

  12. Yucca Mountain Biological resources monitoring program; Annual report FY89 and FY90

    SciTech Connect

    1991-01-01

    The US Department of Energy (US DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geological repository for high-level radioactive waste. To ensure site characterization activities do not adversely affect the Yucca Mountain area, an environmental program, the Yucca Mountain Biological Resources Monitoring Program, has been implemented monitor and mitigate environmental impacts and to ensure activities comply with applicable environmental laws. Potential impacts to vegetation, small mammals, and the desert tortoise (an indigenous threatened species) are addressed, as are habitat reclamation, radiological monitoring, and compilation of baseline data. This report describes the program in Fiscal Years 1989 and 1990. 12 refs., 4 figs., 17 tabs. (MHB)

  13. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    SciTech Connect

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.

  14. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1997

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997.

  15. Remote humidity and temperature real time monitoring system for studying seed biology

    NASA Astrophysics Data System (ADS)

    Balachandran, Thiruparan

    This thesis discusses the design, prototyping, and testing of a remote monitoring system that is used to study the biology of seeds under various controlled conditions. Seed scientists use air-tight boxes to maintain relative humidity, which influences seed longevity and seed dormancy break. The common practice is the use of super-saturated solutions either with different chemicals or different concentrations of LiCl to create various relative humidity. Theretofore, no known system has been developed to remotely monitor the environmental conditions inside these boxes in real time. This thesis discusses the development of a remote monitoring system that can be used to accurately monitor and measure the relative humidity and temperature inside sealed boxes for the study of seed biology. The system allows the remote and real-time monitoring of these two parameters in five boxes with different conditions. It functions as a client that is connected to the internet using Wireless Fidelity (Wi-Fi) technology while Google spreadsheet is used as the server for uploading and plotting the data. This system directly gets connected to the Google sever through Wi-Fi and uploads the sensors' values in a Google spread sheet. Application-specific software is created and the user can monitor the data in real time and/or download the data into Excel for further analyses. Using Google drive app the data can be viewed using a smart phone or a tablet. Furthermore, an electronic mail (e-mail) alert is also integrated into the system. Whenever measured values go beyond the threshold values, the user will receive an e-mail alert.

  16. Comparability among four invertebrate sampling methods, Fountain Creek Basin, Colorado, 2010-2012

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Stogner, Robert W.; Brown, Krystal D.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs City Engineering and Colorado Springs Utilities, designed a study to determine if sampling method and sample timing resulted in comparable samples and assessments of biological condition. To accomplish this task, annual invertebrate samples were collected concurrently using four sampling methods at 15 U.S. Geological Survey streamflow gages in the Fountain Creek basin from 2010 to 2012. Collectively, the four methods are used by local (U.S. Geological Survey cooperative monitoring program) and State monitoring programs (Colorado Department of Public Health and Environment) in the Fountain Creek basin to produce two distinct sample types for each program that target single-and multiple-habitats. This study found distinguishable differences between single-and multi-habitat sample types using both community similarities and multi-metric index values, while methods from each program within sample type were comparable. This indicates that the Colorado Department of Public Health and Environment methods were compatible with the cooperative monitoring program methods within multi-and single-habitat sample types. Comparisons between September and October samples found distinguishable differences based on community similarities for both sample types, whereas only differences were found for single-habitat samples when multi-metric index values were considered. At one site, differences between September and October index values from single-habitat samples resulted in opposing assessments of biological condition. Direct application of the results to inform the revision of the existing Fountain Creek basin U.S. Geological Survey cooperative monitoring program are discussed.

  17. Integrated assessment of oil pollution using biological monitoring and chemical fingerprinting.

    PubMed

    Lewis, Ceri; Guitart, Carlos; Pook, Chris; Scarlett, Alan; Readman, James W; Galloway, Tamara S

    2010-06-01

    A full assessment of the impact of oil and chemical spills at sea requires the identification of both the polluting chemicals and the biological effects they cause. Here, a combination of chemical fingerprinting of surface oils, tissue residue analysis, and biological effects measures was used to explore the relationship between spilled oil and biological impact following the grounding of the MSC Napoli container ship in Lyme Bay, England in January 2007. Initially, oil contamination remained restricted to a surface slick in the vicinity of the wreck, and there was no chemical evidence to link biological impairment of animals (the common limpet, Patella vulgata) on the shore adjacent to the oil spill. Secondary oil contamination associated with salvage activities in July 2007 was also assessed. Chemical analyses of aliphatic hydrocarbons and terpanes in shell swabs taken from limpet shells provided an unequivocal match with the fuel oil carried by the ship. Corresponding chemical analysis of limpet tissues revealed increased concentrations of polycyclic aromatic hydrocarbons (PAHs) dominated by phenanthrene and C1 to C3 phenanthrenes with smaller contributions from heavier molecular weight PAHs. Concurrent ecotoxicological tests indicated impairment of cellular viability (p < 0.001), reduced immune function (p < 0.001), and damage to DNA (Comet assay, p < 0.001) in these animals, whereas antioxidant defenses were elevated relative to un-oiled animals. These results illustrate the value of combining biological monitoring with chemical fingerprinting for the rapid identification of spilled oils and their sublethal impacts on biota in situ.

  18. A smart health monitoring chair for nonintrusive measurement of biological signals.

    PubMed

    Baek, Hyun Jae; Chung, Gih Sung; Kim, Ko Keun; Park, Kwang Suk

    2012-01-01

    We developed nonintrusive methods for simultaneous electrocardiogram, photoplethysmogram, and ballistocardiogram measurements that do not require direct contact between instruments and bare skin. These methods were applied to the design of a diagnostic chair for unconstrained heart rate and blood pressure monitoring purposes. Our methods were operationalized through capacitively coupled electrodes installed in the chair back that include high-input impedance amplifiers, and conductive textiles installed in the seat for capacitive driven-right-leg circuit configuration that is capable of recording electrocardiogram information through clothing. Photoplethysmograms were measured through clothing using seat mounted sensors with specially designed amplifier circuits that vary in light intensity according to clothing type. Ballistocardiograms were recorded using a film type transducer material, polyvinylidenefluoride (PVDF), which was installed beneath the seat cover. By simultaneously measuring signals, beat-to-beat heart rates could be monitored even when electrocardiograms were not recorded due to movement artifacts. Beat-to-beat blood pressure was also monitored using unconstrained measurements of pulse arrival time and other physiological parameters, and our experimental results indicated that the estimated blood pressure tended to coincide with actual blood pressure measurements. This study demonstrates the feasibility of our method and device for biological signal monitoring through clothing for unconstrained long-term daily health monitoring that does not require user awareness and is not limited by physical activity.

  19. Bi-Fi: an embedded sensor/system architecture for REMOTE biological monitoring.

    PubMed

    Farshchi, Shahin; Pesterev, Aleksey; Nuyujukian, Paul H; Mody, Istvan; Judy, Jack W

    2007-11-01

    Wireless-enabled processor modules intended for communicating low-frequency phenomena (i.e., temperature, humidity, and ambient light) have been enabled to acquire and transmit multiple biological signals in real time, which has been achieved by using computationally efficient data acquisition, filtering, and compression algorithms, and interfacing the modules with biological interface hardware. The sensor modules can acquire and transmit raw biological signals at a rate of 32 kb/s, which is near the hardware limit of the modules. Furthermore, onboard signal processing enables one channel, sampled at a rate of 4000 samples/s at 12-bit resolution, to be compressed via adaptive differential-pulse-code modulation (ADPCM) and transmitted in real time. In addition, the sensors can be configured to filter and transmit individual time-referenced "spike" waveforms, or to transmit the spike height and width for alleviating network traffic and increasing battery life. The system is capable of acquiring eight channels of analog signals as well as data via an asynchronous serial connection. A back-end server archives the biological data received via networked gateway sensors, and hosts them to a client application that enables users to browse recorded data. The system also acquires, filters, and transmits oxygen saturation and pulse rate via a commercial-off-the-shelf interface board. The system architecture can be configured for performing real-time nonobtrusive biological monitoring of humans or rodents. This paper demonstrates that low-power, computational, and bandwidth-constrained wireless-enabled platforms can indeed be leveraged for wireless biosignal monitoring.

  20. Biological monitoring to determine worker dose in a butadiene processing plant

    SciTech Connect

    Bechtold, W.E.; Hayes, R.B.

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  1. Biological monitoring of iodine, a water disinfectant for long-term space missions

    NASA Technical Reports Server (NTRS)

    Zareba, G.; Cernichiari, E.; Goldsmith, L. A.; Clarkson, T. W.

    1995-01-01

    In order to establish guidelines for exposure of astronauts to iodine, used as a water disinfectant in space, we studied the usefulness of hair, saliva, and urine for biological monitoring in humans and in the human hair/nude mouse model. The monitoring of iodine in patients that received 150 mCi of Na131I (carrier-free) showed similar patterns of elimination for blood, saliva, and urine. The mean correlation coefficient (r) between iodine elimination for blood/saliva was 0.99, for blood/urine, 0.95, and for saliva/urine, 0.97. The absolute value of iodine concentrations in urine revealed marked variability, which was corrected by adjusting for creatinine levels. The autoradiographic studies of human hair demonstrated that iodine is rapidly incorporated into external layers of the hair root and can be removed easily during washing. These data were confirmed after iodine exposure using the human hair/nude mouse model. Hair does not provide satisfactory information about exposure due to unstable incorporation of iodine. The most useful medium for biological monitoring of astronauts exposed to high doses of iodine in drinking water is urine, when adjusted for creatinine, and saliva, if quantitative evaluation of flow rate is provided.

  2. Challenges of diatom-based biological monitoring and assessment of streams in developing countries.

    PubMed

    Bere, Taurai

    2016-03-01

    Stream biomonitoring tools are largely lacking for many developing countries, resulting in adoption of tools developed from other countries/regions. In many instances, however, the applicability of adopted tools to the new system has not been explicitly evaluated. The objective of this study was to test the applicability of foreign diatom-based water quality assessment indices to streams in Zimbabwe, with the view to highlight challenges being faced in diatom-based biological monitoring in this developing country. The study evaluated the relationship between measured water quality variables and diatom index scores and observed some degree of concordance between water quality variables and diatom index scores emphasising the importance of diatom indices in characterisation and monitoring of stream ecological conditions in developing countries. However, ecological requirements of some diatom species need to be clarified and incorporated in a diatom-based water quality assessment protocol unique to these regions. Resources should be channelled towards tackling challenges associated with diatom-based biological monitoring, principally taxonomic studies, training of skilled labour and acquiring and maintaining the necessary infrastructure. Meanwhile, simpler coarse taxonomy-based rapid bioassessment protocol, which is less time and resource consuming and requires less specialised manpower, can be developed for the country.

  3. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project Final Report 2000-2002.

    SciTech Connect

    Baxter, Jeremy; Baxter, James S.

    2002-12-01

    This report summarizes the third and final year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. The fence and traps were operated from September 6th to October 11th 2002 in order to enumerate post-spawning bull trout. During the study period a total of 309 bull trout were captured at the fence. In total, 16 fish of undetermined sex, 114 males and 179 females were processed at the fence. Length and weight data, as well as recapture information, were collected for these fish. An additional 41 bull trout were enumerated upstream of the fence by snorkeling prior to fence removal. Coupled with the fence count, the total bull trout enumerated during the project was 350 individuals. Several fish that were tagged in the lower Bull River were recaptured in 2002, as were repeat and alternate year spawners previously enumerated in past years at the fence. A total of 149 bull trout redds were enumerated on the ground in 2002, of which 143 were in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past six years. The results of the three year project are summarized, and population characteristics are discussed.

  4. Clarification of the Use of Biological Data and Information in the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance

    EPA Pesticide Factsheets

    The memorandum modifies the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance to provide clarity and promote consistency in the manner in which states use biological data and information in developing their 2002 submissions.

  5. Development of a strategy for biological monitoring in a chemical plant producing 3,3'-dichlorobenzidine dihydrochloride.

    PubMed

    Knoell, Kristian F; Will, Norbert; Leng, Gabriele; Selinski, Silvia; Hengstler, Jan G; Golka, Klaus; Bolt, Hermann M

    2012-01-01

    In a chemical plant in Germany producing 3,3'-dichlorobenzidine dihydrochloride for the manufacture of colorants, blood and urine samples were taken for biological monitoring. 3,3'-Dichlorobenzidine (DBZ) was analyzed in urine by thin-layer chromatography and subsequently further combined with analysis of adducts of 3,3'-DBZ in hemoglobin. Data highlight current ranges of industrial exposure to 3,3'-DBZ in Germany and demonstrate the applicability of biological monitoring to minimize this exposure. Effective biological monitoring was achieved by a combination of monitoring hemoglobin adducts with spot samplings of urinary 3,3'-DBZ excretion in cases of reported exposure periods. Data presented might help to identify biological guidance values (BGV/BAR) for 3,3'-DBZ-exposed individuals.

  6. Soap Creek Associates NPDES Permit

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  7. Water quality in the Anacostia River, Maryland and Rock Creek, Washington, D.C.: Continuous and discrete monitoring with simulations to estimate concentrations and yields of nutrients, suspended sediment, and bacteria

    USGS Publications Warehouse

    Miller, Cherie V.; Chanat, Jeffrey G.; Bell, Joseph M.

    2013-01-01

    Concentrations and loading estimates for nutrients, suspended sediment, and E. coli bacteria were summarized for three water-quality monitoring stations on the Anacostia River in Maryland and one station on Rock Creek in Washington, D.C. Both streams are tributaries to the Potomac River in the Washington, D.C. metropolitan area and contribute to the Chesapeake Bay estuary. Two stations on the Anacostia River, Northeast Branch at Riverdale, Maryland and Northwest Branch near Hyattsville, Maryland, have been monitored for water quality during the study period from 2003 to 2011 and are located near the shift from nontidal to tidal conditions near Bladensburg, Maryland. A station on Paint Branch is nested above the station on the Northeast Branch Anacostia River, and has slightly less developed land cover than the Northeast and Northwest Branch stations. The Rock Creek station is located in Rock Creek Park, but the land cover in the watershed surrounding the park is urbanized. Stepwise log-linear regression models were developed to estimate the concentrations of suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria from continuous field monitors. Turbidity was the strongest predictor variable for all water-quality parameters. For bacteria, water temperature improved the models enough to be included as a second predictor variable due to the strong dependence of stream metabolism on temperature. Coefficients of determination (R2) for the models were highest for log concentrations of suspended sediment (0.9) and total phosphorus (0.8 to 0.9), followed by E. coli bacteria (0.75 to 0.8), and total nitrogen (0.6). Water-quality data provided baselines for conditions prior to accelerated implementation of multiple stormwater controls in the watersheds. Counties are currently in the process of enhancing stormwater controls in both watersheds. Annual yields were estimated for suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria using

  8. Bioluminescent reporter bacterium for toxicity monitoring in biological wastewater treatment systems

    SciTech Connect

    Kelly, C.J.; Lajoie, C.A.; Layton, A.C.; Sayler, G.S.

    1999-01-01

    Toxic shock due to certain chemical loads in biological wastewater treatment systems can result in death of microorganisms and loss of floc structure. To overcome the limitations of existing approaches to toxicity monitoring, genes encoding enzymes for light production were inserted to a bacterium (Shk 1) isolated from activated sludge. The Shk 1 bioreporter indicated a toxic response to concentrations of cadmium, 2,4-dinitrophenol, and hydroquinone by reductions in initial levels of bioluminescence on exposure to the toxicant. The decrease in bioluminescence was more severe with increasing toxicant concentration. Bioluminescence did not decrease in response to ethanol concentrations up to 1,000 mg/L or to pH conditions between 6.1 and 7.9. A continuous toxicity monitoring system using this bioreporter was developed for influent wastewater and tested with hydroquinone. The reporter exhibited a rapid and proportional decrease in bioluminescence in response to increasing hydroquinone concentrations.

  9. Drug Efficacy Monitoring in Pharmacotherapy of Multiple Sclerosis with Biological Agents.

    PubMed

    Caldano, M; Raoul, W; Rispens, T; Bertolotto, A

    2017-03-22

    Multiple Sclerosis (MS) is a heterogeneous disease. Although several EMA approved Disease Modifying Treatments including biopharmaceuticals are available, their efficacy is limited and a certain percentage of patients are always non-responsive. Drug Efficacy Monitoring is an important tool to identify these non-responsive patients early on. Currently, Detection of Anti-Drug Antibodies and quantification of Biological Activity are used as methods of efficacy monitoring for Interferon beta (IFNβ) and Natalizumab (NAT) therapies. For NAT and Alemtuzumab treatments, drug level quantification could be an essential component of the overall disease management. Thus, utilization and development of strategies to determine treatment response are vital aspects of MS management given the tremendous clinical and economic promise of this tool.

  10. Monitoring Chemical and Biological Electron Transfer Reactions with a Fluorogenic Vitamin K Analogue Probe.

    PubMed

    Belzile, Mei-Ni; Godin, Robert; Durantini, Andrés M; Cosa, Gonzalo

    2016-12-21

    We report herein the design, synthesis, and characterization of a two-segment fluorogenic analogue of vitamin K, B-VKQ, prepared by coupling vitamin K3, also known as menadione (a quinone redox center), to a boron-dipyrromethene (BODIPY) fluorophore (a lipophilic reporter segment). Oxidation-reduction reactions, spectroelectrochemical studies, and enzymatic assays conducted in the presence of DT-diaphorase illustrate that the new probe shows reversible redox behavior on par with that of vitamin K, provides a high-sensitivity fluorescence signal, and is compatible with biological conditions, opening the door to monitor remotely (i.e., via imaging) redox processes in real time. In its oxidized form, B-VKQ is non-emissive, while upon reduction to the hydroquinone form, B-VKQH2, BODIPY fluorescence is restored, with emission quantum yield values of ca. 0.54 in toluene. Density functional theory studies validate a photoinduced electron transfer intramolecular switching mechanism, active in the non-emissive quinone form and deactivated upon reduction to the emissive dihydroquinone form. Our results highlight the potential of B-VKQ as a fluorogenic probe to study electron transfer and transport in model systems and biological structures with optimal sensitivity and desirable chemical specificity. Use of such a probe may enable a better understanding of the role that vitamin K plays in biological redox reactions ubiquitous in key cellular processes, and help elucidate the mechanism and pathological significance of these reactions in biological systems.

  11. Wireless monitoring of the biological object state at microwave frequencies: A review

    NASA Astrophysics Data System (ADS)

    Vendik, I. B.; Vendik, O. G.; Kozlov, D. S.; Munina, I. V.; Pleskachev, V. V.; Rusakov, A. S.; Tural'chuk, P. A.

    2016-01-01

    Radio-frequency identification systems used for the remote diagnostics of diseases and contactless monitoring and assessment of human health are reviewed. The propagation of electromagnetic waves inside a biological medium and along interfaces between different media, as well as the problem of telemetry data acquisition from implanted systems or system on the human body surface using wireless sensors, is considered. Emphasis is on radio-frequency identification systems that use far-field electromagnetic radiation, since they are necessary in emergency situations to find injured people in hard-to-reach places and assess the state of emergency response workers.

  12. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios.

    PubMed

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-03-01

    The first part of this review ("Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios") describes the current knowledge on the major biological particles present in the air regarding their global distribution, concentrations, ratios and influence of meteorological factors in an attempt to provide a framework for monitoring their biodiversity and variability in such a singular environment as the atmosphere. Viruses, bacteria, fungi, pollen and fragments thereof are the most abundant microscopic biological particles in the air outdoors. Some of them can cause allergy and severe diseases in humans, other animals and plants, with the subsequent economic impact. Despite the harsh conditions, they can be found from land and sea surfaces to beyond the troposphere and have been proposed to play a role also in weather conditions and climate change by acting as nucleation particles and inducing water vapour condensation. In regards to their global distribution, marine environments act mostly as a source for bacteria while continents additionally provide fungal and pollen elements. Within terrestrial environments, their abundances and diversity seem to be influenced by the land-use type (rural, urban, coastal) and their particularities. Temporal variability has been observed for all these organisms, mostly triggered by global changes in temperature, relative humidity, et cetera. Local fluctuations in meteorological factors may also result in pronounced changes in the airbiota. Although biological particles can be transported several hundreds of meters from the original source, and even intercontinentally, the time and final distance travelled are strongly influenced by factors such as wind speed and direction. [Int Microbiol 2016; 19(1):1-1 3].

  13. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada For Calendar Year 2006

    SciTech Connect

    2007-06-01

    Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites, CAS 58-09-02, Mud Pit, and CAS 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill, and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits (5), an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action.

  14. Seasonal and spatial patterns of nitrate and silica concentrations in Canajoharie Creek, New York

    USGS Publications Warehouse

    Wall, G.R.; Phillips, P.J.; Riva-Murray, K.

    1998-01-01

    The impact of nonpoint-source pollution on surface waters in agricultural watersheds is an emerging environmental issue. As part of the U.S. Geological Survey National Water Quality Assessment program in the Hudson River Basin, Canajoharie Creek was monitored for seasonal and spatial patterns of nutrient chemistry from March 1993 to January 1996. Nitrate and silica concentrations in Canajoharie Creek suggest that seasonal and spatial variations of these nutrients are dominated by biological processes, particularly uptake by phytoplankton. Observed concentration patterns were more typical of those observed in much larger, low-gradient streams. The median nitrate and silica concentrations in Canajoharie Creek were significantly lower from April through November than during winter. Concentrations of both constituents declined downstream from the headwaters during base-flow conditions in June 1995. Groundwater and surface water chemistry data support biological causes for downstream decreases in silica. The strong correlation between nitrate and silica in samples collected along the mainstem suggests that most of the nitrate decrease is due to uptake by diatoms. Downstream patterns of chlorophyll-a in phytoplankton strongly suggest the conversion of in-stream nutrients to algal biomass. Data collected from Canajoharie Creek outlet during the northeast drought of 1995 indicate that silica concentrations in May had possibly declined to a level that adversely affected the diatom community. This decline in the diatom population and subsequent resurgence is inferred from a sharp rise in silica concentrations between May and July and a reversal of this trend from mid- July through October without associated changes in hydrology.

  15. MRI parametric monitoring of biological therapies in primary large vessel vasculitides: a pilot study

    PubMed Central

    Xenitidis, Theodoros; Henes, Jörg; Horger, Marius

    2016-01-01

    Objective: To evaluate the development of characteristic MRI changes in patients with primary large-vessel vasculitis (LVV) when treated with biological therapies. Methods: 12 patients with primary LVV (8 patients with Takayasu arteritis and 4 patients with giant-cell arteritis) received biological therapy with tumour necrosis factor-α blockers (n = 9) or an interleukin-6 inhibitor (n = 3). MRI investigations were performed at baseline (pre-treatment) and follow-up. All patients underwent the same MRI/MR angiography (MRA) protocol. Laboratory parameters (C-reactive protein and erythrocyte sedimentation rate) and clinical response (Birmingham Vasculitis Activity Score) were assessed. Results: Wall thickness was 4.2 ± 0.3 mm pre-treatment and significantly decreased to 3.2 ± 0.3 mm post treatment in 9/12 patients. Mural enhancement was increased in all 12/12 patients with LVV, and subsided with therapy in 5/12 patients. Mural oedema or ill-defined contour were less prevalent but also improved with biological treatment. C-reactive protein and erythrocyte sedimentation rate levels decreased, and clinical assessment revealed a significant improvement from pre-treatment to post-treatment. However, the course of imaging characteristics often did not parallel that of laboratory or clinical parameters. In all three patients receiving interleukin-6 blockade, laboratory markers and clinical scores normalized despite persistent vascular inflammation in one patient which was disclosed by MRI. Conclusion: Contrast-enhanced MRI/MRA may be useful when evaluating the development of disease activity in primary LVV under biological therapies. A high degree of suspicion and regular imaging follow-up is needed to detect persistent inflammation. Advances in knowledge: This is the first study investigating the applicability of different MRI/MRA parameters for monitoring biological therapy in patients with primary LVV. PMID:26649990

  16. Reviews and synthesis: Carbon capture and storage monitoring - an integrated biological, biophysical and chemical approach

    NASA Astrophysics Data System (ADS)

    Hicks, N.; Vik, U.; Taylor, P.; Ladoukakis, E.; Park, J.; Kolisis, F.; Stahl, H.; Jakobsen, K. S.

    2015-06-01

    Carbon capture and storage (CCS) is a developing technology that seeks to mitigate against the impact of increasing anthropogenic carbon dioxide (CO2) production by capturing CO2 from large point source emitters. After capture the CO2 is compressed and transported to a reservoir where it is stored for geological time scales. Potential leakages from CCS projects, where stored CO2 migrates through the overlaying sediments, are likely to have severe implications on benthic and marine ecosystems. Nonetheless, prokaryotic response to elevated CO2 concentrations has been suggested as one of the first detectable warnings if a CO2 leakage should occur. Applying properties of prokaryotic communities (i.e. community composition and metabolic status) as a novel CO2 monitoring application is highly reliable within a multidisciplinary framework, where deviations from the baseline can easily be identified. In this paper we review current knowledge about the impact of CO2 leakages on marine sediments from a multidisciplinary-based monitoring perspective. We focus on aspects from the fields of biology, geophysics, and chemistry, and discuss a case study example. We argue the importance of an integrative multidisciplinary approach, incorporating biogeochemistry, geophysics, microbial ecology and modelling, with a particular emphasis on metagenomic techniques and novel bioinformatics, for future CCS monitoring. Within this framework, we consider that an effective CCS monitoring programme will ensure that large-scale leakages with potentially devastating effects for the overlaying ecosystem are avoided. Furthermore, the multidisciplinary approach suggested here for CCS monitoring is generic, and can be adapted to other systems of interest.

  17. Biological monitoring of occupational exposure to toxic chemicals. Collection, processing, and storage of specimens

    SciTech Connect

    Aitio, A.; Jaervisalo, J.

    1985-03-01

    Exposure to at least 100 different chemicals may be estimated on an individual basis from their concentrations in blood or urine. The present document reviews sources of error in the collection, processing and storage of specimens for this biological monitoring. Physiological factors cause variation in the concentration of chemicals in the body fluids. Distribution of water depends on posture. Exercise and meals cause changes in blood constituents. The urine output varies and, thus, the concentrations of dissolved chemicals change. Many toxic chemicals show short half times in the blood; thus, their concentrations depend on the timing of the specimen collection. Skin absorption may result in dramatically different chemical concentrations in different parts of the circulation. The stability of chemicals in the collected specimens is generally limited: chemical deterioration, adsorption, precipitation, and evaporation are the main causes of losses. For many chemicals, especially for trace elements, contamination of the specimen is the overwhelmingly most important source of error. As the range of the chemicals measured is wide, the relative importance of the sources of error is different for different chemicals. Information on most chemicals is at present very limited. Thus, before commencing a program on biological exposure monitoring, it is advisable to search the optimal conditions for specimen collection, processing, and storage.

  18. [Environmental and biological monitoring of occupational exposure to perchloroethylene in dry cleaning shops].

    PubMed

    Gobba, F; Rosa, P; Ghittori, S; Imbriani, M; Ferrari, G; Cavalleri, A

    1997-01-01

    Occupational exposure to perchloroethylene (PCE) was studied in a total of 106 workers in 78 dry cleaning shops in the province of Pavia, Northern, Italy. Environmental monitoring was performed by personal passive sampling. The median time weighted average (TWA) level of PCE was 57 mg/m3, i.e., about 30% of the current Threshold Limit Value (TLV) proposed by the American Conference of Governmental Industrial Hygienists (ACGIH). However, in 12 workers exposure exceeded this limit. Biological monitoring was performed via measurement of urinary trichloroacetic acid (TCA), i.e. the exposure index currently used in Italy, and urinary excretion of unmodified perchloroethylene (PCE-U) in samples collected at the end of the half-shift. Median levels of TCA and PCE were 1.03 mg/l and 17.7 micrograms/l respectively. The correlation coefficient between environmental TWA concentrations of perchloroethylene and PCE-U was 0.755 (0.809 after logarithmic transformation), compared to 0.660 for TCA values. The subjects were then classified as "low exposed" and "heavily exposed" according to whether personal exposure was lower or higher than 57 mg/m3, the median TWA value of the whole group. PCE-U levels were significantly correlated to exposure in both subgroups whereas TCA was correlated only in the "heavily exposed subjects", but not in those with lower exposure. The results of the study show that in the majority of dry cleaning shops exposure to PCE was well below the current occupational limits. Nevertheless surveillance of dry cleaners is recommended as nearly 10% of the workers exceeded the environmental and biological limits. Urinary excretion of unmodified PCE appears to be a very reliable indicator for biological monitoring of PCE exposure in dry cleaning and is also significantly correlated to exposure at low levels. The estimated biological equivalent exposure level (BEEL) for PCE-U, corresponding to the current TLV-TWA proposed by the ACGIH, is 55 micrograms/l. Urinary

  19. High resolution coral records of reactive and micronutrient trace metals: Monitoring biological responses to flood plumes.

    NASA Astrophysics Data System (ADS)

    Wyndham, T. D.; McCulloch, M. T.; Decarlo, E. H.

    2004-12-01

    The influences of flood plumes on the coastal ocean are difficult to investigate because they are intermittent, transient and highly variable in nature. The application of trace metals in coral carbonates as proxy recorders of marine environmental conditions has been demonstrated as an excellent method for overcoming these difficulties. Coral records of trace metals have been widely used to provide historical records of physical impacts of flood plumes such changing salinity (δ O18), sediment load (Ba) and anthropogenic inputs such as heavy metal pollution (eg. Pb, Cd). Despite successful applications to physical properties, the use of coral records to monitoring the biologic responses to these changing environmental conditions has proved more difficult. With improvements in analytical techniques however, it is now possible to investigate coral records of reactive (rare earth elements) and micronutrient (eg Mn, Zn and Cu) trace metals, which can be used to more widely explore the biogeochemical implications of flood plumes to the coastal ocean. We have obtained high resolution temporal records of rare earth elements, Cu, Zn, Mn and Sn, from corals from two locations, (1) near Townsville on the Great Barrier Reef (GBR) and (2) Kaneohe Bay on Oahu, Hawaii. Both of these locations often display large phytoplankton blooms following flood events, providing a good opportunity to test the idea that coral records can be used to monitor the biological response to flood plumes. These coral records show significant responses to flood plumes that can only be attributed to biogeochemical cycling that occurs as a result of the flood plume influence, rather than the flood plume itself. Thus a mechanism for exploring the biological response to flood plumes is provided. It has generally proven difficult however, to interpret these coral records without a good understanding of the coastal processes. Therefore we also include evidence from direct trace metal measurements of a

  20. Field and Laboratory GPR Monitoring of Biological Activity in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Tsoflias, Georgios; Schillig, Peter; McGlashan, Michael; Roberts, Jennifer; Devlin, J. F.

    2010-05-01

    Recent studies of the geophysical signatures of biological processes in earth environments have resulted in the emergent field of "biogeophysics". The ability to monitor remotely and to quantify active biological processes in the subsurface can have transformative implications to a wide range of investigations, including the bioremediation of contaminated sites. Previous studies have demonstrated that ground-penetrating radar (GPR) can be used to detect the products of microbial activity in the subsurface, such as changes in bulk electrical conductivity, mineral dissolution and precipitation, and the formation of biogenic gas. We present a field study and a laboratory experiment that offer insights to the response of GPR signals to microbial activity. In the field, time-lapse borehole radar tomography was used to monitor biodegradation of a hydrocarbon plume over a period of two years. A dense grid of fourteen borehole pairs monitoring the bioactive region showed radar wave velocity changes of +/-4% and signal attenuation changes of +/-25%. These GPR observations correlated spatially and temporally to independent measurements of groundwater velocity and geochemical variations that occurred in response to microbial activity. The greatest relative changes in radar wave velocity of propagation and attenuation were observed in the region of enhanced bacterial stimulation where biomass growth was the greatest. Radar wave velocity and attenuation decreased during periods of enhanced biostimulation. Three competing mechanisms are postulated to cause the changes observed in the radar data: 1) biogenic gas production, 2) mineral dissolution, and 3) biomass growth. However, due to the inherent complexity and uncertainties associated with field experimentation, the relative effect of each mechanism on the GPR signal could not be confirmed. To overcome the limitations of field observations in assessing the response of GPR signals to biomass formation, a 90-day laboratory

  1. Designing a biological monitoring program to assess community exposure to chromium: conclusions of an expert panel.

    PubMed

    Anderson, R A; Colton, T; Doull, J; Marks, J G; Smith, R G; Bruce, G M; Finley, B L; Paustenbach, D J

    1993-12-01

    The possible benefits of biological monitoring of large groups of people potentially exposed to environmental contaminants has become an area of much interest in recent years. Because chromite-ore processing residue has been found in some soils in northern New Jersey, urinary chromium monitoring of people in the community was evaluated as a potentially useful tool. In an attempt to identify those who could be exposed and to quantify the magnitude of exposure to the chromium in these soils, the New Jersey Department of Health (NJDOH) initiated a public health screening project. In 1992, the NJDOH proposed to evaluate over 4000 people who lived or worked near these sites. Volunteers were administered a questionnaire and were given a limited physical examination, and a single spot urine sample was collected. Because of the difficulties in using urinary chromium to assess low-level exposure and the potential implications of any regulatory decisions that could be based on the results of this project, a panel of experts was convened to evaluate the protocol. The panel consisted of five scientists and physicians with expertise in toxicology, dermatology, epidemiology, biological monitoring, and analytical chemistry. Like a World Health Organization group, the panel concluded that although urine biomonitoring can be useful in evaluating high levels of exposure to chromium, it is not reliable for assessing low-level exposure similar to that which may have occurred in northern New Jersey. The panel also noted that when urinary biomonitoring is to be used to assess the public's possible exposure, a large number of precautions must be taken to ensure the accuracy and usefulness of the results. The single most important recommendation was to collect a second, and perhaps a third, spot urine (or 24-h urine) sample before concluding that a person may be routinely overexposed. These suggestions are applicable to designing a biomonitoring program for nearly any environmental

  2. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  3. Antidoping programme and biological monitoring before and during the 2014 FIFA World Cup Brazil

    PubMed Central

    Baume, Norbert; Jan, Nicolas; Emery, Caroline; Mandanis, Béatrice; Schweizer, Carine; Giraud, Sylvain; Leuenberger, Nicolas; Marclay, François; Nicoli, Raul; Perrenoud, Laurent; Robinson, Neil; Dvorak, Jiri; Saugy, Martial

    2015-01-01

    Background The FIFA has implemented an important antidoping programme for the 2014 FIFA World Cup. Aim To perform the analyses before and during the World Cup with biological monitoring of blood and urine samples. Methods All qualified players from the 32 teams participating in the World Cup were tested out-of-competition. During the World Cup, 2–8 players per match were tested. Over 1000 samples were collected in total and analysed in the WADA accredited Laboratory of Lausanne. Results The quality of the analyses was at the required level as described in the WADA technical documents. The urinary steroid profiles of the players were stable and consistent with previously published papers on football players. During the competition, amphetamine was detected in a sample collected on a player who had a therapeutic use exemption for attention deficit hyperactivity disorder. The blood passport data showed no significant difference in haemoglobin values between out-of-competition and postmatch samples. Conclusions Logistical issues linked to biological samples collection, and the overseas shipment during the World Cup did not impair the quality of the analyses, especially when used as the biological passport of football players. PMID:25878079

  4. Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994

    SciTech Connect

    1995-07-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  5. Biological material detection identification and monitoring: combining point and standoff sensors technologies

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Rowsell, Susan

    2016-10-01

    Detection, Identification and Monitoring (DIM) of biological material is critical to enhancing Situational Awareness (SA) in a timely manner, supporting decisions, and enabling the endangered force to take the most appropriate actions in a recognized CB environment. An optimum Bio DIM capability would include both point sensors to provide local monitoring and sampling for confirmatory ID of the material, and standoff sensors to provide wide-area monitoring from a distance, increasing available response time and enhancing SA. In June 2015, a Canadian team co-deployed a point (VPBio) and a standoff (BioSense) bio sensor during the international S/K Challenge II event, at Dugway Proving Ground (DPG), USA. The co-deployment of the point and standoff sensors allowed the assessment of their respective strengths and limitations with regards to Bio DIM and SA in a realistic CB environment. Moreover, the initial hypothesis stating the existence of valuable leverages between the two sensors in a context of Bio DIM was confirmed. Indeed, the spatial limitation of the point sensor was overcome with the wide area coverage of the standoff technology. In contrast, the sampling capability of the point sensor can allow confirmatory identification of the detected material. Additionally, in most scenarios, the combined results allowed an increase in detection confidence. In conclusion, the demonstration of valuable leverages between point and standoff sensors in a context of Bio DIM was made, confirming the mitigation effect of co-deploying these systems for bio surveillance.

  6. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  7. Monitoring ecological recovery in a stream impacted by contaminated groundwater

    SciTech Connect

    Southworth, G.R.; Cada, G.F.; Kszos, L.A.; Peterson, M.J.; Smith, J.G.

    1997-11-01

    Past in-ground disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. A biological monitoring program initiated in 1984 has evaluated the effectiveness of the extensive remedial actions undertaken to address contamination sources. Elements of the monitoring program included toxicity testing with fish and invertebrates, bioaccumulation monitoring, and instream monitoring of streambed invertebrate and fish communities. In the mid 1980`s, toxicity tests on stream water indicated that the headwaters of the stream were acutely toxic to fish and aquatic invertebrates as a result of infiltration of a metal-enriched groundwater from ponds used to dispose of acid wastes. Over a twelve year period, measurable toxicity in the headwaters decreased, first becoming non-toxic to larval fish but still toxic to invertebrates, then becoming intermittently toxic to invertebrates. By 1997, episodic toxicity was infrequent at the site that was acutely toxic at the start of the study. Recovery in the fish community followed the pattern of the toxicity tests. Initially, resident fish populations were absent from reaches where toxicity was measured, but as toxicity to fish larvae disappeared, the sites in upper Bear Creek were colonized by fish. The Tennessee dace, an uncommon species receiving special protection by the State of Tennessee, became a numerically important part of the fish population throughout the upper half of the creek, making Bear Creek one of the most significant habitats for this species in the region. Although by 1990 fish populations were comparable to those of similar size reference streams, episodic toxicity in the headwaters coincided with a recruitment failure in 1996. Bioaccumulation monitoring indicated the presence of PCBs and mercury in predatory fish in Bear Creek, and whole forage fish contained elevated levels of cadmium, lead, lithium, nickel, mercury, and uranium.

  8. Integrated Status and Effectiveness Monitoring Program, Entiat River Status and Trend Snorkel Surveys and Rotary Smolt Trap Operations in Nason Creek, March 2007 through March 2008.

    SciTech Connect

    Collins, Matthew; Jorgensen, John; Murdock, Keely

    2008-03-10

    The Integrated Status and Effectiveness Monitoring Program (ISEMP-BPA project No.2003-0017) has been created as a cost effective means of developing protocols and new technologies, novel indicators, sample designs, analytical, data management and communication tools and skills, and restoration experiments that support the development of a region-wide Research, Monitoring and Evaluation (RME) program to assess the status of anadromous salmonid populations, their tributary habitat and restoration and management actions. The most straightforward approach to developing a regional-scale monitoring and evaluation program would be to increase standardization among status and trend monitoring programs. However, the diversity of species and their habitat, as well as the overwhelming uncertainty surrounding indicators, metrics, and data interpretation methods, requires the testing of multiple approaches. Thus, the approach ISEMP has adopted is to develop a broad template that may differ in the details among subbasins, but one that will ultimately lead to the formation of a unified RME process for the management of anadromous salmonid populations and habitat across the Columbia River Basin. ISEMP has been initiated in three pilot subbasins, the Wenatchee/Entiat, John Day, and Salmon. To balance replicating experimental approaches with the goal of developing monitoring and evaluation tools that apply as broadly as possible across the Pacific Northwest, these subbasins were chosen as representative of a wide range of potential challenges and conditions, e.g., differing fish species composition and life histories, ecoregions, institutional settings, and existing data. ISEMP has constructed a framework that builds on current status and trend monitoring infrastructures in these pilot subbasins, but challenges current programs by testing alternative monitoring approaches. In addition, the ISEMP is: (1) Collecting information over a hierarchy of spatial scales, allowing for a

  9. Development of tools for integrated monitoring and assessment of hazardous substances and their biological effects in the Baltic Sea.

    PubMed

    Lehtonen, Kari K; Sundelin, Brita; Lang, Thomas; Strand, Jakob

    2014-02-01

    The need to develop biological effects monitoring to facilitate a reliable assessment of hazardous substances has been emphasized in the Baltic Sea Action Plan of the Helsinki Commission. An integrated chemical-biological approach is vitally important for the understanding and proper assessment of anthropogenic pressures and their effects on the Baltic Sea. Such an approach is also necessary for prudent management aiming at safeguarding the sustainable use of ecosystem goods and Services. The BEAST project (Biological Effects of Anthropogenic Chemical Stress: Tools for the Assessment of Ecosystem Health) set out to address this topic within the BONUS Programme. BEAST generated a large amount of quality-assured data on several biological effects parameters (biomarkers) in various marine species in different sub-regions of the Baltic Sea. New indicators (biological response measurement methods) and management tools (integrated indices) with regard to the integrated monitoring approach were suggested.

  10. Nonpoint-source discharges and water quality of the Elk Creek basin, west-central Wisconsin

    USGS Publications Warehouse

    Field, S.J.

    1985-01-01

    All phosphorus concentrations at Bruce Valley and Elk Creeks exceeded levels recommended by EPA to prevent the formation of biological nuisance growths. Only one sample, collected on March 18, 1980, at Bruce Valley Creek may have exceeded the Wisconsin Department of Natural Resources criterion of toxic levels for un-ionized ammonia (0.04 mg/L). No samples from Elk Creek extended the criteria. (Author 's abstract)

  11. Spatial modeling of biological soil crusts to support rangeland assessment and monitoring

    USGS Publications Warehouse

    Bowker, M.A.; Belnap, J.; Miller, M.E.

    2006-01-01

    Biological soil crusts are a diverse soil surface community, prevalent in semiarid regions, which function as ecosystem engineers and perform numerous important ecosystem services. Loss of crusts has been implicated as a factor leading to accelerated soil erosion and other forms of land degradation. To support assessment and monitoring efforts aimed at ensuring the sustainability of rangeland ecosystems, managers require spatially explicit information concerning potential cover and composition of biological soil crusts. We sampled low disturbance sites in Grand Staircase-Escalante National Monument (Utah, USA) to determine the feasibility of modeling the potential cover and composition of biological soil crusts in a large area. We used classification and regression trees to model cover of four crust types (light cyanobacterial, dark cyanobacterial, moss, lichen) and 1 cyanobacterial biomass proxy (chlorophyll a), based upon a parsimonious set of GIS (Geographic Information Systems) data layers (soil types, precipitation, and elevation). Soil type was consistently the best predictor, although elevation and precipitation were both invoked in the various models. Predicted and observed values for the dark cyanobacterial, moss, and lichen models corresponded moderately well (R 2 = 0.49, 0.64, 0.55, respectively). Cover of late successional crust elements (moss + lichen + dark cyanobacterial) was also successfully modeled (R2 = 0.64). We were less successful with models of light cyanobacterial cover (R2 = 0.22) and chlorophyll a (R2 = 0.09). We believe that our difficulty modeling chlorophyll a concentration is related to a severe drought and subsequent cyanobacterial mortality during the course of the study. These models provide the necessary reference conditions to facilitate the comparison between the actual cover and composition of biological soil crusts at a given site and their potential cover and composition condition so that sites in poor condition can be

  12. Bioassessment of Hollis Creek, Oktibbeha County, Mississippi

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Bogenrieder, K.J.

    2000-01-01

    Physical, chemical and biological components at five stations on Hollis Creek, Oktibbeha County, Mississippi were evaluated using Rapid Bioassessment Protocols (RBP) and the Sediment Quality Triad (SQT) on August 24-26, 1999, in order to assess potential biological impacts from the Starkville Waste Water Treatment Facility (WWTF) on downstream resources. Two stations were selected above the WWTF and three below. The WWTF discharges treated effluent into Hollis Creek, but during storm events raw sewage may be released. Hollis Creek is a tributary of the Noxubee River that traverses the northern portion of Noxubee National Wildlife Refuge, which is managed as bottomland hardwood forest land for the protection of fish and wildlife resources. Hollis Creek was channelized throughout most of its length, resulting in high, unstable banks, degraded stream channel and unstable substratum. The RBP scores for the habitat evaluations from each station indicated that Stations 1 and 2 had degraded habitat compared to the reference site, Station 5. Benthic macroinvertebrate and fish assemblages also indicated that the biological integrity at Stations 1 and 2 was less than that of the downstream stations. The SQT showed that Stations 1 and 2 were degraded and the most likely causes of the impairment were the elevated concentrations of polycylclic aromatic hydrocarbons and metals in the sediments; Hyalella azteca survival in pore water and growth in solid-phase sediment exposures were reduced at these upstream sites. The source of contaminants to the upper reaches appears to be storm-water runoff. The close concordance between the RBP and SQT in identifying site degradation provided a preponderance of evidence indicating that the upper reaches (Stations 1 and 2) of Hollis Creek were impacted. Biological conditions improved downstream of the WWTF, even though physical degradation steinming from channelization activities were still evident. The increased discharge and stabilized base

  13. Biological monitoring of non-thermal effects of mobile phone radiation: recent approaches and challenges.

    PubMed

    Gaestel, Matthias

    2010-08-01

    This review describes recent developments in analysing the influence of radio-frequency electromagnetic fields (RF-EMFs ) on biological systems by monitoring the cellular stress response as well as overall gene expression. Recent data on the initiation and modulation of the classical cellular stress response by RF-EMFs, comprising expression of heat shock proteins and stimulation of stress-activated protein kinases, are summarised and evaluated. Since isothermic RF-EMF exposure is assumed rather than proven there are clear limitations in using the stress response to describe non-thermal effects of RF-EMFs. In particular, further experiments are needed to characterise better the threshold of the thermal heat shock response and the homogeneity of the cellular response in the whole sample for each biological system used. Before then, it is proposed that the absence of the classical stress response can define isothermal experimental conditions and qualifies other biological effects of RF-EMFs detected under these conditions to be of non-thermal origin. To minimise the probability that by making this assumption valuable insights into the nature of biological effects of RF-EMFs could be lost, proteotoxic non-thermal RF-EMF effects should also be monitored by measuring activities of labile intracellular enzymes and/or levels of their metabolites before the threshold for the heat shock response is reached. In addition, non-thermal induction of the stress response via promoter elements distinct from the heat shock element (HSE) should be analysed using HSE-mutated heat shock promoter reporter constructs. Screening for non-thermal RF-EMF effects in the absence of a classical stress response should be performed by transcriptomics and proteomics. Recent approaches demonstrate that due to their high-throughput characteristics, these methods inherently generate false positive results and require statistical evaluation based on quantitative expression analysis from a sufficient

  14. Pine Creek Ranch, FY 2001 Annual Report.

    SciTech Connect

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  15. Molecular and biological diagnostic tests for monitoring benzimidazole resistance in human soil-transmitted helminths.

    PubMed

    Diawara, Aïssatou; Schwenkenbecher, Jan M; Kaplan, Ray M; Prichard, Roger K

    2013-06-01

    In endemic countries with soil-transmitted helminths mass drug administration with albendazole or mebendazole are being implemented as a control strategy. However, it is well known in veterinary helminths that the use of the same benzimidazole drugs can place selection on the β-tubulin gene, leading to resistance. Given the concern that resistance could arise in human soil-transmitted helminths, there is an urgent need to develop accurate diagnostic tools for monitoring resistance. In this study, we developed molecular assays to detect putative resistance genetic changes in Ascaris lumbricoides, Trichuris trichiura, and hookworms, and we optimized an egg hatch assay for the canine hookworm Ancylostoma caninum and applied it to Necator americanus. Both assays were tested on field samples. The molecular assays demonstrated their reproducibility and capacity to detect the presence of worms carrying putative resistance-associated genetic changes. However, further investigations are needed to validate our molecular and biological tests on additional field isolates.

  16. Biological monitoring of hospital pharmacy personnel occupationally exposed to cytostatic drugs: urinary excretion and cytogenetics studies.

    PubMed

    Ensslin, A S; Huber, R; Pethran, A; Römmelt, H; Schierl, R; Kulka, U; Fruhmann, G

    1997-01-01

    For evaluation of the risk borne by hospital pharmacy personnel exposed to antineoplastic agents, the incorporation of cyclophosphamide, ifosfamide, and platinum-containing drugs was quantified by the determination of urinary concentrations. In addition, the induction of micronuclei (MN) and sister-chromatid-exchange (SCE) rates in peripheral blood lymphocytes were studied for correlation with the urinary excretion of cytostatic drugs. Cyclophosphamide and ifosfamide were determined in 24-h urine samples using gas chromatography with electron capture (detection limit 2.5 micrograms/l). Voltammetric analysis enabled the determination of platinum concentrations of 4 ng/l. Heparinized blood (20 ml) was drawn and lymphocytes were cultured for MN and SCE studies. In all, 13 hospital pharmacists and pharmacy technicians regularly involved in the preparation of cytostatic drugs participated in this investigation (7 persons represent a follow-up group). All subjects applied standard safety precautions, including the use of a vertical laminar air-flow hood, protective gowns, and latex gloves. On the day of urine sampling an average of 4,870 mg cyclophosphamide, 5,580 mg ifosfamide, and 504 mg platinum-containing drugs were handled. The excretion of 5 and 9 micrograms cyclophosphamide/l urine was measured in two samples, respectively. An elevated level of urinary platinum was found in one pharmacist (22.3 ng/g creatinine) in comparison with a nonexposed control group. Mean frequencies of MN and SCE did not differ significantly between the drug exposed group and control group. The employees who had incorporated chemotherapeutic agents were part of the follow-up group and, thus, particularly cautious and sensitive to a possible hazard. The results emphasize the necessity of improving personal protection of hospital pharmacy personnel occupationally exposed to cytostatic drugs and support the importance of biological monitoring. In an ongoing project in our department the

  17. External Quality Assessment Scheme for Biological Monitoring of Occupational Exposure to Toxic Chemicals

    PubMed Central

    Lee, Mi-Young; Kang, Seong-Kyu

    2011-01-01

    Objectives In this study, we summarized the External Quality Assessment Scheme (EQAS) for the biological monitoring of occupational exposure to toxic chemicals which started in 1995 and continued until a 31st round robin in the spring of 2010. The program was performed twice per year until 2009, and this was changed to once a year since 2010. The objective of the program is to ensure the reliability of the data related to biological monitoring from analytical laboratories. Methods One hundred and eighteen laboratories participated in the 31st round robin. The program offers 5 items for inorganic analysis: lead in blood, cadmium in blood, manganese in blood, cadmium in urine, and mercury in urine. It also offers 10 items for organic analysis, including hippuric acid, methylhippuric acid, mandelic acid, phenylglyoxylic acid, N-methylformamide, N-methylacetamide, trichloroacetic acid, total trichloro-compounds, trans,trans-muconic acid, and 2,5-hexanedione in urine. Target values were determined by statistical analysis using consensus values. All the data, such as chromatograms and calibration curves, were reviewed by the committee. Results The proficiency rate was below 70% prior to the first round robin and improved to over 90% for common items, such as PbB and HA, while those for other items still remained in the range of 60-90% and need to be improved up to 90%. Conclusion The EQAS has taken a primary role in improving the reliability of analytical data. A total quality assurance scheme is suggested, including the validation of technical documentation for the whole analytical procedure. PMID:22953206

  18. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada, for Calendar Year 2007

    SciTech Connect

    2008-09-01

    This report presents data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area Surface Corrective Action Unit (CAU) 417 in May 2007. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated the site and soil cover were in good condition. No new cracks or fractures were observed in the soil cover during the annual inspection. A crack on the west portion of the cover was observed during the last quarterly inspection in December 2006. This crack was filled with bentonite as part of the maintenance activities conducted in February 2007 and will be monitored during subsequent annual inspections. The vegetation on the soil cover was adequate but showing signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. New DOE Office of Legacy Management signs with updated emergency phone numbers were installed as part of this annual inspection, no issues were identified with the warning signs and monuments at the other two UC-1 locations. The annual subsidence survey was conducted at UC-1 CMP and UC-4 Mud Pit C as part of the maintenance activities conducted in February 2007. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. A vegetation survey of the UC-1 CMP cover and adjacent areas was conducted as part of the annual inspection in May 2007. The vegetation survey indicated that revegetation continues to be successful, although stressed due to the area's prevailing drought conditions. The vegetation should continue to be monitored to document any changes in the plant community and to identify conditions that could potentially require remedial action to maintain a viable vegetation

  19. Water quality in the Blue Creek arm of Lake Eufaula and Blue Creek, Oklahoma, March-October 1978

    USGS Publications Warehouse

    Kurklin, J.K.

    1985-01-01

    Based on samples collected bimonthly for major inorganic and trace elements and monthly for biota and bacteria, water from the Blue Creek arm of Lake Eufaula and Blue Creek is suitable for most uses when compared to water-quality standards or criteria. Concentrations of most chemical constituents gradually increased from spring to fall. The concentrations generally were within established drinking-water standards, with the exception of iron and manganese. Using water-quality determinations and biologic indicators, the water from Blue Creek arm of Lake Eufaula and Blue Creek is: (1) Soft and acidic with little mineral content and conductivity; (2) calm or very slowly moving; and (3) warm and enriched with organic matter.

  20. SF6 Tracer Release Study: A Contaminant Fate Study in Newtown Creek

    NASA Astrophysics Data System (ADS)

    Schmieder, P. J.; Ho, D. T.; Peter, S.; Simpson, H. J.; Flores, S.; Dugan, W. A.

    2004-12-01

    Newtown Creek is a 5.5km creek that discharges into the East River, a 25km strait connecting Long Island Sound to the north and the New York Harbor to the south. Surface runoff dominates the freshwater input into the creek, for natural tributaries no longer exist. The areas directly adjacent to the creek are highly industrialized, and New York City's largest Water Pollution Control Plant (WPCP) discharges directly into creek. In August 2004, we injected sulfur hexafluoride (SF6) into Newtown creek to study the fate of oil seeping into the creek from an underground oil spill and the fate of nutrient rich effluent from the WPCP. We monitored SF6 in Newtown Creek, the East River, and the Upper Bay of New York Harbor for 7 consecutive days following the injection in order to investigate the spreading patterns and transport mechanics of waters exiting the creek, and to determine the ultimate fate of the contaminants/solutes originating in Newtown Creek. Dissolved oxygen (DO) measurements were collected simultaneously with SF6 measurements. A strong DO gradient exists in the creek, where waters in the upper reaches are anoxic. We use SF6 data to calculate mean residence times for Newtown Creek waters. SF6 was detected above background concentrations approximately 15km to the south of the creek at the Verrazano Bridge only 1 day after the tracer injection. By combining the movements of the SF6 distribution, the position of the oxygen gradient, and the residence time of Newtown Creek water, we can determine a lower boundary for oxygen consumption rates.

  1. WELCOME CREEK WILDERNESS, MONTANA.

    USGS Publications Warehouse

    Lidke, D.J.; Close, T.J.

    1984-01-01

    Mineral-resource surveys indicate probable or substantiated mineral-resource potential for small amounts of gold and other metals. Areas of alluvium in Welcome Creek and in part of Rock Creek are classed as having probable and substantiated mineral-resource potential for small quantities of gold in small and scattered placers and in placer tailings. A small area which contains the Cleveland mine, on Cleveland Mountain, near the west border of the wilderness was classed as having probable mineral-resource potential for silver and gold in veins. Although green mudstone strata that often are favorable hosts for stratabound copper occurrences were found in the northeast part of the wilderness, no copper deposits were found and these studies indicate little likelihood for the occurrence of copper resources. The nature of the geologic terrain indicates that there is little likelihood of the occurrence of energy resources.

  2. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada

    SciTech Connect

    2013-03-01

    This report presents results of data collected during the annual post-closure site inspections conducted at the Central Nevada Test Area surface Corrective Action Unit (CAU) 417 in May 2011 and July 2012. The annual post-closure site inspections included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspections conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. No new fractures or extension of existing fractures were observed and no issues with the fence or gate were identified. The vegetation on the cover continues to look healthy, but the biennial vegetation survey conducted during the 2012 inspection indicated that the total foliar cover was slightly higher in 2009 than in 2012. This may be indicative of a decrease in precipitation observed during the 2-year monitoring period. The precipitation totaled 9.9 inches from July 1, 2010, through June 30, 2011, and 5 inches from July 1, 2011, through June 30, 2012. This decrease in precipitation is also evident in the soil moisture data obtained from the time domain reflectometry sensors. Soil moisture content data show that the UC-1 cover is performing as designed, and evapotranspiration is effectively removing water from the cover.

  3. Multiplex coherent anti-Stokes Raman scattering microspectroscopy for monitoring molecular structural change in biological samples

    NASA Astrophysics Data System (ADS)

    Ohta, Takayuki; Hashizume, Hiroshi; Takeda, Keigo; Ishikawa, Kenji; Ito, Masafumi; Hori, Masaru

    2014-10-01

    Biological applications employing non-equilibrium plasma processing has been attracted much attention. It is essential to monitor the changes in an intracellular structure of the cell during the plasma exposure. In this study, we have analyzed the molecular structure of biological samples using multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy. Two picosecond pulse lasers with fundamental (1064 nm) or the supercontinuum (460-2200 nm) were employed as a pump and Stokes beams of multiplex CARS microspectroscopy, respectively. The pump and the Stokes laser beams were collinearly overlapped and tightly focused into a sample using an objective lens of high numerical aperture. The CARS signal was collected by another microscope objective lens which is placed facing the first one. After passing through a short pass filter, the signal was dispersed by a polychromator, and was detected by a charge-coupled device camera. The sample was sandwiched by a coverslip and a glass bottom dish for the measurements and was placed on a piezo stage. The CARS signals of the quinhydrone crystal at 1655, 1584, 1237 and 1161 cm-1 were assigned to the C-C, C =O stretching, O-H and C-O stretching vibrational modes, respectively.

  4. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    PubMed

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [(2)H, (15)N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al., 2013). 2D [(15)N, (1)H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  5. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology

    PubMed Central

    Horst, Reto; Wüthrich, Kurt

    2016-01-01

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [2H, 15N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al., 2013). 2D [15N, 1H]-correlation maps are used as “fingerprints” to assess the foldedness of the IMP in solution. For promising samples, these “inexpensive” data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer. PMID:27077076

  6. Oak Ridge Gaseous Diffusion Plant Biological Monitoring and Abatement Program for Mitchell Branch

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Kszos, L.A.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    1992-01-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge Gaseous Diffusion Plant (ORGDP; currently the Oak Ridge K-25 Site) was prepared in December 1986, as required by the modified National Pollutant Discharge Elimination System (NPDES) permit that was issued on September 11, 1986. The effluent discharges to Mitchell Branch are complex, consisting of trace elements, organic chemicals, and radionuclides in addition to various conventional pollutants. Moreover, the composition of these effluent streams will be changing over time as various pollution abatement measures are implemented over the next several years. Although contaminant inputs to the stream originate primarily as point sources from existing plant operations, area sources, such as the classified burial grounds and the K-1407-C holding pond, can not be eliminated as potential sources of contaminants. The proposed BMAP consists of four tasks. These tasks include (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of the benthic invertebrate and fish communities. BMAP will determine whether the effluent limits established for ORGDP protect the designated use of the receiving stream (Mitchell Branch) for growth and propagation of fish and aquatic life. Another objective of the program is to document the ecological effects resulting from various pollution abatement projects, such as the Central Neutralization Facility.

  7. A biologically inspired sensor network framework for autonomous structural health monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Bo

    2009-03-01

    This paper presents a biologically inspired sensor network framework for autonomous structural health monitoring (SHM). The presented sensor network framework transforms desirable characteristics and effective defense mechanisms of the natural immune system to wireless sensor networks for SHM. The autonomous structural health monitoring is achieved through an integrated sensor network framework consisting of high computational power sensors, a mobileagent- based sensor network middleware, and artificial immune pattern recognition (AIPR) methodology for structure damage detection and classification. An AIPR-based structure damage classifier (AIPR-SDC) has been developed, which incorporates several novel characteristics of the natural immune system. The performance of the AIPR-SDC has been validated using a benchmark structure proposed by the IASC-ASCE (International Association for Structural Control - American Society of Civil Engineers) SHM Task Group. The validation results show a better classification success rate comparing to some of other classification algorithms. The further study of unsupervised structure damage classification is also conducted by integrating data clustering techniques and the AIPR method.

  8. Laboratory and field evaluation of a biological monitoring system using Corbicula fluminea and Mulinia lateralis

    SciTech Connect

    Waller, W.T.; Allen, H.J.; Schwalm, F.U.; Acevedo, M.F.; Ammann, L.P.; Dickson, K.L.; Kennedy, J.H.; Morgan, E.L.

    1995-12-31

    Laboratory and field experiments have been performed to evaluate a non-invasive biomonitoring system using the Asiatic clam Corbicula fluminea and Mulinia lateralis. C. fluminea was exposed to simulated episodic toxicity events in the laboratory using copper, diazinon, and regulated flow rates. Group behavior during these simulated events was compared to behavior during unstressed periods to develop a statistical model and an alarm criteria. Bayou Chico, Pensacola Bay, FL, was the site for field experiments in which M. lateralis was placed in situ to evaluate the performance of the biomonitoring system. The biomonitoring system consists of proximity sensors which detect an aluminum foil target attached to the valve of an organism. Valve movements of the clams are then digitally recorded using a personal computer. Data collected from remote sites are telemetered to the lab using short wave radio. In its final form, the authors envision an in situ biological monitoring system using bivalves deployed in aquatic systems in conjunction with automated monitoring systems like those found at USGS gauging stations. A tool such as this could be used as a warning system to increase the probability of detecting toxic events as they occur.

  9. Monitoring intracellular polyphosphate accumulation in enhanced biological phosphorus removal systems by quantitative image analysis.

    PubMed

    Mesquita, Daniela P; Amaral, A Luís; Leal, Cristiano; Carvalheira, Mónica; Cunha, Jorge R; Oehmen, Adrian; Reis, Maria A M; Ferreira, Eugénio C

    2014-01-01

    A rapid methodology for intracellular storage polyphosphate (poly-P) identification and monitoring in enhanced biological phosphorus removal (EBPR) systems is proposed based on quantitative image analysis (QIA). In EBPR systems, 4',6-diamidino-2-phenylindole (DAPI) is usually combined with fluorescence in situ hybridization to evaluate the microbial community. The proposed monitoring technique is based on a QIA procedure specifically developed for determining poly-P inclusions within a biomass suspension using solely DAPI by epifluorescence microscopy. Due to contradictory literature regarding DAPI concentrations used for poly-P detection, the present work assessed the optimal DAPI concentration for samples acquired at the end of the EBPR aerobic stage when the accumulation occurred. Digital images were then acquired and processed by means of image processing and analysis. A correlation was found between average poly-P intensity values and the analytical determination. The proposed methodology can be seen as a promising alternative procedure for quantifying intracellular poly-P accumulation in a faster and less labour-intensive way.

  10. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R., Jr.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaIglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This proposal seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the sensor/actuators. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as the exposure to radiation or infectious agents. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), magnetic particles and metals, and imaging agents. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. These molecules would also be able to administer therapeutics in response to the needs of the astronaut, and act as actuators to remotely manipulate an astronaut as necessary to ensure their safety. The reporting will be accomplished either through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation, or through functional MRI. These nanosensors coupled to NEMS devices could facilitate the success and increase the safety of extended space flight.

  11. A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation.

    PubMed

    Motoi, Kosuke; Ogawa, Mitsuhiro; Ueno, Hiroshi; Kuwae, Yutaka; Ikarashi, Akira; Yuji, Tadahiko; Higashi, Yuji; Tanaka, Shinobu; Fujimoto, Toshiro; Asanoi, Hidetsugu; Yamakoshi, Ken-ichi

    2009-01-01

    Daily monitoring of health condition is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes, cardiovascular diseases and other diseases. Commercially available devices for health care monitoring at home are cumbersome in terms of self-attachment of biological sensors and self-operation of the devices. From this viewpoint, we have been developing a non-conscious physiological monitor installed in a bath, a lavatory, and a bed for home health care and evaluated its measurement accuracy by simultaneous recordings of a biological sensors directly attached to the body surface. In order to investigate its applicability to health condition monitoring, we have further developed a new monitoring system which can automatically monitor and store the health condition data. In this study, by evaluation on 3 patients with cardiac infarct or sleep apnea syndrome, patients' health condition such as body and excretion weight in the toilet and apnea and hypopnea during sleeping were successfully monitored, indicating that the system appears useful for monitoring the health condition during daily living.

  12. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada

    SciTech Connect

    2009-10-01

    This report presents results of data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area, surface Corrective Action Unit (CAU) 417 in June 2009. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. Three new fractures were identified in the soil cover and were filled with bentonite chips during the inspection. The vegetation on the soil cover was adequate but showed signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations

  13. Ecological effects of contaminants and remedial actions in Bear Creek

    SciTech Connect

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. ); Burris, J.A. )

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  14. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada

    SciTech Connect

    2009-01-01

    This report presents data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area Surface Corrective Action Unit (CAU) 417 in May of 2008. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. Three new cracks or fractures were observed in the soil cover during the annual inspection and were immediately filled with bentonite chips. The vegetation on the soil cover was adequate, but showed signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations. The annual subsidence survey was conducted at UC-1 CMP and UC-4 Mud Pit C in August 2008. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed.

  15. Exploring a new method for the biological monitoring of plastic workers exposed to the vinyl chloride monomer.

    PubMed

    Azari, Mansour Rezazadeh; Tayefeh-Rahimian, Raana; Jafari, Mohamad Javad; Souri, Hamid; Shokoohi, Yasser; Tavakol, Alaheh; Yazdanbakhsh, Zahra

    2016-12-01

    Vinyl chloride monomer (VCM) is widely used in the production of polyvinyl chloride (PVC) plastics. VCM is recognized as a confirmed human and animal carcinogenic compound. Recent studies have reported poor health of plastic workers, even having exposure at concentrations below the permissible limit to VCM. There has not been any study regarding exposed workers to VCM in Iran. Similarly, no information exists as to the biological monitoring of such workers. The main purpose of this study was to conduct a thorough occupational and biological monitoring of Iranian plastic workers exposed to VCM.A total of 100 workers from two plastic manufacturing plants (A and B) in Tehran along with 25 unexposed workers as controls were studied. The personal monitoring of all nonsmoking workers exposed to VCM at two plastic manufacturing plants (A and B) was performed in the morning shift (8 a.m. to 4 p.m.) according to the National Institute For Occupational Safety And Health method no. 1007.Biological monitoring of workers was carried out through collection of exhaled breath of all exposed and control workers in Tedlar bags and with a subsequent analysis using gas chromatography-flame ionization detector.Not only the mean occupational exposure of workers to VCM at plant A was higher than the respective threshold limit value but also the statistical significance was higher than workers at plant B. Similarly, VCM concentration in exhaled breath of workers at plant A was also statistically significantly higher than at plant B. Correlation of occupational exposure of all workers to vinyl chloride with its concentration in exhaled breath was statistically significant.This is the first study on biological monitoring for exposed plastic workers to VCM using exhaled breath. On the basis of the results in this study, a novel method of biological monitoring of plastic workers was proposed.

  16. Optical monitoring of anchoring change in vertically aligned thin liquid crystal film for chemical and biological sensor.

    PubMed

    Zou, Yang; Namkung, Jun; Lin, Yongbin; Lindquist, Robert

    2010-04-01

    A significant advance in sensitivity of liquid-crystal (LC)-based chemical and biological sensors can be achieved by actively monitoring anchoring energy change. We simulate the deformation of a LC director with different anchoring energies using the finite element method and the optical properties of the LC film using the finite-difference time-domain method. Polarizing micrographs are collected and compared with simulated textures. Measurement of optical transmission is used to monitor the anchoring change. Experimental and simulation results both demonstrate the optical method can effectively monitor the surface anchoring change due to the presence of targeted analytes.

  17. Assessing the Impact of a Combined Sewer Separation Project on Water Quality in Blackwater Creek, Virginia

    NASA Astrophysics Data System (ADS)

    Pradhan, K.; Warren, K. P.

    2013-12-01

    Over a century ago, the City of Lynchburg constructed a sanitary sewer system to deal with the increasing need for waste water treatment. State and federal environmental mandates require cities to eliminate sewer overflows, so in the 1990s, the City of Lynchburg devised a plan to fix the problem of combined sewer overflow. Since Lynchburg's Combined Sewer Separation (CSS) work began approximately twenty years ago, many of the overflow points have been eliminated, leaving 30 points to be closed in the future. It remains unclear, however, whether Blackwater Creek's freshwater ecosystems have begun to show improvement as a result of the City's CSS separation project. As recently as 2012, the Virginia Department of Environmental Quality characterized Blackwater Creek as a Category 5 Impaired Waterway, as assessed by benthic rapid bioassessment methods. Since 2003, the intro environmental science class at Randolph College has conducted stream assessment and water quality monitoring at two sites in Blackwater Creek, as a required field project. This work has involved nearly 300 students over that time, and includes rapid bioassessment (RBA) of aquatic macroinvertebrates, chemical and physical analysis, and riparian and channel vegetation assessment. Over this same period, the City has progressed through separation of the CSS system in a significant portion of Blackwater Creek's subwatershed, including our study area. We analyzed ten years of stream monitoring data in tandem with a geographic analysis of the progression of the CSS project to determine whether there has been resultant improvement in water quality. When analyzed in conjunction with the progress of the CSS project, the data did not exhibit a detectable difference between data collected before and after 2006. However, a simple linear regression of the data did show improvement in chemical and biological indicators of stream health, with a greater increase in results pertaining to the RBA. Further sampling is

  18. Freshwater flow from estuarine creeks into northeastern Florida Bay

    USGS Publications Warehouse

    Hittle, Clinton; Patino, Eduardo; Zucker, Mark A.

    2001-01-01

    Water-level, water-velocity, salinity, and temperature data were collected from selected estuarine creeks to compute freshwater flow into northeastern Florida Bay. Calibrated equations for determining mean velocity from acoustic velocity were obtained by developing velocity relations based on direct acoustic measurements, acoustic line velocity, and water level. Three formulas were necessary to describe flow patterns for all monitoring sites, with R2 (coefficient of determination) values ranging from 0.957 to 0.995. Cross-sectional area calculations were limited to the main channel of the creeks and did not include potential areas of overbank flow. Techniques also were used to estimate discharge at noninstrumented sites by establishing discharge relations to nearby instrumented sites. Results of the relation between flows at instrumented and noninstrumented sites varied with R2 values ranging from 0.865 to 0.99. West Highway Creek was used to estimate noninstrumented sites in Long Sound, and Mud Creek was used to estimate East Creek in Little Madeira Bay. Mean monthly flows were used to describe flow patterns and to calculate net flow along the northeastern coastline. Data used in the study were collected from October 1995 through September 1999, which includes the El Nino event of 1998. During this period, about 80 percent of the freshwater flowing into the bay occurred during the wet season (May-October). The mean freshwater discharge for all five instrumented sites during the wet season from 1996 to 1999 is 106 cubic feet per second. The El Nino event caused a substantial increase (654 percent) in mean flows during the dry season (November-April) at the instrumented sites, ranging from 8.5 cubic feet per second in 1996-97 to 55.6 cubic feet per second in 1997-98. Three main flow signatures were identified when comparing flows at all monitoring stations. The most significant was the magnitude of discharges at Trout Creek, which carries about 50 percent of the

  19. Monitoring the Mesoamerican Biological Corridor: A NASA/CCAD Cooperative Research Project

    NASA Technical Reports Server (NTRS)

    Sever, Thomas; Irwin, Daniel; Sader, Steven A.; Saatchi, Sassan

    2004-01-01

    To foster scientific cooperation under a Memorandum of Understanding between NASA and the Central American countries, the research project developed regional databases to monitor forest condition and environmental change throughout the region. Of particular interest is the Mesoamerican Biological Corridor (MBC), a chain of protected areas and proposed conservation areas that will link segments of natural habitats in Central America from the borders of northern Columbia to southern Mexico. The first and second year of the project focused on the development of regional satellite databases (JERS-IC, MODIS, and Landsat-TM), training of Central American cooperators and forest cover and change analysis. The three regional satellite mosaics were developed and distributed on CD-ROM to cooperators and regional outlets. Four regional remote sensing training courses were conducted in 3 countries including participants from all 7 Central American countries and Mexico. In year 3, regional forest change assessment in reference to Mesoamerican Biological Corridor was completed and land cover maps (from Landsat TM) were developed for 7 Landsat scenes and accuracy assessed. These maps are being used to support validation of MODIS forest/non forest maps and to examine forest fragmentation and forest cover change in selected study sites. A no-cost time extension (2003-2004) allowed the completion of an M.S. thesis by a Costa Rican student and preparation of manuscripts for future submission to peer-reviewed outlets. Proposals initiated at the end of the project have generated external funding from the U.S. Forest Service (to U. Maine), NASA-ESSF (Oregon State U.) and from USAID and EPA (to NASA-MSFC-GHCC) to test MODIS capabilities to detect forest change; conduct literature review on biomass estimation and carbon stocks and develop a regional remote sensing monitoring center in Central America. The success of the project has led to continued cooperation between NASA, other federal

  20. Creatinine and specific gravity normalization in biological monitoring of occupational exposures.

    PubMed

    Sauvé, Jean-François; Lévesque, Martine; Huard, Mélanie; Drolet, Daniel; Lavoué, Jérôme; Tardif, Robert; Truchon, Ginette

    2015-01-01

    Reference values for the biological monitoring of occupational exposures are generally normalized on the basis of creatinine (CR) concentration or specific gravity (SG) to account for fluctuations in urine dilution. For instance, the American Conference of Governmental Industrial Hygienists (ACGIH(®)) uses a reference value of 1g/L for CR. The comparison of urinary concentrations of biomarkers between studies requires the adjustment of results based on a reference CR and/or SG value, although studies have suggested that age, sex, muscle mass, and time of the day can exert non-negligible influences on CR excretion, while SG appears to be less affected. The objective of this study was to propose reference values for urinary CR and SG based on the results of samples sent for analysis by occupational health practitioners to the laboratory of the Occupational Health and Safety Research Institute of Québec (IRSST). We analyzed a database containing 20,395 urinary sample results collected between 1985 and 2010. Linear mixed-effects models with worker as a random effect were used to estimate the influence of sex and collection period on urinary CR and SG. Median CR concentrations were 25-30% higher in men (1.6 g/L or 14.4 mmol/L) than in women (1.2 g/L or 10.2 mmol/L). Four percent of the samples for men and 12% for women were below the acceptable threshold for CR (4.4 mmol/L). For SG, 5% of samples for men and 12% for women were below the threshold of 1.010. The difference in SG levels between sexes was lower than for CR, with a median of 1.024 for men compared to 1.020 for women. Our results suggest that the normalization of reference values based on a standard CR value of 1 g/L as proposed by the ACGIH is a conservative approach. According to the literature, CR excretion is more influenced by physiological parameters than SG. We therefore suggest that correction based on SG should be favored in future studies involving the proposal of reference values for the

  1. Environmental and biological monitoring of arsenic in outdoor workers exposed to urban air pollutants.

    PubMed

    Ciarrocca, Manuela; Tomei, Gianfranco; Palermo, Paola; Caciari, Tiziana; Cetica, Carlotta; Fiaschetti, Maria; Gioffrè, Pier Agostino; Tasciotti, Zaira; Tomei, Francesco; Sancini, Angela

    2012-11-01

    The aim of this study is to evaluate personal exposure to As in urban air in two groups of outdoor workers (traffic policemen and police drivers) of a big Italian city through: (a) environmental monitoring of As obtained by personal samples and (b) biological monitoring of total urinary As. The possible influence of smoking habit on urinary As was evaluated. We studied 122 male subjects, all Municipal Police employees: 84 traffic policemen and 38 police drivers exposed to urban pollutants. Personal exposure to As in air was significantly higher in traffic policemen than in police drivers (p=0.03). Mean age, length of service, alcohol drinking habit, number of cigarettes smoked/day and BMI were comparable between the groups of subjects studied. All subjects were working in the same urban area where they had lived for at least 5 yrs. Dietary habits and consumption of water from the water supply and/or mineral water were similar in traffic policemen and in police drivers. The values of total urinary As were significantly higher in traffic policemen (smokers and non smokers) than in police drivers (smokers and non smokers) (p=0.02). In the subgroup of non-smokers the values of total urinary As were significantly higher in traffic policemen than in police drivers (p=0.03). In traffic policemen and in police drivers total urinary As values were significantly correlated to the values of As in air (respectively r=0.9 and r=0.8, p<0.001). This is the first research in literature studying the exposure to As in outdoor workers occupationally exposed to urban pollutants, such as traffic policemen and police drivers. Personal exposure to As in the air, as well as the urinary excretion of As, is significantly higher in traffic policemen compared to drivers. These results can provide information about exposure to As in streets and in car for other categories of outdoor workers similarly exposed.

  2. Evaluation of exposure to PAHs in asphalt workers by environmental and biological monitoring.

    PubMed

    Campo, Laura; Buratti, Marina; Fustinoni, Silvia; Cirla, Piero E; Martinotti, Irene; Longhi, Omar; Cavallo, Domenico; Foà, Vito

    2006-09-01

    In the present article we assessed exposure to polycyclic aromatic hydrocarbons (PAHs) in Italian asphalt workers (AW, n = 100), exposed to bitumen fumes and diesel exhausts, and in roadside construction workers (CW, n = 47), exposed to diesel exhausts, by means of environmental and biological monitoring. 1-hydroxypyrene (OH-Py) was determined in urine spot samples collected, respectively, after 2 days of vacation (baseline), before, and at the end of the monitored work shift, in the second part of the workweek. Median airborne levels during the work shift of 15 PAHs (both vapor and particulate phases), from naphthalene (NAP) to indeno(1,2,3-cd)pyrene, ranged from below 0.03 to 426 ng/m(3). Median excretion values of OH-Py in baseline, before- and end-shift samples were 228, 402, and 690 ng/L for AW and 260, 304, and 378 ng/L for CW. Lower values were found in nonsmokers compared to smokers (e.g., in AW 565 and 781 versus 252 and 506 ng/L in before-shift and end-shift samples, respectively). In all subjects a weak correlation between personal exposure to the sum of airborne 15 PAHs and OH-Py was observed (r = 0.30). The results of this article show that AW experienced a moderate occupational exposure to airborne PAHs, resulting in a significant increase of urinary OH-Py during the workday and the workweek. The contribution of working activities to internal dose was in the same order of magnitude of the contribution of cigarette smoking.

  3. Implantable RF power converter for small animal in vivo biological monitoring.

    PubMed

    Chaimanonart, Nattapon; Olszens, Keith; Zimmerman, Mark; Ko, Wen; Young, Darrin

    2005-01-01

    A miniature, long-term, implantable radio frequency (RF) power converter for freely moving samll animal in vivo biological monitoring is proposed. An environment consisting of a laboratory mouse inside a cage is used for a prototype monitoring system design. By employing an inductive coupling network, a prototype implant device with a dimension of approximately 6 m x 6 mm x 1 mm and a weight of 100 mg including medical-grade silicone coating can wirelessly receive an input FR power from an array of external coils positioned underneath the cage. Each coil is designed to be 5 cm x 5 cm, comparable to a typical mouse size for minimizing power coupling variation. The received AC voltage is further rectified by a half-wave rectivier to supply DC current to a 3 kω resistance, representing a typical bio-implant microsystem loading. The proposed RF power converter was implanted in the peritoneal cavity of a laboratory mouse for performance evaluation. With a 5-turn external coil loop separated from a 30-turn internal coil by 1cm distance and centered to each other, an optimal voltage gain of 3.5 can be achieved with a 10 MHz operating frequency to provide a maximum rectified output DC voltage of 21 V. The DC voltage varies at different animal tilting angles and positions with a minimum voltage of 4 V at 60° tilting angle near the corner of the external coil. This variation can be further minimized by overlapping the external loops layout.

  4. Biological monitoring of aromatic diisocyanates in workers exposed to thermal degradation products of polyurethanes.

    PubMed

    Rosenberg, Christina; Nikkilä, Kirsi; Henriks-Eckerman, Maj-Len; Peltonen, Kimmo; Engströrm, Kerstin

    2002-10-01

    Exposure to diisocyanates was assessed by biological monitoring among workers exposed to the thermal degradation products of polyurethanes (PURs) in five PUR-processing environments. The processes included grinding and welding in car repair shops, milling and turning of PUR-coated metal cylinders, injection moulding of thermoplastic PUR, welding and cutting of PUR-insulated district heating pipes during installation and joint welding, and heat-flexing of PUR floor covering. Isocyanate-derived amines in acid-hydrolysed urine samples were analysed as perfluoroacylated derivatives by gas chromatography mass spectrometry in negative chemical ionisation mode. The limits of quantification (LOQs) for the aromatic diamines 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA) and 4,4'-methylenedianiline (4,4'-MDA) were 0.25 nmol l(-1), 0.25 nmol l(-1) and 0.15 nmol l(-1), respectively. The LOQ for the aliphatic diamines hexamethylenediamine (HDA), isophoronediamine (IpDA) and 4,4'-diaminodicyclohexyl methane (4,4'-DDHM) was 5 nmol l(-1). TDA and MDA were detected in urine samples from workers in car repair shops and MDA in samples from workers welding district heating pipes. The 2,4-TDA isomer accounted for about 80% of the total TDA detected. No 2.6-TDA was found in the urine of non-exposed workers. The highest measured urinary TDA and MDA concentrations were 0.79 nmol mmol(-1) creatinine and 3.1 nmol mmol(-1) creatinine, respectively. The concentrations found among non-exposed workers were 0.08 nmol mmol(-1) creatinine for TDA and 0.05 nmol mmol(-1) creatinine for MDA (arithmetic means). Exposure to diisocyanates originating from the thermal degradation of PURs are often intermittent and of short duration. Nevertheless, exposure to aromatic diisocyanates can be identified by monitoring diisocyanate-derived amines in acid-hydrolysed urine samples.

  5. Impact of Tactile-Cued Self-Monitoring on Independent Biology Work for Secondary Students with Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Morrison, Catherine; McDougall, Dennis; Black, Rhonda S.; King-Sears, Margaret E.

    2014-01-01

    Results from a multiple baseline with changing conditions design across high school students with Attention Deficit Hyperactivity Disorder (ADHD) indicated that the students increased the percentage of independent work they completed in their general education biology class after learning tactile-cued self-monitoring. Students maintained high…

  6. Water-Quality Characteristics of Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek, Grand Teton National Park, Wyoming, 2006

    USGS Publications Warehouse

    Clark, Melanie L.; Wheeler, Jerrod D.; O'Ney, Susan E.

    2007-01-01

    To address water-resource management objectives of the National Park Service in Grand Teton National Park, the U.S. Geological Survey in cooperation with the National Park Service has conducted water-quality sampling on streams in the Snake River headwaters area. A synoptic study of streams in the western part of the headwaters area was conducted during 2006. Sampling sites were located on Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek. Sampling events in June, July, August, and October were selected to characterize different hydrologic conditions and different recreational-use periods. Stream samples were collected and analyzed for field measurements, major-ion chemistry, nutrients, selected trace elements, pesticides, and suspended sediment. Water types of Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek were calcium bicarbonate. Dissolved-solids concentrations were dilute in Cottonwood Creek and Taggart Creek, which drain Precambrian-era rocks and materials derived from these rocks. Dissolved-solids concentrations ranged from 11 to 31 milligrams per liter for samples collected from Cottonwood Creek and Taggart Creek. Dissolved-solids concentrations ranged from 55 to 130 milligrams per liter for samples collected from Lake Creek and Granite Creek, which drain Precambrian-era rocks and Paleozoic-era rocks and materials derived from these rocks. Nutrient concentrations generally were small in samples collected from Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek. Dissolved-nitrate concentrations were the largest in Taggart Creek. The Taggart Creek drainage basin has the largest percentage of barren land cover of the basins, and subsurface waters of talus slopes may contribute to dissolved-nitrate concentrations in Taggart Creek. Pesticide concentrations, trace-element concentrations, and suspended-sediment concentrations generally were less than laboratory reporting levels or were small for all samples. Water

  7. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources... Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC.... For the transferee: Mr. Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC,...

  8. Line Creek improves efficiency

    SciTech Connect

    Harder, P.

    1988-04-01

    Boosting coal recovery rate by 8% and reducing fuel expense $18,000 annually by replacing two tractors, are two tangible benefits that Crows Nest Resources of British Columbia has achieved since overseas coal markets weakened in 1985. Though coal production at the 4-million tpy Line Creek open pit mine has been cut 25% from its 1984 level, morale among the pit crew remains high. More efficient pit equipment, innovative use of existing equipment, and encouragement of multiple skill development among workers - so people can be assigned to different jobs in the operation as situations demand - contribute to a successful operation.

  9. An energy-efficient communication method based on the relationships between biological signals for ubiquitous health monitoring.

    PubMed

    Kwon, Hyok Chon; Na, Doosu; Ko, Byung Geun; Lee, Songjun

    2008-01-01

    Wireless sensor networks have been studied in the area of intelligent transportation systems, disaster perception, environment monitoring, ubiquitous healthcare, home network, and so on. For the ubiquitous healthcare, the previous systems collect the sensed health related data at portable devices without regard to correlations of various biological signals to determine the health conditions. It is not the energy-efficient method to gather a lot of information into a specific node to decide the health condition. Since the biological signals are related with each other to estimate certain body condition, it is necessary to be collected selectively by their relationship for energy efficiency of the networked nodes. One of researches about low power consumption is the reduction of the amount of packet transmission. In this paper, a health monitoring system, which allows the transmission of the reduced number of packets by means of setting the routing path considered the relations of biological signals, is proposed.

  10. Integration of biological monitoring, environmental monitoring and computational modelling into the interpretation of pesticide exposure data: introduction to a proposed approach.

    PubMed

    Colosio, Claudio; Rubino, Federico M; Alegakis, Athanasios; Ariano, Eugenio; Brambilla, Gabri; Mandic-Rajcevic, Stefan; Metruccio, Francesca; Minoia, Claudio; Moretto, Angelo; Somaruga, Chiara; Tsatsakis, Aristidis; Turci, Roberta; Vellere, Francesca

    2012-08-13

    Open field, variability of climatic and working conditions, and the use of complex mixtures of pesticides makes biological and environmental monitoring in agriculture, and therefore risk assessment and management, very complicated. A need of pointing out alternative risk assessment approaches, not necessarily based on measures, but simple, user-friendly and reliable, feasible also in the less advanced situations and in particular in small size enterprises, arises. This aim can be reached through a combination of environmental monitoring, biological monitoring and computational modelling. We have used this combination of methods for the creation of "exposure and risk profiles" to be applied in specific exposure scenarios, and we have tested this approach on a sample of Italian rice and maize herbicide applicators. We have given specific "toxicity scores" to the different products used and we have identified, for each of the major working phases, that is mixing and loading, spraying, maintenance and cleaning of equipment, the main variables affecting exposure and inserted them into a simple algorithm, able to produce "exposure indices". Based on the combination of toxicity indices and exposure indices it is possible to obtain semiquantitative estimates of the risk levels experienced by the workers in the exposure scenarios considered. Results of operator exposure data collected under real-life conditions can be used to validate and refine the algorithms; moreover, the AOEL derived from pre-marketing studies can be combined to estimate tentative biological exposure limits for pesticides, useful to perform individual risk assessment based on technical surveys and on simple biological monitoring. A proof of principle example of this approach is the subject of this article.

  11. Aquatic biology in Nederlo Creek, southwestern Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.; Lidwin, R.A.; Mason, J.W.; Narf, R.P.

    1982-01-01

    The aquatic community is diverse and reasonably stable with little indication of environmental disturbance. Aquatic macrophyte population (dominated by Ranunculus aquatilis L., Veronica catenata Penn., and Nasturtium offlcinale) varies little from spring to fall. Periphytic and planktonic algae are predominantly diatoms, with the genus Achnanthes dominating both communities. Most genera of planktonic algae originate in the periphyton, but some true planktonic algae were identified. The benthic invertebrate population is dominated by Trichoptera and is a major food source for trout and forage fish. Biotic index values calculated from benthic invertebrate data indicate that water quality is very good to excellent. The trout population is low and represents only a small part of the total fish population both in biomass and numbers. Brown trout are usually stocked annually in the spring to enhance sport fishing, but by fall most trout are wild. The major environmental factors limiting trout population seem to be insufficient cover, insufficient pool depth and volume, and small spawning areas. The wild trout population is highly dependent on spawning success the previous fall.

  12. Biological monitoring to assess exposure from use of isocyanates in motor vehicle repair

    PubMed Central

    Williams, N. R.; Jones, K.; Cocker, J.

    1999-01-01

    OBJECTIVES: To develop a method for the measurement of a metabolite of hexamethylene diisocyanate (HDI), an isocyanate, and use it to assess the exposure of sprayers employed in motor vehicle repair shops. METHODS: Urine samples were taken from sprayers wearing personal protective equipment and spraying in booths or with local exhaust ventilation, from bystanders, and from unexposed subjects. Samples were analyzed for a metabolite of HDI, hexamethylene diamine (HDA), by gas chromatography-mass spectrometry (GC-MS). RESULTS: HDA was detected in four sprayers and one bystander out of 22 workers. No HDA was detected in the urine of unexposed subjects. CONCLUSIONS: Exposure to isocyanates still occurs despite the use of personal protective equipment and the use of a booth or extracted space. Health surveillance is likely to be required to provide feedback on the adequacy of controls even if such precautions are used and to identify cases of early asthma. Biological monitoring can provide a useful additional tool to assess exposure and the adequacy of controls in this group of exposed workers.   PMID:10615291

  13. Biological monitoring of genotoxic hazard in workers of the rubber industry.

    PubMed Central

    Moretti, M; Villarini, M; Scassellati-Sforzolini, G; Monarca, S; Libraro, M; Fatigoni, C; Donato, F; Leonardis, C; Perego, L

    1996-01-01

    Biological monitoring of genotoxic hazard in the rubber industry was performed in 19 male workers and 20 age-matched controls in a local health unit in northern Italy. Peripheral blood lymphocytes were analyzed for the presence of DNA damage (single-cell microgel-electrophoresis, or comet assay) and for cytogenetic parameters (sister chromatid exchanges and micronuclei frequency, and proliferative rate index). The following bioassays were performed in urine samples: a) mutagenicity test and concentration of thioethers as markers of exposure, and b) excretion of D-glucaric acid and 6-beta-hydroxycortisol (related to 17-hydroxycorticosteroid excretion) as indicators of the inductive status of the microsomal enzyme system (phase-I). The exposed subjects showed statistically higher mean values of 17-hydroxycorticosteroids and micronuclei and lower values of 6-beta-hydroxycortisol than controls, when taking cigarette smoking into account. The comet assay showed higher values for migration distance in exposed subjects than controls, although the differences were not significant at a p-value of 0.05. These findings suggest that industrial exposure in the rubber processing industry may cause genetic damage and may modify the activity level of some enzymes; these results should be considered with caution due to the small number of subjects enrolled. PMID:8781380

  14. Biological Monitoring of Human Exposure to Neonicotinoids Using Urine Samples, and Neonicotinoid Excretion Kinetics

    PubMed Central

    Harada, Kouji H.; Tanaka, Keiko; Sakamoto, Hiroko; Imanaka, Mie; Niisoe, Tamon; Hitomi, Toshiaki; Kobayashi, Hatasu; Okuda, Hiroko; Inoue, Sumiko; Kusakawa, Koichi; Oshima, Masayo; Watanabe, Kiyohiko; Yasojima, Makoto; Takasuga, Takumi; Koizumi, Akio

    2016-01-01

    Background Neonicotinoids, which are novel pesticides, have entered into usage around the world because they are selectively toxic to arthropods and relatively non-toxic to vertebrates. It has been suggested that several neonicotinoids cause neurodevelopmental toxicity in mammals. The aim was to establish the relationship between oral intake and urinary excretion of neonicotinoids by humans to facilitate biological monitoring, and to estimate dietary neonicotinoid intakes by Japanese adults. Methodology/Principal Findings Deuterium-labeled neonicotinoid (acetamiprid, clothianidin, dinotefuran, and imidacloprid) microdoses were orally ingested by nine healthy adults, and 24 h pooled urine samples were collected for 4 consecutive days after dosing. The excretion kinetics were modeled using one- and two-compartment models, then validated in a non-deuterium-labeled neonicotinoid microdose study involving 12 healthy adults. Increased urinary concentrations of labeled neonicotinoids were observed after dosing. Clothianidin was recovered unchanged within 3 days, and most dinotefuran was recovered unchanged within 1 day. Around 10% of the imidacloprid dose was excreted unchanged. Most of the acetamiprid was metabolized to desmethyl-acetamiprid. Spot urine samples from 373 Japanese adults were analyzed for neonicotinoids, and daily intakes were estimated. The estimated average daily intake of these neonicotinoids was 0.53–3.66 μg/day. The highest intake of any of the neonicotinoids in the study population was 64.5 μg/day for dinotefuran, and this was <1% of the acceptable daily intake. PMID:26731104

  15. Liquid chromatography of urinary porphyrins for the biological monitoring of occupational exposure to porphyrinogenic substances

    SciTech Connect

    Colombi, A.; Maroni, M.; Ferioli, A.; Valla, C.; Coletti, G.; Foa, V.

    1983-01-01

    Very sensitive and precise analytical methods for measuring total porphyrin excretion and the relative amounts of different porphyrins in urine are required in order to monitor the biological effects of porphyrinogenic substances in workers and the general population. Many analytical steps of a HPLC method for measuring porphyrins as methyl esters in urine have been perfected. Sensitivity is 0.1 microgram/1 for each type of porphyrin, and average recovery is 92% in the range of 50-450 micrograms/liter porphyrins. The coefficient of variation is 3.4% within a series and 12.5% between series. Chemical oxidation before analysis and appropriate storing of the samples are the key points in achieving high quality results. The urinary excretion of porphyrins in healthy male workers varies within the range 21 to 161 micrograms/liter (95% limits of a group of 78 subjects). Concomitant factors, like drug use or liver disorders, were found to alter urinary porphyrin excretion. The proposed method permits the detection of extremely small alterations in porphyrin excretion resulting from occupational exposure to industrial chemicals such as, for example, mild coproporphyrinuria or early stages of chemical porphyria induced by polyhalogenated arylhydrocarbons.

  16. Smart oxygen cuvette for optical monitoring of dissolved oxygen in biological blood samples

    NASA Astrophysics Data System (ADS)

    Dabhi, Harish; Alla, Suresh Kumar; Shahriari, Mahmoud R.

    2010-02-01

    A smart Oxygen Cuvette is developed by coating the inner surface of a cuvette with oxygen sensitive thin film material. The coating is glass like sol-gel based sensor that has an embedded ruthenium compound in the glass film. The fluorescence of the ruthenium is quenched depending on the oxygen level. Ocean Optics phase fluorometer, NeoFox is used to measure this rate of fluorescence quenching and computes it for the amount of oxygen present. Multimode optical fibers are used for transportation of light from an LED source to cuvette and from cuvette to phase fluorometer. This new oxygen sensing system yields an inexpensive solution for monitoring the dissolved oxygen in samples for biological and medical applications. In addition to desktop fluorometers, smart oxygen cuvettes can be used with the Ocean Optics handheld Fluorometers, NeoFox Sport. The Smart Oxygen Cuvettes provide a resolution of 4PPB units, an accuracy of less than 5% of the reading, and 90% response in less than 10 seconds.

  17. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway.

    PubMed

    Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien

    2015-10-27

    Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous in vitro studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the in situ monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX2 complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs.

  18. Biological monitoring for mercury within a community with soil and fish contamination.

    PubMed Central

    Harnly, M; Seidel, S; Rojas, P; Fornes, R; Flessel, P; Smith, D; Kreutzer, R; Goldman, L

    1997-01-01

    To assess the impact of elevated levels of inorganic mercury in soil and dust and organic mercury in fish, biological monitoring was conducted among Native Americans living next to an inactive mercury mine in Clear Lake, California. Of resident tribal members, 46% (n = 56) participated in biomonitoring. Urine mercury levels are equivalent to background, indicating that soil and dust exposures among study participants are not substantial. The average blood organic mercury level among study participants is 15.6 +/- 8.8 micrograms/l (n = 44), which is higher than levels reported by others among those who do not consume fish (2 micrograms/l). Consistent with results from other studies, a correlation between fish consumption and blood organic mercury is observed (p = 0.03). The margin between observed and established adverse effect levels for adults is examined for blood organic mercury and found to be less than 10-fold for 20% of the study population. Protective public health efforts for the study population and other similarly exposed populations, notably those who consume commercial fish products, are considered. Images Figure 1. PMID:9189708

  19. Responses to riparian restoration in the Spring Creek watershed, Central Pennsylvania

    USGS Publications Warehouse

    Carline, R.F.; Walsh, M.C.

    2007-01-01

    Riparian treatments, consisting of 3- to 4-m buffer strips, stream bank stabilization, and rock-lined stream crossings, were installed in two streams with livestock grazing to reduce sediment loading and stream bank erosion. Cedar Run and Slab Cabin Run, the treatment streams, and Spring Creek, an adjacent reference stream without riparian grazing, were monitored prior to (1991-1992) and 3-5 years after (2001-2003) riparian buffer installation to assess channel morphology, stream substrate composition, suspended sediments, and macroinvertebrate communities. Few changes were found in channel widths and depths, but channel-structuring flow events were rare in the drought period after restoration. Stream bank vegetation increased from 50% or less to 100% in nearly all formerly grazed riparian buffers. The proportion of fine sediments in stream substrates decreased in Cedar Run but not in Slab Cabin Run. After riparian treatments, suspended sediments during base flow and storm flow decreased 47-87% in both streams. Macroinvertebrate diversity did not improve after restoration in either treated stream. Relative to Spring Creek, macroinvertebrate densities increased in both treated streams by the end of the posttreatment sampling period. Despite drought conditions that may have altered physical and biological effects of riparian treatments, goals of the riparian restoration to minimize erosion and sedimentation were met. A relatively narrow grass buffer along 2.4 km of each stream was effective in improving water quality, stream substrates, and some biological metrics. ?? 2007 Society for Ecological Restoration International.

  20. The practicalities and pitfalls of establishing a policy-relevant and cost-effective soil biological monitoring scheme.

    PubMed

    Faber, Jack H; Creamer, Rachel E; Mulder, Christian; Römbke, Jörg; Rutgers, Michiel; Sousa, J Paulo; Stone, Dorothy; Griffiths, Bryan S

    2013-04-01

    A large number of biological indicators have been proposed over the years for assessing soil quality. Although many of those have been applied in monitoring schemes across Europe, no consensus exists on the extent to which these indicators might perform best and how monitoring schemes can be further optimized in terms of scientific and policy relevance. Over the past decade, developments in environmental monitoring and risk assessment converged toward the use of indicators and endpoints that are related to soil functioning and ecosystem services. In view of the proposed European Union (EU) Soil Framework Directive, there is an urgent need to identify and evaluate indicators for soil biodiversity and ecosystem services. The recently started integrated project, Ecological Function and Biodiversity Indicators in European Soils (EcoFINDERS), aims to address this specific issue within the EU Framework Program FP7. Here, we 1) discuss how to use the concept of ecosystem services in soil monitoring, 2) review former and ongoing monitoring schemes, and 3) present an analysis of metadata on biological indicators in some EU member states. Finally, we discuss our experiences in establishing a logical sieve approach to devise a monitoring scheme for a standardized and harmonized application at European scale.

  1. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  2. Ship Creek bioassessment investigations

    SciTech Connect

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  3. Tillman Creek Mitigation Site As-Build Report.

    SciTech Connect

    Gresham, Doug

    2009-05-29

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  4. Undoing the Past: Restoration in the Monday Creek Watershed.

    ERIC Educational Resources Information Center

    Reed, Mary

    2000-01-01

    Monday Creek Restoration Project is a collaborative effort of 20 organizations to clean up an Appalachian Ohio stream fouled for generations by acid mine drainage and industrial waste. The grassroots effort has involved state and federal agencies, VISTA volunteers, community volunteers, and college students who monitor the watershed and share…

  5. Streamflow, water-quality, and biological data for three tributaries to Lake Houston near Houston, Texas, 2002-04

    USGS Publications Warehouse

    East, Jeffery W.; Sneck-Fahrer, Debra A.

    2005-01-01

    During 2002-04 the U.S. Geological Survey, in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, conducted a systematic monitoring study on Lake Creek, Peach Creek, and Caney Creek near Houston, Texas, to assess the current water-quality and biological conditions in the three tributaries to Lake Houston. Streamflow and water-quality data (chloride and sulfate, nutrients, biochemical oxygen demand, phytoplankton, indicator bacteria, pesticides, and suspended sediment) were collected at 11 sites, and fish and benthic-macroinvertebrate data were collected at eight of the 11 sites. Graphical comparisons of concentration data for eight water-quality constituents by watershed indicate relatively large differences in concentration distribution among all three watersheds for nitrite plus nitrate nitrogen (medians: Lake, 0.20; Peach, 0.14; and Caney, 0.32 mg/L). Graphical comparisons of these data by season show consistency in distribution of constituent concentrations. The distributions of chlorophyll-a in summer and E. coli bacteria in winter each contain a few relatively large concentrations. Fifty-six species of fish from 15 major families were collected during the study. For all sites except one on Lake Creek, the majority of fish collected were sunfish; minnows dominated at the one Lake Creek site. Invertivores (mostly sunfish and minnows) made up more than 65 percent of the trophic structure, omnivores were the next largest percentage, and piscivores the smallest percentage. Ecoregion-specific index of biotic integrity (ECO-IBI) scores (averages of samples) for three of four upstream Lake Creek sites indicate intermediate aquatic life use, and the most downstream site, high aquatic life use. ECO-IBI scores for the Peach Creek and Caney Creek sites indicate high aquatic life use. The maximum number of aquatic-insect taxa (51) were collected at a site on Peach Creek near Cleveland, and the minimum number of aquatic

  6. Development of a selected reaction monitoring mass spectrometry-based assay to detect asparaginyl endopeptidase activity in biological fluids

    PubMed Central

    Walker, Michael J.; Gray, Oliver J.; Parker, Catriona; Holland, Mark; Williamson, Andrew J.K.; Pierce, Andrew; Unwin, Richard D.; Krishnan, Shekhar

    2016-01-01

    Cancer Biomarkers have the capability to improve patient outcomes. They have potential applications in diagnosis, prognosis, monitoring of disease progression and measuring response to treatment. This type of information is particularly useful in the individualisation of treatment regimens. Biomarkers may take many forms but considerable effort has been made to identify and quantify proteins in biological fluids. However, a major challenge in measuring protein in biological fluids, such as plasma, is the sensitivity of the assay and the complex matrix of proteins present. Furthermore, determining the effect of proteases in disease requires measurement of their activity in biological fluids as quantification of the protein itself may not provide sufficient information. To date little progress has been made towards monitoring activity of proteases in plasma. The protease asparaginyl endopeptidase has been implicated in diseases such as breast cancer, leukaemia and dementia. Here we describe a new approach to sensitively and in a targeted fashion quantify asparaginyl endopeptidase activity in plasma using a synthetic substrate peptide protected from nonspecific hydrolysis using D-amino acids within the structure. Our selected reaction monitoring approach enabled asparaginyl endopeptidase activity to be measured in human plasma with both a high dynamic range and sensitivity. This manuscript describes a paradigm for future development of assays to measure protease activities in biological fluids as biomarkers of disease. PMID:27683124

  7. Monitoring of the effect of biological activity on the pedogenesis of a constructed Technosol

    NASA Astrophysics Data System (ADS)

    Salifou Jangorzo, Nouhou; Watteau, Françoise; Schwartz, Christophe

    2014-05-01

    Pedogenesis is the set of steps, which lead to the formation and evolution of soils under pedogenetic factors and processes. They may be described quantitatively for a modeling end. For this purpose, constructed Technosols are candidates to be studied, because their initial composition is well described. Furthermore, among pedogenetic factors, living organisms are known to play a major role in soil formation. The most challenging objective of our work is then to monitor in situ the effect of biological agents on soil evolution. However, soil pedogenesis is known to be dynamic, therefore visualizing in situ plant roots or soil fauna in contact with soil, will help understand better how pedogenesis occurs realistically. The aim of this work is to study in situ, visually and quantitatively, the evolution of a constructed Technosol pedogenesis using an innovative dispositive of observation on cosmes. The Technosol is constructed in three horizons, from bottom to top we have: gravels, treated industrial soil and paper mill sludge (2/3, 1/3 masse ratio) and green waste compost. The soil is put into a cosme equipped with image acquisition devices. Factors are organized into two modalities each repeated three times. "Plant", where five seeds of white lupin are sown in each cosme. "Plant and Fauna" where six epigeic adult earthworms and five seeds of white lupin are inoculated, and a "control". A moisture of 60 - 80 % field capacity is maintained in all modalities. Results show that roots grow at 10 mm.day-1 speed during the first three weeks. Roots increase porosity and aggregation with time. Earthworms explore the soil randomly by creating and filling burrows. At a second time, they create their burrows preferentially along plant roots. Roots and earthworms contribute to the rapid increase of porosity (9.81 times control at 268 days) and aggregation (10.15 times control at 268 days) during time, in the early stages of pedogenesis. In situ and non-destructive observation

  8. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort Patrick Henry... Land Management Plan (NTRLMP) for the 4,933 acres of TVA-managed public land on Beaver Creek, Clear... the Watauga River. Beaver Creek and Clear Creek reservoirs are on tributaries within the South...

  9. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments

    EPA Science Inventory

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...

  10. Biological monitoring involving children exposed to mercury from a barometer in a private residence.

    PubMed

    Scheepers, Paul T J; van Ballegooij-Gevers, Marieke; Jans, Henk

    2014-12-15

    A small spill of approximately 3 mL of mercury from a broken barometer in a residential setting resulted in blood values of 32 μg/L in a boy of 9 months and 26 μg/L in a girl of 2.5 years in samples collected within 6h after the start of the incident. A nanny who attempted to remove the spill had a blood mercury value of 20 μg/L at the same time point. These elevated blood values were attributed to inhalation rather than dermal uptake or ingestion. Exposure was aggravated by the use of a vacuum cleaner in an early attempt to remove the spill and incomplete decontamination of involved persons, leading to a continuation of exposure. Over a period of three months general cleaning was followed by targeted cleaning of hot spots until the indoor air mercury levels reached a median value of 0.090 μg/m(3) with a range of 0.032-0.140 μg/m(3). Meanwhile the family was staying in a shelter home. Human biological monitoring (HBM) was motivated by the complex exposure situation and the involvement of young children. Initially high blood values triggered alertness for clinical signs of intoxication, that (as it turned out) were not observed in any of the exposed individuals. Despite continued exposure from hair and clothes, within six weeks after the incident, blood levels returned to a background level normally seen in children. HBM contributed to reassurance of the parents of the young children that quick elimination of the mercury did not require medical treatment.

  11. Biological monitoring and questionnaire for assessing exposure to ethylenebisdithiocarbamates in a multicenter European field study.

    PubMed

    Fustinoni, S; Campo, L; Liesivuori, J; Pennanen, S; Vergieva, T; van Amelsvoort, Lgpm; Bosetti, C; Van Loveren, H; Colosio, C

    2008-09-01

    This study deals with pesticide exposure profile in some European countries with a specific focus on ethylenebisdithiocarbamates (EBDC). In all, 55 Bulgarian greenhouse workers, 51 Finnish potato farmers, 48 Italian vineyard workers, 42 Dutch floriculture farmers, and 52 Bulgarian zineb producers entered the study. Each group was matched with a group of not occupationally exposed subjects. Exposure data were gained through self-administered questionnaires and measuring ethylenethiourea (ETU) in two spot urine samples collected, respectively, before the beginning of seasonal exposure (T0), and after 30 days, at the end of the exposure period (T30). Controls underwent a similar protocol. Study agriculture workers were involved in mixing and loading pesticides, application of pesticide mixture with mechanical or manual equipments, re-entry activities, and cleaning equipments. Chemical workers were involved in synthesis, quality controls, and packing activities. The number of pesticides to whom these subjects were exposed varied from one (zineb production) to eight (potato farmers). The use of personal protective devices was variegate and regarded both aerial and dermal penetration routes. EBDC exposure, assessed by T30 urinary ETU, was found to follow the order: greenhouse workers, zineb producers, vineyard workers, potato farmers, floriculture farmers with median levels of 49.6, 23.0, 11.8, 7.5, and 0.9 microg/g creatinine; the last group having ETU at the same level of controls (approximately 0.5 microg/g creatinine). Among agriculture workers, pesticide application, especially using manual equipment, seems to be the major determinant in explaining internal dose. Although the analysis of self-administered questionnaires evidenced difficulties especially related to lack and/or poor quality of reported data, biological monitoring confirms to be a powerful tool in assessing pesticide exposure.

  12. Biologic monitoring of exposure to organophosphorus pesticides in 195 Italian children.

    PubMed

    Aprea, C; Strambi, M; Novelli, M T; Lunghini, L; Bozzi, N

    2000-06-01

    One hundred ninety-five 6- to 7-year-old children who lived in the municipality of Siena (Tuscany, Italy), underwent biologic monitoring to evaluate urinary excretion of several alkylphosphates that are metabolites of organophosphorus pesticides. We evaluated dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP). We obtained urine samples taken in the children's schools, and each sample was accompanied by a questionnaire about lifestyle and dietary habits. We found DMP and DMTP in detectable concentrations in the greatest number of samples (96 and 94%, respectively). The DMP values were geometric mean (GM) 116.7, [geometric standard deviation (GSD) 2.5], and a range of 7.4-1,471.5 nmol/g creatinine. The corresponding DMTP values were GM 104.3 (GSD 2.8) and a range of 4.0-1,526.0 nmol/g creatinine. DMDTP, DEP, DETP, and DEDTP concentrations were GM 14.1, (GSD 3.0), and a range of 3.3-754.6 nmol/g creatinine in 34% of the children; GM 33.2, (GSD 2.4), and a range of 5.1-360.1 nmol/g creatinine in 75% of the children; GM 16.0, (GSD 2.9), and a range of 3.1-284.7 in 48% of the children; and GM 7.7, (GSD 2.1), and a range of 2.3-140.1 in 12% of the children, respectively. The significant variable for urinary excretion of these metabolites in children was pest control operations performed inside or outside the house in the preceding month; however, the presence of a vegetable garden near the house rarely emerged. The urinary excretion of alkylphosphates in children was significantly higher than in a group of the adult population resident in the same province.

  13. GEE CREEK WILDERNESS, TENNESSEE.

    USGS Publications Warehouse

    Epstein, Jack B.; Gazdik, Gertrude C.

    1984-01-01

    On the basis of geologic, geochemical, and mine and prospect surveys, it was determined that the Gee Creek Wilderness, Tennessee has little promise for the occurrence of mineral resources. Iron ore was formerly mined, but the deposits are small, have a high phosphorous content, and are inaccessible. Shale, suitable for brick or lightweight aggregate, and sandstone, which could be utilized for crushed stone or sand, are found in the area, but are also found in areas closer to potential markets. The geologic setting precludes the presence of oil and gas resources in the surface rocks, but the possibility of finding natural gas at depth below the rocks exposed in the area cannot be discounted. Geophysical exploration would be necessary to define the local structure in rocks at depth to properly evaluate the potential of the area for gas.

  14. PINEY CREEK WILDERNESS, MISSOURI.

    USGS Publications Warehouse

    Pratt, Walden P.; Ellis, Clarence

    1984-01-01

    The Piney Creek Wilderness in southwest Missouri was investigated by geologic, geochemical, and mineral-occurrence surveys. These is no evidence of metallic mineral deposits in the rock units exposed at the surface in the wilderness, but the entire area has a probable potential for significant zinc-lead deposits at depths of several hundred feet. A probable potential also exists for a small to moderate-sized iron ore deposit at a depth of at least 2100 ft along the northwest side of the wilderness. Evaluation of these potentials would require deep drilling, and in the case of the possible iron ore deposit, a detailed magnetic survey. No energy resource potential was identified within this area.

  15. Coyote Creek Trash Reduction Project: Clean Creeks, Healthy Communities

    EPA Pesticide Factsheets

    Information about the SFBWQP Coyote Creek Trash Reduction Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  16. 1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS GLACIER VISIBLE IN BACKGROUND. - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA

  17. Alameda Creeks Healthy Watersheds Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Alameda Creeks Healthy Watersheds Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resour

  18. Scotch Creek Wildlife Area 2007-2008 Annual Report.

    SciTech Connect

    Olson, Jim

    2008-11-03

    The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 on Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.

  19. Hoe Creek 1990 quarterly sampling cumulative report

    SciTech Connect

    Crader, S.E.; Huntington, G.S.

    1991-03-01

    Groundwater samples were collected and analyzed for benzene and for total phenols three times during 1990. This report summarizes the results of these sampling events and compares the results with those obtained in previous years. Possible further options for remediation of the Hoe Creek site was addressed. Three underground coal gasification (UCG) burns were performed by Lawrence Livermore National Laboratory for the US Department of Energy in 1976, 1977, and 1979 at the Hoe Creek site, which is about 20 miles south of Gillette, Wyoming. As a result of these burns, there has been considerable contamination of groundwater by various organic compounds. There have been three efforts at remediating this situation. In 1986 and again in 1987, contaminated water was pumped out, treated, and reinjected. In 1989, the water was pumped, treated, and sprayed into the atmosphere. Benzene and total phenols have been monitored at various monitoring wells as the site during 1990. The highest detected benzene concentration in 1990 was 220 {mu}g/L, and the highest total phenols concentration was 430 {mu}g/L. It is apparent that contamination is still above baseline levels, although the concentration of total phenols is far less than immediately after the burns. The burned coal seams are still releasing organic compounds into the groundwater that passes through them.

  20. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an...) 805-1469. Transferees: Mr. Bernard H. Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek...

  1. Hydrographic characterization of two tidal creeks with implications for watershed land use, flushing times, and benthic production

    USGS Publications Warehouse

    Buzzelli, C.; Holland, Austin F.; Sanger, D.M.; Conrads, P.C.

    2007-01-01

    Many coastal ecosystems are undergoing anthropogenic stress from large increases in population and urbanization. In many regions changes in freshwater and material inputs to the coastal zone are altering the biogeochemical and biological capacities of ecosystems. Despite increased watershed inputs, large tidal volumes and flushing indicative of macrotidal estuaries can modulate the fate of introduced materials masking some of the symptoms of eutrophication. The Land Use Coastal Ecosystem Study (LU-CES) examined linkages between land use and environmental properties of Malind and Okatee Creeks in South Carolina from 2001 to 2004. The objectives of this particular study were to assess the hydrography of the two macrotidal creek ecosystems, explore differences in dissolved oxygen (DO), and develop a better understanding of the variations in primary and benthic secondary production in southeastern creek ecosystems. Depth, pH, salinity, and DO were reduced and more variable in Malind Creek than in Okatee Creek, although both creeks had strong semidiurnal frequencies in salinity time signatures. While time series analyses of DO saturation in Malind Creek revealed a dominant semidiurnal pattern, Okatee Creek had a distinctly diel DO pattern. The strongly semidiurnal fluctuations in DO and reduced flushing time indicated that biological processes were not fast enough to influence DO in Malind Creek. The Okatee Creek system had a much greater storage volume, a wider marsh, and a dominant 25-h DO frequency. These attributes contributed to an estimated 8-10 times more phytoplankton-based carbon in Okatee Creek and twice the annual benthic production. As expected from their proximity to the upland, low surface area, and high organic content, both ecosystems were net heterotrophic. This fundamental understanding of tidal creek hydrography is being used to help define linkages among differential watershed land uses, flushing characteristics, and levels of biological production

  2. Ground-Water Reconnaissance of the Bijou Creek Watershed, South Lake Tahoe, California, June-October 2003

    DTIC Science & Technology

    2005-01-01

    water during the summer of 2003 and in samples from the Lake Tahoe Interagency Monitoring Program ground- water network during the summer Figure 6...Bijou Creek watershed, California, June–October 2003 and for Lake Tahoe Interagency Monitoring Program ground- water network sampled during summer of...the Bijou Creek watershed during the summer of 2003 and from the Lake Tahoe Interagency Monitoring Pro- gram (LTIMP) ground- water network sites

  3. Hydrology of Johnson Creek Basin, a Mixed-Use Drainage Basin in the Portland, Oregon, Metropolitan Area

    USGS Publications Warehouse

    Williams, John S.; Lee, Karl K.; Snyder, Daniel T.

    2010-01-01

    Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the Portland, Oregon, metropolitan area and through rural and agricultural land in unincorporated Multnomah and Clackamas Counties. Johnson Creek has had a history of persistent flooding and water-quality problems. The U.S. Geological Survey (USGS) has conducted streamflow monitoring and other hydrologic studies in the basin since 1941.

  4. Assessment of chronic toxicity from stormwater runoff in Lincoln Creek, Milwaukee, WI

    SciTech Connect

    Kleist, J.; Crunkilton, R.

    1995-12-31

    Stormwater runoff is believed to be responsible for a severely degraded biotic community in Lincoln Creek, a stream which drains portions of metropolitan Milwaukee. A previous study using Ceriodaphnia dubia and Pimephales promelas indicated little or no acute toxicity could be attributed to stormwater runoff. The purpose of this study was to assess the potential for chronic toxicity in the stream during periods of stormwater runoff. Reproduction and survival in Daphnia magna, and growth and survival in P. promelas were monitored to assess chronic effects. Seven consecutive 14 day tests were performed between June and September, 1994, in eighteen flow-through aquaria housed within a US Geological Survey gauging station located adjacent to Lincoln Creek. Mortality in D. magna consistently did not occur before day 4 of exposure, but averaged 64% at day 14. Reproduction in D. magna and growth in P. promelas in surviving individuals was not significantly reduced; all effects were manifested as mortality. Results of data analysis after 14 days of exposure contrast markedly with analysis made earlier in the same test. Statistical interpretation of the mortality data at typical endpoints of 48 hours for invertebrates and 96 hours for fish failed to identify adverse impacts of stormwater runoff the authors observed in longer exposures. Short-term toxicity tests appear insensitive to the detection of contaminant related effects. Long-term tests (greater than 7 days) were needed to identify adverse biological impacts that could in part explain the severely degraded biotic community of this urban stream.

  5. Exploring the MACH Model's Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms.

    PubMed

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of the model in an undergraduate biology classroom as an educational tool to address some of the known challenges. To find out how well students' written explanations represent components of the MACH model before and after they were taught about it and why students think the MACH model was useful, we conducted an exploratory multiple case study with four interview participants. We characterize how two students explained biological mechanisms before and after a teaching intervention that used the MACH components. Inductive analysis of written explanations and interviews showed that MACH acted as an effective metacognitive tool for all four students by helping them to monitor their understanding, communicate explanations, and identify explanatory gaps. Further research, though, is needed to more fully substantiate the general usefulness of MACH for promoting students' metacognition about their understanding of biological mechanisms.

  6. Second report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    SciTech Connect

    Smith, J.G.; Adams, S.M.; Hinzman, R.L.; Kszos, L.A.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Southworth, G.R.; Crumby, W.D.

    1994-03-01

    On September 11, 1986, a modified National Pollutant Discharge Elimination System permit was issued for the Oak Ridge Gaseous Diffusion Plant (ORGDP; now referred to as the Oak Ridge K-25 Site), a former uranium-enrichment production facility. As required in Part III of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed for the biological monitoring of Mitchell Branch (K-1700 stream) and submitted for approval to the US EPA and the Tennessee Department of Environment and Conservation. The plan described biomonitoring activities that would be conducted over the duration of the permit. The objectives of the BMAP are to demonstrate that the effluent limitations established for the Oak Ridge K-25 Site protect and maintain the use of Mitchell Branch for growth and propagation of fish and other aquatic life, and to document the effects on stream biota resulting from operation of major new pollution abatement facilities. The BMAP consists of four tasks: ambient toxicity testing; bioaccumulation studies; biological indicator studies; and ecological surveys of stream communities, including benthic macroinvertebrates and fish. This document is the second in a series of reports presenting the results of the studies that were conducted over various periods of time between August 1987 and June 1990.

  7. A Cell-Based Systems Biology Assessment of Human Blood to Monitor Immune Responses after Influenza Vaccination

    PubMed Central

    Hoek, Kristen L.; Samir, Parimal; Howard, Leigh M.; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M.; Floyd, Kyle A.; Guo, Yan; Shyr, Yu; Levy, Shawn E.; Joyce, Sebastian; Edwards, Kathryn M.; Link, Andrew J.

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses. PMID:25706537

  8. A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination.

    PubMed

    Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.

  9. Function of terahertz spectra in monitoring the decomposing process of biological macromolecules and in investigating the causes of photoinhibition.

    PubMed

    Qu, Yuangang; Zhang, Shuai; Lian, Yuji; Kuang, Tingyun

    2016-10-31

    Chlorophyll a and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz (THz) and visible range spectra of chlorophyll a and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll a and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll a and β-carotene. The absorption spectra of chlorophyll a in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.

  10. Is there potential for therapeutic drug monitoring of biologic agents in rheumatoid arthritis?

    PubMed

    Bastida, Carla; Ruíz, Virginia; Pascal, Mariona; Yagüe, Jordi; Sanmartí, Raimon; Soy, Dolors

    2016-12-19

    The use of biologics has significantly changed the management of rheumatoid arthritis over the last decade, becoming the cornerstone treatment for many patients. The current therapeutic arsenal consists of just under 10 biologic agents, with four different mechanisms of action. Several studies have demonstrated a large interindividual pharmacokinetic variability, which translates to unpredictability in clinical response among individuals. The present review focuses on the pharmacokinetics and pharmacodynamics of biologic agents approved for rheumatoid arthritis. The literature relating to their concentration-effect relationship and the use of pharmacokinetic-pharmacodynamic modelling to optimize drug regimens is analysed. Due to the scarcity and complexity of these studies, the current dosing strategy is based on clinical indexes/aspects. In general, dose individualization for biologics should be implemented increasingly in clinical practice as there is a direct benefit for treated rheumatoid arthritis patients. Moreover, there is an indirect benefit in terms of cost-effectiveness.

  11. 2016 RFA for Great Lakes Long-Term Biology Monitoring Program: Phytoplankton Component

    EPA Pesticide Factsheets

    This Request for Applications solicits applications from eligible entities for a cooperative agreement to be awarded for a project to continue the long-term monitoring of phytoplankton in the open waters of the Great Lakes.

  12. Biological monitoring of occupational exposure to isoflurane by measurement of isoflurane exhaled breath.

    PubMed

    Prado, C; Tortosa, J A; Ibarra, I; Luna, A; Periago, J F

    1997-01-01

    The relationship between isoflurane environmental concentrations in operating rooms and the corresponding isoflurane concentration in the exhaled air of the operating personnel at the end of the exposure has been investigated. Isoflurane was retained in an adsorbent cartridge and after thermal desorption the concentration was estimated by gas chromatography. Significant correlation between environmental and exhaled air isoflurane concentrations allowed the establishment of a biological exposure index and biological exposure limits corresponding to proposed atmospheric threshold values.

  13. Hydrologic data for the drainage basins of Chatfield and Cherry Creek Lakes, Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Gibbs, J.W.; Arnold, L.M.; Reed, R.L.

    1983-01-01

    Chatfield and Cherry Creek Lakes are flood control lakes constructed by the U.S. Army Corps of Engineers and leased to the Colorado Division of Parks and Recreation. Both lakes are in the Denver metropolitan area and provide a variety of recreational activities, including boating, camping, fishing, picnicking, and swimming. The projected increase of urban development in the drainage basins of Chatfield and Cherry Creek lakes could increase the constituent loads delivered to the lakes. Due to the eutrophic condition of Cherry Creek Lake and the potential eutrophic condition of Chatfield Lake, increased constituent loads could affect the suitability of the lakes for recreation. A monitoring program was started to determine the constituent loads of the drainage basins to both lakes. A network of monitoring stations was established to collect ambient water quality samples, storm runoff water quality samples, precipitation, and stream discharge. In the Cherry Creek basin 12 observation wells were established in the alluvium upgradient from Cherry Creek lake. Water levels and water quality data were collected to determine the quantity and quality of groundwater entering Cherry Creek lake. Data were collected from January through December 1982. The data may be used to evaluate the present and projected impact of urbanization in the drainage basins and the effect of increased constituent loads delivered to Chatfield and Cherry Creek lakes. (Author 's abstract)

  14. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    USGS Publications Warehouse

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  15. [Methodological aspects in environmental and biological monitoring of exposure to low doses of benzene: problems and possible solutions].

    PubMed

    Tranfo, Giovanna; Paci, Enrico; Fustinoni, Silvia; Barbieri, Anna; Carrieri, Mariella

    2013-01-01

    This paper aims to examine some methods to measure human exposure to benzene, both in life and occupational environments, through environmental and biological monitoring, examining the critical issues and optimal conditions of use. The overall performance of environmental monitoring, from the analytical point of view, strongly depend on the choice of an appropriate method of sampling and analysis. Urinary SPMA and t, t-MA are the biomarkers listed by ACGIH to evaluate occupational exposure: most of the recent studies use HPLC with tandem mass spectrometry, but since t, t-MA is present in the urine in larger quantities it is also determinable with UV detectors. The urinary benzene is an index not officially included in the list of the ACGIH BEIs, but it is useful to assess exposure and benzene at low concentrations, that most frequently are found today in the occupational and life environments.

  16. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments.

    PubMed

    Darling, John A; Mahon, Andrew R

    2011-10-01

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to improve on traditional monitoring approaches by enhancing detection sensitivity, reducing analytical turnaround times and monitoring costs, and increasing specificity of target identifications. However, despite the promise of DNA-based monitoring methods, the adoption of these tools in decision-making frameworks remains challenging. Here, rather than explore technical aspects of method development, we examine impediments to effective translation of those methods into management contexts. In addition to surveying current use of DNA-based tools for aquatic invasive species monitoring, we explore potential sources of uncertainty associated with molecular technologies and possibilities for limiting that uncertainty and effectively communicating its implications for decision-making. We pay particular attention to the recent adoption of DNA-based methods for detection of invasive Asian carp species in the United States Great Lakes region, as this example illustrates many of the challenges associated with applying molecular tools to achieve desired management outcomes. Our goal is to provide a useful assessment of the obstacles associated with integrating DNA-based methods into aquatic invasive species management, and to offer recommendations for future efforts aimed at overcoming those obstacles.

  17. Determination of aluminum and phosphorus in biological materials by reactor activation analysis using germanium as integral flux monitor and comparator.

    PubMed

    Furnari, J C; Cohen, I M

    1994-01-01

    A method for determination of aluminum and phosphorus in biological materials, based on activation in a nuclear reactor and measurement of 28Al, produced by the 27Al(n, gamma)28Al and 31P(n, alpha)28Al reactions, is described. Irradiations in the undisturbed and epicadmium spectra provide a two-equation system in order to determine the contributions of aluminum and phosphorus to the total activities. Germanium is used as an integral flux monitor and comparator, through the reactions: 74Ge(n, gamma)75Ge, 76Ge(n, gamma)77Ge, and 72Ge(n,p)72Ga.

  18. Asotin Creek Model Watershed Plan

    SciTech Connect

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  19. 76 FR 35379 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island, SC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Department of the Army, Corps of Engineers 33 CFR Part 334 Archers Creek, Ribbon Creek, and Broad River; U.S... fishing shops. The public will continue to be able to use these portions of Archers Creek, Ribbon Creek.... 3). 2. Revise Sec. 334.480 to read as follows: Sec. 334.480 Archers Creek, Ribbon Creek, and...

  20. Hulburt Creek Hydrology, Southwestern Wisconsin

    USGS Publications Warehouse

    Gebert, Warren A.

    1971-01-01

    The purpose of this study was to determine the hydrologic characteristics of Hulburt Creek, Sauk County, Wis., in order to evaluate a proposed reservoir. The streamflow characteristics estimated are the low flow, monthly flow, and inflow flood. The study was done by the U.S. Geological Survey in cooperation with the Wisconsin Department of Natural Resources. The following estimates are for the point on Hulburt Creek at the proposed Dell Lake damsite near Wisconsin Dells. The drainage area is 11.2 square miles.

  1. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Willow Creek. 9.85 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  2. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Willow Creek. 9.85 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  3. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  4. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  5. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  6. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek bridge, at Islamorada, Florida, shall open...

  7. Mercury accumulation in biota of Thunder Creek, Saskatchewan

    SciTech Connect

    Munro, D.J.; Gummer, W.D.

    1980-12-01

    Collection of biological organisms was undertaken to investigate the bioaccumulation of mercury in the food chain, the results of which are reported. Two sites were selected on Thunder Creek; the control or background site, site number 2, is located approximately 2.5 km upstream, from site number 1. The selection of organisms for analysis was based on the presence and abundance of each at both locations. Only crayfish (Orconcetes virilis) pearl dace (Semotilus margarita) and brook stickleback (Culaea inconstans) were found to be sufficiently abundant. The importance of the data obtained is the significant difference in concentration between the upstream and downstream sites on Thunder Creek. This difference shows that more mercury is available to the biological community at site number 1 than at site number 2 confirming that mercury in the contaminated sediments is being methylated and taken up into the food chain.

  8. Capacity for DNA-barcode based taxonomy in support of Great Lakes biological monitoring

    EPA Science Inventory

    Enumerating organisms collected via nets and sediment grabs is a mainstay of aquatic ecology. Since morphological taxonomy can require considerable resources and expertise, DNA barcode-based identification of mixed-organism samples offers a valuable tool in support of biological...

  9. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to malaysian freshwater ecosystems.

    PubMed

    Omar, Wan Maznah Wan

    2010-12-01

    Algal communities possess many attributes as biological indicators of spatial and temporal environmental changes. Algal parameters, especially the community structural and functional variables that have been used in biological monitoring programs, are highlighted in this document. Biological indicators like algae have only recently been included in water quality assessments in some areas of Malaysia. The use of algal parameters in identifying various types of water degradation is essential and complementary to other environmental indicators.

  10. Perspectives on the Use of Algae as Biological Indicators for Monitoring and Protecting Aquatic Environments, with Special Reference to Malaysian Freshwater Ecosystems

    PubMed Central

    Omar, Wan Maznah Wan

    2010-01-01

    Algal communities possess many attributes as biological indicators of spatial and temporal environmental changes. Algal parameters, especially the community structural and functional variables that have been used in biological monitoring programs, are highlighted in this document. Biological indicators like algae have only recently been included in water quality assessments in some areas of Malaysia. The use of algal parameters in identifying various types of water degradation is essential and complementary to other environmental indicators. PMID:24575199

  11. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant, January--December 1995

    SciTech Connect

    Kszos, L.A.

    1996-04-01

    The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (benthic macroinvertebrates, fish). This report focuses on ESD activities occurring from Jan. 1995 to Dec. 1995, although activities conducted outside this period are included as appropriate.

  12. Environmental monitoring and assessment program (EMAP) laboratory methods manual estuaries. Volume 1. Biological and physical analyses

    SciTech Connect

    Strobel, C.J.; Klemm, D.J.; Lobring, L.B.; Eichelberger, J.W.; Alford-Stevens, A.

    1995-08-01

    This document is intended to document analytical methods for use by laboratories conducting analyses for the Environmental Monitoring and Assessment Program-Estuaries. This document is volume I of a two-part series. The second volume of the EMAP-Estuaries Laboratory Methods Manual presents methods for the chemical analyses of sediments and tissue.

  13. An integrated approach to detecting and monitoring chemicals of biological concern in Great Lakes ecosystems

    EPA Science Inventory

    Chemical monitoring strategies are most effective for those chemicals whose hazards are well understood and for which sensitive and cost effective analytical methods are available. Unfortunately, such chemicals represent a minor fraction of those that may currently occur in the e...

  14. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    NASA Astrophysics Data System (ADS)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  15. First report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    SciTech Connect

    Smith, J.G.; Adams, S.M.; Kszos, L.A.; Ryon, M.G.; Southworth, G.R.; Loar, J.M.

    1993-08-01

    A modified National Pollutant Discharge Elimination System permit was issued to the Oak Ridge Gaseous Diffusion Plant (now referred to as the Oak Ridge K-25 Site) on September 11, 1986. The Oak Ridge K-25 Site is a former uranium-enrichment production facility, which is currently managed by Martin Marietta Energy Systems, Inc. for the US Department of Energy. As required in Part III (L) of that permit, a plan for the biological monitoring of Mitchell Branch (K-1700 stream) was prepared and submitted for approval to the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation [formerly the Tennessee Department of Health and Environment (Loar et al. 1992b)]. The K-25 Site Biological Monitoring and Abatement Program (BMAP) described biomonitoring activities that would be conducted over the duration of the permit. Because it was anticipated that the composition of existing effluent streams entering Mitchell Branch would be altered shortly after the modified permit was issued, sampling of the benthic invertebrate and fish communities (Task 4 of BMAP) was initiated in August and September 1986 respectively.

  16. Monitoring global rates of biodiversity change: challenges that arise in meeting the Convention on Biological Diversity (CBD) 2010 goals

    PubMed Central

    Dobson, Andy

    2005-01-01

    By agreeing to strive for ‘a significant reduction in the current rate of loss of biological diversity’ by the year 2010, political leaders at the 2002 World Summit on Sustainable Development (held in Johannesburg, South Africa) presented conservation scientists with a great opportunity, but also one of their most significant challenges. This is an extremely exciting and laudable development, but this reporting process could be made yet more powerful if it incorporates, from the outset, independent scientific assessment of the measures, how they are analysed, and practical ways of plugging key gaps. This input is crucial if the measures are to be widely owned, credible and robust to the vigorous external scrutiny to which they will doubtless be exposed. Assessing how rates of biodiversity loss have changed from current levels by 2010 will require that a given attribute has been measured at least three times; however, most habitats, species, populations and ecosystem services have not been assessed even once. Furthermore, the best data on which to base estimates of biodiversity loss are biased towards the charismatic vertebrate species; unfortunately, these supply minimal services to the human economy. We have to find ways to redress this taxonomic imbalance and expand our analyses to consider the vast diversity of invertebrate, fungal and microbial species that play a role in determining human health and economic welfare. In the first part of this paper I will use examples from local and regional monitoring of biological diversity to examine the desired properties of ‘ideal indicators’. I will then change focus and examine an initial framework that asks how we might monitor changes in the economic goods and services provided by natural ecosystems. I will use this exercise to examine how the set of possible indicators given by the Convention on Biological Diversity might be modified in ways that provide a more critical assay of the economic value of

  17. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    NASA Technical Reports Server (NTRS)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  18. Water table fluctuations near an incised stream, Walnut Creek, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Zhang, Y.-K.; Drobney, P.

    2004-01-01

    Incised channels are common features in many agricultural watersheds, but the effects of channel incision on riparian water table conditions have been poorly documented. In this study, we evaluate the water table fluctuations in the floodplain near an incised stream (Walnut Creek, Iowa) and investigate the roles that channel incision and variable recharge play in modifying the water table configuration in the floodplain. Groundwater flows from higher landscape positions towards Walnut Creek under hydraulic gradients that were steepest near the upland/floodplain contact and in the near-stream riparian zone. Annually, water table fluctuations on the floodplain were greatest in wells located 30 m from the creek, midway between the creek and upland. Water levels monitored continuously during a runoff event indicated that bank storage was confined to a narrow zone adjacent to the channel. A steady-state, one-dimensional analytical model was developed to describe the shape of the water table surface near an incised stream and evaluate how variable groundwater recharge and channel bed lowering has affected the shape of the water table surface. Results from this study have implications for managing the riparian buffers of incised streams with successful establishment dependent upon matching buffer vegetation to riparian water table conditions. ?? 2003 Elsevier B.V. All rights reserved.

  19. Near-Real-Time Geophysical and Biological Monitoring of Bioremediation Methods at a Uranium Mill Tailings Site in Rifle, Colorado

    NASA Astrophysics Data System (ADS)

    Tarrell, A. N.; Haas, A.; Revil, A.; Figueroa, L. A.; Rodriguez, D.; Smartgeo

    2010-12-01

    Bioremediation has been utilized on subsurface uranium contamination at the Rifle IRFC site in Colorado by injecting acetate as an electron donor. However, successfully monitoring the progress of subsurface bioremediation over time is difficult and requires long-term stewardship considerations to ensure cost effective treatment due to biological, chemical, and hydrological heterogeneity. In order to better understand the complex heterogeneities of the subsurface and the resultant effect on microbial activity, innovative subsurface monitoring techniques must be investigated. The key hypothesis of this work is that a combination of data from electrode-based microbial monitoring, self potential monitoring, oxidation reduction potential, and water level sensors will provide sufficient information for identifying and localizing bioremediation activity and will provide better predictions of deleterious biogeochemical change. In order to test the proof-of-concept of these sensing techniques and to deconvolve the redox activity from other electric potential changing events involved in bioremediation, a 2D tank (2.4m x 1.2m x 0.6m) experiment has been developed. Field material obtained from the Rifle IRFC site will be packed in the tank and an artificial groundwater will flow across the tank through constant-head boundaries. The experiment will utilize sensors for electrode-based microbial monitoring, self potential monitoring, oxidation-reduction potential, and water level monitoring. Electrode-based microbial monitoring will be used to estimate microbial activity by measuring how much electrical current indigenous bacteria are producing. Self potential monitoring will be used to measure the natural electrical voltage potential between sampled points, providing indications of when and where electrical activity is occurring; such as reduction of radionuclides. In addition to the application of sensing technologies, this work will explore the application of a wireless sensor

  20. Quantum dots as resonance energy transfer acceptors for monitoring biological interactions

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Niko; Charbonnière, Loïc; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2006-04-01

    Due to their extraordinary photophysical properties CdSe/ZnS core/shell nanocrystals (quantum dots) are excellent luminescence dyes for fluorescence resonance energy transfer (FRET) systems. By using a supramolecular lanthanide complex with central terbium cation as energy donor, we show that commercially available biocompatible biotinilated quantum dots are excellent energy acceptors in a time-resolved FRET fluoroimmunoassay (FRET-FIA) using streptavidin-biotin binding as biological recognition process. The efficient energy transfer is demonstrated by quantum dot emission sensitization and a thousandfold increase of the nanocrystal luminescence decay time. A Foerster Radius of 90 Å and a picomolar detection limit were achieved in quantum dot borate buffer. Regarding biological applications the influence of bovine serum albumin (BSA) and sodium azide (a frequently used preservative) to the luminescence behaviour of our FRET-system is reported.

  1. Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific.

    PubMed

    Avery-Gomm, Stephanie; O'Hara, Patrick D; Kleine, Lydia; Bowes, Victoria; Wilson, Laurie K; Barry, Karen L

    2012-09-01

    Marine plastic debris is a global issue, which highlights the need for internationally standardized methods of monitoring plastic pollution. The stomach contents of beached northern fulmar (Fulmarus glacialis) have proven a cost-effective biomonitor in Europe. However, recent information on northern fulmar plastic ingestion is lacking in the North Pacific. We quantified the stomach contents of 67 fulmars from beaches in the eastern North Pacific in 2009-2010 and found that 92.5% of fulmars had ingested an average of 36.8 pieces, or 0.385 g of plastic. Plastic ingestion in these fulmars is among the highest recorded globally. Compared to earlier studies in the North Pacific, our findings indicate an increase in plastic ingestion over the past 40 years. This study substantiates the use of northern fulmar as biomonitors of plastic pollution in the North Pacific and suggests that the high levels of plastic pollution in this region warrant further monitoring.

  2. Biological Monitoring of Air Pollutants and Its Influence on Human Beings.

    PubMed

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases.

  3. GIS Spatial Analysis of Water Quality at Courtland Creek in Oakland, California

    NASA Astrophysics Data System (ADS)

    Matias, F.; Perez, L.; Martinez, E.; Rivera Soto, E.; McDonald, K.; Garcia, D.; Ruiz, I.

    2015-12-01

    Courtland Creek is a channelized stream that traverses residential and industrial sections of East Oakland, California. Segments of the creek are exposed on the surface and have been designated as City of Oakland park land. Since 2012, the quality of creek waters has been monitored through measurement and analysis of nutrient and other possible contaminant levels in samples collected in these exposed segments. Throughout the three-year period during which monitoring efforts have been undertaken, high concentration levels of nitrate have been observed. The primary aim of our research is to gain an overall indication of creek health in relation to its surrounding environment through the use of Geographic Information Systems (GIS) analysis of nutrient concentrations at the four sites. Investigating the relationship between Courtland Creek and the environmental factors influencing its health will enable us to develop a better sense of the actions that can be taken by the City of Oakland to create sustainable park land and healthy communities. During the summer of 2015, our group continued to monitor levels of ammonia, phosphate and nitrate at four different sites along the creek, and benthic macroinvertebrates were sampled at one of these sites. Preliminary analysis of benthic macroinvertebrate data indicates that Courtland Creek is in poor health ecologically. Nitrate concentration levels measured during the study period were lower than those detected in previous years but still indicate inputs other than those associated with natural processes. The high nitrate concentration levels may be the result of human and animal waste pollution, as supported by data obtained during a recent Environmental Protection Agency (EPA) - led E. coli survey that included the watershed within which Courtland Creek is situated.

  4. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography.

    PubMed

    Peña, Adrián F; Doronin, Alexander; Tuchin, Valery V; Meglinski, Igor

    2014-08-01

    The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.

  5. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Peña, Adrián F.; Doronin, Alexander; Tuchin, Valery V.; Meglinski, Igor

    2014-08-01

    The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.

  6. A Simple and Low-Cost Monitoring System to Investigate Environmental Conditions in a Biological Research Laboratory

    PubMed Central

    Gurdita, Akshay; Vovko, Heather; Ungrin, Mark

    2016-01-01

    Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a “Raspberry Pi” single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them. PMID:26771659

  7. A Camera and Multi-Sensor Automated Station Design for Polar Physical and Biological Systems Monitoring: AMIGOS

    NASA Astrophysics Data System (ADS)

    Bohlander, J. A.; Ross, R.; Scambos, T.; Haran, T. M.; Bauer, R. J.

    2012-12-01

    The Automated Meteorology - Ice/Indigenous species - Geophysics Observation System (AMIGOS) consists of a set of measurement instruments and camera(s) controlled by a single-board computer with a simplified Linux operating system and an Iridium satellite modem supporting two-way communication. Primary features of the system relevant to polar operations are low power requirements, daily data uploading, reprogramming, tolerance for low temperatures, and various approaches for automatic resets and recovery from low power or cold shut-down. Instruments include a compact weather station, C/A or dual-frequency GPS, solar flux and reflectivity sensors, sonic snow gages, simplified radio-echo-sounder, and resistance thermometer string in the firn column. In the current state of development, there are two basic designs. One is intended for in situ observations of glacier conditions. The other design supports a high-resolution camera for monitoring biological or geophysical systems from short distances (100 m to 20 km). The stations have been successfully used in several locations for operational support, monitoring rapid ice changes in response to climate change or iceberg drift, and monitoring penguin colony activity. As of June, 2012, there are 9 AMIGOS systems installed, all on the Antarctic continent. The stations are a working prototype for a planned series of upgraded stations, currently termed 'Sentinels'. These stations would carry further instrumentation, communications, and processing capability to investigate ice - ocean interaction from ice tongue, ice shelf, or fjord coastline areas.

  8. A Simple and Low-Cost Monitoring System to Investigate Environmental Conditions in a Biological Research Laboratory.

    PubMed

    Gurdita, Akshay; Vovko, Heather; Ungrin, Mark

    2016-01-01

    Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a "Raspberry Pi" single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them.

  9. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect

    Hillson, Todd D.

    2009-06-12

    Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively

  10. A tiered, integrated biological and chemical monitoring framework for contaminants of emerging concern in aquatic ecosystems.

    PubMed

    Maruya, Keith A; Dodder, Nathan G; Mehinto, Alvine C; Denslow, Nancy D; Schlenk, Daniel; Snyder, Shane A; Weisberg, Stephen B

    2016-07-01

    The chemical-specific risk-based paradigm that informs monitoring and assessment of environmental contaminants does not apply well to the many thousands of new chemicals that are being introduced into ambient receiving waters. We propose a tiered framework that incorporates bioanalytical screening tools and diagnostic nontargeted chemical analysis to more effectively monitor for contaminants of emerging concern (CECs). The framework is based on a comprehensive battery of in vitro bioassays to first screen for a broad spectrum of CECs and nontargeted analytical methods to identify bioactive contaminants missed by the currently favored targeted analyses. Water quality managers in California have embraced this strategy with plans to further develop and test this framework in regional and statewide pilot studies on waterbodies that receive discharge from municipal wastewater treatment plants and stormwater runoff. In addition to directly informing decisions, the data obtained using this framework can be used to construct and validate models that better predict CEC occurrence and toxicity. The adaptive interplay among screening results, diagnostic assessment and predictive modeling will allow managers to make decisions based on the most current and relevant information, instead of extrapolating from parameters with questionable linkage to CEC impacts. Integr Environ Assess Manag 2016;12:540-547. © 2015 SETAC.

  11. An ecological acoustic recorder (EAR) for long-term monitoring of biological and anthropogenic sounds on coral reefs and other marine habitats.

    PubMed

    Lammers, Marc O; Brainard, Russell E; Au, Whitlow W L; Mooney, T Aran; Wong, Kevin B

    2008-03-01

    Keeping track of long-term biological trends in many marine habitats is a challenging task that is exacerbated when the habitats in question are in remote locations. Monitoring the ambient sound field may be a useful way of assessing biological activity because many behavioral processes are accompanied by sound production. This article reports the preliminary results of an effort to develop and use an Ecological Acoustic Recorder (EAR) to monitor biological activity on coral reefs and in surrounding waters for periods of 1 year or longer. The EAR is a microprocessor-based autonomous recorder that periodically samples the ambient sound field and also automatically detects sounds that meet specific criteria. The system was used to record the sound field of coral reefs and other marine habitats on Oahu, HI. Snapping shrimp produced the dominant acoustic energy on the reefs examined and exhibited clear diel acoustic trends. Other biological sounds recorded included those produced by fish and cetaceans, which also exhibited distinct temporal variability. Motor vessel activity could also be monitored effectively with the EAR. The results indicate that acoustic monitoring may be an effective means of tracking biological and anthropogenic activity at locations where continuous monitoring by traditional survey methods is impractical.

  12. Rapid evolution of a marsh tidal creek network in response to sea level rise.

    NASA Astrophysics Data System (ADS)

    Hughes, Z. J.; Fitzgerald, D. M.; Mahadevan, A.; Wilson, C. A.; Pennings, S. C.

    2008-12-01

    In the Santee River Delta (SRD), South Carolina, tidal creeks are extending rapidly onto the marsh platform. A time-series of aerial photographs establishes that these channels were initiated in the 1950's and are headward eroding at a rate of 1.9 m /yr. Short-term trends in sea level show an average relative sea level rise (RSLR) of 4.6 mm/yr over a 20-year tide gauge record from nearby Winyah Bay and Charleston Harbor (1975-1995). Longer-term (85-year) records in Charleston suggest a rate of 3.2 mm/yr. RSLR in the SRD is likely even higher as sediment cores reveal that the marsh is predominantly composed of fine-grained sediment, making it highly susceptible to compaction and subsidence. Furthermore, loss in elevation will have been exacerbated by the decrease in sediment supply due to the damming of the Santee River in 1939. The rapid rate of headward erosion indicates that the marsh platform is in disequilibrium; unable to keep pace with RSLR through accretionary processes and responding to an increased volume and frequency of inundation through the extension of the drainage network. The observed tidal creeks show no sinuosity and a distinctive morphology associated with their young age and biological mediation during their evolution. Feedbacks between tidal flow, vegetation and infauna play a strong role in the morphological development of the creeks. The creek heads are characterized by a region denuded of vegetation, the edges of which are densely populated and burrowed by Uca Pugnax (fiddler crab). Crab burrowing destabilizes sediment, destroys rooting and impacts drainage. Measured infiltration rates are three orders of magnitude higher in the burrowed regions than in a control area (1000 ml/min and 0.6 ml/min respectively). Infiltration of oxygenated water enhances decomposition of organic matter and root biomass is reduced within the creek head (marsh=4.3 kg/m3, head=0.6 kg/m3). These processes lead to the removal and collapse of the soils, producing

  13. Monitoring

    SciTech Connect

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  14. Triage, monitoring, and treatment of mass casualty events involving chemical, biological, radiological, or nuclear agents

    PubMed Central

    Ramesh, Aruna C.; Kumar, S.

    2010-01-01

    In a mass casualty situation due to chemical, biological, radiological, or nuclear (CBRN) event, triage is absolutely required for categorizing the casualties in accordance with medical care priorities. Dealing with a CBRN event always starts at the local level. Even before the detection and analysis of agents can be undertaken, zoning, triage, decontamination, and treatment should be initiated promptly. While applying the triage system, the available medical resources and maximal utilization of medical assets should be taken into consideration by experienced triage officers who are most familiar with the natural course of the injury presented and have detailed information on medical assets. There are several triage systems that can be applied to CBRN casualties. With no one standardized system globally or nationally available, it is important for deploying a triage and decontamination system which is easy to follow and flexible to the available medical resources, casualty number, and severity of injury. PMID:21829319

  15. Paper-based enzymatic electrode with enhanced potentiometric response for monitoring glucose in biological fluids.

    PubMed

    Parrilla, Marc; Cánovas, Rocío; Andrade, Francisco J

    2017-04-15

    A novel paper-based potentiometric sensor with an enhanced response for the detection of glucose in biological fluids is presented. The electrode consists on platinum sputtered on a filter paper and a Nafion membrane to immobilize the enzyme glucose oxidase. The response obtained is proportional to the logarithm of the concentration of glucose, with a sensitivity of -119±8mV·decade(-1), a linear range that spans from 10(-4)M to 10(-2.5) M and a limit of detection of 10(-4.5) M of glucose. It is shown that Nafion increases the sensitivity of the technique while minimizing interferences. Validation with human serum samples shows an excellent agreement when compared to standard methods. This approach can become an interesting alternative for the development of simple and affordable devices for point of care and home-based diagnostics.

  16. Western pond turtle: Biology, sampling techniques, inventory and monitoring, conservation, and management: Northwest Fauna No. 7

    USGS Publications Warehouse

    Bury, R.B.; Welsh, Hartwell H.; Germano, David J.; Ashton, Donald T.

    2012-01-01

    One of only two native, freshwater turtle species in the western United States, western pond turtles are declining in portions of their original range. Declines are mostly due to habitat loss, introduction of non-native species, pollution, and lack of connectivity among populations. USGS zoologist R. Bruce Bury and colleagues from the U.S. Forest Service, California State University, and other agencies compiled and edited a new review and field manual of this charismatic species. Objectives were to determine its current distribution and abundance, summarize and evaluate population features, review techniques to detect population and habitat changes, and improve monitoring for long-term trends. Methods described in the manual should improve consistency, efficiency, and accuracy of survey data, resulting in improved management and conservation efforts.

  17. Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens.

    PubMed

    Paoli, L; Corsini, A; Bigagli, V; Vannini, J; Bruscoli, C; Loppi, S

    2012-02-01

    The diversity of epiphytic lichens and the accumulation of selected trace elements in the lichen Flavoparmelia caperata L. (Hale) were used as indicators of pollution around a landfill in central Italy along 14 years of waste management. Lichens revealed an increased deposition for some elements (i.e., Cd, Cr, Fe and Ni) and a decrease of the lichen diversity at sites facing the landfill after an enlargement of the dumping area. However, the results allowed to exclude a significant increase in heavy metal depositions in the surrounding area and suggested that successful waste management may be associated with environmental quality. It is concluded that lichen monitoring might provide essential information to enhance the implementation of ecological impact assessment, supporting industrial regulatory procedures, also when waste management is concerned.

  18. Water quality monitoring of an international wetland at Harike, Punjab and its impact on biological systems

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmit; Walia, Harpreet; Mabwoga, Samson Okongo; Arora, Saroj

    2015-10-01

    The present study entails the investigation of mutagenic and genotoxic effect of surface water samples collected from 13 different sites of the Harike wetland using the histidine reversion point mutation assay in Salmonella typhimurium (TA98) strain and plasmid nicking assay using pBR322, respectively. The physicochemical characterization of water samples using different parameters was conducted for water quality monitoring. Heavy metal analysis was performed to quantify the toxic components present in water samples. It was observed that although the water samples of all the sites demonstrated mutagenic as well as genotoxic activity, the effect was quite significant with the water samples from sites containing water from river Satluj, i.e., site 1 (upstream Satluj river), site 2 (Satluj river) and site 3 (reservoir Satluj). The high level of pollution due to industrial effluents and agricultural run-off at these sites may engender the genotoxicity and mutagenicity of water samples.

  19. Competitive ELISA: An Accurate, Quick and Effective Tool to Monitor Brevetoxins in Environmental and Biological Sample

    PubMed Central

    Naar, Jerome; Weidner, Allison; Baden, Daniel G.

    2010-01-01

    A competitive Enzyme-Linked Immuno-Sorbent Assay (competitive ELISA) has been developed for analyzing brevetoxins (PbTxs). Antibodies to brevetoxins were used in combination with a multi-step signal amplification procedure for the detection of toxins. This procedure minimizes non-specific signals and background noise often observed in complex matrices. Therefore, analysis can be performed with various samples (seawater, air filter, mammalian body fluids, shellfish, etc.) without the need for extensive extraction and/or purification steps. Brevetoxin analysis in liquid samples like seawater, urine and serum can be performed without pretreatment, dilution or purification. The limit of quantification of PbTxs is 2 ng mL−1 in any of the liquid sample matrices tested. For shellfish monitoring, analyses are performed after homogenization of shellfish meat (5 g) with brevetoxin-ELISA buffer (200 mL) and can be performed on tissue from a single mollusk as well as on a pool of shellfish meat. Comparative quantification of PbTxs achieved in buffer, seawater, mammalian body fluid and shellfish homogenate spiked with equal amounts of toxin (10 ng mL−1 sample) varied by no more than 5%. These data suggest that the matrix composition of the sample does not affect the performance of the assay. Because this assay is not affected by matrix composition and can be performed in shellfish homogenate, this procedure can be used to prevent or diagnose human exposure to PbTxs and has the potential to replace the currently used mouse bioassay for monitoring PbTxs in shellfish. PMID:26436142

  20. Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: A review

    PubMed Central

    Nandi, Pradyot; Lunte, Susan M.

    2013-01-01

    Microdialysis (MD) is a sampling technique that can be employed to monitor biological events both in vivo and in vitro. When it is coupled to an analytical system, microdialysis can provide near realtime information on the time-dependent concentration changes of analytes in the extracellular space or other aqueous environments. Online systems for the analysis of microdialysis samples enable fast, selective and sensitive analysis while preserving the temporal information. Analytical methods employed for online analysis include liquid chromatography (LC), capillary (CE) and microchip electrophoresis and flow-through biosensor devices. This review article provides an overview of microdialysis sampling and online analysis systems with emphasis on in vivo analysis. Factors that affect the frequency of analysis and, hence, the temporal resolution of these systems are also discussed. PMID:19733728

  1. Integrated assessment of PAH contamination in the Czech Rivers using a combination of chemical and biological monitoring.

    PubMed

    Blahova, Jana; Divisova, Lenka; Kodes, Vit; Leontovycova, Drahomira; Mach, Samuel; Ocelka, Tomas; Svobodova, Zdenka

    2014-01-01

    This study investigated polycyclic aromatic hydrocarbons (PAH) pollution of selected rivers in the Czech Republic. Integrated evaluation was carried out using combination of chemical and biological monitoring, in which we measured content of 1-hydroxypyrene (1-OHP) in chub bile and priority PAH in water samples obtained by exposing the semipermeable membrane devices at each location. The concentrations of 1-OHP in bile samples and sum of priority PAH in water sampler ranged from 6.8 ng mg protein(-1) to 106.6 ng mg protein(-1) and from 5.2 ng L(-1) to 173.9 ng L(-1), respectively. The highest levels of biliary metabolite and PAH in water were measured at the Odra River (the Bohumín site), which is located in relatively heavily industrialized and polluted region. Statistically significant positive correlation between biliary 1-OHP and sum of PAH in water was also obtained (P < 0.01, r s = 0.806).

  2. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols.

    PubMed

    Shen, Fangxia; Tan, Miaomiao; Wang, Zhenxing; Yao, Maosheng; Xu, Zhenqiang; Wu, Yan; Wang, Jindong; Guo, Xuefeng; Zhu, Tong

    2011-09-01

    Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.

  3. RICHLAND CREEK ROADLESS AREA, ARKANSAS.

    USGS Publications Warehouse

    Miller, Mary H.; Wood, Robert H.

    1984-01-01

    On the basis of geologic and mineral surveys, Richland Creek Roadless Area, Arkanses, has little promise for the occurrence of metallic mineral resources, gas and oil, or oil shale. The Boone Formation of Mississippian age and the Everton Formation of Ordovician age, both known to contain zinc and lead deposits in northern Arkansas, underlie the roadless area. The presence or absence of zinc and lead deposits in these formations in the subsurface can be neither confirmed nor ruled out without exploratory drilling. Most of the Richland Creek Roadless Area is under lease for oil and gas; however two wells drilled near the eastern boundary of the area did not show contained gas or oil.

  4. Uncertainty in biological monitoring: a framework for data collection and analysis to account for multiple sources of sampling bias

    USGS Publications Warehouse

    Ruiz-Gutierrez, Viviana; Hooten, Melvin B.; Campbell Grant, Evan H.

    2016-01-01

    Biological monitoring programmes are increasingly relying upon large volumes of citizen-science data to improve the scope and spatial coverage of information, challenging the scientific community to develop design and model-based approaches to improve inference.Recent statistical models in ecology have been developed to accommodate false-negative errors, although current work points to false-positive errors as equally important sources of bias. This is of particular concern for the success of any monitoring programme given that rates as small as 3% could lead to the overestimation of the occurrence of rare events by as much as 50%, and even small false-positive rates can severely bias estimates of occurrence dynamics.We present an integrated, computationally efficient Bayesian hierarchical model to correct for false-positive and false-negative errors in detection/non-detection data. Our model combines independent, auxiliary data sources with field observations to improve the estimation of false-positive rates, when a subset of field observations cannot be validated a posteriori or assumed as perfect. We evaluated the performance of the model across a range of occurrence rates, false-positive and false-negative errors, and quantity of auxiliary data.The model performed well under all simulated scenarios, and we were able to identify critical auxiliary data characteristics which resulted in improved inference. We applied our false-positive model to a large-scale, citizen-science monitoring programme for anurans in the north-eastern United States, using auxiliary data from an experiment designed to estimate false-positive error rates. Not correcting for false-positive rates resulted in biased estimates of occupancy in 4 of the 10 anuran species we analysed, leading to an overestimation of the average number of occupied survey routes by as much as 70%.The framework we present for data collection and analysis is able to efficiently provide reliable inference for

  5. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2013

    USGS Publications Warehouse

    Kraus, Richard T.; Rogers, Mark W.; Kocovsky, Patrick; Edwards, William; Bodamer Scarbro, Betsy L.; Keretz, Kevin R.; Berkman, Stephanie A.

    2014-01-01

    In 2013, the U.S. Geological Survey’s Lake Erie Biological Station successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Forage Fish Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment and the Eastern Basin Coldwater Community Assessment (see Forage Task Group and Coldwater Task Group reports, respectively). Further large vessel sampling included individual research data collection as well as assisting with University (e.g., University of Toledo) and agency (e.g., USFWS, USEPA) large vessel sampling needs. Our 2013 vessel operations began on April 4th and concluded on November 21 with a total of 77 large vessel sampling days (83 total days). During this time, crews of the R/V Muskie and R/V Bowfin deployed 174 trawls covering 147 km of lake-bottom, over 13 km of gillnet, collected hydroacoustic data that extended over 250 km of the central and eastern basins, and approximately 180 collective zooplankton, benthos, and water samples. 2013 was the first complete sampling year using the R/V Muskie. Technologies available on the new platform provided opportunities for LEBS to improve data sampling methods and results. An investment was made in mensuration gear for the trawls. This gear is attached to the trawl’s headrope, footrope, and wings; thus, allowing measurement of the area swept and conversion of catches to densities. Another improvement included real-time output of water parameter sonde profiles (e.g., temperature, dissolved oxygen). The ability to view profile data on a tablet allowed quick identification of thermoclines as well as the presence (or absence) of hypoxia. Minor modifications were made to survey designs relative to last year (see 2013 report), and thus, collection of long-term data from the R/V Muskie has commenced. One minor change was that

  6. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2015

    USGS Publications Warehouse

    Bodamer Scarbro, Betsy L.; Edwards, W.H.; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, M. R.; Schoonyan, A. L.; Stewart, T. R.

    2016-01-01

    In 2015, the U.S. Geological Survey’s (USGS) Lake Erie Biological Station (LEBS) successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Fish Community Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment, the Eastern Basin Coldwater Community Assessment, and Lower Trophic Level Assessment (see Forage and Coldwater Task Group reports). In 2015, LEBS also initiated a Lake Erie Central Basin Trawling survey in response to the need for forage fish data from Management Unit 3 (as defined by the Yellow Perch Task Group). Results from these surveys contribute to Lake Erie Committee Fish Community Goals and Objectives. Our 2015 vessel operations were initiated in early April and continued into late November. During this time, crews of the R/V Muskie and R/V Bowfin deployed 121 bottom trawls covering 83.2 ha of lake-bottom and catching 105,600 fish totaling 4,065 kg during four separate trawl surveys in the western and central basins of Lake Erie. We deployed and lifted 9.5 km of gillnet, which caught an additional 805 fish, 100 (337 kg) of which were the native coldwater predators Lake Trout, Burbot, and Lake Whitefish (these data are reported in the 2016 Coldwater Task Group report). We also conducted 317 km of hydroacoustic survey transects (reported in the 2016 Forage Task Group report), collected 114 lower trophic (i.e. zooplankton and benthos) samples, and obtained 216 water quality observations (e.g., temperature profiles, and water samples). The LEBS also assisted CLC member agencies with the maintenance and expansion of GLATOS throughout all three Lake Erie sub-basins. Within the following report sections, we describe results from three trawl surveys – the spring and autumn Western Basin Forage Fish Assessment and the East Harbor Forage Fish Assessment – and

  7. Environmental and biological monitoring of benzene during self-service automobile refueling.

    PubMed Central

    Egeghy, P P; Tornero-Velez, R; Rappaport, S M

    2000-01-01

    Although automobile refueling represents the major source of benzene exposure among the nonsmoking public, few data are available regarding such exposures and the associated uptake of benzene. We repeatedly measured benzene exposure and uptake (via benzene in exhaled breath) among 39 self-service customers using self-administered monitoring, a technique rarely used to obtain measurements from the general public (130 sets of measurements were obtained). Benzene exposures averaged 2.9 mg/m(3) (SD = 5.8 mg/m(3); median duration = 3 min) with a range of < 0.076-36 mg/m(3), and postexposure breath levels averaged 160 microg/m(3) (SD = 260 microg/m(3)) with a range of < 3.2-1,400 microg/m(3). Log-transformed exposures and breath levels were significantly correlated (r = 0.77, p < 0.0001). We used mixed-effects statistical models to gauge the relative influences of environmental and subject-specific factors on benzene exposure and breath levels and to investigate the importance of various covariates obtained by questionnaire. Model fitting yielded three significant predictors of benzene exposure, namely, fuel octane grade (p = 0.0011), duration of exposure (p = 0.0054), and season of the year (p = 0.032). Likewise, another model yielded three significant predictors of benzene concentration in breath, specifically, benzene exposure (p = 0.0001), preexposure breath concentration (p = 0.0008), and duration of exposure (p = 0.038). Variability in benzene concentrations was remarkable, with 95% of the estimated values falling within a 274-fold range, and was comprised entirely of the within-person component of variance (representing exposures of the same subject at different times of refueling). The corresponding range for benzene concentrations in breath was 41-fold and was comprised primarily of the within-person variance component (74% of the total variance). Our results indicate that environmental rather than interindividual differences are primarily responsible for

  8. Otter Creek Wilderness, West Virginia

    SciTech Connect

    Warlow, R.C.; Behum, P.T.

    1984-01-01

    A mineral-resource survey of the Otter Creek Wilderness conducted in 1978 resulted in the determination of demonstrated coal resources estimated to total about 24 million short tons in beds more than 28 in. thick and an additional 62 million short tons of coal in beds between 14 and 28 in. thick. There is little promise for the occurrence of mineral or other energy resources in the area.

  9. LUSK CREEK ROADLESS AREA, ILLINOIS.

    USGS Publications Warehouse

    Klasner, John S.; Thompson, Robert M.

    1984-01-01

    Geologic mapping and geochemical sampling show that the eastern third of the Lusk Creek Roadless Area in Illinois has a substantiated resource potential for fluorspar, lead, zinc, and barite, and other parts of the area have a probable resource potential for fluorspar. Fluorspar, which occurs along fault zones in the eastern part of the area, has been produced in the adjacent Illinois-Kentucky fluorspar district. There is little promise for the occurrence of other mineral or energy resources.

  10. Chemical and biological monitoring of MIOR on the pilot area of Vyngapour oil field, West Sibera, Russia

    SciTech Connect

    Arinbasarov, M.U.; Murygina, V.P.; Mats, A.A.

    1995-12-31

    The pilot area of the Vyngapour oil field allotted for MIOR tests contains three injection and three producing wells. These wells were treated in summer 1993 and 1994. Before, during, and after MIOR treatments on the pilot area the chemical compounds of injected and formation waters were studied, as well as the amount and species of microorganisms entering the stratum with the injected water and indigenous bacteria presented in bottomhole zones of the wells. The results of monitoring showed that the bottomhole zone of the injection well already had biocenosis of heterotrophic, hydrocarbon-oxidizing, methanogenic, and sulfate-reducing bacteria, which were besides permanently introduced into the reservoir during the usual waterflooding. The nutritious composition activated vital functions of all bacterial species presented in the bottomhole zone of the injection well. The formation waters from producing wells showed the increase of the content of nitrate, sulfate, phosphate, and bicarbonate ions by the end of MIOR. The amount of hydrocarbon-oxidizing bacteria in formation waters of producing wells increased by one order. The chemical and biological monitoring revealed the activation of the formation microorganisms, but no transport of food industry waste bacteria through the formation from injection to producing wells was found.

  11. Municipal waste incinerators: air and biological monitoring of workers for exposure to particles, metals, and organic compounds

    PubMed Central

    Maitre, A; Collot-Fertey, D; Anzivino, L; Marques, M; Hours, M; Stoklov, M

    2003-01-01

    Aims: To evaluate occupational exposure to toxic pollutants at municipal waste incinerators (MWIs). Methods: Twenty nine male subjects working near the furnaces in two MWIs, and 17 subjects not occupationally exposed to combustion generated pollutants were studied. Individual air samples were taken throughout the shift; urine samples were collected before and after. Stationary air samples were taken near potential sources of emission. Results: Occupational exposure did not result in the infringement of any occupational threshold limit value. Atmospheric exposure levels to particles and metals were 10–100 times higher in MWIs than at the control site. The main sources were cleaning operations for particles, and residue transfer and disposal operations for metals. MWI workers were not exposed to higher levels of polycyclic aromatic hydrocarbons than workers who are routinely in contact with vehicle exhaust. The air concentrations of volatile organic compounds and aldehydes were low and did not appear to pose any significant threat to human health. Only the measurement of chlorinated hydrocarbon levels would seem to be a reliable marker for the combustion of plastics. Urine metal levels were significantly higher at plant 1 than at plant 2 because of high levels of pollutants emanating from one old furnace. Conclusion: While biological monitoring is an easy way of acquiring data on long term personal exposure, air monitoring remains the only method that makes it possible to identify the primary sources of pollutant emission which need to be controlled if occupational exposure and environmental pollution are to be reduced. PMID:12883016

  12. Biological monitoring in occupational exposure to low levels of 1,3-butadiene.

    PubMed

    Fustinoni, S; Perbellini, L; Soleo, L; Manno, M; Foà, V

    2004-04-01

    Exposure to 1,3-butadiene (BD), a probable carcinogen to humans, was investigated in two groups of subjects working in a petrochemical plant where BD is produced and used to prepare polymers: 42 occupationally exposed workers and 43 internal non-occupationally exposed controls. BD personal exposure was very low but significantly different in the two groups (median airborne BD 1.5 and 0.4 microg/m(3) in exposed and controls, respectively). Similarly, BD in blood and urine, but not in exhaled air, was higher in the exposed workers than in controls (blood BD 3.7 ng/l versus <1.8 ng/l, urinary BD 2.4 ng/l versus <1.0 ng/l). These three biomarkers correlated significantly with personal exposure ( 0.283 < or = Pearson's r < or = 0.383) and between them (0.780 < or = r < or = 0.896). Excretion of urinary mercapturic acids N-acetyl-S-(3,4-hydroxybutyl)-l-cysteine (MI), N-acetyl-S-(1-hydroxymethyl-2-propenyl)-l-cysteine and N-acetyl-S-(2-hydroxy-3-butenyl)-l-cysteine (MII), chromosomal aberrations (CA), and sister chromatid exchanges (SCE) in peripheral blood lymphocytes were not influenced by occupational exposure. Our results show that unmetabolised BD in biological fluids, and particularly urinary BD, represents the biomarker of choice for assessing occupational exposure to low airborne concentrations of BD.

  13. The use of aquatic macrophytes in monitoring and in assessment of biological integrity

    USGS Publications Warehouse

    Stewart, P.M.; Scribailo, R.W.; Simon, T.P.; Gerhardt, A.

    1999-01-01

    Aquatic plant species, populations, and communities should be used as indicators of the aquatic environment, allowing detection of ecosystem response to different stressors. Plant tissues bioaccumulate and concentrate toxin levels higher than what is present in the sediments; and this appears to be related to organic matter content, acidification, and buffering capacity. The majority of toxicity studies, most of these with heavy metals, have been done with several Lemna species and Vallisneria americana. Organic chemicals reviewed include pesticides and herbicides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other industrial contaminants. The use of aquatic plant communities as bioindicators of environmental quality was evaluated for specific characteristics and indices that may assess biological integrity. Indices such as the floristic quality index (FQI) and coefficient of conservatism (C) are pioneering efforts to describe the quality of natural areas and protect native biodiversity. Our case study in the Grand Calumet Lagoons found that 'least-impacted' sites had the greatest aquatic plant species richness, highest FQI and C values, and highest relative abundance. Lastly, we introduce the concepts necessary for the development of a plant index of biotic integrity. Development of reference conditions is essential to understanding aquatic plant community structure, function, individual health, condition, and abundance. Information on guild development and tolerance definition are also integral to the development of a multi-metric index.

  14. Relationships among sediment chemistry, toxicity testing, and biology: What can large-scale monitoring teach us?

    SciTech Connect

    Summers, J.K.; Macauley, J.M.; Engle, V.D.; Malaeb, Z.

    1995-12-31

    The Environmental Monitoring and Assessment Program for Estuarine Resources has collected sediments from over 1,000 varying locations in the estuaries of the United States. At each of these sites, sediments are analyzed for bulk chemistry, tested for toxicity to Ampelisca abdita, and enumerated regarding benthic community structure and abundance. In addition, tissue residues have been examined for selected fish and shellfish species and toxicity testing has been completed at selected sites for alternative species. The statistical and ecological relationships among these indicators have been examined with regard to how they can used to identify the overall ecological condition of a site, an estuary, or populations of estuaries. Comparisons of these relationships among different regions of the country show major differences in the modes of exposure and response being prevalent in the Southeast and Gulf Coasts as compared to the Mid-Atlantic and West Coasts. While the extent of sediment contamination in the Southeast and Gulf estuaries appears to be similar to that of the Mid-Atlantic and California Coasts, the degree of contamination at contaminated sites is much greater in Mid-Atlantic estuaries. An examination of the primary contaminants suggests that the primary sources of contamination in the Mid-Atlantic are industrial and urban while the Southeast and Gulf estuaries are dominated by agricultural contaminants.

  15. Biological monitoring of pesticide exposures among applicators and their children in Nicaragua.

    PubMed

    Rodríguez, Teresa; Younglove, Lisa; Lu, Chensheng; Funez, Aura; Weppner, Sarah; Barr, Dana B; Fenske, Richard A

    2006-01-01

    Exposures were assessed for seven small-scale farmers using chlorpyrifos on corn and ten banana plantation employees applying diazinon, and for one child of each worker. Metabolites (TCPYand IMPY) were measured in urine before and after applications. TCPY concentrations peaked at 27 and 8.5 hours post-application for applicators and children, respectively (geometric means, 26 and 3.0 microg/L). Proximity to spraying and spray mixture preparation in homes were important exposure factors. IMPY concentrations differed substantially across workers at two plantations (geometric means, 1.3 and 168 mirog/L); however, their children had little or no diazinon exposure. These workers and children were also exposed to chlorpyrifos, most likely through contact with chlorpyrifos-impregnated bags used in banana production. Several recommendations are offered: (1) monitor children's activities during applications; (2) do not store or prepare pesticides in homes; (3) institute sound occupational hygiene practices at banana plantations; (4) dispose of plastic insecticide bags properly at the worksite.

  16. Salt transport in a tidal canal, West Neck Creek, Virginia

    USGS Publications Warehouse

    Bales, Jerad D.; Skrobialowski, Stanley C.; ,

    1993-01-01

    Flow and stability were monitored during 1989-92 in West Neck Creek, Virginia, which provides a direct hydraulic connection between the saline waters of Chesapeake Bay and the relatively fresh waters of Currituck Sound, North Carolina. Flow in the tidal creek was to the south 64 percent of the time, but 80 percent of the southward flows were less than 40 cubic feet per second. The highest flows were associated with rain storms. Salinity ranged from 0.1 parts per thousand to 24.5 per thousand, and the highest salinities were observed during periods of sustained, strong northerly winds. Salt loads ranged from 302 tons per day to the north to 4,500 tons per day to the south.

  17. Report on the Watershed Monitoring Program at the Paducah Site January-December 1998

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Southworth, G.R.

    1999-03-01

    Watershed Monitoring of Big Bayou and Little Bayou creeks has been conducted since 1987. The monitoring was conducted by the University of Kentucky between 1987 and 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of monitoring are to (1) demonstrate that the effluent limitations established for DOE protect and maintain the use of Little Bayour and Big Bayou creeks for frowth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream biota. The watershed (biological) monitoring discussed in this report was conducted under DOE Order 5400.1, General Environmental Protection Program. Future monitoring will be conducted as required by the Kentucky Pollutant Discharge Elimination System (KPDES) permit issued to the Department of Energy (DOE) in March 1998. A draft Watershed Monitoring Program plan was approved by the Kentucky Division of Water and will be finalized in 1999. The DOE permit also requires toxicity monitoring of one continuous outfall and of three intermittent outfalls on a quarterly basis. The Watershed Monitoring Program for the Paducah Site during calendar year 1998 consisted of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of fish communities. This report focuses on ESD activities occurring from january 1998 to December 1998, although activities conducted outside this time period are included as appropriate.

  18. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-83) - Bear Creek Irrigation Siphon Project

    SciTech Connect

    Stewart, Shannon C.

    2002-06-19

    BPA proposes to fund the construction of a fish passage improvement project on Bear Creek in Grant County, Oregon with the Oregon Department of Fish and Wildlife. Bear Creek enters the mainstem John Day River at river mile 258.5. At stream mile 0.3 Bear Creek crosses an irrigation diversion, entering Hall Ditch. At times Bear Creek is completely diverted into Hall Ditch. A second diversion from Bear Creek is located 200 feet below the area where Hall Ditch and Bear Creek intercept. As a result of these two diversions, in late summer Bear Creek is essentially dry at the project site. In addition, the diversions are fish barriers at low flow. The objectives for the proposed project include the following: prevent flow from Bear Creek (a Clean Water Act Section 303(d) listed stream for temperature) from mixing with Hall Ditch water; prevent fish from leaving Bear Creek and entering Hall Ditch; ensure fish passage at the project site; and upgrade an existing fish screen to National Marine Fisheries Service’s (NMFS) fish screen standards. A number of measures will be implemented to meet these project objectives. The proposed action would prevent mixing of Bear Creek and Hall Ditch waters, and prevent fish from entering Hall Ditch by siphoning (siphon bypass) Hall Ditch under Bear Creek. The proposed project will remove existing, older diversions and plug up the screened irrigation canal currently used by the landowner. The existing diversion structures will be replaced with a fish-friendly diversion. In addition, a NMFS-approved fish screen and a water meter will be installed in the abandoned canal to allow fish passage and monitor water withdrawal by the landowner.

  19. 76 FR 62631 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island, SC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Department of the Army, Corps of Engineers 33 CFR Part 334 Archers Creek, Ribbon Creek, and Broad River; U.S... Depot Parris Island. The public will continue to be able to use these portions of Archers Creek, Ribbon... Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island,...

  20. Biological monitoring of organophosphorus pesticide exposure among children of agricultural workers in central Washington State.

    PubMed Central

    Loewenherz, C; Fenske, R A; Simcox, N J; Bellamy, G; Kalman, D

    1997-01-01

    Children up to 6 years of age who lived with pesticide applicators were monitored for increased risk of pesticide exposure: 48 pesticide applicator and 14 reference families were recruited from an agricultural region of Washington State in June 1995. A total of 160 spot urine samples were collected from 88 children, including repeated measures 3-7 days apart. Samples were assayed by gas chromatography flame photometric detector for dimethylphosphate metabolites. Dimethylthiophosphate (DMTP) was the dominant metabolite. DMTP levels were significantly higher in applicator children than in reference children (p = 0.015), with median concentrations of 0.021 and 0.005 microg/ml, respectively; maximum concentrations were 0.44 and 0.10 microg/ml, respectively. Percentages of detectable samples were 47% for applicator children and 27% for reference children. A marginally significant trend of increasing concentration was observed with decreasing age among applicator children (p = 0.060), and younger children within these families had significantly higher concentrations when compared to their older siblings (p = 0.040). Applicator children living less than 200 feet from an orchard were associated with higher frequency of detectable DMTP levels than nonproximal applicator children (p =0.036). These results indicate that applicator children experienced higher organophosphorus pesticide exposures than did reference children in the same community and that proximity to spraying is an important contributor to such exposures. Trends related to age suggest that child activity is an important variable for exposure. It is unlikely that any of the observed exposures posed a hazard of acute intoxication. This study points to the need for a more detailed understanding of pesticide exposure pathways for children of agricultural workers. Images Figure 1. Figure 2. Figure 3. PMID:9405329

  1. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    USGS Publications Warehouse

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  2. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Salmon Creek Hydroelectric Project, FERC No. 3730, originally issued August 10, 1981.\\1\\ The project is... Hydroelectric Project of 5 Megawatts or Less and Dismissing Application for Preliminary Permit. 2. Salmon Creek Hydroelectric Company, LLC is now the exemptee of the Salmon Creek Hydroelectric Project, FERC No. 3730....

  3. Biological monitoring of exposure to organophosphorus insecticides in a group of horticultural greenhouse workers.

    PubMed

    Bouchard, Michèle; Carrier, Gaétan; Brunet, Robert C; Dumas, Pierre; Noisel, Nolwenn

    2006-07-01

    Exposure to selected organophosphorus insecticides (OPs), malathion, diazinon and acephate, was evaluated in a group of horticultural greenhouse workers. This was achieved through measurements of the cumulative urinary excretion time courses of specific and non-specific biomarkers over a 24 h period following the onset of work exposure. For malathion, the absorbed daily doses were estimated from the 24 h cumulative urinary amounts of the specific mono- and di-carboxylic acid metabolites (the sum of MCA and DCA) through the use of a kinetic model. The observed 24 h urinary levels were also compared with a biological reference value (BRV) of 57 nmol kg(-1) of body weight established in a previous work on the basis of a human no-observed-effect level exposure dose. Excretion values were found to be 2.5% or less of the BRV, suggesting a negligible health risk. Both median and 95th percentile concentrations of DCA (n = 57 samples) were, however, slightly higher than the baseline values determined by the Centers for Disease Control and Prevention (CDC) in the US civilian population (MCA was not analyzed by the CDC). The cumulative urinary excretion time course of the methyl phosphoric (MP) derivatives, which are metabolites of malathion but also of several other OPs, was also determined. Though relatively low, the MP levels were from 3 to 31 times higher than would be expected on the basis of the malathion specific MCA and DCA excretions, indicating that MP excretions stem from sources other than malathion exposure. Accordingly, only the time courses of MCA and DCA excretion rate (nmol h(-1)) were compatible with the time of work exposure. Urinary biomarkers of exposure to diazinon and acephate were also measured. Urinary concentrations were essentially below or equal to the analytical limit of detection of 1 microg l(-1) for 2-isopropyl-4-methyl-6-hydroxypyrimidine (n = 54) and of 0.8 microg l(-1) for acephate and methamidophos (n = 59): values within the baseline range

  4. Exposure to benzene in urban workers: environmental and biological monitoring of traffic police in Rome

    PubMed Central

    Crebelli, R; Tomei, F; Zijno, A; Ghittori, S; Imbriani, M; Gamberale, D; Martini, A; Carere, A

    2001-01-01

    OBJECTIVES—To evaluate the contribution of traffic fumes to exposure to benzene in urban workers, an investigation on personal exposure to benzene in traffic police from the city of Rome was carried out.
METHODS—The study was performed from December 1998 to June 1999. Diffusive Radiello personal samplers were used to measure external exposures to benzene and alkyl benzenes during the workshift in 139 policemen who controlled medium to high traffic areas and in 63 office police. Moreover, as biomarkers of internal exposure to benzene, blood benzene, and urinary trans, trans-muconic and S-phenyl mercapturic acids were measured at the beginning and at the end of the workshift in 124 traffic police and 58 office police.
RESULTS—Time weighted average (TWA) exposure to benzene was consistently higher among traffic police than among indoor workers (geometric mean 6.8 and 3.5 µg/m3, respectively). Among the traffic police, the distribution of individual exposures was highly asymmetric, skewed toward higher values. Mean ambient benzene concentrations measured by municipal air monitoring stations during workshifts of traffic police were generally higher (geometric mean 12.6 µg/m3) and did not correlat with personal exposure values. In particular, no association was found between highest personal exposure scores and environmental benzene concentrations. Among the exposure biomarkers investigated, only blood benzene correlated slightly with on-shift exposure to benzene, but significant increases in both urinary trans, trans-muconic and S-phenylmercapturic acids were found in active smokers compared with non-smokers, irrespective of their job.
CONCLUSION—The exposure to traffic fumes during working activities in medium to high traffic areas in Rome may give a relatively greater contribution to personal exposure to benzene than indoor sources present in confined environments. Smoking significantly contributed to internal exposure to benzene in both

  5. Noninvasive monitoring of androgens in male Amazonian manatee (Trichechus inunguis): biologic validation.

    PubMed

    Amaral, Rodrigo de Souza; Rosas, Fernando Cesar Weber; Viau, Priscila; d'Affonsêca Neto, José Anselmo; da Silva, Vera Maria Ferreira; de Oliveira, Cláudio Alvarenga

    2009-09-01

    passage time in this species. The salivary and urinary peaks were closely associated. These results demonstrate that androgen concentrations in saliva, urine, or feces samples reflect reliably physiologic events and are a powerful tool for noninvasive reproductive monitoring of Amazonian manatees.

  6. Coop Creek Bridge with Checkerboard Mesa in background, historic photograph, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Co-op Creek Bridge with Checkerboard Mesa in background, historic photograph, no date, Zion National Park collection - Zion-Mount Carmel Highway, Co-op Creek Bridge, Spanning Co-op Creek, Springdale, Washington County, UT

  7. 2. Big Creek Road, worm fence and road at trailhead. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Big Creek Road, worm fence and road at trailhead. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  8. 8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN BRIDGE CO., CONTRACTOR, ARKANSAS STATE HIGHWAY DEPARTMENT, 1928' - Harp Creek Bridge, Spans Harp Creek at State Highway 7, Harrison, Boone County, AR

  9. 59. Credit FM. Flood waters on South Battle Creek next ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Credit FM. Flood waters on South Battle Creek next to powerhouse. Note height of water in relation to tailraces. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  10. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  11. 5. Big Creek Road, old bridge on Walnut Bottom Road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Big Creek Road, old bridge on Walnut Bottom Road, deck view. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  12. 4. Big Creek Road, old bridge on Walnut Bottom Road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Big Creek Road, old bridge on Walnut Bottom Road, elevation view. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  13. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  14. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  15. 1. Salmon Creek Diversion Dam, weir (to left), sand and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Salmon Creek Diversion Dam, weir (to left), sand and silt sluice gate (center), main canal headworks (to right), view to northwest - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  16. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking northwest. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  17. Approach view of the Spring Creek Bridge, view looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking south. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  18. Topographic view of the Spring Creek Bridge and Collier State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Spring Creek Bridge and Collier State Park, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  19. Approach view of the Spring Creek Bridge, view looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking north. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  20. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking southeast. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  1. Elevation view of the Spring Creek Bridge, view looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  2. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  3. 2. View of Clear Creek Bridge railing and understructure, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Clear Creek Bridge railing and under-structure, looking northwest. - Zion-Mount Carmel Highway, 62-foot Concrete Arch Pine Creek Bridge, Spanning Clear Creek, Springdale, Washington County, UT

  4. 7. Cable Creek Bridge after completion. Zion National Park negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT

  5. 121. Credit JE. Galpin Creek ditch, a feeder leading water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Credit JE. Galpin Creek ditch, a feeder leading water to the Keswick ditch, supplying Volta powerhouse. (JE, v. 12 1902 p. 235). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  6. 3. Threequarter view of Oak Creek Bridge behind visitor center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Three-quarter view of Oak Creek Bridge behind visitor center facing southwest - Oak Creek Administrative Center, One half mile east of Zion-Mount Carmel Highway at Oak Creek, Springdale, Washington County, UT

  7. Detail view of 850 plate girder span directly over creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of 85-0 plate girder span directly over creek, looking west. - New York, Chicago & St. Louis Railroad, Elk Creek Trestle, Spanning Elk Creek, south of Elk Park Road, Lake City, Erie County, PA

  8. Perspective view showing 850 plate girder span directly over creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view showing 85-0 plate girder span directly over creek, looking west. - New York, Chicago & St. Louis Railroad, Elk Creek Trestle, Spanning Elk Creek, south of Elk Park Road, Lake City, Erie County, PA

  9. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2014

    USGS Publications Warehouse

    Bodamer Scarbro, Betsy L.; Edwards, William; Gawne, Carrie; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, Mark W.; Stewart, Taylor

    2015-01-01

    In 2014, the USGS LEBS successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Forage Fish Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment, the Eastern Basin Coldwater Community Assessment, and LTLA (see FTG, CWTG, and FTG reports, respectively). Results from the surveys contribute to Lake Erie Committee Task Group data needs and analyses of trends in Lake Erie’s fish communities. The cruise survey schedule in 2014 was greatly increased by LEBS’s participation in the Lake Erie CSMI, which consisted of up-to two weeks of additional sampling per month from April to October. CSMI is a bi-national effort that occurs at Lake Erie every five years with the purpose of addressing data and knowledge gaps necessary to management agencies and the Lake Erie LaMP. LEBS deepwater science capabilities also provided a platform for data collection by Lake Erie investigators from multiple agencies and universities including: the USGS GLSC, ODW, KSU, OSU, UM, PU, UT, and the USNRL. Samples from this survey are being processed and a separate report of the findings will be made available in a separate document. Our 2014 vessel operations were initiated in mid-April, as soon after ice-out as possible, and continued into early December. During this time, crews of the R/V Muskie and R/V Bowfin deployed 196 bottom trawls covering 48.5 km of lake-bottom, nearly 6 km of gillnet, collected data from 60 hydroacoustics transects, 285 lower trophic (i.e., zooplankton and benthos) samples, and 330 water quality measures (e.g., temperature profiles, water samples). Thus, 2014 was an intensive year of field activity. Our June and September bottom trawl surveys in the Western Basin were numerically dominated by Emerald Shiner, White Perch, and Yellow Perch; however, Freshwater Drum were

  10. Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12

    USGS Publications Warehouse

    Etheridge, Alexandra B.; MacCoy, Dorene E.; Weakland, Rhonda J.

    2014-01-01

    Water-quality conditions were studied in selected tributaries of the lower Boise River during water years 2009–12, including Fivemile and Tenmile Creeks in 2009, Indian Creek in 2010, and Mason Creek in 2011 and 2012. Biological samples, including periphyton biomass and chlorophyll-a, benthic macroinvertebrates, and fish were collected in Mason Creek in October 2011. Synoptic water-quality sampling events were timed to coincide with the beginning and middle of the irrigation season as well as the non-irrigation season, and showed that land uses and irrigation practices affect water quality in the selected tributaries. Large increases in nutrient and sediment concentrations and loads occurred over relatively short stream reaches and affected nutrient and sediment concentrations downstream of those reaches. Escherichia coli (E. coli) values increased in study reaches adjacent to pastured lands or wastewater treatment plants, but increased E. coli values at upstream locations did not necessarily affect E. coli values at downstream locations. A spatial loading analysis identified source areas for nutrients, sediment, and E. coli, and might be useful in selecting locations for water-quality improvement projects. Effluent from wastewater treatment plants increased nutrient loads in specific reaches in Fivemile and Indian Creeks. Increased suspended-sediment loads were associated with increased discharge from irrigation returns in each of the studied tributaries. Samples collected during or shortly after storms showed that surface runoff, particularly during the winter, may be an important source of nutrients in tributary watersheds with substantial agricultural land use. Concentrations of total phosphorus, suspended sediment, and E. coli exceeded regulatory water-quality targets or trigger levels at one or more monitoring sites in each tributary studied, and exceedences occurred during irrigation season more often than during non-irrigation season. As with water

  11. Personal air sampling and biological monitoring of occupational exposure to the soil fumigant cis-1,3-dichloropropene

    PubMed Central

    Brouwer, E; Verplanke, A; Boogaard, P; Bloemen, L; Van Sittert, N J; Christian, F; Stokkentreeff, M; Dijksterhuis, A; Mulder, A; De Wolff, F A

    2000-01-01

    OBJECTIVES—To assess exposure of commercial application workers to the nematocide cis-1,3-dichloropropene (cis-DCP).
METHODS—The study was conducted during the annual application season, August to 15 November, in the starch potato growing region in The Netherlands. 14 Application workers collected end of shift urine samples on each fumigation day (n=119). The mercapturic acid metabolite N-acetyl-S-(cis-3-chloro-2-propenyl)-L-cysteine (cis-DCP-MA) in urine was used for biological monitoring of the cis-DCP uptake. Inhalatory exposure was assessed by personal air sampling during a representative sample (n=37) of the fumigation days. Extensive information was collected on factors of possible relevance to the exposure and the application workers were observed for compliance with the statutory directions for use. The inhalatory exposure during all fumigation days was estimated from the relation between the personal air sampling data and the biological monitoring data. Exposure levels were correlated with the general work practice. The fumigation equipment and procedures were in accordance with the statutory directions of use, with the exception of the antidrip systems. Two antidrip systems were used: antidrip nozzles or a compressed air system.
RESULTS—The geometric mean exposure of the application workers was 2.7 mg/m3 (8 hour time weighted average); range 0.1-9.5 mg/m3. On 25 days (21%) the exposure exceeded the Dutch occupational exposure limit (OEL) of 5 mg/m3. This could mainly be explained by prolonged working days of more than 8 hours. The general work practice of the application workers was rated by the observers as good or poor. No difference in exposure to cis-DCP was found in the use of none, one, or two antidrip systems. Malfunctioning of the antidrip systems and lack of experience with the compressed air system were identified as possible causes for the lack of effectiveness of these antidrip systems. The use of personal protection was not

  12. A Regional Monitoring and Visualization System for Decision Support and Disaster Management Applications for the Mesoamerican Biological Corridor and Beyond

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel

    2002-01-01

    The Mesoamerican Biological Corridor (MBC)-a network of managed and protected areas extending from Mexico to Columbia-is a crucial initiative for the Mesoamerican region, with a central development concept of integrating conservation and sustainable use of biodiversity within the framework of sustainable economic development. The MBC is of particular importance to the Central American Commission for Environment and Development (CCAD), which is comprised of the environmental ministers from the seven Central American countries. Responsible for determining priority areas for action in the corridor, CCAD decision makers require current and accurate information, and access to the dynamic knowledge of the changes in the MBC such as deforestation hotspots, fires, and the effects of natural disasters. Currently this information is not integrated and in disparate locations throughout the region and the world. Leveraging NASA technology, satellite data, and capability, we propose to team with the World Bank and the CCAD to develop a regional monitoring and visualization system-with central nodes at the NASA/Marshall Space Flight Center and at CCAD headquarters. This system will assimilate NASA spatial datasets (e.g. MODIS, Landsat, etc.), spatial data from other sources (commercial and public-domain), and ancillary data developed in each of the seven Central American countries (soils, transportation networks, biodiversity indicator maps, etc.). The system will function as a "virtual dashboard" for monitoring the MBC and provide the critical decision support tools for CCAD decision makers. The CCAD central node will also serve as a high-tech showcase for the corridor among the international community, other decision-makers, the media, and students.

  13. Water-Quality Characteristics of Ledge Creek and Holman Creek Upstream from Lake Rogers, Granville County, North Carolina, 2005 and 2008

    USGS Publications Warehouse

    Harden, Stephen L.; Giorgino, Mary J.

    2008-01-01

    Water-quality and hydrologic data were collected during 2005 and 2008 to characterize potential source areas of nutrients and sediment within the Ledge and Holman Creek watersheds upstream from Lake Rogers in Granville County, North Carolina. Eight monitoring locations were established in all--five in Holman Creek and three in Ledge Creek--for collecting discharge and water-quality data during different streamflow conditions. Water-quality samples were collected during two sampling events in the fall of 2005 for analysis of major ions, nutrients, suspended sediment, and fecal-indicator bacteria. Water-quality samples were collected during three sampling events in the winter and spring of 2008 for analysis of nutrients and suspended sediment.

  14. Eighteen years (1996-2014) of channel cross-sectional measurements made in Spring Creek after the 1996 Buffalo Creek wildfire and subsequent flood

    USGS Publications Warehouse

    Moody, John A.; Martin, Deborah

    2017-01-01

    The consequence of the 1996 Buffalo Creek wildfire disturbance and a subsequent high-intensity summer convective rain storm (~100 mm h-1) was the deposition of a sediment superslug in the Spring Creek basin (26.8 km2) of the Front Range Mountains in Colorado. Changes in the superslug near the confluence of Spring Creek with the South Platte River were monitored by cross-section surveys at 18 nearly equally-spaced cross sections along a 1500 m study reach for 18 years (1996-2014) to understand the evolution and internal stratigraphy of this type of disturbance in response to different geomorphic processes. These data consist of 18 Excel files (one for each cross section) containing worksheets corresponding to each channel cross-section survey (about 25-31). Worksheets contain the basic survey information (dates, instruments, reference pin elevations, foresight, distances from reference pins, and elevations).

  15. KANAB CREEK ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Billingsley, George H.; Ellis, Clarence E.

    1984-01-01

    On the basis of a mineral survey, the Kanab Creek Roadless Area in north-central Arizona has a probable mineral-resource potential for uranium and copper in four small areas around five collapse structures. Gypsum is abundant in layers along the canyon rim of Snake Gulch, but it is a fairly common mineral in the region outside the roadless area. There is little promise for the occurence of fossil fuels in the area. Studies of collapse structures in surrounding adjacent areas might reveal significant mineralization at depth, such as the recent discovery of the uranium ore body at depth in the Pigeon Pipe.

  16. SANDY CREEK ROADLESS AREA, MISSISSIPPI.

    USGS Publications Warehouse

    Haley, Boyd R.; Bitar, Richard F.

    1984-01-01

    The Sandy Creek Roadless Area includes about 3. 7 sq mi in the southeastern part of Adams County, Mississippi. On the basis of a mineral survey, the area offers little promise for the occurrence of metallic mineral resources but has a probable resource potential for oil and natural gas. It is possible that wells drilled deep enough to penetrate the older reservoirs will encounter significant quantities of oil and natural gas in the roadless area. The deposits of gravel, sand, and clay present in the area could be utilized in the construction industry, but similar deposits elsewhere are much closer to available markets.

  17. Biomonitoring of fish communities, using the index of Biotic Integrity, as an indicator of the success of soil conservation measures in the Rabbit Creek and Middle Creek watersheds, Macon County, North Carolina

    SciTech Connect

    Not Available

    1993-08-01

    Fish communities in two upper Little Tennessee River tributaries, Rabbit Creek and Middle Creek, both located in Macon County, North Carolina, were monitored using IBI methods in 1990 and again in 1992. A single site, each on the lower reaches of its respective creek, was chosen to reflect the influence of conditions throughout the watershed and to provide a measure of water quality exiting the watershed. The Rabbit Creek watershed (Holly Springs community) has a long history of settlement and agricultural use. Dominant land uses today are pasture in the bottom lands and residential development at higher elevations. Much of the upper portion of the Middle Creek watershed on the slopes of Scaly Mountain is devoted to cabbage farming, often on steep slopes and highly erodible soils. From the cabbage growing area, the creek drops 400 feet to the lower valley. Other common land uses include residential, livestock, and forest. Both streams are characterized by heavy sedimentation and frequent high turbidity. Both streams showed marked improvement between 1990 and 1992. In 1990, Rabbit Creek`s IBI score was 31.0, for a bioclass rating of ``poor.`` In 1992, the IBI score was 42.1 for a bioclass rating of ``fair.`` For Middle Creek, the corresponding figures and ratings are 42.1 (fair) and 54.5 (good). Examination of the data for Rabbit Creek shows a reduction in the proportion of pollution-tolerant species, a higher proportion of specialized insectivores, a higher catch rate (reflecting higher total numbers of fish), and an additional intolerant species. In both cases, the data (supported by visual observation) suggests the causative factor is reduced sedimentation.

  18. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  19. 33 CFR 117.745 - Rancocas Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rancocas Creek. 117.745 Section 117.745 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas Creek. (a) The...

  20. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  1. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  2. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  3. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  4. 33 CFR 117.745 - Rancocas Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rancocas Creek. 117.745 Section 117.745 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas Creek. (a) The...

  5. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  6. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  7. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  8. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  9. 33 CFR 117.715 - Debbies Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Debbies Creek. 117.715 Section 117.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.715 Debbies Creek. (a) The draw...

  10. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  11. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  12. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  13. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  14. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  15. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  16. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  17. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  18. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  19. 33 CFR 117.745 - Rancocas Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rancocas Creek. 117.745 Section 117.745 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas Creek. (a) The...

  20. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  1. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  2. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  3. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  4. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  5. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  6. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  7. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  8. 33 CFR 117.185 - Pacheco Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacheco Creek. 117.185 Section 117.185 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.185 Pacheco Creek. The draw of the Contra Costa County highway bridge, mile 1.0,...

  9. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  10. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  11. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  12. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  13. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  14. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  15. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  16. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  17. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  18. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  19. 33 CFR 117.557 - Curtis Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Curtis Creek. 117.557 Section 117.557 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.557 Curtis Creek. The draw of the I695...

  20. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...