Science.gov

Sample records for creek geosyncline northern

  1. Dynamics of arsenic in the mining sites of Pine Creek Geosyncline, Northern Australia.

    PubMed

    Eapaea, Miro Peter; Parry, David; Noller, Barry

    2007-07-01

    The transportation and fixation of arsenic (As) in soil and sediments from five mine sites within the Pine Creek Geosyncline, Northern Territory, were examined based on measurements of operationally-defined fractions of As in soils, sediment and evaporates. Arsenic was mainly retained in sediments in the form iron arsenate (Fe-As). In wetland systems, As was retained as Fe-As together with calcium arsenate (Ca-As) from alkaline groundwater and organic-bound As from detrital material. In retention ponds As was retained as Fe-As, Ca-As and residual As (Res-As) up to 1700 mg/kg. Sediment traps can retain As from alkaline and acidic source seepages. The retention of Res-As and other mineral particulates during erosional or controlled process water discharges was associated with high Fe-As and organic-bound As in sediment. Arsenic was retained as Fe-As, Ca-As and residual As in 100 year old tailings at Millar's Battery, Union Reefs mine nearby McKinlay River and the small copper mine lease MLN 95 adjacent Copperfield Creek nearby Pine Creek. Natural geo-mobilisation of As was observed in upstream sediments at Copperfield Creek (5-8 mg/kg), Mt. Bundey Creek (10-12 mg/kg), upstream Ryan's Creek (10-12 mg/kg) and downstream East branch Ryan's Creek (7 mg/kg). Erosion of As-containing mineralisation was observed in the McKinlay River upstream and downstream (23-26 mg/kg) and upstream Ryan's Creek boundary of the Goodall mine lease MLN 1049 (24-40 mg/kg). Overall, As was mainly retained in sediments in the form Fe-As. The concentration data for As were used to propose mechanisms of As dispersion and retention occurring at the various mine sites that can be utilised for future mine water management design to minimise As dispersion.

  2. "Visit to Caspar Creek, northern California"

    Treesearch

    Nick Schofield

    1989-01-01

    As part of a brief study tour in California, I had the good fortune of spending a very pleasant day on the Caspar Creek watershed, ably guided by Peter Cafferata and Liz Keppeler. Amongst the many notable achievements of the Caspar Creek Study is its longevity. The study started in 1962 and has evolved over time

  3. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled

  4. Research in the Caspar Creek Experimental Watersheds, Northern California

    Treesearch

    Jack Lewis; Rand E. Eads; Robert R. Ziemer

    2000-01-01

    For the past four decades, researchers from the Pacific Southwest Research Station's Redwood Sciences Laboratory, in cooperation with the California Department of Forestry and Fire Protection, have been studying the effects of logging in the Caspar Creek Experimental Watersheds on the Jackson Demonstration State Forest near Fort Bragg, California. Their findings...

  5. Impact ejecta horizon within late precambrian shales, adelaide geosyncline, South australia.

    PubMed

    Gostin, V A; Haines, P W; Jenkins, R J; Compston, W; Williams, I S

    1986-07-11

    A solitary layer of shattered crustal rock fragments has been traced over a distance of 260 kilometers within folded 600-million-year-old Precambrian marine shales of the Adelaide Geosyncline, South Australia. The fragments consist entirely of acid to intermediate volcanics (approximately 1575 million years old) displaying shattered mineral grains, shock lamellae in quartz, and small shatter cones. Fragments reach 30 centimeters in diameter and show evidence of vertical fall emplacement. Available evidence points to derivation of the rock fragments from a distant hypervelocity impact into the Gawler Range Volcanics at Lake Acraman, approximately 300 kilometers west of the Adelaide Geosyncline.

  6. Winter food habits of coastal juvenile steelhead and coho salmon in Pudding Creek, northern California

    Treesearch

    Heather Anne Pert

    1993-01-01

    The objectives of this study were to determine winter food sources, availability, and preferences for coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss) in Pudding Creek, California. The majority of research on overwintering strategies of salmonids on the West Coast has been done in cooler, northern climates studying primarily the role of habitat...

  7. Saltmarsh pool and tidal creek morphodynamics: Dynamic equilibrium of northern latitude saltmarshes?

    NASA Astrophysics Data System (ADS)

    Wilson, Carol A.; Hughes, Zoe J.; FitzGerald, Duncan M.; Hopkinson, Charles S.; Valentine, Vinton; Kolker, Alexander S.

    2014-05-01

    Many saltmarsh platforms in New England and other northern climates (e.g. Canada, northern Europe) exhibit poor drainage, creating waterlogged regions where short-form Spartina alterniflora dominates and stagnant pools that experience tidal exchange only during spring tides and storm-induced flooding events. The processes related to pool formation and tidal creek incision (via headward erosion) that may eventually drain these features are poorly understood, however it has been suggested that an increase in pool occurrence in recent decades is due to waterlogging stress from sea-level rise. We present evidence here that saltmarshes in Plum Island Estuary of Massachusetts are keeping pace with sea-level rise, and that the recent increase in saltmarsh pool area coincides with changes in drainage density from a legacy of anthropogenic ditching (reversion to natural drainage conditions). Gradients, in addition to elevation and hydroperiod, are critical for saltmarsh pool formation. Additionally, elevation and vegetative changes associated with pool formation, creek incision, subsequent drainage of pools, and recolonization by S. alterniflora are quantified. Pool and creek dynamics were found to be cyclic in nature, and represent platform elevation in dynamic equilibrium with sea level whereby saltmarsh elevation may be lowered (due to degradation of organic matter and formation of a pool), however may be regained on short timescales (101-2 yr) with creek incision into pools and restoration of tidal exchange. Rapid vertical accretion is associated with sedimentation and S. alterniflora plant recolonization.

  8. Gabbro-peridotite Interaction in the Northern Cache Creek Composite Terrane Ophiolite, British Columbia and Yukon

    NASA Astrophysics Data System (ADS)

    Zagorevski, A.

    2015-12-01

    The northern Cache Creek composite terrane comprises a thrust stack of chert, limestone, siltstone, basalt, gabbro and ultramafic complexes ranging in age from Mississippian to Triassic. Fields studies and geochemical investigations indicate that ophiolitic mafic-ultramafic complexes formed in a supra-subduction zone setting. Ophiolitic rocks in the southeast form a structurally disrupted Penrose-type ophiolite; however, northwestern ophiolitic rocks generally lack lower and middle crust in most sections, exhibit a direct contact between supracrustal and mantle sections and locally contain ophicalcites suggesting that supracrustal rocks were structurally emplaced over mantle along extensional detachment(s). Mantle peridotite in the footwall of the detachment is extensively intruded by vari-textured, fine-grained to pegmatitic gabbro sills, dykes and stocks. These gabbro intrusions are locally boudinaged within fresh peridotite suggesting that the host mantle was rapidly exhumed prior to emplacement of the gabbro. Intrusive relationships between gabbro and variably serpentinized mantle peridotite are observed throughout the northern Cache Creek terrane (>300 km) suggesting a presence of a regional-scale Middle Triassic ocean-core complex. Overall, these data indicate that parts of the northern Cache Creek terrane formed in a setting analogous to backarc ocean core complexes such as the Godzilla Megamullion in the Parece Vela backarc basin, western Pacific.

  9. Debris flows on Belding Creek, Salmonberry River basin, northern Oregon Coast Range

    SciTech Connect

    Burris, L.M. . Dept. of Geology)

    1993-04-01

    Belding Creek, a tributary of the Salmonberry River, has experienced repeated debris flow episodes. The Salmonberry River flows through Paleocene Tillamook Basalt and is located at longitude 45[degree]43 minutes in the Northern Oregon Coast Range. On January 9, 1990, a debris flow initiated on a first order tributary of Belding Creek during a heavy precipitation event. A month later another debris flow initiated on a different first order stream under similar conditions. Both debris flows traveled for a distance of approximately 2.1 km and poured into the main Belding Creek channel washing out Belding Road which crosses the stream. Numerical data was obtained from the youngest flow deposit. The debris flow material density is 2.5 g/cm[sup 3]. It traveled at an average velocity of 2.9 m/s with a shear strength of 2.5 [times] 10[sup 4] dn/cm[sup 2], a friction angle of 4[degree], and a cohesion value of 1.4 [times] 10[sup 4] dn/cm[sup 3]. Less than 3% of the fine sediments deposited are clay and silt. Deposits from previous, older debris flow events are in and adjacent to the Belding Creek stream channel. Similar processes are evident in other major tributaries of the Salmonberry River, although these other stream channels have not shown recent activity. Each stream in the area that has experienced past debris flows similar to Belding Creek has a landslide feature at the top and follows regional lineation patterns.

  10. Early miocene bimodal volcanism, Northern Wilson Creek Range, Lincoln County, Nevada

    USGS Publications Warehouse

    Willis, J.B.; Willis, G.C.

    1996-01-01

    Early Miocene volcanism in the northern Wilson Creek Range, Lincoln County, Nevada, produced an interfingered sequence of high-silica rhyolite (greater than 74% SiO2) ash-flow tuffs, lava flows and dikes, and mafic lava flows. Three new potassium-argon ages range from 23.9 ?? 1.0 Ma to 22.6 ?? 1.2 Ma. The rocks are similar in composition, stratigraphic character, and age to the Blawn Formation, which is found in ranges to the east and southeast in Utah, and, therefore, are herein established as a western extension of the Blawn Formation. Miocene volcanism in the northern Wilson Creek Range began with the eruption of two geochemically similar, weakly evolved ash-flow tuff cooling units. The lower unit consists of crystal-poor, loosely welded, lapilli ash-flow tuffs, herein called the tuff member of Atlanta Summit. The upper unit consists of homogeneous, crystal-rich, moderately to densely welded ash-flow tuffs, herein called the tuff member of Rosencrans Peak. This unit is as much as 300 m thick and has a minimum eruptive volume of 6.5 km3, which is unusually voluminous for tuffs in the Blawn Formation. Thick, conspicuously flow-layered rhyolite lava flows were erupted penecontemporaneously with the tuffs. The rhyolite lava flows have a range of incompatible trace element concentrations, and some of them show an unusual mixing of aphyric and porphyritic magma. Small volumes of alkaline, vesicular, mafic flows containing 50 weight percent SiO2 and 2.3 weight percent K2O were extruded near the end of the rhyolite volcanic activity. The Blawn Formation records a shift in eruptive style and magmatic composition in the northern Wilson Creek Range. The Blawn was preceded by voluminous Oligocene eruptions of dominantly calc-alkaline orogenic magmas. The Blawn and younger volcanic rocks in the area are low-volume, bimodal suites of high-silica rhyolite tuffs and lava flows and mafic lava flows.

  11. The Effect of Landuse and Other External Factors on Water Quality Within two Creeks in Northern Kentucky

    NASA Astrophysics Data System (ADS)

    Boateng, S.

    2006-05-01

    The purpose of this study was to monitor the water quality in two creeks in Northern Kentucky. These are the Banklick Creek in Kenton County and the Woolper Creek in Boone County, Kentucky. The objective was to evaluate the effect of landuse and other external factors on surface water quality. Landuse within the Banklick watershed is industrial, forest and residential (urban) whereas that of Woolper Creek is agricultural and residential (rural). Two testing sites were selected along the Banklick Creek; one site was upstream the confluence with an overflow stream from an adjacent lake; the second site was downstream the confluence. Most of the drainage into the lake is over a near-by industrial park and the urban residential areas of the cities of Elsmere and Erlanger, Kentucky. Four sampling locations were selected within the Woolper Creek watershed to evaluate the effect of channelization and subsequent sedimentation on the health of the creek. Water quality parameters tested for include dissolved oxygen, phosphates, chlorophyll, total suspended sediments (TSS), pH, oxidation reduction potential (ORP), nitrates, and electrical conductivity. Sampling and testing were conducted weekly and also immediately after storm events that occurred before the regular sampling dates. Sampling and testing proceeded over a period of 29 weeks. Biological impact was determined, only in Woolper Creek watershed, by sampling benthic macroinvertebrates once every four weeks. The results showed significant differences in the water quality between the two sites within the Banklick Creek. The water quality may be affected by the stream overflow from the dammed lake. Also, channelization in the Woolper Creek seemed to have adverse effects on the water quality. A retention pond, constructed to prevent sediments from flowing into the Woolper Creek, did not seem to be effective. This is because the water quality downstream of the retention pond was significantly worse than that of the

  12. Paleomagnetic, geochronologic, and petrologic data discriminate tholeiitic basalts of the northern Hat Creek graben, northeastern California

    NASA Astrophysics Data System (ADS)

    Muffler, L. J.; Champion, D. E.; Calvert, A. T.; Clynne, M. A.

    2012-12-01

    Geologic mapping carried out in 2010-2012 under a Cooperative Research and Development Agreement (CRADA) between the U.S. Geological Survey and Pacific Gas and Electric Company provides the framework for geochronologic, paleomagnetic, and petrologic studies of the widespread low-potassium olivine tholeiite (LKOT) basalts that inundate low topography between higher-elevation remnants of >1 Ma calc-alkaline volcanoes in the northern part of the Hat Creek graben. These tholeiitic basalts are monotonously similar in appearance and cannot be distinguished one from another with any confidence in the field or petrographically. They are, however, distinctive in age, paleomagnetic secular directions, and major-element compositions, allowing us to map three major tholeiitic units: the basalt of Rocky Ledge (40Ar/39Ar determinations on 3 different exposures give 203.2 ± 13.7 ka, 186.8 ± 12.5 ka, and 203.9 ± 15.2 ka; weighted average 197 ± 8 ka), the basalt of Rock Spring (545.7 ± 6.7 ka), and the basalt of Sam Wolfin Spring (647.3 ± 21.7 ka). These tholeiitic units are overlain to the east by the calc-alkaline basalt west of Six Mile Hill (53.5 ± 2.0 ka) and to the south by the calc-alkaline basaltic andesite of Cinder Butte (38 ± 7 ka) and the tholeiitic Hat Creek Basalt (24 ± 6 ka). These latter two ages are from Turrin et al. (2007); all other ages are new 40Ar/39Ar determinations from the USGS geochronology laboratory in Menlo Park, California. Paleomagnetic directions of the tholeiitic basalt of Rocky Ledge (16 sites) cluster tightly at inclination and declination of 63° and 349°, respectively. Inclinations and declinations for the tholeiitic basalt of Rock Spring (3 sites) cluster at 43° and 14°, whereas inclinations and declinations for the tholeiitic basalt of Sam Wolfin Spring (7 sites) cluster at 54° and 5°. On Pearce diagrams of the chemical compositions (e.g., Ti vs. Mg; P/K vs. Ti/K), the three units plot in distinct fields with no overlap

  13. Slip History and Evolution of the Hat Creek Fault, Northern California

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Kattenhorn, S. A.

    2008-12-01

    Normal faults commonly exhibit unique surface features in basalt such as vertical scarps and fault-trace monoclines that provide clues to the fault evolution. The Hat Creek fault, 25 km north of Lassen volcano in northern California, is a segmented fault system within Pleistocene and younger basalts. The fault is located along the western boundary of the Modoc plateau in the extended backarc of the Cascades. The fault geometry tells of a varied extensional history that likely reflects a complex interplay between tectonic and magmatic influences. In response, the northern portion of the fault system migrated progressively westward, abandoning older scarps in its wake, whereas the southern portion continues to utilize Pleistocene slip surfaces. This spatial evolution has created three distinct scarps. From oldest (easternmost) to youngest (westernmost), they are informally identified as: the rim (max. throw of 352 m), the pali (max. throw of 174 m), and the active scarp (max. throw of 65 m). The rim is oriented N-S, consistent with the regional E-W extension direction, and consists of 7 predominantly right-stepping segments (NNW oriented) that are physically linked through lower ramp breaches. This geometry implies a clockwise rotation of the stress field after the segments developed, with linkage driven by right-lateral oblique motion. Throw profiles along the rim illustrate mechanical interactions and partitioning of displacement between adjacent segments. The pali is a relatively younger fault plane located up to 3.3 km west of the northern portion of the rim. The pali is oriented NW-SE and consists of 5 left-stepping segments that are physically connected through upper ramp breaches, also consistent with right-lateral oblique motion. The pali likely nucleated along its central segment, where throw is maximized, in response to a magmatic perturbation of the stress field (causing a local NE-SW extension), possibly related to dike injection that culminated in the

  14. Hydrology and bedload transport relationships for sand-bed streams in the Ngarradj Creek catchment, northern Australia

    NASA Astrophysics Data System (ADS)

    Erskine, W. D.; Saynor, M. J.

    2013-03-01

    SummaryRainfall, discharge and bedload were measured at three gauging stations (East Tributary, Upper Swift Creek and Swift Creek) in the Ngarradj Creek catchment at Jabiluka, Northern Territory, Australia. Hand-held, pressure difference, Helley-Smith bedload samplers were used to measure bedload fluxes for the 1998/1999, 1999/2000, 2000/2001 and 2001/2002 wet seasons. Rainfall is strongly seasonal over the Ngarradj Creek catchment, being concentrated in the wet season between November and April. Mean annual point rainfall between 1998 and 2007 for the water year, September to August, inclusive varied over the Ngarradj Creek catchment from 1731 ± 98 mm (SE) to 1754 ± 116 mm. Between 190 and 440 mm of rainfall are required before streamflow commences in December in most years. Streamflow persists until at least April. Mean annual runoff, as a percentage of mean annual rainfall, decreases slightly with increasing catchment area. Bedload ratings were calculated for four data sets. Significant bedload ratings were defined as those that were not only statistically significant (ρ ⩽ 0.05) but also explained at least 0.60 of the variance in bedload flux. For the three stations, twenty-three bedload ratings complied with the above criteria. Sixteen equations were accepted for East Tributary, four bedload ratings were accepted for Upper Swift Creek and three bedload ratings were accepted for Swift Creek. Significant bedload ratings were established between bedload flux and discharge, unit bedload flux and discharge, transport rate of unsuspended bedload by immersed weight per unit width and time and both unit and excess unit stream power, and finally, adjusted submersed bedload weight and both unit and excess unit stream power for raw and log10-transformed data. 'Censored data sets' were compiled for Upper Swift Creek and Swift Creek to include only bedload fluxes measured when there was no apparent scour or fill so that there were no changes in sand supply from the

  15. Tertiary fluvial systems within the Bear Creek coal field, northern Big Horn basin, Montana

    SciTech Connect

    Weaver, J.N. ); Gruber, J.R. Jr. )

    1991-06-01

    The Bear Creek coal field contains the 250-m-thick coal-bearing Paludal Member of the Paleocene Fort Union Formation in the northern Big Horn Basin, Montana. Detailed field and subsurface data show two contrasting geometries in alluvial strata, each bounded by an economic coal bed. The lower 50 m of the Paludal Member is dominated by sheet and ribbon sandstones. The sheet sandstones are as long as 1.5 km and fine upwards from medium to fine grained. Some sandstones are multistory with sharp upoper and lower contacts. The upper portion has convolute bedding, ripple lamination, and some horizontal and tabular crossbeds. Stratigraphically higher is a 12-m-thick fine-grained sequence, containing large tree trunks in growth position and extensively rooted mud rocks. Sandstone bodies, 6 m thick and 10 m wide, are enclosed within mudstones and siltstones. The sandstones are primarily ripple laminated and have stepped bases and internal erosion surfaces. This interval has previously been interpreted as deposits of an anastomosed fluvial system. The sandstones show little evidence of significant lateral migration. In contrast to the lower interval, the environment here consisted of well-developed vegetated islands separating fluvial channels. Subsurface data show that the major coal beds are laterally continuous within the study area. The cyclic development of the coals reflects intermittent periods of long-term basin stability. Alternating dominance of the sandstones suggests that influx and distribution were controlled through episodic uplift of the nearby Beartooth Mountains.

  16. Fault pattern at the northern end of the Death Valley - Furnace Creek fault zone, California and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.

  17. Maximum Flow Efficiency in an Anabranching River, Magela Creek, Northern Australia

    NASA Astrophysics Data System (ADS)

    Jansen, J. D.; Nanson, G. C.

    2002-12-01

    In this field- and laboratory-based study, we demonstrate that the development of anabranching channels in some rivers increases the conveyance of sediment and water, compared with a single channel at the same flow discharge. That is, under certain conditions, anabranching channels exhibit greater sediment transporting capacity per unit available stream power. Anabranching is a globally widespread river pattern noted in diverse physiographic, hydrologic and sedimentologic environments, and recent efforts have sought to unravel controls on their origin and maintenance. It is widely held that most rivers form a single-channel in order to minimise boundary roughness while conveying water and sediment, but do all rivers show a tendency to develop a single channel? And if so, what factors lead to long-term anabranching? The observation that anabranching commonly develops in environments where water and sediment conveyance is maintained with little or no recourse to increasing energy slope prompted the hypothesis that rivers may adopt a multiple channel pattern in order to optimise their efficiency where they cannot otherwise increase slope. It is reasoned that development of a system of multiple channels reduces total flow width and raises mean flow depth, thereby maximising sediment transport per unit area of the channel bed and maintaining or enhancing water and sediment throughput. In testing the hypothesis we present: (1) results of a field experiment in which hydraulic variables and bedload discharge are measured and compared for single-channel versus multichannel reaches of the same river (Magela Creek, northern Australia); (2) comparison of these field results with bedload transport modelling via well known bedload equations; and (3) results of an experimental flume study comparing hydraulic variables and sediment flux in single-channel versus divided flow. Magela Creek is representative of several anabranching systems draining the Alligators Rivers Region of

  18. Quantifying stream channel sediment contributions for the Paradise Creek Watershed in northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Squires, A.; Boll, J.; Brooks, E. S.

    2012-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies around the world, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. Little is known about in-stream contributions, a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to identify where and when sediment is delivered to the stream and the spatial and temporal stream channel contributions to the overall watershed scale sediment load. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was made up predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 50% of the total annual sediment load for the basin, with a 19 year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term data in the watershed will be presented to indicate if the main source of the sediment is from either rural and urban non-point sources or the channel system.

  19. Stream-sediment geochemistry in mining-impacted streams: Prichard, Eagle, and Beaver creeks, northern Coeur d'Alene Mining District, northern Idaho

    USGS Publications Warehouse

    Box, Stephen E.; Wallis, John C.; Briggs, Paul H.; Brown, Zoe Ann

    2005-01-01

    This report presents the results of one aspect of an integrated watershed-characterization study that was undertaken to assess the impacts of historical mining and milling of silver-lead-zinc ores on water and sediment composition and on aquatic biota in streams draining the northern part of the Coeur d?Alene Mining District in northern Idaho. We present the results of chemical analyses of 62 samples of streambed sediment, 19 samples of suspended sediment, 23 samples of streambank soil, and 29 samples of mine- and mill-related artificial- fill material collected from the drainages of Prichard, Eagle, and Beaver Creeks, all tributaries to the North Fork of the Coeur d?Alene River. All samples were sieved into three grain-size fractions (<0.063, 0.063?0.25, and 0.25?1.0 mm) and analyzed for 40 elements after four-acid digestion by inductively coupled plasma atomic-emission spectrometry and for mercury by continuous- flow cold-vapor atomic-absorption spectrometry in the U.S. Geological Survey laboratory in Denver, Colo. Historical mining of silver-lead-zinc ores in the headwater reaches of the Prichard Creek, Eagle Creek, and Beaver Creek drainages has resulted in enrichments of lead, zinc, mercury, arsenic, cadmium, silver, copper, cobalt, and, to a lesser extent, iron and manganese in streambed sediment. Using samples collected from the relatively unimpacted West Fork of Eagle Creek as representative of background compositions, streambed sediment in the vicinity of the mines and millsites has Pb and Zn contents of 20 to 100 times background values, decreasing to 2 to 5 times background values at the mouth of the each stream, 15 to 20 km downstream. Lesser enrichments (<10 times background values) of mercury and arsenic also are generally associated with, and decrease downstream from, historical silver-lead-zinc mining in the drainages. However, enrichments of arsenic and, to a lesser extent, mercury also are areally associated with the lode gold deposits along

  20. A study of radium bioaccumulation in freshwater mussels, Velesunio angasi, in the Magela Creek catchment, Northern Territory, Australia.

    PubMed

    Bollhöfer, Andreas; Brazier, Jenny; Humphrey, Chris; Ryan, Bruce; Esparon, Andrew

    2011-10-01

    Freshwater mussels, Velesunio angasi, along Magela Creek in Australia's Northern Territory were examined to study radionuclide activities in mussel flesh and to investigate whether the Ranger Uranium mine is contributing to the radium loads in mussels downstream of the mine. Radium loads in mussels of the same age were highest in Bowerbird Billabong, located 20 km upstream of the mine site. Variations in the ratio of [Ra]:[Ca] in filtered water at the sampling sites accounted for the variations found in mussel radium loads with natural increases in calcium (Ca) in surface waters in a downstream gradient along the Magela Creek catchment gradually reducing radium uptake in mussels. At Mudginberri Billabong, 12 km downstream of the mine, concentration factors for radium have not significantly changed over the past 25 years since the mine commenced operations and this, coupled with a gradual decrease of the (228)Ra/(226)Ra activity ratios observed along the catchment, indicates that the (226)Ra accumulated in mussels is of natural rather than mine origin. The (228)Th/(228)Ra ratio has been used to model radium uptake and a radium biological half-life in mussels of approximately 13 years has been determined. The long biological half-life and the low Ca concentrations in the water account for the high radium concentration factor of 30,000-60,000 measured in mussels from the Magela Creek catchment.

  1. a Possible Ancient Core Complex in the Northern Cache Creek Terrane, British Columbia

    NASA Astrophysics Data System (ADS)

    Zagorevski, A.

    2013-12-01

    The Cache Creek terrane (CCT) in Canadian Cordillera comprises a belt of Mississippian to Jurassic oceanic rocks that include Tethyan carbonates and alkaline basalts that are demonstrably exotic to Laurentia. The exotic Tethyan faunas in the CCT, combined with its inboard position with respect to Stikinia and Yukon-Tanana terranes has led to a variety of tectonic hypotheses including oroclinal enclosure of CCT by Stikinia, Yukon-Tanana and Quesnellia during the Jurassic. Detailed studies have demonstrated that the northern CCT is in fact a composite terrane that includes ophiolitic rocks of both ocean island and island arc origins. The western margin of the CCT is characterized by imbricated harzburgite, island arc tholeiite, sedimentary rocks and locally significant felsic volcanic rocks of the Kutcho arc. Gabbro is volumetrically minor and sheeted dyke complexes are either very rare or not developed. The felsic arc volcanic rocks and the pyroxenite bodies that cut the harzburgite have been previously isotopically dated as Middle Triassic (ca. 245 Ma) suggesting that melt percolation through the mantle was coeval with Kutcho arc magmatism and coincided with a magmatic gap in Stikinia. In general the contact between the mantle and supracrustal rocks is faulted making it difficult to determine the original relationships between the mantle and island arc tholeiites. Locally, the contact appears to be intact and is characterized by mantle tectonites with pyroxenite veins overlain by cumulate plagioclase-orthopyroxene gabbro and fine grained diabase. Elsewhere, volcanic and sedimentary rocks sit in fault contact structurally above the mantle. The absence of voluminous gabbro and sheeted dyke complexes, presence of coeval magmas in the crust and mantle, and low angle extensional faulting in some areas suggests that the western part of the CCT may preserve an ocean core complex similar to the Godzilla Megamullion in the Parece-Vela Basin. Such a hypothesis suggests that

  2. Gully Development in Tributaries to Caspar Creek, Northern California Coast Range

    NASA Astrophysics Data System (ADS)

    Dewey, N. J.; Lisle, T. E.; Reid, L. M.

    2002-12-01

    Incision of tributaries to Caspar Creek, a gaged Coast Range watershed in Northern California, appears to be an ongoing process that may account for a significant sediment output. Gullied reaches with fresh headcuts and steep banks, indicative of incision, are documented in environments ranging from zero-order swales through third-order channels draining over 50 hectares. Gully size ranges from 0.25 to 25 m2 in cross-sectional area. Gully volume per watershed ranges from 10 to 60 m3 per hectare. Multiple gully headcuts migrate up each channel; typically there are 2 to 5 headcuts taller than 0.8 meters and 3 to 10 smaller headcuts present per 100 m of gullied channel. A variety of processes appear to be responsible for the initiation and propagation of gullies. In the higher reaches of each tributary, gullies are closely associated with pipe-collapse and landslide features. Typically these high slope gullies are separated by unchanneled reaches. Once discontinuous gullies are established at these sites, headcut migration allows them to expand upslope. Lower in the system, plunge pool erosion appears to play a larger role and gullies are part of a continuous channel. A transition from discontinuous gullies to a continuous channel typically occurs at a drainage area of 3 to 10 hectares. Recent disturbance and road runoff allow formation of continuous channels at lower drainage areas. At least two episodes of post-logging gully development occurred. The largest gullies undercut old-growth stumps and old roots in areas which were not subsequently disturbed. These gullies appear to have been activated after an initial logging entry in the late 1800's and early 1900's; some of these older gullies appear to be partially stabilizing. Other gullies clearly postdate logging and skid-trail building in the early 1970's. Incised channels were filled during 1970's logging in the South Fork, and are now being reincised. The most active gullies occur in the locations logged in the

  3. Measurements of mercury methylation rates and bioavailability in the Allequash Creek Wetland, Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Creswell, J. E.; Babiarz, C. L.; Shafer, M. M.; Armstrong, D. E.

    2008-12-01

    Wetlands are known to be hot spots for the production of methylmercury (MeHg) and subsequent export into other aquatic ecosystems. Because MeHg is a bioaccumulative neurotoxin, and because the primary route of human exposure to mercury is through the consumption of contaminated fish, understanding the processes by which MeHg is produced in the aquatic environment is important to the protection of human health. Inorganic Hg(II) is known to be methylated by bacteria in the anoxic zones of wetland sediments, but bioavailability plays a role in this process, as certain chemical complexes of mercury are unavailable to the microbial community. In the Allequash Creek wetland, a strong relationship has been observed between MeHg and Dissolved Organic Carbon (DOC) concentrations, but the observed relationship between MeHg and total Hg is weak. This observation implicates factors other than Hg(II) concentration as drivers of methylation. In this study, depth-resolved estimates of the bioavailability of inorganic Hg(II) were made by measuring the net mercury methylation rate potential in the hyporheic zone of the wetland. Gross mercury methylation was measured in sediment cores amended with stable isotope-enriched Hg(II), by analyzing isotopically-enriched methylmercury produced during an incubation. Demethylation was measured by amending replicate cores with stable isotope-enriched methylmercury and analyzing the amount consumed over the incubation period. Analyses were conducted using an inductively coupled plasma-quadrupole mass spectrometer. A method comparison was made between incubating cores intact, with mercury amendments injected through core tube walls, and incubating sectioned cores, with mercury amendments mixed into homogenized sediments. The value of incubating intact cores is that disturbance to the sediment and the microbial community is minimized, resulting in experimental conditions that more accurately mimic in situ conditions. The value of mixing mercury

  4. Analytical Results for 42 Fluvial Tailings Cores and 7 Stream Sediment Samples from High Ore Creek, Northern Jefferson County, Montana

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.

    1998-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubility. Sediments, fluvial tailings and water from High Ore Creek have been identified as significant contributors to water quality degradation of the Boulder River below Basin, Montana. A study of 42 fluvial tailings cores and 7 stream sediments from High Ore Creek was undertaken to determine the concentrations of environmentally sensitive elements (i.e. Ag, As, Cd, Cu, Pb, Zn) present in these materials, and the mineral phases containing those elements. Two sites of fluvial deposition of mine-waste contaminated sediment on upper High Ore Creek were sampled using a one-inch soil probe. Forty-two core samples were taken producing 247 subsamples. The samples were analyzed by ICP-AES (inductively coupled-plasma atomic emission spectroscopy) using a total mixed-acid digestion. Results of the core analyses show that the elements described above are present at very high concentrations (to 22,000 ppm As, to 460 ppm Ag, to 900 ppm Cd, 4,300 ppm Cu, 46,000ppm Pb, and 50,000 ppm Zn). Seven stream-sediment samples were also analyzed by ICP-AES for total element content and for leachable element content. Results show that the sediment of High Ore Creek has elevated levels of ore-related metals throughout its length, down to the confluence with the Boulder River, and that the metals are, to a significant degree, contained in the leachable phase, namely the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.

  5. Quaternary stratigraphy, geochronology and evolution of the Magela Creek catchment in the monsoon tropics of northern Australia

    NASA Astrophysics Data System (ADS)

    Nanson, Gerald C.; East, T. Jon; Roberts, Richard G.

    1993-03-01

    Magela Creek, a major tributary of the East Alligator River in northern Australia, has left a detailed sedimentary record of a fluvial landscape dominated by climatic and eustatic changes associated with Quaternary glacial-interglacial cycles. Uranium-series dates from young pisoliths in floodplain deposits indicate that ferruginisation is probably ongoing under present conditions while ferricretes in degraded terraces that flank the lower valley reveal a fluvial history extending back to early Pleistocene or Tertiary time. Inset within this older alluvium is a valley fill which, from thermoluminescence dates, was initiated about 300 kyr ago. With each glacial climate change and associated fall in sea level, distinct palaeochannels have been eroded into these floodplains, infilling later with alluvium when climate and base-level conditions were conducive to fluvial deposition. Radiocarbon dates show that the most recent palaeochannel beneath the modern Magela Creek last started to fill by downstream progradation and vertical accretion of bedload sand about 8 kyr. The palaeochannel filled at an accelerating rate, probably as a result of declining stream competence associated with drier conditions in the late Holocene augmented by the backwater effects of sea-level rise. Continued aggradation blocked the mouths of tributary valleys along Magela Creek, forming alluvial-dammed tributary lakes and deferred-junction tributary streams. From about 300 kyr, cyclic episodes of channel incision and sediment evacuation in this tropical-monsoon river valley have become less effective, possibly because increasing aridity in the late Quaternary has reduced the erosional effectiveness of Australia's northern rivers. Reduced flow regime and rising sea level in the late Holocene has resulted in the latest phase of alluvial accretion.

  6. The Debris Flow of September 20, 2014, in Mud Creek, Mount Shasta Volcano, Northern California

    NASA Astrophysics Data System (ADS)

    De La Fuente, J. A.; Bachmann, S.; Courtney, A.; Meyers, N.; Mikulovsky, R.; Rust, B.; Coots, F.; Veich, D.

    2015-12-01

    The debris flow in Mud Creek on September 20, 2014 occurred during a warm spell at the end of an unusually long and hot summer. No precipitation was recorded during or immediately before the event, and it appears to have resulted from rapid glacial melt. It initiated on the toe of the Konwakiton Glacier, and immediately below it. The flow track was small in the upper parts (40 feet wide), but between 8,000 and 10,000 feet in elevation, it entrained a large volume of debris from the walls and bed of the deeply incised gorge and transported it down to the apex of the Mud Creek alluvial fan (4,800'). At that point, it overflowed the channel and deposited debris on top of older (1924) debris flow deposits, and the debris plugged a road culvert 24 feet wide and 12 feet high. A small fraction of the flow was diverted to a pre-existing overflow channel which parallels Mud Creek, about 1,000 feet to the west. The main debris flow traveled down Mud Creek, confined to the pre-existing channel, but locally got to within a foot or so of overflowing the banks. At elevation 3920', video was taken during the event by a private citizen and placed on YouTube. The video revealed that the flow matrix consisted of a slurry of water/clay/silt/sand/gravel, transporting boulders 1-6 feet in diameter along with the flow. Cobble-sized rock appears to be absent. Sieve analysis of the debris flow matrix material revealed a fining of particles in a downstream direction, as expected. The thickness of deposits on the fan generally decreased in a downstream direction. Deposits were 5-6 feet deep above the Mud Creek dam, which is at 4,800' elevation, and 4-5 feet deep at the dam itself. Further downstream, thicknesses decreased as follows: 3920'aqueduct crossing, 3-4 feet; 3620' Pilgrim Creek Road crossing, 2-3 feet; 3,520', 1-2 feet; 3,440' abandoned railroad grade, 1 foot. This event damaged roads, and future events could threaten life and property. There is a need to better understand local

  7. Geology and petrology of the Wooley Creek batholith, Klamath Mountains, northern California

    NASA Astrophysics Data System (ADS)

    Barnes, C. G.

    The Wooley Creek batholith was intruded into metamorphic rocks of the western Paleozoic and Triassic belt (TrPz) of the Klamath Mountains 162 + or -2 my ago. The batholith crosscut a thrust fault between the lowest subunit of the TrPz, the Rattlesnake Creek terrane, and overlying Hayfork terrain metasediments. Contact metamorphic assemblages in the wall rocks show that the structurally deepest part of the pluton crystallized at about 7.5kb whereas the structurally shallowest part crystallized at about 3kb. The batholith and its host rocks were subsequently thrust over low-density rocks of the Galice Fm. and then tilted toward the southwest, presumably by regional doming. The Wooley Creek batholith is gradationally zoned from two-pyroxene gabbro in the deepest part to hornblende-biotite granite in the shallowest part. The plutonic rocks fall on two distinct chemical trends that correspond to rocks that contain pyroxene and rocks with only hornblende and biotite as mafic minerals. Pyroxene-bearing rocks are structurally lower and are enriched in Mg, Ca, Cr, Ni, Co, and Sc.

  8. Geochemistry, petrology, and palynology of the Pond Creek coal bed, northern Pike and southern Martin counties, Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.; Clark, W.L.

    2005-01-01

    The geochemistry, petrology, and palynology of the Duckmantian-age Pond Creek coal bed were investigated in northern Pike and southern Martin counties, eastern Kentucky. The coal bed exhibits significant vertical variation in the investigated geochemical parameters, with many diagenetic overprints of the original geochemistry. Included in the range of geochemical signatures are the presence of elements, particularly TiO2 and Zr, suggesting the detrital influences at the time of deposition of a low-vitrinite durain; a high CaO zone with elevated B/Be, both suggesting marine influence, in a lithotype in the middle of the coal bed; and the postdepositional emplacement of pyrite in the uppermost lithotype. Individual lithotypes, each representing distinct depositional environments, all complicated to some degree by diagentic overprints, comprise the complex history of the coal bed. ?? 2004 Elsevier B.V. All rights reserved.

  9. The northern and central Appalachian basin coal region -- The Upper Freeport and Pond Creek coal bed assessments

    SciTech Connect

    Ruppert, L.; Tewalt, S.; Bragg, L.; Wallack, R.; Freeman, P.; Tully, J.

    1999-07-01

    The Upper Freeport and Pond Creek coal beds are two of six coal beds being assessed by the US Geological Survey (USGS) in the northern and central Appalachian basin coal region. The coal resource assessments were designed to provide up-to-date, concise data on the location, quantity, and quality of US coals for Federal agencies, the public, industry and academia. Assessment products are fully digital and include original and remaining resource estimates; maps depicting areal extent, mined areas, geologic structure contour, isopach, overburden thickness, ash yield, sulfur content, calorific value, and selected trace-element contents; and public domain geochemical and stratigraphic databases. The assessment methodology and a few results are presented.

  10. Petrochemistry of Mafic Rocks Within the Northern Cache Creek Terrane, NW British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    English, J. M.; Johnston, S. T.; Mihalynuk, M. G.

    2002-12-01

    The Cache Creek terrane is a belt of oceanic rocks that extend the length of the Cordillera in British Columbia. Fossil fauna in this belt are exotic with respect to the remainder of the Canadian Cordillera, as they are of equatorial Tethyan affinity, contrasting with coeval faunas in adjacent terranes that show closer linkages with ancestral North America. Preliminary results reported here from geochemical studies of mafic rocks within the Nakina area of NW British Columbia further constrain the origin of this enigmatic terrane. The terrane is typified by tectonically imbricated slices of chert, argillite, limestone, wacke and volcaniclastic rocks, as well as mafic and ultramafic rocks. These lithologies are believed to represent two separate lithotectonic elements: Upper Triassic to Lower Jurassic, subduction-related accretionary complexes, and dismembered basement assemblages emplaced during the closure of the Cache Creek ocean in the Middle Jurassic. Petrochemical analysis revealed four distinct mafic igneous assemblages that include: magmatic 'knockers' of the Nimbus serpentinite mélange, metabasalts of 'Blackcaps' Mountain, augite-phyric breccias of 'Laughing Moose' Creek, and volcanic pediments to the reef-forming carbonates of the Horsefeed Formation. Major and trace element analysis classifies the 'Laughing Moose' breccias and the carbonate-associated volcanics as alkaline in nature, whereas the rest are subalkaline. Tectonic discrimination diagrams show that the alkaline rocks are of within-plate affinity, while the 'Blackcaps' basalts and 'knockers' from within the mélange typically straddle the island-arc tholeiite and the mid-ocean ridge boundaries. However, primitive mantle normalized multi-element plots indicate that these subalkaline rocks have pronounced negative Nb anomalies, a characteristic arc signature. The spatial association of alkaline volcanic rocks with extensive carbonate domains points to the existence of seamounts within the Cache

  11. Temporal and spatial distribution of landslides in the Redwood Creek Basin, Northern California

    USGS Publications Warehouse

    Madej, Mary Ann; Medley, C. Nicholas; Patterson, Glenn; Parker, Melanie J.

    2011-01-01

    Mass movement processes are a dominant means of supplying sediment to mountainous rivers of north coastal California, but the episodic nature of landslides represents a challenge to interpreting patterns of slope instability. This study compares two major landslide events occurring in 1964-1975 and in 1997 in the Redwood Creek basin in north coastal California. In 1997, a moderate-intensity, long-duration storm with high antecedent precipitation triggered 317 landslides with areas greater than 400 m2 in the 720-km2 Redwood Creek basin. The intensity-duration threshold for landslide initiation in 1997 was consistent with previously published values. Aerial photographs (1:6,000 scale) taken a few months after the 1997 storm facilitated the mapping of shallow debris slides, debris flows, and bank failures. The magnitude and location of the 1997 landslides were compared to the distributions of landslides generated by larger floods in 1964, 1972, and 1975. The volume of landslide material produced by the 1997 storm was an order of magnitude less than that generated in the earlier period. During both periods, inner gorge hillslopes produced many landslides, but the relative contribution of tributary basins to overall landslide production differed. Slope stability models can help identify areas susceptible to failure. The 22 percent of the watershed area classified as moderately to highly unstable by the SHALSTAB slope stability model included locations that generated almost 90 percent of the landslide volume during the 1997 storm.

  12. Temporal and spatial distribution of landslides in the Redwood Creek Basin, Northern California

    USGS Publications Warehouse

    Madej, Mary Ann; Medley, C. Nicholas; Patterson, Glenn; Parker, Melanie J.

    2011-01-01

    Mass movement processes are a dominant means of supplying sediment to mountainous rivers of north coastal California, but the episodic nature of landslides represents a challenge to interpreting patterns of slope instability. This study compares two major landslide events occurring in 1964-1975 and in 1997 in the Redwood Creek basin in north coastal California. In 1997, a moderate-intensity, long-duration storm with high antecedent precipitation triggered 317 landslides with areas greater than 400 m2 in the 720-km2 Redwood Creek basin. The intensity-duration threshold for landslide initiation in 1997 was consistent with previously published values. Aerial photographs (1:6,000 scale) taken a few months after the 1997 storm facilitated the mapping of shallow debris slides, debris flows, and bank failures. The magnitude and location of the 1997 landslides were compared to the distributions of landslides generated by larger floods in 1964, 1972, and 1975. The volume of landslide material produced by the 1997 storm was an order of magnitude less than that generated in the earlier period. During both periods, inner gorge hillslopes produced many landslides, but the relative contribution of tributary basins to overall landslide production differed. Slope stability models can help identify areas susceptible to failure. The 22 percent of the watershed area classified as moderately to highly unstable by the SHALSTAB slope stability model included locations that generated almost 90 percent of the landslide volume during the 1997 storm.

  13. The impact of coal mining on water quality in Claybank creek, northern Missouri, USA

    SciTech Connect

    Piepenburg, K.H.

    1987-01-01

    Abandoned and unreclaimed shaft and strip mines are the source of sediments and selected, solute ionic species polluting the North Fork of Claybank Creek in north-central Missouri. Coal was mined by shaft and strip techniques in this drainage basin from the 1860's to the 1950's. Coal has been removed from under approximately 1167 hectares of the basin and an additional 114 hectares have been surface mined. The lower Pennsylvanian Bevier-Wheeler coal has a high sulfur content and is bituminous. The dominant sulfur form is pyritic, and the oxidation of the pyrite in the abandoned shaft mines and associated spoil piles and in the strip mine spoil results in acidic discharges from the mining sites to the stream system. Water samples were collected monthly for one year at twelve locations in the drainage basin and from two control streams in the region. Spatial separation of shaft and strip mines within the basin and variable water quality in the stream suggest a relationship between the technique of mining and the intensity of pollution in different portions of the stream. The relationship could not be statistically identified through interpretation of bivariate, multiple, and stepwise regressions.

  14. Statistical analysis of bed-thickness patterns in a turbidite section from the Great Valley sequence, Cache Creek, northern California

    SciTech Connect

    Murray, C.J.; Lowe, D.R.; Graham, S.A.

    1996-09-01

    This paper explores the use of a Monte Carlo adaptation of runs analysis to analyze turbidite sequences for the presence of asymmetric bed-thickness cycles. Waldron`s test can be used to identify sequences that are dominated by either upward-thickening or upward-thinning cycles, but not both. This adaptation of runs analysis provides a robust technique that can indicate the presence of local thickness trends that are different from those expected in random sequences, and can be used to evaluate the relative importance of upward-thickening and upward-thinning cycles. As a case study, 236 m of the Upper Cretaceous Sites Formation in the Great Valley Group were measured and described in detail along Cache Creek in northern California. This section had been previously interpreted as a succession of prograding submarine-fan-lobe deposits marked by asymmetric upward-thickening cycles. Application of Waldron`s test indicates that the section is not dominated by upward-thickening cycles, as previously suggested. Monte Carlo runs analysis demonstrates that small-scale upward-thinning cycles are as common as upward-thickening cycles. The simple progradation of submarine fan lobes does not adequately explain the thickness patterns seen in the section. Application of Monte Carlo runs analysis to other turbidite sections would be useful for quantitative identification and comparison of turbidite bed-thickness cycles, which should lead to development of better turbidite facies models.

  15. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    USGS Publications Warehouse

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  16. Older Hydrothermal Activity along the Northern Yellowstone Caldera Margin at Sulphur Creek, Yellowstone Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Manion, J. L.; Larson, P.

    2008-12-01

    The Tuff of Sulphur Creek (480 ka) is well exposed in the Seven Mile Hole area of the Grand Canyon of the Yellowstone River, Yellowstone National Park, Wyoming. The rhyolitic tuff erupted after the collapse of the Yellowstone Caldera (640 ka) and hosts more than 350 vertical meters of hydrothermal alteration. Two epithermal alteration assemblages with different mineral associations have been identified in the area: an illite-silica-pyrite phase and a kaolinite-alunite-silica-pyrite phase. Kaolinite and opal occur along the canyon rim, montmorillonite and other smectites are found at intermediate depths, and illite and sulfides (pyrite) are found deepest in the section. Our work on the north side of the Sevenmile Hole altered area has found a complex system of veining. The veins are concentrated in the eastern portion of the canyon and are less frequent to the west. Brecciated cross-cutting veins ranging from 2 to 30cm wide are found at the base of the canyon. Moving vertically up the canyons walls, the veining style becomes less complex. These veins are about 1 to 1.5cm wide and are not brecciated, occurring less frequently than the brecciated veins. The canyon walls and the canyon rim mainly contain millimeter-scale cross-cutting silica veinlets. These stockwork-like veinlets are the most abundant fracture filling that we find throughout the canyon walls. Veins at the base of the system, found in the stream bed, contain abundant sulfides (mainly pyrite). Sulfides are present in three forms: disseminated in a silica matrix, as massive pyrite in healed fractures, and encrusting clays and silica. The latter is the least common. Disseminated and massive sulfides are typically associated with the matrix in the brecciated veins. Breccias include angular clasts of altered tuff with argillized feldspar phenocrysts and fragments of earlier vein-filling opal. Sulfides are most abundant in the bottom of the canyon and in the western part of the field area. Hydrothermal

  17. Potentiometric-surface map of water in the Fox Hills-Lower Hell Creek aquifer in the Northern Great Plains area of Montana

    USGS Publications Warehouse

    Levings, Gary W.

    1982-01-01

    The potentiometric surface of water in the Upper Cretaceous Fox Hills-lower Hell Creek aquifer is shown on a base map at a scale of 1:1,000,000. The map is one of a series produced as part of regional study of aquifers of Cenozoic and Mesozoic age in the northern Great Plains of Montana. The contour interval is 100 feet. The map shows that the direction of regional ground-water movement is toward the northeast. Recharge occurs on the flanks of the Black Hills uplift, the Cedar Creek anticline, the southwest part of the Bull Mountains basin, and on the out-crop areas. Discharge from the aquifer occurs along a short reach of the Yellowstone River. The average discharge from 335 wells is about 16 gallons per minute and the specific capacity of 185 wells averages 0.49 gallon per minute per foot of drawdown. (USGS)

  18. Testing the inference of creep on the northern Rodgers Creek fault, California, using ascending and descending persistent scatterer InSAR data

    NASA Astrophysics Data System (ADS)

    Jin, Lizhen; Funning, Gareth J.

    2017-03-01

    We revisit the question of whether the Rodgers Creek fault in northern California is creeping, a question with implications for seismic hazard. Using imagery acquired by Envisat between 2003 and 2010, we process two persistent scatterer interferometric synthetic aperture radar (InSAR) data sets, one from an ascending track and the other from a descending track, covering the northernmost segment of the Rodgers Creek fault between the cities of Santa Rosa and Healdsburg. The two different viewing geometries provided by the two different tracks allow us to distinguish vertical velocities, which may reflect nontectonic deformation processes, from fault-parallel velocities, which can be used to identify creep. By measuring offsets in InSAR line-of-sight velocity from 12 fault-perpendicular profiles through both data sets, we identify seven locations where we have a high degree of confidence that creep is occurring (estimated creep rate is more than two standard deviations above zero). The preferred creep rates at these locations are in the range 1.9-6.7 mm/yr, consistent within uncertainty with alignment array measurements. Creep is probable (P≥0.70) at another three locations, defining a creeping zone ˜20 km long in total, extending northwest from Santa Rosa. We also estimate the map patterns of fault-parallel and vertical velocities in the region covered by both data sets; these suggest that the Rodgers Creek fault immediately southeast of Santa Rosa remains locked.

  19. Geology of the Right Stepover region between the Rodgers Creek, Healdsburg, and Maacama faults, northern San Francisco Bay region: a contribution to Northern California Geological Society Field Trip Guide, June 6-8, 2003

    USGS Publications Warehouse

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei

    2003-01-01

    This Open file report was written as part of a two-day field trip on June 7 and 8, 2003, conducted for the Northern California Geological Society. The first day of this field trip (June 7) was led by McLaughlin and Sarna-Wojcicki in the area of the right- step between the Rodgers Creek- Healdsburg fault zone and the Maacama fault. The second day of the trip (June 8), was led by David Wagner of the California Geological Survey and students having recently completed MS theses at San Jose State University (James Allen) and San Francisco State University (Carrie Randolph-Loar), as well as a student from San Francisco State University whose MS thesis was in progress in June 2003 (Eric Ford). The second day covered the Rodgers Creek fault zone and related faults of the Petaluma Valley area (the Tolay and Petaluma Valley fault zones).

  20. Heavy metal concentrations in northern water snakes (Nerodia sipedon) from East Fork Poplar Creek and the Little River, East Tennessee, USA.

    PubMed

    Campbell, K R; Campbell, T S; Burger, J

    2005-08-01

    We compared the levels of arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in the blood, kidney, liver, muscle, and skin of northern water snakes (Nerodia sipedon) collected from the upper reach of East Fork Poplar Creek (EFPC) within the United States Department of Energy's (USDOE's) Y-12 National Security Complex with concentrations in tissues of northern water snakes from a reference reach of the Little River downstream from the Great Smoky Mountains National Park in East Tennessee. Our objectives were to determine whether concentrations of these metals were higher in tissues of water snakes collected from EFPC compared with the reference site and if northern water snakes were suitable bioindicators of metal contamination. Except for chromium, metal levels were significantly higher in tissues (kidney, liver, muscle, and skin) of EFPC northern water snakes compared with those in tissues of snakes from the reference site. Although female northern water snakes were significantly larger than male snakes, their tissues did not contain significantly higher metal concentrations compared with those from male snakes, possibly because of maternal transfer of metals to eggs. This study was the first to examine the accumulation of contaminants resulting from the operations of the USDOE's Oak Ridge Reservation in snakes.

  1. The Caspar Creek watersheds: a case study of cumulative effects in a small coastal basin in northern California

    Treesearch

    R. R. Ziemer; P. H. Cafferata

    1991-01-01

    Abstract - Since 1962, the 483-ha North Fork and 424-ha South Fork of Caspar Creek in northwestern California have been used to evaluate the hydrologic impacts of road building and harvesting second-growth redwood/Douglas-fir forests. Three tributaries are serving as untreated controls. In 1985, the study was modified to evaluate the cumulative watershed effects of...

  2. Mapping the extent of fault creep on the Maacama and Rodgers Creek faults in northern California using PS-InSAR

    NASA Astrophysics Data System (ADS)

    Swiatlowski, J.; Funning, G.

    2016-12-01

    In this study we map the distribution of fault creep from persistent scatterer InSAR (PSI) and estimate the creep rate along the Rodgers Creek and Maacama faults. Fault creep, slow aseismic slip occurring along a fault, is poorly constrained on northern California faults due to the low density of observations along their extents. The Rodgers Creek and Maacama faults both show evidence of fault creep through offset cultural features, such as offset sidewalks and fences, and at alinement arrays placed in locations where creep has been inferred (McFarland et al., 2009). Using PSI, we can constrain the extent of fault creep which can give insight into seismic hazard in the region. Creep reduces the fault area capable of rupturing in an earthquake so, by mapping the areas where creep is occurring, we can infer where the fault is locked (not creeping) thus, we can find areas where the fault is accumulating strain for a future earthquake. We processed a 39 image ERS dataset using the StaMPS PSI code (Hooper et al., 2004), spanning 1992-2000, along the southern Maacama fault and northern Rodgers Creek fault (track 113, frames 2817 & 2835). We estimate fault creep two ways. First, by using profiles through our PSI data to measure the line-of-sight (LOS) velocity changes occurring at the fault. Second, by using elastic dislocation modeling to estimate the lateral and depth distribution of creep on the Rodgers Creek and Maacama faults. We identify fault creep along the Maacama fault around the cities of Ukiah and Willits with LOS velocity rates between 0.1 - 1.6 mm/yr and 1.8 - 1.9 mm/yr, respectively. If projected into the fault parallel direction, and assuming pure right-lateral strike-slip motion, these rates correspond to creep rates of 0.3 - 4.1 mm/yr in Ukiah, and 4.2 - 4.8 mm/yr in Willits. Additional InSAR data from other satellites (e.g. Envisat, ALOS-1, ALOS-2, Sentinel-1A, and Sentinel-1B) and different ERS tracks will be used to supplement these findings.

  3. Detailed mapping and rupture implications of the 1 km releasing bend in the Rodgers Creek Fault at Santa Rosa, northern California

    USGS Publications Warehouse

    Hecker, Suzanne; Langenheim, Victoria; Williams, Robert; Hitchcock, Christopher S.; DeLong, Stephen B.

    2016-01-01

    Airborne light detection and ranging (lidar) topography reveals for the first time the trace of the Rodgers Creek fault (RCF) through the center of Santa Rosa, the largest city in the northern San Francisco Bay area. Vertical deformation of the Santa Rosa Creek floodplain expresses a composite pull‐apart basin beneath the urban cover that is part of a broader 1‐km‐wide right‐releasing bend in the fault. High‐resolution geophysical data illuminate subsurface conditions that may be responsible for the complex pattern of surface faulting, as well as for the distribution of seismicity and possibly for creep behavior. We identify a dense, magnetic basement body bounded by the RCF beneath Santa Rosa that we interpret as a strong asperity, likely part of a larger locked patch of the fault to the south. A local increase in frictional resistance associated with the basement body appears to explain (1) distributed fault‐normal extension above where the RCF intersects the body; (2) earthquake activity around the northern end of the body, notably the 1969 ML 5.6 and 5.7 events and aftershocks; and (3) creep rates on the RCF that are higher to the north of Santa Rosa than to the south. There is a significant probability of a major earthquake on the RCF in the coming decades, and earthquakes associated with the proposed asperity have the potential to release seismic energy into the Cotati basin beneath Santa Rosa, already known from damaging historical earthquakes to produce amplified ground shaking.

  4. Active shortening along the northern edge of the western Transverse Ranges recorded by deformed fluvial terraces along Santa Cruz Creek in the eastern Santa Ynez Valley, California

    NASA Astrophysics Data System (ADS)

    Tyler, E.

    2011-12-01

    Vertical-axis rotation of the western Transverse Ranges in southern California was accompanied by folding and reverse faulting at the northern edge of the rotated domain during late Miocene to Pliocene time. Deformed Pleistocene strata in the Santa Ynez Valley suggest that this rotational folding and faulting is still occurring. Fluvial terraces are present along several major drainages that cross the faults and folds and provide an opportunity to evaluate the timing and magnitude of Late Quaternary deformation at the northern edge of the rotated western Transverse Ranges. Three flights of well-preserved fluvial strath terraces are exposed along a 9.3 km stretch of the Santa Cruz Creek drainage in the eastern Santa Ynez Valley. Fluvial deposits that make up the terrace treads have been lifted 18.5 m (T-1) to 110m (T-3) above the active channel and are unpaired across the drainage. The terrace surfaces are underlain by a thin 0.6m-6m veneer of fluvial deposits resting on an erosional surface cut into the underlying Pleistocene Paso Robles Formation. GPS profiles (accurate to .1m) of the terrace surfaces and the Santa Cruz Creek stream profile show evidence of Late Quaternary deformation. The T1 surface (lowest terrace surface) is offset vertically 3.5m across the Los Alamos/Baseline fault, the T2 surface is offset 7m vertically across this feature, and the T2 and T3 terraces terminate abruptly at the Little Pine Fault indicating Quaternary displacement across these structures. Optically Stimulated Luminescence (OSL) dating is being used to date the terraces in order to calculate rates of uplift and deformation.

  5. Localization and Evolution of a Rift-Scale Segmented Normal Fault in a Volcanic Environment: The Hat Creek Fault, Northern California

    NASA Astrophysics Data System (ADS)

    Kattenhorn, S. A.; Walker, E. L.; Krantz, R. W.; Blakeslee, M. W.; Muirhead, J. D.

    2016-12-01

    Segmented normal faults in volcanic rocks preserve details of fault geometry and kinematics and provide useful analogs for rift-margin faults and their associated sedimentary basins, such as those identified in petroleum reservoirs. The 50-km-long Hat Creek fault, near Lassen Peak volcano in northern California, is a NNW-trending, west-dipping, active normal fault along the western margin of the pervasively extended Modoc Plateau. The fault is well preserved in Late Pleistocene lavas with a range of ages and can be viewed in the field from multiple perspectives that maximize 4D cognition. The oldest faulted lavas ( 925 ka with a maximum throw of 570 m) indicate that the Hat Creek fault developed in <1 Myr. A multi-stage growth history was unraveled through analysis of three systems of segmented scarps with different ages, throws, and orientations, and by considering their relative timing, control on localization by structural inheritance, and relation to regional tectonics. Kinematic indicators along the oldest segments suggest an initial NE-SW extension, with fault development above a sinistral-oblique reactivated deeper structure. A later, intermediate growth stage under E-W extension is consistent with the documented stress state of the Cascades backarc. Magma-induced stress heterogeneity in the local volcanic environment resulted in variable fault segment orientations during this second growth phase. An even younger set of scarps with dextral-oblique kinematics in 24 ka lavas imply most recent WNW-ESE extension, possibly from transfer of dextral shear from the Walker Lane Belt in western Nevada. We infer a gradual 45o clockwise rotation of the horizontal principal stresses in the Hat Creek fault region that resulted in a complex fault geometry and kinematic history over a relatively short time frame ( 1 Myr). We have documented similar stress rotations in an early-stage continental rift zone (East African Rift), occurring over similar time scales in response to

  6. Holocene geologic slip rate for the Mission Creek strand of the Southern San Andreas Fault, northern Coachella Valley, CA.

    NASA Astrophysics Data System (ADS)

    Munoz, J. J.; Behr, W. M.; Sharp, W. D.; Fryer, R.; Gold, P. O.

    2016-12-01

    Slip on the southern San Andreas fault in the northwestern Coachella Valley in Southern California is partitioned between three strands, the Mission Creek, Garnet Hill, and Banning strands. In the vicinity of the Indio Hills, the NW striking Mission Creek strand extends from the Indio Hills into the San Bernardino Mountains, whereas the Banning and Garnet Hill strands strike WNW and transfer slip into the San Gorgonio Pass region. Together, these three faults accommodate 20 mm/yr of right-lateral motion. Determining which strand accommodates the majority of fault slip and how slip rates on these strands have varied during the Quaternary is critical to seismic hazard assessment for the southern California region. Here we present a new Holocene geologic slip rate from an alluvial fan offset along the Mission Creek strand at the Three Palms site in the Indio Hills. Field mapping and remote sensing using the B4 LiDAR data indicates that the Three Palms fan is offset 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr. This Holocene maximum slip rate overlaps within errors with a previously published late Pleistocene slip rate of 12-22 mm/yr measured at Biskra Palms, a few kilometers to the south. Cosmogenic 10Be surface exposure samples were also collected from the fan surface to bracket the maximum depositional age. These samples have been processed and are currently awaiting AMS measurement.

  7. Tenderfoot Creek Experimental Forest

    Treesearch

    Ward W. McCaughey

    1996-01-01

    The Tenderfoot Creek Experimental Forest, established in 1961, is representative of the vast expanses of lodgepole pine (Pinus contorta) found east of the Continental Divide in Montana, southwest Alberta, and Wyoming. Discrete generations of even-age lodgepole stands form a mosaic typical of the fireprone forests at moderate to high altitudes in the Northern Rocky...

  8. Chloritization and associated alteration at the Jabiluka unconformity-type uranium deposit, Northern Territory, Australia

    USGS Publications Warehouse

    Nutt, Constance J.

    1989-01-01

    Jabiluka is the largest of four known uncomformity-type uranium deposits that are hosted by brecciated and altered metasedimentary rocks in the Pine Creek geosyncline, Northern Territory, Australia. The alteration zone at Jabiluka is dominated by chlorite, but also contains white mica, tourmaline and apatite; hematite is present, but only in minor amounts. Added quartz is mainly restricted to fractures and breccias. Chlorite, which formed during episodic fluid movement, partly to totally replaced all pre-existing minerals. Chloritized rocks are enriched in Mg, and depleted in K, Ca, Na and Si. Five types of chlorite are optically and chemically distinguishable in the rocks at Jabiluka. Chloritization is proposed as a mechanism that lowered the pH of the circulating fluid, and also caused significant loss of silica from the altered rocks. The proposed constraints on alteration, and presumably on at least part of the uranium mineralization, neither require nor preclude the existence of the unconformity as necessary for the formation of ore.

  9. Long-term continuous GIS-based modeling of forest land use changes in Mica Creek watershed in northern Idaho

    NASA Astrophysics Data System (ADS)

    Boll, J.; Brooks, E. S.; Hubbart, J. A.; Link, T. E.; Cundy, T. W.; Elliot, W. J.; Gravelle, J. A.

    2005-12-01

    Long-term effects of land use change on watershed hydrology are difficult to determine experimentally. Usually, many different disturbances occur that may mask the land use changes of interest. In forested watersheds, these disturbances include clear cutting, road building and fires. In this study, we use an extensive data set from the 28 km2Mica Creek Experimental Watershed (MCEW). This watershed was developed in 1990 by Potlatch Corporation to evaluate the effects of modern forest practices on stream resources. The Mica Creek watershed is a large 97 km2 tributary watershed to the St. Joe River near St. Maries, Idaho. The MCEW has a nested study design, which allows for the analysis of cumulative effects as well as the traditional comparison of treatment versus control. Treatments include road building in 1996, and clearcut and partial-cut logging in 2001. Periods of two to five years were included for pre-treatment and post-treatment monitoring. The MCEW has been instrumented since 1990 for discharge, flow proportional suspended sediment sampling, bedload sampling (during events), water temperature, particle size distribution, channel shape, canopy cover, and channel gradients at 32 stream cross-sections, and precipitation at 4 locations and a cooperative SNOTEL site. We applied the Soil Moisture Routing model, and CCHE1D, a channel routing model for water and sediment, to the MCEW data set. Our results include the simulation of a control period (calibration), road building, and logging. Simulation results are evaluated using spatial patterns, stream flow records at seven flumes, and water yield data. After model simulation, we selected several land use change scenarios for further model runs. In these model runs, we analyzed model output for water yield changes and associated hydrologic variables such as evapotranspiration, runoff, and interflow.

  10. Patterns of Mercury Bioaccumulation Downstream of Anthropogenic and Natural Mercury Point Sources in the Cache Creek Watershed of Northern California

    NASA Astrophysics Data System (ADS)

    Slotton, D. G.; Ayers, S. M.; Suchanek, T. H.; Weyand, R. D.

    2001-12-01

    Mercury (Hg) bioaccumulation was compared to raw and filtered aqueous total Hg (THg) and methyl Hg (MeHg) concentrations at multiple sites in the Cache Creek watershed during 2000 and 2001. The watershed contains anthropogenic point sources of ongoing Hg contamination (historic Hg mining sites), as well as a natural Hg point source in a highly Hg-elevated geothermal springs region. Spatial and temporal patterns of aqueous and biotic Hg were investigated along transects downstream of these point sources over 20 months. Predatory fish in a stream 7 km below one set of Hg point sources exhibited muscle Hg to over 6.0 †g g-1 (wet weight) in individuals under 0.6 kg in size. Large fish Hg was generally correlated with small fish and aquatic invertebrate Hg. Invertebrate Hg was correlated with aqueous Hg, though other environmental factors were also important. Correlations between biotic Hg and aqueous THg were as strong or stronger than corresponding relationships with aqueous MeHg, indicating that inorganic Hg loading is relevant to MeHg bioaccumulation in this watershed. MeHg bioaccumulation factors between water and biota were lowest in the main stem of Cache Creek, higher in unimpacted tributaries, and highest in the near point source tributaries, indicating that proportional efficiency of MeHg bioaccumulation may increase with increasing aqueous concentrations. Invertebrate MeHg was observed to vary on a monthly basis. Small fish MeHg also varied temporally, but at a reduced rate. Apparent peaks in MeHg exposure occurred in May-July. Greatest concentrations of aqueous and biotic MeHg were found directly downstream of the primary point sources, in small tributary streams. Hg methylation in these upstream regions may contribute an important component of overall MeHg loading. Significant changes in aqueous and biotic Hg were observed along transects immediately downstream of dominant Hg point sources. This spatial and temporal variability must be well characterized

  11. Color Shaded-Relief and Surface-Classification Maps of the Fish Creek Area, Harrison Bay Quadrangle, Northern Alaska

    USGS Publications Warehouse

    Mars, John L.; Garrity, Christopher P.; Houseknecht, David W.; Amoroso, Lee; Meares, Donald C.

    2007-01-01

    Introduction The northeastern part of the National Petroleum Reserve in Alaska (NPRA) has become an area of active petroleum exploration during the past five years. Recent leasing and exploration drilling in the NPRA requires the U.S. Bureau of Land Management (BLM) to manage and monitor a variety of surface activities that include seismic surveying, exploration drilling, oil-field development drilling, construction of oil-production facilities, and construction of pipelines and access roads. BLM evaluates a variety of permit applications, environmental impact studies, and other documents that require rapid compilation and analysis of data pertaining to surface and subsurface geology, hydrology, and biology. In addition, BLM must monitor these activities and assess their impacts on the natural environment. Timely and accurate completion of these land-management tasks requires elevation, hydrologic, geologic, petroleum-activity, and cadastral data, all integrated in digital formats at a higher resolution than is currently available in nondigital (paper) formats. To support these land-management tasks, a series of maps was generated from remotely sensed data in an area of high petroleum-industry activity (fig. 1). The maps cover an area from approximately latitude 70?00' N. to 70?30' N. and from longitude 151?00' W. to 153?10' W. The area includes the Alpine oil field in the east, the Husky Inigok exploration well (site of a landing strip) in the west, many of the exploration wells drilled in NPRA since 2000, and the route of a proposed pipeline to carry oil from discovery wells in NPRA to the Alpine oil field. This map area is referred to as the 'Fish Creek area' after a creek that flows through the region. The map series includes (1) a color shaded-relief map based on 5-m-resolution data (sheet 1), (2) a surface-classification map based on 30-m-resolution data (sheet 2), and (3) a 5-m-resolution shaded relief-surface classification map that combines the shaded

  12. Age trends in garnet-hosted monazite inclusions from upper amphibolite facies schist in the northern Grouse Creek Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Hoisch, Thomas D.; Wells, Michael L.; Grove, Marty

    2008-11-01

    We performed in situ Th-Pb dating of monazite in upper amphibolite facies pelitic schist from the Grouse Creek Mountains in northwest Utah. Sixty-six ages from inclusions in four garnet grains range from 37 to 72 Ma and decrease with radial distance from garnet cores. The age range of 30 matrix monazite grains overlaps and extends to younger ages than inclusions (25-58 Ma). The monazite grains are not intersected by cracks in the garnets, through which dissolution, reprecipitation or Pb loss might occur, and are generally too small (<20 μm) to allow for more than one age determination on any one grain. Processes that might explain inclusion ages that decrease with radial distance from garnet cores include: (1) Pb diffusion in monazite, (2) dissolution and reprecipitation of monazite, and (3) co-crystallization of monazite and garnet. After consideration of these possibilities, it is concluded that the co-crystallization of monazite and garnet is the most plausible, with monazite neoblasts deriving REE s from the breakdown of muscovite. Garnet ages derived by regression of the inclusion ages and assuming a constant rate of volume increase during garnet growth yield model ages with a maximum difference between core and rim of 22 m.y.

  13. Description of drill-hole VIIIV core from the Jabiluka unconformity-type uranium deposit, Northern Territory, Australia

    SciTech Connect

    Nutt, C.J.

    1984-01-01

    The Jabiluka unconformity-type uranium deposit is one of four large unconformity-type deposits in the Alligator Rivers Uranium Field in the eastern part of the Pine Creek geosyncline, Northern Territory, Australia. These unconformity-type uranium deposits occur as veins, disseminations, and breccia matrix in metasedimentary rocks of the Lower Proterozoic Cahill Formation and are near a regional unconformity that separates the Cahill from the sedimentary rocks of the Middle Proterozoic Kombolgie Formation. The study of unconformity-type deposits - a new type of uranium deposit typified by deposits discovered in the past 15 years in Australia and Canada - is part of the US Geological Survey uranium program; funding was also provided by the US Department of Energy National Uranium Resource Evaluation (NURE) program. Pancontinental Mining Limited kindly gave us access to Jabiluka core and made their geological and geophysical data available for inclusion in our reports. Data and interpretations from the mineralogy and stratigraphy of Jabiluka should aid in defining characteristics and setting of these world class deposits and guide exploration for similar deposits in the United States. 3 refs., 6 figs., 1 tab.

  14. Specific Conductance in the Colorado River between Glen Canyon Dam and Diamond Creek, Northern Arizona, 1988-2007

    USGS Publications Warehouse

    Voichick, Nicholas

    2008-01-01

    The construction of Glen Canyon Dam, completed in 1963, resulted in substantial physical and biological changes to downstream Colorado River environments between Lake Powell and Lake Mead - an area almost entirely within Grand Canyon National Park, Ariz. In an effort to understand these changes, data have been collected to assess the condition of a number of downstream resources. In terms of measuring water quality, the collection of specific-conductance data is a cost-effective method for estimating salinity. Data-collection activities were initially undertaken by the Bureau of Reclamation's Glen Canyon Environmental Studies (1982-96); these efforts were subsequently transferred to the U.S. Geological Survey's Grand Canyon Monitoring and Research Center (1996 to the present). This report describes the specific-conductance dataset collected for the Colorado River between Glen Canyon Dam and Diamond Creek from 1988 to 2007. Data-collection and processing methods used during the study period are described, and time-series plots of the data are presented. The report also includes plots showing the relation between specific conductance and total dissolved solids. Examples of the use of specific conductance as a natural tracer of parcels of water are presented. Analysis of the data indicates that short-duration spikes and troughs in specific-conductance values lasting from hours to days are primarily the result of flooding in the Paria and Little Colorado Rivers, Colorado River tributaries below Glen Canyon Dam. Specific conductance also exhibits seasonal variations owing to changes in the position of density layers within the reservoir; these changes are driven by inflow hydrology, meteorological conditions, and background stratification. Longer term trends in Colorado River specific conductance are reflective of climatological conditions in the upper Colorado River Basin. For example, drought conditions generally result in an increase in specific conductance in Lake

  15. Streamflow gains and losses along San Francisquito Creek and characterization of surface-water and ground-water quality, southern San Mateo and northern Santa Clara counties, California, 1996-97

    USGS Publications Warehouse

    Metzger, Loren F.

    2002-01-01

    San Francisquito Creek is an important source of recharge to the 22-square-mile San Francisquito Creek alluvial fan ground-water subbasin in the southern San Mateo and northern Santa Clara Counties of California. Ground water supplies as much as 20 percent of the water to some area communities. Local residents are concerned that infiltration and consequently ground-water recharge would be reduced if additional flood-control measures are implemented along San Francisquito Creek. To improve the understanding of the surface-water/ground-water interaction between San Francisquito Creek and the San Francisquito Creek alluvial fan, the U.S. Geological Survey (USGS) estimated streamflow gains and losses along San Francisquito Creek and determined the chemical quality and isotopic composition of surface and ground water in the study area.Streamflow was measured at 13 temporary streamflow-measurement stations to determine streamflow gains and losses along a 8.4-mile section of San Francisquito Creek. A series of five seepage runs between April 1996 and May 1997 indicate that losses in San Francisquito Creek were negligible until it crossed the Pulgas Fault at Sand Hill Road. Streamflow losses increased between Sand Hill Road and Middlefield Road where the alluvial deposits are predominantly coarse-grained and the water table is below the bottom of the channel. The greatest streamflow losses were measured along a 1.8-mile section of the creek between the San Mateo Drive bike bridge and Middlefield Road; average losses between San Mateo Drive and Alma Street and from there to Middlefield Road were 3.1 and 2.5 acre-feet per day, respectively.Downstream from Middlefield Road, streamflow gains and losses owing to seepage may be masked by urban runoff, changes in bank storage, and tidal effects from San Francisco Bay. Streamflow gains measured between Middlefield Road and the 1200 block of Woodland Avenue may be attributable to urban runoff and (or) ground-water inflow. Water

  16. Geochronology and assembly model of the Wooley Creek batholith, Klamath Mountains, northern California: A potential equivalent for magma reservoirs below cordilleran volcanoes

    NASA Astrophysics Data System (ADS)

    Coint, N.; Barnes, C. G.; Yoshinobu, A. S.; Chamberlain, K.; Barnes, M. A.

    2013-12-01

    The Wooley Creek batholith located in the Klamath Mountains, northern California, is a tilted, calc-alkaline pluton emplaced between 159 and 155 Ma through three different accreted terranes. Exposure of 10 km structural relief through the intrusive complex and the preservation of associated roof dikes makes it an ideal place to understand the volcanic-plutonic connection. The batholith can be divided in three main zones. Two-pyroxene diorite to tonalite that are texturally heterogeneous constitute the lower zone. CA-TIMS data indicate that it was emplaced over much less than 1 m.y. (159.22 × 0.10 Ma to 158.99 × 0.17 Ma). The scatter observed in bulk rock compositions, coupled with field observations and pyroxene trace element analysis suggest that lower-zone magmas were emplaced rapidly as numerous batches that did not homogenize. Mass balance calculations indicate that these rocks are 30-100% cumulate (Barnes et al., AGU Fall meeting 2013), suggesting that a large volume of melt was extracted from the system. The upper zone is upwardly zoned from biotite hornblende tonalite in the lowest structural level to biotite hornblende granite at the top. CA-TIMS data indicate that the upper zone was also emplaced in a short time interval: 158.25 × 0.46 Ma and 158.21 × 0.17 Ma. Upper-zone rocks define linear trends in Harker diagrams, consistent with fractional crystallization. Hornblende trace element concentrations vary consistently throughout the zone, however no correlation exists between the SiO2 content of the rock and the hornblende trace element concentrations, indicating that hornblende grew from a homogeneous melt. The upper zone was therefore interpreted as representing a frozen magmatic reservoir that was once able to convect and homogenize. The broad upward zoning formed by melt percolation through a crystal-rich mush. The central zone is a transition zone. It was emplaced between 159.01 × 0.20 Ma and 158.30 × 0.16 Ma and is composed of rocks from both

  17. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  18. Caspar Creek

    Treesearch

    Robert R. Ziemer

    2001-01-01

    The USDA Forest Service Pacific Southwest Research Station and the California Department of Forestry and Fire Protection have gauged streamflow, and suspended sediment and precipitation since 1962 in the 473 ha North Fork and the 424 ha South Fork of the 2167 ha Caspar Creek in the Jackson Demonstation State Forest in northwestern California. Within the two Caspar...

  19. Water-surface profile and flood boundaries for the computed 100-year flood, Lame Deer Creek, Northern Cheyenne Indian Reservation, Montana

    USGS Publications Warehouse

    Omang, R.J.

    1994-01-01

    Hydrologic and hydraulic evaluations of Lame Deer Creek were made to determine the magnitude of the 100-year flood and the extent of flooding that would occur as the result of this flood. SixtY-six cross sections were Surveyed and 25 cross sections were synthesized along a 9.5-mile reach of Lame Deer Creek. Data from the surveys were used to calculate the water-surface elevation at each cross section using a computer program (WSPRO) developed by the U.S. Geological Survey. The water-surface profile of the computed 100-year flood elevations was then drawn. The profile shows the streambed elevation and the location of the bridge, culverts, and cross sections. The computed 100-year flood elevation at each cross section was used to delineate the width of the flood plain at that section. Flood boundaries between cross sections were interpolated using contour lines on topographic maps.

  20. Lower Walnut Creek Restoration

    EPA Pesticide Factsheets

    Lower Walnut Creek Restoration Project will restore and enhance coastal wetlands along southern shoreline of Suisun Bay from Suisun Bay upstream along Walnut Creek, improving habitat quality, diversity, and connectivity along three miles of creek channel.

  1. Analytical results for 35 mine-waste tailings cores and six bed-sediment samples, and an estimate of the volume of contaminated material at Buckeye meadow on upper Basin Creek, northern Jefferson County, Montana

    USGS Publications Warehouse

    Fey, D.L.; Church, S.E.; Finney, C.J.

    1999-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acidgeneration and toxic-metal solubilization. Flotation-mill tailings in the meadow below the Buckeye mine, hereafter referred to as the Buckeye mill-tailings site, have been identified as significant contributors to water quality degradation of Basin Creek, Montana. Basin Creek is one of three tributaries to the Boulder River in the study area; bed sediments and waters draining from the Buckeye mine have also been implicated. Geochemical analysis of 35 tailings cores and six bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb,and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms that constitute their food. A suite of one-inch cores of dispersed flotation-mill tailings and underlying premining material was taken from a large, flat area north of Basin Creek near the site of the Buckeye mine. Thirty-five core samples were taken and divided into 204 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid digestion. Results of the core analyses show that the elements listed above are present at moderate to very high concentrations (arsenic to 63,000 ppm, silver to 290 ppm, cadmium to 370 ppm, copper to 4,800 ppm, lead to 93,000 ppm, and zinc to 23,000 ppm). Volume calculations indicate that an estimated 8,400 metric tons of contaminated material are present at the site. Six bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50oC) 2M HCl-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of Basin Creek are only slightly impacted by past mining above the Buckeye-Enterprise complex, moderately impacted at the upper (eastern

  2. Cache Creek ocean: Closure or enclosure?

    NASA Astrophysics Data System (ADS)

    Nelson, Joanne; Mihalynuk, Mitch

    1993-02-01

    Exotic Tethyan faunas within the Cache Creek terrane contrast markedly with faunas and lithologic associations in the adjacent Quesnel and Stikine terranes. In northern British Columbia and southeast Yukon, all three terranes are enveloped in the north by pericontinental rocks of the Yukon-Tanana terrane, a geometry that imposes severe constraints on terrane assembly models for the northern Canadian Cordillera. Our solution to the problem invokes a northern join between the Stikinia and Quesnellia arcs through the Yukon-Tanana terrane, forming an orocline that encloses the Cache Creek terrane. This model involves (1) collision of a linear oceanic plateau at the cusp between Quesnellia and Stikinia, (2) anticlockwise rotation of Stikinia about an axis in the Yukon-Tanana terrane, (3) simultaneous enclosure of the Cache Creek ocean, and (4) emplacement of Quesnellia onto the margin of ancestral North America and the Cache Creek terrane onto Stikinia during final closure of the orocline. Early Mesozoic Paleomagnetic declinations in Stikinia are permissive of the large anticlockwise rotations predicted by the model. Similar large-scale rotations and ocean-basin enclosure are common features in the southwest Pacific. This model accounts for Paleozoic and younger linkages between Yukon-Tanana and both northern Stikinia and Quesnellia, the striking similarity between Triassic-Jurassic arcs east and west of the Cache Creek terrane, and the profound early Mesozoic deformational event in the Yukon-Tanana terrane.

  3. 1. EAGLE CREEK RECREATION AREA, VIEW OF EAGLE CREEK TRAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAGLE CREEK RECREATION AREA, VIEW OF EAGLE CREEK TRAIL REGISTRY BOOTH. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  4. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining

  5. Hydrologic data for northern Bucks County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.; McManus, B.C.; Rowland-Lesitsky, C. J.; Sloto, R.A.

    1994-01-01

    Hydrologic and water-quality data were collected in northern Bucks County, Pa., as part of a study conducted by the U.S. Geological Survey, in cooperation with Bridgeton, Buckingham, Nockamixon, Plumstead, Solebury, Springfield, Tinicum, and Wrightstown Townships and New Hope Borough. Hydrologic data on ground water and surface water were collected to provide basic information on the quality and quantity of water resources in northern Bucks County. Ground-water data include descriptions of 1,357 wells and water levels for 28 observation wells measured during 1990-93. Ground-water-quality analyses for 117 wells include physical properties and concentrations of major ions, nutrients, selected metals and other trace constituents, radon, and volatile organic compounds. Surface-water data include chemical analyses of water samples collected at sites on Beaver Creek, Crooks Creek, Geddes Run, Little Tinicum Creek, Paunnacussing Creek, Pidcock Creek, Rapp Creek, Smithtown Creek, and Tinicum Creek.

  6. Early palaeozoic palaeomagnetism in Australia I. Cambrian results from the Flinders Ranges, South Australia II. Late Early Cambrian results from Kangaroo Island, South Australia III. Middle to early-Late Cambrian results from the Amadeus Basin, Northern Territory

    NASA Astrophysics Data System (ADS)

    Klootwijk, C. T.

    1980-04-01

    considerable intensity. Two characteristic magnetic components have been identified: (A) A secondary magnetic component of Late Cambrian—Early Ordovician age (S-pole at: 75.8°E 17.4°N, d p = 4.2°, d m = 1.9°, N = 54 specimens), attributed to thermochemical activity predating the main folding phases of the Delamarian Orogeny. (B) A primary magnetic component corresponding to a S-pole position at 15.1°E 33.8°S (d p = 6.2°, d m = 12.3°, N = 16 sites). Both the primary and the secondary magnetic component are in very good directional agreement with the magnetization pattern from the correlated Billy Creek Formation of the Flinders Ranges (I). Consequently, noticeable rotational movement since late-Early Cambrian times between Kangaroo Island and the northwestern part of the Adelaide "Geosyncline" can be ruled out. III. Middle to early-Late Cambrian results from the Amadeus Basin (Northern Territory) A total of 328 samples from a Middle Cambrian red-bed succession and a Middle to early-Late Cambrian carbonate succession in the Amadeus Basin (Central Australia) have been analyzed through thermal demagnetization studies. All samples contained a recent field component of considerable intensity which became broken down, respectively below 200°C in the carbonate samples and between 300°C and 500°C in the red-bed samples. Another recent field component, broken down between 600°C and 675°C, was noted in some of the red-bed samples. Three characteristic magnetic components have been identified: (A) A secondary magnetic component of Late Devonian—Early Carboniferous age (S-pole at 110.5°E 46.9°S, N = 2 localities) which predates the main folding phase of the Early Carboniferous Alice Springs Orogeny. (B) Another secondary magnetic component (S-pole at 60.8°E 33.8°N, N = 2 localities) which is very similar to a thermo-chemically induced Cambro-Ordovician magnetic component, noted in rocks from the Adelaide "Geosyncline". (C) A primary magnetic component which suggests

  7. RICHLAND CREEK ROADLESS AREA, ARKANSAS.

    USGS Publications Warehouse

    Miller, Mary H.; Wood, Robert H.

    1984-01-01

    On the basis of geologic and mineral surveys, Richland Creek Roadless Area, Arkanses, has little promise for the occurrence of metallic mineral resources, gas and oil, or oil shale. The Boone Formation of Mississippian age and the Everton Formation of Ordovician age, both known to contain zinc and lead deposits in northern Arkansas, underlie the roadless area. The presence or absence of zinc and lead deposits in these formations in the subsurface can be neither confirmed nor ruled out without exploratory drilling. Most of the Richland Creek Roadless Area is under lease for oil and gas; however two wells drilled near the eastern boundary of the area did not show contained gas or oil.

  8. 170. Credit SHS. Northern California Power Company substation, Bully Hill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    170. Credit SHS. Northern California Power Company substation, Bully Hill Mine area. Note lack of vegetation, caused by nearby copper smelting works. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  9. Overview of the Caspar Creek watershed study

    Treesearch

    Norm Henry

    1998-01-01

    The California Department of Forestry and Fire Protection (CDF) and the Pacific Southwest Research Station, Redwood Sciences Laboratory (PSW) have been conducting watershed research within the Caspar Creek watershed on the Jackson Demonstration State Forest, in northern California, since 1962. A concrete broad-crested weir with a 120 degree low-flow V-notch was...

  10. Complexly deformed nappe/tectonic slide fault system -- North-central border zone Idaho batholith -- Moose Creek Buttes area, northern Idaho

    SciTech Connect

    Kell, R.E. . Dept. of Geology)

    1993-04-01

    The Moose Creek Buttes area ideally displays complicated macroscopic effects of superposed deformations (D2--D7) upon D1 isoclinal folds (F1) and tectonic slide faults. D1 structures developed in lower to middle parts of the Belt Supergroup (Proterozoic) under greenschist to upper amphibolite facies conditions (M1). Removing effects of D2--D7 superposed folding provides the basis for resolving the original configuration of D1 structures and M1 metamorphic zones. This restoration shows that tectonic slide faults were subhorizontal and bound a 4.5 km.-thick plate comprised of amphibolite facies (M1) Ravalli Group quartzite with minor overlying Empire Formation pelitic schist (star and ky zones) and underlying Prichard Formation pelitic schist (sill-mus and sill-K-spar zones). The configuration of restored F1 folds/tectonic slide faults and M1 metamorphic zones indicates deep-seated, east-directed thrusting after a thermal regime of high heat flow had been established up into Belt Supergroup sediments. The presence of D1 synkinematic tonalite and granite, and later superposed folding (D2--D4) attributed to forceful emplacement of Idaho batholith plutons (mid- to late Cretaceous) point to close proximity to an evolving magmatic arc. Hence, D1 is likely a part of late-Jurassic to mid-Cretaceous crustal shortening and plutonism in the orogenic belt along the subducting plate boundary of the North American Cordilleran.

  11. Hydrology of the Johnson Creek Basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    and winter precipitation totals were used to anticipate flooding of Holgate Lake. Several factors affect annual mean flow of Johnson Creek. More precipitation falls in the southeastern area of the basin because of the topographic setting. Runoff from much of the northern and western areas of the basin does not flow into Johnson Creek due to permeable deposits, interception by combined sewer systems, and by groundwater flow away from Johnson Creek. Inflow from Crystal Springs Creek accounts for one-half of the increase in streamflow of Johnson Creek between the Sycamore and Milwaukie sites. Low flows of Johnson Creek vary as a result of fluctuations in groundwater discharge to the creek, although past water uses may have decreased flows. The groundwater contributions to streamflow upstream of river mile (RM) 5.5 are small compared to contributions downstream of this point. Comparison of flows to a nearby basin indicates that diversions of surface water may have resulted in a 50 percent decrease in low flows from about 1955 to 1977. Runoff from the drainage basin area upstream of the Johnson Creek at Sycamore site contributes more to peak streamflow and peak volume than the drainage basin area between the Sycamore and Milwaukie sites. The average increase in annual peak streamflow and annual peak volume between the two sites was 11 and 24 percent, respectively. Decreased contribution in the lower area of the drainage basin is a result of infiltration, interception by drywell and combined sewer systems, and temporary overbank storage. Trends in flow typically associated with increasing urban development were absent in Johnson Creek. Annual, low, and high flows showed no trend from 1941 to 2006. Much of the infrastructure that may affect runoff from agricultural, residential, and urban development was in place prior to collection of hydrologic data in the basin. Management of stormwater in the urban areas by routing runoff from impervious surfaces to dry

  12. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  13. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  14. Fractional crystallization, impregnation and sulphide saturation recorded in Mesozoic arc-related cumulates at King Mountain, Cache Creek Ophiolite, Northern British Columbia.

    NASA Astrophysics Data System (ADS)

    Bedard, J. H. J.; Zagorevski, A.; Corriveau, A. S.

    2016-12-01

    The Cache creek terrane extends from southern B.C. to the Yukon. It accreted to North America at 175Ma and is composed of Paleozoic seamounts, Mesozoic oceanic arcs and mantle rocks. Mantle harzburgite massifs represent intra-oceanic core-complexes. Mantle rocks are cut by gabbroic dykes and overlain by chert, lava, dismembered hypabyssal complexes and rare cumulates. At King Mountain, gabbronorites are in tectonic contact with subjacent peridotite. Other crustal relics exposed nearby include sheeted hypabyssal intrusions and volcanics that range from depleted arc tholeiites to boninites. The King Mountain cumulates are rhythmically layered, foliated gabbronorites with 5% oxides and minor interstitial hornblende that yields temperatures of 652-759oC. Cumulates may show evidence of compaction-related flattening and intra-cumulate shear (boudins, fold noses). A 300m thick continuous section records two fractional crystallization cycles, whole rock mg# varying from 60 to 35 in the 1st cycle and from 52 to 30 in the 2nd. Cumulates formed during passage of evolved multiply-saturated magmas derived from a deeper chamber towards the surface. Inverse trace element models show that the gabbronorite cumulates are compositionally akin to boninites. The lowest-mg# rocks in the differentiation cycles are rusty 10cm-1m interbeds with abundant magnetite+ ilmenite ( 10-15%), high sulphide contents ( 5-10%, pyrrhotite and chalcopyrite) and high V contents (<1200ppm). These are interpreted to record episodic co-accumulation of Fe-Ti-oxides, with the decrease in melt FeO-content triggering sulphide immiscibility. Hornblendite and hornblende tonalite veins are locally transposed into the layered cumulates, forming flaser gabbros with 5-50% cm-scale lensoid hornblendite that impregnates and replaces the foliated gabbro-norite; greatly increasing REE contents. Amphibole oikocrysts show evidence of internal deformation and record temperatures of 753-804 oC.

  15. Long-term on-site and off-site effects of logging and erosion in the Redwood Creek basin, northern California

    USGS Publications Warehouse

    Hagans, Danny K.; Weaver, William E.; Madej, Mary Ann

    1986-01-01

    For nearly 15 years, the Redwood Creek Watershed in north coastal California has been the focus of both U.S. Geological Survey (USGS) and National Park Service (NPS) studies designed to document and quantify the nature of erosion, sedimentation and sediment transport processes active in the basin. While none of these studies were specifically designed to assess possible cumulative effects resulting from land use, we can demonstrate, by synthesizing a number of study findings throughout the watershed, that some land use practices do result in long-term and persistent changes to hillslopes and stream channels. For this discussion, "Cumulative Effects" are viewed as multiple, persistent impacts which are separated in either space or time from the original land use disturbance. Although each incremental disturbance may have an insignificant effect when viewed alone, the impacts may become cumulatively significant when seen in aggregate or when multiple erosion sources are triggered simultaneously by a large storm. For example, an undersized culvert which becomes plugged of whose capacity is exceeded by storm runoff can cause erosion at the site where it is installed as all or part of the fill crossing is washed out. In addition, streamflow can be diverted from the channel and cause considerable erosion in downslope areas where gullies will form, and in far removed fish-bearing streams where the sediment is finally deposited. In addition to being spatially displaced from its source, the effect may also be delayed in time. The undersized culvert may not plug or its capacity be exceeded for many years, and the resultant erosion and sedimentation may not occur for decades after the original disturbance. An entire road network, which is not being permanently maintained or whose culverts have been underdesigned, may not reveal significant erosional impacts from road construction until a major storm cause widespread culvert failure, stream crossing erosion and stream

  16. Groundwater quality and simulation of sources of water to wells in the Marsh Creek valley at the U.S. Geological Survey Northern Appalachian Research Laboratory, Tioga County, Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Breen, Kevin J.

    2012-01-01

    This report provides a November 2010 snapshot of groundwater quality and an analysis of the sources of water to wells at the U.S. Geological Survey (USGS) Northern Appalachian Research Laboratory (NARL) near Wellsboro, Pennsylvania. The laboratory, which conducts fisheries research, currently (2011) withdraws 1,000 gallons per minute of high-quality groundwater from three wells completed in the glacial sand and gravel aquifer beneath the Marsh Creek valley; a fourth well that taps the same aquifer provides the potable supply for the facility. The study was conducted to document the source areas and quality of the water supply for this Department of Interior facility, which is surrounded by the ongoing development of natural gas from the Marcellus Shale. Groundwater samples were collected from the four wells used by the NARL and from two nearby domestic-supply wells. The domestic-supply wells withdraw groundwater from bedrock of the Catskill Formation. Samples were analyzed for major ions, nutrients, trace metals, radiochemicals, dissolved gases, and stable isotopes of oxygen and hydrogen in water and carbon in dissolved carbonate to document groundwater quality. Organic constituents (other than hydrocarbon gases) associated with hydraulic fracturing and other human activities were not analyzed as part of this assessment. Results show low concentrations of all constituents. Only radon, which ranged from 980 to 1,310 picocuries per liter, was somewhat elevated. These findings are consistent with the pristine nature of the aquifer in the Marsh Creek valley, which is the reason the laboratory was sited at this location. The sources of water and areas contributing recharge to wells were identified by the use of a previously documented MODFLOW groundwater-flow model for the following conditions: (1) withdrawals of 1,000 to 3,000 gallons per minute from the NARL wells, (2) average or dry hydrologic conditions, and (3) withdrawals of 1,000 gallons per minute from a new

  17. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  18. Why has streamflow in a northern Idaho creek increased while flows from many other watersheds in the US Pacific Northwest have decreased over the past sixty years?

    NASA Astrophysics Data System (ADS)

    Wei, L.; Hudak, A. T.; Link, T. E.; Marshall, J. D.; Kavanagh, K.; Zhou, H.; Abatzoglou, J. T.; Pangle, R. E.; Flerchinger, G. N.; Denner, R. J.

    2014-12-01

    As global warming proceeds, evapotranspiration demand will increase, the precipitation regime may change, and water cycling in many ecosystems may be affected. Streamflow in the Pacific Northwest (PNW) region of the USA decreased in the last ~60 year possibly due to decreasing precipitation at high elevations and/or increasing evapotranspiration. However, an increasing trend of streamflow was observed at a 4km2 watershed in the Priest River Experimental Forest (PREF) in northern Idaho. We used the process-based soil-vegetation-atmosphere Simultaneous Heat and Water (SHAW) model, to simulate the changes in the water cycle at PREF. Independent measurements were used to parameterize the model, including forest transpiration, stomatal responses to vapor pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. The model reasonably simulated the streamflow dynamics during the evaluation period from 2003 to 2010, which verified the ability of SHAW to simulate the water cycle at PREF. We then ran the model using historical vegetation cover and climate data to reveal the drivers of the changes in water budget of PREF over the past 60 years. Historical vegetation cover was obtained from a 1939 digitized historical vegetation map. The biggest change was the decline of western white pine (Pinus monticola Dougl. ex D. Don), a fast growing and deep rooted species with high transpiration rates, which was once a predominant species in PREF in the early 20th century. This was followed by a subsequent increase and decrease in fir species, followed by the emergence of western red cedar (Thuja plicata) as the current dominant tree species. The tree species shifts under this successional trajectory would have produced continually decreasing transpiration rates, which may explain the steady increase in observed runoff over the last ~60 years, which was likewise simulated with the SHAW model.

  19. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  20. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  1. The Boulder Creek Batholith, Front Range, Colorado

    USGS Publications Warehouse

    Gable, Dolores J.

    1980-01-01

    The Boulder Creek batholith is the best known of several large Precambrian batholiths of similar rock composition that crop out across central Colorado. The rocks in the batholith belong to the calc-alkaline series and range in composition from granodiorite through quartz diorite (tonalite) to gneissic aplite. Two rock types dominate': the Boulder Creek Granodiorite, the major rock unit, and a more leucocratic and slightly younger unit herein named Twin Spruce Quartz Monzonite. Besides mafic inclusions, which occur mainly in hornblende-bearing phases of the Boulder Creek Granodiorite, there are cogenetic older and younger lenses, dikes, and small plutons of hornblende diorite, hornblendite, gabbro, and pyroxenite. Pyroxenite is not found in the batholith. The Boulder Creek Granodiorite in the batholith represents essentially two contemporaneous magmas, a northern body occurring in the Gold Hill and Boulder quadrangles and a larger southern body exposed in the Blackhawk and the greater parts of the Tungsten and Eldorado Springs quadrangles. The two bodies are chemically and mineralogically distinct. The northern body is richer in CaO and poorer in K2O, is more mafic, and has a larger percentage of plagioclase than the southern body. A crude sequence of rock types occurs from west to east in the batholith accompanied by a change in plagioclase composition from calcic plagioclase on the west to sodic on the east. Ore minerals tend to decrease, and the ratio potassium feldspar:plagioclase increases inward from the western contact of the batholith, indicating that the Boulder Creek batholith is similar to granodiorite batholiths the world over. Emplacement of the Boulder Creek batholith was contemporaneous with plastic deformation and high-grade regional metamorphism that folded the country rock and the batholith contact along west-northwest and north-northwest axes. Also, smaller satellitic granodiorite bodies tend to conform to the trends of foliation and fold axes in

  2. Road construction on Caspar Creek watersheds --- 10-year report on impact

    Treesearch

    J. S. Krammes; David M. Burns

    1973-01-01

    In 1960, Federal and State agencies jointly started a long-term study of the effects of logging and road building on streamflow, sedimentation, aquatic habitat, and fish populations on two watersheds of Caspar Creek, in northern California. The experimental watersheds are the North and South Forks of the Creek. The data being collected consist of continuous streamflow...

  3. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  4. Partridge Creek Diversion Project

    EPA Pesticide Factsheets

    Goal: prevent mercury contamination by keeping the creek from flowing through a mine pit. The project improved brook trout habitat, green infrastructure, the local economy, and decreased human health risks. Includes before-and-after photos.

  5. Stratigraphy, depositional history, and trapping mechanisms of Lone Tree Creek and Lodgepole Creek oil fields, Lower Cretaceous Fall River formation, Powder River Basin, Wyoming

    SciTech Connect

    Gustason, E.R.; Ryer, T.A.

    1985-05-01

    Stratigraphically trapped accumulations of oil in the Lone Tree Creek and Lodgepole Creek fields occur within and just updip from a fluvial meander belt within the Fall River Formation. The meander belt can be mapped north-to-south over a distance of at least 100 mi (161 km) in the eastern part of the Powder River basin. The northern part of the meander belt contains the oil fields of the Coyote Creek-Miller Creek trend; the southern part contains only the relatively small Lone Tree Creek and Lodgepole Creek fields. These small fields are of considerable interest, as they display a style of stratigraphic trapping of hydrocarbons not observed in the prolific Coyote Creek-Miller Creek trend. The stratigraphic traps of the Coyote Creek-Miller Creek trend occur at updip facing convexities along the eastern edge of the meander belt, with abandonment clay plugs serving as lateral permeability barriers to hydrocarbon migration. Oil has been produced in part of the Lone Tree Creek field from a similar trap. The remaining part of Lone Tree Creek field and Lodgepole creek field produce from stratigraphic traps formed by lateral pinch-outs of delta-front sandstone bodies. These traps are situated updip from and apparently in continuity with the meander-belt deposits, indicating that they may have been charged with hydrocarbons that found their way through the clay-plug barriers along the margin of the meander belt. Similar, undiscovered traps may exist updip from Fall River meander belts elsewhere in the basin.

  6. Meteorological factors in the Quartz Creek forest fire

    Treesearch

    H. T. Gisborne

    1927-01-01

    It is not often that a large forest fire occurs conveniently near a weather station specially equipped for measuring forest-fire weather. The 13,000-acre Quartz Creek fire on the Kaniksu National Forest during the summer of 1936 was close enough to the Priest River Experimental Forest of the Northern Rocky Mountain Forest Experiment Station for the roar of the flumes...

  7. Coyote Creek (Santa Clara County) Pilot Revegetation Project

    Treesearch

    John T. Stanley; L. R. Silva; H. C. Appleton; M. S. Marangio; W. J. Lapaz; B. H. Goldner

    1989-01-01

    The Santa Clara Valley Water District, located in Northern California, is currently evaluating a pilot riparian revegetation project on a 1.6 ha (4 ac) site adjacent to Coyote Creek in the south San Francisco Bay Area. Specific techniques used during the design, site preparation and installation of 3640 plants (including seed planting locations) are described. This...

  8. Fish Creek Rim Research Natural Area: guidebook supplement 50

    Treesearch

    Reid Schuller; Ian. Grinter

    2016-01-01

    This guidebook describes major biological and physical attributes of the 3531-ha (8,725-ac) Fish Creek Rim Research Natural Area located within the Northern Basin and Range ecoregion and managed by the Bureau of Land Management, Lakeview District (USDI BLM 2003).

  9. Soap Creek Associates NPDES Permit

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  10. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  11. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  12. Bent Creek demonstration program

    Treesearch

    Erik C. Berg

    1997-01-01

    Bent Creek Research and Demonstration Forest scientists have transferred the results of research on the ecology and management of Southern Appalachian hardwoods since 1925. Since 1989, a full-time technology transfer specialist has led demonstration efforts. The demonstration program was designed to quickly transfer research results to interested users and to free...

  13. Bent Creek demonstration program

    Treesearch

    Erik C. Berg

    1997-01-01

    Bent Creek Research and Demonstration Forest scientists have transferred the results of research on the ecology and management of Southern Appalachian hardwoods since 1925. Since 1989, a full-time technology transfer specialist has led demonstration efforts. The demonstration program was designed to quickly transfer research results to interested users, and free-up...

  14. Trout Creek 1999 Burn

    Treesearch

    Sherel Goodrich

    2008-01-01

    A small prescribed fire near the mouth of Trout Creek in Strawberry Valley, Wasatch County, Utah, on the Uinta National Forest provided an opportunity to compare production and vascular plant composition in unburned and burned areas. At four years post burn, production of herbaceous plants was about four times greater in the burned area than in the unburned area. Most...

  15. WELCOME CREEK WILDERNESS, MONTANA.

    USGS Publications Warehouse

    Lidke, D.J.; Close, T.J.

    1984-01-01

    Mineral-resource surveys indicate probable or substantiated mineral-resource potential for small amounts of gold and other metals. Areas of alluvium in Welcome Creek and in part of Rock Creek are classed as having probable and substantiated mineral-resource potential for small quantities of gold in small and scattered placers and in placer tailings. A small area which contains the Cleveland mine, on Cleveland Mountain, near the west border of the wilderness was classed as having probable mineral-resource potential for silver and gold in veins. Although green mudstone strata that often are favorable hosts for stratabound copper occurrences were found in the northeast part of the wilderness, no copper deposits were found and these studies indicate little likelihood for the occurrence of copper resources. The nature of the geologic terrain indicates that there is little likelihood of the occurrence of energy resources.

  16. Concentrations of metals and trace elements in aquatic biota associated with abandoned mine lands in the Whiskeytown National Recreation Area and nearby Clear Creek watershed, Shasta County, northwestern California, 2002-2003

    USGS Publications Warehouse

    Hothem, Roger L.; May, Jason T.; Gibson, Jennifer K.; Brussee, Brianne E.

    2015-01-01

    Compared with other recently evaluated mine-impacted watersheds in northern California, invertebrates, amphibians, and fish from sites within the Upper Clear Creek watershed tended to have significantly lower concentrations of Hg than at most other sites. For other metals and trace elements, Upper Clear Creek sites were only compared with the Deer Creek watershed, Nevada County, California. Copper from both Willow Creek sites (WLCC and WLTH) in the Clear Creek watershed was the only metal with concentrations in biota that were significantly higher than biota from Deer Creek

  17. Geodetic VLBI Observations with the Hat Creek Telescope

    NASA Astrophysics Data System (ADS)

    Shaffer, D. B.; NASA/Gsfc Geodetic VLBI Group

    1993-05-01

    Geodetic VLBI observations made with the Hat Creek 85' antenna were important contributions to the NASA Crustal Dynamics Program (CDP). Among other things, the CDP studied motions of the Earth's crustal plates and deformation in the vicinity of the San Andreas Fault in California. The 85' antenna was one of the three fundamental anchor points in California east of the San Andreas fault that were used from 1983 to 1991 to determine the motions at various mobile VLBI sites along the San Andreas and to determine the Pacific plate motions at Vandenberg Air Force Base and Ft. Ord (California) and Kauai (Hawaii). The Hat Creek site itself was found to be moving 10.6 +/- 0.4 (one sigma ) mm/yr to the WNW (PA 305deg ) with respect to a ``stable" eastern North America. Hat Creek is located near the western edge of the Northern Basin and Range province. Its motion is thought to be a combination of WNW extension across the Basin and Range, and a small component of NW elastic deformation due to the interaction between the North American and Pacific plates. Geodetic VLBI measurements from Hat Creek to the nearby Quincy and the more distant Ely (Nevada) and Platteville (Colorado) mobile sites were the key measurements in defining the extension rate for the Northern Basin and Range as 8 +/- 2 mm/yr (PA ~ 300deg ). Hat Creek was also the anchor point for measuring a 5 cm northward seismic displacement at the Ft. Ord mobile site due to the Loma Prieta earthquake. We will show the motion of California and Pacific basin sites for which Hat Creek contributed important data.

  18. Cedar Creek - significant paleotectonic feature of Williston basin

    SciTech Connect

    Clement, J.H.

    1985-05-01

    More than 327 million bbl of oil have been produced from Paleozoic carbonate reservoirs in 15 fields along the Cedar Creek anticline. Four major periods of tectonism from early Paleozoic through mid-Tertiary are documentable in the Cedar Creek area. Post-Silurian to pre-Middle Devonian: uplift and fault movement accompanied north and east tilting of the main Cedar Creek block. Several hundreds of feet of Silurian strata were eroded and a karst plain developed on the Silurian surface. Middle and Upper Devonian sediments onlapped and infilled the uplifted, northwest-plunging element. Late Devonian to pre-Mississippian: during latest late devonian and possibly earliest Mississippian, the Cedar Creek block was uplifted and tilted north and east. Extensive erosion resulted in the near peneplanation of the structure and significant truncation of Upper Devonian strata. Late Mississippian (Chester) through Triassic: during the Late Mississippian (Chester) and Early Pennsylvanian, the central and northern portion of the Cedar Creek area underwent gentle downwarping and periods of subsidence occurred with relative down-to-the-east fault movement along most of the ancestral master and subsidiary faults. Similar fault movement(s) and subsidence continued during the Permian and Triassic Periods. Relative tectonic stability was attained by the Middle Jurassic and essentially maintained until post-Paleocene time. Post-Paleocene: the Cedar Creek block underwent its greatest magnitude of uplift during post-Paleocene tectonism resulting in an extensive, linear belt of symmetric drape-folding generally aligned with the ancestral fault zones, and deep fault adjustment. During epeirogenic phases of the mid-Tertiary in the northern Rocky Mountain region, 1500 ft (475 m) of Paleocene and Upper Cretaceous strata were eroded along the axis of the present structure.

  19. View north of the brick vault built into the northern ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north of the brick vault built into the northern slope of Mount Zion Cemetery with Rock Creek and Rock Creek Park beyond the trees. - Mount Zion Cemetery/ Female Union Band Cemetery, Bounded by 27th Street right-of-way N.W. (formerly Lyons Mill Road), Q Street N.W., & Mill Road N.W., Washington, District of Columbia, DC

  20. Surficial geology of the Cane Creek basin, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Miller, J.H.

    1991-01-01

    The surficial geology of the Cane Creek basin, in Lauderdale County, West Tennessee, was studied from 1985-88. Peoria Loess is the parent material from which soils in the Cane Creek drainage basin were derived. In general, a brown silt grades into a gray silt from 5 to I7 feet below ground surface. This color change probably represents depth to water table prior to the channelization of Cane Creek. Only at river mile 11.9 does rock outcrop near the main channel. Lower reaches of major tributaries have surficial geology similar to the main channel. In upper reaches of Hyde Creek and Fain Spring Creek, the sequence from the St&ace is sand and gravels, red-brown sandstone, sand and clay layers, and then, an orange sand layer. Coarse-grained deposits are found most often along the northern boundary of the basin and only occasionally in areas to the west and south of the main channel. Depth to sand or gravel ranges from about 0 to 158 feet in the uplands, and generally deeper than 40 feet near the main channel.

  1. Bonanza Creek Experimental Forest & Caribou-Poker Creeks Research Watershed.

    Treesearch

    Valerie. Rapp

    2003-01-01

    Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research Watershed are located in the boreal forest of interior Alaska. Research focuses on basic ecological processes, hydrology, disturbance regimes, and climate change in the boreal forest region. Interior Alaska lies between the Alaska Range to the south and the Brooks Range to the north and covers an area...

  2. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources... Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC.... For the transferee: Mr. Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC,...

  3. Activity of the Mill Creek and Mission Creek fault strands of the San Andreas fault through the San Gorgonio Pass

    NASA Astrophysics Data System (ADS)

    Morelan, A. E., III; Oskin, M. E.; Valentine, M.

    2016-12-01

    We present new observations that constrain the recent slip history of the Mill Creek and Mission Creek strands of the San Andreas fault. These faults are the northern strands of a complex series of strike-slip and thrust faults through the San Gorgonio Pass stepover, an important structural barrier that affects seismic hazard in southern California. Understanding the activity on each of the faults in this complex region will reveal the potential for large, throughgoing San Andreas fault ruptures. The Mill Creek fault strand cuts the base of the upper Raywood Flat fill, a 50 m thick package of debris-flow deposits. However, the upper section of these deposits overlap, and are not cut by the fault. On the surface of this deposit, a 15 m-wide channel, flanked by bouldery debris-flow levees, crosses the projection of the Mill Creek fault without evidence of offset. We collected boulder-top samples for cosmogenic exposure age-dating of these levees and present preliminary results. Additionally, we mapped inset terraces along the incised channel of the East Fork Whitewater River drainage that also do not show evidence of fault offset, and we collected a depth profile through the uppermost Raywood Flat fill in order to further assess its age. Along the Mission Creek strand, newly devegetated B4 airborne lidar data reveals fault scarps cutting across hillslopes and alluvial fans between the San Bernardino strand and lower Raywood Flat for a distance of 4 km. We identify a lateral offset of 4-6 m in an alluvial fan deposit within a tributary of Banning canyon, and sampled a suite of boulders to estimate the age of this deposit. This site shows that the Mission Creek fault is active and could rupture through the San Gorgonio Pass, bypassing the structural complexity of the San Gorgonio Pass thrust to the south. Conversely, the Mill Creek fault appears to be inactive through the pass since the latest Pleistocene.

  4. Bioassessment of Hollis Creek, Oktibbeha County, Mississippi

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Bogenrieder, K.J.

    2000-01-01

    Physical, chemical and biological components at five stations on Hollis Creek, Oktibbeha County, Mississippi were evaluated using Rapid Bioassessment Protocols (RBP) and the Sediment Quality Triad (SQT) on August 24-26, 1999, in order to assess potential biological impacts from the Starkville Waste Water Treatment Facility (WWTF) on downstream resources. Two stations were selected above the WWTF and three below. The WWTF discharges treated effluent into Hollis Creek, but during storm events raw sewage may be released. Hollis Creek is a tributary of the Noxubee River that traverses the northern portion of Noxubee National Wildlife Refuge, which is managed as bottomland hardwood forest land for the protection of fish and wildlife resources. Hollis Creek was channelized throughout most of its length, resulting in high, unstable banks, degraded stream channel and unstable substratum. The RBP scores for the habitat evaluations from each station indicated that Stations 1 and 2 had degraded habitat compared to the reference site, Station 5. Benthic macroinvertebrate and fish assemblages also indicated that the biological integrity at Stations 1 and 2 was less than that of the downstream stations. The SQT showed that Stations 1 and 2 were degraded and the most likely causes of the impairment were the elevated concentrations of polycylclic aromatic hydrocarbons and metals in the sediments; Hyalella azteca survival in pore water and growth in solid-phase sediment exposures were reduced at these upstream sites. The source of contaminants to the upper reaches appears to be storm-water runoff. The close concordance between the RBP and SQT in identifying site degradation provided a preponderance of evidence indicating that the upper reaches (Stations 1 and 2) of Hollis Creek were impacted. Biological conditions improved downstream of the WWTF, even though physical degradation steinming from channelization activities were still evident. The increased discharge and stabilized base

  5. Water-Quality Characteristics of Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek, Grand Teton National Park, Wyoming, 2006

    USGS Publications Warehouse

    Clark, Melanie L.; Wheeler, Jerrod D.; O'Ney, Susan E.

    2007-01-01

    To address water-resource management objectives of the National Park Service in Grand Teton National Park, the U.S. Geological Survey in cooperation with the National Park Service has conducted water-quality sampling on streams in the Snake River headwaters area. A synoptic study of streams in the western part of the headwaters area was conducted during 2006. Sampling sites were located on Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek. Sampling events in June, July, August, and October were selected to characterize different hydrologic conditions and different recreational-use periods. Stream samples were collected and analyzed for field measurements, major-ion chemistry, nutrients, selected trace elements, pesticides, and suspended sediment. Water types of Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek were calcium bicarbonate. Dissolved-solids concentrations were dilute in Cottonwood Creek and Taggart Creek, which drain Precambrian-era rocks and materials derived from these rocks. Dissolved-solids concentrations ranged from 11 to 31 milligrams per liter for samples collected from Cottonwood Creek and Taggart Creek. Dissolved-solids concentrations ranged from 55 to 130 milligrams per liter for samples collected from Lake Creek and Granite Creek, which drain Precambrian-era rocks and Paleozoic-era rocks and materials derived from these rocks. Nutrient concentrations generally were small in samples collected from Cottonwood Creek, Taggart Creek, Lake Creek, and Granite Creek. Dissolved-nitrate concentrations were the largest in Taggart Creek. The Taggart Creek drainage basin has the largest percentage of barren land cover of the basins, and subsurface waters of talus slopes may contribute to dissolved-nitrate concentrations in Taggart Creek. Pesticide concentrations, trace-element concentrations, and suspended-sediment concentrations generally were less than laboratory reporting levels or were small for all samples. Water

  6. 16. Detail of curvature of northern parapet, with 1932 concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail of curvature of northern parapet, with 1932 concrete extension of parapet in foreground, facing east. - Dubbs Bridge, Spinnerstown Road (State Route 2031) spanning Hosensack Creek, Dillingerville, Lehigh County, PA

  7. The Beaver Creek story

    USGS Publications Warehouse

    Doyle, W.H.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  8. Line Creek improves efficiency

    SciTech Connect

    Harder, P.

    1988-04-01

    Boosting coal recovery rate by 8% and reducing fuel expense $18,000 annually by replacing two tractors, are two tangible benefits that Crows Nest Resources of British Columbia has achieved since overseas coal markets weakened in 1985. Though coal production at the 4-million tpy Line Creek open pit mine has been cut 25% from its 1984 level, morale among the pit crew remains high. More efficient pit equipment, innovative use of existing equipment, and encouragement of multiple skill development among workers - so people can be assigned to different jobs in the operation as situations demand - contribute to a successful operation.

  9. Hydrology of Pine Creek, Wisconsin

    USGS Publications Warehouse

    Gebert, Warren A.

    1971-01-01

    The purpose of this study was to determine the hydrologic characteristics of Pine Creek, Price County, Wisconsin, in order to evaluate a proposed reservoir on Pine Creek. The streamflow characteristics estimated are the mean flows, low flows, and flood peaks. The study was done by the U.S. Geological Survey in cooperation with the Wisconsin Department of Natural Resources.

  10. Deception Creek Experimental Forest (Idaho)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2004-01-01

    Deception Creek Experimental Forest is located in one of the most productive forests of the Rocky Mountains. When the forest was established in 1933, large, old western white pines were important for producing lumber products, matches, and toothpicks. Deception Creek is located in the heart of the western white pine forest type, allowing researchers to focus on the...

  11. BLACK BUTTE AND ELK CREEK ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Ohlin, Henry N.; Spear, R.J.

    1984-01-01

    A mineral investigation in the nearly contiguous Black Butte and Elk Creek Roadless Areas of northern California, indicates that small parts of both roadless areas have a probable mineral-resource potential for small manganese-copper- or chromite-type deposits. There is little promise for the occurrence of energy resources in the areas. Investigation of geothermal resource potential and of the potential for other hydrothermal base- and precious-metal mineralization should be initiated.

  12. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  13. Ship Creek bioassessment investigations

    SciTech Connect

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  14. Investigation of the potential for concealed base-metal mineralization at the Drenchwater Creek Zn-Pb-Ag occurrence, northern Alaska, using geology, reconnaissance geochemistry, and airborne electromagnetic geophysics

    USGS Publications Warehouse

    Graham, Garth E.; Deszcz-Pan, Maria; Abraham, Jared E.; Kelley, Karen D.

    2011-01-01

    No drilling has taken place at the Drenchwater occurrence, so alternative data sources (for example, geophysics) are especially important in assessing possible indicators of mineralization. Data from the 2005 electromagnetic survey define the geophysical character of the rocks at Drenchwater and, in combination with geological and surface-geochemical data, can aid in assessing the possible shallow (up to about 50 m), subsurface lateral extent of base-metal sulfide accumulations at Drenchwater. A distinct >3-km-long electromagnetic conductive zone (observed in apparent resistivity maps) coincides with, and extends further westward than, mineralized shale outcrops and soils anomalously high in Pb concentrations within the Kuna Formation; this conductive zone may indicate sulfide-rich rock. Models of electrical resistivity with depth, generated from inversion of electromagnetic data, which provide alongflight-line conductivity-depth profiles to between 25 and 50 m below ground surface, show that the shallow subsurface conductive zone occurs in areas of known mineralized outcrops and thins to the east. Broader, more conductive rock along the western ~1 km of the geophysical anomaly does not reach ground surface. These data suggest that the Drenchwater deposit is more extensive than previously thought. The application of inversion modeling also was applied to another smaller geochemical anomaly in the Twistem Creek area. The results are inconclusive, but they suggest that there may be a local conductive zone, possibly due to sulfides.

  15. 75 FR 5631 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... COMMISSION Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment... Wolf Creek Nuclear Operating Corporation (WCNOC, the licensee), for operation of the Wolf Creek... Statement for License Renewal of Nuclear Plants: Wolf Creek Generating Station--Final Report (NUREG-1437...

  16. Coyote Creek Trash Reduction Project: Clean Creeks, Healthy Communities

    EPA Pesticide Factsheets

    Information about the SFBWQP Coyote Creek Trash Reduction Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  17. PINEY CREEK WILDERNESS, MISSOURI.

    USGS Publications Warehouse

    Pratt, Walden P.; Ellis, Clarence

    1984-01-01

    The Piney Creek Wilderness in southwest Missouri was investigated by geologic, geochemical, and mineral-occurrence surveys. These is no evidence of metallic mineral deposits in the rock units exposed at the surface in the wilderness, but the entire area has a probable potential for significant zinc-lead deposits at depths of several hundred feet. A probable potential also exists for a small to moderate-sized iron ore deposit at a depth of at least 2100 ft along the northwest side of the wilderness. Evaluation of these potentials would require deep drilling, and in the case of the possible iron ore deposit, a detailed magnetic survey. No energy resource potential was identified within this area.

  18. GEE CREEK WILDERNESS, TENNESSEE.

    USGS Publications Warehouse

    Epstein, Jack B.; Gazdik, Gertrude C.

    1984-01-01

    On the basis of geologic, geochemical, and mine and prospect surveys, it was determined that the Gee Creek Wilderness, Tennessee has little promise for the occurrence of mineral resources. Iron ore was formerly mined, but the deposits are small, have a high phosphorous content, and are inaccessible. Shale, suitable for brick or lightweight aggregate, and sandstone, which could be utilized for crushed stone or sand, are found in the area, but are also found in areas closer to potential markets. The geologic setting precludes the presence of oil and gas resources in the surface rocks, but the possibility of finding natural gas at depth below the rocks exposed in the area cannot be discounted. Geophysical exploration would be necessary to define the local structure in rocks at depth to properly evaluate the potential of the area for gas.

  19. Water, Rivers and Creeks

    NASA Astrophysics Data System (ADS)

    Mac, Robert D.

    Luna B. Leopold's intent in Water, Rivers and Creeks was to provide a nontechnical primer on hydrology and water resources, and he succeeded admirably. The terse style is reminiscent of the mystery writer Mickey Spillane, though the content is complex science expounded in simple terms. “Part I, Hydrology and Morphology,” makes up the first two thirds of the book, and in this section, Leopold develops hydrologic and geomorphic concepts and principles using analogies with items common to any household. Garden hoses, dishpans, bath tubs, and sieves provide illuminating examples of the effects of channel storage on stream flow, water tables and the movement of groundwater, sustainable yield and the storage equation, and the infiltration/percolation process.

  20. Perspective view of span over French Creek and east abutment, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  1. 1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS GLACIER VISIBLE IN BACKGROUND. - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA

  2. Alameda Creeks Healthy Watersheds Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Alameda Creeks Healthy Watersheds Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resour

  3. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an...) 805-1469. Transferees: Mr. Bernard H. Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek...

  4. SERVICE CREEK ROADLESS AREA, COLORADO.

    USGS Publications Warehouse

    Schmidt, Paul W.; Kluender, S.A.

    1984-01-01

    The Service Creek Roadless Area, near Steamboat Springs, Colorado, was studied. Geologic mapping and geochemical sampling did not identify any mineral-resource potential in the area. No mining activity has been recorded for the area. An east-west topographic linear feature just south of Silver Creek, which contains clusters of single and multi-element anomalies of certain rare-earth and metallic minerals deserves further study.

  5. Ground water in the alluvium of Otter Creek Basin, Oklahoma

    USGS Publications Warehouse

    Hollowell, Jerrald R.

    1965-01-01

    Otter Creek basin comprises 287 square miles in Kiowa, Comanche, and Tillman Counties. The basin is not typical of southwestern Oklahoma in that it includes massive mountains and scattered knobs and peaks of the Wichita Mountains. Alluvium covers much of the southern half of the basin but is restricted to the major tributary valleys in the northern half. The upper part of the alluvium is predominantly silt and clay; the lower part is predominantly very fine to medium sand and has a basal stratum of coarse sand and gravel. The average thickness of the flood-plain deposit is about 37 feet. The flood-plain deposits and terrace deposits in the southern part of the basin occur together in the subsurface as an integral unit. Principal recharge to the flood-plain deposits is through infiltration of precipitation and surface runoff, and through percolation from adjoining aquifers, principally the terrace deposits. Principal discharge from the flood-plain deposits is through seepage into Otter Creek by transpiration by vegetation, and by pumping from wells. The city of Snyder pumps about 200,000 gallons per day (gpd) from the alluvium of East Otter Creek during the winter and spring, and about 400,000 gpd during the summer and fall. Irrigation is concentrated principally on the flood plain common to both Otter Creek and North Fork Red River.

  6. Aquatic biology of the Redwood Creek and Mill Creek drainage basins, Redwood National Park, Humboldt and Del Norte counties, California

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Averett, R.C.

    1981-01-01

    A 2-year study of the aquatic biota in the Redwood Creek and Mill Creek drainage basins of Redwood National Park indicated that the aquatic productivity is low. Densities of coliform bacteria were low except in Prairie Creek, a tributary to Redwood Creek, where a State park, county fish hatchery, grazing land, lumber mill, and scattered residential areas are potential sources of fecal coliform bacteria. Benthic invertebrate data indicated a diverse fauna which varied considerably between streams and among stream sections. Noteworthy findings include: (1) benthic invertebrates rapidly recolonized the streambed following a major storm, and (2) man-caused disruption or sedimentation of the streambed during low flow can result in drastic reductions of the benthic invertebrate community. Seven species of fish representing species typically found in northern California coastal streams were captured during the study. Nonparametric statistical tests indicate that condition factors of steelhead trout were significantly larger at sampling stations with more insolation, regardless of drainage basin land-use history. Periphyton and phytoplankton communities were diverse, variable in numbers, and dominated by diatoms. Seston concentrations were extremely variable between stations and at each station sampled. The seston is influenced seasonally by aquatic productivity at each station and amount of allochthonous material from the terrestrial ecosystem. Time-series analysis of some seston data indicated larger and sharper peak concentrations being flushed from the logged drainage basin than from the control drainage basin. (USGS)

  7. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  8. Watershed management for erosion and sedimentation control Case Study: Goodwin Creek, Panola County, MS

    USDA-ARS?s Scientific Manuscript database

    The Goodwin Creek watershed is located within the loessal hills of northern Mississippi, a region of high erosion risk and elevated watershed sediment yields. This manuscript combines a regional history of land management and conservation issues from the time of European settlement to present with a...

  9. A watershed's response to logging and roads: South Fork of Caspar Creek, California, 1967-1976

    Treesearch

    Raymond M. Rice; Forest B. Tilley; Patricia A. Datzman

    1979-01-01

    The effect of logging and roadbuilding on erosion and sedimentation are analyzed by comparing the North Fork and South Fork of Caspar Creek, in northern California. Increased sediment production during the 4 years after road construction, was 326 cu yd/sq mi/yr—80 percent greater than that predicted by the predisturbance regression analysis. The average...

  10. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    SciTech Connect

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring.

  11. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Energy Regulatory Commission Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have changed its name to Salmon Creek Hydroelectric Company, LLC for...

  12. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek bridge, at Islamorada, Florida, shall open on signal, except that from 8 a.m. to 4 p.m., the draw need...

  13. Asotin Creek Model Watershed Plan

    SciTech Connect

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  14. Water resources of Bannock Creek basin, southeastern Idaho

    USGS Publications Warehouse

    Spinazola, Joseph M.; Higgs, B.D.

    1997-01-01

    The potential for development of water resources in the Bannock Creek Basin is limited by water supply. Bannock Creek Basin covers 475 square miles in southeastern Idaho. Shoshone-Bannock tribal lands on the Fort Hall Indian Reservation occupy the northern part of the basin; the remainder of the basin is privately owned. Only a small amount of information on the hydrologic and water-quality characteristics of Bannock Creek Basin is available, and two previous estimates of water yield from the basin ranged widely from 45,000 to 132,500 acre-feet per year. The Shoshone-Bannock Tribes need an accurate determination of water yield and baseline water-quality characteristics to plan and implement a sustainable level of water use in the basin. Geologic setting, quantities of precipitation, evapotranspiration, surface-water runoff, recharge, and ground-water underflow were used to determine water yield in the basin. Water yield is the annual amount of surface and ground water available in excess of evapotranspiration by crops and native vegetation. Water yield from Bannock Creek Basin was affected by completion of irrigation projects in 1964. Average 1965-89 water yield from five subbasins in Bannock Creek Basin determined from water budgets was 60,600 acre-feet per year. Water yield from the Fort Hall Indian Reservation part of Bannock Creek Basin was estimated to be 37,700 acre-feet per year. Water from wells, springs, and streams is a calcium bicarbonate type. Concentrations of dissolved nitrite plus nitrate as nitrogen and fluoride were less than Maximum Contaminant Levels for public drinking-water supplies established by the U.S. Environmental Protection Agency. Large concentrations of chloride and nitrogen in water from several wells, springs, and streams likely are due to waste from septic tanks or stock animals. Estimated suspended-sediment load near the mouth of Bannock Creek was 13,300 tons from December 1988 through July 1989. Suspended-sediment discharge was

  15. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Willow Creek. 9.85 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  16. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Willow Creek. 9.85 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  17. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  18. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  19. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  20. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  1. Timing and Nature of Events Leading to the Formation of the Albion-Raft River-Grouse Creek (ARG) Metamorphic Core complex, Northern Great Basin, W. U.S.

    NASA Astrophysics Data System (ADS)

    Miller, E. L.; Konstantinou, A.; Sheu, D.; Strickland, A.; Grove, M.

    2016-12-01

    Interpretations of the geodynamic significance of metamorphic core complexes in the northern Basin and Range are intimately tied to a combination of P-T data, geochronology and mica thermochronology used to infer episodes of deformation and uplift related to syn-shortening gravitational collapse of the crust in the latest Cretaceous-early Cenozoic. The ARG is no exception and we bring new geologic mapping, microstructural analysis, geochronology and 40Ar/39Ar thermochronology to bear on these questions. The petrogenesis of Eocene-Miocene magmas, the structural fabrics and metamorphism developed in wall rocks of plutons and the history of flanking basins outline a three-part Cenozoic story of this complex: Part 1: Mantle-derived heat input into the crust in the Eocene (42-36 Ma), related to Farallon slab removal, produced volcanism, plutonism, but little regional extension. Part 2: Heat input led to increased crustal melting as surface volcanism ceased. Diapiric rise of granite-cored gneiss domes sheathed by high grade, high strain metamorphic fabrics and mylonites took place over a protracted time, 32-25 Ma, stalling at depths > 10 km. Transitions upward from penetrative stretching fabrics to brittle crust were complex damage zones of multiply deformed and faulted Paleozoic strata overlain by a more intact 7-8 km thick section of Late Paleozoic and Triassic. Extension was localized and no sedimentary basins formed during this time. Part 3: Metamorphic and igneous rocks were brought to near surface conditions during Miocene extension, between 14-8 Ma ago. Structures accommodating E-W extension are high-angle, rotational normal faults that currently bound both sides of the ARG complex with linked sedimentary basins in their hanging wall. New 40Ar/39Ar data show that country rocks near the Oligocene Almo pluton share the pluton's cooling history. Further from the pluton, where pre-Oligocene fabrics are variably preserved, white mica total gas and plateau ages increase

  2. Hulburt Creek Hydrology, Southwestern Wisconsin

    USGS Publications Warehouse

    Gebert, Warren A.

    1971-01-01

    The purpose of this study was to determine the hydrologic characteristics of Hulburt Creek, Sauk County, Wis., in order to evaluate a proposed reservoir. The streamflow characteristics estimated are the low flow, monthly flow, and inflow flood. The study was done by the U.S. Geological Survey in cooperation with the Wisconsin Department of Natural Resources. The following estimates are for the point on Hulburt Creek at the proposed Dell Lake damsite near Wisconsin Dells. The drainage area is 11.2 square miles.

  3. The Caspar Creek Experimental Watershed

    Treesearch

    T. E. Lisle

    1979-01-01

    The Caspar Creek Experimental Watershed was set up as a traditional paired watershed to investigate the effects of logging and road construction on erosion and sedimentation. Research participants have come from the California Division of Forestry, the Pacific Southwest Forest and Range Experiment Station, the California Department of Water Resources, the California...

  4. Caspar Creek study completion report

    Treesearch

    C. S. Kabel; E. R. German

    1967-01-01

    The Department of Fish and Game assisted in an interagency study on Caspar Creek, a small coastal stream in Mendocino County. This study included the effects of logging on the stream and its population of silver salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdnerii).

  5. LINCOLN CREEK ROADLESS AREA, NEVADA.

    USGS Publications Warehouse

    John, David A.; Stebbins, Scott A.

    1984-01-01

    On the basis of a mineral survey, the Lincoln Creek Roadless Area, Nevada was determined to have little likelihood for the occurrence of mineral resources. Geologic terrane favorable for the occurrence of contact-metasomatic tungsten deposits exists, but no evidence for this type of mineralization was identified. The geologic setting precludes the occurrence of fossil fuels and no other energy resources were identified.

  6. Parachute Creek Shale Oil Program

    SciTech Connect

    Not Available

    1981-01-01

    This pamphlet describes Union Oil's shale oil project in the Parachute Creek area of Garfield County, Colorado. The oil shale is estimated to contain 1.6 billion barrels of recoverable oil in the high Mahogany zone alone. Primarily a public relations publication, the report presented contains general information on the history of the project and Union Oil's future plans. (JMT)

  7. 13. TREES ALONG LATERAL SEGMENT AT THE NORTHERN END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TREES ALONG LATERAL SEGMENT AT THE NORTHERN END OF LAKE LADORA. - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  8. Ground water in the alluvium of Elk Creek basin, Oklahoma

    USGS Publications Warehouse

    Hollowell, J.R.

    1961-01-01

    Elk Creek basin comprises 584 square miles in Washita, Beckman, and Kiowa Counties. The basin is typical of southwestern Oklahoma with nearly level plains broken by gentle rolling hills and low escarpments, except for the extreme southern part, where seven granite and gabbroic knobs and ridges of the Wichita Mountains protrude. The alluvium averages 40 feet in thickness and is restricted to the flood plain of Elk Creek and its major tributaries. The upper part of the alluvium is predominantly silt and clay. The lower part is predominantly very fine to medium sand. The flood plain is bounded by bedrock of Permian age except in T. 5 N. where it is bounded also by sporadic knobs and ridges composed of Precambrian rocks. Recharge to the alluvium is principally through infiltration of precipitation and surface runoff from adjacent highlands, and through percolation from the Quartermaster Formation in the northern part of the basin. Discharge is principally by seepage into the creek and transpiration by vegetation. Discharge by pumpage is small, principally for domestic and stock supply. (AVAILABLE AS PHOTOSTAT COPY ONLY)

  9. Ground water in the alluvium of Elk Creek basin, Oklahoma

    USGS Publications Warehouse

    Hollowell, Jerrald R.

    1965-01-01

    The Elk Creek basin comprises 584 square miles in Washita, Beckham, and Kiowa Counties. The basin is typical of southwestern Oklahoma with nearly level plains broken by gentle rolling hills and low escarpments, except for the extreme southern part, where seven granite and gabbroic knobs and ridges of the Wichita Mountains protrude. The alluvium averages 40 feet in thickness and is restricted to the flood plain of Elk Creek and its major tributaries. The upper part of the alluvium is predominantly silt and clay. The lower part is predominantly very fine to medium sand. The flood plain is bounded by bedrock of Permian age except in T. 5 N. where it is bounded also by sporadic knobs and ridges composed of Precambrian rocks. Recharge to the alluvium is principally through infiltration of precipitation and surface runoff from adjacent highlands, and through percolation from the Quartermaster Formation in the northern part of the basin. Discharge is principally by seepage into the creek and transpiration by vegetation. Discharge by pumpage is small, principally for domestic and stock supply.

  10. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    Water-level altitude contours and groundwater ages indicate the potential for a long flow path from southwest to northeast between northern Spring and Deep Creek Valleys through Tippett Valley. Although information gathered during this study is insufficient to conclude whether or not groundwater travels along this interbasin flow path, dissolved sulfate and chloride data indicate that a small fraction of the lower altitude, northern Deep Creek Valley discharge may be sourced from these areas. Despite the uncertainty due to limited data collection points, a hydraulic connection between northern Spring Valley, Tippett Valley, and Deep Creek Valley appears likely, and potential regional effects resulting from future groundwater withdrawals in northern Spring Valley warrant ongoing monitoring of groundwater levels across this area.

  11. Otter Creek Wilderness, West Virginia

    SciTech Connect

    Warlow, R.C.; Behum, P.T.

    1984-01-01

    A mineral-resource survey of the Otter Creek Wilderness conducted in 1978 resulted in the determination of demonstrated coal resources estimated to total about 24 million short tons in beds more than 28 in. thick and an additional 62 million short tons of coal in beds between 14 and 28 in. thick. There is little promise for the occurrence of mineral or other energy resources in the area.

  12. LUSK CREEK ROADLESS AREA, ILLINOIS.

    USGS Publications Warehouse

    Klasner, John S.; Thompson, Robert M.

    1984-01-01

    Geologic mapping and geochemical sampling show that the eastern third of the Lusk Creek Roadless Area in Illinois has a substantiated resource potential for fluorspar, lead, zinc, and barite, and other parts of the area have a probable resource potential for fluorspar. Fluorspar, which occurs along fault zones in the eastern part of the area, has been produced in the adjacent Illinois-Kentucky fluorspar district. There is little promise for the occurrence of other mineral or energy resources.

  13. AmeriFlux US-ICs Imnavait Creek Watershed Wet Sedge Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICs Imnavait Creek Watershed Wet Sedge Tundra. Site Description - The Imnavait Creek Watershed Wet Sedge Tundra (Fen Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Fen Station was deployed at the end of Summer 2007.

  14. AmeriFlux US-ICh Imnavait Creek Watershed Heath Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICh Imnavait Creek Watershed Heath Tundra. Site Description - The Imnavait Creek Watershed Heath Tundra (Ridge Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Ridge Station was deployed at the end of Summer 2007.

  15. AmeriFlux US-ICt Imnavait Creek Watershed Tussock Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICt Imnavait Creek Watershed Tussock Tundra. Site Description - The Imnavait Creek Watershed Tussock Tundra (Biocomplexity Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Biocomplexity Station was deployed in 2004, and it has been in operation during the melt seasons ever since.

  16. Floods in Starkweather Creek basin, Madison, Wisconsin

    USGS Publications Warehouse

    Lawrence, Carl L.; Holmstrom, Barry K.

    1972-01-01

    The reaches evaluated are (1) Starkweather Creek and West Branch Starkweather Creek, for a distance of 6.0 river miles from the mouth at Lake Monona upstream to the U.S. Highway 51 crossing north of Truax Field; and (2) East Branch Starkweather Creek (2.8 river miles), from its confluence with the West Branch near Milwaukee Street upstream to a point near the Interstate Highway 90-94 crossing.

  17. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    USGS Publications Warehouse

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  18. 77 FR 56238 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Application for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... COMMISSION Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Application for Amendment... Public Documents'' and then select ``Begin Web- based ADAMS Search.'' For problems with ADAMS, please... Commission (NRC or the Commission) has granted the request of Wolf Creek Nuclear Operating Corporation (the...

  19. Coop Creek Bridge with Checkerboard Mesa in background, historic photograph, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Co-op Creek Bridge with Checkerboard Mesa in background, historic photograph, no date, Zion National Park collection - Zion-Mount Carmel Highway, Co-op Creek Bridge, Spanning Co-op Creek, Springdale, Washington County, UT

  20. 3. Threequarter view of Oak Creek Bridge behind visitor center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Three-quarter view of Oak Creek Bridge behind visitor center facing southwest - Oak Creek Administrative Center, One half mile east of Zion-Mount Carmel Highway at Oak Creek, Springdale, Washington County, UT

  1. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  2. 1. Salmon Creek Diversion Dam, weir (to left), sand and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Salmon Creek Diversion Dam, weir (to left), sand and silt sluice gate (center), main canal headworks (to right), view to northwest - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  3. 1. Topographic view of the Rocky Creek Bridge and the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Topographic view of the Rocky Creek Bridge and the Oregon coast, view looking east - Rocky Creek Bridge, Spanning Rocky Creek on Oregon Coast Highway (U.S. Route 101), Depoe Bay, Lincoln County, OR

  4. Detail view of 850 plate girder span directly over creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of 85-0 plate girder span directly over creek, looking west. - New York, Chicago & St. Louis Railroad, Elk Creek Trestle, Spanning Elk Creek, south of Elk Park Road, Lake City, Erie County, PA

  5. Perspective view showing 850 plate girder span directly over creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view showing 85-0 plate girder span directly over creek, looking west. - New York, Chicago & St. Louis Railroad, Elk Creek Trestle, Spanning Elk Creek, south of Elk Park Road, Lake City, Erie County, PA

  6. 7. Cable Creek Bridge after completion. Zion National Park negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT

  7. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking northwest. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  8. Approach view of the Spring Creek Bridge, view looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking south. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  9. Topographic view of the Spring Creek Bridge and Collier State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Spring Creek Bridge and Collier State Park, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  10. Approach view of the Spring Creek Bridge, view looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking north. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  11. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking southeast. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  12. Elevation view of the Spring Creek Bridge, view looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  13. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  14. 2. Big Creek Road, worm fence and road at trailhead. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Big Creek Road, worm fence and road at trailhead. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  15. 2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP AND CHIMNEY COMPANY IN BACKGROUND. - Bridgeport Lamp Chimney Company, Simpson Creek Bridge, Spanning Simpson Creek, State Route 58 vicinity, Bridgeport, Harrison County, WV

  16. 2. View of Clear Creek Bridge railing and understructure, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Clear Creek Bridge railing and under-structure, looking northwest. - Zion-Mount Carmel Highway, 62-foot Concrete Arch Pine Creek Bridge, Spanning Clear Creek, Springdale, Washington County, UT

  17. 121. Credit JE. Galpin Creek ditch, a feeder leading water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Credit JE. Galpin Creek ditch, a feeder leading water to the Keswick ditch, supplying Volta powerhouse. (JE, v. 12 1902 p. 235). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  18. 6. General perspective view of Neawanna Creek Bridge, showing bushhammered, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. General perspective view of Neawanna Creek Bridge, showing bush-hammered, recessed panels in fascia wall - Neawanna Creek Bridge, Spanning Neawanna Creek at Milepoint 19.72 on U.S. 101 (Oregon Coast Highway), Seaside, Clatsop County, OR

  19. 5. General perspective view of Neawanna Creek Bridge, showing articulated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. General perspective view of Neawanna Creek Bridge, showing articulated fascia walls - Neawanna Creek Bridge, Spanning Neawanna Creek at Milepoint 19.72 on U.S. 101 (Oregon Coast Highway), Seaside, Clatsop County, OR

  20. 8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN BRIDGE CO., CONTRACTOR, ARKANSAS STATE HIGHWAY DEPARTMENT, 1928' - Harp Creek Bridge, Spans Harp Creek at State Highway 7, Harrison, Boone County, AR

  1. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  2. 5. Big Creek Road, old bridge on Walnut Bottom Road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Big Creek Road, old bridge on Walnut Bottom Road, deck view. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  3. 4. Big Creek Road, old bridge on Walnut Bottom Road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Big Creek Road, old bridge on Walnut Bottom Road, elevation view. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  4. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  5. 59. Credit FM. Flood waters on South Battle Creek next ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Credit FM. Flood waters on South Battle Creek next to powerhouse. Note height of water in relation to tailraces. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  6. 2. 1994 AERIAL PERSPECTIVE OF BISHOP CREEK WITH OWENS VALLEY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. 1994 AERIAL PERSPECTIVE OF BISHOP CREEK WITH OWENS VALLEY AND WHITE MOUNTAINS IN BACKGROUND, SOUTH LAKE IN FOREGROUND. VIEW TO NORTHEAST - Bishop Creek Hydroelectric System, Bishop Creek, Bishop, Inyo County, CA

  7. Identifying the cause and source of sediment toxicity in an agriculture-influenced creek.

    PubMed

    Weston, Donald P; Zhang, Minghua; Lydy, Michael J

    2008-04-01

    Del Puerto Creek, an agriculturally influenced stream in northern California, USA, with a history of sediment toxicity, was used as a case study to determine the feasibility of using sediment toxicity testing and chemical analysis to identify the causative agent for the toxicity and its sources. Testing with the amphipod Hyalella azteca confirmed historical toxicity and identified a point along the creek at which there was an abrupt increase in sediment toxicity that persisted for at least 6 km downstream. Three recently developed whole sediment toxicity identification evaluation manipulations, temperature reduction, piperonyl butoxide addition, and esterase addition, were applied to sediment from one site and were suggestive of a pyrethroid as the cause for toxicity. Utilizing published median lethal concentration (LC50) values in a toxic unit analysis, the pyrethroid insecticide bifenthrin was identified as the primary contributor to toxicity in nearly all sites at which toxicity was observed, with occasional additional contributions from the pyrethroids lambda-cyhalothrin, esfenvalerate, and cyfluthrin. Most agricultural drains discharging to Del Puerto Creek contained bifenthrin in their sediments at concentrations near or above acutely toxic concentrations. However, only one drain contained sediments with bifenthrin concentrations approaching the concentrations measured in creek sediments. This fact, along with the proximity of that particular discharge to the location in the creek with the highest concentrations, suggested that one drain may be responsible for much of the toxicity and pyrethroid residues in creek sediments. The methods employed in this study are likely to be of considerable value in total maximum daily load efforts in Del Puerto Creek or other California surface water bodies known to have pyrethroid-related aquatic toxicity.

  8. Evaluation of protected, threatened, and endangered fish species in Upper Bear Creek watershed

    SciTech Connect

    Ryon, M.G.

    1998-07-01

    The East Bear Creek Site for the proposed centralized waste facility on the US Department of Energy`s Oak Ridge Reservation was evaluated for potential rare, threatened or endangered (T and E) fish species in the six primary tributaries and the main stem of Bear Creek that are within or adjacent to the facility footprint. These tributaries and portion of Bear Creek comprise the upper Bear Creek watershed. One T and E fish species, the Tennessee dace (Phoxinus tennesseensis), was located in these streams. The Tennessee dace is listed by the State of Tennessee as being in need of management, and as such its habitat is afforded some protection. Surveys indicated that Tennessee dace occupy the northern tributaries NT-1, NT-4, and NT-5, as well as Bear Creek. Several specimens of the dace were gravid females, indicating that the streams may function as reproductive habitat for the species. The implications of impacts on the species are discussed and mitigation objectives are included.

  9. U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: physiography and history

    USDA-ARS?s Scientific Manuscript database

    The 420 km**2 Mahantango Creek Watershed, located within the Northern Appalachian Ridges and Valleys, is a subwatershed of the Susquehanna River Basin, which flows to Chesapeake Bay. Research on agricultural management and hydrologic processes that control nutrient loss from nonpoint sources is cond...

  10. Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed

    Treesearch

    Randy A. Dahlgren

    1998-01-01

    The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

  11. SANDY CREEK ROADLESS AREA, MISSISSIPPI.

    USGS Publications Warehouse

    Haley, Boyd R.; Bitar, Richard F.

    1984-01-01

    The Sandy Creek Roadless Area includes about 3. 7 sq mi in the southeastern part of Adams County, Mississippi. On the basis of a mineral survey, the area offers little promise for the occurrence of metallic mineral resources but has a probable resource potential for oil and natural gas. It is possible that wells drilled deep enough to penetrate the older reservoirs will encounter significant quantities of oil and natural gas in the roadless area. The deposits of gravel, sand, and clay present in the area could be utilized in the construction industry, but similar deposits elsewhere are much closer to available markets.

  12. KANAB CREEK ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Billingsley, George H.; Ellis, Clarence E.

    1984-01-01

    On the basis of a mineral survey, the Kanab Creek Roadless Area in north-central Arizona has a probable mineral-resource potential for uranium and copper in four small areas around five collapse structures. Gypsum is abundant in layers along the canyon rim of Snake Gulch, but it is a fairly common mineral in the region outside the roadless area. There is little promise for the occurence of fossil fuels in the area. Studies of collapse structures in surrounding adjacent areas might reveal significant mineralization at depth, such as the recent discovery of the uranium ore body at depth in the Pigeon Pipe.

  13. 33 CFR 117.557 - Curtis Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Curtis Creek. 117.557 Section 117.557 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.557 Curtis Creek. The draw of the I695 bridge...

  14. 33 CFR 117.283 - Dunns Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Dunns Creek. 117.283 Section 117.283 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.283 Dunns Creek. The draw of the US17 bridge, mile...

  15. 33 CFR 117.268 - Billy's Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Billy's Creek. 117.268 Section 117.268 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.268 Billy's Creek. The draw of the State...

  16. 33 CFR 117.268 - Billy's Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Billy's Creek. 117.268 Section 117.268 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.268 Billy's Creek. The draw of the State...

  17. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  18. 33 CFR 117.283 - Dunns Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Dunns Creek. 117.283 Section 117.283 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.283 Dunns Creek. The draw of the US17 bridge, mile...

  19. 33 CFR 117.283 - Dunns Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Dunns Creek. 117.283 Section 117.283 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.283 Dunns Creek. The draw of the US17 bridge, mile...

  20. 33 CFR 117.268 - Billy's Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Billy's Creek. 117.268 Section 117.268 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.268 Billy's Creek. The draw of the State...

  1. 33 CFR 117.268 - Billy's Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Billy's Creek. 117.268 Section 117.268 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.268 Billy's Creek. The draw of the State...

  2. 33 CFR 117.283 - Dunns Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Dunns Creek. 117.283 Section 117.283 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.283 Dunns Creek. The draw of the US17 bridge, mile...

  3. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile...

  4. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  5. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  6. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  7. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  8. Pine Creek Ranch; Annual Report 2002.

    SciTech Connect

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  9. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the Baltimore...

  10. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  11. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  12. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  13. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  14. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  15. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  16. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  17. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  18. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  19. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  20. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  1. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  2. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  3. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  4. 33 CFR 117.745 - Rancocas Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rancocas Creek. 117.745 Section 117.745 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas Creek. (a) The...

  5. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  6. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  7. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  8. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  9. 33 CFR 117.745 - Rancocas Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rancocas Creek. 117.745 Section 117.745 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas Creek. (a) The...

  10. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  11. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  12. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  13. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  14. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  15. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  16. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  17. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  18. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  19. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  20. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  1. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  2. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  3. 33 CFR 117.745 - Rancocas Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rancocas Creek. 117.745 Section 117.745 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas Creek. (a) The...

  4. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  5. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  6. 33 CFR 117.185 - Pacheco Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacheco Creek. 117.185 Section 117.185 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.185 Pacheco Creek. The draw of the Contra Costa County highway bridge, mile 1.0,...

  7. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0, at...

  8. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  9. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  10. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  11. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  12. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  13. Habitat requirements of the endangered California freshwater shrimp (Syncaris pacifica) in lagunitas and Olema creeks, Marin County, California, USA

    USGS Publications Warehouse

    Martin, Barbara A.; Saiki, Michael K.; Fong, Darren

    2009-01-01

    This study was conducted to better understand the habitat requirements and environmental limiting factors of Syncaris pacifica, the California freshwater shrimp. This federally listed endangered species is native to perennial lowland streams in a few watersheds in northern California. Field sampling occurred in Lagunitas and Olema creeks at seasonal intervals from February 2003 to November 2004. Ten glides, five pools, and five riffles served as fixed sampling reaches, with eight glides, four pools, and four riffles located in Lagunitas Creek and the remainder in Olema Creek. A total of 1773 S. pacifica was counted during this study, all of which were captured along vegetated banks in Lagunitas Creek. Syncaris pacifica was most numerous in glides (64), then in pools (31), and lastly in riffles (5). According to logistic regression analysis, S. pacifica was mostly associated with submerged portions of streambank vegetation (especially overhanging vegetation such as ferns and blackberries, emergent vegetation such as sedge and brooklime, and fine roots associated with water hemlock, willow, sedge, and blackberries) along with low water current velocity and a sandy substrate. These seemingly favorable habitat conditions for S. pacifica were present in glides and pools in Lagunitas Creek, but not in Olema Creek. ?? 2009 The Crustacean Society.

  14. Cache Creek terrane entrapment: Oroclinal paradox within the Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    Mihalynuk, Mitch G.; Nelson, Joanne; Diakow, Larry J.

    1994-06-01

    Exotic and far-traveled oceanic crustal rocks of the Cache Creek terrane (CC) are bordered by less exotic Quesnel (QN) and Stikine (ST) arc terranes to the east, north, and west. All of these terranes are enveloped by an arcuate belt of displaced continental margin rocks; the Kootenay (KO), Nisling (NS), and parts of the Yukon-Tanana (YTT) terranes, that have indirect ties to ancestral North America (NA). Initial 87Sr/86Sr isopleths conform to this arcuate pattern. Such a pattern of concentric belts presents a geological conundrum: How did the QN, ST, and CC come to be virtually enveloped by terranes with ties to NA? Past and current models that explain assembly of the Canadian Cordillera are deficient in their treatment of this problem. We propose that Early Mesozoic QN and ST were joined through their northern ends as two adjacent arc festoons that faced south toward the Cache Creek ocean (Panthalassa?). Oceanic plateau remnants within the CC today were transported from the Tethyan realm and collided with these arcs during subduction of the Cache Creek ocean. Counterclockwise oroclinal rotation of ST and NS terranes in the Late Triassic to Early Jurassic caused enclosure of the CC. Rotation continued until these terranes collided with QN in the Middle Jurassic. Paleomagnetic declination data provide support for this model in the form of large average anticlockwise rotations for Permian to Early Jurassic sites in ST but moderate clockwise rotations for sites in QN. Specific modern analogues for the Cordilleran orocline include the Yap trench, where the Caroline rise is colliding end-on with the Mariana Arc and the Banda Arc, located on the southeastern "tail" of the Asian plate, which is being deformed into a tight loop by interactions with the Australian and Pacific plates.

  15. Geochemistry of the Birch Creek Drainage Basin, Idaho

    USGS Publications Warehouse

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.

    2003-01-01

    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide

  16. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND TREE. RUSH CREEK POWERHOUSE IS PARTIALLY VISIBLE AT EXTREME PHOTO LEFT). VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  17. 78 FR 76750 - Drawbridge Operation Regulation; Chambers Creek, Steilacoom, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Chambers Creek, Steilacoom, WA AGENCY... (BNSF) Chambers Creek Railway Bridge across Chambers Creek, mile 0.0, at Steilacoom, WA. The deviation... Bridge across Chambers Creek, mile 0.0, near Steilacoom, WA. The ] bridge provides 50 feet of vertical...

  18. 81. PHOTOCOPY OF PHOTOGRAPH SHOWING NEW CREEK CHANNEL UNDER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. PHOTOCOPY OF PHOTOGRAPH SHOWING NEW CREEK CHANNEL UNDER CONSTRUCTION AT P STREET BEND, FROM 1940 REPORT ON PROPOSED DEVELOPMENT OF ROCK CREEK AND POTOMAC PARKWAY, SECTION II (ROCK CREEK AND POTOMAC PARKWAY FILE, HISTORY DEPARTMENT ARCHIVES, NATIONAL PARK SERVICE, WASHINGTON, DC). - Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  19. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT (TAILRACE IN FOREGROUND), BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO LEFT CENTER, AND BUILDING 103 AT UPPER PHOTO LEFT ABOVE AND BEHIND BUILDING 106. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  20. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  1. 27 CFR 9.109 - Northern Neck George Washington Birthplace.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., 1957 (Revised 1979); and (2) Richmond, VA; MD., 1973. (c) Boundaries. The Northern Neck George... George, Northumberland, Lancaster and Richmond, in the Commonwealth of Virginia. The boundaries of the... northermost point intersects Potomac Creek the boundary proceeds easterly and southeasterly on the...

  2. 27 CFR 9.109 - Northern Neck George Washington Birthplace.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., 1957 (Revised 1979); and (2) Richmond, VA; MD., 1973. (c) Boundaries. The Northern Neck George... George, Northumberland, Lancaster and Richmond, in the Commonwealth of Virginia. The boundaries of the... northermost point intersects Potomac Creek the boundary proceeds easterly and southeasterly on the...

  3. 8. Another environmental view, from the northern bridge approach looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Another environmental view, from the northern bridge approach looking south along 74th Place, through the roadbed. Grain fields which have been harvested can be seen in the background. The bridge's characteristic profile and balustrade are prominent. - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN

  4. Ground water in the alluvium of Beaver Creek basin, Oklahoma

    USGS Publications Warehouse

    Hart, D.L.

    1961-01-01

    Beaver Creek is an 857 square-mile area in south-central Oklahoma. The tributaries head at an altitude as high as 1,400 feet and the mouth of Beaver Creek is at an altitude of 804 feet. Alluvial material has been deposited along all the major streams in the basin. The alluvium contains a high percentage of clay and fine sand and ranges in thickness from a few inches to 50 feet. Replenishment of water in the alluvium is from precipitation, lateral seepage and runoff from adjoining areas, and infiltration from the streams during high flows. The town of Ryan and Waurika have constructed municipal water-supply wells topping the alluvium and residents of the town of Sugden have private wells topping the alluvium. The other major use of ground water is transpiration by trees, which are very dense where the alluvial plain is wide. In the northern part of the basin the alluvium is thin and only domestic water supplies are available. (available as photostat copy only)

  5. Suspended sediment in Trail Creek at Michigan City, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Jacques, David V.

    1992-01-01

    Trail Creek is a small (54.1-square-mile drainage area) tributary of Lake Michigan located in northwestern Indiana. A harbor at the mouth of the stream has experienced excessive sediment deposition. A study was done to investigate the suspended-sediment characteristics of Trail Creek. The study included analysis of suspended-sediment concentration and particle-size data, and estimates of annual suspended-sediment load. Suspended-sediment concentrations ranged from only a few milligrams per liter at low flows to about 300 milligrams per liter at high flows. At low flows, the suspended sediment was mostly silt- and clay-sized material (less than 0.062 millimeter). The percentage of silt- and clay-sized material gradually decreased to about 50 percent of the suspended sediment at high flows. Estimates of the annual suspended-sediment load for the 1981-90 water years were calculated by the flow-duration, rating-curve method. Annual loads ranged from 3,690 to 8,250 tons. The average annual load for the 10-year period was 6,180 tons. Annual suspended-sediment yield (load per unit drainage area) averaged 114 tons per square mile; this value is within the range of values from 14 other previously investigated streams in northern Indiana. Average annual yields of these 14 streams ranged from 11 to 152 tons per square mile; the median annual yield was 56 tons per square mile.

  6. Flood of August 27-28, 1977, West Cache Creek and Blue Beaver Creek, southwestern Oklahoma

    USGS Publications Warehouse

    Corley, Robert K.; Huntzinger, Thomas L.

    1979-01-01

    This report documents a major storm which occurred August 27-28, 1977, in southwest Oklahoma near the communities of Cache and Faxon, OK. Blue Beaver Creek and West Cache Creek and their tributaries experienced extensive flooding that caused an estimated $1 million in damages. Reported rainfall amounts of 8 to 12 inches in 6 hours indicate the storm had a frequency in excess of the 100-year rainfall. Peak discharges on Blue Beaver Creek near Cache and West Cache Creek near Faxon were 13,500 cubic feet per second and 45,700 cubic feet per second respectively. The estimated flood frequency was in excess of 100 years on Blue Beaver Creek and in excess of 50 years on West Cache Creek. Unit runoff on small basins were in excess of 2000 cubic feet per second per square mile. Surveyed highwater marks were used to map the flooded area. (USGS)

  7. Steel Creek wildlife: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Giffin, M.A.; Patterson, K.K.

    1988-03-01

    Reptile and amphibian populations in Steel Creek below L-Lake were assessed in monthly or quarterly sampling programs. Thirty-eight species of reptiles or amphibians were collected during 1987 in the Steel Creek corridor below the L-Lake impoundment, and in the delta and channel. Juvenile turtles and alligators, and larval amphibians were observed or collected during the study, indicating continued reproduction in Steel Creek. The reptile and amphibian populations in Steel Creek show no indication of any effect due to the impoundment of the lake or the operation of L-Reactor. Waterfowl and associated birds in Steel Creek below L-Lake were observed, in conjunction with other sampling programs, during winter--spring and fall--winter migrations. Nine species of waterfowl and five species of associated birds were observed in 1987 in the Steel Creek corridor below the L-Lake impoundment and in the delta and channel.

  8. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of... Utility Regulatory Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park...

  9. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  10. LOST CREEK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Muffler, L.J. Patrick; Campbell, Harry W.

    1984-01-01

    Geologic and mineral-resource investigations identified no mineral-resource potential in the Lost Creek Roadless Area, California. Sand and gravel have been mined from alluvial flood-plain deposits less than 1 mi outside the roadless area; these deposits are likely to extend into the roadless area beneath a Holocene basalt flow that may be as much as 40 ft thick. An oil and gas lease application which includes the eastern portion of the roadless area is pending. Abundant basalt in the area can be crushed and used as aggregate, but similar deposits of volcanic cinders or sand and gravel in more favorable locations are available outside the roadless area closer to major markets. No indication of coal or geothermal energy resources was identified.

  11. Mapping HI and B at Hat Creek ... and Beyond

    NASA Astrophysics Data System (ADS)

    Heiles, C.

    2006-12-01

    The Hat Creek 85-foot telescope produced the first complete surveys of HI in the Northern sky--superseded only recently--and initiated measurements of the interstellar magnetic field using Zeeman splitting of the HI line in emission. These endeavors required state-of-the-art electronics and spectrometers. Here I review the role of the Berkeley Radio Astronomy Laboratory and its 85-foot telescope in their initiative roles for these three areas of science and technology and trace their evolution to the present. The present emphasizes the great single dishes of our times, the Green Bank Telescope (GBT) for Zeeman splitting and Arecibo for HI mapping; Fourier-transform spectrometers using FPGA technology; and sustaining the future with the synergy of research and education.

  12. When did movement begin on the Furnace Creek fault zone

    SciTech Connect

    Reheis, M. )

    1993-04-01

    About 50 km of post-Jurassic right-lateral slip has occurred on the northern part of the Furnace Creek fault zone (FCFZ). The sedimentology, stratigraphy, and structure of Tertiary rocks suggest that movement on the fault began no earlier than 12--8 Ma and possibly as late as 5--4 Ma. Large remnants of erosion surfaces occur on both sides of the FCFZ in the southern White Mountains and Fish Lake Valley and are buried by rhyolite and basalt, mostly 12--10 Ma; the ash flows and welded tuffs were likely erupted from sources at least 40 km to the east. Thus, the area probably had gentle topography, suggesting a lengthy period of pre-late Miocene tectonic stability. On the west side of the FCFZ, Cambrian sedimentary rocks are buried by a fanglomerate with an [sup [minus

  13. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  14. Proctor Creek Watershed/Atlanta (Georgia)

    EPA Pesticide Factsheets

    Proctor Creek Watershed/Atlanta (Georgia) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  15. News and Updates from Proctor Creek

    EPA Pesticide Factsheets

    This page contains news and updates from the Proctor Creek Urban Waters Partnership location. They span ongoing projects, programs, and initiatives that this Atlanta-based partnership is taking on in its work plan.

  16. Proctor Creek Boone Boulevard Fact Sheet

    EPA Pesticide Factsheets

    This fact sheet provides an overview of the Proctor Creek watershed and community, green infrastructure, the Boone Boulevard Green Street Project Conceptual Design, and the added value and application of Health Impact Assessment (HIA) to the project.

  17. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible to...

  18. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible to...

  19. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible to...

  20. Featured Partner: Saddle Creek Logistics Services

    EPA Pesticide Factsheets

    This EPA fact sheet spotlights Saddle Creek Logistics as a SmartWay partner committed to sustainability in reducing greenhouse gas emissions and air pollution caused by freight transportation, partly by growing its compressed natural gas (CNG) vehicles for

  1. 33 CFR 117.1057 - Skamokawa Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1057 Skamokawa Creek. The draw of the Washington State highway bridge at Skamokawa need not be opened for the passage of vessels. ...

  2. 33 CFR 117.1057 - Skamokawa Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1057 Skamokawa Creek. The draw of the Washington State highway bridge at Skamokawa need not be opened for the passage of vessels. ...

  3. 33 CFR 117.1057 - Skamokawa Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1057 Skamokawa Creek. The draw of the Washington State highway bridge at Skamokawa need not be opened for the passage of vessels. ...

  4. Update on the Caspar Creek watershed study

    Treesearch

    Peter Cafferata

    1987-01-01

    Readers of this Newsletter are aware that CDF and the USFS, through its Pacific Southwest Forest and Range Experiment Stationa at Arcata (PSW), are carrying out a long term cooperative watershed experiment in JDSF's Caspar Creek drainage.

  5. 33 CFR 117.701 - Alloway Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.701 Alloway Creek. (a) The draws of the Salem County bridges, miles 5.1 at Hancocks Bridge, and 6.5 at New Bridge, shall open on signal...

  6. 33 CFR 117.701 - Alloway Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.701 Alloway Creek. (a) The draws of the Salem County bridges, miles 5.1 at Hancocks Bridge, and 6.5 at New Bridge, shall open on signal...

  7. 33 CFR 117.701 - Alloway Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.701 Alloway Creek. (a) The draws of the Salem County bridges, miles 5.1 at Hancocks Bridge, and 6.5 at New Bridge, shall open on signal...

  8. 33 CFR 117.701 - Alloway Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.701 Alloway Creek. (a) The draws of the Salem County bridges, miles 5.1 at Hancocks Bridge, and 6.5 at New Bridge, shall open on signal...

  9. 33 CFR 117.701 - Alloway Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.701 Alloway Creek. (a) The draws of the Salem County bridges, miles 5.1 at Hancocks Bridge, and 6.5 at New Bridge, shall open on signal...

  10. 33 CFR 117.736 - Oceanport Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.736 Oceanport Creek. The drawspan for the New Jersey Transit Rail Operations Drawbridge, mile 8.4 near Oceanport, must open on signal...

  11. 33 CFR 117.736 - Oceanport Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.736 Oceanport Creek. The drawspan for the New Jersey Transit Rail Operations Drawbridge, mile 8.4 near Oceanport, must open on signal...

  12. Hayward Fault rate constraints at Berkeley: Evaluation of the 335-meter Strawberry Creek offset

    NASA Astrophysics Data System (ADS)

    Williams, P. L.

    2007-12-01

    At UC Berkeley the active channel of Strawberry Creek is offset 335 meters by the Hayward fault and two abandoned channels of Strawberry Creek are laterally offset 580 and 730 meters. These relationships record the displacement of the northern Hayward fault at Berkeley over a period of tens of millennia. The Strawberry Creek site has a similar geometry to the central San Andreas fault's Wallace Creek site, which arguably provides the best geological evidence of "millennial" fault kinematics in California (Sieh and Jahns, 1984). Slip rate determinations are an essential component of overall hazard evaluation for the Hayward fault, and this site is ripe to disclose a long-term form of this parameter, to contrast with geodetic and other geological rate evidence. Large offsets at the site may lower uncertainty in the rate equation relative to younger sites, as the affect of stream abandonment age, generally the greatest source of rate uncertainty, is greatly reduced. This is helpful here because it more-than-offsets uncertainties resulting from piercing projections to the fault. Strawberry Creek and its ancestral channels suggest west-side-up vertical deformation across the Hayward fault at this location. The development of the vertical deformation parameter will complement ongoing geodetic measurements, particularly InSAR, and motivate testing of other geological constraints. Up-to-the-west motion across the Hayward fault at Berkeley has important implications for the partitioning of strain and kinematics of the northern Hayward fault, and may explain anomalous up-on-the-west landforms elsewhere along the fault. For example, geological features of the western Berkeley Hills are consistent with rapid and recent uplift to the west of the fault. On the basis of a preliminary analysis of the offset channels of Strawberry Creek, up-to-the-west uplift is about 0.5mm/yr across the Hayward fault at Berkeley. If this is in fact the long-term rate, the 150 m height of the Hills

  13. A dolichopodid hotspot: Montana's Milligan Creek Canyon

    Treesearch

    Justin B. Runyon

    2016-01-01

    In southwest Montana, near the town of Three Forks, Milligan Creek cuts a small and seemingly mundane notch through dry limestone hills. Milligan Creek is unassuming and small enough to be effortlessly stepped over in most places. In fact, it flows underground for much of its 4-5 mile journey to the Jefferson River. Incredibly, forty-nine species of long-legged flies (...

  14. Creek Women and the "Civilizing" of Creek Society, 1790-1820.

    ERIC Educational Resources Information Center

    Dysart, Jane E.

    Women in traditional Creek society, while making few decisions in the public domain, held almost absolute power in the domestic realm. When a Creek couple married, the husband moved into his wife's house and lived among her clan, her matrilineal kin. The house, household goods, fields, and children belonged to her. Boys were educated by their…

  15. 75 FR 10328 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... Operating Corporation, Wolf Creek Generating Station; Exemption 1.0 Background Wolf Creek Nuclear Operating Corporation (WCNOC, the licensee) is the holder of Renewed Facility Operating License No. NPF-42, which... those previously imposed by Commission orders issued after the terrorist attacks of September 11, 2001...

  16. 4. O'BRIAN CANAL/SECOND CREEK INTERSECTION Second Creek is in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. O'BRIAN CANAL/SECOND CREEK INTERSECTION Second Creek is in the foreground; the O'Brian Canal is in the background; vicinity of East 112th Avenue and Potomac Road in Adams County - O'Brian Canal, South Platte River Drainage Area Northest of Denver, Brighton, Adams County, CO

  17. Surface water of Beaver Creek Basin, in South-Central Oklahoma

    USGS Publications Warehouse

    Laine, L.L.; Murphy, J.J.

    1962-01-01

    Annual discharge from Beaver Creek basin is estimated to have averaged 217,000 acre-feet during a 19-year base period, water years 1938-56, equivalent to an average annual runoff depth of 4.7 inches over the 857 square-mile drainage area. About 55,000 acre-feet per year comes from Little Beaver Creek basin, a tributary drainage of 195 square miles. Yearly streamflow is highly variable. The discharge of Little Beaver Creek near Duncan during 13-year period of record (water years 1949-61) has ranged from 86,530 acre-feet in calendar year 1957 to 4,880 acre-feet in 1956, a ratio of almost 18 to 1. Highest runoff within a year tends to occur in the spring months of May and June, a 2-month period that, on the average, accounts for more than half of the annual discharge of Little Beaver Creek near Duncan. The average monthly runoff during record was lowest in January. Variation in daily streamflow is such that while the average discharge for the 13-year period of record was 50.1 cfs (cubic feet per second), the daily discharge was more than 6 cfs only about half of the time. There was no flow at the site 19 percent of the time during the period. Some base runoff usually exists in the headwaters of Beaver and Little Beaver Creeks, and in the lower reaches of Beaver Creek. Low flow in Cow Creek tends to be sustained by waste water from Duncan, where water use in 1961 averaged 4 million gallons per day. In the remainder of the basin, periods of no flow occur in most years. The surface water of Beaver Creek basin is very hard but in general is usable for municipal, agricultural and industrial purposes. The chemical character of the water is predominantly a calcium, magnesium bicarbonate type of water in the lower three quarters of the basin, except in Cow Creek where oil-field brines induce a distinct sodium, calcium chloride characteristic at low and medium flows. A calcium sulfate type of water occurs in most of the northern part of the basin except in headwater areas

  18. Hoe Creek groundwater restoration, 1989

    SciTech Connect

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  19. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    USGS Publications Warehouse

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  20. 30. NORTHERN SEGMENT OF THE LATERAL IN THE NORTHWEST QUARTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. NORTHERN SEGMENT OF THE LATERAL IN THE NORTHWEST QUARTER OF SECTION 25 STRUCTURE PICTURED IN CO-43-A-28. - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  1. The Dinner Creek Tuff: A Widespread Co-CRBG Ignimbrite Sheet in Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Streck, M. J.; Ferns, M. F.; Ricker, C.; Handrich, T.

    2011-12-01

    Erosional remnants of ignimbrite sheets (>5,000 km2) are depicted either as minor units (e.g., Twt, Tt, or Tr) or included within larger volcanic/sedimentary units on many geologic quadrangle maps in eastern Oregon. Such maps provide analytical and detailed mapping targets for the purpose of correlating widespread outcrops and arriving at a more accurate picture of the eruptive and petrologic history of the magmas involved. In this study, we have targeted the mid-Miocene rhyolitic Dinner Creek Tuff which was previously considered to being restricted to an area ˜3000 km2 centered along the Malheur River. Numerous outcrops to the north that had been mapped by prior workers as generic Miocene welded tuff have now been sampled. Analytical results allow us to correlate exposures previously referred to as "Mascall" or "Pleasant Valley" tuff, unnamed tuff outcrops as well as tuff outcrops not previously mapped with the Dinner Creek Tuff, thus increasing the size of the Dinner Creek Tuff to an area of about 20,000 km2, rivaling the late Miocene Devine Canyon and Rattlesnake Tuffs in size (e.g. Streck and Ferns, 2004). Dinner Creek Tuff fallout extends from northern Nevada (Nash et al., 2006) to northern Union county, Oregon. Compositional, lithological, and age data show the Dinner Creek Tuff to consist of multiple cooling units erupted over a time span of ˜500,000 years. Duration of activity is defined by new Ar-Ar dates ranging from 15.9±0.13 to 15.38±0.17 (2σ) Ma on feldspar separates. Welded tuff lithics with Dinner Creek Tuff compositions document reworking of older tuffs and are clear evidence for multiple ignimbrite eruptions. First eruptions were the most silicic, producing high-silica rhyolites. Later eruptions were more mafic, producing low silica rhyolite with ubiquitous dark pumices of dacitic to andesitic composition. Rhyolitic and intermediate magmas of Dinner Creek Tuff are crystal poor (1-5%) and Fe rich, carrying chemical fingerprints typical of other

  2. Two Creeks Interstade Dated through Dendrochronology and AMS

    NASA Astrophysics Data System (ADS)

    Kaiser, Klaus Felix

    1994-11-01

    Dendrochronological analysis of fossil wood from Two Creeks, Wisconsin, reveals that the Two Creekan Intetstade lasted at least 252 yr. The sites crossdated by tree rings cover an area of about 970 km 2. AMS determinations from the beginning and end of the chronology open a 14 C time window for the episode from 12,050 to 11,750 yr B.P. The interval is contemporaneous with the Older Dryas in northern Europe. The development of a forest covering at least 970 km 2 on the western shore of Lake Michigan indicates a water level about as low as in modern times. Glacier retreat must have opened drainage channels either through the Straits of Mackinac or via the Indian River Plateau into the eastern lakes. The beginning of the tree-ring chronology coincides with the peak of meltwater pulse 1A at 12,000 yr B.P. Increased amounts of meltwater seem to have disturbed the heat exchange between the waters and the atmosphere in the North Atlantic off the Gulf of St. Lawrence or affected the δ 18O-ratio of the evaporation, causing the climatic or isotopic reversal of the Older Dryas in Greenland and northern Europe.

  3. Estimating pothole wetland connectivity to Pipestem Creek ...

    EPA Pesticide Factsheets

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine hydrologic connectivity within Pipestem Creek, North Dakota, with a watershed dominated by prairie potholes. During a decadal period of wet conditions, Pipestem Creek contained evaporated water that had approximately half the isotopic evaporative enrichment signal found in most evaporated permanent wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from the headwaters with distance downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporation. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 43 to 2653 ha and varying primarily with discharge. The average value (just over 600 ha) was well above the surface area of Pipestem Creek network (245 ha). This estimate of contributing area indicated that Prairie Pothole wetlands were important sources of stream fl

  4. Estimating pothole wetland connectivity to Pipestem Creek ...

    EPA Pesticide Factsheets

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine wetland-stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie-pothole wetlands. During a wetter-than-normal decade, Pipestem Creek exhibited an evaporated-water signal that had approximately half the isotopic-enrichment signal found in most evaporatively enriched pothole wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from upstream towards downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 35 to 2380 ha of open water contributing to streamflow over time, and varied primarily with the amount of discharge. The median value (417 ha) was well above the surface area of the Pipestem Creek network (245 ha), and only two periods

  5. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  6. Water quality in the shingle creek basin, Florida, before and after wastewater diversion

    SciTech Connect

    O`Dell, K.M.

    1994-05-01

    Shingle Creek is a major inflow to Lake Tohopekaliga, Florida. Water quality and the trophic status of Lake Tohopekaliga are affected strongly by the water quality of Shingle Creek. This report documents 10 yr of water quality data in Shingle Creek at the lake outfall; for a pre- (October 1981-December 1986) and a post-wastewater discharge (January 1987-September 1991) removal period. Nutrient budgets for the subbasins were calculated from an intense research program (January 1983-December 1985) to document instream impacts attributable to wastewater, determine the role of the cypress swamp in the middle subbasin, and document relationships between water quality and land uses. Rapid urbanization converted forested uplands and agricultural lands to housing and commercial land use during the study. Stormwater runoff in Florida has been identified as a major pollution source. Treatment of stormwater pollution, through Best Management Practices (BMPs), has been regulated by the State of Florida in this area since 1982. By 1988, 84% of the urban landuse in the upper basin was subject to stormwater treatment prior to being discharged to the creek. Potential increases in urban derived nutrient inputs were offset by stormwater management, and alum treatment and diversion of municipal wastewater. Nitrogen loading and P loads and variance decreased significantly during the 10-yr period, despite rapid urbanization in the northern and central subbasins. Nutrient export from the subbasins was influenced by the dominant land use. The middle subbasin contains a swamp that contributed the greatest P and Cl{sup -} loads because of the increase in discharge to the swamp from sources other than the canal. The northern urban subbasin received the wastewater discharges and served as a net sink for N and P exported from the subbasin. 24 refs., 9 figs., 1 tab.

  7. FIDDLER CREEK POLYMER AUGMENTATION PROJECT

    SciTech Connect

    Lyle A. Johnson, Jr.

    2001-10-31

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1

  8. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    USGS Publications Warehouse

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic

  9. 17. View from Sterling Creek Marsh looking west, with berm ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. View from Sterling Creek Marsh looking west, with berm to the left and Henry Ford Mansion in the far background - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  10. 8. View of Sterling Creek Marsh looking northeast across the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of Sterling Creek Marsh looking northeast across the berm with the marsh to the left - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  11. 10. View of Sterling Creek Marsh looking south with house ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of Sterling Creek Marsh looking south with house in the background and marsh in foreground - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  12. 9. View of Sterling Creek Marsh looking southwest, with the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View of Sterling Creek Marsh looking southwest, with the marsh in the background and the berm in the foreground - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  13. 14. View of Sterling Creek Marsh east across the marsh, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of Sterling Creek Marsh east across the marsh, with canal in foreground - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  14. 12. View of Sterling Creek Marsh looking southeast across marsh, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View of Sterling Creek Marsh looking southeast across marsh, with canal in foreground - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  15. 3. View of Sterling Creek Marsh at low tide showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of Sterling Creek Marsh at low tide showing rubble at the entrance of dam/bridge looking southwest - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  16. 4. View of Sterling Creek Marsh at low tide showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of Sterling Creek Marsh at low tide showing rubble at the entrance of the dam/bridge looking east - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  17. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  18. Rock Creek and Potomac Parkway / Waterside Drive Sycamore and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rock Creek and Potomac Parkway / Waterside Drive Sycamore and White Ash Trees, Rock Creek and Potomac Parkway, median between northbound and southbound lanes near the Waterside Drive exit and entrance ramps., Washington, District of Columbia, DC

  19. Detail view of Fanno Creek trestle, showing trestle substructure, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of Fanno Creek trestle, showing trestle substructure, view looking north - Oregon Electric Railroad, Fanno Creek Trestle, Garden Home to Wilsonville Segment, Milepost 34.7, Garden Home, Washington County, OR

  20. 13. VIEW FROM CEDAR MILL CREEK TRESTLE NEAR MERLO ROAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW FROM CEDAR MILL CREEK TRESTLE NEAR MERLO ROAD TOWARD TRESTLE ON SPUR TRACK OVER CEDAR MILL CREEK, FACING NORTHEAST - Oregon Electric Railway Westside Corridor, Between Watson & 185th Avenues, Beaverton, Washington County, OR

  1. 1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, AND FROM SANTA ANA RIVER THROUGH TUNNEL #0 AT RIGHT. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  2. 14. VIEW OF CEDAR MILL CREEK TRESTLE FROM TRESTLE OVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF CEDAR MILL CREEK TRESTLE FROM TRESTLE OVER CEDAR MILL CREEK ON SPUR LINE, FACING SOUTHWEST - Oregon Electric Railway Westside Corridor, Between Watson & 185th Avenues, Beaverton, Washington County, OR

  3. 5. Downstream face of Rock Creek Diversion Dam, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Downstream face of Rock Creek Diversion Dam, looking west (Diversion into Irrigation District canal) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  4. 15. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail view of Sterling Creek lettuce shed showing second floor support beams. - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  5. 1. View of Sterling Creek lettuce shed looking south, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Sterling Creek lettuce shed looking south, with road in foreground - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  6. 12. Detail view of Sterling Creek lettuce shed showing floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail view of Sterling Creek lettuce shed showing floor joist and support beams - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  7. 5. View of Sterling Creek lettuce shed looking northwest showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Sterling Creek lettuce shed looking northwest showing office - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  8. 13. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail view of Sterling Creek lettuce shed showing second floor window sill - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  9. 8. VIEW LOOKING SOUTH OF KILLBUCK CREEK TAKEN FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING SOUTH OF KILLBUCK CREEK TAKEN FROM THE BRIDGE DECK SHOWING THE SECOND OR THIRD GROWTH SPROUT. - Madison County Bridge 90, Spanning Killbuck Creek on County Road No. 600, Moonville, Madison County, IN

  10. 20. View of Sterling Creek Marsh looking southwest with oyster ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of Sterling Creek Marsh looking southwest with oyster house in the tree line - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  11. 13. View of Sterling Creek Marsh looking southeast; looking at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of Sterling Creek Marsh looking southeast; looking at canal going to the tree line - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  12. Water-quality appraisal, Mammoth Creek and Hot Creek, Mono County, California

    USGS Publications Warehouse

    Setmire, J.G.

    1984-01-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that mineralization, eutrophication, sedimentation, and limited areas of fecal contamination were occurring. Mineralization, indicated by a downstream increase in dissolved-solids concentration, was due primarily to geothermal springs that gradually decreased in the percentage of calcium, increased in the percentage of magnesium and sodium, and caused fluctuating, but overall increasing percentage of fluoride, sulfate, and chloride. Resulting water quality in Mammoth Creek was similar to that of the springs forming Hot Creek. Eutrophication was observed in Twin Lakes and the reach of Hot Creek below the fish hatchery. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147 percent at a pH of 9.2. Hot Creek had excessive aquatic vascular plant and algae growth, dissolved-oxygen saturations ranging from 65 to 200 percent, algal growth potential of 30 milligrams per liter, and nitrates and phosphates of 0.44 and 0.157 milligrams per liter. Sedimentation was noted in observations of bed-material composition showing the presence of fine material beginning at Sherwin Creek Road. Fecal contamination was indicated by fecal coliform counts of 250 colonies per 100 milliliters and fecal streptococcal counts greater than 1,000 colonies per 100 milliliters. (USGS)

  13. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  14. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    SciTech Connect

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  15. Changes in ground-water quality in the Canal Creek Aquifer between 1995 and 2000-2001, West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Phelan, Daniel J.; Fleck, William B.; Lorah, Michelle M.; Olsen, Lisa D.

    2002-01-01

    Since 1917, Aberdeen Proving Ground, Maryland has been the primary chemical-warfare research and development center for the U.S. Army. Ground-water contamination has been documented in the Canal Creek aquifer because of past disposal of chemical and ordnance manufacturing waste. Comprehensive sampling for volatile organic compounds in ground water by the U.S. Geological Survey in the West Branch Canal Creek area was done in June?October 1995 and June?August 2000. The purpose of this report is (1) to compare volatile organic compound concentrations and determine changes in the ground-water contaminant plumes along two cross sections between 1995 and 2000, and (2) to incorporate data from new piezometers sampled in spring 2001 into the plume descriptions. Along the southern cross section, total concentrations of volatile organic compounds in 1995 were determined to be highest in the landfill area east of the wetland (5,200 micrograms per liter), and concentrations were next highest deep in the aquifer near the center of the wetland (3,300 micrograms per liter at 35 feet below land surface). When new piezometers were sampled in 2001, higher carbon tetrachloride and chloroform concentrations (2,000 and 2,900 micrograms per liter) were detected deep in the aquifer 38 feet below land surface, west of the 1995 sampling. A deep area in the aquifer close to the eastern edge of the wetland and a shallow area just east of the creek channel showed declines in total volatile organic compound concentrations of more than 25 percent, whereas between those two areas, con-centrations generally showed an increase of greater than 25 percent between 1995 and 2000. Along the northern cross section, total concentrations of volatile organic compounds in ground water in both 1995 and 2000 were determined to be highest (greater than 2,000 micrograms per liter) in piezometers located on the east side of the section, farthest from the creek channel, and concentrations were progressively lower

  16. Water-quality appraisal. Mammoth Creek and Hot Creek, Mono County, California

    SciTech Connect

    Setmire, J.G.

    1984-06-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that three water-quality processes were occurring: (1) mineralization; (2) eutrophication; and (3) sedimentation. Limited areas of fecal contamination were also observed. Mineralization due primarily to geothermal springs increased dissolved-solids concentration downstream, which changed the chemical composition of the water. The percentage of calcium decreased gradually, the percentage of magnesium and sodium increased, and the percentage of fluoride, sulfate, and chloride fluctuated, but increased overall. These changes produced water quality in Mammoth Creek similar to that of the springs forming Hot Creek. Twin Lakes and the reach of Hot Creek below the fish hatchery showed evidence of eutrophication. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147% at a pH of 9.2. Hot Creek had abundant growth of aquatic vascular plants and algae, dissolved-oxygen saturations ranging from 65% to 200%, algal growth potential of 30 milligrams per liter, nitrate concentration of 0.44 milligram per liter, and phosphate concentration of 0.157 milligram per liter. Sediment deposition was determined from detailed observations of bed-material composition, which showed that fine material was deposited at Sherwin Creek Road and downstream. Fecal contamination was indicated by fecal-coliform bacteria counts of 250 colonies per 100 milliliters and fecal-streptococcal bacteria counts greater than 1000 colonies per 100 milliliters. Although bacterial sampling was sporadic and incomplete, it did indicate adverse effects on water quality for the following beneficial uses that have been identified for Mammoth Creek and Hot Creek: (1) municipal supply; (2) cold-water habitat; and (3) contact and noncontact water recreation. 6 refs., 15 figs., 15 tabs.

  17. Quality of water and time-of-travel in Bakers Creek near Clinton, Mississippi. [Bakers Creek

    SciTech Connect

    Kalkhoff, S.J.

    1982-01-01

    A short-term intensive quality-of-water study was conducted during a period of generally low streamflow in Bakers Creek and its tributary, Lindsey Creek, near Clinton, Mississippi. During the September 15-18, 1980 study, dissolved oxygen concentrations in Bakers Creek were less than 5 milligrams per liter. The specific conductance, 5-day biochemical oxygen demand, nutrient concentrations, and bacteria densities in Bakers Creek decreased downstream through the study reach. The mean specific conductance decreased from 670 to 306 microhms per centimeter. The 5-day biochemical oxygen demand decreased from 19 to 2.8 milligrams per liter. The mean total nitrogen and phosphorous concentrations decreased from 10 and 7.1 to 1.0 and 0.87 milligram per litter, respectively. The maximum fecal bacteria decreased from 7200 to 400 colonies per 100 milliliter. The concentrations of mercury, iron, and manganese in a sample collected at the downstream site exceeded recommended limits. Diazinon and 2,4-D were also present in the water. A bottom material sample contained DDD (2.5 micrograms per kilogram), DDE (2.7 micrograms per kilogram), and DDT (.3 micrograms per kilogram). The tributary inflow from Lindsey Creek did not improve the water quality of Bakers Creek. The dissolved oxygen concentrations were generally less than 5.0 milligrams per liter at the sampling site on Lindsey Creek. The 5-day biochemical oxygen demand, the mean specific conductance, and fecal coliform densities were greater in the tributary than at the downstream site on Bakers Creek. The average rate of travel through a 1.8-mile reach of Bakers Creek was 0.06 foot per second or 0.04 miles per hour. 6 references, 9 figures, 2 tables.

  18. Hydrology and Flood Profiles of Duck Creek and Jordan Creek Downstream from Egan Drive, Juneau, Alaska

    USGS Publications Warehouse

    Curran, Janet H.

    2007-01-01

    Hydrologic and hydraulic updates for Duck Creek and the lower part of Jordan Creek in Juneau, Alaska, included computation of new estimates of peak streamflow magnitudes and new water-surface profiles for the 10-, 50-, 100-, and 500-year floods. Computations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval flood magnitudes for both streams used data from U.S. Geological Survey stream-gaging stations weighted with regional regression equations for southeast Alaska. The study area for the hydraulic model consisted of three channels: Duck Creek from Taku Boulevard near the stream's headwaters to Radcliffe Road near the end of the Juneau International Airport runway, an unnamed tributary to Duck Creek from Valley Boulevard to its confluence with Duck Creek, and Jordan Creek from a pedestrian bridge upstream from Egan Drive to Crest Street at Juneau International Airport. Field surveys throughout the study area provided channel geometry for 206 cross sections, and geometric and hydraulic characteristics for 29 culverts and 15 roadway, driveway, or pedestrian bridges. Hydraulic modeling consisted of application of the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) for steady-state flow at the selected recurrence intervals using an assumed high tide of 20 feet and roughness coefficients refined by calibration to measured water-surface elevations from a 2- to 5-year flood that occurred on November 21, 2005. Model simulation results identify inter-basin flow from Jordan Creek to the southeast at Egan Drive and from Duck Creek to Jordan Creek downstream from Egan Drive at selected recurrence intervals.

  19. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT, BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO CENTER, BUILDING 103 AT UPPER PHOTO LEFT, AND BUILDING 104 ABOVE BUILDING 106 PARTIALLY OBSCURED BEHIND TREE AT UPPER PHOTO CENTER. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  20. SPECIAL MINING MANAGEMENT ZONE - CLEAR CREEK, IDAHO.

    USGS Publications Warehouse

    Lund, Karen; Esparza, Leon E.

    1984-01-01

    On the basis of mineral-resource surveys, a substantiated resource potential for sediment-hosted cobalt-copper-gold-silver deposits has been identified in the Elkhorn and upper Garden Creek areas of the Special Mining Management Zone - Clear Creek, Idaho. Areas of favorable host rock, but with less strong evidence of mineralization, were classified as having probable resource potential for the same kind of deposit. A probable resource potential for porphyry-type copper-molybdenum deposits is assigned to areas along Clear Creek and upper Squaw Gulch based on the presence of extensive stockwork fracturing and alteration of the nonporphyritic granite, introduced disseminated magnetite, and the close proximity of known Tertiary plutons. The nature of the geologic terrain makes the occurrence of organic fuels on geothermal resources extremely unlikely.

  1. Meager Creek Geothermal Project: preliminary resource evaluation

    SciTech Connect

    Stauder, J.J.; Menzies, A.J.; Harvey, C.C.; Leach, T.M.

    1983-09-01

    A 190-200/sup 0/C geothermal resource has been identified in the Meager Creek Geothermal Area (South Meager, previously called the South Reservoir), British Columbia, Canada, on the basis of surface and near surface exploration and the results of a three well deep drilling exploration program. The geothermal resource appears to be fracture dominated with limited flow capacity. It is associated with the Meager Creek Fault Zone which was encountered by the deep wells at a depth of 1200-1600 meters (400-800 meters below MSL). Temperatures of up to 270/sup 0/C were encountered below the Meager Creek Fault Zone but both petrologic and well testing data indicate that the rock is generally impermeable. The high temperatures at depth appear to be a manifestation of the abnormally high (approximately equal to 90/sup 0/C/km) regional geothermal gradient.

  2. Holocene geologic slip rate for Mission Creek strand of the southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Fryer, R.; Behr, W. M.; Sharp, W. D.; Gold, P. O.

    2015-12-01

    The San Andreas Fault (SAF) is the primary structure accommodating motion between the Pacific and North American plates. The Coachella Valley segment of the southern SAF has not ruptured historically, and is considered overdue for an earthquake because it has exceeded its average recurrence interval. In the northwestern Coachella Valley, this fault splits into three additional fault strands: the Mission Creek strand, which strikes northwest in the San Bernardino Mountains, and the Banning and Garnet Hill strands, which continue west, transferring slip into San Gorgonio Pass. Determining how slip is partitioned between these faults is critical for southern California seismic hazard models. Recent work near the southern end of the Mission Creek strand at Biskra Palms yielded a slip rate of ~14-17 mm/yr since 50 ka, and new measurements from Pushawalla Canyon suggest a possible rate of ~20 mm/yr since 2.5 ka and 70 ka. Slip appears to transfer away from the Mission Creek strand and to the Banning and Garnet Hill strands within the Indio Hills, but the slip rate for the Garnet Hill strand is unknown and the 4-5 mm/yr slip rate for the Banning strand is applicable only since the mid Holocene. Additional constraints on the Holocene slip rate for the Mission Creek strand are critical for resolving the total slip rate for the southern SAF, and also for comparing slip rates on all three fault strands in the northern Coachella Valley over similar time scales. We have identified a new slip rate site at the southern end of the Mission Creek strand between Pushawalla and Biskra Palms. At this site, (the Three Palms Site), three alluvial fans sourced from three distinct catchments have been displaced approximately 80 meters by the Mission Creek Strand. Initial observations from an exploratory pit excavated into the central fan show soil development consistent with Holocene fan deposition and no evidence of soil profile disruption. To more precisely constrain the minimum

  3. Selected hydrologic data for Fountain Creek and Monument Creek basins, east-central Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Ortiz, Roderick F.

    1989-01-01

    Selected hydrologic data were collected during 1986, 1987, and 1988 by the U.S. Geological Survey for the Fountain Creek and Monument Creek basins, east-central Colorado. The data were obtained as part of a study to determine the present and projected effects of wastewater discharges on the two creeks. The data, which are available for 129 surface-water sites, include: (1) About 1,100 water quality analyses; (2) about 420 measurements of discharge, (3) characteristics of about 50 dye clouds associated with measurements of traveltime and reaeration , and (4) about 360 measurements of channel geometry. (USGS)

  4. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    USGS Publications Warehouse

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  5. Observations on the seasonal distribution of native fish in a 10-kilometer reach of San Bernardino Creek, Sonora, Mexico

    Treesearch

    C. O. Minckley

    2013-01-01

    San Bernardino Creek is a northern tributary of the Río Yaqui that originates in the United States and crosses the International Border just east of Douglas, Arizona/Agua Prieta, Sonora and immediately south of San Bernardino/Leslie Canyon National Wildlife Refuge. Six of eight Río Yaqui native fishes occur in this reach:four minnows, a sucker, and a poeciliid....

  6. 75 FR 54069 - Drawbridge Operation Regulations; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ...-2010-0265] RIN 1625--AA09 Drawbridge Operation Regulations; Curtis Creek, Baltimore, MD AGENCY: Coast....9, across Curtis Creek at Baltimore, MD. The requested change would have allowed the bridge to... Regulation Curtis Creek, Baltimore, MD'' in the Federal Register (75 FR 30747-30750). The...

  7. 20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK CANYON, WITH DAM AND RESERVOIR AT RIGHT CENTER. PALMDALE-LITTLEROCK DITCH, MARKED BY DENSE VEGETATION, CROSSES ROAD AT LOWER CENTER - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  8. 78 FR 938 - Burton Creek Hydro Inc., Sollos Energy, LLC'

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... Energy Regulatory Commission Burton Creek Hydro Inc., Sollos Energy, LLC' Notice of Transfer of Exemption 1. By letter filed December 19, 2012, Burton Creek Hydro Inc. informed the Commission that its exemption from licensing for the Burton Creek Hydro Project, FERC No. 7577, originally issued September 25...

  9. 75 FR 52463 - Safety Zone; Raccoon Creek, Bridgeport, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Raccoon Creek, Bridgeport, NJ AGENCY: Coast... specified waters of Raccoon Creek, Bridgeport, NJ. This action is necessary to provide for the safety of... intended to restrict vessel access in order to protect mariners in a portion of Raccoon Creek. DATES:...

  10. Microsatellite analyses of Alameda Creek Rainbow/Steelhead trout

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Fountain, Monique C.

    1999-01-01

    Microsatellite genetic diversity found in Alameda Creek rainbow trout support a close genetic relationship with coastal trout found in Lagunitas Creek, Marin County, California. No significant genotypic or allelic frequencies associations could be drawn among Alameda Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, Whitney, Mount Shasta, Coleman, and Hot Creek strains, indeed, genetic distance analyses (δμ2) supported genetic separation among Alameda Creek trout and hatchery trout with greater than 50% bootstrap values in 1000 replicate neighbor-joining trees. Fish collected for this study from Palo Seco and Sheppard Creeks shared allelic frequencies with both the fish in Alameda Creek and those found in Scott Creek in Santa Cruz County. Fish collected in Horseshoe Creek or San Lorenzo Creek (Alameda County) did not share this unique genetic relationship between Alameda Creek fish and putative wild coastal trout. These two streams had allelic frequencies similar to some hatchery trout strains and to wild trout captured in the Central Valley. These data suggest that there are two possible steelhead ESUs using the tributaries of San Francisco Bay (one coastal and one Central Valley) or that hatchery trout supplementation has impacted some, but not all streams with a subsequent loss of locally adapted genetic characteristics. These data support the implementation of conservation management of rainbow trout in the Alameda Creek drainage as part of the central California coastal steelhead ESU.

  11. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 122 IS VISIBLE AT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  12. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 113 IS VISIBLE AT RIGHT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  13. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ROOF OF BUILDING 105 IS VISIBLE IN UPPER PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  14. 77 FR 73967 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD... highway bridge at Wise Avenue across Bear Creek, mile 3.4, between Dundalk and Sparrows Point, MD. The... Regulation; Bear Creek, Dundalk, MD'' in the Federal Register (77 FR 5201). The rulemaking concerned would...

  15. 77 FR 5201 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD... across Bear Creek, mile 3.4, between Dundalk and Sparrows Point, MD. The proposed change will alter the... Avenue across Bear Creek, mile 3.4 between Dundalk and Sparrows Point, MD. This change would require the...

  16. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest Service, USDA. ACTION: Notice of intent... continued livestock grazing ] within the Monitor-Hot Creek Rangeland Project area. The analysis will... conditions within the Monitor-Hot Creek Rangeland Project area towards desired conditions. The project area...

  17. View looking Eastnortheast at French Creek trestle, which appears at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking Eastnortheast at French Creek trestle, which appears at left center of frame. Bridge in foreground is west entrance to abandoned Phoenix iron works. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  18. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND SWITCHRACKS AND TREE. POWERHOUSE IS AT EXTREME PHOTO LEFT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  19. 4. Downstream face of Rock Creek Diversion Dam, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Downstream face of Rock Creek Diversion Dam, looking west (Irrigation District canal to right, creek gate and weir to left) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  20. 2. Upstream face of Rock Creek Diversion Dam, looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Upstream face of Rock Creek Diversion Dam, looking east (Canal slide gates to left, Rock Creek diversion gate to right in raised position) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  1. Geologic map of the Lacamas Creek quadrangle, Clark County, Washington

    USGS Publications Warehouse

    Evarts, R.C.

    2006-01-01

    The Lacamas Creek 7.5 minute quadrangle is in southwestern Washington, approximately 25 km northeast of Portland, Oregon, along the eastern margin of the Portland Basin, which is part of the Puget-Willamette Lowland that separates the Cascade Range from the Oregon Coast Range. Since late Eocene time, the Cascade Range has been the locus of an episodically active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Lava flows that erupted early in the history of the arc underlie the eastern half of the Lacamas Creek quadrangle, forming a dissected terrain, with elevations as high as 2050 ft (625 m), that slopes irregularly but steeply to the southwest. These basalt and basaltic andesite flows erupted in early Oligocene time from one or more vents located outside the map area. The flows dip gently (less than 5 degrees) west to southwest. In the western part of the map area, volcanic bedrock is unconformably overlain by middle Miocene to early Pleistocene(?) sediments that accumulated as the Portland Basin subsided. These sediments consist mostly of detritus carried into the Portland Basin by the ancestral Columbia River. Northwest-striking faults offset the Paleogene basin floor as well as the lower part of the basin fill. In middle Pleistocene time, basalt and basaltic andesite erupted from three small volcanoes in the southern half of the map area. These vents are in the northern part of the Boring volcanic field, which comprises several dozen late Pliocene and younger monogenetic volcanoes scattered throughout the greater Portland region. In latest Pleistocene time, the Missoula floods of glacial-outburst origin inundated the Portland Basin. The floods deposited poorly sorted gravels in the southwestern part of the Lacamas Creek quadrangle that grade northward into finer grained sediments. This map is a contribution to a program designed to improve geologic knowledge of the

  2. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  3. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  4. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  5. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  6. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  7. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  8. Bowser basin, northern British Columbia: Constraints on the timing of initial subsidence and Stikinia-North America terrane interactions

    NASA Astrophysics Data System (ADS)

    Ricketts, Brian D.; Evenchick, Carol A.; Anderson, Robert G.; Murphy, Donald C.

    1992-12-01

    Clastic strata composing the northern Bowser basin record the accretion of Stikinia to the composite western edge of the North American plate (Cache Creek-Quesnellia-Slide Mountain-Kootenay North America) in early Middle Jurassic time and the concomitant demise of the intervening Cache Creek ocean. Initial flexural subsidence of the northern Bowser basin, resulting from thrust loading of Cache Creek terrane on Stikinia, is represented by an organic-rich shale of Aalenian age (the Abou Formation of the Spatsizi Group). Coarse-grained sediment first appeared in early Bajocian time following uplift and subaerial exposure of Cache Creek rocks in the upper plate. Thus, the inception of the Bowser basin was Aalenian, rather than Bajocian, as believed by earlier workers. Aalenian southwest-vergent thrusting at the composite western edge of North America is also known from southern British Columbia, a coincidence that implicates collision with Stikinia in the south as a cause of that deformation.

  9. Intensive survey of the bay creek watershed, July 1992

    SciTech Connect

    Short, M.B.; Kelly, T.G.; Hefley, J.E.

    1995-05-01

    During July 1992, the Illinois Environmental Protection Agency conducted an intensive survey of the Bay Creek basin, a fifth order tributary in the Mississippi River North Central Basin. Bay Creek drains approximately 176.4 square miles primarily in Pike and a small portion of Calhoun counties. Four stations were sampled on the Bay Creek main stem and one on Honey Creek. The survey focused on macroinvertebrate communities, fish populations, instream habitat, fish tissue, sediment and water chemistry, and land use as well as a review of ambient water quality data from IEPA station KCA-01 near Nebo, Illinois, as tools to document the biological and chemical status of Bay Creek.

  10. 33 CFR 117.738 - Overpeck Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 117.738 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.738 Overpeck Creek. (a) The draws of the Conrail and the New York, Susquehanna and Western railroad bridges, mile 0.0 both at...

  11. 33 CFR 117.709 - Cheesequake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 117.709 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.709 Cheesequake Creek. (a) The draw of the S35 Bridge, at mile 0.0, at Morgan, South Amboy, New Jersey, shall operate as follows:...

  12. 33 CFR 117.715 - Debbies Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 117.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.715 Debbies Creek. (a) The draw of... to operators of vessels approaching the bridge either up or downstream....

  13. Gold Creek: Preserving an Environmental Studies Center.

    ERIC Educational Resources Information Center

    Brooks, Suzanne

    In response to a Board of Trustees request for information and recommendations concerning the future use of the Gold Creek property owned by the Los Angeles Community College District, this report emphasizes that the use of this site for instructional field experiences enhances the quality of environmental education for the district's diverse…

  14. Hillslope hydrology research at Caspar Creek

    Treesearch

    Elizabeth T. Keppeler; Peter H. Cafferata

    1991-01-01

    As part of the ongoing Caspar Creek Watershed Study on Jackson Demonstration State Forest, researchers from the US Forest Service and the California Department of Forestry and Fire Protection are investigating subsurface drainage in the headwaters of the basin. In order to predict how land use practices will impact stream systems, and hence habitats for aquatic...

  15. 27 CFR 9.62 - Loramie Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Loramie Creek. 9.62 Section 9.62 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas §...

  16. 27 CFR 9.62 - Loramie Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Loramie Creek. 9.62 Section 9.62 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas §...

  17. Gold Creek: An Environmental Studies Center.

    ERIC Educational Resources Information Center

    Woodley, Laurel

    A description is provided of the Gold Creek Ecological Reserve, 240 acres of undisturbed land in Northeast Los Angeles County, which serves the Los Angeles Community College District (LACCD) as an outdoor laboratory for students and faculty in numerous disciplines. Section I provides introductory information on the reserve and its features, which…

  18. Species status of Mill Creek Elliptio

    SciTech Connect

    Davis, G.M.; Mulvey, M.

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  19. How Fern Creek Is Beating Goliath

    ERIC Educational Resources Information Center

    Donovan, Margaret; Galatowitsch, Patrick; Hefferin, Keri; Highland, Shanita

    2013-01-01

    The "David" is Fern Creek Elementary, a small urban school in Orlando, Florida, that serves an overwhelmingly disadvantaged student population. The "Goliaths" are the mountains of problems that many inner-city students face--poverty, homelessness, mobility, instability, limited parent involvement, and violent neighborhood…

  20. Bereavement Rituals in the Muscogee Creek Tribe

    ERIC Educational Resources Information Center

    Walker, Andrea C.; Balk, David E.

    2007-01-01

    A qualitative, collective case study explores bereavement rituals in the Muscogee Creek tribe. Data from interviews with 27 participants, all adult members of the tribe, revealed consensus on participation in certain bereavement rituals. Common rituals included (a) conducting a wake service the night before burial; (b) never leaving the body alone…

  1. Parlin Creek large woody debris placement project

    Treesearch

    Barry W. Collins

    1999-01-01

    In August 1996 the Jackson Demonstration State Forest (JSDF) completed a fish habitat rehabilitation project in a 2.5 mile reach of Parlin Creek, a tributary to the Noyo River in Mendocino County, California. The purse of the project was to introduce large woody material to the stream channel to determine if higher quality habitat could be produced for anadromous...

  2. Bereavement Rituals in the Muscogee Creek Tribe

    ERIC Educational Resources Information Center

    Walker, Andrea C.; Balk, David E.

    2007-01-01

    A qualitative, collective case study explores bereavement rituals in the Muscogee Creek tribe. Data from interviews with 27 participants, all adult members of the tribe, revealed consensus on participation in certain bereavement rituals. Common rituals included (a) conducting a wake service the night before burial; (b) never leaving the body alone…

  3. Chelsea Sandwich, LLC (MA0003280) | Chelsea Creek ...

    EPA Pesticide Factsheets

    2017-04-10

    EPA and the Massachusetts Department of Environmental Protection (MADEP) have developed final National Pollutant Discharge Elimination System (NPDES) permits for seven bulk petroleum storage facilities located along Chelsea River (Creek) in Chelsea and Revere, Massachusetts to meet the requirements of the Clean Water Act.

  4. Geology of the Teakettle Creek watersheds

    Treesearch

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  5. Drywell corrosion stopped at Oyster Creek

    SciTech Connect

    Lipford, B.L. ); Flynn, J.C.

    1993-11-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results.

  6. Collaborative monitoring in Walnut Creek, California

    Treesearch

    Heidi Ballard; Ralph Kraetsch; Lynn Huntsinger

    2002-01-01

    In 1995 and 2000, a monitoring program was designed and implemented to track oak regeneration and native grass populations in target management areas in the four Open Space Preserves of the City of Walnut Creek, California. The program resulted from a collaboration of scientists at the University of California, Berkeley, a group of interested citizens known as the...

  7. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-Salem, North Carolina, 1984, photoinspected 1982; (2) Boone, North Carolina-Tennessee, 1985; and (3... viticultural area is as described below: (1) The beginning point is on the Winston-Salem, North Carolina map at..., returning to the Winston-Salem map, to the intersection of Rocky Creek with State Highway 115 at New Hope...

  8. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-Salem, North Carolina, 1984, photoinspected 1982; (2) Boone, North Carolina-Tennessee, 1985; and (3... viticultural area is as described below: (1) The beginning point is on the Winston-Salem, North Carolina map at..., returning to the Winston-Salem map, to the intersection of Rocky Creek with State Highway 115 at New Hope...

  9. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-Salem, North Carolina, 1984, photoinspected 1982; (2) Boone, North Carolina-Tennessee, 1985; and (3... viticultural area is as described below: (1) The beginning point is on the Winston-Salem, North Carolina map at..., returning to the Winston-Salem map, to the intersection of Rocky Creek with State Highway 115 at New Hope...

  10. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-Salem, North Carolina, 1984, photoinspected 1982; (2) Boone, North Carolina-Tennessee, 1985; and (3... viticultural area is as described below: (1) The beginning point is on the Winston-Salem, North Carolina map at..., returning to the Winston-Salem map, to the intersection of Rocky Creek with State Highway 115 at New Hope...

  11. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Salem, North Carolina, 1984, photoinspected 1982; (2) Boone, North Carolina-Tennessee, 1985; and (3... viticultural area is as described below: (1) The beginning point is on the Winston-Salem, North Carolina map at..., returning to the Winston-Salem map, to the intersection of Rocky Creek with State Highway 115 at New Hope...

  12. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile 1.7, at the Bronx, New York, shall open on signal if at least a two-hour advance notice is given to the New York City Department of Transportation (NYCDOT) radio...

  13. Gold Creek: An Environmental Studies Center.

    ERIC Educational Resources Information Center

    Woodley, Laurel

    A description is provided of the Gold Creek Ecological Reserve, 240 acres of undisturbed land in Northeast Los Angeles County, which serves the Los Angeles Community College District (LACCD) as an outdoor laboratory for students and faculty in numerous disciplines. Section I provides introductory information on the reserve and its features, which…

  14. How Fern Creek Is Beating Goliath

    ERIC Educational Resources Information Center

    Donovan, Margaret; Galatowitsch, Patrick; Hefferin, Keri; Highland, Shanita

    2013-01-01

    The "David" is Fern Creek Elementary, a small urban school in Orlando, Florida, that serves an overwhelmingly disadvantaged student population. The "Goliaths" are the mountains of problems that many inner-city students face--poverty, homelessness, mobility, instability, limited parent involvement, and violent neighborhood…

  15. Habitat suitability index models: Creek chub

    USGS Publications Warehouse

    McMahon, Thomas E.

    1982-01-01

    The creek chub is a widely-distributed cyprinid ranging from the Rocky Mountains to the Atlantic Coast and from the Gulf of Mexico to southern Manitoba and Quebec (Scott and Crossman 1973). Within its range, it is one of the most characteristic and common fishes of small, clear streams (Trautman 1957).

  16. Steel Creek zooplankton: L Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Starkel, W.M.; Chimney, M.J.

    1988-03-01

    The objectives of this portion of the Steel Creek Biological Monitoring Program were to analyze data on macrozooplankton taxonomy and density in the Steel Creek corridor and swamp/delta, and compare the composition of the post-impoundment macrozooplankton community with pre-impoundment conditions and communities from other stream and swamp systems. The data presented in the report cover the period January 1986 through December 1987. Macrozooplankton samples were collected monthly using an 80 ..mu..m mesh net at Stations 275, 280, and 290 in the Steel Creek corridor and Stations 310, 330, 350, and 370 in the Steel Creek delta/swamp. Macrozooplankton taxa richness was highest at the two Steel Creek corridor stations nearest the L-Lake dam (Stations 275 and 280); mean values were 10.6 and 7.2 taxa collected/month in 1986 vs 12.1 and 12.3 taxa collected/month in 1987. The lowest taxa richness occurred at Steel Creek swamp/delta stations; means ranged from 1.9 to 4.2 taxa collected/month during both years.

  17. The Quaternary Silver Creek Fault Beneath the Santa Clara Valley, California

    USGS Publications Warehouse

    Wentworth, Carl M.; Williams, Robert A.; Jachens, Robert C.; Graymer, Russell W.; Stephenson, William J.

    2010-01-01

    The northwest-trending Silver Creek Fault is a 40-km-long strike-slip fault in the eastern Santa Clara Valley, California, that has exhibited different behaviors within a changing San Andreas Fault system over the past 10-15 Ma. Quaternary alluvium several hundred meters thick that buries the northern half of the Silver Creek Fault, and that has been sampled by drilling and imaged in a detailed seismic reflection profile, provides a record of the Quaternary history of the fault. We assemble evidence from areal geology, stratigraphy, paleomagnetics, ground-water hydrology, potential-field geophysics, and reflection and earthquake seismology to determine the long history of the fault in order to evaluate its current behavior. The fault formed in the Miocene more than 100 km to the southeast, as the southwestern fault in a 5-km-wide right step to the Hayward Fault, within which the 40-km-long Evergreen pull-apart basin formed. Later, this basin was obliquely cut by the newly recognized Mt. Misery Fault to form a more direct connection to the Hayward Fault, although continued growth of the basin was sufficient to accommodate at least some late Pliocene alluvium. Large offset along the San Andreas-Calaveras-Mt Misery-Hayward Faults carried the basin northwestward almost to its present position when, about 2 Ma, the fault system was reorganized. This led to near abandonment of the faults bounding the pull-apart basin in favor of right slip extending the Calaveras Fault farther north before stepping west to the Hayward Fault, as it does today. Despite these changes, the Silver Creek Fault experienced a further 200 m of dip slip in the early Quaternary, from which we infer an associated 1.6 km or so of right slip, based on the ratio of the 40-km length of the strike-slip fault to a 5-km depth of the Evergreen Basin. This dip slip ends at a mid-Quaternary unconformity, above which the upper 300 m of alluvial cover exhibits a structural sag at the fault that we interpret as

  18. Intraplate deformation on north-dipping basement structures in the Northern Gawler Craton, Australia: reactivation of original terrane boundaries or later intra-cratonic thrusts?

    NASA Astrophysics Data System (ADS)

    Baines, G.; Giles, D.; Betts, P. G.; Backé, G.

    2007-12-01

    Multiple intraplate orogenic events have deformed Neoproterozoic to Carboniferous sedimentary sequences that cover the Archean to Mesoproterozoic basement of the northern Gawler Craton, Australia. These intraplate orogenies reactivated north-dipping basement penetrating faults that are imaged on seismic reflection profiles. These north-dipping structures pre-date Neoproterozoic deposition but their relationships to significant linear magnetic and gravity anomalies that delineate unexposed Archean to Early Mesoproterozoic basement terranes are unclear. The north-dipping structures are either terrane boundaries that formed during continental amalgamation or later faults, which formed during a mid- to late-Mesoproterozoic transpressional orogeny and cross-cut the original lithological terrane boundaries. We model magnetic and gravity data to determine the 3D structure of the unexposed basement of the northern Gawler Craton. These models are constrained by drill hole and surface observations, seismic reflection profiles and petrophysical data, such that geologically reasonable models that can satisfy the data are limited. The basement structures revealed by this modelling approach constrain the origin and significance of the north-dipping structures that were active during the later intraplate Petermann, Delamerian and Alice Springs Orogenies. These results have bearing on which structures are likely to be active during present-day intraplate deformation in other areas, including, for example, current seismic activity along similar basement structures in the Adelaide "Geosyncline".

  19. 78 FR 26065 - Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal, ID AGENCY: Bureau of Land... Impact Statement (EIS) for the Jump Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal... Creek Watersheds Grazing Permit Renewal by June 17, 2013. The BLM will announce meetings or hearings and...

  20. Pine Creek Ranch, FY 2001 Annual Report.

    SciTech Connect

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  1. Northern Nutrition.

    ERIC Educational Resources Information Center

    Northwest Territories Dept. of Education, Yellowknife.

    This guide contains nutrition information and nutrition education strategies aimed at residents of the Canadian Arctic. Section I: (1) defines nutrition terms; (2) describes the sources and functions of essential nutrients; (3) explains Canada's food guide and special considerations for the traditional northern Native diet and for lactose…

  2. Northern Nutrition.

    ERIC Educational Resources Information Center

    Northwest Territories Dept. of Education, Yellowknife.

    This guide contains nutrition information and nutrition education strategies aimed at residents of the Canadian Arctic. Section I: (1) defines nutrition terms; (2) describes the sources and functions of essential nutrients; (3) explains Canada's food guide and special considerations for the traditional northern Native diet and for lactose…

  3. Ground-water and stream-water interaction in the Owl Creek basin, Wyoming

    USGS Publications Warehouse

    Ogle, K.M.

    1996-01-01

    Understanding of the interaction of ground-water and surface-water resources is vital to water management when water availability is limited.Inflow of ground water is the primary source ofwater during stream base flow. The water chemistry of streams may substantially be affected by that inflow of ground water. This report is part of a study to examine ground-water and surface-water interaction in the Owl Creek Basin, Wyoming, completed by the U.S. Geological Survey incooperation with the Northern Arapaho Tribe and the Shoshone Tribe. During a low flow period between November\\x1113 - 17, 1991, streamflowmeasurements and water-quality samples were collected at 16 selected sites along major streams and tributaries in the Owl Creek Basin,Wyoming. The data were used to identify stream reaches receiving ground-water inflow and to examine causes of changes in stream chemistry.Streamflow measurements, radon-222 activity load, and dissolved solids load were used to identified stream reaches receiving ground-water inflow.Streamflow measurements identified three stream reaches receiving ground-water inflow. Analysis of radon-222 activity load identified five stream reaches receiving ground-water inflow. Dissolvedsolids load identified six stream reaches receiving ground-water inflow. When these three methods were combined, stream reaches in two areas, theEmbar Area and the Thermopolis Anticline Area, were identified as receiving ground-water inflow.The Embar Area and the Thermopolis Anticline Area were then evaluated to determine the source of increased chemical load in stream water. Three potential sources were analyzed: tributary inflow, surficial geology, and anticlines. Two sources,tributary inflow and surficial geology, were related to changes in isotopic ratios and chemical load in the Embar Area. In two reaches in the Embar Area, isotopic ratios of 18O/16O, D/H, and 34S/32S indicated that tributary inflow affected stream-water chemistry. Increased chemical load of

  4. Tidal creeks as hot spots for submarine groundwater discharge on barrier islands: an example from Spiekeroog

    NASA Astrophysics Data System (ADS)

    Gilfedder, Benjamin; Glaser, Clarissa

    2017-04-01

    Submarine groundwater discharge can be a controlling factor in water and nutrient cycles in coastal ecosystems. Groundwater discharge and associated nutrient fluxes are controlled by both geomorphology of coastal catchments as well as dynamics at the land-ocean interface e.g. tidal magnitude. The Wadden Sea of Northern Germany is one of the largest regions shaped by tides in the world as well as having active biogeochemistry in the organic-rich mud flats. The aim of this work was to characterize and quantify groundwater discharge to the coastal zone in space and time, with a particular focus on tidal creeks, using the noble gas 222Rn. We have conducted two field campaigns on the barrier island Spiekeroog, which is an ideal field laboratory due to its well defined hydrological boundary conditions. The investigations took place from February 22 to 26 2016, and from March 14 to 20 2016 in a selected branched tidal creek and its catchment in the eastern part of the island (Ostplate). We have mapped the tidal creek using 222Rn activities as well as biogeochemical parameters (e.g. EC, DOC, Fe, SO42-). A continuous measurement station was set-up at the creek mouth and measured 222Rn, O2 and EC in 15 min resolution for 5 days. The mapping results show that groundwater discharge is highest in areas closed to the dune systems and decreases towards the tidal flat areas. While all samples in the creek had a high salt concentration (EC>30 ms/cm), the samples were also close to the dunes had the largest proportion of salt compared to areas close to the mud flats. The continuous 222Rn measurements showed that the largest groundwater discharge occurred during low tide, when hydrological gradients are likely to be largest towards the sea. While the discharge could be very high over short periods ( 1 m/d), which is likely due to the large tidal amplitude in the Norther German sea, when averaged over the whole tidal cycle it was similar to previous studies (15-26 cm/d). Our work on

  5. Mercury contamination in three species of anuran amphibians from the Cache Creek Watershed, California, USA.

    PubMed

    Hothem, Roger L; Jennings, Mark R; Crayon, John J

    2010-04-01

    Fish and wildlife may bioaccumulate mercury (Hg) to levels that adversely affect reproduction, growth, and survival. Sources of Hg within the Cache Creek Watershed in northern California have been identified, and concentrations of Hg in invertebrates and fish have been documented. However, bioaccumulation of Hg by amphibians has not been evaluated. In this study, adult and juvenile American bullfrogs (Lithobates catesbeianus) and foothill yellow-legged frogs (Rana boylii), adult Northern Pacific treefrogs (Pseudacris regilla), and larval bullfrogs were collected and analyzed for total Hg. One or more species of amphibians from 40% of the 35 sites had mean Hg concentrations greater than the US Environmental Protection Agency's tissue residue criterion for fish (0.3 microg/g). Of the bullfrog tissues analyzed, the liver had the highest concentrations of both total Hg and methyl mercury. Total Hg in carcasses of bullfrogs was highly correlated with total Hg in leg muscle, the tissue most often consumed by humans.

  6. Benthic macroinvertebrate richness along Sausal Creek, Oakland, California

    NASA Astrophysics Data System (ADS)

    Lara, D.; Ahumada, E.; Leon, Y.; Bracho, H.; Telles, C.

    2012-12-01

    Sausal Creek, 5.0 km long, is one of the principal watercourses in Oakland, California. The headwaters of Sausal Creek arise in the Oakland Hills and the creek flows southwestward through the city, discharging into the tidal canal that separates the island of Alameda from Oakland; the creek ultimately flows into San Francisco Bay. Due to the presence of rainbow trout, the stream health of Sausal Creek is a local conservation priority. In the present study, a survey of benthic macroinvertebrates in the creek was conducted and possible correlations between environmental variables and taxonomic richness were analyzed. Three stations along the creek were sampled using a 30.5cm 500 micron aquatic d-net, and temperature, pH and dissolved oxygen levels were measured in creek samples obtained at each station. Temperature, pH and dissolved oxygen levels remained constant along the creek. Taxonomic richness was highest at the upstream site of Palo Seco, located in an eastern section of the creek, and furthest downstream at Dimond Park, in the western portion of the creek. The Monterrey site, just west of Palo Seco was found to be significantly low in benthic macroinvertebrates. The Palo Seco and Monterrey sites are separated by Highway 13 and storm drain inputs may bring contaminants into the creek at this site. At the Monterrey site Sausal Creek follows the Hayward Fault, gas emissions or change in substrate may also affect the local population of benthic invertebrates. Further research will be conducted to determine what factors are contributing to this local anomaly.

  7. Lithofacies, Age, and Sequence Stratigraphy of the Carboniferous Lisburne Group in the Skimo Creek Area, Central Brooks Range

    USGS Publications Warehouse

    Dumoulin, Julie A.; Whalen, Michael T.; Harris, Anita G.

    2008-01-01

    The Lisburne Group, a mainly Carboniferous carbonate succession that is widely distributed across northern Alaska, contains notable amounts of oil and gas at Prudhoe Bay. Detailed studies of the Lisburne in the Skimo Creek area, central Brooks Range, delineate its lithofacies, age, conodont biofacies, depositional environments, and sequence stratigraphy and provide new data on its hydrocarbon source-rock and reservoir potential, as well as its thermal history, in this area. We have studied the Lisburne Group in two thrust sheets of the Endicott Mountains allochthon, herein called the Skimo and Tiglukpuk thrust sheets. The southern, Skimo Creek section, which is >900 m thick, is composed largely of even-bedded to nodular lime mudstone and wackestone intercalated with intervals of thin- to thick-bedded bioclastic packstone and grainstone. Some parts of the section are partially to completely dolomitized and (or) replaced by chert. A distinctive, 30-m-thick zone of black, organic-rich shale, lime mudstone, and phosphorite is exposed 170 m below the top of the Lisburne. The uppermost 40 m of section is also distinctive and made up of dark shale, lime mudstone, spiculite, and glauconitic grainstone. The northern, Tiglukpuk Creek section, which is similar to the Skimo Creek section but only ~760 m thick, includes more packstone and grainstone and less organic-rich shale. Analyses of conodonts and foraminifers indicate that both sections range in age from late Early Mississippian (Osagean) through Early Pennsylvanian (early Morrowan) and document a hiatus of at least 15 m.y. at the contact between the Lisburne and the overlying Siksikpuk Formation. No evidence of subaerial exposure was observed along this contact, which may represent a submarine erosional surface. Lithofacies and biofacies imply that the Lisburne Group in the study area was deposited mainly in midramp to outer-ramp settings. Deepest water strata are mud rich and formed below storm or fair-weather wave

  8. Multiple Magmatic Events Over 40 Ma in the Fish Creek Mountains, North-central Great Basin, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Henry, C. D.; Stevens, C.; Varve, S.

    2011-12-01

    The Fish Creek Mountains, located in north-central Nevada south of Battle Mountain, is a site of multiple igneous events ranging from ca. 35 Ma to 1 Ma, covering most of the igneous history of the Great Basin of the western United States. Such extended volcanic activity allows for documentation of mantle sources and petrogenetic processes over time. Beginning approximately 50 Ma, the Great Basin experienced a magmatic front that began migrating southwestward across southern Idaho, central Oregon and into northern Nevada and Utah. Intermediate, "arc-like" andesite and dacite dominated volcanic activity in northeastern Nevada between about 45 and 36 Ma. By 34 Ma, a northwest-trending belt of rhyolitic ash-flow calderas began to develop through central Nevada, the "ignimbrite flare-up". Volcanism then migrated westwards towards the Sierra Nevada. In north-central Nevada, the oldest lavas are ca. 35 Ma basaltic andesites through rhyolites that are exposed in the western Shoshone Range, the eastern Tobin Range, and the northern and eastern Fish Creek Mountains. Plagioclase-rich andesites, dacite intrusions, and volcanic breccias occur in a belt along the western side of the Fish Creek Mountains. The bulk of the Fish Creek Mountains is composed of the 24.7 Ma Fish Creek Mountains rhyolitic tuff that is largely confined to an undeformed caldera structure. The caldera and tuff are anomalously young compared to nearby felsic centers such as the Caetano caldera (33.8Ma) and Shoshone Range (39-35 Ma) and relative to the southwest to west magmatic migration. The basal tuff is unwelded, with abundant pumice and lithic (primarily volcanic) fragments but only rare crystals. Sanidine and smoky quartz phenocrysts become more abundant upsection and glassy fiamme (hydrated to devitrified) are common, but the abundance of lithic fragments diminishes. 16-15 Ma volcanic rocks of the Northern Nevada Rift are exposed in the Battle Mountain area, ranging in composition from subalkaine

  9. Northern Pintail

    USGS Publications Warehouse

    Clark, Robert G.; Fleskes, Joseph P.; Guyn, Karla L.; Haukos, David A.; Austin, Jane E.; Miller, Michael R.

    2014-01-01

    This medium-sized dabbling duck of slender, elegant lines and conservative plumage coloration is circumpolar in distribution and abundant in North America, with core nesting habitat in Alaska and the Prairie Pothole Region of southern Canada and the northern Great Plains. Breeders favor shallow wetlands interspersed throughout prairie grasslands or arctic tundra. An early fall migrant, the species arrives on wintering areas beginning in August, after wing molt, often forming large roosting and feeding flocks on open, shallow wetlands and flooded agricultural fields. The birds consume grains, marsh plant seeds, and aquatic invertebrates throughout fall and winter.Northern Pintails are among the earliest nesting ducks in North America, beginning shortly after ice-out in many northern areas. Individuals form new pair bonds each winter but are highly promiscuous during the nesting season, with mated and unmated males often involved in vigorous, acrobatic Pursuit Flights. Annual nest success and productivity vary with water conditions, predation, and weather. Females build nests on the ground, often far from water. Only the female incubates; her mate leaves shortly after incubation begins. Ducklings hatch together in one day, follow the female to water after a day in the nest, and fledge by July or August. Adults and ducklings consume mainly aquatic invertebrates during the breeding season.Predators and farming operations destroy many thousands of Northern Pintail nests annually; farming has also greatly reduced the amount of quality nesting cover available. Winter habitats are threatened by water shortages, agricultural development, contamination, and urbanization. Periods of extended drought in prairie nesting regions have caused dramatic population declines, usually followed by periods of recovery. Over the long term, however, the continental population of Northern Pintails has declined significantly from 6 million birds in the early 1970s to less than 3 million in

  10. Water quality in Gaines Creek and Gaines Creek arm of Eufaula Lake, Oklahoma

    USGS Publications Warehouse

    Kurklin, J.K.

    1990-01-01

    Based on samples collected from May 1978 to May 1980 and analyzed for major anions, nitrogen, trace elements, phytoplankton, and bacteria, the water in Gaines Creek and the Gaines Creek arm of Eufaula Lake was similar with respect to suitability for municipal use. Water from Gaines Creek had a pH range of 5.7 to 7.6 and a maximum specific conductance of 97 microsiemens per centimeter at 25o Celsius, whereas water from the Gaines Creek arm of Eufaula Lake had a pH range of 6.0 to 9.2 and a maximum specific conductance of 260 microsiemens per centimeter at 25o Celsius. Dissolved oxygen, pH, temperature, and specific conductance values for the lake varied with depth. With the exceptions of cadmium, iron, lead, and manganese, trace-element determinations of samples were within recommended national primary and secondary drinking-water standards. When compared to the National Academy of Sciences water-quality criteria, phytoplankton and bacteria counts exceeded recommendations; however, water from either Gaines Creek or Eufaula Lake could be treated similarly and used as a municipal water supply.

  11. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  12. Facies relationships and reservoir potential of Ohio Creek interval across Piceance Creek basin, northwestern Colorado

    SciTech Connect

    Rutledge, A.K.; Lorenz, J.C.

    1984-04-01

    The Ohio Creek member of the Mesaverde Group of Late Cretaceous age grades from a fluvial to a paralic facies from the southern to central parts of the Piceance Creek basin. The Ohio Creek is considered here to be the nonmarine to paralic equivalent of the Lewis transgression to the north. Although it is fluvial in the type area and southern part of the basin, evidence of marine influence in the east central part of the basin includes: (1) zones of abundant logs with large fossil Teredinidae burrows, (2) palynological evidence from outcrops at Rifle Gap and the US Department of Energy MWX wells, and (3) marine-type sedimentary structures visible in outcrop. In this east-central area Ohio Creek depositional environments are interpreted as distributary channel and estuarine. Although the Ohio Creek is highly altered by diagenesis and is an aquifer in some parts of the basin, the equivalent zones are productive of hydrocarbons in the north-central parts of the basin. Continued changes in facies toward a marine environment to the north affected the petrologic characteristics and sand body/reservoir morphology, increasing the reservoir potential of this zone to the north. The variably thick interval is recognizable in the subsurface as an extensive sandy zone with blocky shaped log profiles; it should provide good reservoirs where porosity and permeability are not occluded by diagenesis, and where continuity with surface exposures has not allowed gas escape and water influx.

  13. PADDY CREEK WILDERNESS STUDY AREA, MISSOURI.

    USGS Publications Warehouse

    Pratt, Walden P.; Ellis, Clarence

    1984-01-01

    The Paddy Creek Wilderness study area, Missouri was investigated by geologic and mineral surveys. There is no known record of mineral production, development, or prospecting in the area. Several rock units that underlie the study area are known to be the host rocks for important lead-zinc-silver-copper-nickel-cobalt deposits and magnetic iron-ore deposits of the Southeast Missouri district, about 52 mi east of the study area. Similar occurrences may exist in the Paddy Creek Wilderness study area, but the mineral-resource potential cannot be adequately evaluated without further study, specifically, deep drilling within or close to the area to test the potential for base-metal mineralization, and detailed magnetic surveys of the area to test for magnetic anomalies.

  14. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Bowers, J.A.; Toole, M.A.; van Duyn, Y.

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  15. Some runoff characteristics of a small forested watershed in northern Idaho

    Treesearch

    A. R. Stage

    1957-01-01

    Benton Creek on the Priest River Experimental Forest, Idaho, is one of the few gauged streams flowing from a small, forested watershed in the northern Rocky Mountains, a region of summer drought and heavy winter snows. Over sixteen years of streamflow records from this watershed are summarized here to characterize the runoff from such a stream. The streamgauging...

  16. Dissolved oxygen and pH relationships in northern Australian mangrove waterways

    SciTech Connect

    Boto, K.G.; Bunt, J.S.

    1981-01-01

    Consistent, highly significant linear correlations (R2 greater than or equal to 0.8) between pH and dissolved oxygen levels have been found in northern Australian mangrove waterways. These properties seem to be influenced by dissolved organic matter, mainly polyphenolic compounds, present in the creeks and tidal channel waters.

  17. Changes in storm hydrographs after roadbuilding and selective logging on a coastal watershed in northern California

    Treesearch

    Kenneth A. Wright

    1985-01-01

    Abstract - The effects of road building and selective tractor harvesting on storm peak flows and storm volumes were assessed for a small (424 hectare) coastal watershed in Northern California. Two watersheds, the North and South Fork of Caspar Creek were calibrated from 1962 to 1967 while no treatments took place. Roads were then built on the South Fork, and the two...

  18. Reynolds Creek long-term agricultural research

    Treesearch

    Mark Seyfried; Fred Pierson; Tony Svjecar; Kathleen Lohse

    2016-01-01

    The Reynolds Creek Experimental Watershed (RCEW) was established by the Agricultural Research Service (ARS) in 1960 to investigate rangeland hydrology issues in the northwestern USA. The site, which is administered by the Northwest Watershed Research Center (NWRC) in Boise, Idaho, is representative of much of the region, with a 1000 m elevation range and associated...

  19. Parachute Creek shale-oil program. [Brochure

    SciTech Connect

    Not Available

    1982-01-01

    Union Oil Company has a plan for commercial shale-oil production at the Parachute Creek area of Colorado. This brochure describes the property and the company's concept for room and pillar mining and upflow retorting. Environmental precautions will preserve and restore vegetation on disturbed land and will safeguard local streams and underground basinx. Union will assist local communities to provide housing and services. 17 figures. (DCK)

  20. Channel stability of Turkey Creek, Nebraska

    USGS Publications Warehouse

    Rus, David L.; Soenksen, Philip J.

    1998-01-01

    Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.

  1. DRY CREEK WILDERNESS STUDY AREA, ARKANSAS.

    USGS Publications Warehouse

    Haley, Boyd R.; Stroud, Raymond B.

    1984-01-01

    The Dry Creek Wilderness Study Area covers an area of about 10 sq mi in parts of Logan, Scott, and Yell Counties, Arkansas. A mineral evaluation study of the area indicated that the area has a probable resource potential for natural gas and little promise for the occurrence of other mineral commodities. Less than 100,000 cu ft/day of natural gas is being produced from one well about 4 mi north of the area.

  2. Floods in the Big Creek basin, Linn County, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1977-01-01

    Flood information for the Big Creek basin in Linn County, Iowa, should be of use to those concerned with the design of bridges and other structures on the flood plains of the streams. Water-surface profiles for the flood of May 1974 are given for Big Creek and its major tributaries, East Big, Crabapple, Elbow, and Abbe Creeks. The May 1974 flood was at least a 50-year flood on East Big Creek and along certain reaches of Big and Abbe Creeks. Also included for Big Creek are a profile of the December 1971 medium-stage flow and a partial profile for the minor flood of July 1971. Profiles for the low-water condition of October 26, 1972, are shown for all reaches. Water-surface profiles for the 25- and 50-year floods are estimated in relation to the May 1974 flood.

  3. Cow Castle Creek, Orangeburg County, South Carolina. Environmental Assessment.

    DTIC Science & Technology

    1983-07-01

    woodlands, and drainage features. ENVIRONMENTAL CONSIDERATIONS Cow Castle Creek Basin is located within the larger Edisto River Basin in Orangeburg...about 47 inches of precipitation per year. Water Quality. Cow Castle Creek lies within the Edisto River drainage basin . The Edisto Basin is located... Edisto River . Several small tributaries enter Cow Castle Creek, adding to its flow during storms and hurricanes. Siltation and extensive litter and log

  4. Health and Safety Plan, Kalakaket Creek, Radion Relay Station, Alaska

    DTIC Science & Technology

    1994-09-01

    Squadron Elmendorf AFB, Alaska Final Health and Safety Plan Kalakaket Creek Radio Relay Station , Alaska Accesion For NTIS CRA&M DTIC TAB U...Kalakaket Creek Radio Relay Station , Alaska C-F41624-94-D-804"-005 6. AUTHOR(S) Radian Corporation 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...NUMBER OF PAGES Health and Safety Plan, Kalakaket Creek Radio Relay Station , Alaska 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY

  5. Ballona Creek and Tributaries, Los Angeles County Drainage Area, California.

    DTIC Science & Technology

    1982-12-01

    7AD-AiSI 322 BALLONA CREEK AND TRIBUTARIES LOS ANGELES COUNTYii DRAINAGE AREA CALIFORNIA(U) ARMY ENGINEER DISTRICT LOS ANGELES CA DEC 82 UNCLASSIFIED...FesbltyRpf for of Engineers Faiiiy~pr o Los Angeles District Ballona Creek and Tributaries In LOS ANGELES COUNTY DRAINAGE AREA, CALIFORNIA ~EB14 Y85... DRAINAGE AREA, CALIFORNIA INTERIM FEASIBILITY REPORT FOR BALLONA CREEK AND TRIBUTARIES U.S. ARMY CORPS OF ENGINEERS LOS ANGELES DECEMBER 1982 C "L --i

  6. The Patroon Creek Contamination Migration Investigation

    SciTech Connect

    Dufek, K.; Zafran, A.; Moore, J.T.

    2006-07-01

    Shaw performed a Site Investigation (SI) for sediment within the Unnamed Tributary of the Patroon Creek, a section of the Patroon Creek, and the Three Mile Reservoir as part of the overall contract with the United States Army Corps of Engineers (USACE) to remediate the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) Site. The Unnamed Tributary formerly flowed through the former Patroon Lake, which was located on the main site property and was used as a landfill for radiological and chemical wastes. The objective of the investigation was to determine the absence/presence of radioactive contamination within the three Areas of Concern (AOC). In order to accomplish this objective, Shaw assembled a team to produce a Technical Memorandum that provided an in-depth understanding of the environmental conditions related to the Patroon Creek. Upon completion and analysis of the Technical Memorandum, a Conceptual Site Model (CSM) was constructed and a Technical Planning Program (TPP) was held to develop a Sediment Investigation Work Plan and Sediment Investigation Sampling and Analysis Plan. A total of 32 sample locations were analyzed using on-site direct gamma scans with a Pancake Geiger-Mueller (PGM) instrument for screening purposes and samples were analyzed at on-site and off-site laboratories. The highest interval from each core scan was selected for on-site analysis utilizing a High Purity Germanium (HPGe) detector. Eight of these samples were sent off-site for gamma/alpha spectroscopy confirmation. The data collected during the SI indicated that the U-238 cleanup criterion was exceeded in sediment samples collected from two locations within the Unnamed Tributary but not in downstream sections of Patroon Creek or Three Mile Reservoir. Future actions for impacted sediment in the Unnamed Tributary will be further evaluated. Concentrations of U-238 and Th-232 in all other off-site sediment samples collected from the Unnamed Tributary, Patroon Creek, and

  7. Characterization of Fish Creek, Teton County, Wyoming, 2004-08

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.

    2010-01-01

    Fish Creek, a tributary to the Snake River, is about 15 river miles long and is located in Teton County in western Wyoming near the town of Wilson (fig. 1). Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address this concern, the U.S. Geological Survey, in cooperation with the Teton Conservation District, began studying Fish Creek in 2004 to describe the hydrology of the creek and later (2007?08) to characterize the water quality and the biological communities. The purpose of this fact sheet is to summarize the study results from 2004 to 2008.

  8. Microsatellite analyses of San Franciscuito Creek rainbow trout

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2000-01-01

    Microsatellite genetic diversity found in San Francisquito Creek rainbow trout support a close genetic relationship with rainbow trout (Oncorhynchus mykiss) from another tributary of San Francisco Bay, Alameda Creek, and coastal trout found in Lagunitas Creek, Marin County, California. Fish collected for this study from San Francisquito Creek showed a closer genetic relationship to fish from the north-central California steelhead ESU than for any other listed group of O. mykiss. No significant genotypic or allelic frequency associations could be drawn between San Francisquito Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, i.e. Whitney, Mount Shasta, Coleman, and Hot Creek hatchery fish. Indeed, genetic distance analyses (δµ2) supported separation between San Francisquito Creek trout and all hatchery trout with 68% bootstrap values in 1000 replicate neighbor-joining trees. Not surprisingly, California hatchery rainbow trout showed their closest evolutionary relationships with contemporary stocks derived from the Sacramento River. Wild collections of rainbow trout from the Sacramento-San Joaquin basin in the Central Valley were also clearly separable from San Francisquito Creek fish supporting separate, independent ESUs for two groups of O. mykiss (one coastal and one Central Valley) with potentially overlapping life histories in San Francisco Bay. These data support the implementation of management and conservation programs for rainbow trout in the San Francisquito Creek drainage as part of the central California coastal steelhead ESU.

  9. Northeast and northwest elevations. View to south Flint Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northeast and northwest elevations. View to south - Flint Creek Hydroelectric Project, Powerhouse, Approximately 3 miles southeast of Porters Corner on Powerhouse Road, Philipsburg, Granite County, MT

  10. 10. DETAIL VIEW OF UNDERSIDE OF ROCK CREEK RAILWAY BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL VIEW OF UNDERSIDE OF ROCK CREEK RAILWAY BRIDGE, FACING NORTHWEST - Oregon Electric Railway Westside Corridor, Hillsboro Extension, Between 185th Avenue & Hillsboro, Beaverton, Washington County, OR

  11. 11. DETAIL VIEW OF DECK OF ROCK CREEK RAILWAY BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF DECK OF ROCK CREEK RAILWAY BRIDGE, FACING NORTHWEST - Oregon Electric Railway Westside Corridor, Hillsboro Extension, Between 185th Avenue & Hillsboro, Beaverton, Washington County, OR

  12. 75 FR 15705 - Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of... the Mahoning Creek Hydroelectric Project, to be located on Mahoning Creek in Armstrong County...

  13. 75 FR 68780 - Cedar Creek Wind Energy, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ...] Cedar Creek Wind Energy, LLC; Notice of Filing November 2, 2010. Take notice that on October 27, 2010, Cedar Creek Wind Energy, LLC (Cedar Creek) filed an appeal with the Federal Energy Regulatory...

  14. Northeastern Florida Bay estuarine creek data, water years 1996-2000

    USGS Publications Warehouse

    Hittle, Clinton D.; Zucker, Mark A.

    2004-01-01

    From October 1995 to September 2000 (water years 1996-2000), continuous 15-minute stage, water velocity, salinity, and water temperature data were collected at seven estuarine creeks that flow into northeastern Florida Bay. These creeks include West Highway Creek, Stillwater Creek, Trout Creek, Mud Creek, Taylor River, Upstream Taylor River, and McCormick Creek. Discharge was computed at 15-minute intervals using mean water velocity and the cross-sectional area of the channel. Fifteen-minute unit values are presented for comparison of the quantity, quality, timing, and distribution of flows through the creeks. Revised discharge estimation formulas are presented for three noninstrumented sites (East Highway Creek, Oregon Creek and Stillwater Creek) that utilize an improved West Highway discharge rating. Stillwater Creek and Upstream Taylor River were originally noninstrumented sites; both were fully instrumented in 1999. Discharge rating equations are presented for these sites and were developed using a simple linear regression.

  15. Simulation of water-surface elevations for a hypothetical 100-year peak flow in Birch Creek at the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect

    Berenbrock, C.; Kjelstrom, L.C.

    1997-10-01

    Delineation of areas at the Idaho National Engineering and Environmental Laboratory that would be inundated by a 100-year peak flow in Birch Creek is needed by the US Department of Energy to fulfill flood-plain regulatory requirements. Birch Creek flows southward about 40 miles through an alluvium-filled valley onto the northern part of the Idaho National Engineering and Environmental laboratory site on the eastern Snake River Plain. The lower 10-mile reach of Birch Creek that ends in Birch Creek Playa near several Idaho National Engineering and Environmental Laboratory facilities is of particular concern. Twenty-six channel cross sections were surveyed to develop and apply a hydraulic model to simulate water-surface elevations for a hypothetical 100-year peak flow in Birch Creek. Model simulation of the 100-year peak flow (700 cubic feet per second) in reaches upstream from State Highway 22 indicated that flow was confined within channels even when all flow was routed to one channel. Where the highway crosses Birch Creek, about 315 cubic feet per second of water was estimated to move downstream--115 cubic feet per second through a culvert and 200 cubic feet per second over the highway. Simulated water-surface elevation at this crossing was 0.8 foot higher than the elevation of the highway. The remaining 385 cubic feet per second flowed southwestward in a trench along the north side of the highway. Flow also was simulated with the culvert removed. The exact location of flood boundaries on Birch Creek could not be determined because of the highly braided channel and the many anthropogenic features (such as the trench, highway, and diversion channels) in the study area that affect flood hydraulics and flow. Because flood boundaries could not be located exactly, only a generalized flood-prone map was developed.

  16. 78 FR 20146 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... application. The Lost Creek ISR Facility, which is currently under construction, is located in northeastern... and soils; water resources; ecological resources; visual and scenic resources; noise; historic and...

  17. Hydrologic analysis of Steel Creek and L Lake and the effects of flow reduction on Steel Creek habitat

    SciTech Connect

    del Carmen, B.R.; Paller, M.H.

    1993-12-31

    This report was prepared to support a proposal to eliminate the EIS mandated spring flow requirements in Steel Creek below L Lake. The base flow in Steel Creek below L Lake was estimated using historical data. The water balance of L Lake was studied to evaluate the effects of flow reduction on the Steel Creek hydrologic system. The base flow in Steel Creek below L Lake is estimated as 0.28 cms (10 cfs). A reduction in L Lake discharge to 0.28 cms will result in a fish community similar to the one that existed before the impoundment of L Lake.

  18. Seepage study of McLeod Creek and East Canyon Creek near Park City, Summit County, Utah, 2004

    USGS Publications Warehouse

    Wilkowske, C.D.

    2005-01-01

    Seepage investigations on McLeod Creek downstream of U.S. Geological Survey streamflow-gaging station McLeod Creek near Park City, Utah, and its confluence with Kimball Creek during the summer of 2004 indicate that this section of the creek is a gaining reach. The total seepage gains ranged from 1.8 to 2.7 cubic feet per second, or a 32 to 55 percent gain. The apparent average total seepage gain was 2.2 cubic feet per second, or an average 42 percent gain. Seepage investigations from the U.S. Geological Survey streamflow-gaging station at East Canyon Creek below I-80 Rest Stop near Park City, Utah, to the station at East Canyon Creek near Jeremy Ranch, Utah, indicate that this section of East Canyon Creek is a slightly losing reach. The total seepage losses ranged from -1.2 to -2.0 cubic feet per second. This is a loss of between -18 and -27 percent from discharge measured at the upstream gaging station. The apparent average total seepage loss for the reach was -1.0 cubic feet per second, or -18 percent. Seepage information also was obtained along East Canyon Creek by using water-temperature data recorded in three shallow streambed piezometers. Surface-water temperature also was recorded at these locations. These water-temperature profiles indicate a seepage loss at all three locations along East Canyon Creek. This seepage loss appears to decrease in September and October.

  19. Effects of agricultural conservation practices on the hydrology of Corey Creek basin, Pennsylvania, 1954-60

    USGS Publications Warehouse

    Jones, Benjamin L.

    1966-01-01

    Analyses of data collected from two small basins in northern Pennsylvania during the period May 1954 to September 1960 indicated that changes in land use and land treatment have affected suspended- sediment discharge from the basins. Extensive land use and land-treatment changes have taken place in the 12.2-square-mile Corey Creek study basin, whereas such changes in the 10.2-square-mile Elk Run basin, which is adjacent to the northeast, have been relatively slight. Elk Run basin, which is topographically and hydrologically similar to Corey Creek basin, was used as an external control for the Corey Creek basin study. Multiple-regression analysis showed that of all the variables, runoff correlated most highly with the sediment yield of each basin. Surveys at selected cross-sections of the two streams indicated that most channel changes were in the banks rather than in the bed. At points where the stream channel slope was greater than 70 feet per mile, the average annual change in cross-sectional area at the measured ranges was less than +--2.5 square feet. Filling of the stream channel occurred where the slope was 70 feet per mile or less, and such filling was greater in Corey Creek than in Elk Run. Trend analyses of data from both basins indicated no persistent changers in quantity of runoff, precipitation, or runoff intensity (peakedness), although similar analyses indicated significant changes in the rate of suspended-sediment discharge from both basins. During the period September 1957 to September 1960, sediment discharge from Corey Creek basin decreased by 11 percent relative to the sediment discharge from Elk Run. All, or most, of this decrease was the result of a decrease in sediment discharge during the May to October growing seasons. No significant trends were detected in data collected d-ring the November to April dormant season. A factor, termed the relative erosion potential, was formulated for evaluating the effects of changes in the hydrologic cover

  20. Ecosystem engineers drive creek formation in salt marshes.

    PubMed

    Vu, Huy D; Wie Ski, Kazimierz; Pennings, Steven C

    2017-01-01

    Ecosystem engineers affect different organisms and processes in multiple ways at different spatial scales. Moreover, similar species may differ in their engineering effects for reasons that are not always clear. We examined the role of four species of burrowing crabs (Sesarma reticulatum, Eurytium limosum, Panopeus herbstii, Uca pugnax) in engineering tidal creek networks in salt marshes experiencing sea level rise. In the field, crab burrows were associated with heads of eroding creeks and the loss of plant (Spartina alterniflora) stems. S. reticulatum was closely associated with creek heads, but densities of the other crab species did not vary across marsh zones. In mesocosm experiments, S. reticulatum excavated the most soil and strongly reduced S. alterniflora biomass. The other three species excavated less and did not affect S. alterniflora. Creek heads with vegetation removed to simulate crab herbivory grew significantly faster than controls. Percolation rates of water into marsh sediments were 10 times faster at creek heads than on the marsh platform. Biomass decomposed two times faster at creek heads than on the marsh platform. Our results indicate that S. reticulatum increases creek growth by excavating sediments and by consuming plants, thereby increasing water flow and erosion at creek heads. Moreover, it is possible that S. reticulatum burrows also increase creek growth by increasing surface and subsurface erosion, and by increasing decomposition of organic matter at creek heads. Our results show that the interaction between crab and plant ecosystem engineers can have both positive and negative effects. At a small scale, in contrast to other marsh crabs, S. reticulatum harms rather than benefits plants, and increases erosion rather than marsh growth. At a large scale, however, S. reticulatum facilitates the drainage efficiency of the marsh through the expansion of tidal creek networks, and promotes marsh health. © 2016 by the Ecological Society

  1. A Creek to Bay Biological Assessment in Oakland, California

    NASA Astrophysics Data System (ADS)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  2. The natural channel of Brandywine Creek, Pennsylvania

    USGS Publications Warehouse

    Wolman, M.G.

    1955-01-01

    This study of the channel of Brandy wine Creek, Pennsylvania, consists of three parts. The first is an analysis of the changes which take place in the width, depth, velocity, slope of the water surface, suspended load, and roughness factor with changing discharge below the bankfull stage at each of several widely separated cross sections of the channel. Expressed as functions of the discharge, it is found that the variables behave systematically. In every section studied, as the discharge increases, the velocity increases to about the 0.6 power, depth to the 0.4, and load to the 2.0 power of the discharge. The roughness decreases to the 0.2 power of the discharge. The relative magnitudes and the direction of these variations are similar to those which have been observed in other rivers in the United States, primarily in the West. Some modifications of the hypotheses applicable to the western rivers are probably required because on Brandywine Creek the difference between the materials on the bed and in the banks is considerably greater than it is on most of the western rivers studied. In the second part of the paper the progressive changes of the same variables in the downstream direction with increasing discharge at a given frequency are described. Despite the disorderly appearance of the stream, it is found that the variables display a progressive, orderly change in the downstream direction when traced from the headwater tributaries through the trunk stream of Brandywine Creek. At a given frequency of flow, width increases with discharge to about the 0.5 power. Depth increases downstream somewhat less rapidly, while the slope and roughness both decrease in the downstream direction. Despite a decrease in the size of the material on the bed, both the mean velocity and the mean bed velocity increase downstream. The rates of change of these variables are in close accord with the changes observed on rivers flowing in alluvium and in stable irrigation canals. These

  3. Quantifying Landslide Movement at the Boulder Creek Earthflow Using L-band InSAR

    NASA Astrophysics Data System (ADS)

    Stimely, L. L.; Mackey, B. H.; Roering, J. J.; Schmidt, D. A.

    2008-12-01

    Images from satellite interferometric synthetic aperture radar (InSAR) reveal spatial and temporal patterns of movement on the Boulder Creek earthflow, Eel River, northern California. Recently InSAR has shown promise as a method to quantify ground movements associated with deep-seated slope failures. While conventional C-band InSAR has proven an effective technique at remotely measuring a variety of surface processes, it has limitations when imaging landslides in steep or vegetated terrain. L-band data from the recently launched ALOS satellite uses a longer wavelength capable of penetrating vegetation, thus returning coherent interferograms. We use L-band InSAR to image the Boulder Creek earthflow, a large active flow along the Eel River, with a spatial resolution of 10m. Persistently unstable hillslopes in northern California are ideally suited to the study of the dynamics and morphological signature of earthflows, as the deeply sheared mélange lithology, high seasonal rainfall, and fast uplift rates promote widespread deep-seated landsliding. We analyze three ALOS interferograms from 2007. These data show an average line-of-sight (LOS) deformation rate between the late spring months of May and July of ~0.44 m/yr which slows to ~0.16 m/yr between the summer months of June and September. Decorrelation in the winter scene (Nov 2006-Jan 2007) suggests earthflow displacements are too large to resolve with this method. Because the satellite can only resolve deformation along its LOS, these observations constrain the minimum estimates of ground displacement. Our interferograms show variations in deformation rate within the boundaries of the flow, which can be attributed to changes in flow direction, velocity, slope angle, and slope orientation. Forty- year horizontal displacement vectors derived from orthorectified aerial photographs are consistent with our velocity estimates. These InSAR observations will allow us to correlate the displacement field with slide

  4. Preliminary Late Pleistocene Slip Rate of the Green Valley Fault at Lopes Ranch Creek, Cordelia, California

    NASA Astrophysics Data System (ADS)

    Baldwin, J. N.; Koehler, R. D.; Thompson, S. C.

    2004-12-01

    The Concord-Green Valley fault system is part of the eastern San Andreas fault system, and is composed of two major fault segments from south to north: Concord fault and Green Valley fault (GVF). The GVF is subdivided into a southern segment that extends from the northern shores of Suisun Bay to near Cordelia, and a northern segment that continues north to Wooden Valley, east of Napa, CA. At the Lopes Ranch Creek site, along the southern GVF, an ephemeral creek preserves the cumulative dextral separation of an abandoned north-trending paleochannel located east of the main fault. Trenches excavated at the site expose a sequence of latest Pleistocene to historic alluvial and fluvial deposits overlying weathered bedrock of the Upper Cretaceous to Upper Jurassic Great Valley Sequence. The main active trace of the southern GVF is well constrained based on tectonic geomorphology (e.g., NE-facing scarps, vegetation lineaments, and springs), and trenches that exhibit a 3-meter-wide fault zone containing vertical faults, west-dipping dextral reverse faults and creep-related fractures. Preliminary estimates of cumulative right-lateral displacement of a distinct paleochannel deposit range from 31 to 58 meters. Radiocarbon analyses of charcoal collected from a burn horizon directly above the paleochannel provide a minimum age of 14,080 to 15,380 cal yr B.P. Based on the estimated cumulative displacement and minimum age of the paleochannel deposit, a preliminary long-term slip rate for the southern GVF is 2 to 4 mm/yr. This preliminary slip rate is close to the historical slip and creep rates for the GVF. For instance, a previous slip rate study of an offset late Holocene paleochannel deposit about 0.4 km northwest of the Lopes Ranch Creek site determined a slip rate of 3.8 to 4.8 mm/yr (over the last 300 years), consistent, in part, with the latest Pleistocene slip rate yielded by this study. These geologic slip rates also are close to the 14.7-year average creep rate of 4.4

  5. Surface waters of North Boggy Creek basin in the Muddy Boggy Creek basin in Oklahoma

    USGS Publications Warehouse

    Laine, L.L.

    1958-01-01

    Analysis of short-term streamflow data in North Boggy Creek basin indicates that the average runoff in this region is substantial. The streamflow is highly variable from year to year and from month to month. The estimated total yield from the North Boggy Creek watershed of 231 square miles averages 155,000 acre-feet annually, equivalent to an average runoff depth of 12 1/2 inches. Almost a fourth of the annual volume is contributed by Chickasaw Creek basin, where about 35,000 acre-feet runs off from 46 square miles. Two years of records show a variation in runoff for the calendar year 1957 in comparison to 1956 in a ratio of 13 to 1 for the station on North Boggy Creek and a ratio of 18 to 1 for the station on Chickasaw Creek. In a longer-term record downstream on Muddy Boggy Creek near Farris, the corresponding range was 17 to 1, while the calendar years 1945 and 1956 show a 20-fold variation in runoff. Within a year the higher runoff tends to occur in the spring months, April to June, a 3-month period that, on the average, accounts for at least half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is relatively small in the summer. Records for the gaging stations noted indicate that there is little or no base flow in the summer, and thus there will be periods of no flow at times in most years. The variation in runoff during a year is suggested by a frequency analysis of low flows at the reference station on Muddy Boggy Creek near Farris. Although the mean flow at that site is 955 cfs (cubic feet per second), the median daily flow is only 59 cfs and the lowest 30-day flow in a year will average less than 1 cfs in 4 out of 10 years on the average. The estimated mean flow on North Boggy Creek near Stringtown is 124 cfs, but the estimated median daily flow is only 3 1/2 cfs. Because of the high variability in streamflow, development of storage by impoundment will be necessary to attain maximum utilization of the

  6. RICHLAND CREEK WILDERNESS STUDY AREA, ARKANSAS.

    USGS Publications Warehouse

    Haley, Boyd R.; Stroud, Raymond B.

    1984-01-01

    The Richland Creek Wilderness Study Area covers an area of about 5 sq mi in parts of Newton and Searcy Counties, Arkansas. Geochemical studies of the outcropping rocks and stream sediments in the study area indicate that these rocks have little promise for the occurrence of metallic mineral resources. There is little promise for the occurrence of natural gas within the area because the Pennsylvanian age rocks have been breached by erosion and the other potential reservoir rocks were reported as dry. Some of the sandstone and limestone could be used for commercial purposes.

  7. Hydrologic data for Mountain Creek, Trinity River basin, Texas, 1976

    USGS Publications Warehouse

    Buckner, H.D.

    1978-01-01

    The total drainage area of Mountain Creek, Texas, is 304 sq mi. The stream-gaging stations on Mountain Creek near Cedar Hill and Walnut Creek near Mansfield provide hydrologic data to define runoff characteristics from small drainage basins. They also serve as index stations for inflow into the reservoir and provide operational data for the reservoir. In addition, the station Walnut Creek near Mansfield is equipped with a recording rain gage. The stage station near Duncanville provides data pertinent to operation of the gates in the Mountain Creek Lake Dam. The reservoir-content station at the dam provides records of reservoir state and contents. The stream-gaging station Mountain Creek at Grand Prairie provides records of outflow from Mountain Creek Lake and the basin. Basin outflow for the 1976 water year was 78,660 acre-feet which is only 1,140 acre-feet above the 16-year (1960-76) average of 77,520 acre-feet. Storage in Mountain Creek Lake showed a net gain of 760 acre-feet during the water year. Rainfall over the study area for the 1976 water year was about 32 inches, which is about 2 inches below the long-term mean rainfall (1960-75) for the area. (Woodard-USGS)

  8. 75 FR 30747 - Drawbridge Operation Regulation; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Curtis Creek, Baltimore... to change the regulations that govern the operation of the Pennington Avenue Bridge across Curtis... Curtis Creek in Baltimore, MD. DATES: Comments and related material must reach the Coast Guard on...

  9. 77 FR 12476 - Drawbridge Operation Regulation; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Curtis Creek, Baltimore..., across Curtis Creek, mile 1.0, at Baltimore, MD. This deviation allows the bridge to operate on...

  10. 75 FR 50707 - Drawbridge Operation Regulation; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Curtis Creek, Baltimore... operation of the Pennington Avenue Bridge, across Curtis Creek, mile 0.9, at Baltimore, MD. This deviation... vessels bound for the Coast Guard Yard at Curtis Bay, as well as a significant amount of commercial...

  11. 3. RUSTIC BENCH AT THE LADDER CREEK GARDENS NEAR GORGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. RUSTIC BENCH AT THE LADDER CREEK GARDENS NEAR GORGE POWERHOUSE AT NEWHALEM. J.D. ROSS HAD THE GROUNDS LANDSCAPED AND PLANTED WITH EXOTIC FLOWERS AND VEGETATION DURING THE 1930S AS AN ADDITIONAL TOURIST ATTRACTION, 1989. - Skagit Power Development, Skagit River & Newhalem Creek Hydroelectric Project, On Skagit River, Newhalem, Whatcom County, WA

  12. Hydrologic and geologic characterization of Tenderfoot Creek Experimental Forest, Montana

    Treesearch

    Phillip E. Farnes; Ward W. McCaughey; Katherine J. Hansen

    1994-01-01

    Tenderfoot Creek Experimental Forest (TCEF) is located in Central Montana 24 miles north of White Sulphur Springs and 9 miles northwest of Highway 89 from Kings Hill via Forest Road #839. The experimental forest can also be accessed by Forest Road #586 via Sheep Creek. A general view of TCEF showing roads and drainages is shown in figure 2. The road down Tenderfoot...

  13. Recovery of a PCB-Contaminated Creek Fish Community

    EPA Science Inventory

    Polychlorinated Biphenyls (PCBs) from the Sangamo-Weston Superfund Site near Clemson, South Carolina, USA, were released into the Twelvemile Creek until the early 1990s. PCB concentrations in fish in this creek have remained elevated: levels in six target fish species are still a...

  14. Hydrology of Bishop Creek, California: An Isotopic Analysis

    Treesearch

    Michael L. Space; John W. Hess; Stanley D. Smith

    1989-01-01

    Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into...

  15. 5. View of Sterling Creek Marsh at low tide showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Sterling Creek Marsh at low tide showing the lining of the bottom of the marsh, with dam in background - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  16. Evidence for gap flows in the Birch Creek Valley, Idaho

    Treesearch

    D. Finn; B. Reese; B. Butler; N. Wagenbrenner; K. L. Clawson; J. Rich; E. Russell; Z. Gao; H. Liu

    2016-01-01

    A field study was conducted of flows in the Birch Creek Valley in eastern Idaho. There is a distinct topographic constriction in the Birch Creek Valley that creates two subbasins: an upper and lower valley. The data were classified into one of three groups based on synoptic influence (weak/absent, high wind speeds, and other evidence of synoptic influence). Gap flows...

  17. 2. Rear view of upper dam with Millstone Creek flowing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Rear view of upper dam with Millstone Creek flowing over overspill. Photograph taken from west bank of Millstone Creek. VIEW SOUTHEAST - Loleta Recreation Area, Upper Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  18. 33 CFR 117.163 - Islais Creek (Channel).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Islais Creek (Channel). 117.163 Section 117.163 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.163 Islais Creek (Channel). (a)...

  19. 33 CFR 117.163 - Islais Creek (Channel).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Islais Creek (Channel). 117.163 Section 117.163 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.163 Islais Creek (Channel). (a)...

  20. 36. Bridges of Rock Creek and Potomac Parkway, 18971964: Whitehurst ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Bridges of Rock Creek and Potomac Parkway, 1897-1964: Whitehurst Freeway Bridge, Ramp 3, 1964; K Street Bridge, 1939-40, 1947-49; Pennsylvania Avenue Bridge, 1915-16; M Street Bridge, 1929; P Street Bridge, 1935; Q Street Bridge, 1915 - Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  1. "Bridge #6 Rock Creek: Castiron 48" pipe lines to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Bridge #6 - Rock Creek: Cast-iron 48" pipe lines to Gravity - 1859." Construction photo of Pennsylvania Avenue Bridge, 1859. Photograph courtesy Washington Aqueduct Division, U.S. Army Corps of Engineers - Pennsylvania Avenue Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  2. 31. Construction Drawing: Fort Custer Air Force Station, Battle Creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Construction Drawing: Fort Custer Air Force Station, Battle Creek, Michigan, Emergency Power Building, Floor Plans and Details, USACOE, no date. - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  3. 30. Construction Drawing: Fort Custer Air Force Station, Battle Creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Construction Drawing: Fort Custer Air Force Station, Battle Creek, Michigan, Emergency Power Building, Sections and Elevations, USACOE, no date. - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  4. 121. MCMULLEN CREEK DRAW, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. MCMULLEN CREEK DRAW, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; OUTLET SIDE OF CREEK, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. 101. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; NORTHEAST VIEW OF DRY CREEK OUTLET. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. 122. MCMULLEN CREEK, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. MCMULLEN CREEK, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; INLET SIDE OF THE CREEK, ENTRANCE INTO THE HIGH LINE CANAL, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 123. MCMULLEN CREEK, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. MCMULLEN CREEK, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; SOUTH VIEW OF THE CREEK EMPTYING INTO THE HIGH LINE CANAL. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. 119. COTTONWOOD CREEK SIPHON, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    119. COTTONWOOD CREEK SIPHON, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; INLET SIDE OF COTTONWOOD CREEK, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. 115. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; WEST VIEW OF SIPHON CROSSING ROCK CREEK. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  10. 103. DRY CREEK SPILL, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. DRY CREEK SPILL, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; INLET SIDE TO DRY CREEK, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  11. 2. 'SANTA ANA RIVER AT CHINO CREEK, RIVERSIDE COUNTY.' This ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. 'SANTA ANA RIVER AT CHINO CREEK, RIVERSIDE COUNTY.' This is an oblique aerial view to the north, looking over the flooded fields between Chino Creek and the Santa Ana River, just upstream of the Prado Dam site. File number written on negative: R & H 80 024. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  12. 8. CLOSEUP OF THE GATES ON THE TOBY CREEK OUTLET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. CLOSEUP OF THE GATES ON THE TOBY CREEK OUTLET AND THE OUTLET OF THE PUMP DISCHARGE CHANNEL, LOOKING NORTHEAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  13. 77 FR 6013 - Drawbridge Operation Regulations; Cheesequake Creek, Morgan, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Cheesequake Creek, Morgan, NJ AGENCY... Coast Guard District, has issued a temporary deviation from the regulation governing the operation of the New Jersey Transit Rail Operation (NJTRO) Railroad Bridge across Cheesequake Creek, mile 0.2,...

  14. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  15. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  16. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  17. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  18. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  19. Pataha Creek Model Watershed : 1998 Habitat Conservation Projects.

    SciTech Connect

    Bartels, Duane G.

    1999-12-01

    The projects outlined in detail on the attached project reports are a few of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. 1998 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek.

  20. Bridge 223, view looking east up Rock Creek Canyon at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 22-3, view looking east up Rock Creek Canyon at Milepost 22.82. The line passes through tunnel 4 onto Bridge 22-3 and heads eastward up Rock Creek Canyon out onto the Camas Prairie - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  1. 33. Site Plan: Custer Air Force Station, Battle Creek, Michigan, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Site Plan: Custer Air Force Station, Battle Creek, Michigan, FD Radar Facilities-FPS-27, Electrical Plot Plan and Duet Details, USACOE, not date. - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  2. 33 CFR 117.745 - Rancocas River (Creek).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rancocas River (Creek). 117.745 Section 117.745 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas River (Creek). (a)...

  3. 33 CFR 117.745 - Rancocas River (Creek).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rancocas River (Creek). 117.745 Section 117.745 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas River (Creek). (a)...

  4. 33 CFR 117.163 - Islais Creek (Channel).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Islais Creek (Channel). 117.163 Section 117.163 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.163 Islais Creek (Channel). (a)...

  5. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Three Mile Creek. 117.115 Section 117.115 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw...

  6. 33 CFR 117.153 - Corte Madera Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Corte Madera Creek. 117.153 Section 117.153 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.153 Corte Madera Creek. The draw...

  7. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  8. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  9. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  10. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  11. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  12. 1. Upstream face of Rock Creek Diversion Dam, looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Upstream face of Rock Creek Diversion Dam, looking east (Overflow weir right, diversion section into Irrigation District Canal to left) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  13. 2. LOOKING SOUTHEAST FROM THE WEST BANK OF HAW CREEK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LOOKING SOUTHEAST FROM THE WEST BANK OF HAW CREEK. A CLOSE-UP PHOTO OF THE NORTH SIDE OF THE BRIDGE, ITS PARAPETS AND THE UTILITY PIPES SUSPENDED FROM ITS OVERHANG. - Seventh Street Bridge, Spanning Haw Creek at Seventh Street, Columbus, Bartholomew County, IN

  14. 78 FR 64186 - Drawbridge Operation Regulation; Mantua Creek, Paulsboro, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... Mantua Creek, mile marker 1.7, at Paulsboro, NJ. Bridge tender logs from 2007- 2013 indicates that the..., across Mantua Creek at Paulsboro. NJDOT provided the Coast Guard with the bridge tender logs dating back... provide 4 hours advanced notice. Based on the average logged openings between 2007-2013 during the...

  15. 1. Threefourths view showing relation of span to creek with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Three-fourths view showing relation of span to creek with timber trestle approaches. North approach on timber piling, south approach on concrete bents. Note stone piers - Bridge No. 2.4, Spanning Boiling Fork Creek at Railroad Milepost JC-2.4, Decherd, Franklin County, TN

  16. Major-ion, nutrient, and trace-element concentrations in the Steamboat Creek basin, Oregon, 1996

    USGS Publications Warehouse

    Rinella, Frank A.

    1998-01-01

    Bottom-sediment concentrations of antimony, arsenic, cadmium, copper, lead, mercury, zinc, and organic carbon were largest in City Creek. In City Creek and Horse Heaven Creek, concentrations for 11 constituents--antimony, arsenic, cadmium, copper, lead, manganese (Horse Heaven Creek only), mercury, selenium, silver, zinc, and organic carbon (City Creek only)--exceeded concentrations considered to be enriched in streams of the nearby Willamette River Basin, whereas in Steamboat Creek only two trace elements--antimony and nickel--exceeded Willamette River enriched concentrations. Bottom-sediment concentrations for six of these constituents in City Creek and Horse Heaven Creek--arsenic, cadmium, copper, lead, mercury, and zinc--also exceeded interim Canadian threshold effect level (TEL) concentrations established for the protection of aquatic life, whereas only four constituents between Singe Creek and Steamboat Creek--arsenic, chromium, copper (Singe Creek only), and nickel--exceeded the TEL concentrations.

  17. Tidal creek changes at the Sonoma Baylands restoration site

    USGS Publications Warehouse

    Dingler, John R.; Cacchione, David A.; ,

    1998-01-01

    Over the past 150 years, human activity has had a major impact on tidal wetlands adjoining the San Francisco Bay-Delta estuary Growing concern about the effect of this change on the ecology of the estuary has prompted Bay area managers to attempt to reclaim tidal wetlands. The Sonoma Baylands Restoration Project is designed to use dredge material to convert 348 acres from farmland to wetland. This paper describes changes to a tidal creek that flows from that restoration site to San Pablo Bay (north San Francisco Bay) through an existing tidal wetland during different phases of the project. Hydrologic measurements near the bottom of the creek and cross-creek profiles show how the creek responded to non-tidal flow conditions introduced by filling the site with dredge materials. At the time of this study, the creek had deepened by approximately 40 cm but had not widened.

  18. Walnut Creek and Squaw Creek Watersheds, Iowa: National Institute of Food and Agriculture-Conservation Effects Assessment Project

    USDA-ARS?s Scientific Manuscript database

    The Walnut Creek Watershed NIFA-CEAP Watershed project was designed to assess water quality benefits and economic costs from the adoption of a prairie ecosystem (conservation practice implementation) at a watershed scale. This chapter describes and summarizes the paired watershed (Walnut Creek and S...

  19. 78 FR 28897 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project; Sweetwater County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... COMMISSION Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project; Sweetwater County, Wyoming... impact for license amendment, correction. SUMMARY: This document corrects a notice appearing in the Federal Register on April 3, 2013 , that listed, in tabular format, documents that related to the notice...

  20. Hoe Creek 1990 quarterly sampling cumulative report

    SciTech Connect

    Crader, S.E.; Huntington, G.S.

    1991-03-01

    Groundwater samples were collected and analyzed for benzene and for total phenols three times during 1990. This report summarizes the results of these sampling events and compares the results with those obtained in previous years. Possible further options for remediation of the Hoe Creek site was addressed. Three underground coal gasification (UCG) burns were performed by Lawrence Livermore National Laboratory for the US Department of Energy in 1976, 1977, and 1979 at the Hoe Creek site, which is about 20 miles south of Gillette, Wyoming. As a result of these burns, there has been considerable contamination of groundwater by various organic compounds. There have been three efforts at remediating this situation. In 1986 and again in 1987, contaminated water was pumped out, treated, and reinjected. In 1989, the water was pumped, treated, and sprayed into the atmosphere. Benzene and total phenols have been monitored at various monitoring wells as the site during 1990. The highest detected benzene concentration in 1990 was 220 {mu}g/L, and the highest total phenols concentration was 430 {mu}g/L. It is apparent that contamination is still above baseline levels, although the concentration of total phenols is far less than immediately after the burns. The burned coal seams are still releasing organic compounds into the groundwater that passes through them.