Sample records for creep

  1. Microstructural Characterization of Alloy 617 Crept into the Tertiary Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillo, Thomas Martin; Wright, Richard Neil

    2015-07-01

    The microstructure of Alloy 617 was characterized following creep tests interrupted at total creep strains ranging from 2-20%. A range of creep temperatures (750-1000oC) and initial creep stresses (10-145 MPa) produced creep test durations ranging from 1 to 5800 hours. Image analysis of optical photomicrographs on longitudinal sections of the gage length was used to document the fraction of creep porosity as a function of creep parameters. Creep porosity was negligible below tertiary creep strains of 10% and increased with tertiary creep strain, thereafter. For a given temperature and total creep strain, creep porosity increased with decreasing creep stress. Creepmore » porosity increased linearly with duration of the creep experiment. TEM performed on the gage sections did not reveal significant creep cavity formation on grain boundaries at the sub-micron level. It was concluded that the onset of tertiary creep did not result from creep cavitation and more likely arose due to the formation of low energy dislocation substructures with increasing tertiary strain.« less

  2. Endochronic theory of transient creep and creep recovery

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Chen, L.

    1979-01-01

    Short time creep and creep recovery were investigated by means of the endochronic theory of viscoplasticity. It is shown that the constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation can all ber derived from the general constitutive equation by imposing appropriate constraints. In this unified approach, the effect of strain-hardening is naturally accounted for when describing creep and creep recovery. The theory predicts with reasonable accuracy the creep and creep recovery behaviors for Aluminum 1100-0 at 150 C. It was found that the strain-rate history at prestraining stage affects the subsequent creep. A critical stress was also established for creep recovery. The theory predicts a forward creep for creep recovery stress greater than the critical stress. For creep recovery stress less than the critical stress, the theory then predicts a normal strain recovery.

  3. Effects of Environment on Creep Behavior of Nextel 720/Alumina-Mullite Ceramic Composite at 1200 deg C

    DTIC Science & Technology

    2008-03-01

    creep life . This degradation increased with increasing temperatures. At 1000°, all specimens achieved creep run-out, defined as...strain measurement 29 Table 4. Summary of N720/AM creep data. Sample Environment Thermal Strain (%) E (GPa) Creep Stress (MPa) Creep Life (h...Material Creep Stress(MPa) Creep Life (h) Creep Strain (%) Secondary Creep Rate (s-1) N720/A 80 >100 0.798 1.5E-08 N720/A 100 41 1.520

  4. Creep and Creep Recovery Response of Load Cells Tested According to U.S. and International Evaluation Procedures

    PubMed Central

    Bartel, Thomas W.; Yaniv, Simone L.

    1997-01-01

    The 60 min creep data from National Type Evaluation Procedure (NTEP) tests performed at the National Institute of Standards and Technology (NIST) on 65 load cells have been analyzed in order to compare their creep and creep recovery responses, and to compare the 60 min creep with creep over shorter time periods. To facilitate this comparison the data were fitted to a multiple-term exponential equation, which adequately describes the creep and creep recovery responses of load cells. The use of such a curve fit reduces the effect of the random error in the indicator readings on the calculated values of the load cell creep. Examination of the fitted curves show that the creep recovery responses, after inversion by a change in sign, are generally similar in shape to the creep response, but smaller in magnitude. The average ratio of the absolute value of the maximum creep recovery to the maximum creep is 0.86; however, no reliable correlation between creep and creep recovery can be drawn from the data. The fitted curves were also used to compare the 60 min creep of the NTEP analysis with the 30 min creep and other parameters calculated according to the Organization Internationale de Métrologie Légale (OIML) R 60 analysis. The average ratio of the 30 min creep value to the 60 min value is 0.84. The OIML class C creep tolerance is less than 0.5 of the NTEP tolerance for classes III and III L. PMID:27805151

  5. Effect of misalignment on mechanical behavior of metals in creep. [computer programs

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1979-01-01

    Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.

  6. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and the CARES/Creep program.

  7. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    NASA Astrophysics Data System (ADS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  8. Contemporary overview of soil creep phenomenon

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz; Dobak, Paweł

    2017-06-01

    Soil creep deformation refers to phenomena which take place in many areas and research in this field of science is rich and constantly developing. The article presents an analysis of the literature on soil creep phenomena. In light of the complexity of the issues involved and the wide variety of perspectives taken, this attempt at systematization seeks to provide a reliable review of current theories and practical approaches concerning creep deformation. The paper deals with subjects such as definition of creep, creep genesis, basic description of soil creep dynamics deformation, estimation of creep capabilities, various fields of creep occurrence, and an introduction to creep modeling. Furthermore, based on this analysis, a new direction for research is proposed.

  9. Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the CARES/Creep program.

  10. Time-Dependent Behavior of Diabase and a Nonlinear Creep Model

    NASA Astrophysics Data System (ADS)

    Yang, Wendong; Zhang, Qiangyong; Li, Shucai; Wang, Shugang

    2014-07-01

    Triaxial creep tests were performed on diabase specimens from the dam foundation of the Dagangshan hydropower station, and the typical characteristics of creep curves were analyzed. Based on the test results under different stress levels, a new nonlinear visco-elasto-plastic creep model with creep threshold and long-term strength was proposed by connecting an instantaneous elastic Hooke body, a visco-elasto-plastic Schiffman body, and a nonlinear visco-plastic body in series mode. By introducing the nonlinear visco-plastic component, this creep model can describe the typical creep behavior, which includes the primary creep stage, the secondary creep stage, and the tertiary creep stage. Three-dimensional creep equations under constant stress conditions were deduced. The yield approach index (YAI) was used as the criterion for the piecewise creep function to resolve the difficulty in determining the creep threshold value and the long-term strength. The expression of the visco-plastic component was derived in detail and the three-dimensional central difference form was given. An example was used to verify the credibility of the model. The creep parameters were identified, and the calculated curves were in good agreement with the experimental curves, indicating that the model is capable of replicating the physical processes.

  11. Creep feeding nursing beef calves.

    PubMed

    Lardy, Gregory P; Maddock, Travis D

    2007-03-01

    Creep feeding can be used to increase calf weaning weights. However, the gain efficiency of free-choice, energy-based creep feeds is relatively poor. Generally, limit-feeding, high-protein creep feeds are more efficient, and gains may be similar to those produced by creep feeds offered free choice. Creep feeding can increase total organic matter intake and improve the overall energy status of the animal. Creep-fed calves tend to acclimate to the feedlot more smoothly than unsupplemented calves. Furthermore, provision of a high-starch creep feed may have a positive influence on subsequent carcass quality traits. Creep feeding can be applied to numerous environmental situations to maximize calf performance; however, beef cattle producers should consider their individual situations carefully before making the decision to creep feed.

  12. Low-Temperature Fault Creep: Strong vs. Weak, Steady vs. Episodic

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gao, X.

    2017-12-01

    Unless we understand how faults creep, we do not fully understand how they produce earthquakes. However, most of the physics and geology of low-temperature creep is not known. There are two end-member types of low-temperature creep: weak creep of smooth faults and strong creep of rough faults, with a spectrum of intermediate modes in between. Most conceptual and numerical models deal with weak creep, assuming a very smooth fault with a gouge typically weakened by hydrous minerals (Harris, 2017). Less understood is strong creep. For subduction zones, strong creep appears to be common and is often associated with the subduction of large geometrical irregularities such as seamounts and aseismic ridges (Wang and Bilek, 2014). These irregularities generate fracture systems as they push against the resistance of brittle rocks. The resultant heterogeneous stress and structural environment makes it very difficult to lock the fault. The geodetically observed creep under such conditions is accomplished by the complex deformation of a 3D damage zone. Strong-creeping faults dissipate more heat than faults that produce great earthquakes (Gao and Wang, 2014). Although an integrated frictional strength of the fault is still a useful concept, the creeping mechanism is very different from frictional slip of a velocity-strengthening smooth fault. Cataclasis and pressure-solution creep in the fracture systems must be important processes in strong creep. Strong creep is necessarily non-steady and produces small and medium earthquakes. Strong creep of a megathrust can also promote the occurrence of a very special type of weak creep - episodic slow slip around the mantle wedge corner accompanied with tremor (ETS). An example is Hikurangi, where strong creep causes the frictional-viscous transition along the plate interface to occur much shallower than the mantle wedge corner, a necessary condition for ETS (Gao and Wang, 2017). Gao and Wang (2014), Strength of stick-slip and creeping subduction megathrusts from heat flow observations, Science. Gao and Wang (2017), Rheological separation of the megathrust seismogenic zone and Episodic Tremor and Slip, Nature. Harris (2017), Large earthquakes and creeping faults, Rev. Geophys. Wang and Bilek (2014), Fault creep caused by subduction of rough seafloor relief, Tectonophysics.

  13. Low-temperature creep of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  14. Biaxial Thermal Creep of Alloy 617 and Alloy 230 for VHTR Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kun; Lv, Wei; Tung, Hsiao-Ming

    2016-05-18

    In this study, we employed pressurized creep tubes to investigate the biaxial thermal creep behavior of Inconel 617 (alloy 617) and Haynes 230 (alloy 230). Both alloys are considered to he the primary candidate structural materials for very high-temperature reactors (VITITRs) due to their exceptional high-temperature mechanical properties. The current creep experiments were conducted at 900 degrees C for the effective stress range of 15-35 MPa. For both alloys, complete creep strain development with primary, secondary, and tertiary regimes was observed in all the studied conditions. Tertiary creep was found to he dominant over the entire creep lives of bothmore » alloys. With increasing applied creep stress, the fraction of the secondary creep regime decreases. The nucleation, diffusion, and coarsening of creep voids and carbides on grain boundaries were found to be the main reasons for the limited secondary regime and were also found to be the major causes of creep fracture. The creep curves computed using the adjusted creep equation of the form epsilon= cosh 1(1 rt) + P-sigma ntm agree well with the experimental results for both alloys at die temperatures of 850-950 degrees C.« less

  15. Creep behaviour and creep mechanisms of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep. Similarly, ligament autografts had persistently abnormal creep behaviour and creep recovery after 2 years likely due to infiltration by scar tissue. Short-term immobilization of autografts had long-term detrimental consequences perhaps due to re-injury of the graft at remobilization. Treatments that restore normal properties to these mechanistic factors in order to control creep would improve joint healing by restoring joint kinematics and maintaining normal joint loading.

  16. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    NASA Astrophysics Data System (ADS)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-04-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials' life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman-Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures.

  17. Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns

    NASA Astrophysics Data System (ADS)

    Xu, Zongnan; Wang, Tao; Wang, Weilun

    2018-04-01

    The effect of PVA (polyvinyl alcohol) fiber content on the creep property of fiber reinforced high-strength concrete columns was investigated. The correction factor of PVA fiber content was proposed and the creep prediction model of ACI209 was modified. Controlling the concrete strength as C80, changing the content of PVA fiber (volume fraction 0%, 0.25%, 0.5%, 1% respectively), the creep experiment of PVA fiber reinforced concrete columns was carried out, the creep coefficient of each specimen was calculated to characterize the creep property. The influence of PVA fiber content on the creep property was analyzed based on the creep coefficient and the calculation results of several frequently used creep prediction models. The correction factor of PVA fiber content was proposed to modify the ACI209 creep prediction model.

  18. Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; Wang, Q.D., E-mail: wangqudong@sjtu.edu.cn

    2015-01-15

    The tensile and compressive creep behavior of an extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy was investigated at temperatures ranging from 200 °C to 300 °C and under stresses ranging from 30 MPa to 120 MPa. There existed an asymmetry in the tensile and compressive creep properties. The minimum creep rate of the alloy was slightly greater in tension than in compression. The measured values of the transient strain and initial creep rate in compression were greater than those in tension. The creep stress exponent was approximately 2.5 at low temperatures (T < 250 °C) and 3.4 at higher temperatures both in tensionmore » and in compression. The compression creep activation energy at low temperatures and high temperatures was 83.4 and 184.3 kJ/mol respectively, while one activation energy (184 kJ/mol) represented the tensile–creep behavior over the temperature range examined. Dislocation creep was suggested to be the main mechanism in tensile creep and in the high-temperature regime in compressive creep, while grain boundary sliding was suggested to dominate in the low-temperature regime in compressive creep. Precipitate free zones were observed near grain boundaries perpendicular to the loading direction in tension and parallel to the loading direction in compression. Electron backscattered diffraction analysis revealed that the texture changed slightly during creep. Non-basal slip was suggested to contribute to the deformation after basal slip was introduced. In the tensile–creep ruptured specimens, intergranular cracks were mainly observed at general high-angle boundaries. - Highlights: • Creep behavior of an extruded Mg–RE alloy was characterized by EBSD. • T5 aging treatment enhanced the tension–compression creep asymmetry. • The grains grew slightly during tensile creep, but not for compressive creep. • Precipitate free zones (PFZs) were observed at specific grain boundaries. • Intergranular fracture was dominant and cracks mainly originated at GHABs.« less

  19. Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels

    NASA Astrophysics Data System (ADS)

    Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.

    2017-12-01

    9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.

  20. Creep deformation at crack tips in elastic-viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Riedel, H.

    1981-02-01

    THE EVALUATION of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C∗h, can be defined which correlates the near-tip field to the applied load. It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K 1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C∗h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C∗ is the relevant load parameter for predominantly secondary creep of the whole specimen.

  1. Creep modeling for life evaluation and strengthening mechanism of tungsten alloyed 9-12% Cr steels

    NASA Astrophysics Data System (ADS)

    Park, Kyu-Seop; Bae, Dong-Sik; Lee, Sung-Keun; Lee, Goo-Hyun; Kim, Jung-Ho; Endo, Takao

    2006-10-01

    Recently, high strength tungsten (W) alloyed steels have been developed for use in power plants with higher steam conditions for environmental reasons as well as the improvement of thermal efficiency resulting in lower fuel costs. In order to establish a creep modeling of high strength martensitic steel and to understand the basic role of W in tungsten alloyed 9-12Cr steels, conventional martensitic steels (X20CrMoV121, X20CrMoWV121, and Mod9Cr-1Mo) and tungsten alloyed steels (NF616 and HCM12A) were employed for creep tests and creep behavior analyses by the Ω method. The proposed creep model, which takes into account both primary and tertiary creep, satisfactorily described the creep curves and accurately predicted creep life, as martensitic steel undergoes a relatively large amount of primary creep, up to nearly 30%, over its normal life. The tungsten alloyed steels exhibited a smaller minimum creep rate and a larger stress exponent compared to the conventional steels. In addition, in tungsten alloyed steel, the Ω value features strong stress dependence such that creep life is prolonged at lower stresses due to high Ω values. The importance of the Ω value from the standpoint of creep strengthening in primary and tertiary creep is discussed.

  2. Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei-dong

    The room temperature creep behavior and deformation mechanisms of a Ti–Nb–Ta–Zr–O alloy, which is also called “gum metal”, were investigated with the nanoindentation creep and conventional creep tests. The microstructure was observed with electron backscattered diffraction analysis (EBSD) and transmission electron microscopy (TEM). The results show that the creep stress exponent of the alloy is sensitive to cold deformation history of the alloy. The alloy which was cold swaged by 85% shows high creep resistance and the stress exponent is approximately equal to 1. Microstructural observation shows that creep process of the alloy without cold deformation is controlled by dislocationmore » mechanism. The stress-induced α' martensitic phase transformation also occurs. The EBSD results show that the grain orientation changes after the creep tests, and thus, the creep of the cold-worked alloy is dominated by the shear deformation of giant faults without direct assistance from dislocations. - Highlights: •Nanoindentation was used to investigate room temperature creep behavior of gum metal. •The creep stress exponent of gum metal is sensitive to the cold deformation history. •The creep stress exponent of cold worked gum metal is approximately equal to 1. •The creep of the cold-worked gum metal is governed by the shear deformation of giant faults.« less

  3. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  4. Digestion criteria in nursing beef calves supplemented with limited levels of protein and energy.

    PubMed

    Cremin, J D; Faulkner, D B; Merchen, N R; Fahey, G C; Fernando, R L; Willms, C L

    1991-03-01

    This study was conducted with grazing nursing calves (197 kg) to determine the effects of 1) limiting creep feed intake and 2) increasing the concentration of ruminal escape CP in creep feed at a limited level of creep feed intake on fescue and milk intake, ruminal NDF digestion, and total tract digestibility in calves fed high-quality, freshly harvested fescue. The treatments were 1) control (no creep feed), 2) limited intake of creep feed (.60 kg/d) having a moderate concentration of CP (13%), 3) limited intake of creep feed (.60 kg/d) having a high concentration of CP (35%), and 4) unlimited (high) intake (1.62 kg/d) of the same creep feed fed in Treatment 2. Forage OM intake was negatively correlated (r = -.995, P less than .05) with level of creep feed OM intake, whereas milk OM intake was not affected by level of creep feed intake. Decreases in ruminal fiber digestion and total tract NDF digestion caused by unlimited creep feeding were partially avoided by limiting creep feed intake. Digestible OM intake increased by .47 kg per kilogram of creep feed OM intake.

  5. Creep resistance. [of high temperature alloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Malu, M.; Purushothaman, S.

    1976-01-01

    High-temperature structural applications usually require creep resistance because some average stress is maintained for prolonged periods. Alloy and microstructural design guidelines for creep resistance are presented through established knowledge on creep behavior and its functional dependences on alloy microstructure. Important considerations related to creep resistance of alloys as well as those that are harmful to high-temperature properties are examined. Although most of the creep models do not predict observed creep behavior quantitatively, they are sophisticated enough to provide alloy or microstructural design guidelines. It is shown that creep-resistant microstructures are usually in conflict with microstructures that improve such other properties as stress rupture ductility. Greater understanding of the effects of environments on creep and stress rupture behavior of materials is necessary before one can optimally design alloys for applications in different environments.

  6. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  7. Micromechanics effects in creep of metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1995-12-01

    The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewski et al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law.

  8. The Application of Stress-Relaxation Test to Life Assessment of T911/T22 Weld Metal

    NASA Astrophysics Data System (ADS)

    Cao, Tieshan; Zhao, Jie; Cheng, Congqian; Li, Huifang

    2016-03-01

    A dissimilar weld metal was obtained through submerged arc welding of a T911 steel to a T22 steel, and its creep property was explored by stress-relaxation test assisted by some conventional creep tests. The creep rate information of the stress-relaxation test was compared to the minimum and the average creep rates of the conventional creep test. Log-log graph showed that the creep rate of the stress-relaxation test was in a linear relationship with the minimum creep rate of the conventional creep test. Thus, the creep rate of stress-relaxation test could be used in the Monkman-Grant relation to calculate the rupture life. The creep rate of the stress-relaxation test was similar to the average creep rate, and thereby the rupture life could be evaluated by a method of "time to rupture strain." The results also showed that rupture life which was assessed by the Monkman-Grant relation was more accurate than that obtained through the method of "time to rupture strain."

  9. Long-term creep characterization of Gr. 91 steel by modified creep constitutive equations

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Gon; Kim, Sung-Ho; Lee, Chan-Bock

    2011-06-01

    This paper focuses on the long-term creep characterization of Gr. 91 steel using creep constitutive equations. The models of three such equations, a combination of power-law form and omega model (CPO), a combination of exponential form and omega model (CEO), and a combination of logarithmic form and omega model (CLO), which are described as sum decaying primary creep and accelerating tertiary creep, are proposed. A series of creep rupture data was obtained through creep tests with various applied loads at 600 °C. On the basis of the creep data, a nonlinear least-square fitting (NLSF) analysis was carried out to provide the best fit with the experimental data in optimizing the parameter constants of an individual equation. The results of the NLSF analysis showed that in the lower stress regions of 160 MPa (σ/σys <0.65), the CEO model showed a match with the experimental creep data comparable to those of the CPO and CLO models; however, in the higher stress regions of 160 MPa (σ/σy > 0.65), the CPO model showed better agreement than the other two models. It was found that the CEO model was superior to the CPO and CLO models in the modeling of long-term creep curves. Using the CEO model, the long-term creep curves of Gr. 91 steel were numerically characterized, and its creep life was predicted accurately.

  10. Effect of Steam Environment on Creep Behavior of Nextel720/Alumina-Mullite Ceramic Matrix Composite at Elevated Temperature

    DTIC Science & Technology

    2009-03-01

    specimens achieving creep run-out of 100 h. Presence of v steam caused larger creep strains and the higher stress levels decreased the creep life ...tested at the same stress levels in other environments. He reported that environment did not appear to have a significant influence on the creep life of...MPa) Elastic Modulus (GPa) Creep Strain (%) Creep Life (h) 6* Air 1100 65.2 109 0.2 >100 7* Air 1100 64.7 131 0.23 >100 8 Steam 1100 62.9

  11. Modeling Creep Processes in Aging Polymers

    NASA Astrophysics Data System (ADS)

    Olali, N. V.; Voitovich, L. V.; Zazimko, N. N.; Malezhik, M. P.

    2016-03-01

    The photoelastic method is generalized to creep in hereditary aging materials. Optical-creep curves and mechanical-creep or optical-relaxation curves are used to interpret fringe patterns. For materials with constant Poisson's ratio, it is sufficient to use mechanical- or optical-creep curves for this purpose

  12. Modeling of Different Fiber Type and Content SiC/SiC Minicomposites Creep Behavior

    NASA Technical Reports Server (NTRS)

    Almansour, Amjad S.; Morscher, Gregory N.

    2017-01-01

    Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature applications in the aerospace and nuclear industries. However, creep damage mechanism in CMCs is the most dominant mechanism at elevated temperatures. Consequently, the tensile creep behavior of Hi-Nicalon, Hi-Nicalon Type S SiC fibers and Chemical vapor infiltrated Silicon Carbide matrix (CVI-SiC) were characterized and creep parameters were extracted from creep experiments. Some fiber creep tests were performed in inert environment at 1200 C on individual fibers. Creep behavior of different fiber content pristine and precracked Hi-Nicalon and Hi-Nicalon Type S reinforced minicomposites with BN interphases and CVI-SiC matrix were then modelled using the creep data found in this study and the literature and compared with creep experiments results for the pristine and precracked Hi-Nicalon and Hi-Nicalon Type S minicomposites. Finally, the effects of load-sharing and matrix cracking on CMC creep behavior will be discussed.

  13. Methods for structural design at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Ellison, A. M.; Jones, W. E., Jr.; Leimbach, K. R.

    1973-01-01

    A procedure which can be used to design elevated temperature structures is discussed. The desired goal is to have the same confidence in the structural integrity at elevated temperature as the factor of safety gives on mechanical loads at room temperature. Methods of design and analysis for creep, creep rupture, and creep buckling are presented. Example problems are included to illustrate the analytical methods. Creep data for some common structural materials are presented. Appendix B is description, user's manual, and listing for the creep analysis program. The program predicts time to a given creep or to creep rupture for a material subjected to a specified stress-temperature-time spectrum. Fatigue at elevated temperature is discussed. Methods of analysis for high stress-low cycle fatigue, fatigue below the creep range, and fatigue in the creep range are included. The interaction of thermal fatigue and mechanical loads is considered, and a detailed approach to fatigue analysis is given for structures operating below the creep range.

  14. In situ monitored in-pile creep testing of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Kozar, R. W.; Jaworski, A. W.; Webb, T. W.; Smith, R. W.

    2014-01-01

    The experiments described herein were designed to investigate the detailed irradiation creep behavior of zirconium based alloys in the HALDEN Reactor spectrum. The HALDEN Test Reactor has the unique capability to control both applied stress and temperature independently and externally for each specimen while the specimen is in-reactor and under fast neutron flux. The ability to monitor in situ the creep rates following a stress and temperature change made possible the characterization of creep behavior over a wide stress-strain-rate-temperature design space for two model experimental heats, Zircaloy-2 and Zircaloy-2 + 1 wt%Nb, with only 12 test specimens in a 100-day in-pile creep test program. Zircaloy-2 specimens with and without 1 wt% Nb additions were tested at irradiation temperatures of 561 K and 616 K and stresses ranging from 69 MPa to 455 MPa. Various steady state creep models were evaluated against the experimental results. The irradiation creep model proposed by Nichols that separates creep behavior into low, intermediate, and high stress regimes was the best model for predicting steady-state creep rates. Dislocation-based primary creep, rather than diffusion-based transient irradiation creep, was identified as the mechanism controlling deformation during the transitional period of evolving creep rate following a step change to different test conditions.

  15. Creep deformation mechanism mapping in nickel base disk superalloys

    DOE PAGES

    Smith, Timothy M.; Unocic, Raymond R.; Deutchman, Hallee; ...

    2016-05-10

    We investigated the creep deformation mechanisms at intermediate temperature in ME3, a modern Ni-based disk superalloy, using diffraction contrast imaging. Both conventional transmission electron microscopy (TEM) and scanning TEM were utilised. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815 °C and at stresses ranging from 274 to 724 MPa. Both polycrystalline and single-crystal creep tests were conducted. The single-crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760 °C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsicmore » stacking faults. In contrast, these faulting modes occurred much less frequently during creep at 815 °C under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behaviour and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760 °C and above, where the secondary coarsened and the tertiary precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasising the influence of stress and temperature on the underlying creep mechanisms.« less

  16. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  17. Creep substructure formation in sodium chloride single crystals in the power law and exponential creep regimes

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Pharr, G. M.

    1989-01-01

    Creep tests conducted on NaCl single crystals in the temperature range from 373 to 1023 K show that true steady state creep is obtained only above 873 K when the ratio of the applied stress to the shear modulus is less than or equal to 0.0001. Under other stress and temperature conditions, corresponding to both power law and exponential creep, the creep rate decreases monotonically with increasing strain. The transition from power law to exponential creep is shown to be associated with increases in the dislocation density, the cell boundary width, and the aspect ratio of the subgrains along the primary slip planes. The relation between dislocation structure and creep behavior is also assessed.

  18. Creep strain and creep-life prediction for alloy 718 using the omega method

    NASA Astrophysics Data System (ADS)

    Yeom, Jong-Taek; Kim, Jong-Yup; Na, Young-Sang; Park, Nho-Kwang

    2003-12-01

    The creep behavior of Alloy 718 was investigated in relation to the MPCs omega (Ω) method. To evaluate the creep model and determine material parameters, constant load creep tests were performed at different initial stresses in a temperature range between 550°C and 700°C. The imaginary initial strain rate ɛ limits^. _0 and omega (Ω), considered to be important variables in the model, were expressed as a function of initial stress and temperature. For these variables, power-law and hyperbolic sine-law equations were used as constitutive equations for the creep of Alloy 718. To consider the effect of γ″ coarsening leading to a radical drop of tensile strength and creep strength at temperatures above 650°C, different material constants at the temperatures above 650°C were applied. The reliability of the models was investigated in relation to the creep curve and creep life.

  19. Indentation Creep Behavior of Nugget Zone of Friction Stir Welded 2014 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Das, Jayashree; Robi, P. S.; Sankar, M. Ravi

    2018-04-01

    The present study is aimed at evaluating the creep behavior of the nugget zone of friction welded 2014 Aluminum alloy by indentation creep tests. Impression creep testing was carried out at different temperatures of 300°C, 350°C and 400 °C with stress 124.77MPa, 187.16MPa, 249.55 MPa using a 1.0 mm diameter WC indenter. Experiments were conducted till the curve enters the steady state creep region. Constitutive modeling of creep behavior was carried out considering the temperature, stress and steady state creep rate. Microstructural investigation of the crept specimen at 400°C temperature and 187.16 MPa load was carried out and found that the small precipitates accumulate along the grain boundaries at the favorable conditions of the creep temperature and stress, new precipitates evolve due to the ageing. The grains are broken and deformed due to the creep phenomena.

  20. Creep of a Silicon Nitride Under Various Specimen/Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Powers, Lynn M.; Holland, Frederic A.; Gyekenyesi, John P.; Holland, F. A. (Technical Monitor)

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC132) was performed at 1300 C in air using five different specimen/loading configurations, including pure tension, pure compression, four-point uniaxial flexure, ball-on-ring biaxial flexure, and ring-on-ring biaxial flexure. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compressive loading, nominal creep strain generally decreased with time, resulting in less-defined steady-state condition. Of the four different creep formulations - power-law, hyperbolic sine, step, redistribution models - the conventional power-law model still provides the most convenient and reasonable means to estimate simple, quantitative creep parameters of the material. Predictions of creep deformation for the case of multiaxial stress state (biaxial flexure) were made based on pure tension and compression creep data by using the design code CARES/Creep.

  1. Primary and secondary creep in aluminum alloys as a solid state transformation

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2016-08-01

    Despite the massive literature and the efforts devoted to understand the creep behavior of aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters and experimental conditions is, at present, still missing. The analysis of creep is typically carried out in terms of the so-called steady or secondary creep regime. The present work offers an alternative view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers primary and secondary creep together as solid state isothermal transformations, similar to recrystallization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-Kolmogorov equation, typically used to analyze these transformations, can also be employed to explain creep deformation. The description is fully compatible with present (empirical) models of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at different temperatures and stresses to validate the proposed model.

  2. Effect of creep in titanium alloy Ti-6Al-4V at elevated temperature on aircraft design and flight test

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1984-01-01

    Short-term compressive creep tests were conducted on three titanium alloy Ti-6Al-4V coupons at three different stress levels at a temperature of 714 K (825 F). The test data were compared to several creep laws developed from tensile creep tests of available literature. The short-term creep test data did not correlate well with any of the creep laws obtained from available literature. The creep laws themselves did not correlate well with each other. Short-term creep does not appear to be very predictable for titanium alloy Ti-6Al-4V. Aircraft events that result in extreme, but short-term temperature and stress excursions for this alloy should be approached cautiously. Extrapolations of test data and creep laws suggest a convergence toward predictability in the longer-term situation.

  3. Modeling the Role of Dislocation Substructure During Class M and Exponential Creep. Revised

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Iskovitz, Ilana Seiden; Freed, A. D.

    1995-01-01

    The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is correlated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep substructure is examined in both of these creep regimes during stress and temperature change experiments. These observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the magnitude of the stress exponent and steady state behavior are discussed. A theory is developed to predict the macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously developed multiphase, three-dimensional. dislocation substructure creep model. This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.

  4. Creep Damage Analysis of a Lattice Truss Panel Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Li, Shaohua; Luo, Yun; Xu, Shugen

    2017-01-01

    The creep failure for a lattice truss sandwich panel structure has been predicted by finite element method (FEM). The creep damage is calculated by three kinds of stresses: as-brazed residual stress, operating thermal stress and mechanical load. The creep damage at tensile and compressive loads have been calculated and compared. The creep rate calculated by FEM, Gibson-Ashby and Hodge-Dunand models have been compared. The results show that the creep failure is located at the fillet at both tensile and creep loads. The damage rate at the fillet at tensile load is 50 times as much as that at compressive load. The lattice truss panel structure has a better creep resistance to compressive load than tensile load, because the creep and stress triaxiality at the fillet has been decreased at compressive load. The maximum creep strain at the fillet and the equivalent creep strain of the panel structure increase with the increase of applied load. Compared with Gibson-Ashby model and Hodge-Dunand models, the modified Gibson-Ashby model has a good prediction result compared with FEM. However, a more accurate model considering the size effect of the structure still needs to be developed.

  5. The value of creep feeding during the last 84, 56, or 28 days prior to weaning on growth performance of nursing calves grazing endophyte-infected tall fescue.

    PubMed

    Tarr, S L; Faulkner, D B; Buskirk, D D; Ireland, F A; Parrett, D F; Berger, L L

    1994-05-01

    To evaluate limiting the number of days that calves are creep fed, 84 crossbred cows (frame score 4) nursing steer calves were randomly assigned to three replicates over 2 yr to receive one of four lengths of creep feeding (0, 28, 56, or 84 d) for cows and calves grazing endophyte-infected tall fescue. There were no differences in cow performance due to treatments. Calf daily gain increased (P < .001) as the length of time exposed to creep increased. In yr 1, creep intake increased (P < .05) as the length to time exposed to creep increased. In yr 2, there was no difference in intake by period among 28-, 56-, and 84-d treatments. Supplemental feed efficiency was best for 56 and 84 d, and the 28-d treatment was extremely poor. During the feedlot phase, there were differences in performance between the 2 yr and there were no differences in carcass composition due to length of time receiving creep feed. Overall, creep feeding calves for 56 or 84 d improved performance, and the 56-d calves had the most efficient gain. Creep feeding calves for 28 d showed no advantage during the creep feeding period or in the feedlot. Four ruminally fistulated nursing steer calves were used in a 4 x 4 Latin square design to receive treatments of forage alone or .68 kg, 1.13 kg, or 2.27 kg/d of creep plus high-quality, freshly harvested forage available on an ad libitum basis. Forage OM intake and NDF digestibility tended (P = .11) to decrease as intake of creep feed increased. The pH decreased (P < .001), molar proportion of propionate tended to increase (P = .06), and acetate tended to decrease (P = .07) as the level of creep feed intake increased. Higher levels of creep feed tended to cause a decrease in ruminal fiber digestibility and forage intake. Creep feeding calves for 56 or 84 d improved gain; 56 d had the most efficient supplemental gain. Creep feeding calves for 28 d showed no advantage during the creep feeding period or in the feedlot.

  6. Creep of Posidonia Shale at Elevated Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  7. Creep Behavior of Posidonia Shale at Elevated Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    Unconventional reservoir rocks are usually stimulated by repeated hydraulic fracturing operations. However, the production rate often decays with time that may arise from creep-induced fracture closure by proppant embedment. To examine experimentally the creep behavior of shales, we deformed immature carbonate-rich Posidonia shale at constant stress conditions and elevated temperatures between 50° and 200°C and confining pressures of 50 to 200 MPa. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature, and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. At relatively low stress the samples deformed in the primary creep regime with continuously decelerating strain rate. The relation between strain and time can be described by an empirical power law equation, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At high differential stress (85-90% of the triaxial strength), as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, stress corrosion may induce microcrack propagation and coalescence. Secondary creep rates were also described by a power law that predicts faster fracture closure rates than for primary creep and likely contributes to production rate decline. Comparison of our data with published primary creep data on other shales suggest that the long-term creep behavior of shales can be correlated to their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  8. Creep Deformation of Allvac 718Plus

    DOE PAGES

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics aremore » common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.« less

  9. Creep Laboratory manual

    NASA Astrophysics Data System (ADS)

    Osgerby, S.; Loveday, M. S.

    1992-06-01

    A manual for the NPL Creep Laboratory, a collective name given to two testing laboratories, the Uniaxial Creep Laboratory and the Advanced High Temperature Mechanical Testing Laboratory, is presented. The first laboratory is devoted to uniaxial creep testing and houses approximately 50 high sensitivity creep machines including 10 constant stress cam lever machines. The second laboratory houses a low cycle fatigue testing machine of 100 kN capacity driven by a servo-electric actuator, five machines for uniaxial tensile creep testing of engineering ceramics at temperatures up to 1600C, and an electronic creep machine. Details of the operational procedures for carrying out uniaxial creep testing are given. Calibration procedures to be followed in order to comply with the specifications laid down by British standards, and to provide traceability back to the primary standards are described.

  10. Effect of solute interactions in columbium /Nb/ on creep strength

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The creep strength of 17 ternary columbium (Nb)-base alloys was determined using an abbreviated measuring technique, and the results were analyzed to identify the contributions of solute interactions to creep strength. Isostrength creep diagrams and an interaction strengthening parameter, ST, were used to present and analyze data. It was shown that the isostrength creep diagram can be used to estimate the creep strength of untested alloys and to identify compositions with the most economical use of alloy elements. Positive values of ST were found for most alloys, showing that interaction strengthening makes an important contribution to the creep strength of these ternary alloys.

  11. Flexural creep behaviour of jute polypropylene composites

    NASA Astrophysics Data System (ADS)

    Chandekar, Harichandra; Chaudhari, Vikas

    2016-09-01

    Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.

  12. Cyclic Creep and Recovery Behavior of Nextel(Trademark) 720/Alumina Ceramic Matrix Composite at 1200deg C in Air and in Steam Environments

    DTIC Science & Technology

    2007-09-01

    steam. The creep and recovery periods ranged from 3 min to 30 h. The laboratory air tests significantly exceeded the life of the monotonic creep ...orders of magnitude improvement in the creep life and rate. The presence of steam greatly reduced the performance of the material. The results in...steam. Mehrman also reported that prior fatigue subsequently improved in air but creep performance but in steam creep performance remained poor

  13. Effects of Prior Aging on the Creep Response of Carbon Fiber Reinforced PMR-15 Neat Resin at 288 C in an Air Environment

    DTIC Science & Technology

    2007-06-01

    strain versus creep time curves. During creep , stress remains constant, but strain increases. The creep curves of the unaged specimens at 30...recovery period and then levels off and remains nearly constant until the end of the recovery period. The amount of creep strain recovered may...EFFECTS OF PRIOR AGING ON THE CREEP RESPONSE OF CARBON FIBER REINFORCED PMR-15 NEAT RESIN AT 288ºC IN

  14. Effect of Environment on Creep Behavior of an Oxide/Oxide CFCC with 45 deg. Fiber Orientation

    DTIC Science & Technology

    2006-06-01

    MPa, the elastic modulus (E) was 45 GPa, and failure strain was 0.265%. The creep -rupture results showed a decrease in creep life with increasing...failure and increased creep life . A qualitative spectral analysis provided evidence of silicon species migration from the mullite phase of the...N720/AS in 0/90˚ and ±45˚ orientation at 1100°C. Shows that high creep rates generally correspond to a short creep life .................... 17

  15. Uniaxial creep property and viscoelastic-plastic modelling of ethylene tetrafluoroethylene (ETFE) foil

    NASA Astrophysics Data System (ADS)

    Li, Yintang; Wu, Minger

    2015-02-01

    Ethylene tetrafluoroethylene (ETFE) foil has been widely used in spatial structures for its light weight and high transparency. This paper studies short- and long-term creep properties of ETFE foil. Two series of short-term creep and recovery tests were performed, in which residual strain was observed. A long-term creep test of ETFE foil was also conducted and lasted about 400 days. A viscoelastic-plastic model was then established to describe short-term creep and recovery behaviour of ETFE foil. This model contains a traditional generalised Kelvin part and an added steady-flow component to represent viscoelastic and viscoplastic behaviour, respectively. The model can fit tests' data well at three stresses and six temperatures. Additionally, time-temperature superposition was adopted to simulate long-term creep behaviour of ETFE foil. Horizontal shifting factors were determined by W.L.F. equation in which transition temperature was simulated by shifting factors. Using this equation, long-term creep behaviours at three temperatures were predicted. The results of the long-term creep test showed that a short-term creep test at identical temperatures was insufficient to predict additional creep behaviour, and the long-term creep test verified horizontal shifting factors which were derived from the time-temperature superposition.

  16. Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi

    The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.

  17. Long-Term Creep and Creep Rupture Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Rahman, M.; Mach, A.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)

    2001-01-01

    Tensile creep behavior of SiC/SiNC ceramic matrix composites at elevated temperatures and at various stress levels have been investigated for turbine engine applications. The objective of this research is to present creep behavior of SiC/SiCN composites at stress levels above and below the monotonic proportional limit strength and predict the life at creep rupture conditions. Tensile creep-rupture tests were performed on an Instron 8502 servohydraulic testing machine at constant load conditions up to a temperature limit of 1000 C. Individual creep curves indicate three stages such as primary, secondary, and tertiary. The creep rate increased linearly at an early stage and then gradually became exponential at higher strains. The stress exponent and activation energy were also obtained at 700 and 1000 C. The specimen lifetime was observed to be 55 hrs at 121 MPa and at 700 C. The life span reduced to 35 hrs at 143 MPa and at 1000 C. Scanning electron microscopy observations revealed significant changes in the crystalline phases and creep damage development. Creep failures were accompanied by extensive fiber pullout, matrix cracking, and debonding along with fiber fracture. The creep data was applied to Time-Temperature-Stress superposition model and the Manson-Haferd parametric model for long-time life prediction.

  18. Biomechanical study using fuzzy systems to quantify collagen fiber recruitment and predict creep of the rabbit medial collateral ligament.

    PubMed

    Ali, A F; Taha, M M Reda; Thornton, G M; Shrive, N G; Frank, C B

    2005-06-01

    In normal daily activities, ligaments are subjected to repeated loads, and respond to this environment with creep and fatigue. While progressive recruitment of the collagen fibers is responsible for the toe region of the ligament stress-strain curve, recruitment also represents an elegant feature to help ligaments resist creep. The use of artificial intelligence techniques in computational modeling allows a large number of parameters and their interactions to be incorporated beyond the capacity of classical mathematical models. The objective of the work described here is to demonstrate a tool for modeling creep of the rabbit medial collateral ligament that can incorporate the different parameters while quantifying the effect of collagen fiber recruitment during creep. An intelligent algorithm was developed to predict ligament creep. The modeling is performed in two steps: first, the ill-defined fiber recruitment is quantified using the fuzzy logic. Second, this fiber recruitment is incorporated along with creep stress and creep time to model creep using an adaptive neurofuzzy inference system. The model was trained and tested using an experimental database including creep tests and crimp image analysis. The model confirms that quantification of fiber recruitment is important for accurate prediction of ligament creep behavior at physiological loads.

  19. Creep model of unsaturated sliding zone soils and long-term deformation analysis of landslides

    NASA Astrophysics Data System (ADS)

    Zou, Liangchao; Wang, Shimei; Zhang, Yeming

    2015-04-01

    Sliding zone soil is a special soil layer formed in the development of a landslide. Its creep behavior plays a significant role in long-term deformation of landslides. Due to rainfall infiltration and reservoir water level fluctuation, the soils in the slide zone are often in unsaturated state. Therefore, the investigation of creep behaviors of the unsaturated sliding zone soils is of great importance for understanding the mechanism of the long-term deformation of a landslide in reservoir areas. In this study, the full-process creep curves of the unsaturated soils in the sliding zone in different net confining pressure, matric suctions and stress levels were obtained from a large number of laboratory triaxial creep tests. A nonlinear creep model for unsaturated soils and its three-dimensional form was then deduced based on the component model theory and unsaturated soil mechanics. This creep model was validated with laboratory creep data. The results show that this creep model can effectively and accurately describe the nonlinear creep behaviors of the unsaturated sliding zone soils. In order to apply this creep model to predict the long-term deformation process of landslides, a numerical model for simulating the coupled seepage and creep deformation of unsaturated sliding zone soils was developed based on this creep model through the finite element method (FEM). By using this numerical model, we simulated the deformation process of the Shuping landslide located in the Three Gorges reservoir area, under the cycling reservoir water level fluctuation during one year. The simulation results of creep displacement were then compared with the field deformation monitoring data, showing a good agreement in trend. The results show that the creeping deformations of landslides have strong connections with the changes of reservoir water level. The creep model of unsaturated sliding zone soils and the findings obtained by numerical simulations in this study are conducive to reveal the mechanisms of the dynamic process of landslide deformation, and serve as an important basis for the prediction and evaluation of landslides.

  20. Creep Behavior in Interlaminar Shear of a CVI SiC/SiC Composite at Elevated Temperatures in Air and Steam

    DTIC Science & Technology

    2012-03-22

    upper use temperature under high tensile stress (allows long life , dimensional control, low residual CMC stress) Matrix Creep , Fiber Creep Long... creep life due to steam was more significant at 28%. However, at 22 MPa, the presence of steam appeared to be beneficial and extended creep

  1. Investigation of Three Analytical Hypothesis for Determining Material Creep Behavior under Varied Loads, with an Application to 2024-T3 Aluminum-Alloy Sheet in Tension at 400 F

    NASA Technical Reports Server (NTRS)

    Berkovits, Avraham

    1961-01-01

    Three existing hypotheses are formulated mathematically to estimate tensile creep strain under varied loads and constant temperature from creep data obtained under constant load and constant temperature. hypotheses investigated include the time-hardening, strain-hardening, and life-fraction rules. Predicted creep behavior is compared with data obtained from tensile creep tests of 2024-T3 aluminum-alloy sheet at 400 F under cyclic-load conditions. creep strain under varied loads is presented on the basis of an equivalent stress, derived from the life-fraction rule, which reduces the varied-load case to a constant-load problem. Creep strain in the region of interest for structural design and rupture times, determined from the hypotheses investigated, are in fair agreement with data in most cases, although calculated values of creep strain are generally greater than the experimental values because creep recovery is neglected in the calculations.

  2. Creep and stress rupture of a mechanically alloyed oxide dispersion and precipitation strengthened nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Howson, T. E.; Tien, J. K.; Mervyn, D. A.

    1980-01-01

    The creep and stress rupture behavior of a mechanically alloyed oxide dispersion strengthened (ODS) and gamma-prime precipitation strengthened nickel-base alloy (alloy MA 6000E) was studied at intermediate and elevated temperatures. At 760 C, MA 6000E exhibits the high creep strength characteristic of nickel-base superalloys and at 1093 C the creep strength is superior to other ODS nickel-base alloys. The stress dependence of the creep rate is very sharp at both test temperatures and the apparent creep activation energy measured around 760 C is high, much larger in magnitude than the self-diffusion energy. Stress rupture in this large grain size material is transgranular and crystallographic cracking is observed. The rupture ductility is dependent on creep strain rate, but usually is low. These and accompanying microstructural results are discussed with respect to other ODS alloys and superalloys and the creep behavior is rationalized by invoking a recently-developed resisting stress model of creep in materials strengthened by second phase particles.

  3. Creep Behavior of Passive Bovine Extraocular Muscle

    PubMed Central

    Yoo, Lawrence; Kim, Hansang; Shin, Andrew; Gupta, Vijay; Demer, Joseph L.

    2011-01-01

    This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at 1.37 ± 0.03 (standard deviation, SD). The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics. PMID:22131809

  4. The Effect of Ultrafine-Grained Microstructure on Creep Behaviour of 9% Cr Steel

    PubMed Central

    Kral, Petr; Dvorak, Jiri; Sklenicka, Vaclav; Masuda, Takahiro; Horita, Zenji; Kucharova, Kveta; Kvapilova, Marie; Svobodova, Marie

    2018-01-01

    The effect of ultrafine-grained size on creep behaviour was investigated in P92 steel. Ultrafine-grained steel was prepared by one revolution of high-pressure torsion at room temperature. Creep tensile tests were performed at 873 K under the initially-applied stress range between 50 and 160 MPa. The microstructure was investigated using transmission electron microscopy and scanning electron microscopy equipped with an electron-back scatter detector. It was found that ultrafine-grained steel exhibits significantly faster minimum creep rates, and there was a decrease in the value of the stress exponent in comparison with coarse-grained P92 steel. Creep results also showed an abrupt decrease in the creep rate over time during the primary stage. The abrupt deceleration of the creep rate during the primary stage was shifted, with decreasing applied stress with longer creep times. The change in the decline of the creep rate during the primary stage was probably related to the enhanced precipitation of the Laves phase in the ultrafine-grained microstructure. PMID:29757206

  5. Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

    NASA Astrophysics Data System (ADS)

    Tahir, Fraaz

    The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.

  6. Creep and creep rupture of laminated graphite/epoxy composites. Ph.D. Thesis. Final Report, 1 Oct. 1979 - 30 Sep. 1980

    NASA Technical Reports Server (NTRS)

    Dillard, D. A.; Morris, D. H.; Brinson, H. F.

    1981-01-01

    An incremental numerical procedure based on lamination theory is developed to predict creep and creep rupture of general laminates. Existing unidirectional creep compliance and delayed failure data is used to develop analytical models for lamina response. The compliance model is based on a procedure proposed by Findley which incorporates the power law for creep into a nonlinear constitutive relationship. The matrix octahedral shear stress is assumed to control the stress interaction effect. A modified superposition principle is used to account for the varying stress level effect on the creep strain. The lamina failure model is based on a modification of the Tsai-Hill theory which includes the time dependent creep rupture strength. A linear cumulative damage law is used to monitor the remaining lifetime in each ply.

  7. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    NASA Technical Reports Server (NTRS)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  8. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  9. Investigation of creep by use of closed loop servo-hydraulic test system

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Yao, J. C.

    1981-01-01

    Creep tests were conducted by means of a closed loop servo-controlled materials test system. These tests are different from the conventional creep tests in that the strain history prior to creep may be carefully monitored. Tests were performed for aluminum alloy 6061-0 at 150 C and monitored by a PDP 11/04 minicomputer at a preset constant plastic-strain rate prehistory. The results show that the plastic-strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. The concepts of intrinsic time and strain rate sensitivity function are employed and modified according to the present observation.

  10. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  11. Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry

    1998-01-01

    As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.

  12. Creep of trabecular bone from the human proximal tibia

    PubMed Central

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L.; McKittrick, Joanna

    2014-01-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for two hours and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37°C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. PMID:24857486

  13. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2016-12-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  14. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    NASA Astrophysics Data System (ADS)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  15. Creep rupture analysis of a beam resting on high temperature foundation

    NASA Technical Reports Server (NTRS)

    Gu, Randy J.; Cozzarelli, Francis A.

    1988-01-01

    A simplified uniaxial strain controlled creep damage law is deduced with the use of experimental observation from a more complex strain dependent law. This creep damage law correlates the creep damage, which is interpreted as the density variation in the material, directly with the accumulated creep strain. Based on the deduced uniaxial strain controlled creep damage law, a continuum mechanical creep rupture analysis is carried out for a beam resting on a high temperature elastic (Winkler) foundation. The analysis includes the determination of the nondimensional time for initial rupture, the propagation of the rupture front with the associated thinning of the beam, and the influence of creep damage on the deflection of the beam. Creep damage starts accumulating in the beam as soon as the load is applied, and a creep rupture front develops at and propagates from the point at which the creep damage first reaches its critical value. By introducing a series of fundamental assumptions within the framework of technical Euler-Bernoulli type beam theory, a governing set of integro-differential equations is derived in terms of the nondimensional bending moment and the deflection. These governing equations are subjected to a set of interface conditions at the propagating rupture front. A numerical technique is developed to solve the governing equations together with the interface equations, and the computed results are presented and discussed in detail.

  16. Development of an accelerated creep testing procedure for geosynthetics.

    DOT National Transportation Integrated Search

    1997-09-01

    The report presents a procedure for predicting creep strains of geosynthetics using creep tests at elevated temperatures. Creep testing equipment was constructed and tests were performed on two types of geosynthetics: High Density Polyethylene (HDPE)...

  17. Prediction of elemental creep. [steady state and cyclic data from regression analysis

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Rummler, D. R.

    1975-01-01

    Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.

  18. Primary creep deformation behaviors related with lamellar interface in TiAl alloy

    NASA Astrophysics Data System (ADS)

    Cho, Han Seo; Nam, Soo Woo; Kim, Young-Won

    1998-02-01

    Constant tensile stress creep tests under the condition of 760 816°C/172 276 MPa in an air environment are conducted, and the microstructural evolution during primary creep deformation at the creep condition of 816°C/172 MPa was observed by transmission electron microscopy (TEM) for the lamellar structured Ti-45. 5Al-2Cr-2.6Nb-0.17W-0.lB-0.2C-0.15Si (at.%) alloy. The amount of creep strain deformed during primary creep stage is considered to be the summation of the strains occurred by gliding of initial dislocations and of newly generated dislocations. Creep rate controlling process within the primary stage seems to be shifting from the initial dislocation climb controlled to the generation of the new dislocations by the phase transformation of 2 to as creep strain increases.

  19. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    NASA Technical Reports Server (NTRS)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  20. Recovery from nonlinear creep provides a window into physics of polymer glasses

    NASA Astrophysics Data System (ADS)

    Caruthers, James; Medvedev, Grigori

    Creep under constant applied stress is one of the most basic mechanical experiments, where it exhibits extremely rich relaxation behavior for polymer glasses. As many as five distinct stages of nonlinear creep are observed, where the rate of creep dramatically slows down, accelerates and then slows down again. Modeling efforts to-date has primarily focused on predicting the intricacies of the nonlinear creep curve. We argue that as much attention should be paid to the creep recovery response, when the stress is removed. The experimental creep recovery curve is smooth, where the rate of recovery is initially quite rapid and then progressively decreases. In contrast, the majority of the traditional constitutive models predict recovery curves that are much too abrupt. A recently developed stochastic constitutive model that takes into account the dynamic heterogeneity of glasses produces a smooth creep recovery response that is consistent with experiment.

  1. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  2. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Sokolov, Mikhail A; Sham, Sam

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure formore » both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.« less

  3. Experimental Plan for EDF Energy Creep Rabbit Graphite Irradiations- Rev. 2 (replaces Rev. 0 ORNL/TM/2013/49).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D

    2014-07-01

    The experimental results obtained here will assist in the development and validation of future models of irradiation induced creep of graphite by providing the following data: Inert creep stain data from low to lifetime AGR fluence Inert creep-property data (especially CTE) from low to lifetime AGR fluence Effect of oxidation on creep modulus (by indirect comparison with experiment 1 and direct comparison with experiment 3 NB. Experiment 1 and 3 are not covered here) Data to develop a mechanistic understanding, including oAppropriate creep modulus (including pinning and high dose effects on structure) oInvestigation of CTE-creep strain behavior under inert conditionsmore » oInformation on the effect of applied stress/creep strain on crystallite orientation (requires XRD) oEffect of creep strain on micro-porosity (requires tomography & microscopy) This document describes the experimental work planned to meet the requirements of project technical specification [1] and EDF Energy requests for additional Pre-IE work. The PIE work is described in detail in this revision (Section 8 and 9).« less

  4. Interactions between creep, fatigue and strain aging in two refractory alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1972-01-01

    The application of low-amplitude, high-frequency fatigue vibrations during creep testing of two strain-aging refractory alloys (molybdenum-base TZC and tantalum-base T-111) significantly reduced the creep strength of these materials. This strength reduction caused dramatic increases in both the first stage creep strain and the second stage creep rate. The magnitude of the creep rate acceleration varied directly with both frequency and A ratio (ratio of alternating to mean stress), and also varied with temperature, being greatest in the range where the strain-aging phenomenon was most prominent. It was concluded that the creep rate acceleration resulted from a negative strain rate sensitivity which is associated with the strain aging phenomenon in these materials. (A negative rate sensitivity causes flow stress to decrease with increasing strain rate, instead of increasing as in normal materials). By combining two analytical expressions which are normally used to describe creep and strain aging behavior, an expression was developed which correctly described the influence of temperature, frequency, and A ratio on the TZC creep rate acceleration.

  5. Fractional order creep model for dam concrete considering degree of hydration

    NASA Astrophysics Data System (ADS)

    Huang, Yaoying; Xiao, Lei; Bao, Tengfei; Liu, Yu

    2018-05-01

    Concrete is a material that is an intermediate between an ideal solid and an ideal fluid. The creep of concrete is related not only to the loading age and duration, but also to its temperature and temperature history. Fractional order calculus is a powerful tool for solving physical mechanics modeling problems. Using a software element based on the generalized Kelvin model, a fractional order creep model of concrete considering the loading age and duration is established. Then, the hydration rate of cement is considered in terms of the degree of hydration, and the fractional order creep model of concrete considering the degree of hydration is established. Moreover, uniaxial tensile creep tests of dam concrete under different curing temperatures were conducted, and the results were combined with the creep test data and complex optimization method to optimize the parameters of a new creep model. The results show that the fractional tensile creep model based on hydration degree can better describe the tensile creep properties of concrete, and this model involves fewer parameters than the 8-parameter model.

  6. Experimental and modeling results of creep-fatigue life of Inconel 617 and Haynes 230 at 850 °C

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L., III; Busby, Jeremy T.; Mo, Kun; Stubbins, James F.

    2013-01-01

    Creep-fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 °C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep-fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep-fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep-fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep-fatigue life. The linear damage summation could predict the creep-fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep-fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep-fatigue life prediction results for both materials.

  7. A Comparison of the Irradiation Creep Behavior of Several Graphites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Windes, Will

    2016-01-01

    Graphite creep strain data from the irradiation creep capsule Advanced Graphite Creep-1 (AGC-1) are reported. This capsule was the first (prototype) of a series of five or six capsules planned as part of the AGC experiment, which was designed to fully characterize the effects of neutron irradiation and the radiation creep behavior of current nuclear graphite. The creep strain data and analysis are reported for the six graphite grades incorporated in the capsule. The AGC-1 capsule was irradiated in the Advanced Test Reactor at Idaho National Laboratory (INL) at approximately 700 C and to a peak dose of 7 dpamore » (displacements per atom). The specimen s final dose, temperature, and stress conditions have been reported by INL and were used during this analysis. The derived creep coefficients (K) were calculated for each grade and were found to compare well to literature data for the creep coefficient, even under the wide range of AGC-1 specimen temperatures. Comparisons were made between AGC-1 data and historical grade data for creep coefficients.« less

  8. Effects of misalignment on mechanical behavior of metals in creep

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1981-01-01

    Creep tests were conducted by means of a closed loop servocontrolled materials test system. The strain history prior to creep is carefully monitored. Tests were performed for aluminum alloy 6061-O at 150 C and were monitored by a PDP 11/04 minicomputer at a preset constant plastic strain rate prehistory. The results show that the plastic strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. Intrinsic time and strain rate sensitivity function concepts are employed and modified according to the present observation.

  9. Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure

    NASA Astrophysics Data System (ADS)

    Bartholomeusz, Michael F.; Wert, John A.

    1994-10-01

    A two-phase TiAl/Ti3Al alloy with a lamellar microstructure has been previously shown to exhibit a lower minimum creep rate than the minimum creep rates of the constituent TiAl and Ti3Al single-phase alloys. Fiducial-line experiments described in the present article demonstrate that the creep rates of the constituent phases within the two-phase TiAl/Ti3Al lamellar alloy tested in compression are more than an order of magnitude lower than the creep rates of single-phase TiAl and Ti3Al alloys tested in compression at the same stress and temperature. Additionally, the fiducial-line experiments show that no interfacial sliding of the phases in the TiAl/Ti3Al lamellar alloy occurs during creep. The lower creep rate of the lamellar alloy is attributed to enhanced hardening of the constituent phases within the lamellar microstructure. A composite-strength model has been formulated to predict the creep rate of the lamellar alloy, taking into account the lower creep rates of the constituent phases within the lamellar micro-structure. Application of the model yields a very good correlation between predicted and experimentally observed minimum creep rates over moderate stress and temperature ranges.

  10. Contribution to irradiation creep arising from gas-driven bubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, C.H.; Garner, F.A.

    1998-03-01

    In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantialmore » creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.« less

  11. High-Temperature Creep Behaviour and Positive Effect on Straightening Deformation of Q345c Continuous Casting Slab

    NASA Astrophysics Data System (ADS)

    Guo, Long; Zhang, Xingzhong

    2018-03-01

    Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.

  12. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Powers, L. M.; Jadaan, O. M.; Gyekenyesi, J. P.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural application such as in advanced turbine engine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilizes commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life, of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the Ceramics Analysis and Reliability Evaluation of Structures/CREEP (CARES/CREEP) integrated design program, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benchmark problems and engine components are included.

  13. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Powers, L. M.; Jadaan, O. M.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilized commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the CARES/CREEP (Ceramics Analysis and Reliability Evaluation of Structures/CREEP) integrated design programs, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benechmark problems and engine components are included.

  14. Bend stress relaxation and tensile primary creep of a polycrystalline alpha-SiC fiber

    NASA Technical Reports Server (NTRS)

    Hee Man, Yun; Goldsby, Jon C.; Morscher, Gregory N.

    1995-01-01

    Understanding the thermomechanical behavior (creep and stress relaxation) of ceramic fibers is of both practical and basic interest. On the practical level, ceramic fibers are the reinforcement for ceramic matrix composites which are being developed for use in high temperature applications. It is important to understand and model the total creep of fibers at low strain levels where creep is predominantly in the primary stage. In addition, there are many applications where the component will only be subjected to thermal strains. Therefore, the stress relaxation of composite consituents in such circumstances will be an important factor in composite design and performance. The objective of this paper is to compare and analyze bend stress relaxation and tensile creep data for alpha-SiC fibers produced by the Carborundum Co. (Niagara Falls, NY). This fiber is of current technical interest and is similar in composition to bulk alpha-SiC which has been studied under compressive creep conditions. The temperature, time, and stress dependences will be discussed for the stress relaxation and creep results. In addition, some creep and relaxation recovery experiments were performed in order to understand the complete viscoelastic behavior, i.e. both recoverable and nonrecoverable creep components of these materials. The data will be presented in order to model the deformation behavior and compare relaxation and/or creep behavior for relatively low deformation strain conditions of practical concern. Where applicable, the tensile creep results will be compared to bend stress relaxation data.

  15. Effect of cold work on the stress corrosion cracking behavior of Alloy 690 in supercritical water environment

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Du, Donghai; Gao, Wenhua; Guo, Xianglong; Zhang, Lefu; Andresen, Peter L.

    2018-01-01

    The stress corrosion cracking (SCC) behavior of Alloy 690 with 0, 20% and 30% cold work (CW) was studied in supercritical water (SCW) environment with an emphasis on CW and creep on the CGRs (CGR). SCC and creep CGRs increased with %CW, which correlated hardness very well. Microscopic characterization of the crack tip and fracture surface showed obvious cavity-like features, which is clear evidence of creep attack. The creep CGRs in inert gas were comparable to the SCC CGRs in SCW, indicating that creep is a major factor in crack growth. Increasing level of CW was found to increase the creep susceptibility, and high activation energies for creep crack growth were observed between 500 °C and 550 °C.

  16. The effect of aluminium on the creep behavior of titanium aluminide alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandy, T.K.; Mishra, R.S.; Gogia, A.K.

    Small increases in the Al content of Ti{sub 3}Al-Nb alloys are known to improve creep resistance at the expense of the room temperature ductility. Though considerable work has been done on the creep behavior of titanium aluminide alloys, a systematic investigation involving the role of Al on the creep of aluminides is lacking. In the present study the authors have therefore carried out a complete investigation on stress and temperature effects on two alloys with differing Al contents, Ti-24Al-15Nb and Ti-26Al-15Nb (nominal composition in at%) in order to understand the effect of Al in terms of power law creep behavior.more » The following conclusions are made: (1) A strong Al effect on the creep resistance of O phase alloys in the Ti-Al-Nb systems has been confirmed, through a study of stress and temperature effects on the creep behavior of the Ti-24Al-15Nb and the Ti-26Al-15Nb compositions. (2) It has been shown, however, that the small differences in Al do not affect either the activation energies for creep ({approximately}370 kJ/mole) or the creep mechanism (climb controlled creep with a stress exponent of 4). The activation energies and stress exponents are similar to that observed in single phase O alloys. (3) It is suggested that Al influences creep strength through an intrinsic effect on the pre-exponential term AD{sub o} in the power law creep equation. It is possible that this effect is related to a higher ordering energy of the O phase with increasing Al content.« less

  17. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize themore » mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.« less

  18. Viscoplastic Creep Response and Microstructure of As-Fabricated Microscale Sn-3.0Ag-0.5Cu Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Cuddalorepatta, Gayatri; Williams, Maureen; Dasgupta, Abhijit

    2010-10-01

    The viscoplastic behavior of as-fabricated, undamaged, microscale Sn-3.0 Ag-0.5Cu (SAC305) Pb-free solder is investigated and compared with that of eutectic Sn-37Pb solder and near-eutectic Sn-3.8Ag-0.7Cu (SAC387) solder from prior studies. Creep measurements of microscale SAC305 solder shear specimens show significant piece-to-piece variability under identical loading. Orientation imaging microscopy reveals that these specimens contain only a few, highly anisotropic Sn grains across the entire joint. For the studied loads, the coarse-grained Sn microstructure has a more significant impact on the scatter in primary creep compared to that in the secondary creep. The observed lack of statistical homogeneity (microstructure) and joint-dependent mechanical behavior of microscale SAC305 joints are consistent with those observed for functional microelectronics interconnects. Compared with SAC305 joints, microscale Sn-37Pb shear specimens exhibit more homogenous behavior and microstructure with a large number of small Sn (and Pb) grains. Creep damage in the Pb-free joint is predominantly concentrated at highly misoriented Sn grain boundaries. The coarse-grained Sn microstructure recrystallizes into new grains with high misorientation angles under creep loading. In spite of the observed joint-dependent behavior, as-fabricated SAC305 is significantly more creep resistant than Sn-37Pb solder and slightly less creep resistant than near-eutectic SAC387 solder. Average model constants for primary and secondary creep of SAC305 are presented. Since the viscoplastic measurements are averaged over a wide range of grain configurations, the creep model constants represent the effective continuum behavior in an average sense. The average secondary creep behavior suggests that the dominant creep mechanism is dislocation climb assisted by dislocation pipe diffusion.

  19. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  20. Observation of creep behavior of cellulose electro-active paper (EAPap) actuator

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hyung; Lee, Sang-Woo; Yun, Gyu-Young; Yang, Chulho; Kim, Heung Soo; Kim, Jaehwan

    2009-03-01

    Understanding of creep effects on actuating mechanisms is important to precisely figure out the behavior of material. Creep behaviors of cellulose based Electro-Active Paper (EAPap) were studied under different constant loading conditions. We found the structural modification of microfibrils in EAPap after creep test. Structural differences of as-prepared and after creep tested samples were compared by SEM measurements. From the measured creep behaviors by different loading conditions, two different regions of induced strain and current were clearly observed as the measurement time increased. It is consider that local defects may occur and becomes micro-dimple or micro-crack formations in lower load cases as localized deformation proceeds, while the shrinkage of diameter of elongated fibers was observed only at the high level of loading. Therefore, cellulose nanofibers may play a role to be against the creep load and prevent the localized structural deformations. The results provide useful creep behavior and mechanism to understand the mechanical behavior of thin visco-elastic EAPap actuator.

  1. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.

    PubMed

    Jin, J; Yusoh, K; Zhang, H X; Song, M

    2016-03-01

    A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.

  2. Characteristics of dislocation structure in creep deformed lamellar tial alloy within primary regime

    NASA Astrophysics Data System (ADS)

    Cho, H. S.; Nam, Soo W.

    1999-06-01

    In this investigation, dislocations of a lamellar TiAl alloy are analyzed after creeping in the primary range at 800°C/200MPa in order to interpret their mobility It was found that the dislocation density in γ-laths decreased as the creep deformation proceeds within primary creep regime Schmid factor analysis suggests that the creep deformation in the early stage of the primary creep regime is controlled by the gliding of some of the initial dislocations which have a high enough Schmid factor As the creep deformation progressed, those dislocations with high Schmid factors slip preferentially to be annihilated at the α-γ interface For further continuous deformation, dislocation generation is required, and for this, α-phase is transformed to γ-phase in order to generate new dislocations A slow dislocation generation process by phase transformation of α-phase compared with the absorbing rate to sinks is responsible for the decreasing dislocation density as the creep strain increases

  3. Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.

    1977-01-01

    The tensile properties at room temperature and at 1365 K and the tensile creep properties at low strain rates at 1365 K were measured for several oxide-dispersion-strengthened (ODS) alloys. The alloys examined included ODS Ni, ODS Ni-20Cr, and ODS Ni-16Cr-Al. Metallography of creep tested, large grain size ODS alloys indicated that creep of these alloys is an inhomogeneous process. All alloys appear to possess a threshold stress for creep. This threshold stress is believed to be associated with diffusional creep in the large grain size ODS alloys and normal dislocation motion in perfect single crystal (without transverse low angle boundaries) ODS alloys. Threshold stresses for large grain size ODS Ni-20Cr and Ni-16Cr-Al type alloys are dependent on the grain aspect ratio. Because of the deleterious effect of prior creep on room temperature mechanical properties of large grain size ODS alloys, it is speculated that the threshold stress may be the design limiting creep strength property.

  4. Solder creep-fatigue interactions with flexible leaded parts

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Wen, L. C.; Mon, G. R.; Jetter, E.

    1992-01-01

    With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.

  5. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    NASA Astrophysics Data System (ADS)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  6. Silicon Nitride Creep Under Various Specimen-Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Holland, Frederic A.

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC 132) was performed at 1300 C in air using five different specimen-loading configurations: (1) pure tension, (2) pure compression, (3) four-point uniaxial flexure, (4) ball-on-ring biaxial flexure, and (5) ring-on-ring biaxial flexure. This paper reports experimental results as well as test techniques developed in this work. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compression loading, nominal creep strain generally decreased with time, resulting in a less-defined steady-state condition. Of the four creep formulations-power-law, hyperbolic sine, step, and redistribution--the conventional power-law formulation still provides the most convenient and reasonable estimation of the creep parameters of the NC 132 material. The data base to be obtained will be used to validate the NASA Glenn-developed design code CARES/Creep (ceramics analysis and reliability evaluation of structures and creep).

  7. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1976-01-01

    A method of analysis was developed for predicting permanent cyclic creep deflections in stiffened panel structures. This method uses creep equations based on cyclic tensile creep tests and a computer program to predict panel deflections as a function of mission cycle. Four materials were investigated - a titanium alloy (Ti-6Al-4V), a cobalt alloy (L605), and two nickel alloys (Rene'41 and TDNiCr). Steady-state and cyclic creep response data were obtained by testing tensile specimens fabricated from thin gage sheet (0.025 and 0.63 cm nominal). Steady-state and cyclic creep equations were developed which describe creep as a function of time, temperature and load. Tests were also performed on subsize (6.35 x 30.5 cm) rib and corrugation stiffened panels. These tests were used to correlate creep responses between elemental specimens and panels. The panel response was analyzed by use of a specially written computer program.

  8. Creep avalanches on San Andreas Fault and their underlying mechanism from 19 years of InSAR and seismicity

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, M.; Shirzaei, M.

    2017-12-01

    Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep determines the earthquake potential, while its temporal evolution, known as slow slip events (SSE), may trigger earthquakes. Although the conditions promoting fault creep are well-established, the mechanism for initiating self-sustaining and sometimes cyclic creep events is enigmatic. Here we investigate a time series of 19 years of surface deformation measured by radar interferometry between 1992 and 2011 along the Central San Andreas Fault (CSAF) to constrain the temporal evolution of creep. We show that the creep rate along the CSAF has a sporadic behavior, quantified with a Gumbel-like probability distribution characterized by longer tail toward the extreme positive rates, which is signature of burst-like creep dynamics. Defining creep avalanches as clusters of isolated creep with rates exceeding the shearing rate of tectonic plates, we investigate the statistical properties of their size and length. We show that, similar to the frequency-magnitude distribution of seismic events, the distribution of potency estimated for creep avalanches along the CSAF follows a power law, dictated by the distribution of their along-strike lengths. We further show that an ensemble of concurrent creep avalanches which aseismically rupture isolated fault compartments form the semi-periodic SSEs observed along the CSAF. Using a rate and state friction model, we show that normal stress is temporally variable on the fault, and support this using seismic observations. We propose that, through a self-sustaining fault-valve behavior, compaction induced elevation of pore pressure within hydraulically isolated fault compartments, and subsequent frictional dilation is the cause for the observed episodic SSEs. We further suggest that the 2004 Parkfield Mw6 earthquake may have been triggered by the SSE on adjacent creeping segment, which increased Coulomb failure stress up to 0.45 bar/yr. While creeping segments are suggested to act as barriers and arrest rupture, our study implies that SSEs on these zones may trigger seismic events on adjacent locked parts.

  9. Low Temperature Creep of a Titanium Alloy Ti-6Al-2Cb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Chu, H. P.

    1997-01-01

    This paper presents a methodology for the analysis of low temperature creep of titanium alloys in order to establish design limitations due to the effect of creep. The creep data on a titanium Ti-6Al-2Cb-1Ta-0.8Mo are used in the analysis. A creep equation is formulated to determine the allowable stresses so that creep at ambient temperatures can be kept within an acceptable limit during the service life of engineering structures or instruments. Microcreep which is important to design of precision instruments is included in the discussion also.

  10. High-temperature creep properties and life predictions for T91 and T92 steels

    NASA Astrophysics Data System (ADS)

    Pan, J. P.; Tu, S. H.; Sun, G. L.; Zhu, X. W.; Tan, L. J.; Hu, B.

    2018-01-01

    9-11%Cr heat-resistant steels are widely used in high-temperature and high-pressure boilers of advanced power plants. In the current paper, high-temperature creep behaviors of T91 and T92 steels have been investigated. Creep tests were performed for both steels at varied temperatures. The creep mechanisms of T91 and T92 steels were elucidated by analyzing the creep rupture data of the two steels. In addition, Manson-Haferd model was employed to predict the creep life of T91 and T92 steels, the results of which indicate that the Manson-Haferd model works well for the two steels.

  11. Creep Mechanisms of a Ni-Co-Based-Wrought Superalloy with Low Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Tian, Chenggang; Xu, Ling; Cui, Chuanyong; Sun, Xiaofeng

    2015-10-01

    In order to study the influences of stress and temperature on the creep deformation mechanisms of a newly developed Ni-Co-based superalloy with low stacking fault energy, creep experiments were carried out under a stress range of 345 to 840 MPa and a temperature range of 923 K to 1088 K (650 °C to 815 °C). The mechanisms operated under the various creep conditions were identified and the reasons for their transformation were well discussed. A deformation mechanism map under different creep conditions was summarized, which provides a qualitative representation of the operative creep mechanisms as a function of stress and temperature.

  12. Effect of solutes in binary columbium /Nb/ alloys on creep strength

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400 F for solute concentrations to 20 at.%, using a new method of creep-strength measurement. The technique permits rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase the creep strength of columbium except tantalum. This element did not strengthen columbium until the concentration exceeded 10 at.%. Hafnium, zirconium, and vanadium strengthed columbium most at low temperatures and concentrations, whereas tungsten, molybdenum, and rhenium contributed more to creep strength at high temperatures and concentrations.

  13. A 12 year EDF study of concrete creep under uniaxial and biaxial loading

    DOE PAGES

    Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric; ...

    2017-11-04

    This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less

  14. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  15. The role of cobalt on the creep of Waspaloy

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  16. Creep Behavior in Interlaminar Shear of a SiC/SiC Ceramic Composite with a Self-healing Matrix

    NASA Astrophysics Data System (ADS)

    Ruggles-Wrenn, M. B.; Pope, M. T.

    2014-02-01

    Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1,200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbide overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16-22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Larger creep strains were accumulated in steam. However, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.

  17. A 12 year EDF study of concrete creep under uniaxial and biaxial loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric

    This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less

  18. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  19. Effects of pre-creep on the dislocations of 316LN Austenite stainless steel

    NASA Astrophysics Data System (ADS)

    Pei, Hai-xiang; Hui, Jun; Hua, Hou; Feng, Zai-xin; Xu, Xiao-long

    2017-09-01

    The 316LN Austenite stainless steels (316LNASS) were pre-creep treated, the evolution of microstructure were investigated. The samples were pre-creep at 593 K and from 500 to 2000 h at 873 K with a stress in the range of 20 to 150 MPa, Then the evolution of microstructure and precipitation were investigated by optical microscope (OM), and transmission electron microscope (TEM). The results show that the crystal surface slipping resulted in dislocations and original dislocations decomposition during the pre-creep process, and generate quadrilateral or hexagonal dislocation network was obviously. The sub-grain boundary gradually became narrow with the increasing of pre-creep treatment time and temperature. When the pre-creep temperature was 593 K and 873 K, dislocation network gradually disappear with the increasing of pre-creep time and load. When the pre-creep temperature was 873 K under 120 MPa, and the treatment time was 2000 h, the hexagonal dislocation network (HDN) would completely disappeared. When the pre-creep temperature was 593 K under 20 MPa, and the treatment time was 500 h, the quadrilateral dislocation network (QDN) would completely disappeared.

  20. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  1. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  2. Study on the Tensile Creep Behavior of Carbon Nanotubes-Reinforced Sn-58Bi Solder Joints

    NASA Astrophysics Data System (ADS)

    Yang, Li; Liu, Haixiang; Zhang, Yaocheng

    2018-01-01

    The microstructure and tensile creep behavior of plain Sn-58Bi solder and carbon nanotubes (CNTs)-reinforced composite solder joints were investigated. The stress exponent n under different stresses and the creep activation energy Q c under different temperatures of solder joints were obtained by an empirical equation. The results reveal that the microstructure of the composite solder joint is refined and the tensile creep resistance is improved by CNTs. The improvement of creep behavior is due to the microstructural change of the composite solder joints, since the CNTs could provide more obstacles for dislocation pile-up, which enhances the values of the stress exponent and the creep activation energy. The steady-state tensile creep rates of plain solder and composite solder joints are increased with increasing temperature and applied stress. The tensile creep constitutive equations of plain solder and composite solder joints are written as \\dot{ɛ }_{s1} = 14.94( {σ /G} )^{3.7} \\exp ( { - 81444/RT} ) and \\dot{ɛ }_{s2} = 2.5( {σ /G} )^{4.38} \\exp ( { - 101582/RT} ) , respectively. The tensile creep mechanism of the solder joints is the effects of lattice diffusion determined by dislocation climbing.

  3. Further Developments in Modeling Creep Effects Within Structural SiC/SiC Components

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James A.

    2008-01-01

    Anticipating the implementation of advanced SiC/SiC composites into turbine section components of future aero-propulsion engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly manipulate constituent materials and processes in order to minimize these effects. Focusing on SiC/SiC components experiencing through-thickness stress gradients (e.g., airfoil leading edge), prior NASA creep modeling studies showed that detrimental residual stress effects can develop globally within the component walls which can increase the risk of matrix cracking. These studies assumed that the SiC/SiC composites behaved as isotropic viscoelastic continuum materials with creep behavior that was linear and symmetric with stress and that the creep parameters could be obtained from creep data as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The present study expands on those prior efforts by including constituent behavior with non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.

  4. Effect of simulated sampling disturbance on creep behaviour of rock salt

    NASA Astrophysics Data System (ADS)

    Guessous, Z.; Gill, D. E.; Ladanyi, B.

    1987-10-01

    This article presents the results of an experimental study of creep behaviour of a rock salt under uniaxial compression as a function of prestrain, simulating sampling disturbance. The prestrain was produced by radial compressive loading of the specimens prior to creep testing. The tests were conducted on an artifical salt to avoid excessive scattering of the results. The results obtained from several series of single-stage creep tests show that, at short-term, the creep response of salt is strongly affected by the preloading history of samples. The nature of this effect depends upon the intensity of radial compressive preloading, and its magnitude is a function of the creep stress level. The effect, however, decreases with increasing plastic deformation, indicating that large creep strains may eventually lead to a complete loss of preloading memory.

  5. Creep rupture behavior of unidirectional advanced composites

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  6. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  7. Creep of plain weave polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the composites, was experimentally evaluated for time periods ranging from 1--120 hours under both loading conditions. The composite showed increase in creep with increase in temperature and stress. Creep of composite increased with increase in angle of loading, from 1% under on-axis loading to 31% under off-axis loading, within the tested time window. The experimental creep data for plain weave composites were superposed using TTSP (Time Temperature Superposition Principle) to obtain a master curve of experimental data extending to several years and was compared with model predictions to validate the model. The experimental and model results were found in good agreement within an error range of +/-1-3% under both loading conditions. A parametric study was also conducted to understand the effect of microstructure of plain weave composites on its on-axis and off-axis creep. Generation of knowledge in this area is also "first". Additionally, this thesis generated knowledge on time-dependent damage m woven composites and its effect on creep and tensile properties and their prediction.

  8. Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces.

    PubMed

    Chen, Xi; He, Si-Yuan; Yu, Ding-Feng; Yin, Hong-Cheng; Hu, Wei-Dong; Zhu, Guo-Qiang

    2013-04-01

    An accurate creeping ray-tracing algorithm is presented in this paper to determine the tracks of creeping waves (or creeping rays) on arbitrarily shaped free-form parametric surfaces [nonuniform rational B-splines (NURBS) surfaces]. The main challenge in calculating the surface diffracted fields on NURBS surfaces is due to the difficulty in determining the geodesic paths along which the creeping rays propagate. On one single parametric surface patch, the geodesic paths need to be computed by solving the geodesic equations numerically. Furthermore, realistic objects are generally modeled as the union of several connected NURBS patches. Due to the discontinuity of the parameter between the patches, it is more complicated to compute geodesic paths on several connected patches than on one single patch. Thus, a creeping ray-tracing algorithm is presented in this paper to compute the geodesic paths of creeping rays on the complex objects that are modeled as the combination of several NURBS surface patches. In the algorithm, the creeping ray tracing on each surface patch is performed by solving the geodesic equations with a Runge-Kutta method. When the creeping ray propagates from one patch to another, a transition method is developed to handle the transition of the creeping ray tracing across the border between the patches. This creeping ray-tracing algorithm can meet practical requirements because it can be applied to the objects with complex shapes. The algorithm can also extend the applicability of NURBS for electromagnetic and optical applications. The validity and usefulness of the algorithm can be verified from the numerical results.

  9. Creep deformation in near-γ TiAl: Part 1. the influence of microstructure on creep deformation in Ti-49Al-1V

    NASA Astrophysics Data System (ADS)

    Worth, Brian D.; Jones, J. Wayne; Allison, John E.

    1995-11-01

    The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxed y constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures.

  10. Modeling Creep Effects within SiC/SiC Turbine Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Lang, J.

    2008-01-01

    Anticipating the implementation of advanced SiC/SiC ceramic composites into the hot section components of future gas turbine engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly select and manipulate constituent materials, processes, and geometries in order to minimize these effects. In initial studies aimed at SiC/SiC components experiencing through-thickness stress gradients, creep models were developed that allowed an understanding of detrimental residual stress effects that can develop globally within the component walls. It was assumed that the SiC/SiC composites behaved as isotropic visco-elastic materials with temperature-dependent creep behavior as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The creep models and their key results are discussed assuming state-of-the-art SiC/SiC materials within a simple cylindrical thin-walled tubular structure, which is currently being employed to model creep-related effects for turbine airfoil leading edges subjected to through-thickness thermal stress gradients. Improvements in the creep models are also presented which focus on constituent behavior with more realistic non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.

  11. Orthotropic creep in polyethylene glycol impregnated archaeological oak from the Vasa ship - Results of creep experiments in a museum-like climate

    NASA Astrophysics Data System (ADS)

    Vorobyev, Alexey; van Dijk, Nico P.; Kristofer Gamstedt, E.

    2018-02-01

    Creep in archaeological oak samples and planks from the Vasa ship impregnated with polyethylene glycol (PEG) has been studied in museum-like climate. Creep studies of duration up to three years have been performed in nearly constant relative humidity and temperature of the controlled museum climate. Cubic samples were subjected to compressive creep tests in all orthotropic directions. Additionally, the creep behaviour of planks with and without PEG and of recent oak was tested in four-point bending. The experimental results have been summarised and also compared with reference results from recent oak wood. The effect of variable ambient conditions on creep and mass changes is discussed. The experimental results of creep in the longitudinal direction showed deformations even for the low stresses. There is relatively much more scatter in creep behaviour, and not all samples showed linear viscoelastic response. The creep in radial and tangential directions of the cubes and the plank samples showed a strong dependency on the ambient conditions. Some samples showed expansion for decreasing moisture content, possibly caused by the thermal expansion of the PEG component. For the planks, increasing creep deformation was observed induced by changing ambient conditions. Such behaviour may be related to e.g. oscillations in ambient conditions and presence of PEG in the wood cell wall and cell lumen. The behaviour of PEG archaeological wood depends on the level of deterioration that occurred over centuries. However, although the findings presented here apply to this specific case, they provide a unique view on such wood.

  12. "Cost creep due to age creep" phenomenon: pattern analyses of in-patient hospitalization costs for various age brackets in the United States.

    PubMed

    Chinta, Ravi; Burns, David J; Manolis, Chris; Nighswander, Tristan

    2013-01-01

    The expectation that aging leads to a progressive deterioration of biological functions leading to higher healthcare costs is known as the healthcare cost creep due to age creep phenomenon. The authors empirically test the validity of this phenomenon in the context of hospitalization costs based on more than 8 million hospital inpatient records from 1,056 hospitals in the United States. The results question the existence of cost creep due to age creep after the age of 65 years as far as average hospitalization costs are concerned. The authors discuss implications for potential knowledge transfer for cost minimization and medical tourism.

  13. Predicting sample lifetimes in creep fracture of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Koivisto, Juha; Ovaska, Markus; Miksic, Amandine; Laurson, Lasse; Alava, Mikko J.

    2016-08-01

    Materials flow—under creep or constant loads—and, finally, fail. The prediction of sample lifetimes is an important and highly challenging problem because of the inherently heterogeneous nature of most materials that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual samples by exploiting the "universal" features in the sample-inherent creep curves, particularly the passage to an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation localization controls the shape of the creep curve and thus the degree of lifetime predictability.

  14. Comparative Analyses of Creep Models of a Solid Propellant

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Lu, B. J.; Gong, S. F.; Zhao, S. P.

    2018-05-01

    The creep experiments of a solid propellant samples under five different stresses are carried out at 293.15 K and 323.15 K. In order to express the creep properties of this solid propellant, the viscoelastic model i.e. three Parameters solid, three Parameters fluid, four Parameters solid, four Parameters fluid and exponential model are involved. On the basis of the principle of least squares fitting, and different stress of all the parameters for the models, the nonlinear fitting procedure can be used to analyze the creep properties. The study shows that the four Parameters solid model can best express the behavior of creep properties of the propellant samples. However, the three Parameters solid and exponential model cannot very well reflect the initial value of the creep process, while the modified four Parameters models are found to agree well with the acceleration characteristics of the creep process.

  15. Tensile and Compressive Constitutive Response of 316 Stainless Steel at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.; Halford, G. R.

    1983-01-01

    Creep rate in compression is lower by factors of 2 to 10 than in tension if the microstructure of the two specimens is the same and are tested at equal temperatures and equal but opposite stresses. Such behavior is characteristic for monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.

  16. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Hochella, W. A.; Lytton, J. L.

    1973-01-01

    The techniques of electron microscopy were used to examine the microstructural changes which occur during primary creep for two important types of engineering alloys: (1) alloys strengthened by solid-solution additions, and (2) dispersion-strengthened alloys. The metals chosen for study are unalloyed titanium, Ti-6Al-4V, and the cobalt-base alloy, Haynes 188. Results to date on NGR 47-004-108 show that development of prior dislocation substructure in Haynes 188 by 10% prestrain and annealing for one hour at 1800 F increases the time to reach 0.5% creep strain at 1600 F by more than an order of magnitude for creep stresses from 3 to 20 ksi. For creep at 1800 F, similar results were obtaind for stresses above 7 ksi, but the prior substructure decreases creep resistance below 7 ksi. This effect appears to be related to instability of grain structure at 1800 F in prestrained material.

  17. Indentation Size Effect on the Creep Behavior of a SnAgCu Solder

    NASA Astrophysics Data System (ADS)

    Han, Y. D.; Jing, H. Y.; Nai, S. M. L.; Xu, L. Y.; Tan, C. M.; Wei, J.

    In the present study, nanoindentation studies of the 95.8Sn-3.5Ag-0.7Cu lead-free solder were conducted over a range of maximum loads from 20 mN to 100 mN, under a constant ramp rate of 0.05 s-1. The indentation scale dependence of creep behavior was investigated. The results revealed that the creep rate, creep strain rate and indentation stress are all dependent on the indentation depth. As the maximum load increased, an increasing trend in the creep rate was observed, while a decreasing trend in creep strain rate and indentation stress were observed. On the contrary, for the case of stress exponent value, no trend was observed and the values were found to range from 6.16 to 7.38. Furthermore, the experimental results also showed that the creep mechanism of the lead-free solder is dominated by dislocation climb.

  18. Structural Benchmark Creep Testing for Microcast MarM-247 Advanced Stirling Convertor E2 Heater Head Test Article SN18

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Brewer, Ethan J.; Pawlik, Ralph

    2013-01-01

    This report provides test methodology details and qualitative results for the first structural benchmark creep test of an Advanced Stirling Convertor (ASC) heater head of ASC-E2 design heritage. The test article was recovered from a flight-like Microcast MarM-247 heater head specimen previously used in helium permeability testing. The test article was utilized for benchmark creep test rig preparation, wall thickness and diametral laser scan hardware metrological developments, and induction heater custom coil experiments. In addition, a benchmark creep test was performed, terminated after one week when through-thickness cracks propagated at thermocouple weld locations. Following this, it was used to develop a unique temperature measurement methodology using contact thermocouples, thereby enabling future benchmark testing to be performed without the use of conventional welded thermocouples, proven problematic for the alloy. This report includes an overview of heater head structural benchmark creep testing, the origin of this particular test article, test configuration developments accomplished using the test article, creep predictions for its benchmark creep test, qualitative structural benchmark creep test results, and a short summary.

  19. Elevated temperature mechanical properties and residual tensile properties of two cast superalloys and several nickel-base oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1981-01-01

    The elevated temperature tensile, stress-rupture and creep properties and residual tensile properties after creep straining have been determined for two cast superalloys and several wrought Ni-16Cr-4Al-yttria oxide dispersion strengthened (ODS) alloys. The creep behavior of the ODS alloys is similar to that of previously studied ODS nickel alloys. In general, the longitudinal direction is stronger than the long transverse direction, and creep is at least partially due to a diffusional creep mechanism as dispersoid-free zones were observed after creep-rupture testing. The tensile properties of the nickel-base superalloy B-1900 and cobalt-base superalloy MAR-M509 are not degraded by prior elevated temperature creep straining (at least up to 1 pct) between 1144 and 1366 K. On the other hand, the room temperature tensile properties of ODS nickel-base alloys can be reduced by prior creep strains of 0.5 pct or less between 1144 and 1477 K, with the long transverse direction being more susceptible to degradation than the longitudinal direction.

  20. Creep deformation and mechanisms in Haynes 230 at 800 °C and 900 °C

    NASA Astrophysics Data System (ADS)

    Pataky, Garrett J.; Sehitoglu, Huseyin; Maier, Hans J.

    2013-11-01

    Creep was studied in Haynes 230, a material candidate for the very high temperature reactor's intermediate heat exchanger, at 800 °C and 900 °C. This study focused on the differences between the behavior at the two elevated temperature, and using the microstructure, grain boundary serrations and triple junction strain concentrations were quantitatively identified. There was significant damage in the 900 °C samples and the creep was almost entirely tertiary. In contrast, the 800 °C sample exhibited secondary creep. Using an Arrhenius equation, the minimum creep rate exponents were found to be n ≈ 3 and n ≈ 5 for 900 °C and 800 °C, respectively. The creep mechanisms were identified as solute drag for n ≈ 3 and dislocation climb for n ≈ 5. Strain concentrations were identified at triple junctions and grain boundary serrations using high resolution digital image correlation overlaid on the microstructure. The grain boundary serrations restrict grain boundary sliding which may reduce the creep damage at triple junctions and extend the creep life of Haynes 230 at elevated temperatures.

  1. Rheology of the lithosphere and the folding caused by horizontal compression

    NASA Astrophysics Data System (ADS)

    Birger, B. I.

    2015-05-01

    The laboratory tests of rock specimens show that transient creep, at which deformations increase with time whereas strain rate decreases occurs when creep strains are sufficiently small. Since plate tectonics only permits small deformations in the lithospheric plates, the creep of the lithosphere is transient (non-steady-state). In this work, we study how the rheology of the lithosphere that possesses elasticity, brittleness (pseudo-plasticity), and creep affects the folding in the Earth's crust. Folding is caused by horizontal compression that results from the collision between the lithospheric plates. The effective viscosity characterizing the transient creep is lower than in the case of a steady-state creep and depends on the characteristic time of the considered process. The allowance for transient creep gives the distribution of the rheological properties of the horizontally compressed lithosphere in which the upper crust is brittle, whereas the lower crust and mantle lithosphere are dominated by transient creep. It is shown that the flows that arise in the lithosphere due to the instability under horizontal compression and cause folding are small-scale. These flows are concentrated in the upper brittle crust, they determine the short-wave Earth's surface topography, penetrate into the lower, creep-dominated crust to a shallow depth, and do not penetrate into the mantle. Therefore, these flows do not deform the Moho.

  2. Vortex creep at very low temperatures in single crystals of the extreme type-II Rh 9In 4S 4

    DOE PAGES

    Herrera, Edwin; Bemito-Llorens, Jose; Kalarachchi, Udhara; ...

    2017-04-07

    Here, we image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh 9In 4S 4 (T c = 2.25 K). We measure the superconducting gap of Rh 9In 4S 4, finding Δ ≈ 0.33 meV, and image a hexagonal vortex lattice up to close to H c2 observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T/T c < 0.1. We study creeping vortex lattices by making images duringmore » long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. Lastly, the images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.« less

  3. Continuum Damage Mechanics Used to Predict the Creep Life of Monolithic Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Jadaan, Osama M.

    1998-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated temperature applications. High-temperature and long-duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. An analytical methodology in the form of the integrated design program-Ceramics Analysis and Reliability Evaluation of Structures/Creep (CARES/Creep) has been developed by the NASA Lewis Research Center to predict the life of ceramic structural components subjected to creep rupture conditions. This program utilizes commercially available finite element packages and takes into account the transient state of stress and creep strain distributions (stress relaxation as well as the asymmetric response to tension and compression). The creep life of a component is discretized into short time steps, during which the stress distribution is assumed constant. Then, the damage is calculated for each time step on the basis of a modified Monkman-Grant (MMG) creep rupture criterion. The cumulative damage is subsequently calculated as time elapses in a manner similar to Miner's rule for cyclic fatigue loading. Failure is assumed to occur when the normalized cumulative damage at any point in the component reaches unity. The corresponding time is the creep rupture life for that component.

  4. Vortex creep at very low temperatures in single crystals of the extreme type-II superconductor Rh9In4S4

    NASA Astrophysics Data System (ADS)

    Herrera, Edwin; Benito-Llorens, José; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.; Guillamón, Isabel; Suderow, Hermann

    2017-04-01

    We image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh9In4S4 (Tc=2.25 K ). We measure the superconducting gap of Rh9In4S4 , finding Δ ≈0.33 meV , and image a hexagonal vortex lattice up to close to Hc 2, observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T /Tc<0.1 . We study creeping vortex lattices by making images during long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. The images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.

  5. Effect of moderate magnetic annealing on the microstructure, quasi-static and viscoelastic mechanical behavior of a structural epoxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tehrani, Mehran; Al-Haik, Marwan; Garmestani, Hamid

    2012-01-01

    In this study the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle x-ray diffraction (WAXD) and pole figure analysis. The mechanical properties (modulus, hardness and strain rate sensitivity parameter) of the epoxy system annealed in the magnetic field were probed with the aid of instrumented nanoindentation and the results are compared to the reference epoxy sample. To further examine the creep response of the magnetically annealed and reference samples, short 45 min duration creep tests were carried out. An equivalent tomore » the macro scale creep compliance was calculated using the aforementioned nano-creep data. Using the continuous complex compliance (CCC) analysis, the phase lag angle, tan (δ), between the displacement and applied force in an oscillatory nanoindentation test was measured for both neat and magnetically annealed systems through which the effect of low magnetic fields on the viscoelastic properties of the epoxy was invoked. The comparison of the creep strain rate sensitivity parameter , A/d(0), from short term(80 ), creep tests and the creep compliance J(t) from the long term(2700 s) creep tests with the tan(δ) suggests that former parameter is a more useful comparative creep parameter than the creep compliance. The results of this investigation reveal that under low magnetic fields both the quasi-static and viscoelastic mechanical properties of the epoxy have been improved.« less

  6. Creep and microstructural processes in a low-alloy 2.25%Cr1.6%W steel (ASTM Grade 23)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucharova, K.; Sklenicka, V., E-mail: sklen@ipm.cz; CEITEC — IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, CZ-616 62 Brno

    2015-11-15

    A low-alloy 2.25%Cr1%Mo steel (ASTM Grade 22) has been greatly improved by the substitution of almost all of the 1%Mo by 1.6%W. The improved material has been standardized as P/T23 steel (Fe–2.25Cr–1.6W–0.25V–0.05Nb–0.07C). The present investigation was conducted on T23 steel in an effort to obtain a more complete description and understanding of the role of the microstructural evolution and deformation processes in high-temperature creep. Constant load tensile creep tests were carried out in an argon atmosphere in the temperature range 500–650 °C at stresses ranging from 50 to 400 MPa. It was found that the diffusion in the matrix latticemore » is the creep-rate controlling process. The results of an extensive transmission electron microscopy (TEM) analysis programme to investigate microstructure evolution as a function of temperature are described and compared with the thermodynamic calculations using the software package Thermo-Calc. The significant creep-strength drop of T23 steel after long-term creep exposures can be explained by the decrease in dislocation hardening, precipitation hardening and solid solution hardening due to the instability of the microstructure at high temperature. - Highlights: • The constant load creep tests of T23 steel were carried out at 500–650 °C. • The stress exponents of the creep rate correspond to power law (dislocation) creep. • Diffusion in the matrix lattice is the creep-rate controlling process. • The microstructure instability is the main creep degradation process in T23 steel.« less

  7. Assessment of Creep Deformation, Damage, and Rupture Life of 304HCu Austenitic Stainless Steel Under Multiaxial State of Stress

    NASA Astrophysics Data System (ADS)

    Sahoo, K. C.; Goyal, Sunil; Parameswaran, P.; Ravi, S.; Laha, K.

    2018-03-01

    The role of the multiaxial state of stress on creep deformation and rupture behavior of 304HCu austenitic stainless steel was assessed by performing creep rupture tests on both smooth and notched specimens of the steel. The multiaxial state of stress was introduced by incorporating circumferential U-notches of different root radii ranging from 0.25 to 5.00 mm on the smooth specimens of the steel. Creep tests were carried out at 973 K over the stress range of 140 to 220 MPa. In the presence of notch, the creep rupture strength of the steel was found to increase with the associated decrease in rupture ductility. Over the investigated stress range and notch sharpness, the strengthening was found to increase drastically with notch sharpness and tended toward saturation. The fractographic studies revealed the mixed mode of failure consisting of transgranular dimples and intergranular creep cavitation for shallow notches, whereas the failure was predominantly intergranular for relatively sharper notches. Detailed finite element analysis of stress distribution across the notch throat plane on creep exposure was carried out to assess the creep failure of the material in the presence of notch. The reduction in von-Mises stress across the notch throat plane, which was greater for sharper notches, increased the creep rupture strength of the material. The variation in fracture behavior of the material in the presence of notch was elucidated based on the von-Mises, maximum principal, and hydrostatic stresses. Electron backscatter diffraction analysis of creep strain distribution across the notch revealed localized creep straining at the notch root for sharper notches. A master curve for predicting creep rupture life under the multiaxial state of stress was generated considering the representative stress having contributions from both the von-Mises and principal stress components of the stress field in the notch throat plane. Rupture ductility was also predicted based on the multiaxial state of stress.

  8. Distribution of creep in the northern San Francisco Bay Area illuminated by repeating earthquakes and InSAR

    NASA Astrophysics Data System (ADS)

    Funning, G.; Shakibay Senobari, N.; Swiatlowski, J. L.

    2017-12-01

    Surface observations of fault creep in the region north of San Francisco Bay are sporadic. While there are long-standing instances of creep-affected infrastructure on the Maacama and Bartlett Springs faults, the lateral and depth extents of creep on these and other faults in the region remain a question. Here, we supplement this sparse existing observation set with additional information from repeating earthquake sequences (REs) and InSAR, to illuminate, and significantly improve our knowledge of, creep across the region. Repeating earthquakes have long been considered indicators of creep on faults. We present the results of an extensive similarity search through over 600,000 archived waveforms from 43,000 events using a fast algorithm; from this we can identify 39 periodic repeating sequences and over 80 nonperiodic repeated event groups. We compare these with decadal line-of-sight velocity measurements made by applying the StaMPS time series InSAR code to ERS and Envisat data covering the region, that can be used to identify surface creep on faults. On the Rodgers Creek, Maacama and Bartlett Springs faults, both InSAR and REs show corroborating evidence for creep at locations where it was previously inferred. The REs additionally provide information on its depth extent. On the Maacama fault, we find REs extending almost to the southern limit of the mapped fault trace, south of Cloverdale, suggesting that creep may be pervasive on the fault. We can also identify structural complexity both in the stepover region with the Rodgers Creek fault, and in the northern segment of the fault close to Willits, potentially indicating parallel and/or down-dip branching creeping structures in both locations. REs on the Bartlett Springs fault indicate creep that extends across the full down-dip width of the brittle fault; here the proximity of InSAR creep rate estimates and a shallow RE sequence may permit a calibration of the RE `creepmeter', allowing us to estimate creep rates directly from RE source characteristics.

  9. Creep-fatigue modelling in structural steels using empirical and constitutive creep methods implemented in a strip-yield model

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for modified 9Cr-1Mo can be developed for other materials. 3. Due to the assumptions used to develop the strip-yield model, model predictions are expected to show some scatter, especially in some situations. Several areas of future research are proposed from these conclusions: 1. Alternative methods for predicting fatigue crack growth, especially a constitutive fatigue crack growth model, 2. Continued development of new material models and refinement the existing ones, and 3. Implementation of the present creep-fatigue model as a user-defined subroutine in a finite element solver.

  10. FY17 Status Report on the Micromechanical Finite Element Modeling of Creep Fracture of Grade 91 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, M. C.; Truster, T. J.; Cochran, K. B.

    Advanced reactors designed to operate at higher temperatures than current light water reactors require structural materials with high creep strength and creep-fatigue resistance to achieve long design lives. Grade 91 is a ferritic/martensitic steel designed for long creep life at elevated temperatures. It has been selected as a candidate material for sodium fast reactor intermediate heat exchangers and other advanced reactor structural components. This report focuses on the creep deformation and rupture life of Grade 91 steel. The time required to complete an experiment limits the availability of long-life creep data for Grade 91 and other structural materials. Design methodsmore » often extrapolate the available shorter-term experimental data to longer design lives. However, extrapolation methods tacitly assume the underlying material mechanisms causing creep for long-life/low-stress conditions are the same as the mechanisms controlling creep in the short-life/high-stress experiments. A change in mechanism for long-term creep could cause design methods based on extrapolation to be non-conservative. The goal for physically-based microstructural models is to accurately predict material response in experimentally-inaccessible regions of design space. An accurate physically-based model for creep represents all the material mechanisms that contribute to creep deformation and damage and predicts the relative influence of each mechanism, which changes with loading conditions. Ideally, the individual mechanism models adhere to the material physics and not an empirical calibration to experimental data and so the model remains predictive for a wider range of loading conditions. This report describes such a physically-based microstructural model for Grade 91 at 600° C. The model explicitly represents competing dislocation and diffusional mechanisms in both the grain bulk and grain boundaries. The model accurately recovers the available experimental creep curves at higher stresses and the limited experimental data at lower stresses, predominately primary creep rates. The current model considers only one temperature. However, because the model parameters are, for the most part, directly related to the physics of fundamental material processes, the temperature dependence of the properties are known. Therefore, temperature dependence can be included in the model with limited additional effort. The model predicts a mechanism shift for 600° C at approximately 100 MPa from a dislocation- dominated regime at higher stress to a diffusion-dominated regime at lower stress. This mechanism shift impacts the creep life, notch-sensitivity, and, likely, creep ductility of Grade 91. In particular, the model predicts existing extrapolation methods for creep life may be non-conservative when attempting to extrapolate data for higher stress creep tests to low stress, long-life conditions. Furthermore, the model predicts a transition from notchstrengthening behavior at high stress to notch-weakening behavior at lower stresses. Both behaviors may affect the conservatism of existing design methods.« less

  11. Study on creep properties of Japonica cooked rice and its relationship with rice chemical compositions and sensory evaluation

    USDA-ARS?s Scientific Manuscript database

    Creep properties of four varieties japonica cooked rice were tested using a Dynamic Mechanical Analyser (DMA Q800). The creep curve was described by Burgers model. The creep process of japonica cooked rice mainly consisted of retarded elastic deformation, epsilonR and viscous flow deformation, epsil...

  12. Hindsight Bias Doesn't Always Come Easy: Causal Models, Cognitive Effort, and Creeping Determinism

    ERIC Educational Resources Information Center

    Nestler, Steffen; Blank, Hartmut; von Collani, Gernot

    2008-01-01

    Creeping determinism, a form of hindsight bias, refers to people's hindsight perceptions of events as being determined or inevitable. This article proposes, on the basis of a causal-model theory of creeping determinism, that the underlying processes are effortful, and hence creeping determinism should disappear when individuals lack the cognitive…

  13. Creep behavior of Grade 91 steel under uniaxial and multiaxial state of stress

    NASA Astrophysics Data System (ADS)

    Ren, Facai; Tang, Xiaoying

    2017-09-01

    Creep rupture behavior of Grade 91 heat-resistant steel used for steam cooler under uniaxial and multiaxial state of stress was investigated. Creep tests were conducted at the temperature of 923K under the stress 125MPa. The notch root radii (r) of doubled circumferentially U-notched specimens were 0.6 and 6 mm. The creep rupture life of Grade 91 steel was found to increase with the increasing of notch acuity ratio. The creep rupture mechanism was investigated based on the SEM fractography analysis.

  14. Vortex creep and the internal temperature of neutron stars. I - General theory

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Pines, D.; Anderson, P. W.; Shaham, J.

    1984-01-01

    The theory of a neutron star superfluid coupled to normal matter via thermal creep against pinning forces is developed in some detail. General equations of motion for a pinned rotating superfluid and their form for vortex creep are given. Steady state creep and the way in which the system approaches the steady state are discussed. The developed formalism is applied to the postglitch relaxation of a pulsar, and detailed models are developed which permit explicit calculation of the postglitch response. The energy dissipation associated with creep and glitches is considered.

  15. Constitutive Model for Anisotropic Creep Behaviors of Single-Crystal Ni-Base Superalloys in the Low-Temperature, High-Stress Regime (Postprint)

    DTIC Science & Technology

    2012-01-19

    specific dislocation reactions. Rae et al .[4,5,7] proposed micromechanisms for primary creep caused by SF shearing of c0 precipitates by ah112i...near the [0 0 1] was done by Matan et al .[3] They proposed a phenomenological creep model, which was adopted from Gilman’s dislocation density model...the original loading orientation). MacLachlan et al .[18 21] proposed a series of creep models for anisotropic creep of single-crystal superalloys. Their

  16. Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2002-01-01

    New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.

  17. Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Fang, H.; Gramsma, M. E.; Kwakernaak, C.; Sloof, W. G.; Tichelaar, F. D.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2016-10-01

    We have investigated the autonomous repair of creep damage by site-selective precipitation in a binary Fe-Mo alloy (6.2 wt pct Mo) during constant-stress creep tests at temperatures of 813 K, 823 K, and 838 K (540 °C, 550 °C, and 565 °C). Scanning electron microscopy studies on the morphology of the creep-failed samples reveal irregularly formed deposits that show a close spatial correlation with the creep cavities, indicating the filling of creep cavities at grain boundaries by precipitation of the Fe2Mo Laves phase. Complementary transmission electron microscopy and atom probe tomography have been used to characterize the precipitation mechanism and the segregation at grain boundaries in detail.

  18. Effects of creep feeding, zeranol implants and breed type on beef production: I. Calf and cow performance.

    PubMed

    Prichard, D L; Hargrove, D D; Olson, T A; Marshall, T T

    1989-03-01

    A 2-yr study was conducted to evaluate the effects of a high-energy creep feed, preweaning zeranol implants and breed type on calf and cow performance. Two hundred calves sired by Brahman and Romana Red bulls out of Angus and Angus x Brown Swiss reciprocal crossbred (F1) dams were stratified by breed type and sex to three creep treatments: no creep feed (NC); long-term creep (LC), creep-fed from 56 to 210 d of age (weaning); and short-term creep (SC), creep-fed from 146 to 210 d of age. Alternate calves within sex, breed type and creep treatment were implanted with 36 mg of zeranol at an average of 56 d and reimplanted 90 d later. The LC and SC calves had heavier (P less than .001) 210-d weights than NC calves (264 and 257 vs 231 kg, respectively), and the LC calves were heavier (P less than .001) at 146 d than NC calves. The LC calves had higher (P less than .001) ADG from 118 to 210 d of age and higher 146 and 210-d condition scores than did NC calves. Pregnancy rate was not affected (P greater than .46) by creep treatment of calf. Zeranol implants increased (P less than .01) 146- and 210-d weights (184 vs 175 kg and 259 vs 243 kg) and ADG during all periods to weaning. Brahman-sired calves had higher (P less than .005) 146- and 210-d weaning weights and frame scores than Romana Red-sired calves.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  20. Microstructure Evolution During Creep of Cold Worked Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Krishan Yadav, Hari; Ballal, A. R.; Thawre, M. M.; Vijayanand, V. D.

    2018-04-01

    The 14Cr–15Ni austenitic stainless steel (SS) with additions of Ti, Si, and P has been developed for their superior creep strength and better resistance to void swelling during service as nuclear fuel clad and wrapper material. Cold working induces defects such as dislocations that interact with point defects generated by neutron irradiation and facilitates recombination to make the material more resistant to void swelling. In present investigation, creep properties of the SS in mill annealed condition (CW0) and 40 % cold worked (CW4) condition were studied. D9I stainless steel was solution treated at 1333 K for 30 minutes followed by cold rolling. Uniaxial creep tests were performed at 973 K for various stress levels ranging from 175-225 MPa. CW4 samples exhibited better creep resistance as compared to CW0 samples. During creep exposure, cold worked material exhibited phenomena of recovery and recrystallization wherein new strain free grains were observed with lesser dislocation network. In contrast CW0 samples showed no signs of recovery and recrystallization after creep exposure. Partial recrystallization on creep exposure led to higher drop in hardness in cold worked sample as compared to that in mill annealed sample. Accelerated precipitation of carbides at the grain boundaries was observed during creep exposure and this phenomenon was more pronounced in cold worked sample.

  1. The Combined Influence of Molecular Weight and Temperature on the Aging and Viscoelastic Response of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.

  2. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle

    USGS Publications Warehouse

    Kirby, S.H.; Raleigh, C.B.

    1973-01-01

    The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.

  3. Creep of Heat-Resistant Composites of an Oxide-Fiber/Ni-Matrix Family

    NASA Astrophysics Data System (ADS)

    Mileiko, S. T.

    2001-09-01

    A creep model of a composite with a creeping matrix and initially continuous elastic brittle fibers is developed. The model accounts for the fiber fragmentation in the stage of unsteady creep of the composite, which ends with a steady-state creep, where a minimum possible average length of the fiber is achieved. The model makes it possible to analyze the creep rate of the composite in relation to such parameters of its structure as the statistic characteristics of the fiber strength, the creep characteristics of the matrix, and the strength of the fiber-matrix interface, the latter being of fundamental importance. A comparison between the calculation results and the experimental ones obtained on composites with a Ni-matrix and monocrystalline and eutectic oxide fibers as well as on sapphire fiber/TiAl-matrix composites shows that the model is applicable to the computer simulation of the creep behavior of heat-resistant composites and to the optimization of the structure of such composites. By combining the experimental data with calculation results, it is possible to evaluate the heat resistance of composites and the potential of oxide-fiber/Ni-matrix composites. The composite specimens obtained and tested to date reveal their high creep resistance up to a temperature of 1150°C. The maximum operating temperature of the composites can be considerably raised by strengthening the fiber-matrix interface.

  4. Human Lumbar Spine Creep during Cyclic and Static Flexion: Creep Rate, Biomechanics, and Facet Joint Capsule Strain

    PubMed Central

    Little, Jesse S.; Khalsa, Partap S.

    2005-01-01

    There is a high incidence of low back pain (LBP) associated with occupations requiring sustained and/or repetitive lumbar flexion (SLF and RLF, respectively), which cause creep of the viscoelastic tissues. The purpose of this study was to determine the effect of creep on lumbar biomechanics and facet joint capsule (FJC) strain. Specimens were flexed for 10 cycles, to a maximum 10 Nm moment at L5-S1, before, immediately after, and 20 min after a 20-min sustained flexion at the same moment magnitude. The creep rates of SLF and RLF were also measured during each phase and compared to the creep rate predicted by the moment relaxation rate function of the lumbar spine. Both SLF and RLF resulted in significantly increased intervertebral motion, as well as significantly increased FJC strains at the L3-4 to L5-S1 joint levels. These parameters remained increased after the 20-min recovery. Creep during SLF occurred significantly faster than creep during RLF. The moment relaxation rate function was able to accurately predict the creep rate of the lumbar spine at the single moment tested. The data suggest that SLF and RLF result in immediate and residual laxity of the joint and stretch of the FJC, which could increase the potential for LBP. PMID:15868730

  5. Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

    NASA Astrophysics Data System (ADS)

    Wan, Quanhe; Quesnel, David J.

    2013-03-01

    The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.

  6. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  7. Post-seismic and interseismic fault creep I: model description

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Simons, M.; Dunham, E. M.

    2010-04-01

    We present a model of localized, aseismic fault creep during the full interseismic period, including both transient and steady fault creep, in response to a sequence of imposed coseismic slip events and tectonic loading. We consider the behaviour of models with linear viscous, non-linear viscous, rate-dependent friction, and rate- and state-dependent friction fault rheologies. Both the transient post-seismic creep and the pattern of steady interseismic creep rates surrounding asperities depend on recent coseismic slip and fault rheologies. In these models, post-seismic fault creep is manifest as pulses of elevated creep rates that propagate from the coseismic slip, these pulses feature sharper fronts and are longer lived in models with rate-state friction compared to other models. With small characteristic slip distances in rate-state friction models, interseismic creep is similar to that in models with rate-dependent friction faults, except for the earliest periods of post-seismic creep. Our model can be used to constrain fault rheologies from geodetic observations in cases where the coseismic slip history is relatively well known. When only considering surface deformation over a short period of time, there are strong trade-offs between fault rheology and the details of the imposed coseismic slip. Geodetic observations over longer times following an earthquake will reduce these trade-offs, while simultaneous modelling of interseismic and post-seismic observations provide the strongest constraints on fault rheologies.

  8. Effect of corn- and soybean hull-based creep feed and backgrounding diets on lifelong performance and carcass traits of calves from pasture and rangeland conditions

    USDA-ARS?s Scientific Manuscript database

    Three separate studies were conducted to investigate the life-long effect of creep feeding, creep feeding energy source (soybean hulls, SC, or corn, CC) and interactive effects of creep feed with backgrounding dietary energy source (soybean hulls, SBR, or corn, CBR) on calf growth performance, carca...

  9. Creep-rupture behavior of candidate Stirling engine iron supperalloys in high-pressure hydrogen. Volume 2: Hydrogen creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.; Hales, C.

    1984-01-01

    The creep rupture behavior of nine iron base and one cobalt base candidate Stirling engine alloys is evaluated. Rupture life, minimum creep rate, and time to 1% strain data are analyzed. The 3500 h rupture life stress and stress to obtain 1% strain in 3500 h are also estimated.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Edwin; Bemito-Llorens, Jose; Kalarachchi, Udhara

    Here, we image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh 9In 4S 4 (T c = 2.25 K). We measure the superconducting gap of Rh 9In 4S 4, finding Δ ≈ 0.33 meV, and image a hexagonal vortex lattice up to close to H c2 observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T/T c < 0.1. We study creeping vortex lattices by making images duringmore » long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. Lastly, the images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.« less

  11. A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignatelli, Isabella; Kumar, Aditya; Alizadeh, Rouhollah

    Long-term creep (i.e., deformation under sustained load) is a significant material response that needs to be accounted for in concrete structural design. However, the nature and origin of concrete creep remain poorly understood and controversial. Here, we propose that concrete creep at relative humidity ≥ 50%, but fixed moisture content (i.e., basic creep), arises from a dissolution-precipitation mechanism, active at nanoscale grain contacts, as has been extensively observed in a geological context, e.g., when rocks are exposed to sustained loads, in liquid-bearing environments. Based on micro-indentation and vertical scanning interferometry data and molecular dynamics simulations carried out on calcium–silicate–hydrate (C–S–H),more » the major binding phase in concrete, of different compositions, we show that creep rates are correlated with dissolution rates—an observation which suggests a dissolution-precipitation mechanism as being at the origin of concrete creep. C–S–H compositions featuring high resistance to dissolution, and, hence, creep are identified. Analyses of the atomic networks of such C–S–H compositions using topological constraint theory indicate that these compositions present limited relaxation modes on account of their optimally connected (i.e., constrained) atomic networks.« less

  12. A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments.

    PubMed

    Pignatelli, Isabella; Kumar, Aditya; Alizadeh, Rouhollah; Le Pape, Yann; Bauchy, Mathieu; Sant, Gaurav

    2016-08-07

    Long-term creep (i.e., deformation under sustained load) is a significant material response that needs to be accounted for in concrete structural design. However, the nature and origin of concrete creep remain poorly understood and controversial. Here, we propose that concrete creep at relative humidity ≥ 50%, but fixed moisture content (i.e., basic creep), arises from a dissolution-precipitation mechanism, active at nanoscale grain contacts, as has been extensively observed in a geological context, e.g., when rocks are exposed to sustained loads, in liquid-bearing environments. Based on micro-indentation and vertical scanning interferometry data and molecular dynamics simulations carried out on calcium-silicate-hydrate (C-S-H), the major binding phase in concrete, of different compositions, we show that creep rates are correlated with dissolution rates-an observation which suggests a dissolution-precipitation mechanism as being at the origin of concrete creep. C-S-H compositions featuring high resistance to dissolution, and, hence, creep are identified. Analyses of the atomic networks of such C-S-H compositions using topological constraint theory indicate that these compositions present limited relaxation modes on account of their optimally connected (i.e., constrained) atomic networks.

  13. Lattice continuum and diffusional creep.

    PubMed

    Mesarovic, Sinisa Dj

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  14. Lattice continuum and diffusional creep

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  15. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabaz, Fardin, E-mail: rajesh.khare@ttu.edu; Khare, Ketan S., E-mail: rajesh.khare@ttu.edu; Khare, Rajesh, E-mail: rajesh.khare@ttu.edu

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring themore » resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.« less

  16. A simple model for indentation creep

    NASA Astrophysics Data System (ADS)

    Ginder, Ryan S.; Nix, William D.; Pharr, George M.

    2018-03-01

    A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.

  17. Microstructure stability during creep deformation of hard-oriented polysynthetically twinned crystal of TiAl alloy

    NASA Astrophysics Data System (ADS)

    Kim, Hee Y.; Maruyama, K.

    2003-10-01

    The hard-orientated polysynthetically twinned (PST) crystal with the lamellar plates oriented parallel to the compression axis was deformed at 1150 K under the applied stress of 158 to 316 MPa. Microstructural changes were examined quantitatively for the PST crystal during creep deformation. In the as-grown PST crystal of the present study, proportions of α 2/ γ, true twin, pseudotwin, and 120 deg rotational fault interfaces were 12, 59, 12, and 17 pct, respectively. After creep deformation, lamellar coarsening by dissolution of α 2 lamellae and migration of γ/γ interfaces were observed. The acceleration of creep rate after the minimum strain rate in the creep curve was attributed to the lamellar coarsening and destruction of lamellar structure during the creep deformation. Thirty-two percent of α 2/ γ interfaces, 51 pct of true twin interfaces, 74 pct of pseudotwin interfaces, and 80 pct of 120 deg rotational faults disappeared after 4 pct creep strain at 1150 K. The α 2/ γ interface was more stable than γ/γ interfaces during the creep deformation. The pseudotwin interface and 120 deg rotational fault were less thermally stable than the true twin interface for γ/γ interfaces.

  18. Prediction of the Creep-Fatigue Lifetime of Alloy 617: An Application of Non-destructive Evaluation and Information Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek Agarwal; Richard Wright; Timothy Roney

    A relatively simple method using the nominal constant average stress information and the creep rupture model is developed to predict the creep-fatigue lifetime of Alloy 617, in terms of time to rupture. The nominal constant average stress is computed using the stress relaxation curve. The predicted time to rupture can be converted to number of cycles to failure using the strain range, the strain rate during each cycle, and the hold time information. The predicted creep-fatigue lifetime is validated against the experimental measurements of the creep-fatigue lifetime collected using conventional laboratory creep-fatigue tests. High temperature creep-fatigue tests of Alloy 617more » were conducted in air at 950°C with a tensile hold period of up to 1800s in a cycle at total strain ranges of 0.3% and 0.6%. It was observed that the proposed method is conservative in that the predicted lifetime is less than the experimentally determined values. The approach would be relevant to calculate the remaining useful life to a component like a steam generator that might fail by the creep-fatigue mechanism.« less

  19. Characterization of Time-Dependent Behavior of Ramming Paste Used in an Aluminum Electrolysis Cell

    NASA Astrophysics Data System (ADS)

    Orangi, Sakineh; Picard, Donald; Alamdari, Houshang; Ziegler, Donald; Fafard, Mario

    2015-12-01

    A new methodology was proposed for the characterization of time-dependent behavior of materials in order to develop a constitutive model. The material used for the characterization was ramming paste, a porous material used in an aluminum electrolysis cell, which is baked in place under varying loads induced by the thermal expansion of other components of the cell. In order to develop a constitutive model representing the paste mechanical behavior, it was necessary to get some insight into its behavior using samples which had been baked at different temperatures ranging from 200 to 1000 °C. Creep stages, effect of testing temperature on the creep, creep-recovery, as well as nonlinear creep were observed for designing a constitutive law. Uniaxial creep-recovery tests were carried out at two temperatures on the baked paste: ambient and higher. Results showed that the shape of creep curves was similar to a typical creep; recovery happened and the creep was shown to be nonlinear. Those experimental observations and the identification of nonlinear parameters of developed constitutive model demonstrated that the baked paste experiences nonlinear viscoelastic-viscoplastic behavior at different temperatures.

  20. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 2: Phase 2 subsize panel cyclic creep predictions

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.

  1. Surface Creep Rate and Moment Accumulation Rate Along the Aceh Segment of the Sumatran Fault From L-band ALOS-1/PALSAR-1 Observations

    NASA Astrophysics Data System (ADS)

    Tong, X.; Sandwell, D. T.; Schmidt, D. A.

    2018-04-01

    We analyzed the interferometric synthetic aperture radar data from the ALOS-1/PALSAR-1 satellite to image the interseismic deformation along the Sumatran fault. The interferometric synthetic aperture radar time series analysis reveals up to 20 mm/year of aseismic creep on the Aceh segment along the Northern Sumatran fault. This is a large fraction of the total slip rate across this fault. The spatial extent of the aseismic creep extends for 100 km. The along-strike variation of the aseismic creep has an inverse "U" shape. An analysis of the moment accumulation rate shows that the central part of the creeping section accumulates moment at approximately 50% of the rate of the surrounding locked segments. An initial analysis of temporal variations suggests that the creep rate may be decelerating with time, suggesting that the creep rate is adjusting to a stress perturbation from nearby seismic activity. Our study has implications to the earthquake hazard along the northern Sumatran fault.

  2. Tensile and compressive constitutive response of 316 stainless steel at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.; Halford, G. R.

    1982-01-01

    It is demonstrated that creep rate of 316 SS is lower by factors of 2 to 10 in compression than in tension if the microstructure is the same and tests are conducted at identical temperatures and equal but opposite stresses. Such behavior was observed for both monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time-stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.

  3. Autonomous Repair Mechanism of Creep Damage in Fe-Au and Fe-Au-B-N Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Kwakernaak, C.; Tichelaar, F. D.; Sloof, W. G.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2015-12-01

    The autonomous repair mechanism of creep cavitation during high-temperature deformation has been investigated in Fe-Au and Fe-Au-B-N alloys. Combined electron-microscopy techniques and atom probe tomography reveal how the improved creep properties result from Au precipitation within the creep cavities, preferentially formed on grain boundaries oriented perpendicular to the applied stress. The selective precipitation of Au atoms at the free creep cavity surface results in pore filling, and thereby, autonomous repair of the creep damage. The large difference in atomic size between the Au and Fe strongly hampers the nucleation of precipitates in the matrix. As a result, the matrix acts as a reservoir for the supersaturated solute until damage occurs. Grain boundaries and dislocations are found to act as fast transport routes for solute gold from the matrix to the creep cavities. The mechanism responsible for the self-healing can be characterized by a simple model for cavity growth and cavity filling.

  4. Elevated-temperature tensile and creep properties of several ferritic stainless steels

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The elevated-temperature mechanical properties of several ferritic stainless steels were determined. The alloys evaluated included Armco 18SR, GE 1541, and NASA-18T-A. Tensile and creep strength properties at 1073 and 1273 K and residual room temperature tensile properties after creep testing were measured. In addition, 1273 K tensile and creep tests and residual property testing were conducted with Armco 18SR and GE 1541 which were exposed for 200 hours to a severe oxidizing environment in automotive thermal reactors. Aside from the residual tensile properties for Armco 18SR, prior exposure did not affect the mechanical properties of either alloy. The 1273 K creep strength parallel to the sheet-rolling direction was similar for all three alloys. At 1073 K, NASA-18T-A had better creep strength than either Armco 18SR or GE 1541. NASA-18T-A possesses better residual properties after creep testing than either Armco 18SR or Ge 1541.

  5. The influence of matrix microstructure and particle reinforcement on the creep behavior of 2219 aluminum

    NASA Astrophysics Data System (ADS)

    Krajewski, P. E.; Allison, J. E.; Jones, J. W.

    1993-12-01

    The influence of matrix microstructure and reinforcement with 15 vol pct of TiC particles on the creep behavior of 2219 aluminum has been examined in the temperature range of 150 ‡C to 250 ‡C. At 150 ‡C, reinforcement led to an improvement in creep resistance, while at 250 ‡C, both materials exhibited essentially identical creep behavior. Precipitate spacing in the matrix exerted the predominant influence on minimum creep rate in both the unreinforced and the reinforced materials over the temperature range studied. This behavior and the high-stress dependence of minimum creep rate are explained using existing constant structure models where, in the present study, precipitate spacing is identified as the pertinent substructure dimension. A modest microstructure-independent strengthening from particle reinforcement was observed at 150 ‡C and was accurately modeled by existing continuum mechanical models. The absence of reinforcement creep strengthening at 250 ‡C can be attributed to diffusional relaxation processes at the higher temperature.

  6. Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1995-01-01

    Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.

  7. Pure climb creep mechanism drives flow in Earth’s lower mantle

    PubMed Central

    Boioli, Francesca; Carrez, Philippe; Cordier, Patrick; Devincre, Benoit; Gouriet, Karine; Hirel, Pierre; Kraych, Antoine; Ritterbex, Sebastian

    2017-01-01

    At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance to plastic shear exhibited by ringwoodite and bridgmanite on creep mechanisms under mantle conditions. To evaluate the consequences of this effect, we model dislocation creep by dislocation dynamics. The calculation yields to an original dominant creep behavior for lower mantle silicates where strain is produced by dislocation climb, which is very different from what can be activated under high stresses under laboratory conditions. This mechanism, named pure climb creep, is grain-size–insensitive and produces no crystal preferred orientation. In comparison to the previous considered diffusion creep mechanism, it is also a more efficient strain-producing mechanism for grain sizes larger than ca. 0.1 mm. The specificities of pure climb creep well match the seismic anisotropy observed of Earth’s lower mantle. PMID:28345037

  8. Effect of welding on creep damage evolution in P91B steel

    NASA Astrophysics Data System (ADS)

    Baral, J.; Swaminathan, J.; Chakrabarti, D.; Ghosh, R. N.

    2017-07-01

    Study of creep behavior of base metal (without weld) and welded specimens of P91B steel over a range of temperatures (600-650 °C) and stresses (50-180 MPa) showed similar values of minimum creep-rates for both specimens at higher stress regime (>100 MPa) whilst, significantly higher creep rates in the case of welded specimens at lower stress regime. Considering that welded specimen is comprised of two distinct structural regimes, i.e. weld affected zone and base metal, a method has been proposed for estimating the material parameters describing creep behavior of those regimes. Stress-strain distribution across welded specimen predicted from finite element analysis based on material parameters revealed preferential accumulation of stress and creep strain at the interface between weld zone and base metal. This is in-line with the experimental finding that creep rupture preferentially occurs at inter-critical heat affected zone in welded specimens owing to ferrite-martensite structure with coarse Cr23C6 particles.

  9. Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1987-01-01

    An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.

  10. Finite Element Creep Damage Analyses and Life Prediction of P91 Pipe Containing Local Wall Thinning Defect

    NASA Astrophysics Data System (ADS)

    Xue, Jilin; Zhou, Changyu

    2016-03-01

    Creep continuum damage finite element (FE) analyses were performed for P91 steel pipe containing local wall thinning (LWT) defect subjected to monotonic internal pressure, monotonic bending moment and combined internal pressure and bending moment by orthogonal experimental design method. The creep damage lives of pipe containing LWT defect under different load conditions were obtained. Then, the creep damage life formulas were regressed based on the creep damage life results from FE method. At the same time a skeletal point rupture stress was found and used for life prediction which was compared with creep damage lives obtained by continuum damage analyses. From the results, the failure lives of pipe containing LWT defect can be obtained accurately by using skeletal point rupture stress method. Finally, the influence of LWT defect geometry was analysed, which indicated that relative defect depth was the most significant factor for creep damage lives of pipe containing LWT defect.

  11. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens

    PubMed Central

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-01

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified. PMID:29337867

  12. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    NASA Astrophysics Data System (ADS)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  13. Effect of diffusional creep on particle morphology of polycrystalline alloys strengthened by second phase particles

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.; Behrendt, D. R.

    1973-01-01

    Diffusional creep in a polycrystalline alloy containing second-phase particles can disrupt the particle morphology. For alloys which depend on the particle distribution for strength, changes in the particle morphology can affect the mechanical properties. Recent observations of diffusional creep in alloys containing soluble particles (gamma-prime strengthened Ni base alloys) and inert particles have been reexamined in light of the basic mechanisms of diffusional creep, and a generalized model of this effect is proposed. The model indicates that diffusional creep will generally result in particle-free regions in the vicinity of grain boundaries serving as net vacancy sources. The factors which control the changes in second-phase morphology have been identified, and methods of reducing the effects of diffusional creep are suggested.

  14. Experimental Research on Creep Characteristics of Nansha Soft Soil

    PubMed Central

    Luo, Qingzi; Chen, Xiaoping

    2014-01-01

    A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility C a/C c is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply. PMID:24526925

  15. Experimental research on creep characteristics of Nansha soft soil.

    PubMed

    Luo, Qingzi; Chen, Xiaoping

    2014-01-01

    A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility (Ca/Cc) is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.

  16. Creep-Fatigue Interaction Testing

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.

  17. Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California

    USGS Publications Warehouse

    Lozos, Julian C.; Harris, Ruth A.; Murray, Jessica R.; Lienkaemper, James J.

    2015-01-01

    The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3-D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.

  18. Study on creep behavior of Grade 91 heat-resistant steel using theta projection method

    NASA Astrophysics Data System (ADS)

    Ren, Facai; Tang, Xiaoying

    2017-10-01

    Creep behavior of Grade 91 heat-resistant steel used for steam cooler was characterized using the theta projection method. Creep tests were conducted at the temperature of 923K under the stress ranging from 100-150MPa. Based on the creep curve results, four theta parameters were established using a nonlinear least square fitting method. Four theta parameters showed a good linearity as a function of stress. The predicted curves coincided well with the experimental data and creep curves were also modeled to the low stress level of 60MPa.

  19. Rheology of water and ammonia-water ices

    NASA Technical Reports Server (NTRS)

    Goldsby, D. L.; Kohlstedt, D. L.; Durham, W. B.

    1993-01-01

    Creep experiments on fine-grained water and ammonia-water ices have been performed at one atmosphere and high confining pressure in order to develop constitutive relationships necessary to model tectonic processes and interpret surface features of icy moons of the outer solar system. The present series of experiments explores the effects of temperature, strain rate, grain size, and melt fraction on creep strength. In general, creep strength decreases with increasing temperature, decreasing strain rate, and increasing melt fraction. A transition from dislocation creep to diffusion creep occurs at finer grain sizes, higher temperatures, and lower strain rates.

  20. Influence of feed flavors and nursery diet complexity on preweaning and nursery pig performance.

    PubMed

    Sulabo, R C; Tokach, M D; Derouchey, J M; Dritz, S S; Goodband, R D; Nelssen, J L

    2010-12-01

    In Exp. 1, 50 sows and their litters were used to determine the effects of adding a feed flavor to the creep diet on the proportion of pigs consuming creep feed ("eaters") and preweaning performance. Sows were blocked according to parity and date of farrowing and allotted to 2 experimental treatments: 1) litters fed a creep diet with no flavor (negative control) or 2) negative control diet with the feed flavor (Luctarom) included at 1,500 mg/kg. Both creep diets contained 1.0% chromic oxide and were offered ad libitum from d 18 until weaning at d 21. Adding flavor to the creep diet did not (P > 0.41) affect weaning weights, total BW gain, ADG, total creep feed intake, daily creep feed intake, or the proportion of creep feed eaters in whole litters. In Exp. 2, 480 weanling pigs (6.58 ± 0.41 kg; 20 ± 2 d) from Exp. 1 were randomly selected by preweaning treatment group, blocked by initial BW, and allotted to 1 of 8 treatments in a randomized complete block design to determine the interactive effects of preweaning exposure to flavor (exposed vs. unexposed), nursery diet complexity (complex vs. simple), and flavor addition to nursery diets (with vs. without flavor). Each treatment had 10 replications (pens) with 6 pigs per pen. Diets with flavor were supplemented with the flavor at 1,500 mg/kg in phase 1 diets and 1,000 mg/kg in phase 2 diets. A tendency for a 3-way interaction for ADG from d 5 to 10 (P = 0.10), 10 to 28 (P = 0.09), and 0 to 28 (P = 0.06) was observed. Postweaning ADG of pigs exposed to flavor in creep feed and fed flavored complex diets in the nursery was greater than pigs in any other treatment combination. Increasing diet complexity improved (P < 0.01) ADG and ADFI during both postweaning phases. Adding flavor to creep feed had no effect on G:F (P > 0.34) and pig BW (P > 0.45) in both postweaning periods. Adding flavor to starter diets tended to improve ADFI (P = 0.06) during d 0 to 5. In conclusion, adding flavor to the creep feed did not affect litter creep feed intake, the proportion of piglets consuming creep feed, or preweaning performance when creep was provided for 3 d before weaning. Preweaning exposure to feed flavor improved postweaning ADG in pigs fed complex diets supplemented with the same flavor but did not influence performance of pigs fed simple diets.

  1. Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Griffith, W. I.; Morris, D. H.

    1980-01-01

    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.

  2. Study of Creep of Alumina-Forming Austenitic Stainless Steel for High-Temperature Energy Applications

    NASA Astrophysics Data System (ADS)

    Afonina, Natalie Petrovna

    To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The high temperature results were significantly lower when compared to room temperature values. Higher creep rates were correlated with lower yield strengths.

  3. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1989-01-01

    Walls from frozen-thawed cucumber (Cucumis sativus L.) hypocotyls extend for many hours when placed in tension under acidic conditions. This study examined whether such "creep" is a purely physical process dependent on wall viscoelasticity alone or whether enzymatic activities are needed to maintain wall extension. Chemical denaturants inhibited wall creep, some acting reversibly and others irreversibly. Brief (15 s) boiling in water irreversibly inhibited creep, as did pre-incubation with proteases. Creep exhibited a high Q10 (3.8) between 20 degrees and 30 degrees C, with slow inactivation at higher temperatures, whereas the viscous flow of pectin solutions exhibited a much lower Q10 (1.35). On the basis of its temperature sensitivity, involvement of pectic gel-sol transitions was judged to be of little importance in creep. Pre-incubation of walls in neutral pH irreversibly inactivated their ability to creep, with a half-time of about 40 min. At 1 mM, Cu2+, Hg2+ and Al3+ were strongly inhibitory whereas most other cations, including Ca2+, had little effect. Sulfhydryl-reducing agents strongly stimulated creep, apparently by stabilizing wall enzyme(s). The physical effects of these treatments on polymer interactions were examined by Instron and stress-relaxation analyses. Some treatments, such as pH and Cu2+, had significant effects on wall viscoelasticity, but others had little or no apparent effect, thus implicating an enzymatic creep mechanism. The results indicate that creep depends on relatively rugged enzymes that are firmly attached to or entangled in the wall. The sensitivity of creep to SH-reducing agents indicates that thiol reduction of wall enzymes might provide a control mechanism for endogenous cell growth.

  4. Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Pandey, A. B.; Mishra, R. S.; Mahajan, Y. R.

    1996-02-01

    The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, σ = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.

  5. Irradiation creep of dispersion strengthened copper alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed ontomore » the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.« less

  6. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data

    USGS Publications Warehouse

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John

    2014-01-01

    Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.

  7. The Application of Strain Range Partitioning Method to Torsional Creep-Fatigue Interaction

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.

    1975-01-01

    The method of strain range partitioning was applied to a series of torsional fatigue tests conducted on tubular 304 stainless steel specimens at 1200 F. Creep strain was superimposed on cycling strain, and the resulting strain range was partitioned into four components; completely reversed plastic shear strain, plastic shear strain followed by creep strain, creep strain followed by plastic strain and completely reversed creep strain. Each strain component was related to the cyclic life of the material. The damaging effects of the individual strain components were expressed by a linear life fraction rule. The plastic shear strain component showed the least detrimental factor when compared to creep strain reversed by plastic strain. In the latter case, a reduction of torsional fatigue life in the order of magnitude of 1.5 was observed.

  8. Modelling of the plastic deformation and primary creep of metals coupled with DC in terms of the synthetic theory of irrecoverable deformation

    NASA Astrophysics Data System (ADS)

    Rusinko, Andrew; Varga, Peter

    2018-04-01

    The paper deals with modelling of the plastic and creep deformation of metals coupled with current. The passage of DC manifests itself in the increase in creep deformation and leads to primary creep time shortening. With plastic deformation, a short electric impulse results in the step-wise decrease of stress (stress-drop) on the stress-strain diagram. To catch these phenomena, we utilize the synthetic theory of recoverable deformation. The constitutive equation of this theory is supplemented by a term taking into account the intensity of DC. Further, we introduce DC intensity into the function governing transient creep. As a result, we predict the parameters of transient creep and calculate the stress-drop as a function of current intensity. The model results show good agreement with experimental data.

  9. Creep resistant high temperature martensitic steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followedmore » by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.« less

  10. Creep resistant high temperature martensitic steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followedmore » by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.« less

  11. The measurement of creep in ultrahigh molecular weight polyethylene: a comparison of conventional versus highly cross-linked polyethylene.

    PubMed

    Estok, Daniel M; Bragdon, Charles R; Plank, Gordon R; Huang, Anna; Muratoglu, Orhun K; Harris, William H

    2005-02-01

    Quantification of creep of highly cross-linked polyethylene would enable separation of creep from wear when evaluating femoral head penetration into polyethylene. We compared creep magnitude of a highly cross-linked versus conventional polyethylene in the laboratory. Twelve acetabular liners of each material were tested, 6 of which had a 32-mm inner diameter (ID) and 6 had 28-mm ID. Creep was measured using coordinate measuring machines during loading at 2 Hz without motion to 4 million cycles. Penetration into 32-mm ID conventional liners reached 97 microm versus 107 microm for highly cross-linked material, not significant. Penetration into 28-mm conventional liners was 132 microm versus 155 microm for highly cross-linked material (P = .017). Ninety percent of the creep had occurred by 2.5 million cycles.

  12. Thermally activated creep and fluidization in flowing disordered materials

    NASA Astrophysics Data System (ADS)

    Merabia, Samy; Detcheverry, François

    2016-11-01

    When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.

  13. Alloying effect on the room temperature creep characteristics of a Ti-Zr-Be bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Gong, Pan; Wang, Sibo; Li, Fangwei; Wang, Xinyun

    2018-02-01

    The effect of alloying elements (e.g. Fe, Al, and Ni) on the room temperature creep behavior of a lightweight Ti41Zr25Be34 bulk metallic glass (BMG) was investigated via nanoindentation tests. The generalized Kelvin model was adopted to describe the creep curves. The strain rate sensitivity m has been derived as a measure of the creep resistance. The compliance spectrum and retardation spectrum were also derived. The results show that the creep resistance of Ti41Zr25Be34 alloy can be obviously improved with the addition of alloying elements, and the most effective element is found to be Al. The mechanism for enhancing the creep resistance was discussed in terms of the scale variation of the shear transformation zone induced by alloying.

  14. Making Ice Creep in the Classroom

    NASA Astrophysics Data System (ADS)

    Prior, David; Vaughan, Matthew; Banjan, Mathilde; Hamish Bowman, M.; Craw, Lisa; Tooley, Lauren; Wongpan, Pat

    2017-04-01

    Understanding the creep of ice has direct application to the role of ice sheet flow in sea level and climate change and to modelling of icy planets and satellites of the outer solar system. Additionally ice creep can be used as an analogue for the high temperature creep of rocks, most particularly quartzites. We adapted technologies developed for ice creep experiments in the research lab, to build some inexpensive ( EU200) rigs to conduct ice creep experiments in an undergraduate (200 and 300 level) class in rock deformation. The objective was to give the students an experience of laboratory rock deformation experiments so that they would understand better what controls the creep rate of ice and rocks. Students worked in eight groups of 5/6 students. Each group had one deformation rig and temperature control system. Each group conducted two experiments over a 2 week period. The results of all 16 experiments were then shared so that all students could analyse the mechanical data and generate a "flow law" for ice. Additionally thin sections were made of each deformed sample so that some microstructural analysis could be incorporated in the data analysis. Students were able to derive a flow law that showed the relationship of creep rate to both stress and temperature. The flow law matches with those from published research. The class did provide a realistic introduction to laboratory rock deformation experiments and helped students' understanding of what controls the creep of rocks.

  15. Spatial fluctuations in transient creep deformation

    NASA Astrophysics Data System (ADS)

    Laurson, Lasse; Rosti, Jari; Koivisto, Juha; Miksic, Amandine; Alava, Mikko J.

    2011-07-01

    We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by digital image correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases—the spatially averaged creep rate obeys the Andrade law epsilont ~ t - 0.7, while the time dependence of the spatial fluctuations of the local creep rates is given by Δepsilont ~ t - 0.5. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2d linear interface model or the quenched Edwards-Wilkinson equation.

  16. Investigation of Macroscopic Brittle Creep Failure Caused by Microcrack Growth Under Step Loading and Unloading in Rocks

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhao; Shao, Zhushan

    2016-07-01

    The growth of subcritical cracks plays an important role in the creep of brittle rock. The stress path has a great influence on creep properties. A micromechanics-based model is presented to study the effect of the stress path on creep properties. The microcrack model of Ashby and Sammis, Charles' Law, and a new micro-macro relation are employed in our model. This new micro-macro relation is proposed by using the correlation between the micromechanical and macroscopic definition of damage. A stress path function is also introduced by the relationship between stress and time. Theoretical expressions of the stress-strain relationship and creep behavior are derived. The effects of confining pressure on the stress-strain relationship are studied. Crack initiation stress and peak stress are achieved under different confining pressures. The applied constant stress that could cause creep behavior is predicted. Creep properties are studied under the step loading of axial stress or the unloading of confining pressure. Rationality of the micromechanics-based model is verified by the experimental results of Jinping marble. Furthermore, the effects of model parameters and the unloading rate of confining pressure on creep behavior are analyzed. The coupling effect of step axial stress and confining pressure on creep failure is also discussed. The results provide implications on the deformation behavior and time-delayed rockburst mechanism caused by microcrack growth on surrounding rocks during deep underground excavations.

  17. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550 °C

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Jianu, A.; An, W.; Fetzer, R.; Del Giacco, Mattia; Heinzel, A.; Müller, G.; Markov, V. G.; Kasthanov, A. D.

    2012-12-01

    Surface layers made of FeCrAl alloys on T91 steel have shown their capability as corrosion protection barriers in lead bismuth. Pulsed electron beam treatment improves the density and more over the adherence of such layers. After the treatment of previously deposited coatings a surface graded material is achieved with a metallic bonded interface. Creep-rupture tests of T91 in lead-alloy at 550 °C reveal significant reduced creep strength of non-modified T91 test specimens. Oxide scales protecting the steels from attacks of the liquid metal will crack at a certain strain leading to a direct contact between the steel and the liquid metal. The negative influence of the lead-alloy on the creep behavior of non-modified T91 is stress dependent, but below a threshold stress value of 120 MPa at 550 °C this influence becomes almost negligible. At 500 °C and stress values of 200 MPa and 220 MPa the creep rates are comparable between them and significantly lower than creep rates at 180 MPa of original T91 in air at 550 °C. No signs of LBE influence are detected. The surface modified specimens tested at high stress levels instead had creep-rupture times similar to T91 (original state) tested in air. The thin oxide layers formed on the surface modified steel samples are less susceptible to crack formation and therefore to lead-alloy enhanced creep.

  18. Creep and creep-recovery of a thermoplastic resin and composite

    NASA Technical Reports Server (NTRS)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  19. Porosity Evolution in a Creeping Single Crystal (Preprint)

    DTIC Science & Technology

    2012-08-01

    1] indicated that the growth of initially present processing induced voids in a nickel based single crystal superalloy played a significant role in...processing induced voids in a nickel based single crystal superalloy played a significant role in limiting creep life. Also, creep tests on single...experimental observations of creep deformation and failure of a nickel based single crystal superalloy, [1, 2]. Metallographic observations have shown that Ni

  20. A discrete dislocation dynamics model of creeping single crystals

    NASA Astrophysics Data System (ADS)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  1. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1986-01-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistant as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  2. Lattice continuum and diffusional creep

    PubMed Central

    2016-01-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate. PMID:27274696

  3. Long-term prediction of creep strains of mineral wool slabs under constant compressive stress

    NASA Astrophysics Data System (ADS)

    Gnip, Ivan; Vaitkus, Saulius; Keršulis, Vladislovas; Vėjelis, Sigitas

    2012-02-01

    The results obtained in determining the creep strain of mineral wool slabs under compressive stress, used for insulating flat roofs and facades, cast-in-place floors, curtain and external basement walls, as well as for sound insulation of floors, are presented. The creep strain tests were conducted under a compressive stress of σ c =0.35 σ 10%. Interval forecasting of creep strain was made by extrapolating the creep behaviour and approximated in accordance with EN 1606 by a power equation and reduced to a linear form using logarithms. This was performed for a lead time of 10 years. The extension of the range of the confidence interval due to discount of the prediction data, i.e. a decrease in their informativity was allowed for by an additional coefficient. Analysis of the experimental data obtained from the tests having 65 and 122 days duration showed that the prediction of creep strains for 10 years can be made based on data obtained in experiments with durations shorter than the 122 days as specified by EN 13162. Interval prediction of creep strains (with a confidence probability of 90%) was based on using the mean square deviation of the actual direct observations of creep strains in logarithmic form to have the linear trend in a retrospective area.

  4. A modified constitutive model for creep of Sn-3.5Ag-0.7Cu solder joints

    NASA Astrophysics Data System (ADS)

    Han, Y. D.; Jing, H. Y.; Nai, S. M. L.; Tan, C. M.; Wei, J.; Xu, L. Y.; Zhang, S. R.

    2009-06-01

    In this study, the constitutive behaviour for creep performance of 95.8Sn-3.5Ag-0.7Cu lead-free solder joints was investigated. It was observed that the stress exponent (n) can be well defined into two stress regimes: low stress and high stress. A new, improved constitutive model, which considered back stress, was proposed to describe the creep behaviour of SnAgCu solder joints. In this model, the back stress, which is a function of the applied shear stress in the low stress regime (LSR) and a function of the particle size, volume fraction and coarsening of IMC particles in the high stress regime (HSR), was introduced to construct the relationship between the creep strain rate and the shear stress. The creep mechanism in these two stress regimes was studied in detail. In the LSR, dislocations passed through the matrix by climbing over the intermetallic particles, while in the HSR, the dislocations were glide-controlled. According to the different creep mechanisms in both the stress regimes, the back stress was calculated, respectively, and then incorporated into the Arrhenius power-law creep model. It was demonstrated that the predicted strain rate-shear stress behaviour employing the modified creep constitutive model which considered back stress, was in good agreement with the experimental results.

  5. Creep-rupture behavior of 6 candidate stirling engine iron-base superalloys in high pressure hydrogen. Volume 1: Air creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1982-01-01

    Four wrought alloys (A-286, IN 800H, N-155, and 19-9DL) and two cast alloys (CRM-6D and XF-818) were tested to determine their creep-rupture behavior. The wrought alloys were used in the form of sheets of 0.89 mm (0.035 in.) average thickness. The cast alloy specimens were investment cast and machined to 6.35 mm (0.250 in.) gage diameter. All specimens were tested to rupture in air at different times up to 3000 h over the temperature range of 650 C to 925 C (1200 F to 1700 F). Rupture life, minimum creep rate, and time to 1% creep strain were statistically analyzed as a function of stress at different temperatures. Temperature-compensated analysis was also performed to obtain the activation energies for rupture life, time to 1% creep strain, and the minimum creep rate. Microstructural and fracture analyses were also performed. Based on statistical analyses, estimates were made for stress levels at different temperatures to obtain 3500 h rupture life and time to 1% creep strain. Test results are to be compared with similar data being obtained for these alloys under 15 MPa (2175 psi) hydrogen.

  6. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.

    PubMed

    Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min

    2017-08-01

    The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Moving singularity creep crack growth analysis with the /Delta T/c and C/asterisk/ integrals. [path-independent vector and energy rate line integrals

    NASA Technical Reports Server (NTRS)

    Stonesifer, R. B.; Atluri, S. N.

    1982-01-01

    The physical meaning of (Delta T)c and its applicability to creep crack growth are reviewed. Numerical evaluation of (Delta T)c and C(asterisk) is discussed with results being given for compact specimen and strip geometries. A moving crack-tip singularity, creep crack growth simulation procedure is described and demonstrated. The results of several crack growth simulation analyses indicate that creep crack growth in 304 stainless steel occurs under essentially steady-state conditions. Based on this result, a simple methodology for predicting creep crack growth behavior is summarized.

  8. The creep properties of dispersion-strengthened silver-gallium oxide alloys.

    NASA Technical Reports Server (NTRS)

    Lenel, F. V.; Ansell, G. S.; Nazmy, M. Y.

    1971-01-01

    Steady-state creep rates were measured for two preparations of a dispersion-strengthened alloy of silver with 1 mol % gallium oxide. One preparation, an internally-oxidized type, had a grain size 40 times that of the other preparation, which was a consolidated-powder type of alloy. The temperature and stress dependence of the steady-state creep rate differs widely for the two alloys and must be attributed to the difference in grain size. The activation energy for steady-state creep of the internally-oxidized coarse grained material is near that for self-diffusion of silver, which strongly indicates a creep process controlled by dislocation climb.

  9. Creep and fatigue characteristics of Superpave mixtures.

    DOT National Transportation Integrated Search

    2005-01-01

    Laboratory creep and fatigue testing was performed on five Superpave surface hot-mix asphalt mixtures placed at the Virginia Smart Road. Differences in creep and fatigue response attributable to production and compaction methods were investigated. In...

  10. Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    NASA Technical Reports Server (NTRS)

    Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac

    2009-01-01

    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.

  11. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  12. Transient creep and semibrittle behavior of crystalline rocks

    USGS Publications Warehouse

    Carter, N.L.; Kirby, S.H.

    1978-01-01

    We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.

  13. Preliminary investigation of the kinetics of primary creep of a two phase gamma TiAl alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, R.W.

    1993-11-01

    It is the intent of this communication to present and discuss some data regarding the kinetics of primary creep of a two phase gamma TiAl alloy which had been studied previously to determine the mechanisms giving rise to the minimum strain rate. In order to study the kinetics of primary creep of the present gamma TiAl alloy an approach previously taken by Dorn et al and also recently employed by Argon and Bhattacharya was taken. Dorn et al demonstrated that at a given constant stress, the strain rate during primary creep is governed by a combined time-temperature parameter [Theta] =more » t exp([minus]Q/RT) where Q is the activation energy for self diffusion which many times also governs the process of steady-state creep. It was shown that at the same constant stress level all primary creep curves were found to collapse on one another when the primary creep strain is plotted as a function of [Theta][sup (9)].« less

  14. Creep Life Prediction of Ceramic Components Using the Finite Element Based Integrated Design Program (CARES/Creep)

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1997-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. Such long life requirements necessitate subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this work is to present a design methodology for predicting the lifetimes of structural components subjected to multiaxial creep loading. This methodology utilizes commercially available finite element packages and takes into account the time varying creep stress distributions (stress relaxation). In this methodology, the creep life of a component is divided into short time steps, during which, the stress and strain distributions are assumed constant. The damage, D, is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. For components subjected to predominantly tensile loading, failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity.

  15. Interrelation of creep and relaxation: a modeling approach for ligaments.

    PubMed

    Lakes, R S; Vanderby, R

    1999-12-01

    Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R > or = 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.

  16. Creep-Fatigue Interaction and Cyclic Strain Analysis in P92 Steel Based on Test

    NASA Astrophysics Data System (ADS)

    Ji, Dongmei; Zhang, Lai-Chang; Ren, Jianxing; Wang, Dexian

    2015-04-01

    This work focused on the interaction of creep and fatigue and cyclic strain analysis in high-chromium ferritic P92 steel based on load-controlled creep-fatigue (CF) tests and conventional creep test at 873 K. Mechanical testing shows that the cyclic load inhibits the propagation of creep damage in the P92 steel and CF interaction becomes more severe with the decrease in the holding period duration and stress ratio. These results are also verified by the analysis of cyclic strain. The fatigue lifetime reduces with the increasing of the holding period duration and it does not reduce much with the increasing stress ratio especially under the conditions of long holding period duration. The cyclic strains (i.e., the strain range and creep strain) of CF tests consist of three stages, which is the same as those for the conventional creep behavior. The microscopic fracture surface observations illustrated that two different kinds of voids are observed at the fracture surfaces and Laves phase precipitates at the bottom of the voids.

  17. Role of back stress in the creep behavior of particle strengthened alloys

    NASA Technical Reports Server (NTRS)

    Purushothaman, S.; Tien, J. K.

    1978-01-01

    Recent developments in the interpolation of high-temperature steady-state creep results have introduced the concept that the stress dependence of the creep rate should be in terms of the effective stress referred to as the applied stress minus a back stress. This paper reports on back stresses taken from data on a gamma-prime-strengthened wrought nickel-base superalloy, an oxide dispersion-strengthened ODS nickel-base solid solution alloy, and an ODS nickel-base superalloy. The effect of air versus vacuum environments and the effect of dynamic changes in the strengthening microstructures on the magnitude of the back stress are assessed. The role of modulus normalization and the back stress correction in determining the true creep activation energy are examined. It is shown that the high values of the apparent stress exponent 'n' of the steady-state creep equation can be easily explained through a relationship between n, the true stress exponent of steady-state creep, and the stress which when subtracted from the applied stress results in the effective driving stress acting on the mobile dislocations during creep.

  18. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yongming; Oskay, Caglar

    This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage ismore » directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of the grain boundaries. The glide model incorporates a slip resistance evolution model that characterizes the solute-drag creep effects and can capture well the stress-strain and stress time response of fatigue and creep-fatigue tests at various strain ranges and hold times. In order to accurately capture the creep strains that accumulate particularly at relatively low stress levels, a dislocation climb model has been incorporated into the crystal plasticity modeling framework. The dislocation climb model parameters are calibrated and verified through experimental creep tests performed at 950°. In addition, a cohesive zone model has been fully implemented in the context of the crystal plasticity finite element model to capture the intergranular creep damage. The parameters of the cohesive zone model have been calibrated using available experimental data. The numerical simulations illustrate the capability of the proposed model in capturing damage initiation and growth under creep loads as compared to the experimental observations. The microscale analysis sheds light on the crack initiation sites and propagation patterns within the microstructure. The model is also utilized to investigate the hybrid-controlled creep-fatigue tests and has been found to capture reasonably well the stress-strain response with different hold times and hold stress magnitudes.« less

  19. Evaluation of models for predicting (total) creep of prestressed concrete mixtures.

    DOT National Transportation Integrated Search

    2001-01-01

    Concrete experiences volume changes throughout its service life. When loaded, concrete experiences an instantaneous recoverable elastic deformation and a slow inelastic deformation called creep. Creep of concrete is composed of two components, basic ...

  20. What Polar Bears Can Teach Us about Mission Creep

    DTIC Science & Technology

    2015-04-16

    or Phase 0 operations. Mission Creep, the expansion of a project or mission beyond its original goals, is often an outcome of such steady state...state or Phase 0 operations. Mission Creep, the expansion of a project or mission beyond its original goals, is often an outcome of such steady state...de Tocqueville Mission Creep is the expansion of an operation or mission beyond its original goals, often after initial success. It occurs when

  1. Strong ground motions generated by earthquakes on creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.; Abrahamson, Norman A.

    2014-01-01

    A tenet of earthquake science is that faults are locked in position until they abruptly slip during the sudden strain-relieving events that are earthquakes. Whereas it is expected that locked faults when they finally do slip will produce noticeable ground shaking, what is uncertain is how the ground shakes during earthquakes on creeping faults. Creeping faults are rare throughout much of the Earth's continental crust, but there is a group of them in the San Andreas fault system. Here we evaluate the strongest ground motions from the largest well-recorded earthquakes on creeping faults. We find that the peak ground motions generated by the creeping fault earthquakes are similar to the peak ground motions generated by earthquakes on locked faults. Our findings imply that buildings near creeping faults need to be designed to withstand the same level of shaking as those constructed near locked faults.

  2. Generation of long time creep data on refractory alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1970-01-01

    Creep tests were conducted on two tantalum alloys (ASTAR 811C and T-111 alloy), on a molybdenum alloy (TZM), and on CVD tungsten. The T-111 alloy 1% creep life data have been subjected to Manson's station function analysis, and the progress on this analysis is described. In another test program, the behavior of T-111 alloy with continuously varying temperatures and stresses has been studied. The results indicated that the previously described analysis predicts the observed creep behavior with reasonable accuracy. In addition to the T-111 test program, conventional 1% creep life data have been obtained for ASTAR 811C alloy. Previously observed effects of heat treatment on the creep strength of this material have been discussed and a model involving carbide strengthening primarily at the grain boundaries, rather than in a classical dispersion hardening mechanism, has been proposed to explain the observed results.

  3. Characterizing the effect of creep on stress corrosion cracking of cold worked Alloy 690 in supercritical water environment

    NASA Astrophysics Data System (ADS)

    Zhang, Lefu; Chen, Kai; Du, Donghai; Gao, Wenhua; Andresen, Peter L.; Guo, Xianglong

    2017-08-01

    The effect of creep on stress corrosion cracking (SCC) was studied by measuring crack growth rates (CGRs) of 30% cold worked (CW) Alloy 690 in supercritical water (SCW) and inert gas environments at temperatures ranging from 450 °C to 550 °C. The SCC crack growth rate under SCW environments can be regarded as the cracking induced by the combined effect of corrosion and creep, while the CGR in inert gas environment can be taken as the portion of creep induced cracking. Results showed that the CW Alloy 690 sustained high susceptibility to intergranular (IG) cracking, and creep played a dominant role in the SCC crack growth behavior, contributing more than 80% of the total crack growth rate at each testing temperature. The temperature dependence of creep induced CGRs follows an Arrhenius dependency, with an apparent activation energy (QE) of about 225 kJ/mol.

  4. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  5. The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Feldman, Mark

    1994-01-01

    Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.

  6. Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence.

    PubMed

    Morgan, R L; Farrar, D F; Rose, J; Forster, H; Morgan, I

    2003-04-01

    The clinical lifetime of poly(methyl methacrylate) (PMMA) bone cement is considerably longer than the time over which it is convenient to perform creep testing. Consequently, it is desirable to be able to predict the long term creep behavior of bone cement from the results of short term testing. A simple method is described for prediction of long term creep using the principle of time-temperature equivalence in polymers. The use of the method is illustrated using a commercial acrylic bone cement. A creep strain of approximately 0.6% is predicted after 400 days under a constant flexural stress of 2 MPa. The temperature range and stress levels over which it is appropriate to perform testing are described. Finally, the effects of physical aging on the accuracy of the method are discussed and creep data from aged cement are reported.

  7. Normalized coffin-manson plot in terms of a new life function based on stress relaxation under creep-fatigue conditions

    NASA Astrophysics Data System (ADS)

    Jeong, Chang Yeol; Nam, Soo Woo; Lim, Jong Dae

    2003-04-01

    A new life prediction function based on a model formulated in terms of stress relaxation during hold time under creep-fatigue conditions is proposed. From the idea that reduction in fatigue life with hold is due to the creep effect of stress relaxation that results in additional energy dissipation in the hysteresis loop, it is suggested that the relaxed stress range may be a creep-fatigue damage function. Creep-fatigue data from the present and other investigators are used to check the validity of the proposed life prediction equation. It is shown that the data satisfy the applicability of the life relation model. Accordingly, using this life prediction model, one may realize that all the Coffin-Manson plots at various levels of hold time in strain-controlled creep-fatigue tests can be normalized to make one straight line.

  8. On the Measurement of Power Law Creep Parameters from Instrumented Indentation

    NASA Astrophysics Data System (ADS)

    Sudharshan Phani, P.; Oliver, W. C.; Pharr, G. M.

    2017-11-01

    Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

  9. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  10. Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.

    2013-01-01

    Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.

  11. The high temperature creep behavior of oxides and oxide fibers

    NASA Technical Reports Server (NTRS)

    Jones, Linda E.; Tressler, Richard E.

    1991-01-01

    A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.

  12. Bridging clinical researcher perceptions and health IT realities: A case study of stakeholder creep.

    PubMed

    Panyard, Daniel J; Ramly, Edmond; Dean, Shannon M; Bartels, Christie M

    2018-02-01

    We present a case report detailing a challenge in health information technology (HIT) project implementations we term "stakeholder creep": not thoroughly identifying which stakeholders need to be involved and why before starting a project, consequently not understanding the true effort, skill sets, social capital, and time required to complete the project. A root cause analysis was performed post-implementation to understand what led to stakeholder creep. HIT project stakeholders were given a questionnaire to comment on these misconceptions and a proposed implementation tool to help mitigate stakeholder creep. Stakeholder creep contributed to an unexpected increase in time (3-month delayed go-live) and effort (68% over expected HIT work hours). Four main clinician/researcher misconceptions were identified that contributed to the development of stakeholder creep: 1) that EHR IT is a single group; 2) that all EHR IT members know the entire EHR functionality; 3) that changes to an EHR need the input of just a single EHR IT member; and 4) that the technological complexity of a project mirrors the clinical complexity. HIT project stakeholders similarly perceived clinicians/researchers to hold these misconceptions. The proposed stakeholder planning tool was perceived to be feasible and helpful. Stakeholder creep can negatively affect HIT project implementations. Projects may be susceptible to stakeholder creep when clinicians/researchers hold misconceptions related to HIT organization and processes. Implementation tools, such as the proposed stakeholder checklist, could be helpful in preempting and mitigating the effect of stakeholder creep. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour

    NASA Astrophysics Data System (ADS)

    Gorash, Yevgen; MacKenzie, Donald

    2017-06-01

    This study proposes cyclic yield strength as a potential characteristic of safe design for structures operating under fatigue and creep conditions. Cyclic yield strength is defined on a cyclic stress-strain curve, while monotonic yield strength is defined on a monotonic curve. Both values of strengths are identified using a two-step procedure of the experimental stress-strain curves fitting with application of Ramberg-Osgood and Chaboche material models. A typical S-N curve in stress-life approach for fatigue analysis has a distinctive minimum stress lower bound, the fatigue endurance limit. Comparison of cyclic strength and fatigue limit reveals that they are approximately equal. Thus, safe fatigue design is guaranteed in the purely elastic domain defined by the cyclic yielding. A typical long-term strength curve in time-to-failure approach for creep analysis has two inflections corresponding to the cyclic and monotonic strengths. These inflections separate three domains on the long-term strength curve, which are characterised by different creep fracture modes and creep deformation mechanisms. Therefore, safe creep design is guaranteed in the linear creep domain with brittle failure mode defined by the cyclic yielding. These assumptions are confirmed using three structural steels for normal and high-temperature applications. The advantage of using cyclic yield strength for characterisation of fatigue and creep strength is a relatively quick experimental identification. The total duration of cyclic tests for a cyclic stress-strain curve identification is much less than the typical durations of fatigue and creep rupture tests at the stress levels around the cyclic yield strength.

  14. The primary creep behavior of single crystal, nickel base superalloys PWA 1480 and PWA 1484

    NASA Astrophysics Data System (ADS)

    Wilson, Brandon Charles

    Primary creep occurring at intermediate temperatures (650°C to 850°C) and loads greater than 500 MPa has been shown to result in severe creep strain, often exceeding 5-10%, during the first few hours of creep testing. This investigation examines how the addition of rhenium and changes in aging heat treatment affect the primary creep behavior of PWA 1480 and PWA 1484. To aid in the understanding of rhenium's role in primary creep, 3wt% Re was added to PWA 1480 to create a second generation version of PWA 1480. The age heat treatments used for creep testing were either 704°C/24 hr. or 871°C/32hr. All three alloys exhibited the presence of secondary gamma' confirmed by scanning electron microscopy and local electrode atom probe techniques. These aging heat treatments resulted in the reduction of the primary creep strain produced in PWA 1484 from 24% to 16% at 704°C/862 MPa and produced a slight dependence of the tensile properties of PWA 1480 on aging heat treatment temperature. For all test temperatures, the high temperature age resulted in a significant decrease in primary creep behavior of PWA 1484 and a longer lifetime for all but the lowest test temperature. The primary creep behavior of PWA 1480 and PWA 1480+Re did not display any significant dependence on age heat treatment. The creep rupture life of PWA 1480 is greater than PWA 1484 at 704°C, but significantly shorter at 760°C and 815°C. PWA 1480+Re, however, displayed the longest lifetime of all three alloys at both 704°C and 815°C (PWA 1480+Re was not tested at 760°C). Qualitative TEM analysis revealed that PWA 1484 deformed by large dislocation "ribbons" spanning large regions of material. PWA 1480, however, deformed primarily due to matrix dislocations and the creation of interfacial dislocation networks between the gamma and gamma' phases. PWA 1480+ contained stacking faults as well, though they acted on multiple slip systems generating work hardening and forcing the onset of secondary creep. X-ray diffraction and JMatPro calculations were also used to gain insight into the cause of the differences in behaviors.

  15. Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Shah, Ashwin R.; Korovaichuk, Igor

    2010-01-01

    The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also includes direct benchmark experimental creep assessment. This element provides high-fidelity creep testing of prototypical heater head test articles to investigate the relevant material issues and multiaxial stress state. Benchmark testing provides required data to evaluate the complex life assessment methodology and to validate that analysis. Results from current benchmark heater head tests and newly developed experimental methods are presented. In the concluding remarks, the test results are shown to compare favorably with the creep strain predictions and are the first experimental evidence for a robust ASC heater head creep life.

  16. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  17. Effect of low-temperature annealing on the creep of 1570 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Perevezentsev, V. N.; Shcherban', M. Yu.; Gracheva, T. A.; Kuz'micheva, T. A.

    2015-08-01

    The effect of preliminary low-temperature annealing on the creep of a submicrocrystalline 1570 aluminum alloy fabricated by severe plastic deformation is studied. The creep rate is found to increase with the annealing time, but long-term annealing for 4 h decreases the creep rate to the value characteristic of the alloy not subjected to preliminary annealing. The increase in the creep rate of the alloy subjected to preliminary annealing is likely to be caused by an increase in the nonequilibrium excess volume in grain boundaries as a result of the dissolution of grain-boundary nanopores upon annealing and, hence, by an increase in the grain-boundary diffusion rate and the grain-boundary sliding rate.

  18. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    NASA Astrophysics Data System (ADS)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  19. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  20. Ground Motions Due to Earthquakes on Creeping Faults

    NASA Astrophysics Data System (ADS)

    Harris, R.; Abrahamson, N. A.

    2014-12-01

    We investigate the peak ground motions from the largest well-recorded earthquakes on creeping strike-slip faults in active-tectonic continental regions. Our goal is to evaluate if the strong ground motions from earthquakes on creeping faults are smaller than the strong ground motions from earthquakes on locked faults. Smaller ground motions might be expected from earthquakes on creeping faults if the fault sections that strongly radiate energy are surrounded by patches of fault that predominantly absorb energy. For our study we used the ground motion data available in the PEER NGA-West2 database, and the ground motion prediction equations that were developed from the PEER NGA-West2 dataset. We analyzed data for the eleven largest well-recorded creeping-fault earthquakes, that ranged in magnitude from M5.0-6.5. Our findings are that these earthquakes produced peak ground motions that are statistically indistinguishable from the peak ground motions produced by similar-magnitude earthquakes on locked faults. These findings may be implemented in earthquake hazard estimates for moderate-size earthquakes in creeping-fault regions. Further investigation is necessary to determine if this result will also apply to larger earthquakes on creeping faults. Please also see: Harris, R.A., and N.A. Abrahamson (2014), Strong ground motions generated by earthquakes on creeping faults, Geophysical Research Letters, vol. 41, doi:10.1002/2014GL060228.

  1. A Statistical Test for Identifying the Number of Creep Regimes When Using the Wilshire Equations for Creep Property Predictions

    NASA Astrophysics Data System (ADS)

    Evans, Mark

    2016-12-01

    A new parametric approach, termed the Wilshire equations, offers the realistic potential of being able to accurately lift materials operating at in-service conditions from accelerated test results lasting no more than 5000 hours. The success of this approach can be attributed to a well-defined linear relationship that appears to exist between various creep properties and a log transformation of the normalized stress. However, these linear trends are subject to discontinuities, the number of which appears to differ from material to material. These discontinuities have until now been (1) treated as abrupt in nature and (2) identified by eye from an inspection of simple graphical plots of the data. This article puts forward a statistical test for determining the correct number of discontinuities present within a creep data set and a method for allowing these discontinuities to occur more gradually, so that the methodology is more in line with the accepted view as to how creep mechanisms evolve with changing test conditions. These two developments are fully illustrated using creep data sets on two steel alloys. When these new procedures are applied to these steel alloys, not only do they produce more accurate and realistic looking long-term predictions of the minimum creep rate, but they also lead to different conclusions about the mechanisms determining the rates of creep from those originally put forward by Wilshire.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, S.; Yang, M.; Song, X.L.

    The Laves phase precipitation process was characterised by means of field emission scanning electron microscopy to demonstrate its effect on creep rupture strength of steels with a fully ferritic matrix. To eliminate the effects of carbide and carbonitride precipitations so that the creep rupture data can be analysed exclusively in relation to the Laves phase precipitation process, an alloy Fe–9Cr–3Co–3W (wt.%) without C and N additions was used for the study. Creep rupture strengths were measured and volume fraction and particle size of Laves phase precipitates in the ruptured specimens were analysed. It was found that the creep rupture strengthmore » started to collapse (or decrease more rapidly) long before the Laves phase precipitation reached equilibrium fraction. This was related to the onset of the coarsening of Laves phase particles, which precipitated only on grain boundaries and hence contributed little to precipitation strengthening. Creep deformation had no effect either on the precipitation kinetics or on the growth kinetics of Laves phase particles. - Highlights: • Laves phase precipitation at 650 °C was characterised for Fe–9Cr–3W–3Co alloy. • Laves phase precipitated predominantly on grain boundaries. • Creep deformation had no effect on Laves phase precipitation and growth kinetics. • Creep strength started to collapse long before Laves phase precipitation is ended. • Collapse of creep strength was attributed to the coarsening of Laves phase particles.« less

  3. Progress Report on Alloy 617 Time Dependent Allowables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Julie Knibloe

    2015-06-01

    Time dependent allowable stresses are required in the ASME Boiler and Pressure Vessel Code for design of components in the temperature range where time dependent deformation (i.e., creep) is expected to become significant. There are time dependent allowable stresses in Section IID of the Code for use in the non-nuclear construction codes, however, there are additional criteria that must be considered in developing time dependent allowables for nuclear components. These criteria are specified in Section III NH. St is defined as the lesser of three quantities: 100% of the average stress required to obtain a total (elastic, plastic, primary andmore » secondary creep) strain of 1%; 67% of the minimum stress to cause rupture; and 80% of the minimum stress to cause the initiation of tertiary creep. The values are reported for a range of temperatures and for time increments up to 100,000 hours. These values are determined from uniaxial creep tests, which involve the elevated temperature application of a constant load which is relatively small, resulting in deformation over a long time period prior to rupture. The stress which is the minimum resulting from these criteria is the time dependent allowable stress St. In this report data from a large number of creep and creep-rupture tests on Alloy 617 are analyzed using the ASME Section III NH criteria. Data which are used in the analysis are from the ongoing DOE sponsored high temperature materials program, form Korea Atomic Energy Institute through the Generation IV VHTR Materials Program and historical data from previous HTR research and vendor data generated in developing the alloy. It is found that the tertiary creep criterion determines St at highest temperatures, while the stress to cause 1% total strain controls at low temperatures. The ASME Section III Working Group on Allowable Stress Criteria has recommended that the uncertainties associated with determining the onset of tertiary creep and the lack of significant cavitation associated with early tertiary creep strain suggest that the tertiary creep criteria is not appropriate for this material. If the tertiary creep criterion is dropped from consideration, the stress to rupture criteria determines St at all but the lowest temperatures.« less

  4. Retardations in fault creep rates before local moderate earthquakes along the San Andreas fault system, central California

    USGS Publications Warehouse

    Burford, R.O.

    1988-01-01

    Records of shallow aseismic slip (fault creep) obtained along parts of the San Andreas and Calaveras faults in central California demonstrate that significant changes in creep rates often have been associated with local moderate earthquakes. An immediate postearthquake increase followed by gradual, long-term decay back to a previous background rate is generally the most obvious earthquake effect on fault creep. This phenomenon, identified as aseismic afterslip, usually is characterized by above-average creep rates for several months to a few years. In several cases, minor step-like movements, called coseismic slip events, have occurred at or near the times of mainshocks. One extreme case of coseismic slip, recorded at Cienega Winery on the San Andreas fault 17.5 km southeast of San Juan Bautista, consisted of 11 mm of sudden displacement coincident with earthquakes of ML=5.3 and ML=5.2 that occurred 2.5 minutes apart on 9 April 1961. At least one of these shocks originated on the main fault beneath the winery. Creep activity subsequently stopped at the winery for 19 months, then gradually returned to a nearly steady rate slightly below the previous long-term average. The phenomena mentioned above can be explained in terms of simple models consisting of relatively weak material along shallow reaches of the fault responding to changes in load imposed by sudden slip within the underlying seismogenic zone. In addition to coseismic slip and afterslip phenomena, however, pre-earthquake retardations in creep rates also have been observed. Onsets of significant, persistent decreases in creep rates have occurred at several sites 12 months or more before the times of moderate earthquakes. A 44-month retardation before the 1979 ML=5.9 Coyote Lake earthquake on the Calaveras fault was recorded at the Shore Road creepmeter site 10 km northwest of Hollister. Creep retardation on the San Andreas fault near San Juan Bautista has been evident in records from one creepmeter site for the past 5 years. Retardations with durations of 21 and 19 months also occurred at Shore Road before the 1974 and 1984 earthquakes of ML=5.2 and ML=6.2, respectively. Although creep retardation remains poorly understood, several possible explanations have been discussed previously. (1) Certain onsets of apparent creep retardation may be explained as abrupt terminations of afterslip generated from previous moderate-mainshock sequences. (2) Retardations may be related to significant decreases in the rate of seismic and/or aseismic slip occurring within or beneath the underlying seismogenic zone. Such decreases may be caused by changes in local conditions related to growth of asperities, strain hardening, or dilatancy, or perhaps by passage of stress-waves or other fluctuations in driving stresses. (3) Finally, creep rates may be lowered (or increased) by stresses imposed on the fault by seismic or aseismic slip on neighboring faults. In addition to causing creep-rate increases or retardations, such fault interactions occasionally may trigger earthquakes. Regardless of the actual mechanisms involved and the current lack of understanding of creep retardation, it appears that shallow fault creep is sensitive to local and regional effects that promote or accompany intermediate-term preparation stages leading to moderate earthquakes. A strategy for more complete monitoring of fault creep, wherever it is known to occur, therefore should be assigned a higher priority in our continuing efforts to test various hypotheses concerning the mechanical relations between seismic and aseismic slip. ?? 1988 Birkha??user Verlag.

  5. Retardations in fault creep rates before local moderate earthquakes along the San Andreas fault system, central California

    NASA Astrophysics Data System (ADS)

    Burford, Robert O.

    1988-06-01

    Records of shallow aseismic slip (fault creep) obtained along parts of the San Andreas and Calaveras faults in central California demonstrate that significant changes in creep rates often have been associated with local moderate earthquakes. An immediate postearthquake increase followed by gradual, long-term decay back to a previous background rate is generally the most obvious earthquake effect on fault creep. This phenomenon, identified as aseismic afterslip, usually is characterized by above-average creep rates for several months to a few years. In several cases, minor step-like movements, called coseismic slip events, have occurred at or near the times of mainshocks. One extreme case of coseismic slip, recorded at Cienega Winery on the San Andreas fault 17.5 km southeast of San Juan Bautista, consisted of 11 mm of sudden displacement coincident with earthquakes of M L =5.3 and M L =5.2 that occurred 2.5 minutes apart on 9 April 1961. At least one of these shocks originated on the main fault beneath the winery. Creep activity subsequently stopped at the winery for 19 months, then gradually returned to a nearly steady rate slightly below the previous long-term average. The phenomena mentioned above can be explained in terms of simple models consisting of relatively weak material along shallow reaches of the fault responding to changes in load imposed by sudden slip within the underlying seismogenic zone. In addition to coseismic slip and afterslip phenomena, however, pre-earthquake retardations in creep rates also have been observed. Onsets of significant, persistent decreases in creep rates have occurred at several sites 12 months or more before the times of moderate earthquakes. A 44-month retardation before the 1979 M L =5.9 Coyote Lake earthquake on the Calaveras fault was recorded at the Shore Road creepmeter site 10 km northwest of Hollister. Creep retardation on the San Andreas fault near San Juan Bautista has been evident in records from one creepmeter site for the past 5 years. Retardations with durations of 21 and 19 months also occurred at Shore Road before the 1974 and 1984 earthquakes of M L =5.2 and M L =6.2, respectively. Although creep retardation remains poorly understood, several possible explanations have been discussed previously. (1) Certain onsets of apparent creep retardation may be explained as abrupt terminations of afterslip generated from previous moderate-mainshock sequences. (2) Retardations may be related to significant decreases in the rate of seismic and/or aseismic slip occurring within or beneath the underlying seismogenic zone. Such decreases may be caused by changes in local conditions related to growth of asperities, strain hardening, or dilatancy, or perhaps by passage of stress-waves or other fluctuations in driving stresses. (3) Finally, creep rates may be lowered (or increased) by stresses imposed on the fault by seismic or aseismic slip on neighboring faults. In addition to causing creep-rate increases or retardations, such fault interactions occasionally may trigger earthquakes. Regardless of the actual mechanisms involved and the current lack of understanding of creep retardation, it appears that shallow fault creep is sensitive to local and regional effects that promote or accompany intermediate-term preparation stages leading to moderate earthquakes. A strategy for more complete monitoring of fault creep, wherever it is known to occur, therefore should be assigned a higher priority in our continuing efforts to test various hypotheses concerning the mechanical relations between seismic and aseismic slip.

  6. Studies on Creep Deformation and Rupture Behavior of 316LN SS Multi-Pass Weld Joints Fabricated with Two Different Electrode Sizes

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Kumar, J. Ganesh; Parida, P. K.; Ganesan, V.; Laha, K.

    2017-02-01

    Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.

  7. Mechanism-based modeling of solute strengthening: Application to thermal creep in Zr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Wei; Capolungo, Laurent; Tome, Carlos N.

    In this paper, a crystallographic thermal creep model is proposed for Zr alloys that accounts for the hardening contribution of solutes via their time-dependent pinning effect on dislocations. The core-diffusion model proposed by Soare and Curtin (2008a) is coupled with a recently proposed constitutive modeling framework (Wang et al., 2017, 2016) accounting for the heterogeneous distribution of internal stresses within grains. The Coble creep mechanism is also included. This model is, in turn, embedded in the effective medium crystallographic VPSC framework and used to predict creep strain evolution of polycrystals under different temperature and stress conditions. The simulation results reproducemore » the experimental creep data for Zircaloy-4 and the transition between the low (n~1), intermediate (n~4) and high (n~9) power law creep regimes. This is achieved through the dependence on local aging time of the solute-dislocation binding energy. The anomalies in strain rate sensitivity (SRS) are discussed in terms of core-diffusion effects on dislocation junction strength. The mechanism-based model captures the primary and secondary creep regimes results reported by Kombaiah and Murty (2015a, 2015b) for a comprehensive set of testing conditions covering the 500–600 °C interval, stresses spanning 14–156 MPa, and steady state creep rates varying between 1.5·10 -9s -1 to 2·10 -3s -1. There are two major advantages to this model with respect to more empirical ones used as constitutive laws for describing thermal creep of cladding: 1) specific dependences on the nature of solutes and their concentrations are explicitly accounted for; 2) accident conditions in reactors, such as RIA and LOCA, usually take place in short times, and deformation takes place in the primary, not the steady-state creep stage. Finally, as a consequence, a model that accounts for the evolution with time of microstructure is more reliable for this kind of simulation.« less

  8. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of microstructurally stable structural alloys with high strength and creep resistance for various high-temperature applications, including in the aerospace, naval, civilian infrastructure and energy sectors.

  9. Elevated temperature creep and fracture properties of the 62Cu-35Au-3Ni braze alloy

    NASA Astrophysics Data System (ADS)

    Stephens, J. J.; Greulich, F. A.

    1995-06-01

    The Cu-Au-Ni braze alloys are used for metal/ceramic brazes in electronic assemblies because of their good wetting characteristics and low vapor pressure. We have studied the tensile creep properties of annealed 62Cu-35Au-3Ni alloy over the temperature range 250 °C to 750 °C. Two power-law equations have been developed for the minimum creep rate as a function of true stress and temperature. At the highest temperatures studied (650 °C and 750 °C), the minimum creep rate is well described with a stress exponent of 3.0, which can be rationalized in the context of Class I solid solution strengthening. The inverted shape of the creep curves observed at these temperatures is also consistent with Class I alloy behavior. At lower temperatures, power-law creep is well described with a stress exponent of 7.5, and normal three-stage creep curves are observed. Intergranular creep damage, along with minimum values of strain to fracture, is most apparent at 450 °C and 550 °C. The lower stress exponent in the Class I alloy regime helps to increase the strain to fracture at higher temperatures (650 °C and 750 °C). The minimum creep rate behavior of the 62Cu-35Au-3Ni alloy is also compared with those of the 74.2Cu-25. 8Au alloy and pure Cu. This comparison indicates that the 62Cu-35Au-3Ni has considerably higher creep strength than pure Cu. This fact suggests that the 62Cu-35Au-3Ni braze alloy can be used in low mismatch metal-to-ceramic braze joints such as Mo to metallized alumina ceramic with few problems. However, careful joint design may be essential for the use of this alloy in high thermal mismatch metal-to-ceramic braze joints.

  10. Mechanism-based modeling of solute strengthening: Application to thermal creep in Zr alloy

    DOE PAGES

    Wen, Wei; Capolungo, Laurent; Tome, Carlos N.

    2018-03-11

    In this paper, a crystallographic thermal creep model is proposed for Zr alloys that accounts for the hardening contribution of solutes via their time-dependent pinning effect on dislocations. The core-diffusion model proposed by Soare and Curtin (2008a) is coupled with a recently proposed constitutive modeling framework (Wang et al., 2017, 2016) accounting for the heterogeneous distribution of internal stresses within grains. The Coble creep mechanism is also included. This model is, in turn, embedded in the effective medium crystallographic VPSC framework and used to predict creep strain evolution of polycrystals under different temperature and stress conditions. The simulation results reproducemore » the experimental creep data for Zircaloy-4 and the transition between the low (n~1), intermediate (n~4) and high (n~9) power law creep regimes. This is achieved through the dependence on local aging time of the solute-dislocation binding energy. The anomalies in strain rate sensitivity (SRS) are discussed in terms of core-diffusion effects on dislocation junction strength. The mechanism-based model captures the primary and secondary creep regimes results reported by Kombaiah and Murty (2015a, 2015b) for a comprehensive set of testing conditions covering the 500–600 °C interval, stresses spanning 14–156 MPa, and steady state creep rates varying between 1.5·10 -9s -1 to 2·10 -3s -1. There are two major advantages to this model with respect to more empirical ones used as constitutive laws for describing thermal creep of cladding: 1) specific dependences on the nature of solutes and their concentrations are explicitly accounted for; 2) accident conditions in reactors, such as RIA and LOCA, usually take place in short times, and deformation takes place in the primary, not the steady-state creep stage. Finally, as a consequence, a model that accounts for the evolution with time of microstructure is more reliable for this kind of simulation.« less

  11. Creep Properties of the As-Cast Al-A319 Alloy: T4 and T7 Heat Treatment Effects

    NASA Astrophysics Data System (ADS)

    Erfanian-Naziftoosi, Hamid R.; Rincón, Ernesto J.; López, Hugo F.

    2016-08-01

    In this work, the creep behavior of a commercial Al-A319 alloy was investigated in the temperature range of 413 K to 533 K (140 °C to 260 °C). Tensile creep specimens in the as-cast condition and after heat treating by solid solution (T4) and by aging (T7) were tested in a stress range varying from 60 to 170 MPa. It was found that steady-state creep strain rate was significantly low in the T7 condition when compared with either the T4 or as-cast alloy conditions. As a result, the time to failure behavior considerably increased. The experimentally determined creep exponents measured from the stress-strain curves were 4 for the as-cast alloy, 7.5 in the solid solution, and 9.5 after aging. In particular, after solid solution a grain substructure was found to develop which indicated that creep in a constant subgrain structure was active, thus accounting for the n exponent of 7.5. In the aged condition, a stress threshold is considered to account for the power law creep exponent n of 9.5. Moreover, It was found that the creep activation energy values were rather similar for the alloys in the as-cast (134 kJ/mol) and T4 (146 kJ/mol) conditions. These values are close to the one corresponding to pure Al self-diffusion (143 kJ/mol). In the aged alloy, the apparent creep activation energy (202 kJ/mol) exceeded that corresponding to Al self-diffusion. This deviation in activation energy is attributed to the effect of temperature on the alloy elastic modulus. Microstructural observations using transmission electron microscopy provided further support for the various dislocation-microstructure interactions exhibited by the alloy under the investigated creep conditions and implemented heat treatments.

  12. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    PubMed

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  13. Quantification of brake creep groan in vehicle tests and its relation with stick-slip obtained in laboratory tests

    NASA Astrophysics Data System (ADS)

    Neis, P. D.; Ferreira, N. F.; Poletto, J. C.; Matozo, L. T.; Masotti, D.

    2016-05-01

    This paper describes the development of a methodology for assessing and correlating stick-slip and brake creep groan. For doing that, results of tribotests are compared to data obtained in vehicle tests. A low velocity and a linear reduction in normal force were set for the tribotests. The vehicle tests consisted of subjecting a sport utility vehicle to three different ramp slopes. Creep groan events were measured by accelerometers placed on the brake calipers. The root mean square of the acceleration signal (QRMS parameter) was shown to be able to measure the creep groan severity resulting from the vehicle tests. Differences in QRMS were observed between front-rear and left-right wheels for all tested materials. Frequency spectrum analysis of the acceleration revealed that the wheel side and material type do not cause any significant shift in the creep groan frequency. QRMS measured in the vehicle tests presented good correlation with slip power (SP) summation. For this reason, SP summation may represent the "creep groan propensity" of brake materials. Thus, the proposed tribotest method can be utilized to predict the creep groan severity of brake materials in service.

  14. Triggered dynamics in a model of different fault creep regimes

    PubMed Central

    Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina

    2014-01-01

    The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397

  15. A Critical Analysis of the Conventionally Employed Creep Lifing Methods

    PubMed Central

    Abdallah, Zakaria; Gray, Veronica; Whittaker, Mark; Perkins, Karen

    2014-01-01

    The deformation of structural alloys presents problems for power plants and aerospace applications due to the demand for elevated temperatures for higher efficiencies and reductions in greenhouse gas emissions. The materials used in such applications experience harsh environments which may lead to deformation and failure of critical components. To avoid such catastrophic failures and also increase efficiency, future designs must utilise novel/improved alloy systems with enhanced temperature capability. In recognising this issue, a detailed understanding of creep is essential for the success of these designs by ensuring components do not experience excessive deformation which may ultimately lead to failure. To achieve this, a variety of parametric methods have been developed to quantify creep and creep fracture in high temperature applications. This study reviews a number of well-known traditionally employed creep lifing methods with some more recent approaches also included. The first section of this paper focuses on predicting the long-term creep rupture properties which is an area of interest for the power generation sector. The second section looks at pre-defined strains and the re-production of full creep curves based on available data which is pertinent to the aerospace industry where components are replaced before failure. PMID:28788623

  16. Modeling the Creep of Rib-Reinforced Composite Media Made from Nonlinear Hereditary Phase Materials 2. Verification of the Model

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2015-05-01

    An indirect verification of a structural model describing the creep of a composite medium reinforced by honeycombs and made of nonlinear hereditary phase materials obeying the Rabotnov theory of creep is presented. It is shown that the structural model proposed is trustworthy and can be used in practical calculations. For different kinds of loading, creep curves for a honeycomb core made of a D16T aluminum alloy are calculated.

  17. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yang; Dmowski, W.; Bei, Hongbin

    Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.

  18. Application of strainrange partitioning to the prediction of MPC creep-fatigue data for 2 1/4 Cr-1Mo steel

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1976-01-01

    Strainrange partitioning is used to predict the long time cyclic lives of the metal properties council (MPC) creep-fatigue interspersion and cyclic creep-rupture tests conducted with annealed 2 1/4 Cr-1Mo steel. Observed lives agree with predicted lives within factors of two. The strainrange partitioning life relations used for the long time predictions were established from short time creep-fatigue data generated at NASA-Lewis on the same heat of material.

  19. Effects of Frequency and Environment on Fatigue Behavior of an Oxide-Oxide Ceramic Matrix Composite at 1200 Deg. C

    DTIC Science & Technology

    2006-06-01

    Mehrman investigated the effects of prior fatigue on creep behavior, and concluded that a history of prior fatigue loading increases creep life of...as reduced susceptibility to oxidation [4]. Nextel™ 720/Alumina composite (N720/A), combines the strength and creep resistance of a di- phase...studied the response to creep and cyclic loading, respectively, and showed that the presence of steam severely degrades performance at 1200ºC [35

  20. Effects of Prior Aging at 191 C on Creep Response of IM7/BMI 5250-4

    DTIC Science & Technology

    2007-06-01

    EFFECTS OF PRIOR AGING AT 191°C ON CREEP RESPONSE OF IM7/BMI 5250-4 THESIS Robert A. Salvia...U.S. Government. AFIT/GAE/ENY/07-J23 EFFECTS OF PRIOR AGING AT 191°C ON CREEP RESPONSE OF IM7/BMI 5250-4 THESIS Presented to the...PRIOR AGING AT 191°C ON CREEP RESPONSE OF IM7/BMI 5250-4 Robert A. Salvia, BSAE LCDR, USN Approved

  1. Creep-Rupture Data Analysis - Engineering Application of Regression Techniques. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Rummler, D. R.

    1976-01-01

    The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.

  2. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep

    DOE PAGES

    Tong, Yang; Dmowski, W.; Bei, Hongbin; ...

    2018-02-16

    Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.

  3. Data from Theodolite Measurements of Creep Rates on San Francisco Bay Region Faults, California: 1979-2007

    USGS Publications Warehouse

    McFarland, Forrest S.; Lienkaemper, James J.; Caskey, S. John; Grove, Karen

    2007-01-01

    Introduction Our purpose is to update with six additional years of data, our creep data archive on San Francisco Bay region active faults for use by the scientific research community. Earlier data (1979-2001) were reported in Galehouse (2002) and were analyzed and described in detail in a summary report (Galehouse and Lienkaemper, 2003). A complete analysis of our earlier results obtained on the Hayward fault was presented in Lienkaemper, Galehouse and Simpson (2001). Jon Galehouse of San Francisco State University (SFSU) and many student research assistants measured creep (aseismic slip) rates on these faults from 1979 until his retirement from the project in 2001. The creep measurement project, which was initiated by Galehouse, has continued through the Geosciences Department at SFSU from 2001-2006 under the direction of Co-P.I.'s Karen Grove and John Caskey (Grove and Caskey, 2005), and by Caskey since 2006. Forrest McFarland has managed most of the technical and logistical project operations as well as data processing and compilation since 2001. We plan to publish detailed analyses of these updated creep data in future publications. We maintain a project web site (http://funnel.sfsu.edu/creep/) that includes the following information: project description, project personnel, creep characteristics and measurement, map of creep measurement sites, creep measurement site information, and data plots for each measurement site. Our most current, annually updated results are therefore accessible to the scientific community and to the general public. Information about the project can currently be requested by the public by an email link (fltcreep@sfsu.edu) found on our project website.

  4. The implication of gouge mineralogy evolution on fault creep: an example from The North Anatolian Fault, Turkey

    NASA Astrophysics Data System (ADS)

    Kaduri, M.; Gratier, J. P.; Renard, F.; Cakir, Z.; Lasserre, C.

    2015-12-01

    Aseismic creep is found along several sections of major active faults at shallow depth, such as the North Anatolian Fault in Turkey, the San Andreas Fault in California (USA), the Longitudinal Valley Fault in Taiwan, the Haiyuan fault in China and the El Pilar Fault in Venezuela. Identifying the mechanisms controlling creep and their evolution with time and space represents a major challenge for predicting the mechanical evolution of active faults, the interplay between creep and earthquakes, and the link between short-term observations from geodesy and the geological setting. Hence, studying the evolution of initial rock into damaged rock, then into gouge, is one of the key question for understanding the origin of fault creep. In order to address this question we collected samples from a dozen well-preserved fault outcrops along creeping and locked sections of the North Anatolian Fault. We used various methods such as microscopic and geological observations, EPMA, XRD analysis, combined with image processing, to characterize their mineralogy and strain. We conclude that (1) there is a clear correlation between creep localization and gouge composition. The locked sections of the fault are mostly composed of massive limestone. The creeping sections comprises clay gouges with 40-80% low friction minerals such as smectite, saponite, kaolinite, that facilitates the creeping. (2) The fault gouge shows two main structures that evolve with displacement: anastomosing cleavage develop during the first stage of displacement; amplifying displacement leads to layering development oblique or sub-parallel to the fault. (3) We demonstrate that the fault gouge result from a progressive evolution of initial volcanic rocks including dissolution of soluble species that move at least partially toward the damage zones and alteration transformations by fluid flow that weaken the gouge and strengthen the damage zone.

  5. Creep force modelling for rail traction vehicles based on the Fastsim algorithm

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Polach, Oldrich; Cole, Colin

    2013-11-01

    The evaluation of creep forces is a complex task and their calculation is a time-consuming process for multibody simulation (MBS). A methodology of creep forces modelling at large traction creepages has been proposed by Polach [Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258:992-1000; Influence of locomotive tractive effort on the forces between wheel and rail. Veh Syst Dyn. 2001(Suppl);35:7-22] adapting his previously published algorithm [Polach O. A fast wheel-rail forces calculation computer code. Veh Syst Dyn. 1999(Suppl);33:728-739]. The most common method for creep force modelling used by software packages for MBS of running dynamics is the Fastsim algorithm by Kalker [A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11:1-13]. However, the Fastsim code has some limitations which do not allow modelling the creep force - creep characteristic in agreement with measurements for locomotives and other high-power traction vehicles, mainly for large traction creep at low-adhesion conditions. This paper describes a newly developed methodology based on a variable contact flexibility increasing with the ratio of the slip area to the area of adhesion. This variable contact flexibility is introduced in a modification of Kalker's code Fastsim by replacing the constant Kalker's reduction factor, widely used in MBS, by a variable reduction factor together with a slip-velocity-dependent friction coefficient decreasing with increasing global creepage. The proposed methodology is presented in this work and compared with measurements for different locomotives. The modification allows use of the well recognised Fastsim code for simulation of creep forces at large creepages in agreement with measurements without modifying the proven modelling methodology at small creepages.

  6. Creep and intergranular cracking of Ni-Cr-Fe-C in 360[degree]C argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angeliu, T.M.; Was, G.S.

    1994-06-01

    The influence of carbon and chromium on the creep and intergranular (IG) cracking behavior of controlled-purity Ni-xCr-9Fe-yC alloys in 360 C argon was investigated using constant extension rate tension (CERT) and constant load tension (CLT) testing. The CERT test results at 360 C show that the degree of IG cracking increases with decreasing bulk chromium or carbon content. The CLT test results at 360 C and 430 C reveal that, as the amounts of chromium and carbon in solution decrease, the steady-state creep rate increases. The occurrence of severe IG cracking correlates with a high steady-state creep rate, suggesting thatmore » creep plays a role in the IG cracking behavior in argon at 360 C. The failure mode of IG cracking and the deformation mode of creep are coupled through the formation of grain boundary voids that interlink to form grain boundary cavities, resulting in eventual failure by IG cavitation and ductile overload of the remaining ligaments. Grain boundary sliding may be enhancing grain boundary cavitation by redistributing the stress from inclined to more perpendicular boundaries and concentrating stress at discontinuities for the boundaries oriented 45 deg with respect to the tensile axis. Additions of carbon or chromium, which reduce the creep rate over all stress levels, also reduce the amount of IG fracture in CERT experiments. A damage accumulation model was formulated and applied to CERT tests to determine whether creep damage during a CERT test controls failure. Results show that, while creep plays a significant role in CERT experiments, failure is likely controlled by ductile overload caused by reduction in area resulting from grain boundary void formation and interlinkage.« less

  7. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  8. Creep Rupture Analysis and Life Estimation of 1.25Cr-0.5Mo, 2.25Cr-1Mo and Modified 9Cr-1Mo Steel: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Roy, Prabir Kumar

    2018-04-01

    This paper highlights a comparative assessment of creep life of 1.25Cr-0.5Mo, 2.25Cr-1Mo and modified 9Cr-1Mo steels based on accelerated creep rupture tests. Creep rupture test data have been analysed and creep life of the above mentioned materials have been assessed using Larson Miller parameter at the stress levels of 60 and 42 MPa for different temperatures. Limiting steam temperatures for minimum design life of 105 h at 42 and 60 MPa for the above mentioned steels have also been calculated. Microstructural studies for the three above mentioned steels are also done.

  9. On simultaneous tilt and creep observations on the San Andreas Fault

    USGS Publications Warehouse

    Johnston, M.J.S.; McHugh, S.; Burford, S.

    1976-01-01

    THE installation of an array of tiltmeters along the San Andreas Fault 1 has provided an excellent opportunity to study the amplitude and spatial scale of the tilt fields associated with fault creep. We report here preliminary results from, and some implications of, a search for interrelated surface tilts and creep event observations at four pairs of tiltmeters and creepmeters along an active 20-km stretch of the San Andreas Fault. We have observed clear creep-related tilts above the instrument resolution (10 -8 rad) only on a tiltmeter less than 0.5 km from the fault. The tilt events always preceded surface creep observations by 2-12 min, and were not purely transient in character. ?? 1975 Nature Publishing Group.

  10. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  11. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  12. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  13. Understanding the mechanisms of amorphous creep through molecular simulation

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Short, Michael P.; Yip, Sidney

    2017-12-01

    Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

  14. Analytical, Numerical, and Experimental Investigation on a Non-Contact Method for the Measurements of Creep Properties of Ultra-High-Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    Responsive access to space requires re-use of components such as rocket nozzles that operate at extremely high temperatures. For such applications, new ultra-hightemperature materials that can operate over 2,000 C are required. At the temperatures higher than the fifty percent of the melting temperature, the characterization of creep properties is indispensable. Since conventional methods for the measurement of creep is limited below 1,700 C, a new technique that can be applied at higher temperatures is strongly demanded. This research develops a non-contact method for the measurement of creep at the temperatures over 2,300 C. Using the electrostatic levitator in NASA MSFC, a spherical sample was rotated to cause creep deformation by centrifugal acceleration. The deforming sample was captured with a digital camera and analyzed to measure creep deformation. Numerical and analytical analyses have also been conducted to compare the experimental results. Analytical, numerical, and experimental results showed a good agreement with one another.

  15. Variations in creep rate along the Hayward Fault, California, interpreted as changes in depth of creep

    USGS Publications Warehouse

    Simpson, R.W.; Lienkaemper, J.J.; Galehouse, J.S.

    2001-01-01

    Variations ill surface creep rate along the Hayward fault are modeled as changes in locking depth using 3D boundary elements. Model creep is driven by screw dislocations at 12 km depth under the Hayward and other regional faults. Inferred depth to locking varies along strike from 4-12 km. (12 km implies no locking.) Our models require locked patches under the central Hayward fault, consistent with a M6.8 earthquake in 1868, but the geometry and extent of locking under the north and south ends depend critically on assumptions regarding continuity and creep behavior of the fault at its ends. For the northern onshore part of the fault, our models contain 1.4-1.7 times more stored moment than the model of Bu??rgmann et al. [2000]; 45-57% of this stored moment resides in creeping areas. It is important for seismic hazard estimation to know how much of this moment is released coseismically or as aseismic afterslip.

  16. Investigation of the effect of aggregates' morphology on concrete creep properties by numerical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavergne, F.; Sab, K., E-mail: karam.sab@enpc.fr; Sanahuja, J.

    2015-05-15

    Prestress losses due to creep of concrete is a matter of interest for long-term operations of nuclear power plants containment buildings. Experimental studies by Granger (1995) have shown that concretes with similar formulations have different creep behaviors. The aim of this paper is to numerically investigate the effect of size distribution and shape of elastic inclusions on the long-term creep of concrete. Several microstructures with prescribed size distribution and spherical or polyhedral shape of inclusions are generated. By using the 3D numerical homogenization procedure for viscoelastic microstructures proposed by Šmilauer and Bažant (2010), it is shown that the size distributionmore » and shape of inclusions have no measurable influence on the overall creep behavior. Moreover, a mean-field estimate provides close predictions. An Interfacial Transition Zone was introduced according to the model of Nadeau (2003). It is shown that this feature of concrete's microstructure can explain differences between creep behaviors.« less

  17. Modelling of creep curves of Ni3Ge single crystals

    NASA Astrophysics Data System (ADS)

    Starenchenko, V. A.; Starenchenko, S. V.; Pantyukhova, O. D.; Solov'eva, Yu V.

    2015-01-01

    In this paper the creep model of alloys with L12 superstructure is presented. The creep model is based on the idea of the mechanisms superposition connected with the different elementary deformation processes. Some of them are incident to the ordered structure L12 (anomalous mechanisms), others are typical to pure metals with the fcc structure (normal mechanisms): the accumulation of thermal APBs by means of the intersection of moving dislocations; the formation of APB tubes; the multiplication of superdislocations; the movement of single dislocations; the accumulation of point defects, such as vacancies and interstitial atoms; the accumulation APBs at the climb of edge dislocations. This model takes into account the experimental facts of the wetting antiphase boundaries and emergence of the disordered phase within the ordered phase. The calculations of the creep curves are performed under different conditions. This model describes different kinds of the creep curves and demonstrates the important meaning of the deformation superlocalisation leading to the inverse creep. The experimental and theoretical results coincide rather well.

  18. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity

    NASA Astrophysics Data System (ADS)

    Pandey, Vikash; Holm, Sverre

    2016-09-01

    Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.

  19. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity.

    PubMed

    Pandey, Vikash; Holm, Sverre

    2016-09-01

    Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.

  20. Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.

    PubMed

    Köster, Ulrike; Jaeger, Raimund; Bardts, Mareike; Wahnes, Christian; Büchner, Hubert; Kühn, Klaus-Dieter; Vogt, Sebastian

    2013-06-01

    The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue performance of the two novel bone cement formulations is comparable to the performance of the reference bone cements. The creep compliance of the bone cements is significantly influenced by the effects of physical ageing. The model parameters of Struik's creep law are used to compare the creep behavior of different bone cements. The novel 2-component paste-like bone cement formulations are in the group of bone cements which exhibit a higher creep resistance.

  1. Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage

    NASA Astrophysics Data System (ADS)

    Zauter, R.; Christ, H. J.; Mughrabi, H.

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  2. On Roesler and Arzt's new model of creep in dispersion strengthened alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlova, A.; Cadek, J.

    1992-08-01

    The model of creep in dispersion (noncoherent particle) strengthened alloys assuming thermally activated detachment of dislocations from particles to be the rate controlling process, recently presented by Roesler and Arzt (1990), is correlated with some available creep and structure data for aluminum alloys strengthened by Al4C3 and Al2O3 particles. It is shown that though the model requires applied stress dependent apparent activation energy of creep, the stress dependence of creep rate can be satisfactorily accounted for even when this activation energy is stress independent, admitting a strong stress dependence of the preexponential structure factor, i.e., of the mobile dislocation density.more » On the other hand, the model is not able to account for the temperature dependence of creep rate if it is significantly stronger than that of the coefficient of lattice diffusion, as is usually the case with alloys strengthened by noncoherent particles in which the attractive dislocation/particle interaction can be expected. 14 refs.« less

  3. Cow and calf performance on Coastal or Tifton 85 Bermudagrass pastures with aeschynomene creep-grazing paddocks.

    PubMed

    Corriher, V A; Hill, G M; Andrae, J G; Froetschel, M A; Mullinix, B G

    2007-10-01

    Cow and calf performance was determined in a 2-yr, 2 x 2 factorial, grazing experiment using Coastal or Tifton 85 (T85) replicated Bermudagrass pastures (4 pastures each; each pasture 4.86 ha), without or with aeschynomene creep-grazing paddocks (n = 4, 0.202 ha each, planted in May of each year, 13.44 kg/ha). On June 10, 2004, and June 8, 2005, 96 winter-calving beef "tester" cows and their calves were grouped by cow breed (9 Angus and 3 Polled Hereford/group), initial cow BW (592.9 +/- 70.1 kg, 2-yr mean), age of dam, calf breed (Angus, Polled Hereford, or Angus x Polled Hereford), calf sex, initial calf age (117 +/- 20.1 d, 2-yr mean), and initial calf BW (161.3 +/- 30.4 kg) and were randomly assigned to pastures. Additional cow-calf pairs and open cows were added as the forage increased during the season. Forage mass was similar for all treatment pastures (P > 0.70; 2-yr mean, 6,939 vs. 6,628 kg/ha, Coastal vs. T85; 6,664 vs. 6,896 kg/ha, no creep grazing vs. creep grazing). Main effect interactions did not occur for performance variables (P > 0.10; 2-yr means), and year affected only the initial and final BW of the calves and cows. The 91-d tester calf ADG was greater for calves grazing T85 than Coastal (0.94 vs. 0.79 kg; P < 0.01), and for calves creep grazing aeschynomene compared with calves without creep grazing (0.90 vs. 0.82 kg; P < 0.03). Calf 205-d adjusted weaning weights were increased for calves grazing T85 compared with Coastal (252.9 vs. 240.3 kg; P < 0.01) and for calves with access to creep grazing (249.9 vs. 243.3 kg; P < 0.05). The IVDMD of esophageal masticate from pastures had a forage x creep grazing interaction (P < 0.05; Coastal, no creep grazing = 57.4%; Coastal, creep grazing = 52.1%; T85, no creep grazing = 59.1%; T85, creep grazing = 60.0%), and IVDMD was greater (P < 0.05) for T85 than for Coastal pastures. Cows were milked in August 2004, and in June and August 2005, with variable milk yields on treatments, but increased milk protein (P < 0.05) for cows grazing T85 compared with Coastal pastures in August each year, contributing to increased calf gains on T85 pastures. These results complement previous research with T85 and indicate increased forage quality and performance of cattle grazing T85 pastures. Calf gains on T85 pastures and for calves on creep-grazed aeschynomene paddocks were high enough to influence the efficiency of cow-calf operations.

  4. Creeping flashover characteristics improvement of nanofluid/pressboard system with TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Wang, Lei; Ge, Yang; Lv, Yu-zhen; Qi, Bo; Li, Cheng-rong

    2018-03-01

    Creeping flashover easily occurs at the interface between oil and pressboard in transformer and thus results in outage of power transmission system. Investigations have shown that creeping flashover characteristics at oil/pressboard interface can be improved by the addition of TiO2 nanoparticles, but the mechanism is still not thoroughly known. In this work, creeping flashover performance at nanofluid/pressboard interface modified by different sizes of nanoparticles were studied and the mechanism was presented as well. Nanofluids with the same concentration but with different sizes of TiO2 nanoparticles were prepared, and pressboards impregnated with them were prepared as well. After that, their creeping flashover characteristics were measured and compared. Nanoparticle's size affected the creeping flashover performance along oil/pressboard greatly under both AC and lightning impulse voltages. The highest creeping flashover voltage can be enhanced by as high as 12.2% and 32.0% respectively. The underlying electric field distribution and charge transportation behaviors were analyzed to demonstrate the influence of nanoparticle's size. By the addition of nanoparticles with a smaller size, the dielectric constant of nanofluid was increased closer to that of the pressboard, thus they were matched better. Moreover, charge was easier to dissipate from the oil/pressboard interface and electric field distortion at the interface was consequently reduced. Therefore, the electric field was more like a uniform field and the forward development of flashover was more difficult, leading to a better performance of creeping flashover of oil-impregnated pressboard.

  5. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less

  6. Out-of-pile creep behavior of uranium carbide

    NASA Technical Reports Server (NTRS)

    Wright, T. R.; Seltzer, M. S.

    1974-01-01

    Compression creep tests were investigated on various UC-based fuel materials having a variation in both density and composition. Specimens were prepared by casting and by hot pressing. Steady-state creep rates were measured under vacuum at 1400 to 1800 C in the stress range 500-4000 psi.

  7. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report D : creep, shrinkage, and abrasion resistance of HVFA concrete.

    DOT National Transportation Integrated Search

    2012-10-01

    The main objective of this study was to determine the effect on shrinkage, creep, : and abrasion resistance of high-volume fly ash (HVFA) concrete. The HVFA concrete : test program consisted of comparing the shrinkage, creep, and abrasion performance...

  8. A continuous damage model based on stepwise-stress creep rupture tests

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1985-01-01

    A creep damage accumulation model is presented that makes use of the Kachanov damage rate concept with a provision accounting for damage that results from a variable stress history. This is accomplished through the introduction of an additional term in the Kachanov rate equation that is linear in the stress rate. Specification of the material functions and parameters in the model requires two types of constituting a data base: (1) standard constant-stress creep rupture tests, and (2) a sequence of two-step creep rupture tests.

  9. Relation of structure to mechanical properties of thin thoria dispersion strengthened nickel-chromium (TD-NiCr alloy sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1975-01-01

    A study of the relation between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties depend primarily on the grain aspect ratio and sheet thickness. In general, the strength properties increased with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures. A threshold stress for creep appears to exist. Even small amounts of prior creep deformation at elevated temperatures can produce severe creep damage.

  10. Non-contact Creep Resistance Measurement for Ultra-High Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, J.; Bradshaw, C.; Rogers, J. R.; Rathz, T. J.; Wall, J. J.; Choo, H.; Liaw, P. K.; Hyers, R. W.

    2005-01-01

    Conventional techniques for measuring creep are limited to about 1700 C, so a new technique is required for higher temperatures. This technique is based on electrostatic levitation (ESL) of a spherical sample, which is rotated quickly enough to cause creep deformation by centrifugal acceleration. Creep of samples has been demonstrated at up to 2300 C in the ESL facility at NASA MSFC, while ESL itself has been applied at over 3000 C, and has no theoretical maximum temperature. The preliminary results and future directions of this NASA-funded research collaboration will be presented.

  11. The Effective Fracture Toughness of Aluminum at Rapid Heating Rates.

    DTIC Science & Technology

    1987-12-01

    Stress Versus Time Relation During Test Under HWdraulic (Tinius-Olsen) Loading Device 32 11. Creep Rupture Tester ( SATEC ) Drawing ...... 33 12. SEN...1B7 Machine Corp Creep Frame SATEC C C-3053-P 12,000 Load Cell MTS 661.20A 271 5500 lb .02% Load Cell Interface 1220BF 34279B 25000 lb 1.6% Extenso- MIS... SATEC creep frame. A drawing of the creep frame can be seen in Figure 11. The samples were placed in the frame and the dead weight load was applied

  12. Creep-rupture behavior of iron superalloys in high-pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1984-01-01

    The creep-rupture properties of five iron-base and one cobalt-base high temperature alloys were investigated to assess the feasibility of using the alloys as construction materials in a Stirling engine. The alloys were heat treated and hardness measurements were taken. Typical microstructures of the alloys are shown. The creep-rupture properties of the alloys were determined at 760 and 815 C in 15.0 MPa H2 for 200 to 1000 hours. Plots of rupture life versus stress for the six superalloys are presented along with creep strain-time plots.

  13. Modeling creep behavior of fiber composites

    NASA Technical Reports Server (NTRS)

    Chen, J. L.; Sun, C. T.

    1988-01-01

    A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.

  14. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 3, phase 3: Full size heat shield data correlation and design criteria. [reentry

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    Analysis methods for predicting cyclic creep deflection in stiffened metal panel structures, were applied to full size panels. Results were compared with measured deflections from cyclic tests of thin gage L605, Rene' 41, and TDNiCr full size corrugation stiffened panels. A design criteria was then formulated for metallic thermal protection panels subjected to creep. A computer program was developed to calculate creep deflections.

  15. Irradiation creep of candidate materials for advanced nuclear plants

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Hoffelner, W.

    2013-10-01

    In the present paper, irradiation creep results of an intermetallic TiAl alloy and two ferritic oxide dispersion strengthened (ODS) steels are summarized. In situ irradiation creep measurements were performed using homogeneous implantation with α- and p-particles to maximum doses of 0.8 dpa at displacement damage rates of 2-8 × 10-6 dpa/s. The strains of miniaturized flat dog-bone specimens were monitored under uniaxial tensile stresses ranging from 20 to 400 MPa at temperatures of 573, 673 and 773 K, respectively. The effects of material composition, ODS particle size, and bombarding particle on the irradiation creep compliance was studied and results are compared to literature data. Evolution of microstructure during helium implantation was investigated in detail by TEM and is discussed with respect to irradiation creep models.

  16. Creep life management system for a turbine engine and method of operating the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tralshawala, Nilesh; Miller, Harold Edward; Badami, Vivek Venugopal

    A creep life management system includes at least one sensor apparatus coupled to a first component. The at least one sensor apparatus is configured with a unique identifier. The creep life management system also includes at least one reader unit coupled to a second component. The at least one reader unit is configured to transmit an interrogation request signal to the at least one sensor apparatus and receive a measurement response signal transmitted from the at least one sensor apparatus. The creep life management system further includes at least one processor programmed to determine a real-time creep profile of themore » first component as a function of the measurement response signal transmitted from the at least one sensor apparatus.« less

  17. Behaviour of Epoxy Silica Nanocomposites Under Static and Creep Loading

    NASA Astrophysics Data System (ADS)

    Constantinescu, Dan Mihai; Picu, Radu Catalin; Sandu, Marin; Apostol, Dragos Alexandru; Sandu, Adriana; Baciu, Florin

    2017-12-01

    Specific manufacturing technologies were applied for the fabrication of epoxy-based nanocomposites with silica nanoparticles. For dispersing the fillers in the epoxy resin special equipment such as a shear mixer and a high energy sonicator with temperature control were used. Both functionalized and unfunctionalized silica nanoparticles were added in three epoxy resins. The considered filling fraction was in most cases 0.1, 0.3 and 0.5 wt%.. The obtained nanocomposites were subjected to monotonic uniaxial and creep loading at room temperature. The static mechanical properties were not significantly improved regardless the filler percentage and type of epoxy resin. Under creep loading, by increasing the stress level, the nanocomposite with 0.1 wt% silica creeps less than all other materials. Also the creep rate is reduced by adding silica nanofillers.

  18. Finite Element Analysis of Plastic Deformation During Impression Creep

    NASA Astrophysics Data System (ADS)

    Naveena; Ganesh Kumar, J.; Mathew, M. D.

    2015-04-01

    Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.

  19. Effect of Concrete Creep on the displacement of single tower single cable plane Extradosed Cable-stayed Bridge

    NASA Astrophysics Data System (ADS)

    Shi, Jing-xian; Ran, Zhi-hong

    2018-03-01

    Extradossed Cable-stayed Bridge is both cable-stayed Bridge and Continuous rigid frame bridge mechanics feature, Beam is the main force components, cable is supplement.This article combined with a single tower and single cable plane Extradossed cable-stayed bridge in Yunnan, use different creep calculation models and analysis deflection caused by creep effects. The results showing that deflection caused by creep effect is smaller than the same span continuous rigid frame bridge, the value is about 2cm. On the other hand the deflection is increasing with ambient humidity decreases, therefore in the dry environment the calculation model is relatively large in the pre-camber. In the choice of RC creep model is significant in the dry areas.

  20. A composite viscoelastic model for incorporating grain boundary sliding and transient diffusion creep; correlating creep and attenuation responses for materials with a fine grain size

    NASA Astrophysics Data System (ADS)

    Sundberg, Marshall; Cooper, Reid F.

    2010-07-01

    A new viscoelastic creep function that incorporates both the effects of elastically-accommodated grain boundary sliding (GBS) and transient diffusion creep is proposed. It is demonstrated that this model can simultaneously describe both the transient microcreep curves and the shear attenuation/modulus dispersion in a fine-grained (d ∼ 5 µm) peridotite (olivine + 39 vol. % orthopyroxene) specimen. Low-frequency shear attenuation, ? , and modulus dispersion, G(ω), spectra were measured in a one-atmosphere reciprocating torsion apparatus at temperatures of 1200 ≤ T ≤ 1300°C and frequencies of 10-2.25 ≤ f ≤ 100 Hz. Reciprocating tests were complemented by a series of small stress (τ ∼ 90 kPa) microcreep experiments at the same temperatures. In contrast to previous models where the parameters of viscoelastic models are derived by fitting the Laplace transform of the creep function to measured attenuation spectra, the parameters are derived solely from the fit of the creep function to the experimental microcreep curves using different published expressions for the relaxation strength of elastically-accommodated GBS. This approach may allow future studies to better link the large dataset of steady-state creep response to the dynamic attenuation behavior.

  1. The independence of irradiation creep in austenitic alloys of displacement rate and helium to dpa ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, F.A.; Toloczko, M.B.; Grossbeck, M.L.

    1997-04-01

    The majority of high fluence data on the void swelling and irradiation creep of austenitic steels were generated at relatively high displacement rates and relatively low helium/dpa levels that are not characteristic of the conditions anticipated in ITER and other anticipated fusion environments. After reanalyzing the available data, this paper shows that irradiation creep is not directly sensitive to either the helium/dpa ratio or the displacement rate, other than through their possible influence on void swelling, since one component of the irradiation creep rate varies with no correlation to the instantaneous swelling rate. Until recently, however, the non-swelling-related creep componentmore » was also thought to exhibit its own strong dependence on displacement rate, increasing at lower fluxes. This perception originally arose from the work of Lewthwaite and Mosedale at temperatures in the 270-350{degrees}C range. More recently this perception was thought to extend to higher irradiation temperatures. It now appears, however, that this interpretation is incorrect, and in fact the steady-state value of the non-swelling component of irradiation creep is actually insensitive to displacement rate. The perceived flux dependence appears to arise from a failure to properly interpret the impact of the transient regime of irradiation creep.« less

  2. Creep analysis of silicone for podiatry applications.

    PubMed

    Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón

    2016-10-01

    This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    PubMed

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  4. Significantly enhanced creep resistance of low volume fraction in-situ TiBw/Ti6Al4V composites by architectured network reinforcements

    PubMed Central

    Wang, S.; Huang, L. J.; Geng, L.; Scarpa, F.; Jiao, Y.; Peng, H. X.

    2017-01-01

    We present a new class of TiBw/Ti6Al4V composites with a network reinforcement architecture that exhibits a significant creep resistance compared to monolithic Ti6Al4V alloys. Creep tests performed at temperatures between 773 K and 923 K and stress range of 100 MPa-300 MPa indicate both a significant improvement of the composites creep resistance due to the network architecture made by the TiB whiskers (TiBw), and a decrease of the steady-state creep rates by augmenting the local volume fractions of TiBw in the network region. The deformation behavior is driven by a diffusion-controlled dislocation climb process. Moreover, the activation energies of these composites are significantly higher than that of Ti6Al4V alloys, indicating a higher creep resistance. The increase of the activation energy can be attributed to the TiBw architecture that severely impedes the movements of dislocation and grain boundary sliding and provides a tailoring of the stress transfer. These micromechanical mechanisms lead to a remarkable improvement of the creep resistance of these networked TiBw/Ti6Al4V composites featuring the special networked architecture. PMID:28094350

  5. Principles and practices of irradiation creep experiment using pressurized mini-bellows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Li, Meimei; Snead, Lance Lewis

    2013-01-01

    This article is to describe the key design principles and application practices of the newly developed in-reactor irradiation creep testing technology using pressurized mini-bellows. Miniature creep test frames were designed to fit into the high flux isotope reactor (HFIR) rabbit capsule whose internal diameter is slightly less than 10 mm. The most important consideration for this in-reactor creep testing technology was the ability of the small pressurized metallic bellows to survive irradiation at elevated temperatures while maintaining applied load to the specimen. Conceptual designs have been developed for inducing tension and compression stresses in specimens. Both the theoretical model andmore » the in-furnace test confirmed that a gas-pressurized bellows can produce high enough stress to induce irradiation creep in subsize specimens. Discussion focuses on the possible stress range in specimens induced by the miniature gas-pressurized bellows and the limitations imposed by the size and structure of thin-walled bellows. A brief introduction to the in-reactor creep experiment for graphite is provided to connect to the companion paper describing the application practices and irradiation creep data. An experimental and calculation procedure to obtain in-situ applied stress values from post irradiation in-furnace force measurements is also presented.« less

  6. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700°C

    NASA Astrophysics Data System (ADS)

    Sordi, V. L.; Bueno, L. O.

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700°C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300°C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation dot epsilon = A.σn and the Monkman-Grant relation dot epsilon.tmR = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  7. Non-contact Creep Resistance Measurement for Ultra-high temperature Materials

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Lee, Jonghuyn; Bradshaw, Richard C.; Rogers, Jan; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter K.

    2005-01-01

    Continuing pressures for higher performance and efficiency in propulsion are driving ever more demanding needs for high-temperature materials. Some immediate applications in spaceflight include combustion chambers for advanced chemical rockets and turbomachinery for jet engines and power conversion in nuclear-electric propulsion. In the case of rockets, the combination of high stresses and high temperatures make the characterization of creep properties very important. Creep is even more important in the turbomachinery, where a long service life is an additional constraint. Some very high-temperature materials are being developed, including platinum group metals, carbides, borides, and silicides. But the measurement of creep properties at very high temperatures is itself problematic, because the testing instrument must operate at such high temperatures. Conventional techniques are limited to about 1700 C. A new, containerless technique for measuring creep deformation has been developed. This technique is based on electrostatic levitation (ESL) of a spherical sample, which is heated to the measurement temperature and rotated at a rate such that the centrifugal acceleration causes creep deformation. Creep of samples has been demonstrated at up to 2300 C in the ESL facility at NASA MSFC, while ESL itself has been applied at over 3000 C, and has no theoretical maximum temperature. The preliminary results and future directions of this NASA-funded research collaboration will be presented.

  8. The International Space Station Assembly on Schedule

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As engineers continue to prepare the International Space Station (ISS) for in-orbit assembly in the year 2002, ANSYS software has proven instrumental in resolving a structural problem in the project's two primary station modules -- Nodes 1 and 2. Proof pressure tests performed in May revealed "low temperature, post-yield creep" in some of the Nodes' gussets, which were designed to reinforce ports for loads from station keeping and reboost motion of the entire space station. An extensive effort was undertaken to characterize the creep behavior of the 2219-T851 aluminum forging material from which the gussets were made. Engineers at Sverdrup Technology, Inc. (Huntsville, AL) were responsible for conducting a combined elastic-plastic-creep analysis of the gussets to determine the amount of residual compressive stress which existed in the gussets following the proof pressure tests, and to determine the stress-strain history in the gussets while on-orbit. Boeing, NASA's Space Station prime contractor, supplied the Finite Element Analysis (FEA) model geometry and developed the creep equations from the experimental data taken by NASA's Marshall Space Flight Center and Langley Research Center. The goal of this effort was to implement the uniaxial creep equations into a three dimensional finite element program, and to determine analytically whether or not the creep was something that the space station program could live with. The objective was to show analytically that either the creep rate was at an acceptable level, or that the node module had to be modified to lower the stress levels to where creep did not occur. The elastic-plastic-creep analysis was performed using the ANSYS finite element program of ANSYS, Inc. (Houston, PA). The analysis revealed that the gussets encountered a compressive stress of approximately 30,000 pounds per square inch (psi) when unloaded. This compressive residual stress significantly lowered the maximum tension stress in the gussets which decreased the creep strain rate. The analysis also showed that the gussets would not experience a great deal of creep from future pressure tests if braces or struts proposed by Boeing were installed to redistribute stress away from them. Subsequent analysis of on-orbit station keeping and reboost loads convinced Boeing that the gussets should be removed altogether.

  9. Stress on the seismogenic and deep creep plate interface during the earthquake cycle in subduction zones

    NASA Astrophysics Data System (ADS)

    Ruff, Larry J.

    2001-04-01

    The deep creep plate interface extends from the down-dip edge of the seismogenic zone down to the base of the overlying lithosphere in subduction zones. Seismogenic/deep creep zone interaction during the earthquake cycle produces spatial and temporal variations in strains within the surrounding elastic material. Strain observations in the Nankai subduction zone show distinct deformation styles in the co-seismic, post-seismic, and inter-seismic phases associated with the 1946 great earthquake. The most widely used kinematic model to match geodetic observations has been a 2-D Savage-type model where a plate interface is placed in an elastic half-space and co-seismic slip occurs in the upper seismogenic portion of the interface, while inter-seismic deformation is modeled by a locked seismogenic zone and a constant slip velocity across the deep creep interface. Here, I use the simplest possible 2-D mechanical model with just two blocks to study the stress interaction between the seismogenic and deep creep zones. The seismogenic zone behaves as a stick-slip interface where co-seismic slip or stress drop constrain the model. A linear constitutive law for the deep creep zone connects the shear stress (σ) to the slip velocity across the plate interface (s') with the material property of interface viscosity (ζ ) as: σ = ζ s'. The analytic solution for the steady-state two-block model produces simple formulas that connect some spatially-averaged geodetic observations to model quantities. Aside from the basic subduction zone geometry, the key observed parameter is τ, the characteristic time of the rapid post-seismic slip in the deep creep interface. Observations of τ range from about 5 years (Nankai and Alaska) to 15 years (Chile). The simple model uses these values for τ to produce estimates for ζ that range from 8.4 × 1013 Pa/m/s (in Nankai) to 6.5 × 1014 Pa/m/s (in Chile). Then, the model predicts that the shear stress acting on deep creep interface averaged over the earthquake cycle ranges from 0.1 MPa (Nankai) to 1.7 MPa (Chile). These absolute stress values for the deep creep zone are slightly smaller than the great earthquake stress drops. Since the great earthquake recurrence time ( T recur) is much larger than τ for Nankai, Alaska, and Chile, the model predicts that rapid post-seismic creep should re-load the seismogenic zone to about (1/3) of the co-seismic change; geodetically observed values range from about (1/10) to more than (1/2). Also, for the case of (Trecur/τ) ≫1, the model predicts that the slip velocity across the deep creep interface during the inter-seismic phase should be about (2/3) the plate tectonic velocity (R). Thus the deep creep velocity used in Savage-type models should be less than R. Even complex 3-D models with non-linear creep laws should make a similar prediction for inter-seismic deep creep rates. At present, it seems that geodetic observations at Nankai and other subduction zones are more consistent with a deep creep rate of R rather than (2/3) R. This discrepancy is quite puzzling and is difficult to explain in the context of a 2-D steady-state earthquake cycle model. Future observational and modeling studies should examine this apparent discrepancy to gain more understanding of the earthquake cycle in subduction zones.

  10. Creeping Guanxian-Anxian Fault ruptured in the 2008 Mw 7.9 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    He, X.; Li, H.; Wang, H.; Zhang, L.; Si, J.

    2017-12-01

    Crustal active faults can slide either steadily by aseismic creep, or abruptly by earthquake rupture. Creep can relax continuously the stress and reduce the occurrence of large earthquakes. Identifying the behaviors of active faults plays a crucial role in predicting and preventing earthquake disasters. Based on multi-scale structural analyses for fault rocks from the GAF surface rupture zone and the Wenchuan Earthquake Fault Zone Science Drilling borehole 3P, we detect the analogous "mylonite structures" develop pervasively in GAF fault rocks. Such specious "ductile deformations", showing intensive foliation, spindly clasts, tailing structure, "boudin structure", "augen structure" and S-C fabrics, are actually formed in brittle faulting, which indicates the creeping behavior of the GAF. Furthermore, some special structures hint the creeping mechanism. The cracks and veins developed in fractured clasts imply pressure and fluid control in the faulting. Under the effect of fluid, clasts are dissolved in pressing direction, and solutions are transferred to stress vacancy area at both ends of clasts and deposit to regenerate clay minerals. The clasts thus present spindly shape and are surrounded by orientational clay minerals constituting continuous foliation structure. The clay minerals are dominated by phyllosilicates that can weaken faults and promote pressure solution. Therefore, pressure solution creep and phyllosilicates weakening reasonably interpret the creeping of GAF. Additionally, GPS velocity data show slip rates of the GAF are respectively 1.5 and 12 mm/yr during 1998-2008 and 2009-2011, which also indicate the GAF is in creeping during interseismic period. According to analysis on aftershocks distribution and P-wave velocity with depth and geological section in the Longmenshan thrust belt, we suggest the GAF is creeping in shallow (<10 km) and locked in deep (10-20 km). Comprehensive research shows stress propagated from the west was concentrated near the Yingxiu-Beichuan Fault (YBF) and GAF zones. As stress accumulation reached the limit, the YBF and GAF zones were simultaneously ruptured in 2008 Mw 7.9 Wenchuan earthquake, but the rupture area of the GAF was relatively small due to the presence of shallow creep that relaxed the partial stress.

  11. Investigation of Creep Processes and Microdamages in 10Kh9V2MFBR-Sh High-Chromium Steel

    NASA Astrophysics Data System (ADS)

    Grin', E. A.; Pchelintsev, A. V.

    2018-01-01

    During the modernization and the new construction of power units at TPPs in Russia, high-chromium martensitic steels with higher heat-resistant properties than the traditional perlite steels are increasingly used as structural materials. High-chromium steels have a necessary regulatory support for their use in domestic power engineering. However, up to the present time, the issue of assessing the quality of these steels at the analysis of their state during long-term operation remains open. The article proposed is one of the first attempts to create a system of quality criteria for martensitic steels based on their microdamage parameters. Tests were carried out on the long-term strength and creep of samples from 10Kh9V2MFBR-Sh steel at high temperatures with the construction of creep curves in relative coordinates "deformation related to the deformation of fracture, current time related to time to failure." For some samples, the tests were interrupted and the metal was subjected to metallographic studies consisting of the analysis of microdamage with reference to the accumulated creep strain. It has been shown experimentally that the deformation curve of high-chromium steel differs from the analogous curve of pearlitic steel by a longer and flat section of steady creep and by a sharper transition to the third accelerated creep stage, which has a very short time period (approximately 10% of the total durability). The tendency to the increase in the microdamage of the structure of steel as the accumulated creep strain increases with time was confirmed. The beginning of transition to the final creep phase is characterized by the formation of contours of future pore chains and by the appearance of individual large pores of up to 6 μm in size, the presence of which in the microstructure of the martensitic steel indicates a very significant accumulation of creep strain, and corresponds to the predestruction stage of metal. It is necessary to continue the research to obtain quantitative indicators on the accumulation of microdamage in high-chromium steel in a conjunction with the development of a metal resource under creep conditions.

  12. Effects of dislocations on polycrystal anelasticity

    NASA Astrophysics Data System (ADS)

    Sasaki, Y.; Takei, Y.; McCarthy, C.; Suzuki, A.

    2017-12-01

    Effects of dislocations on the seismic velocity and attenuation have been poorly understood, because only a few experimental studies have been performed [Guéguen et al., 1989; Farla et al., 2012]. By using organic borneol as a rock analogue, we measured dislocation-induced anelasticity accurately over a broad frequency range. We first measured the flow law of borneol aggregates by uniaxial compression tests under a confining pressure of 0.8 MPa. A transition from diffusion creep (n = 1) to dislocation creep (n = 5) was captured at about σ = 1 MPa (40°C-50°C). After deforming in the dislocation creep regime, sample microstructure showed irregular grain shape consistent with grain boundary migration. Next, we conducted three creep tests at σ = 0.27 MPa (diffusion creep regime), σ = 1.3 MPa and σ = 1.9 MPa (dislocation creep regime) on the same sample in increasing order, and measured Young's modulus E and attenuation Q-1 after each creep test by forced oscillation tests. The results show that as σ increased, E decreased and Q-1 increased. These changes induced by dislocations, however, almost fully recovered during the forced oscillation tests performed for about two weeks under a small stress (σ = 0.27 MPa) due to the dislocation recovery (annihilation). In order to constrain the time scale of the dislocation-induced anelastic relaxation, we further measured Young's modulus E at ultrasonic frequency before and after the dislocation creep and found that E at 106 Hz is not influenced by dislocations. Because E at 100 Hz is reduced by dislocations by 10%, the dislocation-induced anelastic relaxation occurs mostly between 102-106 Hz which is at a higher frequency than grain-boundary-induced anelasticity. To avoid dislocation recovery during the anelasticity measurement, we are now trying to perform an in-situ measurement of anelasticity while simultaneously deforming under a high stress associated with dislocation creep. The combination of persistent creep stress with small amplitude perturbations is similar to a seismic wave traveling through a region of active tectonic deformation.

  13. Material Constitutive Models for Creep and Rupture of SiC/SiC Ceramic-Matrix Composites (CMCs) Under Multiaxial Loading

    NASA Astrophysics Data System (ADS)

    Grujicic, Mica; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.

    2016-05-01

    Material constitutive models for creep deformation and creep rupture of the SiC/SiC ceramic-matrix composites (CMCs) under general three-dimensional stress states have been developed and parameterized using one set of available experimental data for the effect of stress magnitude and temperature on the time-dependent creep deformation and rupture. To validate the models developed, another set of available experimental data was utilized for each model. The models were subsequently implemented in a user-material subroutine and coupled with a commercial finite element package in order to enable computational analysis of the performance and durability of CMC components used in high-temperature high-stress applications, such as those encountered in gas-turbine engines. In the last portion of the work, the problem of creep-controlled contact of a gas-turbine engine blade with the shroud is investigated computationally. It is assumed that the blade is made of the SiC/SiC CMC, and that the creep behavior of this material can be accounted for using the material constitutive models developed in the present work. The results clearly show that the blade-tip/shroud clearance decreases and ultimately becomes zero (the condition which must be avoided) as a function of time. In addition, the analysis revealed that if the blade is trimmed at its tip to enable additional creep deformation before blade-tip/shroud contact, creep-rupture conditions can develop in the region of the blade adjacent to its attachment to the high-rotational-speed hub.

  14. Effect of Nb and Cu on the high temperature creep properties of a high Mn–N austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyu-Ho, E-mail: kyuhos@korea.ac.kr; Department of Materials Science and Engineering, Korea University, Seoul 136-713; Suh, Jin-Yoo, E-mail: jinyoo@kist.re.kr

    2013-09-15

    The effect of Nb and Cu addition on the creep properties of a high Mn–N austenitic stainless steel was investigated at 600 and 650 °C. In the original high Mn–N steel, which was initially precipitate-free, the precipitation of M{sub 23}C{sub 6} (M = Cr, Fe) and Cr{sub 2}N took place mostly on grain boudaries during creep deformation. On the other hand, the minor addition of Nb resulted in high number density of Z-phases (CrNbN) and MX (M = Nb; X = C, N) carbonitrides inside grains by combining with a high content of N, while suppressing the formation of Cr{submore » 2}N. The addition of Cu gave rise to the independent precipitation of nanometer-sized metallic Cu particles. The combination of the different precipitate-forming mechanisms associated with Z-phase, MX and Cu-rich precipitates turned out to improve the creep-resistance significantly. The thermodynamics and kinetics of the precipitation were discussed using thermo-kinetic simulations. - Highlights: • The creep rupture life was improved by Nb and Cu addition. • The creep resistance of the steel A2 in this study was comparable to that of TP347HFG. • The size of Z-phase and MX carbonitride did not change significantly after creep test. • The nanometer sized Cu-rich precipitate was observed after creep. • The predicted size of precipitates by MatCalc agreed well with measured size.« less

  15. The creep and intergranular cracking behavior of Ni-Cr-Fe-C alloys in 360{degree}C water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-09-01

    Mechanical testing of controlled-purity Ni-xCr-9Fe-yC alloys at 360 C revealed an environmental enhancement in IG cracking and time-dependent deformation in high purity and primary water over that exhibited in argon. Dimples on the IG facets indicate a creep void nucleation and growth failure mode. IG cracking was primarily located at the interior of the specimen and not necessarily linked to direct contact with the environment. Controlled potential CERT experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen is detrimental to the mechanical properties. It is proposed that the environment, through the presence of hydrogen, enhancesmore » IG cracking by enhancing the matrix dislocation mobility. This is based on observations that dislocation-controlled creep controls the IG cracking of controlled-purity Ni-xCr-9Fe-yC in argon at 360 C and grain boundary cavitation and sliding results that show the environmental enhancement of the creep rate is primarily due to an increase in matrix plastic deformation. However, controlled potential CLT experiments did not exhibit a change in the creep rate as the applied potential decreased. While this does not clearly support hydrogen assisted creep, the material may already be saturated with hydrogen at these applied potentials and thus no effect was realized. Chromium and carbon decrease the IG cracking in high purity and primary water by increasing the creep resistance. The surface film does not play a significant role in the creep or IG cracking behavior under the conditions investigated.« less

  16. Creep and intergranular cracking behavior of nickel-chromium-iron-carbon alloys in 360 C water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-11-01

    Mechanical testing of controlled-purity Ni-x% Cr-9% Fe-y% C alloys at 360 C revealed an environmental enhancement in intergranular (IG) cracking and time-dependent deformation in high-purity (HP) and primary water (PW) over that exhibited in argon. Dimples on the IG facets indicated a creep void nucleation and growth failure mode. IG cracking was located primarily in the interior of the specimen and was not necessarily linked to the environment. Controlled-potential constant extension rate tensile (CERT) experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen was detrimental to the mechanical properties. It was proposed that the environment,more » through the presence of hydrogen, enhanced IG cracking by enhancing the matrix dislocation mobility. This conclusion was based on observations that dislocation creep controlled IG cracking of controlled-purity Ni-x% Cr-9% Fe-y% C in argon at 360 C. Grain-boundary cavitation (GBC) and sliding (GBS) results showed environmental enhancement of the creep rate primarily resulted from an increase in matrix plastic deformation. However, controlled-potential constant load tensile (CLT) experiments did not indicate a change in the creep rate as the applied potential decreased. While this result did not support hydrogen-assisted creep, the material already may have been saturated with hydrogen at these applied potentials, and thus, no effect was realized. Chromium and carbon decreased IG cracking in HP and PW by increasing the creep resistance. The surface film did not play a significant role in the creep or IG cracking behavior under the conditions investigated.« less

  17. Measurement of soil creep by inclinometer

    Treesearch

    Robert R. Ziemer

    1977-01-01

    Abstract - Continued inclinometer measurements at borehole sites installed in 1964 in northern California suggest that previously reported rates of soil creep are excessively high. Upon analysis of 35 access casings located in forested and grassland sites, no consistent direction of soil movement could be detected. In addition, no significant rate of soil creep could...

  18. Mechanical Properties of Mass Concrete at Early Ages

    DTIC Science & Technology

    1991-08-01

    I.............. 15 WES UMAT Time-Dependent Material Properties Model.........15: CHAPTER IV: EXPERIMENTAL PROGRAM.................................. 17...Equationi.......................................41 WES UMAT Creep, Eqtation .................................. 42 Bazant Sinh-Double Power Law...and All ......... 42 7 UMAT Creep Equation Coefficients for Mixtures A2 and All .... 43 8 SDPL Creep Constants for Mixtures A2 and All

  19. The strainrange conversion principle for treating cumulative fatigue damage in the creep range

    NASA Technical Reports Server (NTRS)

    Manson, S. S.

    1983-01-01

    A formula is derived for combining effects of successive hysteresis loops in the creep range of materials when one loop has excess tensile creep, while the other contains excess compressive creep. The resultant effect resembles single loops involving balanced tensile and compressive creep. The attempt to use the Interaction Damage Rule as a tool in combining loops of non-equal size and complex strainrange content has led to important new concepts useful in future studies of creep-fatigue. It turns out that the Interaction Damage Rule is basically an expression of how a set of hysteresis loops involving only single generic strains can combine to produce the same micromechanistic damage as the loop containing the combined strainranges which it analyzes. Making use of the underlying concept of Strainrange Partitioning that only the strainrange content of a hysteresis loop governs fatigue life, not order of introducing strainranges, a rational derivation of the Interaction Damage Rule is provided, showing also how it can effectively be used to synthesize independent loops and determine both damaging and healing effects.

  20. Creep Behavior of Poly(lactic acid) Based Biocomposites

    PubMed Central

    Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo

    2017-01-01

    Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric. PMID:28772755

  1. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants

    PubMed Central

    Abe, Fujio

    2008-01-01

    It is crucial for the carbon concentration of 9% Cr steel to be reduced to a very low level, so as to promote the formation of MX nitrides rich in vanadium as very fine and thermally stable particles to enable prolonged periods of exposure at elevated temperatures and also to eliminate Cr-rich carbides M23C6. Sub-boundary hardening, which is inversely proportional to the width of laths and blocks, is shown to be the most important strengthening mechanism for creep and is enhanced by the fine dispersion of precipitates along boundaries. The suppression of particle coarsening during creep and the maintenance of a homogeneous distribution of M23C6 carbides near prior austenite grain boundaries, which precipitate during tempering and are less fine, are effective for preventing the long-term degradation of creep strength and for improving long-term creep strength. This can be achieved by the addition of boron. The steels considered in this paper exhibit higher creep strength at 650 °C than existing high-strength steels used for thick section boiler components. PMID:27877920

  2. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Astrophysics Data System (ADS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-05-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  3. Creep Behavior of Poly(lactic acid) Based Biocomposites.

    PubMed

    Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo

    2017-04-08

    Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.

  4. High-Temperature Creep Degradation of the AM1/NiAlPt/EBPVD YSZ System

    NASA Astrophysics Data System (ADS)

    Riallant, Fanny; Cormier, Jonathan; Longuet, Arnaud; Milhet, Xavier; Mendez, José

    2014-01-01

    The failure mechanisms of a NiAlPt/electron beam physical vapor deposition yttria-stabilized-zirconia thermal barrier coating system deposited on the AM1 single crystalline substrate have been investigated under pure creep conditions in the temperature range from 1273 K to 1373 K (1000 °C to 1100 °C) and for durations up to 1000 hours. Doubly tapered specimens were used allowing for the analysis of different stress states and different accumulated viscoplastic strains for a given creep condition. Under such experiments, two kinds of damage mechanisms were observed. Under low applied stress conditions ( i.e., long creep tests), microcracking is localized in the vicinity of the thermally grown oxide (TGO). Under high applied stress conditions, an unconventional failure mechanism at the substrate/bond coat interface is observed because of large creep strains and fast creep deformation, hence leading to a limited TGO growth. This unconventional failure mechanism is observed although the interfacial bond coat/top coat TGO thickening is accelerated by the mechanical applied stress beyond a given stress threshold.

  5. Large earthquakes and creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  6. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Vikas

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated amore » basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.« less

  7. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weakermore » regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.« less

  8. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  9. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Sommers, B. R.; Lytton, J. L.

    1977-01-01

    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.

  10. Finite element modelling of creep cavity filling by solute diffusion

    NASA Astrophysics Data System (ADS)

    Versteylen, C. D.; Szymański, N. K.; Sluiter, M. H. F.; van Dijk, N. H.

    2018-04-01

    In recently discovered self healing creep steels, open-volume creep cavities are filled by the precipitation of supersaturated solute. These creep cavities form on the grain boundaries oriented perpendicular to the applied stress. The presence of a free surface triggers a flux of solute from the matrix, over the grain boundaries towards the creep cavities. We studied the creep cavity filling by finite element modelling and found that the filling time critically depends on (i) the ratio of diffusivities in the grain boundary and the bulk, and (ii) on the ratio of the intercavity distance and the cavity size. For a relatively large intercavity spacing 3D transport is observed when the grain boundary and volume diffusivities are of a similar order of magnitude, while a 2D behaviour is observed when the grain boundary diffusivity is dominant. Instead when the intercavity distance is small, the transport behaviour tends to a 1D behaviour in all cases, as the amount of solute available in the grain boundary is insufficient. A phase diagram with the transition lines is constructed.

  11. Creep of plasma sprayed zirconia

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.

    1982-01-01

    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding.

  12. Progress Report on Long Hold Time Creep Fatigue of Alloy 617 at 850°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Laura Jill

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests that include long hold times up to 240 minutes at maximum tensile strain were conducted at 850°C. In terms of the total number of cycles to failure, the fatigue resistance decreased when a hold time was added at peak tensile strain. Increases in the tensile hold duration degraded the creep-fatigue resistance, at least to the investigated strain controlled hold time of up to 60 minutes at themore » 0.3% strain range and 240 minutes at the 1.0% strain range. The creep-fatigue deformation mode is considered relative to the lack of saturation, or continually decreasing number of cycles to failure with increasing hold times. Additionally, preliminary values from the 850°C creep-fatigue data are calculated for the creep-fatigue damage diagram and have higher values of creep damage than those from tests at 950°C.« less

  13. Numerical-graphical method for describing the creep of damaged highly filled polymer materials

    NASA Astrophysics Data System (ADS)

    Bykov, D. L.; Martynova, E. D.; Mel'nikov, V. P.

    2015-09-01

    A method for describing the creep behavior until fracture of a highly filled polymer material previously damaged in preliminary tests is proposed. The constitutive relations are the relations of nonlinear endochronic theory of aging viscoelastic materials (NETAVEM) [1]. The numerical-graphical method for identifying the functions occurring in NETAVEM, which was proposed in [2] for describing loading processes at a constant strain rate, is used here for the first time in creep theory. We use the results of experiments with undamaged and preliminary damaged specimens under the action of the same constant tensile loads. The creep kernel is determined in experiments with an undamaged specimen. The reduced time function contained in NETAVEM is determined from the position of points corresponding to the same values of strain on the creep curves of the damaged and undamaged specimens. An integral equation is solved to obtain the aging function, and then the viscosity function is determined. The knowledge of all functions contained in the constitutive relations permits solving the creep problem for products manufactured from a highly filled polymer material.

  14. Observations on the relationship of structure to the mechanical properties of thin TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1976-01-01

    A study of the relationship between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties are dependent on grain aspect ratio and sheet thickness. In general, the strength properties increase with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures (not less than 1144 K). Significant creep damage as determined by subsequent tensile testing at room temperature occurs after very small amounts (less than 0.1%) of prior creep deformation over the temperature range 1144-1477 K. A threshold stress for creep appears to exist. Creep exposure below the threshold stress at T not less than 1366 K results in almost full retention of room temperature tensile properties.

  15. Multiscale Dynamics of Aseismic Slip on Central San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, M.; Shirzaei, M.

    2018-03-01

    Understanding the evolution of aseismic slip enables constraining the fault's seismic budget and provides insight into dynamics of creep. Inverting the time series of surface deformation measured along the Central San Andreas Fault obtained from interferometric synthetic aperture radar in combination with measurements of repeating earthquakes, we constrain the spatiotemporal distribution of creep during 1992-2010. We identify a new class of intermediate-term creep rate variations that evolve over decadal scale, releasing stress on the accelerating zone and loading adjacent decelerating patches. We further show that in short-term (<2 year period), creep avalanches, that is, isolated clusters of accelerated aseismic slip with velocities exceeding the long-term rate, govern the dynamics of creep. The statistical properties of these avalanches suggest existence of elevated pore pressure in the fault zone, consistent with laboratory experiments.

  16. Dynamic responses of concrete-filled steel tubular member under axial compression considering creep effect

    NASA Astrophysics Data System (ADS)

    Jiang, X. T.; Wang, Y. D.; Dai, C. H.; Ding, M.

    2017-08-01

    The finite element model of concrete-filled steel tubular member was established by the numerical analysis software considering material nonlinearity to analyze concrete creep effect on the dynamic responses of the member under axial compression and lateral impact. In the model, the constitutive model of core concrete is the plastic damage model, that of steel is the Von Mises yield criterion and kinematic hardening model, and the creep effect at different ages is equivalent to the change of concrete elastic modulus. Then the dynamic responses of concrete-filled steel tubular member considering creep effects was simulated, and the effects of creep on contact time, impact load, deflection, stress and strain were discussed. The fruits provide a scientific basis for the design of the impact resistance of concrete filled steel tubular members.

  17. Modeling of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  18. Creep and fracture of dispersion-strengthened materials

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    1991-01-01

    The creep and fracture of dispersion strengthened materials is reviewed. A compilation of creep data on several alloys showed that the reported values of the stress exponent for creep varied between 3.5 and 100. The activation energy for creep exceeded that for lattice self diffusion in the matrix in the case of some materials and a threshold stress behavior was generally reported in these instances. The threshold stress is shown to be dependent on the interparticle spacing and it is significantly affected by the initial microstructure. The effect of particle size and the nature of the dispersoid on the threshold stress is not well understood at the present time. In general, most studies indicate that the microstructure after creep is similar to that before testing and very few dislocations are usually observed. It is shown that the stress acting on a dispersoid due to a rapidly moving dislocation can exceed the particle yield strength of the G sub p/1000, where G sub p is the shear modulus of the dispersoid. The case when the particle deforms is examined and it is suggested that the dislocation creep threshold stress of the alloy is equal to the yield strength of the dispersoid under these conditions. These results indicate that the possibility that the dispersoid creep threshold stress is determined by either the particle yield strength or the stress required to detach a dislocation from the dispersoid matrix interface. The conditions under which the threshold stress is influenced by one or the other mechanism are discussed and it is shown that the particle yield strength is important until the extent of dislocation core relaxation at the dispersoid matrix interface exceeds about 25 pct. depending on the nature of the particle matrix combination. Finally, the effect of grain boundaries and grain morphology on the creep and fracture behavior of dispersoid strengthened alloys is examined.

  19. Creep relaxation of fuel pin bending and ovalling stresses. [BEND code, OVAL code, MARC-CDC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, D.P.; Jackson, R.J.

    1981-10-01

    Analytical methods for calculating fuel pin cladding bending and ovalling stresses due to pin bundle-duct mechanical interaction taking into account nonlinear creep are presented. Calculated results are in agreement with finite element results by MARC-CDC program. The methods are used to investigate the effect of creep on the FTR fuel cladding bending and ovalling stresses. It is concluded that the cladding of 316 SS 20 percent CW and reference design has high creep rates in the FTR core region to keep the bending and ovalling stresses to acceptable levels. 6 refs.

  20. Irradiation creep due to SIPA under cascade damage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, C.H.; Garner, F.A.; Holt, R.A.

    1992-12-31

    This paper derives the relationships between void swelling and irradiation creep due to Stress-Induced Preferred Absorption (SIPA) and SIPA-Induced Growth (SIG) under cascade damage conditions in an irradiated pressurized tube. It is found that at low swelling rates irradiation creep is a major contribution to the total diametral strain rate of the tube, whereas at high swelling rates the creep becomes a minor contribution. The anisotropy of the corresponding dislocation structure is also predicted to decline as the swelling rate increases. The theoretical predictions are found to agree very well with experimental results.

  1. Development and Assessment of a New Empirical Model for Predicting Full Creep Curves

    PubMed Central

    Gray, Veronica; Whittaker, Mark

    2015-01-01

    This paper details the development and assessment of a new empirical creep model that belongs to the limited ranks of models reproducing full creep curves. The important features of the model are that it is fully standardised and is universally applicable. By standardising, the user no longer chooses functions but rather fits one set of constants only. Testing it on 7 contrasting materials, reproducing 181 creep curves we demonstrate its universality. New model and Theta Projection curves are compared to one another using an assessment tool developed within this paper. PMID:28793458

  2. Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity

    NASA Astrophysics Data System (ADS)

    Zabavnikova, T. A.; Kadashevich, Yu. I.; Pomytkin, S. P.

    2018-05-01

    A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials.

  3. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bimal Kad

    2007-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tubemore » axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program were to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined was iterative and intended to systematically (i) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, to be (ii) evaluated at 'in-service' loads at service temperatures and environments. Our report outlines the significant hoop creep enhancements possible via secondary cross-rolling and/or flow-forming operations. Each of the secondary processes i.e. hot rotary forming and ambient-temperature flow forming exhibited improvement over the base-line hoop-creep performance. The flow formed MA956 tubes exhibited performance superior to all other rolling/forming variants. At the conclusion of this program 2ksi creep-test exposure for flow formed materials exceeded 7300 hours, 7694 hours and 4200 hours for creep tests operating at 950 C, 975 C and 1000 C respectively. The Larsen-Miller parameter for these improvised flow-formed tubes now exceeds 54.14, i.e., better than ever recorded previously. The creep performance enhancement in cross-rolled MA956 material samples versus the base creep property is elucidated. At least 2-3 orders of magnitude of improvement in creep rates/day and concomitant increases in creeplife are demonstrated for the flow formed tubes versus the base reference tests.« less

  4. Structural Benchmark Testing for Stirling Convertor Heater Heads

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  5. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  6. Data from theodolite measurements of creep rates on San Francisco Bay region faults, California, 1979-2012

    USGS Publications Warehouse

    McFarland, Forrest S.; Lienkaemper, James J.; Caskey, S. John

    2009-01-01

    From 1979 until his retirement from the project in 2001, Jon Galehouse of San Francisco State University (SFSU) and many student research assistants measured creep (aseismic slip) rates on these faults. The creep measurement project, which was initiated by Galehouse, continued through the Geosciences Department at SFSU from 2001-2006 under the direction of Karen Grove and John Caskey (Grove and Caskey, 2005) and since 2006 under Caskey (2007). Forrest McFarland has managed most of the technical and logistical project operations, as well as data processing and compilation since 2001. Data from 2001-2007 are found in McFarland and others (2007). From 2009 onward, we have released the raw data annually using this report (OF2009-1119) as a permanent publication link, while publishing more detailed analyses of these data in the scientific literature, such as Lienkaemper and others (2014a). We maintain a project Web site (http://funnel.sfsu.edu/creep/) that includes the following information: project description, project personnel, creep characteristics and measurement, map of creep-measurement sites, creep-measurement site information, and links to data plots for each measurement site. Our most current, annually updated results are, therefore, accessible to the scientific community and to the general public. Information about the project can currently be requested by the public by an email link (fltcreep@sfsu.edu) found on our project Web site.

  7. Theory of electric creep and electromechanical coupling with domain evolution for non-poled and fully poled ferroelectric ceramics

    PubMed Central

    Xia, Xiaodong; Wang, Yang; Zhong, Zheng

    2016-01-01

    Unlike mechanical creep with inelastic deformation, electric creep with domain evolution is a rarely studied subject. In this paper, we present a theory of electric creep and related electromechanical coupling for both non-poled and fully poled ferroelectric ceramics. We consider electric creep to be a time-dependent process, with an initial condition lying on the D (electric displacement) versus E (electric field) hysteresis loop. Both processes are shown to share the same Gibbs free energy and thermodynamic driving force, but relative to creep, the hysteresis loop is just a field-dependent process. With this view, we develop a theory with a single thermodynamic driving force but with two separate kinetic equations, one for the field-dependent loops in terms of a Lorentzian-like function and the other for the time-dependent D in terms of a dissipation potential. We use the 0°–90° and then 90°–180° switches to attain these goals. It is demonstrated that the calculated results are in broad agreement with two sets of experiments, one for a non-poled PIC-151 and the other for a fully poled PZT-5A. The theory also shows that creep polarization tends to reach a saturation state with time and that the saturated polarization has its maximum at the coercive field. PMID:27843406

  8. Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.

    2013-01-01

    Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.

  9. Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A

    Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatiguemore » tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.« less

  10. DETERMINATION OF THE CREEP–FATIGUE INTERACTION DIAGRAM FOR ALLOY 617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, J. K.; Carroll, L. J.; Sham, T. -L.

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, creep-fatigue testing was performed. Testing has been performed primarily on a single heat of material at 850 and 950°C for total strain ranges of 0.3 to 1% and tensile hold times as long as 240 minutes. At 850°C, increases in the tensile hold duration degraded the creep fatigue resistance, at least to the investigated strain-controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutesmore » at the 1.0% strain range. At 950°C, the creep-fatigue cycles to failure becomes constant with increasing hold times, indicating saturation occurs at relatively short hold times. The creep and fatigue damage fractions have been calculated and plotted on a creep-fatigue interaction D-diagram. Results from earlier creep-fatigue tests at 800 and 1000°C on an additional heat of Alloy 617 are also plotted on the D-diagram. The methodology for calculating the damage fractions will be presented, and the effects of strain rate, strain range, temperature, hold time, and strain profile (i.e. holds in tension, compression or both) on the creep-fatigue damage will be explored.« less

  11. Creep properties of Pb-free solder joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, H.G.; Morris Jr., J.W.; Hua, F.

    2002-04-01

    Describes the creep behavior of three Sn-rich solders that have become candidates for use in Pb-free solder joints: Sn-3.5Ag, Sn-3Ag-0.5Cu and Sn-0.7Cu. The three solders show the same general behavior when tested in thin joints between Cu and Ni/Au metallized pads at temperatures between 60 and 130 C. Their steady-state creep rates are separated into two regimes with different stress exponents(n). The low-stress exponents range from {approx}3-6, while the high-stress exponents are anomalously high (7-12). Strikingly, the high-stress exponent has a strong temperature dependence near room temperature, increasing significantly as the temperature drops from 95 to 60 C. The anomalousmore » creep behavior of the solders appears to be due to the dominant Sn constituent. Joints of pure Sn have stress exponents, n, that change with stress and temperature almost exactly like those of the Sn-rich solder joints. Research on creep in bulk samples of pure Sn suggests that the anomalous temperature dependence of the stress exponent may show a change in the dominant mechanism of creep. Whatever its source, it has the consequence that conventional constitutive relations for steady-state creep must be used with caution in treating Sn-rich solder joints, and qualification tests that are intended to verify performance should be carefully designed.« less

  12. Creep and drying shrinkage of high performance concrete for the skyway structures of the new San Francisco-Oakland Bay Bridge and cement paste.

    DOT National Transportation Integrated Search

    2011-04-01

    The objective of this study was to determine the influence of admixtures on long term drying shrinkage and creep of high : strength concrete (HSC). Creep and shrinkage of the mix utilized in segments of the Skyway Structure of the San : Francisco-Oak...

  13. Creep and drying shrinkage of high performance concrete for the skyway structures of the new San Francisco-Oakland Bay Bridge and cement paste

    DOT National Transportation Integrated Search

    2011-03-01

    The objective of this study was to determine the influence of admixtures on long term drying shrinkage and creep of high : strength concrete (HSC). Creep and shrinkage of the mix utilized in segments of the Skyway Structure of the San : Francisco-Oak...

  14. Anisotropy tensor of the potential model of steady creep

    NASA Astrophysics Data System (ADS)

    Annin, B. D.; Ostrosablin, N. I.

    2014-01-01

    The Kelvin approach describing the structure of the generalized Hooke's law is used to analyze the potential model of anisotropic creep of materials. The creep equations of incompressible transversely isotropic, orthotropic materials and those with cubic symmetry are considered. The eigen coefficients of anisotropy and eigen tensors for the anisotropy tensors of these materials are determined.

  15. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea)

    NASA Astrophysics Data System (ADS)

    Li, Wei; Alves, Tiago M.; Wu, Shiguo; Rebesco, Michele; Zhao, Fang; Mi, Lijun; Ma, Benjun

    2016-10-01

    A giant submarine creep zone exceeding 800 km2 on the continental slope offshore the Dongsha Islands, South China Sea, is investigated using bathymetric and 3D seismic data tied to borehole information. The submarine creep zone is identified as a wide area of seafloor undulations with ridges and troughs. The troughs form NW- and WNW-trending elongated depressions separating distinct seafloor ridges, which are parallel or sub-parallel to the continental slope. The troughs are 0.8-4.7 km-long and 0.4 to 2.1 km-wide. The ridges have wavelengths of 1-4 km and vertical relief of 10-30 m. Slope strata are characterised by the presence of vertically stacked ridges and troughs at different stratigraphic depths, but remaining relatively stationary in their position. The interpreted ridges and troughs are associated with large-scale submarine creep, and the troughs can be divided into three types based on their different internal characters and formation processes. The large-scale listric faults trending downslope below MTD 1 and horizon T0 may be the potential glide planes for the submarine creep movement. High sedimentation rates, local fault activity and the frequent earthquakes recorded on the margin are considered as the main factors controlling the formation of this giant submarine creep zone. Our results are important to the understanding of sediment instability on continental slopes as: a) the interpreted submarine creep is young, or even active at present, and b) areas of creeping may evolve into large-scale slope instabilities, as recorded by similar large-scale events in the past.

  16. Synthesis of Creep Measurements from Strainmeters and Creepmeters along the San Andreas Fault: Implications for Seismic vs. Aseismic Partitioning

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Gottlieb, M. H.; Hodgkinson, K. M.; Bilham, R. G.; Mattioli, G. S.; Johnson, W.; Van Boskirk, E.; Meertens, C. M.

    2015-12-01

    Strainmeters and creepmeters have been operated along the San Andreas Fault, observing creep events for decades. In particular, the EarthScope Plate Boundary Observatory (PBO) has added a significant number of borehole strainmeters along the San Andreas Fault (SAF) over the last decade. The geodetic data cover a significant temporal portion of the inferred earthquake cycle along this portion of the SAF. Creepmeters measure the surface displacement over time (creep) with short apertures and have the ability to capture slow slip, coseismic rupture, and afterslip. Modern creepmeters deployed by the authors have a resolution of 5 µm over a range of 10 mm and a dynamic sensor with a resolution 25 µm over a range 2.2 m. Borehole strainmeters measure local deformation some distance from the fault with a broader aperture. Borehole tensor strainmeters principally deployed as part of the PBO, measure the horizontal strain tensor at a depth of 100-200 m with a resolution of 10-11 strain and are located 4 - 10 km from the fault with the ability to image a 1 mm creep event acting on an area of ~500 m2 from over 4 km away (fault perpendicular). A single borehole tensor strainmeter is capable of providing broad constraints on the creep event asperity size, location, direction and depth of a single creep event. The synthesis of these data from all the available geodetic instruments proximal to the SAF presents a unique opportunity to constrain the partitioning between aseismic and seismic slip on the central SAF. We show that simple elastic half-space models allow us to loosely constrain the location and depth of any individual creep event on the fault, even with a single instrument, and to image the accumulation of creep with time.

  17. Creep-induced anisotropy in covalent adaptable network polymers.

    PubMed

    Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai

    2017-10-11

    Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.

  18. Procedures for characterizing an alloy and predicting cyclic life with the total strain version of Strainrange Partitioning

    NASA Technical Reports Server (NTRS)

    Saltsman, James F.; Halford, Gary R.

    1989-01-01

    Procedures are presented for characterizing an alloy and predicting cyclic life for isothermal and thermomechanical fatigue conditions by using the total strain version of strainrange partitioning (TS-SRP). Numerical examples are given. Two independent alloy characteristics are deemed important: failure behavior, as reflected by the inelastic strainrange versus cyclic life relations; and flow behavior, as indicated by the cyclic stress-strain-time response (i.e., the constitutive behavior). Failure behavior is characterized by conducting creep-fatigue tests in the strain regime, wherein the testing times are reasonably short and the inelastic strains are large enough to be determined accurately. At large strainranges, stress-hold, strain-limited tests are preferred because a high rate of creep damage per cycle is inherent in this type of test. At small strainranges, strain-hold cycles are more appropriate. Flow behavior is characterized by conducting tests wherein the specimen is usually cycled far short of failure and the wave shape is appropriate for the duty cycle of interest. In characterizing an alloy pure fatigue, or PP, failure tests are conducted first. Then depending on the needs of the analyst a series of creep-fatigue tests are conducted. As many of the three generic SRP cycles are featured as are required to characterize the influence of creep on fatigue life (i.e., CP, PC, and CC cycles, respectively, for tensile creep only, compressive creep only, and both tensile and compressive creep). Any mean stress effects on life also must be determined and accounted for when determining the SRP inelastic strainrange versus life relations for cycles featuring creep. This is particularly true for small strainranges. The life relations thus are established for a theoretical zero mean stress condition.

  19. Effects of creep feeding and monensin on reproductive performance and lactation of beef heifers.

    PubMed

    Hixon, D L; Fahey, G C; Kesler, D J; Neumann, A L

    1982-09-01

    A 23 factorial arrangement of treatments was utilized to determine the effect of breed, creep feeding and monensin on subsequent reproductive performance and lactation of 32 primiparous heifers. One-half of each breed (Angus and Hereford) group had access to creep feed (2.67 Mcal metabolizable energy/kg) while nursing their dams. Approximately 40 d before breeding through 120 d of lactation, all heifers were fed a suboptimal energy diet and 50% of each breed and creep group received 200 mg monensin/head daily. Estrus was synchronized with a progestogen. Volatile fatty acids (VFA) were determined periodically throughout the monensin-feeding portion of the experiment. Twenty-four hour milk production, percentage butterfat and percentage solids-not-fat were determined at 60 and 120 d postpartum. Weaning weights (adjusted to 205 d and for age of dam) of the original heifers were heavier (P less than .05) for those that were creep fed compared with those not creep fed (219 vs 202 kg). Monensin-supplemented females gained significantly more weight from the initiation of treatment to immediately postcalving and gave birth to heavier calves (P less than .05) even though they received comparable amounts of dietary energy as those that did not receive monensin. The energy stressed, monensin-supplemented first-calf heifers exhibited a shorter postpartum interval (P less than .05) to first estrus than did those that did not receive monensin (55.7 vs 69.1 d, respectively). First-calf heifers that had been creep fed while nursing their dams had a lower (P less than .05) daily milk yield at 120 d post-partum than those that did not have access to creep feed. No detrimental effects were observed due to long-term monensin supplementation.

  20. The influence of temperature on brittle creep in sandstones

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.

    2009-04-01

    The characterization of time-dependent brittle rock deformation is fundamental to understanding the long-term evolution and dynamics of the Earth's upper crust. The presence of water promotes time-dependent deformation through environment-dependent stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure stress. Here we report results from an experimental study of the influence of an elevated temperature on time-dependent brittle creep in water-saturated samples of Darley Dale (initial porosity of 13%), Bentheim (23%) and Crab Orchard (4%) sandstones. We present results from both conventional creep experiments (or ‘static fatigue' tests) and stress-stepping creep experiments performed under 20°C and 75°C and an effective confining pressure of 30 MPa (50 MPa confining pressure and a 20 MPa pore fluid pressure). The evolution of crack damage was monitored throughout each experiment by measuring the three proxies for damage (1) axial strain (2) pore volume change and (3) the output of AE energy. Conventional creep experiments have demonstrated that, for any given applied differential stress, the time-to-failure is dramatically reduced and the creep strain rate is significantly increased by application of an elevated temperature. Stress-stepping creep experiments have allowed us to investigate the influence of temperature in detail. Results from these experiments show that the creep strain rate for Darley Dale and Bentheim sandstones increases by approximately 3 orders of magnitude, and for Crab Orchard sandstone increases by approximately 2 orders of magnitude, as temperature is increased from 20°C to 75°C at a fixed effective differential stress. We discuss these results in the context of the different mineralogical and microstructural properties of the three rock types and the micro-mechanical and chemical processes operating on them.

  1. Creep cavitation bands control porosity and fluid flow in lower crustal shear zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menegon, Luca; Fusseis, Florian; Stunitz, Holger

    2015-03-01

    Shear zones channelize fluid flow in Earth’s crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700–730 °C, pressure = 0.65–0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in bothmore » domains is <25 mm. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistent with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size–sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites.« less

  2. Creep Strength of Nb-1Zr for SP-100 Applications

    NASA Astrophysics Data System (ADS)

    Horak, James A.; Egner, Larry K.

    1994-07-01

    Power systems that are used to provide electrical power in space are designed to optimize conversion of thermal energy to electrical energy and to minimize the mass and volume that must be launched. Only refractory metals and their alloys have sufficient long-term strength for several years of uninterrupted operation at the required temperatures of 1200 K and above. The high power densities and temperatures at which these reactors must operate require the use of liquid-metal coolants. The alloy Nb-1 wt % Zr (Nb-lZr), which exhibits excellent corrosion resistance to alkali liquid-metals at high temperatures, is being considered for the fuel cladding, reactor structural, and heat-transport systems for the SP-100 reactor system. Useful lifetime of this system is limited by creep deformation in the reactor core. Nb-lZr sheet procured to American Society for Testing and Materials (ASTM) specifications for reactor grade and commercial grade has been processed by several different cold work and annealing treatments to attempt to produce the grain structure (size, shape, and distribution of sizes) that provides the maximum creep strength of this alloy at temperatures from 1250 to 1450 K. The effects of grain size, differences in oxygen concentrations, tungsten concentrations, and electron beam and gas tungsten arc weldments on creep strength were studied. Grain size has a large effect on creep strength at 1450 K but only material with a very large grain size (150 μm) exhibits significantly higher creep strength at 1350 K. Differences in oxygen or tungsten concentrations did not affect creep strength, and the creep strengths of weldments were equal to, or greater than, those for base metal.

  3. Transient rolling friction model for discrete element simulations of sphere assemblies

    NASA Astrophysics Data System (ADS)

    Kuhn, Matthew R.

    2014-03-01

    The rolling resistance between a pair of contacting particles can be modeled with two mechanisms. The first mechanism, already widely addressed in the DEM literature, involves a contact moment between the particles. The second mechanism involves a reduction of the tangential contact force, but without a contact moment. This type of rotational resistance, termed creep-friction, is the subject of the paper. Within the creep-friction literature, the term “creep” does not mean a viscous mechanism, but rather connotes a slight slip that accompanies rolling. Two extremes of particle motions bound the range of creep-friction behaviors: a pure tangential translation is modeled as a Cattaneo-Mindlin interaction, whereas prolonged steady-state rolling corresponds to the traditional wheel-rail problem described by Carter, Poritsky, and others. DEM simulations, however, are dominated by the transient creep-friction rolling conditions that lie between these two extremes. A simplified model is proposed for the three-dimensional transient creep-friction rolling of two spheres. The model is an extension of the work of Dahlberg and Alfredsson, who studied the two-dimensional interactions of disks. The proposed model is applied to two different systems: a pair of spheres and a large dense assembly of spheres. Although creep-friction can reduce the tangential contact force that would otherwise be predicted with Cattaneo-Mindlin theory, a significant force reduction occurs only when the rate of rolling is much greater than the rate of translational sliding and only after a sustained period of rolling. When applied to the deviatoric loading of an assembly of spheres, the proposed creep-friction model has minimal effect on macroscopic strength or stiffness. At the micro-scale of individual contacts, creep-friction does have a modest influence on the incremental contact behavior, although the aggregate effect on the assembly's behavior is minimal.

  4. The Greenville Fault: preliminary estimates of its long-term creep rate and seismic potential

    USGS Publications Warehouse

    Lienkaemper, James J.; Barry, Robert G.; Smith, Forrest E.; Mello, Joseph D.; McFarland, Forrest S.

    2013-01-01

    Once assumed locked, we show that the northern third of the Greenville fault (GF) creeps at 2 mm/yr, based on 47 yr of trilateration net data. This northern GF creep rate equals its 11-ka slip rate, suggesting a low strain accumulation rate. In 1980, the GF, easternmost strand of the San Andreas fault system east of San Francisco Bay, produced a Mw5.8 earthquake with a 6-km surface rupture and dextral slip growing to ≥2 cm on cracks over a few weeks. Trilateration shows a 10-cm post-1980 transient slip ending in 1984. Analysis of 2000-2012 crustal velocities on continuous global positioning system stations, allows creep rates of ~2 mm/yr on the northern GF, 0-1 mm/yr on the central GF, and ~0 mm/yr on its southern third. Modeled depth ranges of creep along the GF allow 5-25% aseismic release. Greater locking in the southern two thirds of the GF is consistent with paleoseismic evidence there for large late Holocene ruptures. Because the GF lacks large (>1 km) discontinuities likely to arrest higher (~1 m) slip ruptures, we expect full-length (54-km) ruptures to occur that include the northern creeping zone. We estimate sufficient strain accumulation on the entire GF to produce Mw6.9 earthquakes with a mean recurrence of ~575 yr. While the creeping 16-km northern part has the potential to produce a Mw6.2 event in 240 yr, it may rupture in both moderate (1980) and large events. These two-dimensional-model estimates of creep rate along the southern GF need verification with small aperture surveys.

  5. Long‐term creep rates on the Hayward Fault: evidence for controls on the size and frequency of large earthquakes

    USGS Publications Warehouse

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Bilham, Roger; Ponce, David A.; Boatwright, John; Caskey, S. John

    2012-01-01

    The Hayward fault (HF) in California exhibits large (Mw 6.5–7.1) earthquakes with short recurrence times (161±65 yr), probably kept short by a 26%–78% aseismic release rate (including postseismic). Its interseismic release rate varies locally over time, as we infer from many decades of surface creep data. Earliest estimates of creep rate, primarily from infrequent surveys of offset cultural features, revealed distinct spatial variation in rates along the fault, but no detectable temporal variation. Since the 1989 Mw 6.9 Loma Prieta earthquake (LPE), monitoring on 32 alinement arrays and 5 creepmeters has greatly improved the spatial and temporal resolution of creep rate. We now identify significant temporal variations, mostly associated with local and regional earthquakes. The largest rate change was a 6‐yr cessation of creep along a 5‐km length near the south end of the HF, attributed to a regional stress drop from the LPE, ending in 1996 with a 2‐cm creep event. North of there near Union City starting in 1991, rates apparently increased by 25% above pre‐LPE levels on a 16‐km‐long reach of the fault. Near Oakland in 2007 an Mw 4.2 earthquake initiated a 1–2 cm creep event extending 10–15 km along the fault. Using new better‐constrained long‐term creep rates, we updated earlier estimates of depth to locking along the HF. The locking depths outline a single, ∼50‐km‐long locked or retarded patch with the potential for an Mw∼6.8 event equaling the 1868 HF earthquake. We propose that this inferred patch regulates the size and frequency of large earthquakes on HF.

  6. Creep Response and Deformation Processes in Nanocluster Strengthened Ferritic Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Taisuke; Sarosi, P. M.; Schneibel, Joachim H

    2008-01-01

    There is increasing demand for oxide-dispersion-strengthened ferritic alloys that possess both high-temperature strength and irradiation resistance. Improvement of the high-temperature properties requires an understanding of the operative deformation mechanisms. In this study, the microstructures and creep properties of the oxide-dispersion-strengthened alloy 14YWT have been evaluated as a function of annealing at 1000 C for 1 hour up to 32 days. The ultra-fine initial grain size (approx. 100nm) is stable after the shortest annealing time, and even after subsequent creep at 800 C. Longer annealing periods lead to anomalous grain growth that is further enhanced following creep. Remarkably, the minimum creepmore » rate is relatively insensitive to this dramatic grain-coarsening. The creep strength is attributed to highly stable, Ti-rich nanoclusters that appear to pin the initial primary grains, and present strong obstacles to dislocation motion in the large, anomalously grown grains.« less

  7. The development of gamma-gamma-prime lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1985-01-01

    The kinetics of the formation and subsequent development of the directional coarsening of the gamma-prime precipitate in model Ni-Al-Mo-Ta superalloy single crystals are examined during tensile creep under various stress levels at 982 and 1038 C. Special attention is given to the gamma and gamma-prime relation to creep time and strain in order to trace the changing gamma-gamma-prime morphology. Directional coarsening of gamma-prime is found to begin during primary creep and its rate is shown to increase with an increase in temperature or stress level. The length of gamma-prime thickness increased linearly with time up to a plateau reached after the onset of steady state creep. The raft thickness, equal to the gamma-prime size, remained constant at this initial value up through the onset of the tertiary creep. The interlaminar spacing indicates the stability of directionally coarsened structure.

  8. Creep-fatigue interaction at high temperature; Proceedings of the Symposium, 112th ASME Winter Annual Meeting, Atlanta, GA, Dec. 1-6, 1991

    NASA Astrophysics Data System (ADS)

    Haritos, George K.; Ochoa, O. O.

    Various papers on creep-fatigue interaction at high temperature are presented. Individual topics addressed include: analysis of elevated temperature fatigue crack growth mechanisms in Alloy 718, physically based microcrack propagation laws for creep-fatigue-environment interaction, in situ SEM observation of short fatigue crack growth in Waspaloy at 700 C under cyclic and dwell conditions, evolution of creep-fatigue life prediction models, TMF design considerations in turbine airfoils of advanced turbine engines. Also discussed are: high temperature fatigue life prediction computer code based on the total strain version of strainrange partitioning, atomic theory of thermodynamics of internal variables, geometrically nonlinear analysis of interlaminar stresses in unsymmetrically laminated plates subjected to uniform thermal loading, experimental investigation of creep crack tip deformation using moire interferometry. (For individual items see A93-31336 to A93-31344)

  9. Report On Design And Preliminary Data Of Halden In-Pile Creep Rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A; Karlsen, T. M.; Yamamoto, Yukinori

    2015-09-01

    A set of in-pile creep tests is ongoing in the Halden reactor on ORNL’s candidate accident tolerant fuel cladding materials. These tests are meant to provide essential material property information that is needed for an informed analysis of these fuel concepts under normal operating conditions. These tests provide detailed information regarding swelling, thermal creep, and irradiation creep rates of these materials. The results to date have been compared with the limited set of information available in literature that is form irradiation tests in other reactors or out-of-pile tests. Most of the results are in good agreement with prior literature, exceptmore » for irradiation creep rate of SiC. To elucidate the difference between the HFIR and Halden test results continued testing is necessary. The tests describe in this progress report are ongoing and will continue for at least another year.« less

  10. Finite strain transient creep of D16T alloy: identification and validation employing heterogeneous tests

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Larichkin, A. Yu

    2017-10-01

    A cyclic creep damage model, previously proposed by the authors, is modified for a better description of the transient creep of D16T alloy observed in the finite strain range under rapidly changing stresses. The new model encompasses the concept of kinematic hardening, which allows us to account for the creep-induced anisotropy. The model kinematics is based on the nested multiplicative split of the deformation gradient, proposed by Lion. The damage evolution is accounted for by the classical Kachanov-Rabotnov approach. The material parameters are identified using experimental data on cyclic torsion of thick-walled samples with different holding times between load reversals. For the validation of the proposed material model, an additional experiment is analyzed. Although this additional test is not involved in the identification procedure, the proposed cyclic creep damage model describes it accurately.

  11. On the Benefits of Creeping Wave Antennas in Reducing Interference Between Neighboring Wireless Body Area Networks.

    PubMed

    Tsouri, Gill R; Zambito, Stephanie R; Venkataraman, Jayanti

    2017-02-01

    We consider the on-body, off-body, and body-to-body channels in wireless body area networks utilizing creeping wave antennas. Experimental setups are used to gather measurements in the 2.4 GHz band with body area networks operating in an office environment. Data packets providing received signal strength indicators are used to assess the performance of the creeping wave antenna in reducing interference at a neighboring on-body access point while supporting reliable on-body communications. Results demonstrate that creeping wave antennas provide reliable on-body communications while significantly reducing inter-network interference; the inter-network interference is shown to be 10 dB weaker than the on-body signal. In addition, the inter-network interference when both networks utilize creeping wave antennas is shown to be 3 dB weaker than the interference when monopole antennas are used.

  12. Biaxial Creep Specimen Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JL Bump; RF Luther

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Navalmore » Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.« less

  13. Modelling of creep hysteresis in ferroelectrics

    NASA Astrophysics Data System (ADS)

    He, Xuan; Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler-Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.

  14. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  15. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    NASA Astrophysics Data System (ADS)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  16. Ratcheting in a nonlinear viscoelastic adhesive

    NASA Astrophysics Data System (ADS)

    Lemme, David; Smith, Lloyd

    2017-11-01

    Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.

  17. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system

    NASA Astrophysics Data System (ADS)

    Shebalin, P.; Narteau, C.; Vorobieva, I.

    2017-12-01

    Crustal faults accommodate slip either by a succession of earthquakes or continuous slip, andin most instances, both these seismic and aseismic processes coexist. Recorded seismicity and geodeticmeasurements are therefore two complementary data sets that together document ongoing deformationalong active tectonic structures. Here we study the influence of stable sliding on earthquake statistics.We show that creep along the San Andreas Fault is responsible for a break of slope in the earthquake sizedistribution. This slope increases with an increasing creep rate for larger magnitude ranges, whereas itshows no systematic dependence on creep rate for smaller magnitude ranges. This is interpreted as a deficitof large events under conditions of faster creep where seismic ruptures are less likely to propagate. Theseresults suggest that the earthquake size distribution does not only depend on the level of stress but also onthe type of deformation.

  18. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  19. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  20. Irradiation Creep in Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarlymore » characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.« less

  1. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Li; Sansoz, Frederic; He, Yang

    2016-11-28

    Atom diffusion assisted by surfaces or interfaces (e.g. Coble creep) has been known to be the origin of large creep rates and superplastic softening in nanosized crystals at low temperature. By contrast, source-limited crystal slip in defect-free nanostructures engenders important strengths, but also premature plastic instability and low ductility. Here, using in-situ transmission electron microscopy, we report a slip-activated surface creep mechanism that suppresses the tendency towards plastic instability without compromising the strength, resulting in ultra-large room-temperature plasticity in face-centered-cubic silver nanocrystals. This phenomenon is shown experimentally and theoretically to prevail over a material-dependent range of diameters where surface dislocationmore » nucleation becomes a stimulus to diffusional creep. This work provides new fundamental insight into coupled diffusive-displacive deformation mechanisms maximizing ductility and strength simultaneously in nanoscale materials.« less

  2. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can bemore » used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.« less

  3. An Improved Correlation between Impression and Uniaxial Creep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsueh, Chun-Hway; Miranda, Pedro; Becher, Paul F

    2006-01-01

    A semiempirical correlation between impression and uniaxial creep has been established by Hyde et al. [Int. J. Mech. Sci. 35, 451 (1993) ] using finite element results for materials exhibiting general power-law creep with the stress exponent n in the range 2 {<=} n {<=} 15. Here, we derive the closed-form solution for a special case of viscoelastic materials, i.e., n = 1, subjected to impression creep and obtain the exact correlation between impression and uniaxial creep. This analytical solution serves as a checkpoint for the finite element results. We then perform finite element analyses for the general case tomore » derive a semiempirical correlation, which agrees well with both analytical viscoelastic results and the existing experimental data. Our improved correlation agrees with the correlation of Hyde et al. for n {>=} 4, and the difference increases with decreasing n for n<4.« less

  4. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu-8 Cr-4 Nb alloy. The Rocketdyne Division of Rockwell International is conducting independent testing to analyze the properties for their projected needs in advanced rocket engine applications. Metallamics, a company based in Traverse City, Michigan, is entering into a Space Act Agreement to evaluate and test Cu-Cr-Nb alloys as materials for welding electrodes that are used in robotic welding operations. Creep rate is one of the alloy properties that determines the degree to which a welding electrode will mushroom or expand at the tip. A material with a low creep rate will resist mushrooming and give the electrode a longer life, minimizing downtime. This application holds the potential for large-scale usage of the alloy in the automotive and other industries. Success here would dramatically decrease the cost of the alloy and increase availability for aerospace applications.

  5. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    NASA Astrophysics Data System (ADS)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via comparisons with experimental results. Additionally, the utility of the Monkman-Grant relationship to predicting creep-rupture life of the fiber tows at elevated temperature in air and in steam was demonstrated. Furthermore, the effects of steam on the compressive creep performance of bulk ceramic materials were also studied. Performance of fine grained, polycrystalline alumina (Al2O3) was investigated at 1100 and 1300°C in air and in steam. To evaluate the effect of silica doping during material processing both undoped and silica doped polycrystalline alumina specimens were tested. Finally, compressive creep performance of yttrium aluminum garnet (YAG, Y3Al5O12) was evaluated at 1300°C in air and in steam. Both undoped and silica doped YAG specimens were included in the study. YAG is being considered as the next-generation oxide fiber material. However, before considerable funding and effort are invested in a fiber development program, it is necessary to evaluate the creep performance of YAG at elevated temperature in steam. Results of this research demonstrated that both the undoped YAG and the silica doped YAG exhibited exceptional creep resistance at 1300°C in steam for grain sizes ˜1 microm. These results supplement the other promising features of YAG that make it a strong candidate material for the next generation ceramic fiber.

  6. Effect of Hf-Rich Particles on the Creep Life of a High-strength Nial Single Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Raj, S. V.; Darolia, R.

    1995-01-01

    Additions of small amounts of Hf and Si to NiAl single crystals significantly improve their high-temperature strength and creep properties. However, if large Hf-rich dendritic particles formed during casting of the alloyed single crystals are not dissolved completely during homogenization heat treatment, a large variation in creep rupture life can occur. This behavior, observed in five samples of a Hf containing NiAl single crystal alloy tested at 1144 K under an initial stress of 241.4 MPa, is described in detail highlighting the role of interdendritic Hf-rich particles in limiting creep rupture life.

  7. An Abnormal Increase of Fatigue Life with Dwell Time during Creep-Fatigue Deformation for Directionally Solidified Ni-Based Superalloy DZ445

    NASA Astrophysics Data System (ADS)

    Ding, Biao; Ren, Weili; Deng, Kang; Li, Haitao; Liang, Yongchun

    2018-03-01

    The paper investigated the creep-fatigue behavior for directionally solidified nickel-based superalloy DZ445 at 900 °C. It is found that the fatigue life shows an abnormal increase when the dwell time exceeds a critical value during creep-fatigue deformation. The area of hysteresis loop and fractograph explain the phenomenon quite well. The shortest life corresponds to the maximal area of hysteresis loop, i. e. the maximum energy to be consumed during the creep-fatigue cycle. The fractographic observation of failed samples further supports the abnormal behavior of fatigue life.

  8. Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1972-01-01

    Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.

  9. Simulation of finite-strain inelastic phenomena governed by creep and plasticity

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bloomfield, Max O.; Oberai, Assad A.

    2017-11-01

    Inelastic mechanical behavior plays an important role in many applications in science and engineering. Phenomenologically, this behavior is often modeled as plasticity or creep. Plasticity is used to represent the rate-independent component of inelastic deformation and creep is used to represent the rate-dependent component. In several applications, especially those at elevated temperatures and stresses, these processes occur simultaneously. In order to model these process, we develop a rate-objective, finite-deformation constitutive model for plasticity and creep. The plastic component of this model is based on rate-independent J_2 plasticity, and the creep component is based on a thermally activated Norton model. We describe the implementation of this model within a finite element formulation, and present a radial return mapping algorithm for it. This approach reduces the additional complexity of modeling plasticity and creep, over thermoelasticity, to just solving one nonlinear scalar equation at each quadrature point. We implement this algorithm within a multiphysics finite element code and evaluate the consistent tangent through automatic differentiation. We verify and validate the implementation, apply it to modeling the evolution of stresses in the flip chip manufacturing process, and test its parallel strong-scaling performance.

  10. Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics

    NASA Astrophysics Data System (ADS)

    Gang, Florian; Kauffmann, Alexander; Heilmaier, Martin

    2018-03-01

    In this work, the Nb-rich ternary eutectic in the Nb-Si-Cr system has been experimentally determined to be Nb-10.9Si-28.4Cr (in at. pct). The eutectic is composed of three main phases: Nb solid solution (Nbss), β-Cr2Nb, and Nb9(Si,Cr)5. The ternary eutectic microstructure remains stable for several hundred hours at a temperature up to 1473 K (1200 °C). At 1573 K (1300 °C) and above, the silicide phase Nb9(Si,Cr)5 decomposes into α-Nb5Si3, Nbss, and β-Cr2Nb. Under creep conditions at 1473 K (1200 °C), the alloy deforms by dislocation creep while the major creep resistance is provided by the silicide matrix. If the silicide phase is fragmented and, thus, its matrix character is destroyed by prior heat treatment [ e.g., at 1773 K (1500 °C) for 100 hours], creep is mainly controlled by the Laves phase β-Cr2Nb, resulting in increased minimum strain rates. Compared to state of the art Ni-based superalloys, the creep resistance of this three-phase eutectic alloy is significantly higher.

  11. Distinctive viscoelastic and viscoplastic nanomechanics of ionically cross-linked polyelectrolyte complexes under intermittent relaxation and creep

    NASA Astrophysics Data System (ADS)

    Han, Biao; Ma, Tianzhu; Lee, Daeyeon; Shenoy, Vivek; Han, Lin

    This study aims to reveal unique nanoscale viscoelastic and viscoplastic properties of ionically linked polyelectrolyte networks. Layer-by-layer PAH/PAA complexes were tested by four continuous loading cycles in aqueous solutions. In each cycle, AFM-nanoindentation via a microspherical tip (R =5 μm) was applied up to 1 μN force, followed by a 30-60 sec hold at either a constant indentation depth to measure relaxation, or a constant force to measure creep. At a highly cross-linked, net neutral state (0.01M, pH 5.5), instantaneous modulus increased by 2.7-fold from first to last cycle, while the degree of relaxation (>95%) remain consistent. These results indicate repeated loading increases local cross-link density, while relaxation is consistently dominated by cross-link breaking and re-formation. In contrast, under creep, modulus increased by a similar 3.5-fold, and degree of creep is significantly attenuated from ~50% to 45% from first to last cycle. Results from creep suggest constant viscous flow of polymer chains in the absence of permanent anchorage. As a result, an irreversible deformation (~370nm) was observed after multiple creep cycles, suggesting the presence of viscoplasticity.

  12. Creep analysis of solid oxide fuel cell with bonded compliant seal design

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.

    2013-12-01

    Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.

  13. Experiment and Modeling of Simultaneous Creep, Plasticity and Transformation of High Temperature Shape Memory Alloys During Cyclic Actuation

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen

    2010-01-01

    The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.

  14. Damage Assessment of Creep Tested and Thermally Aged Udimet 520 Using Acousto-Ultrasonics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Kautz, Harold E.; Cao, Wei

    2001-01-01

    Due to elevated temperatures and excessive stresses, turbine components may experience creep behavior. As a result, it is desirable to monitor and assess the current condition of such components. This study employed the Acousto-Ultrasonics (AU) method in an effort to monitor the state of the material at various percentages of used up creep life in the nickel base alloy, Udimet 520. A stepped specimen (i.e., varying cross sectional area) was employed which allowed for a postmortem nondestructive evaluation (NDE) analysis of the various levels of used up life. The overall objectives here were two fold: First, a user friendly, graphical interface AU system was developed, and second the new AU system was applied as an NDE tool to assess distributed damage resulting from creep. The experimental results demonstrated that the AU method shows promise as an NDE tool capable of detecting material changes as a function of used up creep life. Furthermore, the changes in the AU parameters were mainly attributed to the case of combined load and elevated temperature (i.e., creep) and not simply because of a timed exposure at elevated temperature (i.e., heat treatment or thermal aging).

  15. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.

    PubMed

    Drexel, Martin; Theiner, Yvonne; Hofstetter, Günter

    2018-06-12

    The present contribution deals with the experimental investigation of the time-dependent behavior of a typical overlay concrete subjected to tensile stresses. The latter develop in concrete overlays, which are placed on existing concrete structures as a strengthening measure, due to the shrinkage of the young overlay concrete, which is restrained by the substrate concrete. Since the tensile stresses are reduced by creep, creep in tension is investigated on sealed and unsealed specimens, loaded at different concrete ages. The creep tests as well as the companion shrinkage tests are performed in a climatic chamber at constant temperature and constant relative humidity. Since shrinkage depends on the change of moisture content, the evolution of the mass water content is determined at the center of each specimen by means of an electrolytic resistivity-based system. Together with the experimental results for compressive creep from a previous study, a consistent set of time-dependent material data, determined for the same composition of the concrete mixture and on identical specimens, is now available. It consists of the hygral and mechanical properties, creep and shrinkage strains for both sealed and drying conditions, the respective compliance functions, and the mass water contents in sealed and unsealed, loaded and load-free specimens.

  16. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time-Temperature Superposition Principle.

    PubMed

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-03-30

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time-temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance ( ICR ) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.

  17. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    PubMed Central

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-01-01

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726

  18. A phenomenological creep model for nickel-base single crystal superalloys at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Wollgramm, Philip; Eggeler, Gunther; Ma, Anxin; Schreuer, Jürgen; Hartmaier, Alexander

    2018-07-01

    For the purpose of good reproduction and prediction of creep deformation of nickel-base single crystal superalloys at intermediate temperatures, a phenomenological creep model is developed, which accounts for the typical γ/γ‧ microstructure and the individual thermally activated elementary deformation processes in different phases. The internal stresses from γ/γ‧ lattice mismatch and deformation heterogeneity are introduced through an efficient method. The strain hardening, the Orowan stress, the softening effect due to dislocation climb along γ/γ‧ interfaces and the formation of < 112> dislocation ribbons, and the Kear–Wilsdorf-lock effect as key factors in the main flow rules are formulated properly. By taking the cube slip in < 110> \\{100\\} slip systems and < 112> \\{111\\} twinning mechanisms into account, the creep behavior for [110] and [111] loading directions are well captured. Without specific interaction and evolution of dislocations, the simulations of this model achieve a good agreement with experimental creep results and reproduce temperature, stress and crystallographic orientation dependences. It can also be used as the constitutive relation at material points in finite element calculations with complex boundary conditions in various components of superalloys to predict creep behavior and local stress distributions.

  19. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    NASA Technical Reports Server (NTRS)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  20. Sources of Variation in Creep Testing

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  1. Microstructural Evolution and Mechanical Properties of Ti-22Al-25Nb (At.%) Orthorhombic Alloy with Three Typical Microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zeng, Weidong; Liu, Yantao; Xie, Guoxin; Liang, Xiaobo

    2018-01-01

    Microstructural evolution, tensile and creep behavior of Ti-22Al-25Nb (at.%) orthorhombic alloy with three typical microstructures were investigated. The three typical microstructures were obtained by different solution and age treatment temperatures and analyzed by the BSE technique. The tensile strengths of the alloy at room temperature and 650 °C were investigated. The creep behaviors of the three typical microstructures were also studied at 650 °C/150 MPa for 100 h in air. The phase transformation mechanisms in creep deformation were also found. The experimental results showed that the formations of the three typical microstructures were decided by the isothermal forging and heat treatment. It was supposed that the high-temperature solution treatment might be dominant for the volume fraction and diameter of the equiaxed particles. While the double age treatment would lead to lamellar O phases. Due to grain refinement strengthening, the equiaxed microstructure presented the best tensile strength and ductility. The fully lamellar microstructure had the best creep resistance than that of other microstructures. In this paper, the phenomenon of creep-induced α 2 phase decomposition was occurred during creep deformation of the equiaxed microstructure.

  2. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ,more » which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.« less

  3. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan

    2017-11-01

    Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.

  4. Irradiation creep and swelling of AISI 316 to exposures of 130 dpa at 385?400$deg;C

    NASA Astrophysics Data System (ADS)

    Garner, F. A.; Porter, D. L.

    1988-07-01

    The creep and swelling of AISI 316 stainless steel have been studied at 385 to 400°C in EBR-II to doses of 130 dpa. Most creep capsules were operated at constant stress and temperature but mid-life changes in these variables were also made. This paper concentrates on the behavior of the 20% cold-worked condition but five other conditions were also studied. Swelling at ⩽ 400° C was found to lose the sensitivity to stress exhibited at higher temperatures while the creep rate was found to retain linear dependencies on both stress and swelling rate. The creep coefficients extracted at 400°C agree with those found in other experiments conducted at higher temperatures. In the temperature range of ⩽ 400° C, swelling is in the recombinationdominated regime and the swelling rate falls strongly away from the ~1%/dpa rate observed at higher temperatures. These lower rates of creep and swelling, coupled with the attainment of high damage levels without failure, encourage the use of AISI 316 in the construction of water-cooled fusion first walls operating at temperatures below 400°C.

  5. Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.; Shah, Ashwin R.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a highly controlled laboratory environment. This paper focuses on the last element and presents a preliminary methodology for creep rate prediction, the experimental methods, test challenges, and results from benchmark testing of a trial MarM-247 heater head test article. The results compare favorably with the analytical strain predictions. A description of other test findings is provided, and recommendations for future test procedures are suggested. The manuscript concludes with describing the potential impact of the heater head creep life assessment and benchmark testing effort on the ASC program.

  6. High temperature behavior of B2-based ruthenium aluminide systems

    NASA Astrophysics Data System (ADS)

    Cao, Fang

    Ru-modified NiAl-based bond coats have the potential to improve the durability of Superalloy-Thermal Barrier Coating systems (TBCs) for advanced gas turbine engines. A fundamental understanding of the high temperature mechanical behavior across the Ni-Al-Ru B2 phase field can provide direction for the development of these new bond coats for TBCs. The purpose of this study has been to describe the fundamental processes of creep deformation in single phase B2 Ru-Al-Ni ternary alloys which would form the basis for the bond coats. To accomplish this, five ternary alloys with compositions located within the B2 field across the NiAl-RuAl phase region were fabricated and investigated. Special emphasis was placed on characterizing creep deformation and describing the operative creep mechanisms in these alloys. At room temperature, brittle failure was observed in the Ni-rich alloys in compression, while improved strength and ductility were displayed in two Ru-rich ternary alloys at temperatures up to 700°C. Exceptional creep strength was observed in these alloys, as compared to other high melting temperature B2 intermetallics. A continuous increase of the melting temperature and creep resistance with the increasing of the Ru/Ni ratio in these alloys was observed. Post-creep dislocation analyses identified the presence of <100> and <110> edge dislocations in the Ni-rich alloys, while uniformly distributed jogged <100> screw dislocations predominated in the Ru-rich ternary alloys. A transition of the creep mechanism from viscous glide controlled to jogged screw motion in these Ru-Al-Ni ternary B2 alloys with increasing Ru/Ni ratio is demonstrated by the characteristics of the creep deformation process, stress change creep tests, post-creep dislocation analyses, and numerical modeling. Additionally, the knowledge of the cyclic oxidation behavior of ruthenium aluminide-based alloy is essential, as many high-temperature applications for which this intermetallic might be utilized undergo repeated severe thermal cycling. Thus the second portion of this thesis focuses on the characterization of the cyclic oxidation properties of RuAl-based alloys. The cyclic oxidation behavior of six RuAl-based alloys was studied in air over the temperature range of 1000°C to 1300°C. Oxidation kinetics have been shown to be influenced by microstructure as well as the addition of platinum.

  7. Morphological changes of gamma prime precipitates in nickel-base superalloy single crystals. Ph.D. Thesis - Case Western Reserve Univ., May 1984

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.

    1984-01-01

    Changes in the morphology of the gamma prime precipitate were examined during tensile creep at temperatures between 927 and 1038 C in 001-oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80%, the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The dimensions of the gamma and gamma prime phases were measured as directional coarsening developed in an attempt to trace the changing morphology under various stress levels. In addition, the effects of initial microstructure, as well as slight compositional variations, were related to raft development and creep properties. The results showed that directional coarsening of gamma prime began during primary creep, and under certain conditions, continued to develop after the onset of steady-state creep. The length of the rafts increased linearly with time up to a plateau region. The thickness of the rafts, however, remained equal to the initial gamma prime size at least up through the onset of tertiary creep; this is a clear indication of the stability of the finely-spaced gamma-gamma prime lamellar structure. It was found that the single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma-gamma prime interfaces per unit volume of material.

  8. Creep and residual mechanical properties of cast superalloys and oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1981-01-01

    Tensile, stress-rupture, creep, and residual tensile properties after creep testing were determined for two typical cast superalloys and four advanced oxide dispersion strengthened (ODS) alloys. The superalloys examined included the nickel-base alloy B-1900 and the cobalt-base alloy MAR-M509. The nickel-base ODS MA-757 (Ni-16CR-4Al-0.6Y2O3 and the iron-base ODS alloy MA-956 (Fe-20Cr-5Al-0.8Y2O3) were extensively studied, while limited testing was conducted on the ODS nickel-base alloys STCA (Ni-16Cr-4.5Al-2Y2O3) with a without Ta and YD-NiCrAl (Ni-16Cr-5Al-2Y2O3). Elevated temperature testing was conducted from 114 to 1477 K except for STCA and YD-NiCrAl alloys, which were only tested at 1366 K. The residual tensile properties of B-1900 and MAR-M509 are not reduced by prior creep testing (strains at least up to 1 percent), while the room temperature tensile properties of ODS nickel-base alloys can be reduced by small amounts of prior creep strain (less than 0.5 percent). The iron-base ODS alloy MA-956 does not appear to be susceptible to creep degradation at least up to strains of about 0.25 percent. However, MA-956 exhibits unusual creep behavior which apparently involves crack nucleation and growth.

  9. Evaluation of cast creep occurring during simulated clubfoot correction

    PubMed Central

    Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald, F

    2016-01-01

    The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster-of-Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p < 0.0001). The most creep displacement occurred in the plaster-of-Paris (2.0 degrees), then the semi-rigid fiberglass (1.0 degrees), and then the rigid fiberglass (0.4 degrees). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi—linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care. PMID:23636764

  10. The physical and mechanical metallurgy of advanced O+BCC titanium alloys

    NASA Astrophysics Data System (ADS)

    Cowen, Christopher John

    This thesis comprises a systematic study of the microstructural evolution, phase transformation behavior, elevated-temperature creep behavior, room-temperature and elevated-temperature tensile behavior, and room-temperature fatigue behavior of advanced titanium-aluminum-niobium (Ti-Al-Nb) alloys with and without boron additions. The specific alloys studied were: Ti-5A1-45Nb (at%), Ti-15Al-33Nb (at%), Ti-15Al-33Nb-0.5B (at%), Ti-15Al-33Nb-5B (at%), Ti-21Al-29Nb (at%), Ti-22Al-26Nb (at%), and Ti-22Al-26Nb-5B (at%). The only alloy composition that had been previously studied before this thesis work began was Ti-22Al-26Nb (at%). Publication in peer-reviewed material science journals of the work performed in this thesis has made data available in the scientific literature that was previously non-existent. The knowledge gap for Ti-Al-Nb phase equilibria over the compositional range of Ti-23Al-27Nb (at%) to Ti-12Al-38Nb (at%) that existed before this work began was successfully filled. The addition of 5 at% boron to the Ti-15Al-33Nb alloy produced 5-9 volume percent boride phase needles within the microstructure. The chemical composition of the boride phase measured by electron microprobe was determined to be approximately B 2TiNb. The lattice parameters of the boride phase were simulated through density functional theory calculations by collaborators at the Air Force Research Laboratory based on the measured composition. Using the simulated lattice parameters, electron backscatter diffraction kikuchi patterns and selected area electron diffraction patterns obtained from the boride phase were successfully indexed according to the space group and site occupancies of the B27 orthorhombic crystal structure. This suggests that half the Ti (c) Wyckoff positions are occupied by Ti atoms and the other half are occupied by Nb atoms in the boride phase lattice. Creep deformation behavior is the main focus of this thesis and in particular understanding the dominant creep deformation mechanisms as a function of stress, temperature, and strain rate. Microstructure-creep relationships for Ti-Al-Nb-xB alloys were developed with the understanding gained. A rule-of-mixtures empirical model based on constituent phase volume fractions and strain rates was developed to predict the minimum creep rates of two-phase O+BCC microstructures. The most innovative results of this thesis were produced through the development of an in-situ creep testing methodology. The creep deformation evolution was chronicled in-situ during high temperature creep experiments, while creep displacement versus time data was simultaneously obtained. The in-situ experiments revealed that prior-BCC grain boundaries were the locus of damage accumulation during creep deformation. A methodology that allows in-situ observation of surface creep deformation as a function of creep displacement has yet to be presented in the literature.

  11. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Li, M.; Soppet, W.K.

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated tomore » evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep after 50-60% of the rupture life, irrespective of test temperature in the range of 750-950 C. The results showed that the stress dependence of the creep rate followed a power law for both base alloy and weldments. The data also showed that the stress exponent for creep is the same and one can infer that the same mechanism is operative in both base metal and weldments in the temperature range of the current study. SEM fractography analysis indicated that both base metal and weldment showed combined fracture modes consisting of dimple rupture and intergranular cracking. Intergranular cracking was more evident in the weldment specimens, which is consistent with the observation of lower creep ductility in the weldment than in the base metal.« less

  12. Mechanical and time-dependent behavior of wood-plastic composites subjected to tension and compression

    Treesearch

    Scott E. Hamel; John C. Hermanson; Steven M. Cramer

    2012-01-01

    The thermoplastics within wood—plastic composites (WPCs) are known to experience significant time-dependent deformation or creep. In some formulations, creep deformation can be twice as much as the initial quasi-static strain in as little as 4 days. While extensive work has been done on the creep behavior of pure polymers, little information is available on the...

  13. Viscoelasticity and Creep Recovery of Polyimide Thin Films

    DTIC Science & Technology

    1990-06-01

    3931; (617) 253-0292. Accesion For NTIS CRA&I DTIC TAB Unannounced 0 JuslfIcation .... ’ ry (I’. . ,* VISCOELASTICITY AND CREEP RECOVERY OF POLYIMIDE...polyimide is subjected to sustained loads. Viscoelastic properties of materials are traditionally measured by uniaxial tests [4]. Creep, stress...structure The membrane fabrication and analysis is implemented in the environment of a previously reported CAD architecture [7,81, which uses a

  14. A variational theorem for creep with applications to plates and columns

    NASA Technical Reports Server (NTRS)

    Sanders, J Lyell, Jr; Mccomb, Harvey G , Jr; Schlechte, Floyd R

    1958-01-01

    A variational theorem is presented for a body undergoing creep. Solutions to problems of the creep behavior of plates, columns, beams, and shells can be obtained by means of the direct methods of the calculus of variations in conjunction with the stated theorem. The application of the theorem is illustrated for plates and columns by the solution of two sample problems.

  15. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  16. Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep

    Treesearch

    J.B. Puthoff; J.E. Jakes; H. Cao; D.S. Stone

    2009-01-01

    The development of nanoindentation test systems with high data collection speeds has made possible a novel type of indentation creep test: broadband nanoindentation creep (BNC). Using the high density of data points generated and analysis techniques that can model the instantaneous projected indent area at all times during a constant-load indentation experiment, BNC...

  17. The Physical Mechanism of Frictional Aging Revealed by Nanoindentation Creep

    NASA Astrophysics Data System (ADS)

    Thom, C.; Carpick, R. W.; Goldsby, D. L.

    2017-12-01

    A classical observation from rock friction experiments is that friction increases linearly with the logarithm of the time of stationary contact, a phenomenon sometimes referred to as aging. Aging is most often attributed to an increase in the real area of contact due to asperity creep. However, recent atomic force microscopy (AFM) experiments and molecular dynamics simulations suggest that time-dependent siloxane (Si—O—Si) bonding gives rise to aging in silica-silica contacts in the absence of plastic deformation. Determining whether an increase in contact `quantity' (due to creep), contact `quality' (due to chemical bonding), or another unknown mechanism causes aging is a challenging experimental task, despite its importance for developing a physical basis for rate and state friction laws. An intriguing observation is that aging is absent in friction experiments on quartz rocks and gouge at humidities <5% and returns upon exposure of the test specimens to humid air. This behavior has been attributed to the effects of water on asperity creep (via hydrolytic weakening) or on the adhesive strength of contacts. To discern between these possibilities, we have conducted nanoindentation experiments on single crystals of quartz to measure their indentation hardness and creep behavior at humidities of 2% to 50%, and in vacuum. Samples were loaded at 1000 mN/s to a peak load of 15, 40, or 400 mN, which was then held constant for 10 s. After the peak load is reached, the tip sinks into the material with time due to creep of the indentation contact. Our experiments reveal that there is no effect of varying humidity on either indentation hardness or indentation creep behavior over the full range of humidities investigated. If asperity creep were the dominant mechanism of frictional aging for quartz in the experiments cited above, then significant increases in hardness and decreases in the growth rate of indentation contacts at low humidities is expected, in stark contrast with our nanoindentation data. Our experiments indicate that asperity creep cannot be the cause of aging in quartz rocks, and suggest that chemical bonding may instead be the dominant mechanism of frictional aging.

  18. Compilation of Surface Creep on California Faults and Comparison of WGCEP 2007 Deformation Model to Pacific-North American Plate Motion

    USGS Publications Warehouse

    Wisely, Beth A.; Schmidt, David A.; Weldon, Ray J.

    2008-01-01

    This Appendix contains 3 sections that 1) documents published observations of surface creep on California faults, 2) constructs line integrals across the WG-07 deformation model to compare to the Pacific ? North America plate motion, and 3) constructs strain tensors of volumes across the WG-07 deformation model to compare to the Pacific ? North America plate motion. Observation of creep on faults is a critical part of our earthquake rupture model because if a fault is observed to creep the moment released as earthquakes is reduced from what would be inferred directly from the fault?s slip rate. There is considerable debate about how representative creep measured at the surface during a short time period is of the whole fault surface through the entire seismic cycle (e.g. Hudnut and Clark, 1989). Observationally, it is clear that the amount of creep varies spatially and temporally on a fault. However, from a practical point of view a single creep rate is associated with a fault section and the reduction in seismic moment generated by the fault is accommodated in seismic hazard models by reducing the surface area that generates earthquakes or by reducing the slip rate that is converted into seismic energy. WG-07 decided to follow the practice of past Working Groups and the National Seismic Hazard Map and used creep rate (where it was judged to be interseismic, see Table P1) to reduce the area of the fault surface that generates seismic events. In addition to following past practice, this decision allowed the Working Group to use a reduction of slip rate as a separate factor to accommodate aftershocks, post seismic slip, possible aseismic permanent deformation along fault zones and other processes that are inferred to affect the entire surface area of a fault, and thus are better modeled as a reduction in slip rate. C-zones are also handled by a reduction in slip rate, because they are inferred to include regions of widely distributed shear that is not completely expressed as earthquakes large enough to model. Because the ratio of the rate of creep relative to the total slip rate is often used to infer the average depth of creep, the ?depth? of creep can be calculated and used to reduce the surface area of a fault that generates earthquakes in our model. This reduction of surface area of rupture is described by an ?aseismicity factor,? assigned to each creeping fault in Appendix A. An aseismicity factor of less than 1 is only assigned to faults that are inferred to creep during the entire interseismic period. A single aseismicity factor was chosen for each section of the fault that creeps by expert opinion from the observations documented here. Uncertainties were not determined for the aseismicity factor, and thus it represents an unmodeled (and difficult to model) source of error. This Appendix simply provides the documentation of known creep, the type and precision of its measurement, and attempts to characterize the creep as interseismic, afterslip, transient or triggered. Parts 2 and 3 of this Appendix compare the WG-07 deformation model and the seismic source model it generates to the strain generated by the Pacific - North American plate motion. The concept is that plate motion generates essentially all of the elastic strain in the vicinity of the plate boundary that can be released as earthquakes. Adding up the slip rates on faults and all others sources of deformation (such as C-zones and distributed ?background? seismicity) should approximately yield the plate motion. This addition is usually accomplished by one of four approaches: 1) line integrals that sum deformation along discrete paths through the deforming zone between the two plates, 2) seismic moment tensors that add up seismic moment of a representative set of earthquakes generated by a crustal volume spanning the plate boundary, 3) strain tensors generated by adding up the strain associated with all of the faults in a crustal volume spanning the plate

  19. Effect of field pea-based creep feed on intake, digestibility, ruminal fermentation, and performance by nursing calves grazing native range in western North Dakota.

    PubMed

    Gelvin, A A; Lardy, G P; Soto-Navarro, S A; Landblom, D G; Caton, J S

    2004-12-01

    Two experiments evaluated digestive and performance effects of field pea-based creep feed in nursing calf diets. In Exp.1, eight nursing steer calves (145 +/- 27 kg initial BW) with ruminal cannulas were used to evaluate effects of supplementation and advancing season on dietary composition, intake, digestion, and ruminal fermentation characteristics. Treatments were unsupplemented control (CON) and field pea-based creep (SUP; 19.1% CP, DM basis) fed at 0.45% BW (DM basis) daily. Calves grazed native range with their dams from early July through early November. Periods were 24 d long and occurred in July (JUL), August (AUG), September (SEP), and October (OCT). Experiment 2 used 80 crossbred nursing calves, 48 calves in yr 1 and 32 calves in yr 2 (yr 1 = 144 +/- 24 kg; yr 2 = 121 +/- 20 kg initial BW), to evaluate effects of field pea-based creep on calf performance. Treatments included unsupplemented control (CON); field pea-based creep feeds containing either 8% (LS); or 16% (HS) salt; and soybean meal/field pea-based creep containing (as-fed basis) 16% salt (HIPRO). Masticate samples from SUP calves in Exp.1 had greater CP (P = 0.05) than those from CON calves. Forage CP and ADIN decreased linearly with advancing season (P = 0.01 and 0.03, respectively). In vitro OM digestibility of diet masticate decreased from JUL to OCT (P < 0.01; 58.5 to 41.3%). Forage intake did not differ (P = 0.33) between treatments but increased linearly with advancing season (1.67, 1.90, 3.12, 3.38 kg/d for JUL, AUG, SEP, and OCT, respectively; P < 0.01). Milk intake (percentage of BW) did not differ (P = 0.56) between CON and SUP calves but decreased linearly (P < 0.01) with advancing season. Supplemented calves had greater (P = 0.03) total intake (g/kg of BW; forage + milk + creep) compared with CON calves. Treatment did not affect (P < 0.30) rate of in situ disappearance of forage or creep. Forage DM, CP, and creep DM disappearance rate decreased linearly (P < or = 0.02) with advancing season. Supplementation decreased (P = 0.05) ruminal pH, whereas ruminal ammonia and VFA concentrations were greater (P < or = 0.02) in SUP calves. In Exp. 2, creep-fed calves had greater ADG and final BW than CON calves (P < 0.01). Calves offered HS tended (P = 0.07) to have increased gain efficiency above CON than LS calves. Field peas can be used as an ingredient in creep feed to increase calf weight gain without negatively affecting ruminal fermentation and digestion.

  20. The high temperature creep deformation of Si3N4-6Y2O3-2Al2O3

    NASA Technical Reports Server (NTRS)

    Todd, J. A.; Xu, Zhi-Yue

    1988-01-01

    The creep properties of silicon nitride containing 6 wt percent yttria and 2 wt percent alumina have been determined in the temperature range 1573 to 1673 K. The stress exponent, n, in the equation epsilon dot varies as sigma sup n, was determined to be 2.00 + or - 0.15 and the true activation energy was found to be 692 + or - 25 kJ/mol. Transmission electron microscopy studies showed that deformation occurred in the grain boundary glassy phase accompanied by microcrack formation and cavitation. The steady state creep results are consistent with a diffusion controlled creep mechanism involving nitrogen diffusion through the grain boundary glassy phase.

  1. Microstructural Effects on Creep-Fatigue Life of Alloy 709

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurtrey, Michael; Carroll, Laura; Wright, Jill

    Creep-fatigue tests were performed on plates of Alloy 709 from various heats and processing conditions, but often with inhomogeneous microstructures. After testing, metallographic analysis was performed and the specimens were generally found to either have a uniform grain size or a bimodal grain size distribution with either isolated or groups (bands) of large grains. Creep-fatigue life was characterized with respect to the length of the grain boundary perpendicular to the stress axis, and it was found that large grains (>400 μm) tended to be detrimental to creep-fatigue life, with the exception of elongated (parallel to the stress axis) grains andmore » some specimens that underwent additional annealing.« less

  2. Interim analysis of long time creep behavior of columbium C-103 alloy

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Titran, R. H.

    1976-01-01

    Analysis of 16 long time creep tests on columbium C-103 alloy (Cb-10Hf-1Ti-0.7Zr) indicates that the calculated stresses to give 1 percent creep strain in 100,000 hours at 1,255 K (1800 F) are 7.93 and 8.96 MPa (1,150 and 1,300 psi) for fine grained and course grained materials, respectively. The apparent activation energy and stress dependence for creep of this alloy are approximately 315 KJ/gmol (75,300 cal/gmol) and 2.51, respectively, based on Dorn-Sherby types of relations. However, the 90 percent confidence limits on these values are wide because of the limited data currently available.

  3. Ductility normalized-strainrange partitioning life relations for creep-fatigue life predictions

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.; Hirschberg, M. H.

    1977-01-01

    Procedures based on Strainrange Partitioning (SRP) are presented for estimating the effects of environment and other influences on the high temperature, low cycle, creep fatigue resistance of alloys. It is proposed that the plastic and creep, ductilities determined from conventional tensile and creep rupture tests conducted in the environment of interest be used in a set of ductility normalized equations for making a first order approximation of the four SRP inelastic strainrange life relations. Different levels of sophistication in the application of the procedures are presented by means of illustrative examples with several high temperature alloys. Predictions of cyclic lives generally agree with observed lives within factors of three.

  4. Computational design and performance prediction of creep-resistant ferritic superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, Peter K.; Wang, Shao-Yu; Dunand, David C.

    Ferritic superalloys containing the B2 phase with the parent L21 phase precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate-strengthened ferritic alloy (HPSFA), had been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by adding Ti into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). Following with the concept of HPSFAs, in the present research, a systematic investigation on adding other elements, such as Hf and Zr, and optimizing the Ti content within the alloy system, has been conducted, in order to further improve the creep resistance of the modelmore » alloys. Studies include advanced experimental techniques, first-principles calculations on thermodynamic and mechanical properties, and numerical simulations on precipitation hardening, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of alloys. The experimental techniques include transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), neutron diffraction (ND), and atom-probe tomography (APT), which provide the detailed microstructural information of the model alloys. Systematic tension/compression creep tests have also been conducted in order to verify the creep resistance of the potential alloy compositions. The results show that when replacing Ti with Hf and Zr, it does not form the L21 phase. Instead, the hexagonal Laves phase forms and distributes majorly along the grain boundary, or large segregation within grains. Since the Laves phase does not form parent to the B2-phase precipitates, it cannot bring the strengthening effect of HPSFAs. As a result, the FBB8 + 2 wt. % Hf and FBB8 + 2 wt. % Zr alloys have similar mechanical properties to the original FBB8. The FBB8 + Ti series alloys had also been studied, from the creep tests and microstructural characterizations, the FBB8 + 3.5 wt.% Ti possesses the greatest creep resistance, with the L21/B2 phase ratio of 4 (80% of the precipitates is the L21 phase, and 20% is the B2 phase). First-principles calculations include thermodynamics, elastic properties, and interfacial properties, which have been conducted for the understanding of the thermodynamic and mechanical properties of HPSFAs. In addition to the systematic experimental approach and first-principles calculations, a series of numerical tools and algorithms, which assist in the optimization of creep properties of ferritic superalloys, are utilized and developed. These numerical simulation results are compared with the available experimental data and previous first-principles calculations, providing the deep insight of creep mechanisms of the creep-resistant ferritic superalloys. To conclude the present research, we’ve found that (1) only FBB8 + Ti alloys have the potential of forming HPSFA, and FBB8 + Hf and FBB8 + Zr do not work. Therefore, only FBB8 + Ti alloys have desirable creep resistance, (2) the optimum composition for the FBB8 + Ti alloys is FBB8 + 3.5% Ti, which has the greatest creep resistance (218.8 MPa as the threshold stress at 700 oC), (3) first-principle calculations obtained results that could not be obtained in experiments, which are relevant to develop ferritic superalloys with the improved creep resistance, and (4) two-dimensional dislocation-dynamics simulations investigate effects of factors like precipitate volume fractions and precipitate radii in the alloy systems, which helps in developing the most desirable microstructure with greatest strengthening.« less

  5. Geometry and Material Constraint Effects on Creep Crack Growth Behavior in Welded Joints

    NASA Astrophysics Data System (ADS)

    Li, Y.; Wang, G. Z.; Xuan, F. Z.; Tu, S. T.

    2017-02-01

    In this work, the geometry and material constraint effects on creep crack growth (CCG) and behavior in welded joints were investigated. The CCG paths and rates of two kinds of specimen geometry (C(T) and M(T)) with initial cracks located at soft HAZ (heat-affected zone with lower creep strength) and different material mismatches were simulated. The effect of constraint on creep crack initiation (CCI) time was discussed. The results show that there exists interaction between geometry and material constraints in terms of their effects on CCG rate and CCI time of welded joints. Under the condition of low geometry constraint, the effect of material constraint on CCG rate and CCI time becomes more obvious. Higher material constraint can promote CCG due to the formation of higher stress triaxiality around crack tip. Higher geometry constraint can increase CCG rate and reduce CCI time of welded joints. Both geometry and material constraints should be considered in creep life assessment and design for high-temperature welded components.

  6. Creep anomaly in electrospun fibers made of globular proteins

    NASA Astrophysics Data System (ADS)

    Regev, Omri; Arinstein, Arkadii; Zussman, Eyal

    2013-12-01

    The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force.

  7. Non-Contact Measurements of Creep Properties of Refractory Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  8. Age hardening and creep resistance of cast Al–Cu alloy modified by praseodymium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Zhihao; Qiu, Feng; Wu, Xiaoxue

    The effects of praseodymium on age hardening behavior and creep resistance of cast Al–Cu alloy were investigated. The results indicated that praseodymium facilitated the formation of the θ′ precipitates during the age process and improved the hardness of the Al–Cu alloy. Besides, praseodymium resulted in the formation of the Al{sub 11}Pr{sub 3} phase in the grain boundaries and among the dendrites of the modified alloy. Because of the good thermal stability of Al{sub 11}Pr{sub 3} phase, it inhibits grain boundary migration and dislocation movement during the creep process, which contributes to the improvement in the creep resistance of the modifiedmore » alloy at elevated temperatures. - Highlights: • Pr addition enhances the hardness and creep resistance of the Al–Cu alloy. • Pr addition facilitates the formation of the θ′ precipitates. • Pr addition results in the formation of the Al11Pr3 phase in the Al–Cu alloy.« less

  9. Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep

    PubMed Central

    Feric, Marina; Broedersz, Chase P.; Brangwynne, Clifford P.

    2015-01-01

    The actin cytoskeleton helps maintain structural organization within living cells. In large X. laevis oocytes, gravity becomes a dominant force and is countered by a nuclear actin network that prevents liquid-like nuclear bodies from immediate sedimentation and coalescence. However, nuclear actin’s mechanical properties, and how they facilitate the stabilization of nuclear bodies, remain unknown. Using active microrheology, we find that nuclear actin forms a weak viscoelastic network, with a modulus of roughly 0.1 Pa. Embedded probe particles subjected to a constant force exhibit continuous displacement, due to viscoelastic creep. Gravitational forces also cause creep displacement of nuclear bodies, resulting in their asymmetric nuclear distribution. Thus, nuclear actin does not indefinitely support the emulsion of nuclear bodies, but only kinetically stabilizes them by slowing down gravitational creep to ~2 months. This is similar to the viability time of large oocytes, suggesting gravitational creep ages oocytes, with fatal consequences on long timescales. PMID:26577186

  10. Short-term creep of shotcrete - thermochemoplastic material modelling and nonlinear analysis of a laboratory test and of a NATM excavation by the Finite Element Method

    NASA Astrophysics Data System (ADS)

    Lechner, M.; Hellmich, Ch.; Mang, H. A.

    Embedded in a thermochemoplastic material law set up in the framework of thermodynamics, the focus of the work is on the creep characteristics of shotcrete. Short-term creep, with a characteristic duration of several days, turns out to be a fundamental feature for realistic modelling of the structural behaviour of tunnels driven according to the New Austrian Tunnelling Method (NATM). Its origin is a stress-induced water movement within the capillary pores of concrete. This process is related to the accumulation of hydrates, which are initially free of micro-stress. Hence, an incremental formulation for aging viscoelasticity turns out to be a proper tool for modelling this kind of creep. The usefulness of this formulation is tested by re-analyzing a relaxation test with non-constant prescribed strains, showing quantitatively correct results for concrete and qualitatively correct results for shotcrete. The latter results indicate the necessity of classical creep tests for shotcrete.

  11. Creep Deformation of Lead-Free Sn-3.5Ag-Bi Solders

    NASA Astrophysics Data System (ADS)

    Shin, Seung Woo; Yu, Jin

    2003-03-01

    Creep rupture properties of lead-free Sn-3.5Ag-based alloys with varying amounts of Bi were investigated using dog-bone-shaped rolled and heat-treated bulk specimens. Nominal compositions of Bi additions were 0, 2.5, 4.8, 7.5, and 10 wt%, respectively. The minimum strain rates (\\dot{\\varepsilon}min) were lowest for the 2.5Bi specimens. The stress exponents (n) of \\dot{\\varepsilon}min were usually around 4± 0.6, with the exception of the 10Bi alloys, which showed n˜ 2. Additions of Bi reduced the creep ductility of Sn-3.5Ag-based ternary alloys, and fractographic analyses revealed typical creep rupture by the nucleation and growth of cavities on the grain boundaries except for the Bi-free alloy which had cavities in the grains. Subsequent AES analyses revealed that Bi segregation to grain boundaries facilitated the cavity nucleation, thereby increasing the propensity for the brittle creep rupture.

  12. The development of methods for the prediction of primary creep behavior in metals

    NASA Technical Reports Server (NTRS)

    Zerwekh, R. P.

    1978-01-01

    The applicability of a thermodynamic constitutive theory of deformation to the prediction of primary creep and creep strain relaxation behavior in metals is examined. Constitutive equations derived from the theory are subjected to a parametric analysis in order to determine the influence of several parameters on the curve forms generated by the equations. A computer program is developed which enables the solution of a generalized constitutive equation using experimental data as input. Several metals were tested to form a data base of primary creep and relaxation behavior. The extent to which these materials conformed to the constitutive equation showed wide variability, with the alloy Ti-6Al-4V exhibiting the most consistent results. Accordingly, most of the analysis is concentrated upon data from that alloy, although creep and relaxation data from all the materials tested are presented. Experimental methods are outlined as well as some variations in methods of analysis. Various theoretical and practical implications of the work are discussed.

  13. Mechanical behavior of high strength ceramic fibers at high temperatures

    NASA Technical Reports Server (NTRS)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  14. Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite

    NASA Technical Reports Server (NTRS)

    Veazie, David R.; Gates, Thomas S.

    1995-01-01

    An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.

  15. Modeling flow for modified concentric cylinder rheometer geometry

    NASA Astrophysics Data System (ADS)

    Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz

    2016-11-01

    Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.

  16. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    NASA Astrophysics Data System (ADS)

    Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.

    2011-02-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  17. Research on dynamic creep strain and settlement prediction under the subway vibration loading.

    PubMed

    Luo, Junhui; Miao, Linchang

    2016-01-01

    This research aims to explore the dynamic characteristics and settlement prediction of soft soil. Accordingly, the dynamic shear modulus formula considering the vibration frequency was utilized and the dynamic triaxial test conducted to verify the validity of the formula. Subsequently, the formula was applied to the dynamic creep strain function, with the factors influencing the improved dynamic creep strain curve of soft soil being analyzed. Meanwhile, the variation law of dynamic stress with sampling depth was obtained through the finite element simulation of subway foundation. Furthermore, the improved dynamic creep strain curve of soil layer was determined based on the dynamic stress. Thereafter, it could to estimate the long-term settlement under subway vibration loading by norms. The results revealed that the dynamic shear modulus formula is straightforward and practical in terms of its application to the vibration frequency. The values predicted using the improved dynamic creep strain formula closed to the experimental values, whilst the estimating settlement closed to the measured values obtained in the field test.

  18. Shear transformation zone activation during deformation in bulk metallic glasses characterized using a new indentation creep technique

    Treesearch

    J.B. Puthoff; H.B. Cao; Joseph E. Jakes; P.M. Voyles; D.S. Stone

    2009-01-01

    We have developed a novel type of nanoindentation creep experiment, called broadband nanoindentation creep (BNC), and used it to characterize the thermal activation of shear transformation zones (STZs) in three BMGs in the Zr-Cu-Al system. Using BNC, material hardness can be determined across a wide range of strain rates (10–4 to 10 s–...

  19. Aging Effects on Microstructure and Creep in Sn-3.8Ag-0.7Cu Solder

    DTIC Science & Technology

    2007-09-01

    demonstrated that the primary creep data for ball joints can be fitted well to exponential law. Fit parameters for the tests accomplished at 250C...MICROSTRUCTURE AND CREEP IN Sn-3.8Ag-0.7Cu SOLDER by Orlando Cornejo September 2007 Thesis Advisor: Indranath Dutta THIS PAGE...collection of information, including suggestions for reducing this burden, to Washington headquarters Services , Directorate for Information

  20. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    PubMed

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  1. Development of improved low-strain creep strength in Cabot alloy R-41 sheet. [nickel base sheet alloy for reentry shielding

    NASA Technical Reports Server (NTRS)

    Rothman, M. F.

    1984-01-01

    The feasibility of improving the low-strain creep properties of a thin gauge nickel base sheet alloy through modified heat treatment or through development of a preferred crystal-lographic texture was investigated. The basic approach taken to improve the creep strength of the material by heat treatment was to increase grain size by raising the solution treatment temperature for the alloy to the range of 1420 K to 1475 K (2100 F to 2200 F). The key technical issue involved was maintenance of adequate tensile ductility following the solutioning of M6C primary carbides during the higher temperature solution treatment. The approach to improve creep properties by developing a sheet texture involved varying both annealing temperatures and the amount of prior cold work. Results identified a heat treatment for alloy R-14 sheet which yields a substantial creep-life advantage at temperatures above 1090 K (1500 F) when compared with material given the standard heat treatment. At the same time, this treatment provides reasonable tensile ductility over the entire temperature range of interest. The mechanical properties of the material given the new heat treatment are compared with those for material given the standard heat treatment. Attempts to improve creep strength by developing a sheet texture were unsuccessful.

  2. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  3. Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing

    2018-01-01

    Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m, the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.

  4. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degreesmore » C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.« less

  5. Creep and Rupture Strength of an Advanced CVD SiC Fiber

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Yun, H. M.; DiCarlo, J. A.

    1997-01-01

    In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult.

  6. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Li, Lin; ...

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  7. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    PubMed Central

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-01-01

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load. PMID:28773144

  8. Transient effects of drying creep in nanoporous solids: understanding the effects of nanoscale energy barriers

    NASA Astrophysics Data System (ADS)

    Sinko, Robert; Vandamme, Matthieu; Bažant, Zdeněk P.; Keten, Sinan

    2016-07-01

    The Pickett effect is the phenomenon of creep enhancement during transient drying. It has been observed for many nanoporous solids, including concrete, wood and Kevlar. While the existing micromechanical models can partially explain this effect, they have yet to consider nanoscale dynamic effects of water in nanopores, which are believed to be of paramount importance. Here, we examine how creep deformations in a slit pore are accelerated by the motion of water due to drying forces using coarse-grained molecular dynamics simulations. We find that the drying that drives water flow in the nanopores lowers both the activation energy of pore walls sliding past one another and the apparent viscosity of confined water molecules. This lowering can be captured with an analytical Arrhenius relationship accounting for the role of water flow in overcoming the energy barriers. Notably, we use this model and simulation results to demonstrate that the drying creep strain is not linearly dependent on the applied creep stress at the nanopore level. Our findings establish the scaling relationships that explain how the creep driving force, drying force and fluid properties are related. Thus, we establish the nanoscale origins of the Pickett effect and provide strategies for minimizing the additional displacements arising from this effect.

  9. Transient effects of drying creep in nanoporous solids: understanding the effects of nanoscale energy barriers

    PubMed Central

    Sinko, Robert; Vandamme, Matthieu; Keten, Sinan

    2016-01-01

    The Pickett effect is the phenomenon of creep enhancement during transient drying. It has been observed for many nanoporous solids, including concrete, wood and Kevlar. While the existing micromechanical models can partially explain this effect, they have yet to consider nanoscale dynamic effects of water in nanopores, which are believed to be of paramount importance. Here, we examine how creep deformations in a slit pore are accelerated by the motion of water due to drying forces using coarse-grained molecular dynamics simulations. We find that the drying that drives water flow in the nanopores lowers both the activation energy of pore walls sliding past one another and the apparent viscosity of confined water molecules. This lowering can be captured with an analytical Arrhenius relationship accounting for the role of water flow in overcoming the energy barriers. Notably, we use this model and simulation results to demonstrate that the drying creep strain is not linearly dependent on the applied creep stress at the nanopore level. Our findings establish the scaling relationships that explain how the creep driving force, drying force and fluid properties are related. Thus, we establish the nanoscale origins of the Pickett effect and provide strategies for minimizing the additional displacements arising from this effect. PMID:27493584

  10. Transient effects of drying creep in nanoporous solids: understanding the effects of nanoscale energy barriers.

    PubMed

    Sinko, Robert; Vandamme, Matthieu; Bažant, Zdeněk P; Keten, Sinan

    2016-07-01

    The Pickett effect is the phenomenon of creep enhancement during transient drying. It has been observed for many nanoporous solids, including concrete, wood and Kevlar. While the existing micromechanical models can partially explain this effect, they have yet to consider nanoscale dynamic effects of water in nanopores, which are believed to be of paramount importance. Here, we examine how creep deformations in a slit pore are accelerated by the motion of water due to drying forces using coarse-grained molecular dynamics simulations. We find that the drying that drives water flow in the nanopores lowers both the activation energy of pore walls sliding past one another and the apparent viscosity of confined water molecules. This lowering can be captured with an analytical Arrhenius relationship accounting for the role of water flow in overcoming the energy barriers. Notably, we use this model and simulation results to demonstrate that the drying creep strain is not linearly dependent on the applied creep stress at the nanopore level. Our findings establish the scaling relationships that explain how the creep driving force, drying force and fluid properties are related. Thus, we establish the nanoscale origins of the Pickett effect and provide strategies for minimizing the additional displacements arising from this effect.

  11. FY16 Status Report on Development of Integrated EPP and SMT Design Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetter, R. I.; Sham, T. -L.; Wang, Y.

    2016-08-01

    The goal of the Elastic-Perfectly Plastic (EPP) combined integrated creep-fatigue damage evaluation approach is to incorporate a Simplified Model Test (SMT) data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The EPP methodology is based on the idea that creep damage and strain accumulation can be bounded by a properly chosen “pseudo” yield strength used in an elastic-perfectly plastic analysis, thus avoiding the need for stress classification. The originalmore » SMT approach is based on the use of elastic analysis. The experimental data, cycles to failure, is correlated using the elastically calculated strain range in the test specimen and the corresponding component strain is also calculated elastically. The advantage of this approach is that it is no longer necessary to use the damage interaction, or D-diagram, because the damage due to the combined effects of creep and fatigue are accounted in the test data by means of a specimen that is designed to replicate or bound the stress and strain redistribution that occurs in actual components when loaded in the creep regime. The reference approach to combining the two methodologies and the corresponding uncertainties and validation plans are presented. Results from recent key feature tests are discussed to illustrate the applicability of the EPP methodology and the behavior of materials at elevated temperature when undergoing stress and strain redistribution due to plasticity and creep.« less

  12. Fault creep rates of the Chaman fault (Afghanistan and Pakistan) inferred from InSAR

    NASA Astrophysics Data System (ADS)

    Barnhart, William D.

    2017-01-01

    The Chaman fault is the major strike-slip structural boundary between the India and Eurasia plates. Despite sinistral slip rates similar to the North America-Pacific plate boundary, no major (>M7) earthquakes have been documented along the Chaman fault, indicating that the fault either creeps aseismically or is at a late stage in its seismic cycle. Recent work with remotely sensed interferometric synthetic aperture radar (InSAR) time series documented a heterogeneous distribution of fault creep and interseismic coupling along the entire length of the Chaman fault, including an 125 km long creeping segment and an 95 km long locked segment within the region documented in this study. Here I present additional InSAR time series results from the Envisat and ALOS radar missions spanning the southern and central Chaman fault in an effort to constrain the locking depth, dip, and slip direction of the Chaman fault. I find that the fault deviates little from a vertical geometry and accommodates little to no fault-normal displacements. Peak-documented creep rates on the fault are 9-12 mm/yr, accounting for 25-33% of the total motion between India and Eurasia, and locking depths in creeping segments are commonly shallower than 500 m. The magnitude of the 1892 Chaman earthquake is well predicted by the total area of the 95 km long coupled segment. To a first order, the heterogeneous distribution of aseismic creep combined with consistently shallow locking depths suggests that the southern and central Chaman fault may only produce small to moderate earthquakes (

  13. Creep Strength Behavior of Boron Added P91 Steel and its Weld in the Temperature Range of 600-650°C

    NASA Astrophysics Data System (ADS)

    Swaminathan, J.; Das, C. R.; Baral, Jayashree; Phaniraj, C.; Ghosh, R. N.; Albert, S. K.; Bhaduri, A. K.

    One of the promising ways for mitigation of Type IV cracking — a failure by cracking at the intercritical /fine grained heat affected zone, a life limiting problem in advanced 9-12 Cr ferritic steel weld like that of P91 is through modification of alloy composition by addition of boron. Addition of boron was observed to improve the microstructure at the weld zone and hence the creep strength. In the present work, boron (100 ppm with controlled nitrogen) added P91 steel after normalizing at 1050°C and 1150°C and tempered at 760°C were studied for the creep behavior in the base metal and welded condition in the temperature range of 600-650°C. Creep strength was characterized in terms of stress and temperature dependence of creep rate and rupture time. Weld creep life was reduced compared to the base metal with rupture occurring at the ICHAZ (Type IV crack). However at longer time (at lower stress levels) exposure creep crack moves from weld metal to HAZ (Type II crack). Rupture life was found to superior for the base and weld in the boron containing steel when higher normalizing temperature is used. Estimation of 105 h was attempted based on short term rupture data available and weld strength factors were calculated. Observed values are better for P91BH condition than the values for P91BLcondition as well as those available for P91 in open literature

  14. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  15. Cyclic Stable-Unstable Slip Preserved along an Appalachian Fault

    NASA Astrophysics Data System (ADS)

    Wells, R. K.; Newman, J.; Holyoke, C. W., III; Wojtal, S. F.

    2017-12-01

    The inactive Copper Creek thrust, southern Appalachians, TN, preserves evidence suggesting cyclic aseismic and unstable slip. The Copper Creek thrust is a low-temperature (4-6 km burial depth) foreland thrust with an estimated net slip of 15-20 km. Immediately below the 2 cm thick calcite-shale fault zone, the footwall is composed of shale with cross-cutting calcite veins and is separated from the fault zone by a 300 µm thick layered calcite vein. Optical and electron microscopy indicates that this complex vein layer experienced grain size reduction by plasticity-induced fracturing followed by aseismic diffusion creep. The fault zone calcite exhibits interpenetrating grain boundaries and four-grain junctions suggesting diffusion creep, but also contains nanoscale grains (7 nm), vesicular calcite, and partially-coated clasts indicating unstable, possibly seismic, slip. Well-preserved clasts of deformed calcite vein layer material within the fault zone indicate repeated cycle(s) of aseismic diffusion creep. In addition, nanoscale calcite grains, 30 nm, with straight grain boundaries that form triple junctions, may represent earlier nanoscale grains formed during unstable slip that have experienced grain growth during periods of aseismic creep. Based on the spatial and temporal relations of these preserved microstructures, we propose a sequence of deformation processes consistent with cyclic episodes of unstable slip separated by intervals of aseismic creep. Formation of calcite-filled veins is followed by grain size reduction in vein calcite by plasticity-induced fracturing and aseismic grain-size sensitive diffusion creep deformation in fine-grained calcite. During aseismic creep, the combination of grain growth, resulting in fault strengthening, and an increase in pore fluid pressure, reducing the effective fault strength, leads to new fractures and/or an unstable slip event. During unstable slip, nanograins and vesicular calcite form as a result of thermal decomposition and coated clasts form as a result of fluidization of the fault zone, and are then incorporated within ductilely deforming calcite during a new interval of aseismic creep.

  16. Fault zone structure and kinematics from lidar, radar, and imagery: revealing new details along the creeping San Andreas Fault

    NASA Astrophysics Data System (ADS)

    DeLong, S.; Donnellan, A.; Pickering, A.

    2017-12-01

    Aseismic fault creep, coseismic fault displacement, distributed deformation, and the relative contribution of each have important bearing on infrastructure resilience, risk reduction, and the study of earthquake physics. Furthermore, the impact of interseismic fault creep in rupture propagation scenarios, and its impact and consequently on fault segmentation and maximum earthquake magnitudes, is poorly resolved in current rupture forecast models. The creeping section of the San Andreas Fault (SAF) in Central California is an outstanding area for establishing methodology for future scientific response to damaging earthquakes and for characterizing the fine details of crustal deformation. Here, we describe how data from airborne and terrestrial laser scanning, airborne interferometric radar (UAVSAR), and optical data from satellites and UAVs can be used to characterize rates and map patterns of deformation within fault zones of varying complexity and geomorphic expression. We are evaluating laser point cloud processing, photogrammetric structure from motion, radar interferometry, sub-pixel correlation, and other techniques to characterize the relative ability of each to measure crustal deformation in two and three dimensions through time. We are collecting new and synthesizing existing data from the zone of highest interseismic creep rates along the SAF where a transition from a single main fault trace to a 1-km wide extensional stepover occurs. In the stepover region, creep measurements from alignment arrays 100 meters long across the main fault trace reveal lower rates than those in adjacent, geomorphically simpler parts of the fault. This indicates that deformation is distributed across the en echelon subsidiary faults, by creep and/or stick-slip behavior. Our objectives are to better understand how deformation is partitioned across a fault damage zone, how it is accommodated in the shallow subsurface, and to better characterize the relative amounts of fault creep and potential stick-slip fault behavior across the plate boundary at these sites in order to evaluate the potential for rupture propagation in large earthquakes.

  17. Measuring Aseismic Slip through Characteristically Repeating Earthquakes at the Mendocino Triple Junction, Northern California

    NASA Astrophysics Data System (ADS)

    Materna, K.; Taira, T.; Burgmann, R.

    2016-12-01

    The Mendocino Triple Junction (MTJ), at the transition point between the San Andreas fault system, the Mendocino Transform Fault, and the Cascadia Subduction Zone, undergoes rapid tectonic deformation and produces more large (M>6.0) earthquakes than any region in California. Most of the active faults of the triple junction are located offshore, making it difficult to characterize both seismic slip and aseismic creep. In this work, we study aseismic creep rates near the MTJ using characteristically repeating earthquakes (CREs) as indicators of creep rate. CREs are generally interpreted as repeated failures of the same seismic patch within an otherwise creeping fault zone; as a consequence, the magnitude and recurrence time of the CREs can be used to determine a fault's creep rate through empirically calibrated scaling relations. Using seismic data from 2010-2016, we identify CREs as recorded by an array of eight 100-Hz PBO borehole seismometers deployed in the Cape Mendocino area. For each event pair with epicenters less than 30 km apart, we compute the cross-spectral coherence of 20 seconds of data starting one second before the P-wave arrival. We then select pairs with high coherence in an appropriate frequency band, which is determined uniquely for each event pair based on event magnitude, station distance, and signal-to-noise ratio. The most similar events (with median coherence above 0.95 at two or more stations) are selected as CREs and then grouped into CRE families, and each family is used to infer a local creep rate. On the Mendocino Transform Fault, we find relatively high creep rates of >5 cm/year that increase closer to the Gorda Ridge. Closer to shore and to the MTJ itself, we find many families of repeaters on and off the transform fault with highly variable creep rates, indicative of the complex deformation that takes place there.

  18. 3-D Spherical Convection Modeling Applied to Mercury: Dislocation Versus Diffusion Rheology

    NASA Astrophysics Data System (ADS)

    Robertson, S. D.; King, S. D.

    2016-12-01

    Mercury is the smallest among the terrestrial planets and, prior to NASA's MESSENGER mission was thought to be the least tectonically and volcanically active body. Gravity and moment of inertia from MESSENGER constrain Mercury to have a thin silicate mantle shell of approximately 400 km over a massive iron core. This mantle is thinner than previously thought and the smallest end-member in comparison with the other terrestrial planets. Although Mercury currently has a stagnant lid and the present day mantle is likely not convecting, a significant proportion of Mercury's surface features could have been derived from convection in the viscous mantle. Given Mercury's small size, the amount of volcanism and tectonic activity was a surprise. We investigate the effect of dislocation creep rheology in olivine on the dynamics of Mercury. At the pressures and temperatures of Mercury's mantle, laboratory creep studies indicate that olivine deforms by dislocation creep. Previous studies using diffusion creep rheology find that the thin mantle shell of Mercury quickly becomes diffusive and, this is difficult to reconcile with the surface observations. We use the three-dimensional spherical code, CitcomS, to compare numerical models with both dislocation and diffusion creep. We compare gravity, topography, and mantle temperature as a function of time from the models with constraints on the timing of volcanic and tectonic activity on Mercury. The results show that with the dislocation creep mechanism, there is potential for convective flow in the mantle over billions of years. In contrast, models with the diffusion creep mechanism start with a convecting mantle that transitions to global diffusive cooling within 500 Myrs. Diffusion creep rheology does not adequately produce a dynamic interior that is consistent with the historical volcanic and tectonic evolution of the planet. This research is the result of participation in GLADE, a nine-week summer REU program directed by Dave Stegman (SIO/UCSD).

  19. Size-Selective Modes of Aeolian Transport on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Swann, C.; Ewing, R. C.; Sherman, D. J.; McLean, C. J.

    2016-12-01

    Aeolian sand transport is a dominant driver of surface change and dust emission on Mars. Estimates of aeolian sand transport on Earth and Mars rely on terrestrial transport models that do not differentiate between transport modes (e.g., creep vs. saltation), which limits estimates of the critical threshold for transport and the total sand flux during a transport event. A gap remains in understanding how the different modes contribute to the total sand flux. Experiments conducted at the MARtian Surface WInd Tunnel separated modes of transport for uniform and mixed grain size surfaces at Earth and Martian atmospheric pressures. Crushed walnut shells with a density of 1.0 gm/cm3 were used. Experiments resolved grain size distributions for creeping and saltating grains over 3 uniform surfaces, U1, U2, and U3, with median grain sizes of 308 µm, 721 µm, and 1294 µm, and a mixed grain size surface, M1, with median grain sizes of 519 µm. A mesh trap located 5 cm above the test bed and a surface creep trap were deployed to capture particles moving as saltation and creep. Grains that entered the creep trap at angles ≥ 75° were categorized as moving in creep mode only. Only U1 and M1 surfaces captured enough surface creep at both Earth and Mars pressure for statistically significant grain size analysis. Our experiments show that size selective transport differs between Earth and Mars conditions. The median grain size of particles moving in creep for both uniform and mixed surfaces are larger under Earth conditions. (U1Earth = 385 µm vs. U1Mars = 355 µm; M1Earth = 762 vs. M1Mars = 697 µm ). However, particles moving in saltation were larger under Mars conditions (U1Earth = 282 µm; U1Mars = 309 µm; M1Earth = 347 µm; M1Mars = 454 µm ). Similar to terrestrial experiments, the median size of surface creep is larger than the median grain size of saltation. Median sizes of U1, U2, U3 at Mars conditions for creep was 355 µm, 774 µm and 1574 µm. Saltation at Mars conditions over the same surfaces was 309 µm, 695 µm and 1398 µm. For the mixed surfaces under Earth and Mars conditions, the size selection process resulted the formation of incipient ripples that migrated over a finer substrate. Determining the modes of transport under Martian conditions refines our understanding of the development of deflationary surfaces and bed forms.

  20. Models of Anisotropic Creep in Integral Wing Panel Forming Processes

    NASA Astrophysics Data System (ADS)

    Oleinikov, A. I.; Oleinikov, A. A.

    2016-08-01

    For a sufficiently wide range of stresses the titanic and aluminummagnesium alloys, as a rule, strained differently in the process of creep under tension and compression along a fixed direction. There are suggested constitutive relations for the description of the steady-state creep of transversely isotropic materials with different tension and compression characteristics. Experimental justification is given to the proposed constitutive equations. Modeling of forming of wing panels of the aircraft are considered.

  1. Influence of preliminary ultrasonic treatment upon the steady-state creep of metals of different stacking fault energies.

    PubMed

    Rusinko, A

    2014-01-01

    This paper addresses the issue of the ultrasound effects upon the creep deformation of metals with different levels of stacking fault energy. The influence of preliminary ultrasound irradiation time upon the steady state creep rate is considered. Synthetic theory of irrecoverable deformation is taken as a mathematical apparatus. The analytical results show good agreement with experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A simple test for thermomechanical evaluation of ceramic fibers

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Dicarlo, James A.

    1991-01-01

    A simple bend stress relaxation (BSR) test was developed to measure the creep related properties of ceramic fibers and whiskers. The test was applied to a variety of commercial and developmental Si based fibers to demonstrate capabilities and to evaluate the relative creep resistance of the fibers at 1200 to 1400 C. The implications of these results and the advantages of the BSR test over typical tensile creep tests are discussed.

  3. A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.

    2010-01-01

    Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.

  4. Creep behavior for advanced polycrystalline SiC fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalonmore » CG (1110{degrees}C).« less

  5. Tensile and creep properties of the experimental oxide dispersion strengthened iron-base sheet alloy MA-956E at 1365 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1978-01-01

    A study of the 1365 K tensile properties, creep characteristics and residual room temperature properties after creep testing of the experimental oxide dispersion strengthened iron-base alloy MA-956E (Fe-20Cr-4.5Al-0.5Ti-0.5Y2O3) was conducted. The 1365 K tensile properties, particularly ductility, are strongly dependent on strain rate. It appears that MA-956E does not easily undergo slow plastic deformation. Rather than deform under creep loading conditions, the alloy apparently fails by a crack nucleation and growth mechanism. Fortunately, there appears to be a threshold stress below which crack nucleation and/or growth does not occur.

  6. On transient rheology and glacial isostasy

    NASA Technical Reports Server (NTRS)

    Yuen, David A.; Sabadini, Roberto C. A.; Gasperini, Paolo; Boschi, Enzo

    1986-01-01

    The effect of transient creep on the inference of long-term mantle viscosity is investigated using theoretical predictions from self-gravitating, layered earth models with Maxwell, Burgers' body, and standard linear solid rheologies. The interaction between transient and steady-state rheologies is studied. The responses of the standard linear solid and Burgers' body models to transient creep in the entire mantle, and of the Burgers' body and Maxwell models to creep in the lower mantle are described. The models' responses are examined in terms of the surface displacement, free air gravity anomaly, wander of the rotation pole, and the secular variation of the degree 2 zonal coefficient of the earth's gravitational potential field. The data reveal that transient creep cannot operate throughout the entire mantle.

  7. Creep of oxide dispersion strengthened materials /with special reference to T-D nichrome/

    NASA Technical Reports Server (NTRS)

    Lin, J.; Sherby, O. D.

    1981-01-01

    Analyses of oxide dispersion strengthened (ODS) alloys shows that their characteristics are mainly due to the creep behavior of the matrix material. Diffusion-controlled slip creep is established as the rate-controlling process in the alloys investigated, with the glide and climb of edge dislocations associated with the subgrain structure as barriers being the specific rate-controlling step. It is found that the stable subgrain size in ODS alloys is usually associated with the spacing between particles 500-1000 A in size, and that their creep behavior is distinguished from that of the matrix material by the existence of a threshold stress that is not well defined microscopically but appears to be related to particles of less than 500 A size.

  8. Training and shape retention in conducting polymer artificial muscles

    NASA Astrophysics Data System (ADS)

    Tominaga, Kazuo; Hashimoto, Hikaru; Takashima, Wataru; Kaneto, Keiichi

    2011-12-01

    Electrochemomechanical deformation (ECMD) of the conducting polymer polyaniline film is studied to investigate the behaviour of actuation under tensile loads. The ECMD was induced by the strains due to the insertion of ionic species (cyclic strain) and a creep due to applied loads during the redox cycle. The cyclic strain was enhanced by the experience of high tensile loads, indicating a training effect. The training effect was explained by the enhanced electrochemical activity of the film. The creep was recovered by removal of the tensile load and several electrochemical cycles. This fact indicates that the creep results from the one-dimensional anisotropic deformation, and is retained (shape retention) by the ionic crosslink. The recovery of creep results from the elastic relaxation of the polymer conformation.

  9. Quantitative analysis of microstructure deformation in creep fenomena of ferritic SA-213 T22 and austenitic SA-213 TP304H material

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Taufik, Ahmad; Gunawan, Agus Yodi; Siregar, Rustam Efendi

    2013-09-01

    The failure of critical component of fossil fired power plant that operated in creep range (high stress, high temperature and in the long term) depends on its microstructure characteristics. Ferritic low carbon steel (2.25Cr-1Mo) and Austenitic stainless alloy (18Cr-8Ni) are used as a boiler tube in the secondary superheater outlet header to deliver steam before entering the turbin. The tube failure is occurred in a form of rupture, resulting trip that disrupts the continuity of the electrical generation. The research in quantification of the microstructure deformation has been done in predicting the remaining life of the tube through interrupted accelerated creep test. For Austenitic Stainless Alloy (18Cr-8Ni), creep test was done in 550°C with the stress 424.5 MPa and for Ferritic Low Carbon Steel (2.25Cr-1Mo) in 570°C with the stress 189 MPa. The interrupted accelerated creep test was done by stopping the observation in condition 60%, 70%, 80% and 90% of remaining life, the creep test fracture was done before. Then the micro hardness test, photo micro, SEM and EDS were obtained from those samples. Refer to ASTM E122, microstructure parameters were calculated. The results indicated that there are a consistency of decreasing their grain diameters, increasing their grain size numbers, micro hardness, and the length of crack or void number per unit area with the decreasing of remaining life. While morphology of grain (stated in parameter α=LV/LH) relatively constant for austenitic. However, for ferritic the change of morphology revealed significantly. Fracture mode propagation of ferritic material is growth with voids transgranular and intergranular crack, and for austenitic material the fracture growth with intergranular creep fracture void and wedge crack. In this research, it was proposed a formulation of mathematical model for creep behavior corresponding their curve fitting resulted for the primary, secondary and tertiary in accelerated creep test. In addition, it was also developed a new method for predicting the remaining life using quantification of microstructure and using expansion of parameter Larson Miller from Taylor series for critical component in high temperature in industry. It was found that the proposed method was easier to be applied in field with the results more accurate then Larson Miller Method.

  10. Using UAVSAR to Estimate Creep Along the Superstition Hills Fault, Southern California

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Parker, J. W.; Pierce, M.; Wang, J.

    2012-12-01

    UAVSAR data were first acquired over the Salton Trough region, just north of the Mexican border in October 2009. Second passes of data were acquired on 12 and 13 April 2010, about one week following the 5 April 2010 M 7.2 El Mayor - Cucapah earthquake. The earthquake resulted in creep on several faults north of the main rupture, including the Yuha, Imperial, and Superstition Hills faults. The UAVSAR platform acquires data about every six meters in swaths about 15 km wide. Tropospheric effects and residual aircraft motion contribute to error in the estimation of surface deformation in the Repeat Pass Interferometry products. The Superstition Hills fault shows clearly in the associated radar interferogram; however, error in the data product makes it difficult to infer deformation from long profiles that cross the fault. Using the QuakeSim InSAR Profile tool we extracted line of site profiles on either side of the fault delineated in the interferogram. We were able to remove much of the correlated error by differencing profiles 250 m on either side of the fault. The result shows right-lateral creep of 1.5±.4 mm along the northern 7 km of the fault in the interferogram. The amount of creep abruptly changes to 8.4±.4 mm of right lateral creep along at least 9 km of the fault covered in the image to the south. The transition occurs within less than 100 m along the fault. We also extracted 2 km long line of site profiles perpendicular to this section of the fault. Averaging these profiles shows a step across the fault of 14.9±.3 mm with greater creep on the order of 20 mm on the northern two profiles and lower creep of about 10 mm on the southern two profiles. Nearby GPS stations P503 and P493 are consistent with this result. They also confirm that the creep event occurred at the time of the El Mayor - Cucapah earthquake. By removing regional deformation resulting from the main rupture we were able to invert for the depth of creep from the surface. Results indicate that the slip occurred from the surface to 10-20 km, not shallowly, as previously suggested.

  11. Shallow and deep creep events observed and quantified with strainmeters along the San Andreas Fault near Parkfield

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Hodgkinson, K. M.; Mattioli, G. S.; Johnson, W.; Gottlieb, M. H.; Meertens, C. M.

    2016-12-01

    Three-component strainmeter data from numerous borehole strainmeters (BSM) along the San Andreas Fault (SAF), including those that were installed and maintained as part of the EarthScope Plate Boundary Observatory (PBO), demonstrate that the characteristics of creep propagation events with sub-cm slip amplitudes can be quantified for slip events at 10 km source-to-sensor distances. The strainmeters are installed at depths of approximately 100 - 250 m and record data at a rate of 100 samples per second. Noise levels at periods of less than a few minutes are 10-11 strain, and for periods in the bandwidth hours to weeks, the periods of interest in the search for slow slip events, are of the order of 10-8 to 10-10 strain. Strainmeters, creepmeters, and tiltmeters have been operated along the San Andreas Fault, observing creep events for decades. BSM data proximal to the SAF cover a significant temporal portion of the inferred earthquake cycle along this portion of the fault. A single instrument is capable of providing broad scale constraints of creep event asperity size, location, and depth and moreover can capture slow slip, coseismic rupture as well as afterslip. The synthesis of these BSM data presents a unique opportunity to constrain the partitioning between aseismic and seismic slip on the central SAF. We show that the creepmeters confirm that creep events that are imaged by the strainmeters, previously catalogued by the authors, are indeed occurring on the SAF, and are simultaneously being recorded on local creepmeters. We further show that simple models allow us to loosely constrain the location and depth of the creep event on the fault, even with a single instrument, and to image the accumulation and behavior of surface as well as crustal creep with time.

  12. Measurement of Creep Properties of Ultra-High-Temperature Materials by a Novel Non-Contact Technique

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Lee, Jonghyun; Rogers, Jan R.; Liaw, Peter K.

    2007-01-01

    A non-contact technique for measuring the creep properties of materials has been developed and validated as part of a collaboration among the University of Massachusetts, NASA Marshall Space Flight Center Electrostatic Levitation Facility (ESL), and the University of Tennessee. This novel method has several advantages over conventional creep testing. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Since there is no contact with grips, there is no theoretical maximum temperature and no concern about chemical compatibility. Materials may be tested at the service temperature even for extreme environments such as rocket nozzles, or above the service temperature for accelerated testing of materials for applications such as jet engines or turbopumps for liquid-fueled engines. The creep measurements have been demonstrated to 2400 C with niobium, while the test facility, the NASA MSFC ESL, has processed materials up to 3400 C. Furthermore, the ESL creep method employs a distribution of stress to determine the stress exponent from a single test, versus the many tests required by conventional methods. Determination of the stress exponent from the ESL creep tests requires very precise measurement of the surface shape of the deformed sample for comparison to deformations predicted by finite element models for different stress exponents. An error analysis shows that the stress exponent can be determined to about 1% accuracy with the current methods and apparatus. The creep properties of single-crystal niobium at 1985 C showed excellent agreement with conventional tests performed according to ASTM Standard E-139. Tests on other metals, ceramics, and composites relevant to rocket propulsion and turbine engines are underway.

  13. Viscoelastic stability of resin-composites aged in food-simulating solvents.

    PubMed

    Marghalani, Hanadi Y; Watts, David C

    2013-09-01

    To study time-dependent viscoelastic deformation (creep and recovery) of resin-composites, after conditioning in food-simulating solvents, under a compressive stress at 37°C. Five dimethacrylate-based composites: (Spectrum TPH, Premise Body, Tetric Ceram HB, Filtek P60, X-tra fil), and two Ormocers (Experimental Ormocer V 28407, Admira) were studied. Three groups of cylindrical specimens (4mm×6mm) were prepared and then conditioned in 3 solvents: methyl ethyl ketone (MEK), ethanol, and water for 1 month at 37°C. The compressive creep-strain under 35MPa in 37°C water was recorded continuously for 2h and then the unloaded recovery-strain was monitored for another 2h. The data were analyzed by one-way ANOVA and Bonferroni's test. The materials all exhibited classic creep and recovery curves, with most parameters being significantly different (p<0.0001) for each solvent condition. All materials showed lower creep-strain in water than in ethanol or MEK solvents. Maximum creep-strain and permanent-set gave negative linear-regression (r(2)>0.98) with logarithm of the solvent solubility-parameter. The % mean (SD) creep-strain ranged from a minimum of 0.82 (0.01) for the Exp. Ormocer in water to the maximum of 4.19 (0.30) for Admira in MEK. Similar trends were found for permanent-set. The dimethacrylate-based composites behaved as an intermediate group, apart from X-tra fil that had similar stability to the Exp. Ormocer. The viscoelastic stability (low creep and permanent-set) of the Exp. Ormocer, compared to many dimethacrylate-based composites, in food-simulating solvents may be due to its diluent-free formulation. This was closely matched by a highly-filled dimethacrylate material (X-tra fil). Copyright © 2013 Academy of Dental Materials. All rights reserved.

  14. Creep grazing and early weaning effects on cow and calf productivity.

    PubMed

    Harvey, R W; Burns, J C

    1988-05-01

    One hundred fifty Simmental-Hereford cows and calves were used in a 3-yr study to evaluate three creep grazing treatments and an early weaning treatment on cow and calf performance during midsummer (July to September). Calves were approximately 150 d of age and averaged 178.6 kg when treatments were initiated. Tifleaf pearl millet (Pennisetum Americanum L. Leeke) was used as the forage for two of the creep treatments, representing two cow stocking intensities of .466 (TLM1) and .239 (TLM2) ha of base hill land pasture/cow, and as pasture for early weaned calves. A red clover (Trifolium pratense L.)-Kentucky bluegrass (Poa pratensis L.) mixture was used as the other creep forage. Hill land pastures were similar for the mature cow units in all creep treatments. Calf average daily gains ranged from .93 to 1.10 kg and were not influenced (P greater than .05) by treatment. Calf gains per hectare were similar for the control, red clover and TLM1 treatments. The TLM2 and early weaning treatments resulted in increases of 105.4 and 39.1 kg of calf gain/ha (P less than .05) compared with the control. When calves were allowed to creep graze millet, decreasing the forage area from .466 to .239 ha per cow-calf unit resulted in an increase of 97.7 kg of calf gain/ha with no reduction in calf gain. Cows on the more intensively grazed millet creep treatment (TLM2) lost more weight (P less than .05) during midsummer than those on the TLM1 treatment, but they gained 18.5 kg more (P less than .10) weight than TLM1 cows between weaning and the start of winter feeding.

  15. Unified high-temperature behavior of thin-gauge superalloys

    NASA Astrophysics Data System (ADS)

    England, Raymond Oliver

    This research proposes a methodology for accelerated testing in the area of high-temperature creep and oxidation resistance for thin-gauge superalloy materials. Traditional long-term creep (stress-relaxation) and oxidation tests are completed to establish a baseline. The temperature range used in this study is between 1200 and 1700°F. The alloys investigated are Incoloy MA 956, Waspaloy, Haynes 214, Haynes 242, Haynes 230, and Incoloy 718. The traditional creep test involves loading the specimens to a constant test mandrel radius of curvature, and measuring the retained radius of curvature as a function of time. The accelerated creep test uses a servohydraulic test machine to conduct single specimen, variable strain-rate load relaxation experiments. Standard metallographic evaluations are used to determine extent and morphology of attack in the traditional oxidation tests, while the accelerated oxidation test utilizes thermogravimetric analysis to obtain oxidation rate data. The traditional long-term creep testing indicates that the mechanically-alloyed material Incoloy MA 956 and Haynes alloy 214 may be suitable for long-term, high-temperature (above 1400°F) structural applications. The accelerated creep test produced a continuous linear function of log stress versus strain rate which can be used to calculate creep rate. The long-term and traditional oxidation tests indicate that Al2O3 scale formers such as Incoloy MA 956 and Haynes 214 are much more resistant to high-temperature oxidation than Cr2O3 scale formers such as Waspaloy. Both accelerated tests can be completed within roughly one day, and can evaluate multiple test temperatures using standardized single specimens. These simple experiments can be correlated with traditional long-term tests which require years to complete.

  16. Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking

    NASA Technical Reports Server (NTRS)

    Lyons, Suzanne; Sandwell, David

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

  17. Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data

    USGS Publications Warehouse

    Murray, Jessica R.; Minson, Sarah E.; Svarc, Jerry L.

    2014-01-01

    Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.

  18. Effect of creep-fed supplement on the susceptibility of pasture-grazed suckling lambs to gastrointestinal helminths.

    PubMed

    de Melo, Gleice Kelli Ayardes; Ítavo, Camila Celeste Brandão Ferreira; Monteiro, Kedma Leonora Silva; da Silva, Jonilson Araújo; da Silva, Pâmila Carolini Gonçalves; Ítavo, Luís Carlos Vinhas; Borges, Dyego Gonçalves Lino; de Almeida Borges, Fernando

    2017-05-30

    This study evaluated the effect of creep feeding a protein supplement on the susceptibility of suckling lambs to infection with gastrointestinal helminths. Male and female lambs were grazed on Brachiaria spp. pastures next to their mothers. Animals were allocated to one of two treatments: creep feeding (261g/d) and control (no supplementation). The trial period was the suckling of lambs during two years of study: May-October 2013 and March-July 2014. Supplementary creep feeding of lambs improved animal performance (P<0.05). Creep-fed lambs reached 18kg body weight in 64 d, but unsupplemented lambs required 77 d to reach the same weight. Lambs were susceptible to helminth infection during lactation; lambs in both treatments had high fecal egg counts (FECs), with means >1000 eggs per gram, as early as 45days of age, when the daily grazing time per animal increased. Creep feeding reduced the FECs of suckling lambs >60days of age in infections dominated by Haemonchus contortus. Totals of 20 and 48 anthelmintic treatments were administered to the supplemented and unsupplemented animals, respectively. The effect of this variable, however, was significant (P<0.05) only after 60days, when nine and 28 treatments had been administered to the supplemented and unsupplemented lambs, respectively. The number of strongyloid larvae recovered from the paddock did not differ significantly (P >0.05) between the two treatments, indicating similar challenges by infective larvae to both groups. The supplementation of lambs by creep feeding can thus be a strategy for the sustainable control of helminth infection, because it reduces the dependence on anthelmintic treatment. Copyright © 2017. Published by Elsevier B.V.

  19. Creep prediction of a layered fiberglass plastic

    NASA Astrophysics Data System (ADS)

    Aniskevich, K.; Korsgaard, J.; Mālmeisters, A.; Jansons, J.

    1998-05-01

    The results of short-term creep tests of a layered glass fiber/polyester resin plastic in tension at angles of 90, 70, and 45° to the direction of the principal fiber orientation are presented. The applicability of the principle of time-temperature analogy for the prediction of long-term creep of the composite and its structural components is revealed. The possibility of evaluating the viscoelastic properties of the composite from the properties of structural components is shown.

  20. Technical evaluation report of the Specialists Meeting on Characterization of Low Cycle High Temperature Fatigue by the Strainrange Partitioning Method

    NASA Technical Reports Server (NTRS)

    Drapier, J. M.; Hirschberg, M. H.

    1979-01-01

    The ability of the Strainrange Partitioning Method SRP was evaluated to correlate the creep-fatigue behavior of gas turbine materials and to predict the creep fatigue life of laboratory specimens subjected to complex cycling conditions. A reference body of high temperature creep fatigue data which can be used in the evaluation of other SRP and low cycle high temperature fatigue predictive techniques was provided.

Top