Science.gov

Sample records for creep behavior analysis

  1. Creep and recovery behavior analysis of space mesh structures

    NASA Astrophysics Data System (ADS)

    Tang, Yaqiong; Li, Tuanjie; Ma, Xiaofei

    2016-11-01

    The Schapery's nonlinear viscoelastic theory and nonlinear force-density method have been investigated to analyze the creep and recovery behaviors of space deployable mesh reflectors in this paper. Based on Schapery's nonlinear viscoelastic theory, we establish the creep and recovery constitutive model for cables whose pretensions were applied stepwise in time. This constitutive model has been further used for adjustment of cables' elongation rigidity. In addition, the time-dependent tangent stiffness matrix is calculated by the partial differentiation of the corresponding load vector with respect to the nodal coordinate vector obtained by the nonlinear force-density method. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the time-dependent nonlinear statics equations. Finally, a hoop truss reflector antenna is presented as a numerical example to illustrate the efficiency of the proposed method for the creep and recovery behavior analysis of space deployable mesh structures.

  2. Creep and creep-rupture behavior of Alloy 718

    SciTech Connect

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760{degree}C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs.

  3. Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4)

    NASA Astrophysics Data System (ADS)

    Nardone, V. C.; Strife, J. R.

    1987-01-01

    The effect of stress and temperature on the steady state creep rate of SiCw/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep.

  4. Correlation of Creep Behavior of Domal Salts

    SciTech Connect

    Munson, D.E.

    1999-02-16

    assumptions permit the set to be completed. From the analysis, two distinct response groups were evident, with the salts of one group measurably more creep resistant than the other group. Interestingly, these groups correspond well with the indirectly determined creep closure of the SPR storage caverns, a correlation that probably should be expected. Certainly, the results suggest a simple laboratory determination of the creep characteristics of a salt material from a dome site can indicate the relative behavior of any potential cavern placed within that dome.

  5. Analysis of indentation creep

    Treesearch

    Don S. Stone; Joseph E. Jakes; Jonathan Puthoff; Abdelmageed A. Elmustafa

    2010-01-01

    Finite element analysis is used to simulate cone indentation creep in materials across a wide range of hardness, strain rate sensitivity, and work-hardening exponent. Modeling reveals that the commonly held assumption of the hardness strain rate sensitivity (mΗ) equaling the flow stress strain rate sensitivity (mσ...

  6. Interim analysis of long time creep behavior of columbium C-103 alloy

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Titran, R. H.

    1976-01-01

    Analysis of 16 long time creep tests on columbium C-103 alloy (Cb-10Hf-1Ti-0.7Zr) indicates that the calculated stresses to give 1 percent creep strain in 100,000 hours at 1,255 K (1800 F) are 7.93 and 8.96 MPa (1,150 and 1,300 psi) for fine grained and course grained materials, respectively. The apparent activation energy and stress dependence for creep of this alloy are approximately 315 KJ/gmol (75,300 cal/gmol) and 2.51, respectively, based on Dorn-Sherby types of relations. However, the 90 percent confidence limits on these values are wide because of the limited data currently available.

  7. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13.

    PubMed

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-04-06

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R = 0.25 and R = - 1 are shown in the form of S-N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy.

  8. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13

    PubMed Central

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-01-01

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749

  9. Creep behavior of submarine sediments

    USGS Publications Warehouse

    Silva, Armand J.; Booth, J.S.

    1984-01-01

    A series of experiments on drained creep of marine sediment indicates that strength degradation results from the creep process, which implies an associated reduction in slope stability. Furthermore, the highest creep potential of a sediment may be at its preconsolidation stress. Results from the experiments on samples from Georges Bank continental slope were also used in conjunction with a preliminary theoretical model to predict creep displacements. For the case illustrated in this report, steep slopes (>20??) and thick sections (>30 m) give rise to substantial creep and probable creep rupture; as angles or thicknesses decrease, displacements rapidly become negligible. Creep may be a significant geologic process on many marine slopes. Not only can it cause major displacements of surface sediment, but it may also be the precursor to numerous slope failures. ?? 1985 Springer-Verlag New York Inc.

  10. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1985-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  11. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1984-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  12. Creep analysis of silicone for podiatry applications.

    PubMed

    Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón

    2016-10-01

    This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A Comparison of the Irradiation Creep Behavior of Several Graphites

    SciTech Connect

    Burchell, Timothy D; Windes, Will

    2016-01-01

    Graphite creep strain data from the irradiation creep capsule Advanced Graphite Creep-1 (AGC-1) are reported. This capsule was the first (prototype) of a series of five or six capsules planned as part of the AGC experiment, which was designed to fully characterize the effects of neutron irradiation and the radiation creep behavior of current nuclear graphite. The creep strain data and analysis are reported for the six graphite grades incorporated in the capsule. The AGC-1 capsule was irradiated in the Advanced Test Reactor at Idaho National Laboratory (INL) at approximately 700 C and to a peak dose of 7 dpa (displacements per atom). The specimen s final dose, temperature, and stress conditions have been reported by INL and were used during this analysis. The derived creep coefficients (K) were calculated for each grade and were found to compare well to literature data for the creep coefficient, even under the wide range of AGC-1 specimen temperatures. Comparisons were made between AGC-1 data and historical grade data for creep coefficients.

  14. Modeling creep behavior of fiber composites

    NASA Technical Reports Server (NTRS)

    Chen, J. L.; Sun, C. T.

    1988-01-01

    A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.

  15. Creep Behavior and Mechanism for CMCs with Continuous Ceramic Fibers

    NASA Astrophysics Data System (ADS)

    Chermant, Jean-Louis; Farizy, Gaëlle; Boitier, Guillaume; Darzens, Séverine; Vicens, Jean; Sangleboeuf, Jean-Christophe

    This paper gives an overview on the creep behavior and mechanism of some CMCs, with a SiC ceramic matrix, such as Cf-SiC, SiCf-SiC and SiCf-SiBC. Tensile creep tests were conducted under argon and air in order to have the influence of the environmental conditions on the macroscopical mechanical response. Nevertheless, multi-scale and multi-technique approaches were required to identify and quantify mechanism(s) which is (are) involved in the creep behavior. The initiation and propagation of damages which are occurring under high stress and temperature conditions were investigated at mesoscopic, microscopic and nanoscopic scales using SEM, TEM and HREM, in order to identify the mechanism(s) involved at each scale. Automatic image analysis was used in order to quantify the evolution of some damage morphological parameters. The macroscopical creep behavior has been investigated through a damage mechanics approach which seems to be the most promising route. A good correlation was found between the kinetics of the damage mechanisms and the creep behavior. For such ceramic matrix composites, the governing mechanism is a damage-creep one, with an additional delay effect due to formation of a glass when tests are performed under air.

  16. Creep behavior of niobium alloy PWC-11

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1987-01-01

    The high vacuum creep and creep-rupture behavior of a Nb-1Zr-.1C alloy (PWC 11) was investigated at 1350 and 1400 K with an applied stress of 40 MPa. The material was tested in the following four conditions: annealed (1 hr 1755 K/2 hr 1475 K); annealed plus EB welded; annealed plus aged for 1000 hr at 1350 or 1400 K; and annealed, welded, and aged. It was found that the material in the annealed state was the most creep-resistant condition tested, and that aging the alloy for 1000 hr without an applied stress greatly reduced that strength; however, it was still approximately three times as creep resistant as Nb-1Zr. Additionally, the EB weld region was stronger than the base metal in each condition tested, and phase extraction of the dispersed precipitate revealed the presence of a 70%ZrC-30%NbC cubic monocarbide phase.

  17. Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures

    SciTech Connect

    J.K. Benz; L.J. Carroll; J.K. Wright; R.N. Wright; T. Lillo

    2014-06-01

    Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 °C to 1000 °C). Creep at 1023 K (750 °C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent y' precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 °C) and is verified to be near zero at 1173 K (900 °C)—temperatures directly correlating to the formation and dissolution of y' precipitates, respectively. The y' precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 °C) to various strains, and modeling of stresses necessary for y' precipitate dislocation bypass, suggests that the climb of dislocations around the y' precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the y' precipitates.

  18. Creep Behavior of Poly(lactic acid) Based Biocomposites

    PubMed Central

    Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo

    2017-01-01

    Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric. PMID:28772755

  19. Creep Behavior of Poly(lactic acid) Based Biocomposites.

    PubMed

    Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo

    2017-04-08

    Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.

  20. Creep Behavior of Hydrogenated Zirconium Alloys

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Boopathy, K.; Eapen, J.; Murty, K. L.

    2014-10-01

    Zirconium (Zr) alloys are the primary structural materials of most water reactors. Creep is considered to be one of the important degradation mechanisms of Zr alloys during reactor operating and repository conditions. Zr alloys pick up hydrogen (H2) during their service from the coolant water. Hydrogen can be present in solid solution or precipitated hydride form in Zr alloys depending upon the temperature and concentration. This study reviews the effect of hydrogen on creep behavior of Zr alloys used in the water reactors.

  1. Nanoindentation creep behavior of human enamel.

    PubMed

    He, Li-Hong; Swain, Michael V

    2009-11-01

    In this study, the indentation creep behavior of human enamel was investigated with a nanoindentation system and a Berkovich indenter at a force of 250 mN with one-step loading and unloading method. A constant hold period of 900 s was incorporated into each test at the maximum load as well at 5 mN minimum load during unloading. The indentation creep at the maximum load and creep recovery at the minimum load was described with a double exponential function and compared with other classic viscoelastic models (Debye/Maxwell and Kohlrausch-Williams-Watts). Indentation creep rate sensitivity, m, of human enamel was measured for the first time with a value of approximately 0.012. Enamel displayed both viscoelastic and viscoplastic behavior similar to that of bone. These results indicate that, associated with entrapment of particulates between teeth under functional loading and sliding wear conditions, the enamel may inelastically deform but recover upon its release. This behavior may be important in explaining the excellent wear resistance, antifatigue, and crack resistant abilities of natural tooth structure. (c) 2008 Wiley Periodicals, Inc.

  2. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    NASA Astrophysics Data System (ADS)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  3. Creep Behavior and Microstructure Evolution of P92 Steel During Creep Test at 873 K

    NASA Astrophysics Data System (ADS)

    Zhang, Zuogui; Shi, Kexian; Wang, Yanfeng; Lin, Fusheng

    In this paper, the creep behavior of P92 steel has been analyzed by creep strain and creep rate variations after the creep tests were stopped at the steady-state creep stage. The microstructure evolution of the P92 steel at the steady-state stage during creep test at 873 K under different load stresses of 125-160 MPa were studied by using a scanning electron microscopy (SEM) and a transmission electron microscopy (TEM). The grain boundary characteristics in the P92 steels during creep test were investigated by an electron backscattered diffraction (EBSD) technique. Experimental results showed that with increasing load stresses from 125 MPa to 160 MPa, creep rates of the P92 steels increased in Norton's power law relation and creep times to the steady-state creep stage decreased. With decreasing load stresses and increasing creep times, martensite lath microstructure occurred recovery and the dislocation densities in ferritic matrix decreased. M23C6 particles located in prior austenite grain, sub-grain and lath boundaries showed slight coarsening. Some Laves phase particles precipitated in the grain boundaries for the P92 specimens after creep test under a load stress of 125 MPa. Comparing to as-tempered P92 steel, the volume fractions of LAGBs are lower and the volume fraction of HAGBs are higher with decreasing load stresses and increasing creep times. It is considered that understanding on creep behavior and microstructual evolution of the P92 steels during creep test will effectively support life design and assessment of the high temperature metal parts in fossil-fired power plant.

  4. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  5. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  6. Creep Behavior of Organic-Rich Shales - Evidences of Microscale Strain Partitioning

    NASA Astrophysics Data System (ADS)

    Sone, H.; Morales, L. F. G.; Dresen, G. H.

    2015-12-01

    Laboratory creep experiments conducted using organic-rich shales show that these rocks exhibit some ductility under sustained loading conditions although they may appear to be elastic and brittle (Young's modulus 15-80 GPa) at shorter time scales. At room-temperature and in-situ pressure conditions, creep strain observed after 3 hours of sustained loading reach strains on the order of 10-5per megapascal of applied differential stress. The creep behavior is highly anisotropic such that creep occurs more in the direction perpendicular to the bedding plane than in the direction parallel to the bedding plane. In general, we find that the creep behavior is largely controlled by the amount of clay mineral and organic content. This is also supported by evidences of elastic stiffening and sample volume reduction during creep which imply that the creep is accommodated by localized compaction occurring within clay-aggregates and/or organic materials, the relatively porous members in the rock. We also find that the tendency to creep has a unique relation with the Young's modulus regardless of the loading direction or the mineral composition. Sone and Zoback (2013) explained this correlation by appealing to the stress partitioning behavior that occurs between the relatively stiff and soft components of the rock, and also by assuming that creep only occurs within the soft components, namely the clay and organic contents, with a specific local 3-hour creep compliance value of 10-4 MPa-1. In order to confirm that such strain-partitioning occurs during creep deformation, we also performed creep experiments under a scanning electron microscope using a deformation stage setup. Such experiments allow us to directly observe the deformation and quantify the strain-partitioning occurring between the different mineral constituents with the aid of digital image correlation analysis. Results suggest that strain-partitioning do occur during creep deformation and inferred creep properties of

  7. Creep Behavior of Anisotropic Functionally Graded Rotating Discs

    NASA Astrophysics Data System (ADS)

    Rattan, Minto; Chamoli, Neeraj; Singh, Satya Bir; Gupta, Nishi

    2013-08-01

    The creep behavior of an anisotropic rotating disc of functionally gradient material (FGM) has been investigated in the present study using Hill's yield criteria and the creep behavior in this case is assumed to follow Sherby's constitutive model. The stress and strain rate distributions are calculated for disc having different types of anisotropy and the results obtained are compared graphically. It is concluded that the anisotropy of the material has a significant effect on the creep behavior of the FGM disc. It is also observed that the FGM disc shows better creep behavior than the non-FGM disc.

  8. Shear stress relaxation of dental ceramics determined from creep behavior.

    PubMed

    DeHoff, Paul H; Anusavice, Kenneth J

    2004-10-01

    To test the hypothesis that shear stress relaxation functions of dental ceramics can be determined from creep functions measured in a beam-bending viscometer. Stress relaxation behavior was determined from creep data for the following materials: (1) a veneering ceramic-IPS Empress2 body ceramic (E2V); (2) an experimental veneering ceramic (EXV); (3) a low expansion body porcelain-Vita VMK 68 feldspathic body porcelain (VB); (4) a high expansion body porcelain-Will Ceram feldspathic body porcelain (WCB); (5) a medium expansion opaque porcelain-Vita feldspathic opaque porcelain (VO); and (6) a high expansion opaque porcelain-Will Ceram feldspathic opaque porcelain (WCO). Laplace transform techniques were used to relate shear stress relaxation functions to creep functions for an eight-parameter, discrete viscoelastic model. Nonlinear regression analysis was performed to fit a four-term exponential relaxation function for each material at each temperature. The relaxation functions were utilized in the ANSYS finite element program to simulate creep behavior in three-point bending for each material at each temperature. Shear stress relaxation times at 575 degrees C ranged from 0.03 s for EXV to 195 s for WCO. Knowledge of the shear relaxation functions for dental ceramics at high temperatures is required input for the viscoelastic element in the ANSYS finite element program, which can used to determine transient and residual stresses in dental prostheses during fabrication.

  9. Effects of misalignment on mechanical behavior of metals in creep

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1981-01-01

    Creep tests were conducted by means of a closed loop servocontrolled materials test system. The strain history prior to creep is carefully monitored. Tests were performed for aluminum alloy 6061-O at 150 C and were monitored by a PDP 11/04 minicomputer at a preset constant plastic strain rate prehistory. The results show that the plastic strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. Intrinsic time and strain rate sensitivity function concepts are employed and modified according to the present observation.

  10. Long-Term Creep and Creep Rupture Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Rahman, M.; Mach, A.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)

    2001-01-01

    Tensile creep behavior of SiC/SiNC ceramic matrix composites at elevated temperatures and at various stress levels have been investigated for turbine engine applications. The objective of this research is to present creep behavior of SiC/SiCN composites at stress levels above and below the monotonic proportional limit strength and predict the life at creep rupture conditions. Tensile creep-rupture tests were performed on an Instron 8502 servohydraulic testing machine at constant load conditions up to a temperature limit of 1000 C. Individual creep curves indicate three stages such as primary, secondary, and tertiary. The creep rate increased linearly at an early stage and then gradually became exponential at higher strains. The stress exponent and activation energy were also obtained at 700 and 1000 C. The specimen lifetime was observed to be 55 hrs at 121 MPa and at 700 C. The life span reduced to 35 hrs at 143 MPa and at 1000 C. Scanning electron microscopy observations revealed significant changes in the crystalline phases and creep damage development. Creep failures were accompanied by extensive fiber pullout, matrix cracking, and debonding along with fiber fracture. The creep data was applied to Time-Temperature-Stress superposition model and the Manson-Haferd parametric model for long-time life prediction.

  11. Minimum strain rate and primary transient creep analysis of a fine structure orthorhombic titanium aluminide

    SciTech Connect

    Hayes, R.W.

    1996-03-15

    The purpose of the present paper is to present a preliminary analysis of the primary transient creep behavior of an orthorhombic titanium aluminide having a very fine microstructure. In order to analyze and understand the creep behavior within the primary transient regime it is necessary to understand the mechanisms controlling deformation within the minimum strain rate region. Therefore an analysis of the minimum strain rate behavior is also presented. It will be shown that the primary transient creep behavior is dependent upon whether creep in the minimum strain rate region is controlled by a viscous flow mechanism or a dislocation mechanism.

  12. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  13. Tensile creep and creep-recovery behavior of a SiC-fiber-Si3N4-matrix composite

    NASA Technical Reports Server (NTRS)

    Holmes, John W.; Park, Yong H.; Jones, J. W.

    1993-01-01

    The tensile creep and creep-recovery behavior of a hot-pressed unidirectional SiC-fiber/Si3N4-matrix composite was investigated at 1200 C in air, in order to determine how various sustained and cyclic creep loading histories would influence the creep rate, accumulated creep strain, and the amount of strain recovered upon specimen unloading. The data accumulated indicate that the fundamental damage mode for sustained tensile creep at stresses of 200 and 250 MPa was periodic fiber fracture and that the creep life and the failure mode at 250 MPa were strongly influenced by the rate at which the initial creep stress was applied. Cyclic loading significantly lowered the duration of primary creep and the overall creep-strain accumulation. The implications of the results for microstructural and component design are discussed.

  14. Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy

    SciTech Connect

    Wang, H.; Wang, Q.D.; Boehlert, C.J.; Yin, D.D.; Yuan, J.

    2015-01-15

    The tensile and compressive creep behavior of an extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy was investigated at temperatures ranging from 200 °C to 300 °C and under stresses ranging from 30 MPa to 120 MPa. There existed an asymmetry in the tensile and compressive creep properties. The minimum creep rate of the alloy was slightly greater in tension than in compression. The measured values of the transient strain and initial creep rate in compression were greater than those in tension. The creep stress exponent was approximately 2.5 at low temperatures (T < 250 °C) and 3.4 at higher temperatures both in tension and in compression. The compression creep activation energy at low temperatures and high temperatures was 83.4 and 184.3 kJ/mol respectively, while one activation energy (184 kJ/mol) represented the tensile–creep behavior over the temperature range examined. Dislocation creep was suggested to be the main mechanism in tensile creep and in the high-temperature regime in compressive creep, while grain boundary sliding was suggested to dominate in the low-temperature regime in compressive creep. Precipitate free zones were observed near grain boundaries perpendicular to the loading direction in tension and parallel to the loading direction in compression. Electron backscattered diffraction analysis revealed that the texture changed slightly during creep. Non-basal slip was suggested to contribute to the deformation after basal slip was introduced. In the tensile–creep ruptured specimens, intergranular cracks were mainly observed at general high-angle boundaries. - Highlights: • Creep behavior of an extruded Mg–RE alloy was characterized by EBSD. • T5 aging treatment enhanced the tension–compression creep asymmetry. • The grains grew slightly during tensile creep, but not for compressive creep. • Precipitate free zones (PFZs) were observed at specific grain boundaries. • Intergranular fracture was dominant and cracks mainly originated at

  15. Microstructural Evaluation and Thermal Creep Behavior of Zr-Excel

    NASA Astrophysics Data System (ADS)

    Ahmmed, Kazi Foyez

    Dual phase (alpha-beta) Zr-Excel Pressure Tube (PT) material has been heat treated in the (alpha+beta) or beta-phase regime to generate variable microstructures. These heat-treated microstructures revealed significant modification in the inital microstructure. The microstructural changes by heat-treatment will have a profound influence on their deformation behavior; characterizing those properties is the main goal of this study. In this dissertation, the experimental results are presented in a manuscript format, which is divided in three technical chapters. Chapter 3 discusses the effect of heat treatment on texture modification; where, as received (ASR) PT materials were heated to a range of temperatures and cooled either in water or in air. It has been observed that due to the orientation relationship between alpha and beta-phase, the ASR microstructure has been significantly altered during heating and cooling. The extent of this alteration strongly depends on the solution temperature and cooling rate. Although, variant selection is observed during texture modification, significant randomization is noticed in the room temperature texture. In Chapter 4, line profile analysis technique has been used to quantitatively analyze the microstructural details of the heat-treated materials. Diffraction pattern analyses demonstrated significant peak broadening in the heat-treated material; which is attributed due to the increase of volume fraction of martensitic alpha and alteration in the dislocation structures. Line profile analyses also revealed that primary alpha consists with large sub-grains and correlated dislocations but the martensitic alpha are highly dislocated. Finally in Chapter 5, thermal creep behavior of the heat treated materials has been studied. Microstructural analyses were also conducted in the pre- and post-creep materials to understand the creep mechanism. Creep anisotropy of the heat treated materials has been investigated by correlating the

  16. Effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Pal, Snehanshu

    2017-03-01

    In this paper, molecular dynamics (MD) simulation based study of creep behavior for nanocrystalline (NC) Ni-3 at% Zr alloy having grain size 6 nm has been performed using embedded atom method (EAM) potential to study the influence of variation of temperature (1220-1450 K) as well as change in stress (0.5-1.5 GPa) on creep behavior. All the simulated creep curves for this ultra-fine grained NC Ni-Zr alloy has extensive tertiary creep regime. Primary creep regime is very short and steady state creep part is almost absent. The effect of temperatures and stress is prominent on the nature of the simulated creep curves and corresponding atomic configurations. Additionally, mean square displacement calculation has been performed at 1220 K, 1250 K, 1350 K, and 1450 K temperatures to correlate the activation energy of atomic diffusion and creep. The activation energy of creep process found to be less compared to activation energies of self-diffusion for Ni and Zr in NC Ni-3 at% Zr alloy. Formation of martensite is identified during creep process by common neighbour analysis. Presence of dislocations is observed only in primary regime of creep curve up till 20 ps, as evident from calculated dislocation density through MD simulations. Coble creep is found to be main operative mechanism for creep deformation of ultrafine grained NC Ni-3 at% Zr alloy.

  17. The effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Pal, Snehanshu

    2017-02-01

    In this paper, molecular dynamics (MD) simulation based study of creep behavior for nanocrystalline (NC) Ni-3 at% Zr alloy having grain size 6 nm has been performed using embedded atom method (EAM) potential to study the influence of variation of temperature (1220-1450 K) as well as change in stress (0.5-1.5 GPa) on creep behavior. All the simulated creep curves for this ultra-fine grained NC Ni-Zr alloy has extensive tertiary creep regime. Primary creep regime is very short and steady state creep part is almost absent. The effect of temperatures and stress is prominent on the nature of the simulated creep curves and corresponding atomic configurations. Additionally, mean square displacement calculation has been performed at 1220 K, 1250 K, 1350 K, and 1450 K temperatures to correlate the activation energy of atomic diffusion and creep. The activation energy of creep process found to be less compared to activation energies of self-diffusion for Ni and Zr in NC Ni-3 at% Zr alloy. Formation of martensite is identified during creep process by common neighbour analysis. Presence of dislocations is observed only in primary regime of creep curve up till 20 ps, as evident from calculated dislocation density through MD simulations. Coble creep is found to be main operative mechanism for creep deformation of ultrafine grained NC Ni-3 at% Zr alloy.

  18. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  19. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2016-12-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  20. Creep behavior of passive bovine extraocular muscle.

    PubMed

    Yoo, Lawrence; Kim, Hansang; Shin, Andrew; Gupta, Vijay; Demer, Joseph L

    2011-01-01

    This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at 1.37 ± 0.03 (standard deviation, SD). The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics.

  1. Creep Behavior of Passive Bovine Extraocular Muscle

    PubMed Central

    Yoo, Lawrence; Kim, Hansang; Shin, Andrew; Gupta, Vijay; Demer, Joseph L.

    2011-01-01

    This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at 1.37 ± 0.03 (standard deviation, SD). The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics. PMID:22131809

  2. Mechanical behavior of low porosity carbonate rock: from brittle creep to ductile creep

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2013-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this experimental study, we focus on the mechanical behavior of a low porosity (9%) white Tavel (France) carbonate rock (>98% calcite) at P-Q conditions beyond the elastic domain. It has been shown that in sandstones composed of quartz, cracks are developing under these conditions. However, in carbonates, calcite minerals can meanwhile also exhibit microplasticity. The samples were deformed in the triaxial cell of the Ecole Normale Superieure de Paris at effective confining pressures ranging from 35 MPa to 85 MPa and room temperature. Experiments were carried on dry and water saturated samples to explore the role played by the pore fluids. Time dependency was investigated by a creep steps methodology: at each step, differential stress was increased rapidly and kept constant for at least 24h. During these steps elastic wave velocities (P and S) and permeability were measured continuously. Our results show two different creep behaviors: (1) brittle creep is observed at low confining pressures, whereas (2) ductile creep is observed at higher confining pressures. These two creep behaviors have a different signature in term of elastic wave velocities and permeability changes. Indeed, in the brittle domain, the primary creep is associated with a decrease of elastic wave velocities and an increase of permeability, and no secondary creep is observed. In the ductile domain, the primary creep

  3. Creep behavior of bagasse fiber reinforced polymer composites.

    PubMed

    Xu, Yanjun; Wu, Qinglin; Lei, Yong; Yao, Fei

    2010-05-01

    The creep behavior of bagasse-based composites with virgin and recycled polyvinyl chloride (B/PVC) and high density polyethylene (B/HDPE) as well as a commercial wood and HDPE composite decking material was investigated. The instantaneous deformation and creep rate of all composites at the same loading level increased at higher temperatures. At a constant load level, B/PVC composites had better creep resistance than B/HDPE systems at low temperatures. However, B/PVC composites showed greater temperature-dependence. Several creep models (i.e., Burgers model, Findley's power law model, and a simpler two-parameter power law model) were used to fit the measured creep data. Time-temperature superposition (TTS) was attempted for long-term creep prediction. The four-element Burgers model and the two-parameter power law model fitted creep curves of the composites well. The TTS principle more accurately predicted the creep response of the PVC composites compared to the HDPE composites. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    PubMed

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns.

  5. Creep and Environmental Effects on High Temperature Creep-Fatigue Behavior of Alloy 617

    SciTech Connect

    L. J. Carroll; C. Cabet; R. Madland; R. Wright

    2011-06-01

    Alloy 617 is the leading candidate material for Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR), expected to have an outlet temperature as high as 950 C. System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior in both air and impure helium, representative of the VHTR primary coolant. Strain controlled LCF tests including hold times at maximum tensile strain were conducted at total strain range of 0.3% in air at 950 C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The fatigue resistance decreased when a hold time was added at peak tensile stress, consistent with the observed change in fracture mode from transgranular to intergranular with introduction of a tensile hold. Increases in the tensile hold time, beyond 180 sec, was not detrimental to the creep-fatigue resistance. Grain boundary damage in the form of grain boundary cracking was present in the bulk of the creep-fatigue specimens. This bulk cracking was quantified and found to be similar for hold times of up to 1800 sec consistent with the saturation in failure lives and rapid stress relaxation observed during the creep portion of the creep-fatigue cycle.

  6. The development of methods for the prediction of primary creep behavior in metals

    NASA Technical Reports Server (NTRS)

    Zerwekh, R. P.

    1978-01-01

    The applicability of a thermodynamic constitutive theory of deformation to the prediction of primary creep and creep strain relaxation behavior in metals is examined. Constitutive equations derived from the theory are subjected to a parametric analysis in order to determine the influence of several parameters on the curve forms generated by the equations. A computer program is developed which enables the solution of a generalized constitutive equation using experimental data as input. Several metals were tested to form a data base of primary creep and relaxation behavior. The extent to which these materials conformed to the constitutive equation showed wide variability, with the alloy Ti-6Al-4V exhibiting the most consistent results. Accordingly, most of the analysis is concentrated upon data from that alloy, although creep and relaxation data from all the materials tested are presented. Experimental methods are outlined as well as some variations in methods of analysis. Various theoretical and practical implications of the work are discussed.

  7. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    SciTech Connect

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  8. Study on the creep and recovery behaviors of ferrofluids

    NASA Astrophysics Data System (ADS)

    Li, Zhenkun; Li, Decai; Hao, Du; Cheng, Yanhong

    2017-10-01

    The creep and recovery behaviors of lubrication oil based ferrofluids of different particle concentration were systematically investigated to understand the viscoelasticity of ferrofluids. The influence of stress level, magnetic field strength and temperature on creep and recovery behaviors of ferrofliuids was studied experimentally and the microscopic mechanisms behind the rheological phenomenon were discussed. Linear viscoelasticity theory and generalized Burgers models were employed to analyze the experimental results. The experimental results demonstrate that the ferrofluids exhibits unique creep and recovery properties significantly different from other stimuli responsive materials both in the linear and nonlinear viscoelastic region. Furthermore, structures larger than single chains are supposed to be responsible for many experimental results, including the extended relaxation process in recovery phase and the nonlinear increasing trend of creep strain with magnetic field strength and temperature. These findings contribute to a better understanding of the microscopic mechanism of magnetorheology of ferrofluids and also provide guidance for many practical applications.

  9. Creep crack growth behavior of several structural alloys

    NASA Astrophysics Data System (ADS)

    Sadananda, K.; Shahinian, P.

    1983-07-01

    Creep crack growth behavior of several high temperature alloys, Inconel 600, Inconel 625, Inconel X-750, Hastelloy X, Nimonic PE-16, Incoloy 800, and Haynes 25 (HS-25) was examined at 540, 650, 760, and 870 °C. Crack growth rates were analyzed in terms of both linear elastic stress intensity factor and J*-integral parameter. Among the alloys Inconel 600 and Hastelloy X did not show any observable crack growth. Instead, they deformed at a rapid rate resulting in severe blunting of the crack tip. The other alloys, Inconel 625, Inconel X-750, Incoloy 800, HS-25, and PE-16 showed crack growth at one or two temperatures and deformed continuously at other temperatures. Crack growth rates of the above alloys in terms ofJ* parameter were compared with the growth rates of other alloys published in the literature. Alloys such as Inconel X-750, Alloy 718, and IN-100 show very high growth rates as a result of their sensitivity to an air environment. Based on detailed fracture surface analysis, it is proposed that creep crack growth occurs by the nucleation and growth of wedge-type cracks at triple point junctions due to grain boundary sliding or by the formation and growth of cavities at the boundaries. Crack growth in the above alloys occurs only in some critical range of strain rates or temperatures. Since the service conditions for these alloys usually fall within this critical range, knowledge and understanding of creep crack growth behavior of the structural alloys are important.

  10. Creep-rupture behavior of 6 candidate stirling engine iron-base superalloys in high pressure hydrogen. Volume 1: Air creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1982-01-01

    Four wrought alloys (A-286, IN 800H, N-155, and 19-9DL) and two cast alloys (CRM-6D and XF-818) were tested to determine their creep-rupture behavior. The wrought alloys were used in the form of sheets of 0.89 mm (0.035 in.) average thickness. The cast alloy specimens were investment cast and machined to 6.35 mm (0.250 in.) gage diameter. All specimens were tested to rupture in air at different times up to 3000 h over the temperature range of 650 C to 925 C (1200 F to 1700 F). Rupture life, minimum creep rate, and time to 1% creep strain were statistically analyzed as a function of stress at different temperatures. Temperature-compensated analysis was also performed to obtain the activation energies for rupture life, time to 1% creep strain, and the minimum creep rate. Microstructural and fracture analyses were also performed. Based on statistical analyses, estimates were made for stress levels at different temperatures to obtain 3500 h rupture life and time to 1% creep strain. Test results are to be compared with similar data being obtained for these alloys under 15 MPa (2175 psi) hydrogen.

  11. Tensile creep and creep rupture behavior of monolithic and SiC-whisker-reinforced silicon nitride ceramics

    SciTech Connect

    Ohji, Tatsuki; Yamauchi, Yukihiko )

    1993-12-01

    The tensile creep and creep rupture behavior of silicon nitride was investigated at 1,200 to 1,350 C using hot-pressed materials with and without SiC whiskers. Stable steady-state creep was observed under low applied stresses at 1,200 C. Accelerated creep regimes, which were absent below 1,300 C, were identified above that temperature. The appearance of accelerated creep at the higher temperatures attributable to formation of microcracks throughout a specimen. The whisker-reinforced material exhibited better creep resistance than the monolith at 1,200 C. Considerably high values 3 to 5, were obtained for the creep exponent in the overall temperature range. The exponent tended to decrease with decreasing applied stress at 1,200 C. The primary creep mechanism was considered cavitation-enhanced creep. Specimen lifetimes followed the Monkman-Grant relationship except for fractures with large accelerated creep regimes. The creep rupture behavior is discussed in association with cavity formation and crack adolescence.

  12. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  13. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  14. Non-Classical Creep Behavior of Fusion-Cast Alumina Refractories

    SciTech Connect

    Hemrick, James Gordon; Wereszczak, Andrew A

    2009-01-01

    The compressive creep behavior of a typical 50% -/50% -alumina fusion-cast refractory block was examined as a function of temperature. Test temperatures (1450-1650oC) were chosen to correspond to those typical of service conditions, while relatively high compressive test stresses (0.6 and 1.0 MPa compared to 0.2-0.4 MPa which is typical of service) were chosen to promote exaggerated deformation and to more accurately measure the resulting creep strain. It was found that the measured creep strain responses in this alumina were a sum of (contracting) compressive creep strain and expansion strain due to time and temperature dependent microcracking. Long term, isothtermal expansion tests were also conducted, and their results allowed for the deconvolution of the compressive creep and expansion strains present in the measured creep strain test data. The analysis shows that despite complications associated with conflicting expansion and contraction effects, classical creep analysis may be used with this alumina refractory after the strains associated with the non-steady-state mechanism are considered and accounted for.

  15. Matrix cracking and creep behavior of monolithic zircon and zircon silicon carbide fiber composites

    NASA Astrophysics Data System (ADS)

    Anandakumar, Umashankar

    In this study, the first matrix cracking behavior and creep behavior of zircon matrix silicon carbide fiber composites were studied, together with the fracture and creep behavior of the monolithic zircon. These behaviors are of engineering and scientific importance, and the study was aimed at understanding the deformation mechanisms at elevated temperatures. The first matrix cracking behavior of zircon matrix uniaxially reinforced with silicon carbide fiber (SCS-6) composites and failure behavior of monolithic zircon were studied as a function of temperature (25°C, 500°C, and 1200°C) and crack length in three point bending mode. A modified vicker's indentation technique was used to vary the initial crack length in monolithic and composite samples. The interfacial shear strength was measured at these temperatures from matrix crack saturation spacing. The composites exhibited steady state and non steady state behaviors at the three different temperatures as predicted by theoretical models, while the failure stress of zircon decreased with increasing stress. The intrinsic properties of the composites were used to numerically determine the results predicted by three different matrix cracking models based on a fracture mechanics approach. The analysis showed that the model based on crack bridging analysis was valid at 25°C and 500°C, while a model based on statistical fiber failure was valid at 1200°C. Microstructural studies showed that fiber failure in the crack wake occurred at or below the matrix cracking stress at 1200°C, and no fiber failure occurred at the other two temperatures, which validated the results predicted by the theoretical models. Also, it was shown that the interfacial shear stress corresponding to debonding determined the matrix cracking stress, and not the frictional shear stress. This study showed for the first time, the steady state and non-steady state matrix cracking behavior at elevated temperatures, the difference in behavior between

  16. Effect of misalignment on mechanical behavior of metals in creep. [computer programs

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1979-01-01

    Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.

  17. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  18. Transient creep and semibrittle behavior of crystalline rocks

    USGS Publications Warehouse

    Carter, N.L.; Kirby, S.H.

    1978-01-01

    We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.

  19. The high temperature creep behavior of oxides and oxide fibers

    NASA Technical Reports Server (NTRS)

    Jones, Linda E.; Tressler, Richard E.

    1991-01-01

    A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.

  20. Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Wen, Xingshuo

    are believed to be responsible for the monotonically increasing creep rates. Apart from dislocation creep, diffusional creep in existence at low stress level in fine-grained (ASTM 8) material also contributed partly to the creep rates. A reasonable prediction on the long term performance of alloy 617 was also made by extrapolation method using optimized parameters based on creep test data. Furthermore, microstructure characterization was performed utilizing Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Electron Backscattered Diffraction (EBSD), Transmission Electron Microscopy (TEM) and related analytical techniques on samples from both before and after creep, with special attention given to grain size effects, grain boundary type, and dislocation substructures. Evidences for dislocation climb and dislocation glide were found through detailed dislocation analysis by TEM, proving the dislocation climb-glide mechanism. The formation of subgrain boundary, the changes in boundary characters and grain sizes was confirmed by EBSD analysis for dynamic recrystallization. The effects of initial grain size and grain boundary character distribution on the creep behavior and mechanism were also evaluated. Through the results obtained from this experimental study, new insights were provided into how changes in microstructure take place during high temperature creep of alloy 617, creep mechanism at different conditions was identified, and the creep deformation model was discussed. The results will also serve to technological and code case development and design of materials for NGNP.

  1. The primary creep behavior of single crystal, nickel base superalloys PWA 1480 and PWA 1484

    NASA Astrophysics Data System (ADS)

    Wilson, Brandon Charles

    Primary creep occurring at intermediate temperatures (650°C to 850°C) and loads greater than 500 MPa has been shown to result in severe creep strain, often exceeding 5-10%, during the first few hours of creep testing. This investigation examines how the addition of rhenium and changes in aging heat treatment affect the primary creep behavior of PWA 1480 and PWA 1484. To aid in the understanding of rhenium's role in primary creep, 3wt% Re was added to PWA 1480 to create a second generation version of PWA 1480. The age heat treatments used for creep testing were either 704°C/24 hr. or 871°C/32hr. All three alloys exhibited the presence of secondary gamma' confirmed by scanning electron microscopy and local electrode atom probe techniques. These aging heat treatments resulted in the reduction of the primary creep strain produced in PWA 1484 from 24% to 16% at 704°C/862 MPa and produced a slight dependence of the tensile properties of PWA 1480 on aging heat treatment temperature. For all test temperatures, the high temperature age resulted in a significant decrease in primary creep behavior of PWA 1484 and a longer lifetime for all but the lowest test temperature. The primary creep behavior of PWA 1480 and PWA 1480+Re did not display any significant dependence on age heat treatment. The creep rupture life of PWA 1480 is greater than PWA 1484 at 704°C, but significantly shorter at 760°C and 815°C. PWA 1480+Re, however, displayed the longest lifetime of all three alloys at both 704°C and 815°C (PWA 1480+Re was not tested at 760°C). Qualitative TEM analysis revealed that PWA 1484 deformed by large dislocation "ribbons" spanning large regions of material. PWA 1480, however, deformed primarily due to matrix dislocations and the creation of interfacial dislocation networks between the gamma and gamma' phases. PWA 1480+ contained stacking faults as well, though they acted on multiple slip systems generating work hardening and forcing the onset of secondary creep. X

  2. Creep Behavior of ABS Polymer in Temperature-Humidity Conditions

    NASA Astrophysics Data System (ADS)

    An, Teagen; Selvaraj, Ramya; Hong, Seokmoo; Kim, Naksoo

    2017-04-01

    Acrylonitrile-Butadiene-Styrene (ABS), also known as a thermoplastic polymer, is extensively utilized for manufacturing home appliances products as it possess impressive mechanical properties, such as, resistance and toughness. However, the aforementioned properties are affected by operating temperature and atmosphere humidity due to the viscoelasticity property of an ABS polymer material. Moreover, the prediction of optimum working conditions are the little challenging task as it influences the final properties of product. This present study aims to develop the finite element (FE) models for predicting the creep behavior of an ABS polymeric material. In addition, the material constants, which represent the creep properties of an ABS polymer material, were predicted with the help of an interpolation function. Furthermore, a comparative study has been made with experiment and simulation results to verify the accuracy of developed FE model. The results showed that the predicted value from FE model could agree well with experimental data as well it can replicate the actual creep behavior flawlessly.

  3. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    SciTech Connect

    Ren, W.; Brinkman, C.R.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  4. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  5. Creep behavior of refractory concretes. First annual report, October 1, 1981-September 30, 1982

    SciTech Connect

    McGee, T.D.

    1982-12-01

    Objectives are to evaluate the creep of alumina refractory concretes, determine differential transient creep strain of pristine specimens, develop a mathematical model for the creep behavior of refractory concretes, investigate the creep of commercial refractory concretes, and determine the effect of fiber reinforcements on the creep of concretes. After a summary of the first four years' progress, the technical progress during the fourth year is described in detail. 97 figures. (DLC)

  6. Creep behavior of Fe-bearing olivine under hydrous conditions

    NASA Astrophysics Data System (ADS)

    Tasaka, Miki; Zimmerman, Mark E.; Kohlstedt, David L.

    2015-09-01

    To understand the effect of iron content on the creep behavior of olivine, (MgxFe(1 - x))2SiO4, under hydrous conditions, we have conducted tri-axial compressive creep experiments on samples of polycrystalline olivine with Mg contents of x = 0.53, 0.77, 0.90, and 1. Samples were deformed at stresses of 25 to 320 MPa, temperatures of 1050° to 1200°C, a confining pressure of 300 MPa, and a water fugacity of 300 MPa using a gas-medium high-pressure apparatus. Under hydrous conditions, our results yield the following expression for strain rate as a function of iron content for 0.53 ≤ x ≤ 0.90 in the dislocation creep regime: ɛ˙=ɛ˙0.90((1-x/0.1))1/2exp[226×1030.9-x/RT]. In this equation, the strain rate of San Carlos olivine, ɛ˙0.90, is a function of T, σ, and fH2O. As previously shown for anhydrous conditions, an increase in iron content directly increases creep rate. In addition, an increase in iron content increases hydrogen solubility and therefore indirectly increases creep rate. This flow law allows us to extrapolate our results to a wide range of mantle conditions, not only for Earth's mantle but also for the mantle of Mars.

  7. Creep-Rupture Data Analysis - Engineering Application of Regression Techniques. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Rummler, D. R.

    1976-01-01

    The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.

  8. Creep and stress relaxation behavior of two soft denture liners.

    PubMed

    Salloum, Alaa'a M

    2014-03-01

    Numerous investigators stated the indications of soft denture lining materials; but no one determined the indications of these materials according to their chemical structure. The purpose of this investigation was to evaluate the viscoelastic properties of acrylic and silicon lining materials. This study investigated and compared viscoelastic properties of two resilient denture lining materials. Tested materials were laboratory processed; one of them was silicone-based liner product (Molloplast-B), and the other was plasticized acrylic resin (Vertex™ Soft). Twenty cylindrical specimens (10-20 mm in length, 11.55 mm in diameter) were fabricated in an aluminum mold from each material for creep and stress relaxation testing (the study of viscoelastic properties). Tests were performed by using the universal testing machine DY-34. Collected data were analyzed with t test statistics for statistically significant differences at the 95 % confidence level. There was a clear difference in creep and stress relaxation behavior between acrylic and silicone liners. Statistical study of Young's moduli illustrated that Vertex™ Soft was softer than Molloplast-B. On the other hand, the results explained that the recovery of silicone material was better than of acrylic one. The creep test revealed that the plasticized acrylic resin lining material exhibited considerable creep, whereas silicone-based liner exhibited elastic behavior. Besides, the stress relaxation test showed that relaxation of the plasticized acrylic resin material was bigger than of the silicone-based liner.

  9. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  10. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  11. Creep behavior of an AZ91 magnesium alloy reinforced with alumina fibers

    NASA Astrophysics Data System (ADS)

    Li, Yong; Langdon, Terence G.

    1999-08-01

    Creep tests were conducted at elevated temperatures on an AZ91 alloy reinforced with 20 vol pct Al2O3 fibers. When the creep data are interpreted by incorporating a threshold stress into the analysis, it is shown that the true stress exponent, n, is ˜3 at the lower stress levels and increases to >3 at the higher stresses. The true activation energy for creep is close to the value anticipated for interdiffusion of aluminum in magnesium. This behavior is interpreted in terms of a viscous glide process with n =3 and a breakaway of the dislocations from their solute atom atmospheres at the higher stress levels. The threshold stresses in this composite appear to arise from an attractive interaction between mobile dislocations in the matrix alloy and Mg17Al12 precipitates. The experimental results reveal several important similarities between the creep behavior of this magnesium-based composite and the well-documented creep properties of aluminum-based composites.

  12. Cyclic creep analysis from elastic finite-element solutions

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hwang, S. Y.

    1986-01-01

    A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.

  13. On The Creep Behavior Of Niobium-Modified Zirconium Alloys

    SciTech Connect

    Charit, I.; Murty, K.L.

    2006-07-01

    Zr alloys remain the main cladding materials in most water reactors. Historically, a series of Zircaloys were developed, and two versions, Zircaloy-2 and -4, are still employed in many reactors. The recent trend is to use the Nb-modified zirconium alloys where it has been shown that Nb addition improves cladding performance in various ways, most significant being superior long-term corrosion resistance. Hence, new alloys with Nb additions have recently been developed, such as Zirlo{sup TM(i)} and M5TM{sup (ii)}. Although it is known that creep properties improve, there have been very few data available to precisely evaluate the creep characteristics of new commercial alloys. However, the creep behavior of many Nb-modified zirconium alloys has been studied in several occasions. In this study, we have collected the creep data of these Nb-modified alloys from the open literature as well as our own study over a wide range of stresses and temperatures. The data have been compared with those of conventional Zr and Zircaloys to determine the exact role Nb plays. It has been argued that Nb-modified zirconium alloys would behave as a Class-A alloy (stress exponent of 3) with the Nb atoms forming solute atmospheres around dislocations and thus, impeding dislocation glide under suitable conditions. On the other hand, zirconium and Zircaloys behave as Class-M alloys with a stress exponent of {>=} 4, attesting to the dislocation climb-controlled deformation mode. (authors)

  14. TMI-2 lower head creep rupture analysis

    SciTech Connect

    Thinnes, G.L.

    1988-08-01

    The TMI-2 accident resulted in approximately 40% of the reactor's core melting and collecting on the lower head of the reactor pressure vessel. The severity of the accident has raised questions about the margin of safety against rupture of the lower head in this accident since all evidence seems to indicate no major breach of the vessel occurred. Scoping heat transfer analyses of the relocated core debris and lower head have been made based upon assumed core melting scenarios and core material debris formations while in contact with the lower head. This report describes the structural finite element creep rupture analysis of the lower head using a temperature transient judged most likely to challenge the structural capacity of the vessel. This evaluation of vessel response to this transient has provided insight into the creep mechanisms of the vessel wall, a realistic mode of failure, and a means by which margin to failure can be evaluated once examination provides estimated maximum wall temperatures. Suggestions for more extensive research in this area are also provided. 6 refs., 15 figs.

  15. Creep behavior of precast segmental box girder bridge

    NASA Astrophysics Data System (ADS)

    Xihua, Dai; Liangfang, Liu; Rong, Xian

    2017-08-01

    The concrete creep effect is more obvious when the box girder is assembled by segment. It is necessary to consider the influence of the loading value of the section at different time and the different age of concrete at different stages. In this paper, ACI209R-92, CEB-FIP MC90 and B3 and other concrete creep models are compared. The results show that the B3 model has many factors to consider and the calculation accuracy is high. Secondly, this paper discusses the influence of the segmental construction technology on the creep calculation, and puts forward the characteristics of the stress analysis of the segmental box girder. Finally, on the basis of the B3 model of concrete creep, the Midas software is used to establish the calculation model of segmental box girder, and the internal force and deformation of the box girder are calculated. The results show that the internal force and deformation of the box girder is too large due to the poor integrity of the segmental assembling process, which will seriously affect the normal service performance.

  16. Application Of Shakedown Analysis To Cyclic Creep Damage Limits

    SciTech Connect

    Carter, Peter; Jetter, Robert I; Sham, Sam

    2012-01-01

    Shakedown analysis may be used to provide a conservative estimate of local rupture and hence cyclic creep damage for use in a creep-fatigue assessment. The shakedown analysis is based on an elastic-perfectly plastic material with a temperature-dependent pseudo yield stress defined to guarantee that a shakedown solution exists which does not exceed rupture stress and temperature for a defined life. The ratio of design life to the estimated maximum cyclic life is the shakedown creep damage. The methodology does not require stress classification and is also applicable to cycles over the full range of temperature above and below the creep regime. Full cyclic creep and damage analysis is the alternative when shakedown analysis appears to be excessively conservative.

  17. The creep behavior of acrylic denture base resins.

    PubMed

    Sadiku, E R; Biotidara, F O

    1996-01-01

    The creep behavior of acrylic dental base resins, at room temperature and at different loading conditions, has been examined. The behaviors of these resins are similar to that of "commercial perspex" at room temperature over a period of 1000 seconds. The pseudo-elastic moduli of the blends of PMMA VC show a significant increase compared with PMMA alone. The addition of the PVC powder to the heat-cured acrylic resin increased the time-dependent elastic modulus. This increase in elastic modulus is advantageous in the production of denture based resins of improv mechanical properties.

  18. Buckling Analysis in Creep Conditions: Review and Comparison

    SciTech Connect

    Turbat, Andre; Drubay, Bernard

    2002-07-01

    In the case of structures operating at high temperature in normal or accidental conditions, the influence of creep has to be considered at the design stage because this phenomenon may reduce the lifetime significantly. This is true in particular for buckling analysis: in creep conditions, the buckling sometimes occurs after a long period under a compressive load which is lower than the critical load assessed when considering an instantaneous buckling. The main reason is that creep deformations induce an amplification of the initial geometrical imperfections and consequently a reduction of the buckling load. Some Design Codes incorporate special rules and/or methods to take creep buckling into account. Creep buckling analysis methods aim at evaluating critical loading for a given hold period with creep or alternatively critical creep time for a given loading. The Codes where creep buckling is considered also define margins with respect to critical loading: it shall be demonstrated that creep instability will not occur during the whole lifetime when multiplying the specified loading by a coefficient (design factor) depending on the situation level. For the design of NPP, specific creep buckling rules exist in the US, France and Russia. In the US, ASME, Section III, Subsection NH, which is dedicated to high temperature components design, provides limits which are applicable to general geometrical configurations and loading conditions that may cause buckling due to creep behaviour of the material. For load-controlled time-dependent creep buckling, the design factors to apply to the specified loadings are 1.5 for levels A, B or C service loadings and 1.25 for level D service loadings. A design factor is not required in the case of purely strain-controlled buckling. No specific method is provided to obtain critical loading or critical time for creep instability. In France, creep buckling rules included in RCC-MR, Chapter RB or RC 3200 are similar to those of ASME

  19. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1988-01-01

    The creep behavior and microstructural stability of tungsten fiber reinforced niobium and niobium 1 percent zirconium was determined at 1400 and 1500 K in order to assess the potential of this material for use in advanced space power systems. The creep behavior of the composite materials could be described by a power law creep equation. A linear relationship was found to exist between the minimum creep rate of the composite and the inverse of the composite creep rupture life. The composite materials had an order of magnitude increase in stress to achieve 1 percent creep strain and in rupture strength at test temperatures of 1400 and 1500 K compared to unreinforced material. The composite materials were also stronger than the unreinforced materials by an order of magnitude when density was taken into consideration. Results obtained on the creep behavior and microstructural stability of the composites show significant potential improvement in high temperature properties and mass reduction for space power system components.

  20. Time-Dependent Behavior of Diabase and a Nonlinear Creep Model

    NASA Astrophysics Data System (ADS)

    Yang, Wendong; Zhang, Qiangyong; Li, Shucai; Wang, Shugang

    2014-07-01

    Triaxial creep tests were performed on diabase specimens from the dam foundation of the Dagangshan hydropower station, and the typical characteristics of creep curves were analyzed. Based on the test results under different stress levels, a new nonlinear visco-elasto-plastic creep model with creep threshold and long-term strength was proposed by connecting an instantaneous elastic Hooke body, a visco-elasto-plastic Schiffman body, and a nonlinear visco-plastic body in series mode. By introducing the nonlinear visco-plastic component, this creep model can describe the typical creep behavior, which includes the primary creep stage, the secondary creep stage, and the tertiary creep stage. Three-dimensional creep equations under constant stress conditions were deduced. The yield approach index (YAI) was used as the criterion for the piecewise creep function to resolve the difficulty in determining the creep threshold value and the long-term strength. The expression of the visco-plastic component was derived in detail and the three-dimensional central difference form was given. An example was used to verify the credibility of the model. The creep parameters were identified, and the calculated curves were in good agreement with the experimental curves, indicating that the model is capable of replicating the physical processes.

  1. Creep deformation behavior of Sn-3.5Ag solder/Cu couple at small length scales

    SciTech Connect

    Kerr, M.; Chawla, N

    2004-09-06

    In order to adequately characterize the behavior of solder balls in electronic devices, the mechanical behavior of solder joints needs to be studied at small length scales. The creep behavior of single solder ball Sn-Ag/Cu solder joints was studied in shear, at 25, 60, 95, and 130 deg. C, using a microforce testing system. A change in the creep stress exponent with increasing stress was observed and explained in terms of a threshold stress for bypass of Ag{sub 3}Sn particles by dislocations. The stress exponent was also temperature dependent, exhibiting an increase in exponent of two from lower to higher temperature. The activation energy for creep was found to be temperature dependant, correlating with self-diffusion of pure Sn at high temperatures, and dislocation core diffusion of pure Sn at lower temperatures. Normalizing the creep rate for activation energy and the temperature-dependence of shear modulus allowed for unification of the creep data. Microstructure characterization, including preliminary TEM analysis, and fractographic analysis were conducted in order to fully describe the creep behavior of the material.

  2. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  3. Creep-rupture behavior of candidate Stirling engine iron supperalloys in high-pressure hydrogen. Volume 2: Hydrogen creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.; Hales, C.

    1984-01-01

    The creep rupture behavior of nine iron base and one cobalt base candidate Stirling engine alloys is evaluated. Rupture life, minimum creep rate, and time to 1% strain data are analyzed. The 3500 h rupture life stress and stress to obtain 1% strain in 3500 h are also estimated.

  4. Creep-fatigue criteria and inelastic behavior of modified 9Cr-1Mo steel at elevated temperatures. Final report

    SciTech Connect

    Ruggles, M.B.; Ogata, T.

    1994-02-01

    The ever increasing demand for safety requires that stringent and conservative methodology be developed for design and analysis of reactor components. At present modified 9Cr-1Mo steel is a candidate material for construction of steam generators in fast breeder reactors. Therefore high-temperature material properties and extensive insight into deformation behavior and creep-fatigue life are required to develop design guidelines for use of modified 9Cr-1Mo steel in actual plant components. However, existing information on creep-fatigue and deformation response of modified 9Cr-1Mo steel is insufficient, and further experimental and modeling efforts are needed. A joint effort between the Electric Power Research Institute (EPRI) in the United States and the Central Research Institute of Electric Power Industry (CRIEPI) in Japan was started in 1991 to investigate the inelastic behavior of and to develop creep-fatigue criteria for modified 9Cr-1Mo steel at elevated temperatures. The current program focuses on uniaxial and biaxial fatigue, creep, and creep-fatigue tests. Results of this effort are presented in this report. Section 2 introduces the test material and experimental arrangement. Uniaxial exploratory deformation tests and unified constitutive equations for inelastic analysis of modified 9Cr-1Mo steel are presented in Sections 3 and 4, respectively. Axial fatigue and creep-fatigue test results are discussed in Section 5. Section 6 is devoted to constant stress creep tests. Biaxial fatigue and creep-fatigue tests are described in Section 7. Progress in creep-fatigue life evaluation is reported in Section 8.

  5. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    NASA Technical Reports Server (NTRS)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  6. Multimechanism-Deformation Parameters of Domal Salts Using Transient Creep Analysis

    SciTech Connect

    MUNSON, DARRELL E

    1999-09-01

    Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, among the largest developers of storage caverns along the Gulf Coast is the Strategic Petroleum Reserve (SPR) which has purchased or constructed 62 crude oil storage caverns in four storage sites (domes). Although SPR and commercial caverns have been operated economically for many years, the caverns still exhibit some relatively poorly understood behaviors, especially involving creep closure volume loss and hanging string damage from salt falls. Since it is possible to postulate that some of these behaviors stem from geomechanical or reformational aspects of the salt, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable value. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of limited non-steady state data to establish an approach or bound to steady state, as an estimate of the steady state behavior of a given salt. This permitted analysis of sparse creep databases for domal salts. It appears that a shortcoming of this steady state analysis method is that it obscures some critical differences of the salt material behavior. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on integration of the Multimechanism-Deformation (M-D) creep constitutive model to obtain fits to the transient response. This integration process permits definition of all the material sensitive parameters of the model, while those parameters that are constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a

  7. Creep and recovery behaviors of magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix

    NASA Astrophysics Data System (ADS)

    Qi, S.; Yu, M.; Fu, J.; Li, P. D.; Zhu, M.

    2016-01-01

    This paper mainly investigated the creep and recovery behaviors of magnetorheological elastomers (MRE) based on polyurethane/epoxy resin (EP) graft interpenetrating polymer networks (IPNs). The influences of constant stress level, content of EP, particle distribution, magnetic field and temperature on the creep and recovery behaviors were systematically investigated. As expected, results suggested that the presence of IPNs leads to a significant improvement of creep resistance of MRE, and creep and recovery behaviors of MRE were highly dependent on magnetic field and temperature. To further understand its deformation mechanism, several models (i.e., Findley’s power law model, Burgers model, and Weibull distribution equation) were used to fit the measured creep and recovery data. Results showed that the modeling of creep and recovery of samples was satisfactorily conducted by using these models. The influences of content of EP and magnetic field on fitting parameters were discussed, and relevant physical mechanism was proposed to explain it qualitatively.

  8. Comparison of Accelerated Compressive Creep Behavior of Virgin HDPE Using Thermal and Energy Approaches

    NASA Astrophysics Data System (ADS)

    Bozorg-Haddad, Amir; Iskander, Magued

    2011-10-01

    This article compares two available approaches for accelerating the creep response of viscoelastic materials, such as High Density Polyethylene (HDPE), which is increasingly gaining attention for use in construction. Thermal acceleration methods to predict the tensile creep of polymers are already available. The Time-Temperature Superposition (TTS) phenomenon is the basis of several available methods, and an ASTM standard for tensile creep of geosynthetics is based on one of its derivatives, the Stepped Isothermal Method (SIM). In this article, both TTS and SIM have been adapted to study the compressive creep of virgin HDPE. An alternate approach, based on the equivalence of strain energy density (SED) between conventional constant-stress creep tests and strain-controlled stress-strain tests, is also adapted for accelerated compressive creep of HDPE. There is remarkably a good agreement among the creep behaviors obtained from conventional tests, TTS, SIM, and SED predictions for virgin HDPE.

  9. Creep-fatigue analysis by strain-range partitioning.

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Hirschberg, M. H.

    1971-01-01

    The framework of a new method is outlined for treating creep-fatigue behavior of metals. Inelastic strain-ranges are partitioned into the components of (1) completely reversed plasticity, (2) tensile plasticity reversed by compressive creep, or tensile creep reversed by compressive plasticity, and (3) completely reversed creep. Each of these components is shown to be related to cyclic life by a Manson-Coffin type power-law equation. A linear life fraction rule is used to combine the damaging effects of the individual components enabling the prediction of life. Test results are presented for a 2.25 Cr-1 Mo steel as well as limited information for a Type 316 stainless steel.

  10. Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The creep and rupture behavior of 001-line-oriented single crystals of the nickel-base superalloy NASAIR 100 was investigated at temperatures of 925 and 1000 C. In the stress and temperature ranges studied, the steady state creep rate, time to failure, time to the onset of secondary creep, and the time to the onset of tertiary creep all exhibited power law dependencies on the applied stress. The creep rate exponents for this alloy were between seven and eight, and the modulus-corrected activation energy for creep was approximately 350 kjoule/mole, which was comparable to the measured activation energy for Ostwald ripening of the gamma-prime precipitates. Oriented gamma-prime coarsening to form lamellae perpendicular to the applied stress was very prominent during creep. At 1000 C, the formation of a continuous gamma-gamma-prime lamellar structure was completed during the primary creep stage. Shear through the gamma-gamma-prime interface is considerd to be the rate limiting step in the deformation process. Gradual thickening of the lamellae appeared to be the cause of the onset of tertiary creep. At 925 C, the fully developed lamellar structure was not achieved until the secondary or tertiary creep stages. At this temperature, the gamma-gamma-prime lamellar structure did not appear to be as beneficial for creep resistance as at the higher temperature.

  11. Transient Creep Behavior of a Plain Woven SiC Fiber/SiC Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bessho, Takayuki; Ogasawara, Toshio; Aoki, Takuya; Ishikawa, Takashi; Ochi, Yasuo

    The present work investigates the transient creep behavior of a plain woven Tyranno™ Lox-M (Si-Ti-C-O) fiber/SiC matrix composite at 1473K in air. Tensile creep tests were carried out under a constant load between 80 and 160MPa. A creep strain rate is generally represented by ɛ∝ σn with a constant stress exponent, however the stress exponent decreased with time for this composite material. Monotonic tensile tests were also conducted for loading rates of 0.03, 0.3, and 3kN/min in order to investigate the effect of creep strain on tensile stress/strain behavior. Based on the empirical transient creep equation and creep-hardening model, stress/strain curves under monotonic tensile loading were predicted. A good correlation was obtained between the predicted and measured composite stress/strain curves using strain-hardening model.

  12. Estimation of long-term creep behavior of salt

    SciTech Connect

    Chun, R.C.

    1980-08-01

    A computer routine for both primary and secondary creep laws has been developed using a modified strain hardening law. The computations reveal that results from Heard's steady-state creep law and Lomenick and Bradshaw's primary creep law can differ from each other by a factor of thirty after about 6 hours of creep deformation, but the difference diminishes as time becomes large. The belief that these two creep laws may yield long-term results that are orders of magnitude apart is shown to be unfounded.

  13. Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Yu, Pengfei; Cheng, Hu; Zhang, Huan; Diao, Haoyan; Shi, Yunzhu; Chen, Bilin; Chen, Peiyong; Feng, Rui; Bai, Jie; Jing, Qin; Ma, Mingzhen; Liaw, P. K.; Li, Gong; Liu, Riping

    2016-12-01

    Nanoindentation creep behavior was studied on a coarse-grained Al0.3CoCrFeNi high-entropy alloy with a single face-centered cubic structure. The effects of the indentation size and loading rate on creep behavior were investigated. The experimental results show that the hardness, creep depth, creep strain rate, and stress exponent are all dependent on the holding load and loading rate. The creep behavior shows a remarkable indentation size effect at different maximum indentation loads. The dominant creep mechanism is dislocation creep at high indentation loads and self-diffusion at low indentation loads. An obvious loading rate sensitivity of creep behavior is found under different loading rates for the alloy. A high loading rate can lead to a high strain gradient, and numerous dislocations emerge and entangle together. Then during the holding time, a large creep deformation characteristic with a high stress exponent will happen.

  14. Modeling of Different Fiber Type and Content SiC/SiC Minicomposites Creep Behavior

    NASA Technical Reports Server (NTRS)

    Almansour, Amjad S.; Morscher, Gregory N.

    2017-01-01

    Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature applications in the aerospace and nuclear industries. However, creep damage mechanism in CMCs is the most dominant mechanism at elevated temperatures. Consequently, the tensile creep behavior of Hi-Nicalon, Hi-Nicalon Type S SiC fibers and Chemical vapor infiltrated Silicon Carbide matrix (CVI-SiC) were characterized and creep parameters were extracted from creep experiments. Some fiber creep tests were performed in inert environment at 1200 C on individual fibers. Creep behavior of different fiber content pristine and precracked Hi-Nicalon and Hi-Nicalon Type S reinforced minicomposites with BN interphases and CVI-SiC matrix were then modelled using the creep data found in this study and the literature and compared with creep experiments results for the pristine and precracked Hi-Nicalon and Hi-Nicalon Type S minicomposites. Finally, the effects of load-sharing and matrix cracking on CMC creep behavior will be discussed.

  15. Determination of Creep Behavior of Thermal Barrier Coatings Under Laser Imposed High Thermal and Stress Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    A laser sintering/creep technique has been established to determine the creep behavior of thermal barrier coatings under steady-state high heat flux conditions. For a plasma sprayed zirconia-8 wt. % yttria coating, a significant primary creep strain and a low apparent creep activation energy were observed. Possible creep mechanisms involved include stress induced mechanical sliding and temperature and stress enhanced cation diffusion through the splat and grain boundaries. The elastic modulus evolution, stress response, and total accumulated creep strain variation across the ceramic coating are simulated using a finite difference approach. The modeled creep response is consistent with experimental observations.

  16. Multi-Scale Creep Analysis of Plain-Woven Laminates Using Time-Dependent Homogenization Theory:. Effects of Laminate Configuration

    NASA Astrophysics Data System (ADS)

    Nakata, K.; Matsuda, T.; Kawai, M.

    In this study, multi-scale creep analysis of plain-woven GFRP laminates is performed using the time-dependent homogenization theory developed by the present authors. First, point-symmetry of internal structures of plain-woven laminates is utilized for a boundary condition of unit cell problems, reducing the domain of analysis to 1/4 and 1/8 for in-phase and out-of-phase laminate configurations, respectively. The time-dependent homogenization theory is then reconstructed for these domains of analysis. Using the present method, in-plane creep behavior of plain-woven glass fiber/epoxy laminates subjected to a constant stress is analyzed. The results are summarized as follows: (1) The in-plane creep behavior of the plain-woven GFRP laminates exhibits marked anisotropy. (2) The laminate configurations considerably affect the creep behavior of the laminates.

  17. Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi

    The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.

  18. Creep-rupture behavior of iron superalloys in high pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1981-01-01

    Two cast alloys (CRM-6D and XF-818) and four sheet alloys (A-26, Incoloy 800H, N-155, and 19-9DL) in the thickness range of 0.79 to 0.99 mm were evaluated for use in the Stirling engine. The creep rupture behavior of these iron base high temperature alloys is being determined in air for 10 hr to 3,00 hr, and in 20.7 MPa (3,000 psi) H2 for 10 to 300 hr at temperatures of 650 deg to 925 deg. Material procurement, preparation and air creep rupture testing are described and existing data is analyzed. Systems for the high pressure hydrogen testing are discussed. Statistical analysis of temperature-compensated rupture data for each alloy is included.

  19. Elastic-plastic-creep analysis of brazed carbon-carbon/OFHC divertor tile concepts for TPX

    SciTech Connect

    Chin, E.; Reis, E.E.

    1995-12-31

    The 7.5 MW/m{sup 2} heat flux requirements for the TPX divertor necessitate the use of high conductivity carbon-carbon (C-C) tiles that are brazed to annealed copper (OFHC) coolant tubes. Significant residual stresses are developed in the C-C tiles during the braze process due to large differences in the thermal expansion coefficients between these materials. Analyses which account for only the elastic-plastic strains developed in the OFHC tube may not accurately characterize the behavior of the tube during brazing. The elevated temperature creep behavior of the copper coolant tubes intuitively should reduce the calculated residual stresses in the C-C tiles. Two divertor tile concepts, the monoblock and the archblock, were analyzed for residual stress using 2-D finite element analysis for elastic-plastic-creep behavior of the OFHC tube during an assumed braze cooldown cycle. The results show that the inclusion of elevated temperature creep effects decrease the calculated residual stresses by only about 10% when compared to those analyses in which only elastic-plastic behavior of the OFHC is accounted for. The primary reason that creep effects at higher temperatures are not more significant is due to the low yield stress and nearly flat-top stress-strain curve of annealed OFHC. Since high temperature creep plays less of a role in the residual stress levels than previously thought, future scoping studies can be done in an elastic-plastic analysis with confidence that the stresses will be within approximately 10% of an elastic-plastic-creep analysis.

  20. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  1. Creep behavior comparison of CMW1 and palacos R-40 clinical bone cements.

    PubMed

    Liu, C; Green, S M; Watkins, N D; Gregg, P J; McCaskie, A W

    2002-11-01

    The restrained dynamic creep behaviors of two clinical bone cements, Palacos R-40 and CMW1 have been investigated at room temperature and body temperature. It was found that the two cements demonstrated significantly different creep deformations, with Palacos R-40 bone cement demonstrating higher creep strain than CMW1 bone cement at each loading cycle. For both cements, two stages of creep were identified with a higher creep rate during early cycling followed by a steady-state creep rate. The test temperature had a strong effect on the creep performance of the bone cements with higher creep rate observed at body temperature. The relationship between creep deformation and loading cycles can be expressed by single logarithmic model. The SEM examinations revealed that CMW1 bone cement is more sensitive to defects within the specimen especially to the defects at the edges of the specimen than Palacos R-40 bone cement. However, in the absence of micro-cracks or defects within the inner surface layer, the dynamic loading (at less than 10.6 MPa) is unlikely to produce micro-cracks in the CMW1 bone cement. The different behaviors between the two bone cements may be attributed to differences in chemical compositions and molecular weight distributions.

  2. Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the

  3. Model for transient creep of southeastern New Mexico rock salt

    SciTech Connect

    Herrmann, W; Wawersik, W R; Lauson, H S

    1980-11-01

    In a previous analysis, existing experimental data pertaining to creep tests on rock salt from the Salado formation of S.E. New Mexico were fitted to an exponential transient creep law. While very early time portions of creep strain histories were not fitted very well for tests at low temperatures and stresses, initial creep rates in particular generally being underestimated, the exponential creep law has the property that the transient creep strain approaches a finite limit with time, and is therefore desirable from a creep modelling point of view. In this report, an analysis of transient creep is made. It is found that exponential transient creep can be related to steady-state creep through a universal creep curve. The resultant description is convenient for creep analyses where very early time behavior is not important.

  4. Creep Analysis for a Wide Stress Range Based on Stress Relaxation Experiments

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Naumenko, Konstantin; Gorash, Yevgen

    Many materials exhibit a stress range dependent creep behavior. The power-law creep observed for a certain stress range changes to the viscous type creep if the stress value decreases. Recently published experimental data for advanced heat resistant steels indicates that the high creep exponent (in the range 5-12 for the power-law behavior) may decrease to the low value of approximately 1 within the stress range relevant for engineering structures. The aim of this paper is to confirm the stress range dependence of creep behavior based on the experimental data of stress relaxation. An extended constitutive model for the minimum creep rate is introduced to consider both the linear and the power law creep ranges. To take into account the primary creep behavior a strain hardening function is introduced. The material constants are identified for published experimental data of creep and relaxation tests for a 12%Cr steel bolting material at 500°C. The data for the minimum creep rate are well-defined only for moderate and high stress levels. To reconstruct creep rates for the low stress range the data of the stress relaxation test are applied. The results show a gradual decrease of the creep exponent with the decreasing stress level. Furthermore, they illustrate that the proposed constitutive model well describes the creep rates for a wide stress range.

  5. The effect of aluminium on the creep behavior of titanium aluminide alloys

    SciTech Connect

    Nandy, T.K.; Mishra, R.S.; Gogia, A.K.; Banerjee, D.

    1995-03-15

    Small increases in the Al content of Ti{sub 3}Al-Nb alloys are known to improve creep resistance at the expense of the room temperature ductility. Though considerable work has been done on the creep behavior of titanium aluminide alloys, a systematic investigation involving the role of Al on the creep of aluminides is lacking. In the present study the authors have therefore carried out a complete investigation on stress and temperature effects on two alloys with differing Al contents, Ti-24Al-15Nb and Ti-26Al-15Nb (nominal composition in at%) in order to understand the effect of Al in terms of power law creep behavior. The following conclusions are made: (1) A strong Al effect on the creep resistance of O phase alloys in the Ti-Al-Nb systems has been confirmed, through a study of stress and temperature effects on the creep behavior of the Ti-24Al-15Nb and the Ti-26Al-15Nb compositions. (2) It has been shown, however, that the small differences in Al do not affect either the activation energies for creep ({approximately}370 kJ/mole) or the creep mechanism (climb controlled creep with a stress exponent of 4). The activation energies and stress exponents are similar to that observed in single phase O alloys. (3) It is suggested that Al influences creep strength through an intrinsic effect on the pre-exponential term AD{sub o} in the power law creep equation. It is possible that this effect is related to a higher ordering energy of the O phase with increasing Al content.

  6. An investigation of creep behavior in an SiC-2124 Al composite

    SciTech Connect

    Li, Y.; Mohamed, F.A.

    1997-11-01

    The creep behavior of powder metallurgy (PM) 10 vol.% silicon carbide particulate reinforced 2124 aluminum (SiC{sub p}-2124 Al composite) was studied under experimental conditions identical with those used in an earlier investigation on the unreinforced matrix alloy, PM 2124 Al. The results show that the creep behavior of PM 10 vol.% SiC{sub p}-2124 Al composite is similar to that of PM 2124 Al with regard to: (a) the variation in both the apparent stress exponent and the apparent activation energy for creep with applied stress, (b) the value of the true stress exponent (n = 4.5), (c) the value of the true activation energy for creep (Q{sub c} {approx} Q{sub D}), (d) the interpretation of creep in terms of a threshold stress and (e) the temperature dependence of the threshold stress. These similarities indicate that deformation in the matrix alloy, 2124 Al, controls the creep of the composite, 10 vol.% SiC{sub p}-2124 Al composite; and that SiC particulates are not directly responsible for the threshold stress behavior in the composite. A comparison between the creep rates of the composite and those of the unreinforced matrix alloy reveals that, for constant temperature, strengthening arising from SiC particulates is eliminated at high strain rates and the creep strength of PM 10 vol.% SiC{sub p}-2124 Al composite becomes essentially equal to that of the unreinforced matrix alloy, PM 2124 Al.

  7. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1985-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  8. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  9. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1985-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  10. Creep behavior of MoSi{sub 2}-SiC composites

    SciTech Connect

    Butt, D.P.; Maloy, S.A.; Kung, H.; Korzekwa, D.A.; Petrovic, J.J.

    1993-12-31

    Using a cylindrical indenter, indentation creep behavior of hot pressed and HIPed MoSi{sub 2}-SiC composites containing 0--40% SiC by volume, was characterized at 1000--1200C, 258--362 MPa. Addition of SiC affects the creep behavior of MoSi{sub 2} in a complex manner by pinning grain boundaries during pressing, thus leading to smaller MoSi{sub 2} grains; by obstructing or altering both dislocation motion and grain boundary sliding; and by increasing the overall yield stress of the material. Comparisons are made between indentation and compressive creep studies. It is shown that under certain conditions, compressive creep and indentation creep measurements yield comparable results after correcting for effective stresses and strain rates beneath the indenter.

  11. Long-time creep behavior of the niobium alloy C-103

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Klopp, W. D.

    1980-01-01

    The creep behavior of C-103 was studied as a function of stress, temperature, and grain size for test times to 19000 hr. Over the temperature range 827 to 1204 C and the stress range 6.89 to 138 MPa, only tertiary (accelerating) creep was observed. The creep strain epsilon can be related to time t by an exponential relation epsilon = epsilon(0) + K e raised to power (st) - 1), where epsilon (0) is initial creep strain, K is the tertiary creep strain parameter, and s is the tertiary creep rate parameter. The observed stress exponent 2.87 is similar to the three power law generally observed for secondary (linear) creep of Class I solid solutions. The apparent activation energy 374 kj/g mol is close to that observed for self diffusion of pure niobium. The initial tertiary creep rate was slightly faster for fine grained than for coarse-grained material. The strain parameter K can be expressed as a combination of power functions of stress and grain size and an exponential function of temperature. Strain time curves generated by using calculated values for K and s showed reasonable agreement with observed curves to strains of at least 4 percent. The time to 1 percent strain was related to stress, temperature, and grain size in a similar manner as the initial tertiary creep rate.

  12. Out-of-pile creep behavior of uranium carbide

    NASA Technical Reports Server (NTRS)

    Wright, T. R.; Seltzer, M. S.

    1974-01-01

    Compression creep tests were investigated on various UC-based fuel materials having a variation in both density and composition. Specimens were prepared by casting and by hot pressing. Steady-state creep rates were measured under vacuum at 1400 to 1800 C in the stress range 500-4000 psi.

  13. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  14. Creep and Fracture Behavior of Peak-Aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct)

    NASA Astrophysics Data System (ADS)

    Yin, D. D.; Wang, Q. D.; Boehlert, C. J.; Janik, V.

    2012-09-01

    The tensile-creep and creep-fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) was investigated at temperatures between 523 K (250 °C) to 598 K (325 °C) (0.58 to 0.66 T m) and stresses between 30 MPa to 140 MPa. The minimum creep rate of the alloy was almost two orders of magnitude lower than that for WE54-T6 and was similar to that for HZ32-T5. The creep behavior exhibited an extended tertiary creep stage, which was believed to be associated with precipitate coarsening. The creep stress exponent value was 4.5, suggesting that dislocation creep was the rate-controlling mechanism during secondary creep. At T = 573 K (300 °C), basal slip was the dominant deformation mode. The activation energy for creep ( Q avg = 221 ± 20 kJ/mol) was higher than that for self-diffusion in magnesium and was believed to be associated with the presence of second-phase particles as well as the activation of nonbasal slip and cross slip. This finding was consistent with the slip-trace analysis and surface deformation observations, which revealed that the nonbasal slip was active. The minimum creep rate and time-to-fracture followed the original and modified Monkman-Grant relationships. The microcracks and cavities nucleated preferentially at grain boundaries and at the interface between the matrix phase and the second phase. In-situ creep experiments highlighted the intergranular cracking evolution.

  15. Creep behavior of starch-based nanocomposite films with cellulose nanofibrils.

    PubMed

    Li, Meng; Li, Dong; Wang, Li-jun; Adhikari, Benu

    2015-03-06

    Nanocomposite films were successfully prepared by incorporating cellulose nanofibrils (CNFs) from sugar beet pulp into plasticized starch (PS) at CNFs concentration of 5-20%. The storage (G') and loss (G″) moduli, creep and creep-recovery behavior of these films were studied. The creep behavior of these films at long time frame was studied using time-temperature superposition (TTS). The CNFs were uniformly distributed within these films up to 15% of CNFs. The PS-only and the PS/CNFs nanocomposite films exhibited dominant elastic behavior. The incorporation of CNFs increased both the G' and G″. The CNFs improved the creep resistance and reduced the creep recovery rate of the PS/CNFs nanocomposite films. TTS method was successfully used to predict the creep behavior of these films at longer time frame. Power law and Burgers model were capable (R(2)>0.98) of fitting experimental G' versus angular frequency and creep strain versus time data, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Creep behavior of magnetorheological elastomers under combined magnetic and mechanical loads

    NASA Astrophysics Data System (ADS)

    Ghafoorianfar, Nima

    2016-04-01

    In this work, creep behavior of magnetorheological elastomers is investigated under combined magnetic and mechanical loading conditions. For the first time, a creep behavior model of MR elastomer is presented in this work in compression mode. A Weibull distribution function is used to model this behavior of MRE very well for both magnetic and mechanical loading conditions. This new model, which have been used previously for modeling recovery of thermosetting polymeric materials, is able to demonstrate the MRE creep behavior more accurately compared to previous models in the literature. The results show that the creep intensity is highly dependent on the carbonyl iron particle volume percentage of MRE samples, as well as the applied magnetic field.

  17. Propagating episodic creep and the aseismic slip behavior of the Calaveras fault north of Hollister, California

    SciTech Connect

    Evans, K.F.; Burford, R.O.; King, G.C.P.

    1981-05-10

    A detailed kinematic study of fault slip occurring from the surface to a depth of about 7 km on the Calaveras fault north of Hollister was conducted during the summer of 1977. The observations coincided with a period of propagating episodic fault creep activity sensed along the fault trace. Data used in the investigation consist of creepmeter records, near-field strainmeter observations, and high-resolution geodetic measurements, all collected contemporaneously over a period of 4 months. Detailed descriptions and analyses of the creepmeter and geodetic data have been presented elsewhere. The near-field strain measurements are here reported in detail, and their analysis draws upon the previous two data sets for support. The strainmeter observations are most sensitive to slip occurring in the upper 2 km; hence the emphasis of the paper is placed upon the role of propagating episode creep in the broad-scale behavior of the fault. The results suggest that propagating episodic fault creep as sensed along the fault trace is confined to the upper kilometer or so of the crust and represents the response of the surface layers to a longer-term form of episode aseismic slip occurring below. The mean form of the advancing rupture front within the upper kilometer is ostensibly the same as that indicated by records from the surface creepmeters. Evidence is presented, however, which suggests that propagating creep events may not always break the surface and may propagate at velocities much slower and at amplitudes significantly larger than those generally observed at the surface.

  18. Type IV Creep Damage Behavior in Gr.91 Steel Welded Joints

    NASA Astrophysics Data System (ADS)

    Hongo, Hiromichi; Tabuchi, Masaaki; Watanabe, Takashi

    2012-04-01

    Modified 9Cr-1Mo steel (ASME Grade 91 steel) is used as a key structural material for boiler components in ultra-supercritical (USC) thermal power plants at approximately 873 K (600 °C). The creep strength of welded joints of this steel decreases as a result of Type IV creep cracking that forms in the heat-affected zone (HAZ) under long-term use at high temperatures. The current article aims to elucidate the damage processes and microstructural degradations that take place in the HAZ of these welded joints. Long-term creep tests for base metal, simulated HAZ, and welded joints were conducted at 823 K, 873 K, and 923 K (550 °C, 600 °C, and 650 °C). Furthermore, creep tests of thick welded joint specimens were interrupted at several time steps at 873 K (600 °C) and 90 MPa, after which the distribution and evolution of creep damage inside the plates were measured quantitatively. It was found that creep voids are initiated in the early stages (0.2 of life) of creep rupture life, which coalesce to form a crack at a later stage (0.8 of life). In a fine-grained HAZ, creep damage is concentrated chiefly in an area approximately 20 pct below the surface of the plate. The experimental creep damage distributions coincide closely with the computed results obtained by damage mechanics analysis using the creep properties of a simulated fine-grained HAZ. Both the concentration of creep strain and the high multiaxial stress conditions in the fine-grained HAZ influence the distribution of Type IV creep damage.

  19. Creep Behavior of Solid Solution Strengthened Y3Al5O12

    DTIC Science & Technology

    2007-11-02

    DATES COVERED Final Technical Report 15 Feb 97 to 29 Aug 97 4. TITLE AND SUBTITLE Creep Behavior of Solid Solution Strengthened Y3A15012 6...Final Report Title: Creep Behavior of Solid Solution Strengthened Y3AI5012 Award Number: F49620-97-1-0097 For the period of: 2/14/97-8/31/97...been investigated at present in these oxides is through the formation of solid solution alloys. For the case of oxides two different possible solid

  20. Creep analysis of fuel plates for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein.

  1. Creep behavior of commercial FeCrAl foils: beneficial and detrimental effect of oxidation

    SciTech Connect

    Dryepondt, Sebastien N; Pint, Bruce A; Lara-Curzio, Edgar

    2012-01-01

    Creep tests were performed at 875 and 1050 C on commercially available FeCrAl foils (~50 m, 2 mil thickness) over a wide range of stress and duration to characterize their creep behavior. The oxide scales formed on the creep specimens were analyzed and compared to those that formed on unstressed specimens to assess the effect of stress and strain on oxide growth mechanisms. Below a specific stress threshold, creep rate and lifetime become independent of the applied load and rupture occurs due to the onset of breakaway oxidation. A creep rate model based on the strengthening of the FeCrAl foils due to load-bearing by the thermally-grown alumina scale was observed to be in good agreement with the experimental results.

  2. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  3. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  4. Creep behavior of 6 micrometer linear low density polyethylene film

    NASA Technical Reports Server (NTRS)

    Simpson, J. M.; Schur, W. W.

    1993-01-01

    Creep tests were performed to provide material characteristics for a 6.4-micron polyethylene film used to construct high altitude balloons. Results suggest simple power law relationships are adequate for stresses below about 4.83 MPa.

  5. Development of a steady state creep behavior model of polycrystalline tungsten for bimodal space reactor application

    SciTech Connect

    Purohit, A.; Hanan, N.A.; Bhattacharyya, S.K.; Gruber, E.E.

    1995-02-01

    The fuel element for one of the many reactor concepts being currently evaluated for bimodal applications in space consists of spherical fuel particles clad with tungsten or alloys of tungsten. The fuel itself consists of stabilized UO{sub 2}. One of the life limiting phenomena for the fuel element is failure of the cladding because of creep deformation. This report summarizes the information available in literature regarding the creep deformation of tungsten and its alloys and proposes a relation to be used for calculating the creep strains for elevated temperatures in the low stress region ({sigma} {le} 20 MPa). Also, results of the application of this creep relation to one of the reactor design concepts (NEBA-3) are discussed. Based on the traditional definition of creep deformation, the temperatures of 1500 K to 2900 K for tungsten and its alloys are considered to be in the {open_quotes}high{close_quotes} temperature range. In this temperature range, the rate controlling mechanisms for creep deformation are believed to be non-conservative motion of screw dislocations and short circuit diffusional paths. Extensive theoretical work on creep and in particular for creep of tungsten and its alloys have been reported in the literature. These theoretical efforts have produced complex mathematical models that require detailed materials properties. These relations, however, are not presently suitable for the creep analysis because of lack of consistent material properties required for their use. Variations in material chemistry and thermomechanical pre-treatment of tungsten have significant effects on creep and the mechanical properties. Analysis of the theoretical models and limited data indicates that the following empirical relation originally proposed by M. Jacox of INEL and the Air Force Phillips Laboratory, for calculating creep deformation of tungsten cladding, can be used for the downselection of preliminary bimodal reactor design concepts.

  6. Creep analysis of PLLA: PGA copolymer craniofacial plates.

    PubMed

    Pietrzak, William S

    2012-09-01

    Bioabsorbable fixation device failures occur clinically on occasion, with failures often brittle in nature. However, creep failure may also occur for implants that are subjected to sustained loads whereby the device may slowly deform over time, perhaps leading to fracture. Even without fracture occurring, the device may become too distorted to function. There is little in the literature regarding creep performance of bioabsorbable devices such as plates and screws. This study investigated the creep characteristics of craniofacial plates and screws made of a copolymer of 82% poly-L-lactic acid and 18% polyglycolic acid. Four-hole straight plates were attached to 2 rectangular portions of synthetic bone substrate using 2.0-mm-diameter bioabsorbable screws (2 screws used to attach the plate to each substrate portion). The constructs were submersed in phosphate-buffered saline (pH 7.4, 37°C) and placed in tension with 3 load configurations, that is, 230, 460, and 1140 g, for at least 6 days. Creep rate was constant at a given load and was directly proportional to load (4.7, 14.3, and 33.3 μm/h for 230-, 460-, and 1140-g loads, respectively). The data conformed well to basic creep theory analysis and provided an estimate of the absolute viscosity of the polymer of 8.7 × 10(12) ± 0.81 × 10(12) P (average ± SEM), which is intermediate between that of soft and hard tissue, although closer to the latter. Surgeons and engineers should be aware of the potential for creep to occur when designing bioabsorbable implants and investigating new clinical applications.

  7. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  8. Creep Behavior of a Sn-Ag-Bi Pb-Free Solder

    PubMed Central

    Vianco, Paul; Rejent, Jerome; Grazier, Mark; Kilgo, Alice

    2012-01-01

    Compression creep tests were performed on the ternary 91.84Sn-3.33Ag-4.83Bi (wt.%, abbreviated Sn-Ag-Bi) Pb-free alloy. The test temperatures were: −25 °C, 25 °C, 75 °C, 125 °C, and 160 °C (± 0.5 °C). Four loads were used at the two lowest temperatures and five at the higher temperatures. The specimens were tested in the as-fabricated condition or after having been subjected to one of two air aging conditions: 24 hours at either 125 °C or 150 °C. The strain-time curves exhibited frequent occurrences of negative creep and small-scale fluctuations, particularly at the slower strain rates, that were indicative of dynamic recrystallization (DRX) activity. The source of tertiary creep behavior at faster strain rates was likely to also be DRX rather than a damage accumulation mechanism. Overall, the strain-time curves did not display a consistent trend that could be directly attributed to the aging condition. The sinh law equation satisfactorily represented the minimum strain rate as a function of stress and temperature so as to investigate the deformation rate kinetics: dε/dtmin = Asinhn (ασ) exp (−ΔH/RT). The values of α, n, and ΔH were in the following ranges (±95% confidence interval): α, 0.010–0.015 (±0.005 1/MPa); n, 2.2–3.1 (±0.5); and ΔH, 54–66 (±8 kJ/mol). The rate kinetics analysis indicated that short-circuit diffusion was a contributing mechanism to dislocation motion during creep. The rate kinetics analysis also determined that a minimum creep rate trend could not be developed between the as-fabricated versus aged conditions. This study showed that the elevated temperature aging treatments introduced multiple changes to the Sn-Ag-Bi microstructure that did not result in a simple loss (“softening”) of its mechanical strength.

  9. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    NASA Astrophysics Data System (ADS)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  10. Microstructure and Creep Behavior of High-Pressure Die-Cast Magnesium Alloy AE44

    NASA Astrophysics Data System (ADS)

    Zhu, S. M.; Nie, J. F.; Gibson, M. A.; Easton, M. A.; Bakke, P.

    2012-11-01

    The microstructure and creep behavior of a high-pressure die-cast AE44 (Mg-4Al-4RE) alloy have been studied. The creep properties were evaluated at 423 K and 448 K (150 °C and 175 °C) under stresses in the range 90 to 110 MPa. The microstructures before and after creep were examined by transmission electron microscopy (TEM). After creep, AE44 exhibits anomalously high stress exponents ( n = 67 at 423 K [150 °C] and n = 41 at 448 K [175 °C]) and stress-dependant activation energies ranging from 221 to 286 kJ/mol. The dislocation substructure developed during creep is characterized by extensive nonbasal slip and isolated but well-defined subgrain boundaries. It is shown that the anomalously high stress exponents cannot be rationalized by the threshold stress approach that is commonly adopted in analyzing the creep behavior of dispersion-strengthened alloys or metal matrix composites. A comparison in creep resistance is also made between AE44 and AE42 (Mg-4Al-2RE).

  11. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Titran, R. H.

    1988-01-01

    A study was conducted to determine the feasibility of using tungsten fiber reinforced niobium or niobium-1 percent zirconium matrix composites to meet the anticipated increased temperature and creep resistance requirements imposed by advanced space power systems. The results obtained on the short time tensile properties indicated that W/Nb composites showed significant improvements in high temperature strength and offer significant mass reductions for high temperature space power systems. The prime material requirement for space power systems applications is long time creep resistance. A study was conducted to determine the effect of high temperature exposure on the properties of these composites, with emphasis upon their creep behavior at elevated temperatures.

  12. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Titran, R. H.

    1988-01-01

    A study was conducted to determine the feasibility of using tungsten fiber reinforced niobium or niobium-1 percent zirconium matrix composites to meet the anticipated increased temperature and creep resistance requirements imposed by advanced space power systems. The results obtained on the short time tensile properties indicated that W/Nb composites showed significant improvements in high temperature strength and offer significant mass reductions for high temperature space power systems. The prime material requirement for space power systems applications is long time creep resistance. A study was conducted to determine the effect of high temperature exposure on the properties of these composites, with emphasis upon their creep behavior at elevated temperatures.

  13. Fundamental Studies on Ambient Temperature Creep Deformation Behavior of Alpha and Alpha-Beta Titanium Alloys

    DTIC Science & Technology

    2013-01-31

    4 . Dilute Titanium Etchant 81 5. Twinning Rotation Angle and Rotation Axis 81 6 . Creep Curve Parameter n, Time Exponent 82 XI LIST OF FIGURES...TITLE AND SUBTITLE Fundamental Studies on Ambient Temperature Creep Deformation Behavior of Alpha and Alpha-Beta Titanium Alloys 6 . AUTHORS Charles...Treatments 6 2.2. Attaching Fiducial Grid of Au to the Titanium Specimens 8 2.3. Scanning Electron Microscopy. 15 2.4. Online Computerization of Zeiss

  14. AGC 2 Irradiation Creep Strain Data Analysis

    SciTech Connect

    Windes, William E.; Rohrbaugh, David T.; Swank, W. David

    2016-08-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.

  15. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  16. Creep behavior of fiber-reinforced polymeric composites: a review of the technical literature

    SciTech Connect

    Scott, D.W.; Lai, J.S.; Zureick, A.

    1995-06-01

    This report provides a review of the technical literature related to the creep behavior of fiber reinforced polymer (FRP) composites. The review presented here was directed toward those papers that define the direction and line of thinking in the area of experimental techniques that may be candidates for the development of accelerated test methods to predict the long-term performance of FRP composite materials for highway structural applications. Linear and nonlinear viscoelastic theories as they relate to the modeling and prediction of the viscoelastic response of FRP materials under constant loads are included. Accelerated characterization techniques for the viscoelastic behavior of FRP composites including the use of elevated temperatures and frequency domain loading are reviewed. The effects of moisture and temperature on the creep behavior of composites are briefly considered. The interaction between creep behavior and fatigue behavior is also included in the discussion. 60 refs.

  17. Characterization of load dependent creep behavior in medically relevant absorbable polymers.

    PubMed

    Dreher, Maureen L; Nagaraja, Srinidhi; Bui, Hieu; Hong, Danny

    2014-01-01

    While synthetic absorbable polymers have a substantial history of use in medical devices, their use is expanding and becoming more prevalent for devices where long term loading and structural support is required. In addition, there is evidence that current absorbable medical devices may experience permanent deformations, warping (out of plane twisting), and geometric changes in vivo. For clinical indications with long term loading or structural support requirements, understanding the material's viscoelastic properties becomes increasingly important whereas these properties have not been used historically as preclinical indications of performance or design considerations. In this study we measured the static creep, creep recovery and cyclic creep responses of common medically relevant absorbable materials (i.e., poly(l-lactide, PLLA) and poly(l-co-glycolide, PLGA) over a range of physiologically relevant loading magnitudes. The results indicate that both PLLA and PLGA exhibit creep behavior and failure at loads significantly less than the yield or ultimate properties of the material and that significant material specific responses to loading exist. In addition, we identified a strong correlation between the extent of creep in the material and its crystallinity. Results of the study provide new information on the creep behavior of PLLA and PLGA and support the use of viscoelastic properties of absorbable polymers as part of the material selection process. © 2013 Published by Elsevier Ltd.

  18. Creep behavior of oxide dispersion strengthened 8Cr-2WVTa and 8Cr-1W steels

    NASA Astrophysics Data System (ADS)

    Shinozuka, K.; Tamura, M.; Esaka, H.; Shiba, K.; Nakamura, K.

    2009-01-01

    Microstructures and creep behavior of two martensitic oxide dispersion strengthened (ODS) steels 8%Cr-2%W-0.2%V-0.1%Ta (J1) and 8%Cr-1%W (J2) with finely dispersed Y 2Ti 2O 7 have been investigated. Creep tests have been carried out at 670, 700 and 730 °C. Creep strength of J1 is stronger than that of any other ODS martensitic steels and the hoop strength of the ferritic ODS steel cladding. At the beginning of creep test, shrinkage was frequently observed for J1. This is one of the reasons for high creep strength of J1. The δ-ferrite, which is untransformed to austenite at hot isostatic press and hot rolling temperatures, was elongated along the rolling direction, and volume fraction of δ-ferrite in J1 is larger than J2. Although the elongated δ-ferrite affects the anisotropy of creep behavior, the extent of anisotropy in J1 is not so large as that of the ferritic ODS steel.

  19. Creep Behavior of Glass/Ceramic Sealant Used in Solid Oxide Fuel Cells

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Khaleel, Mohammad A.

    2010-01-02

    High operating temperature of solid oxide fuel cells require that sealant must function at high temperature between 600o and 900oC and in the oxidizing and reducing environments of fuel and air. It should be noted that creep deformation becomes relevant for a material when the operating temperature is near or exceeds half of its melting temperature (in degrees of Kelvin). The operating temperatures for most of the solid oxide fuel cells (SOFC) under development in the SECA program are around 800oC, which exceeds the glass transition temperature Tg for most glass ceramic materials. The goal of the study is to develop a creep model to capture the creep behavior of glass ceramic materials at high temperature and to investigate the effect of creep of glass ceramic sealant materials on stresses in glass seal and on the various interfaces of glass seal with other layers. The self-consistent creep models were incorporated into SOFC-MP and Mentat FC, and finite element analyses were performed to quantify the stresses in various parts. The stress in glass seals were released due to its creep behavior during the operating environments.

  20. Viscoelastic properties, creep behavior and degree of conversion of bulk fill composite resins.

    PubMed

    Papadogiannis, D; Tolidis, K; Gerasimou, P; Lakes, R; Papadogiannis, Y

    2015-12-01

    The aim of this study was to investigate the viscoelastic properties and creep behavior of bulk fill composites under different conditions and evaluate their degree of conversion. Seven bulk fill composites were examined: everX Posterior (EV), SDR (SD), SonicFill (SF), Tetric EvoCeram Bulk Fill (TE), Venus Bulk Fill (VE), x-tra base (XB) and x-tra fil (XF). Each material was tested at 21°C, 37°C and 50°C under dry and wet conditions by applying a constant torque for static and creep testing and dynamic torsional loading for dynamic testing. Degree of conversion (%DC) was measured on the top and bottom surfaces of composites with ATR-FTIR spectroscopy. Statistical analysis was performed with two-way ANOVA, Bonferroni's post hoc test and Pearson's correlation coefficient. Shear modulus G ranged from 2.17GPa (VE) to 8.03GPa (XF) and flexural modulus E from 6.16GPa (VE) to 23GPa (XF) when the materials were tested dry at 21°C. The increase of temperature and the presence of water lead to a decline of these properties. Flowable materials used as base composites in restorations showed significantly lower values (p<0.05) than non-base composites, while being more prone to creep deformation. %DC ranged from 47.25% (XF) to 66.67% (SD) at the top material surface and 36.06% (XF) to 63.20% (SD) at the bottom. Bulk fill composites exhibited significant differences between them with base flowable materials showing in most cases inferior mechanical properties and higher degree of conversion than restorative bulk fill materials. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Analysis of test system misalignment in the creep test

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Wang, T. P.

    1980-01-01

    Sheet type rectangular 1100-0 aluminum specimens were tested. The creep strain at the geometric centerline of the specimen is different than that at the neutral axis, and decreases with time. The effect of misalignment, which decreases with creep time, is minimized when creep tests are conducted with long pullrods and large initial strain level (high creep stress).

  2. A Modified Theta Projection Model for Creep Behavior of Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Singh, I. V.; Mishra, B. K.; Ahmad, S.; Venugopal Rao, A.; Kumar, Vikas

    2016-09-01

    In this work, a modified theta projection model is proposed for the constitutive modeling of creep behavior of metals and alloys. In the conventional theta projection model, strain hardening exponent is a function of time and theta, whereas in the modified theta projection model, the exponent is taken as a function of time, theta, and applied stress. The results obtained by the modified theta projection model for Al 2124 T851 alloy at constant uniaxial tensile stress are compared with the experimental results and with the predictions of the conventional theta projection method. The creep behavior of Al 7075 T651 alloy is also predicted using modified and conventional theta projection model and compared with the available experimental data. It is observed that the modified theta projection model captures the creep behavior more accurately as compared to the conventional theta projection model. The modified theta projection model can be used to predict the creep strain of pure metals and class M alloys (similar creep behavior to pure metals) for intermediate range of stress and temperature.

  3. Microstructural effects on the creep and crack propagation behaviors of {gamma}-Ti aluminide alloy

    SciTech Connect

    Lupinc, V.; Onofrio, G.; Nazmy, M.; Staubli, M.

    1999-07-01

    Gamma titanium aluminides class of materials possess several unique physical and mechanical properties. These characteristics can be attractive for specific industrial applications. By applying different heat treatment schedules one can change the microstructural features of this class of materials. In the present investigation, two heat treatment schedules were used to produce two different microstructures, duplex (D) and nearly lamellar (NL) in the cast and HIP'ed Ti-47Al-2W-0.5Si alloy. The tensile strength and creep behavior, in the 700--850 C temperature range, of this alloy have been determined and correlated to the corresponding microstructures. In addition, the fatigue crack propagation behavior in this alloy has been studied at different temperatures. The results on the creep behavior showed that the alloy with nearly lamellar microstructure has a strongly improved creep strength as compared with that of the duplex microstructure.

  4. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and

  5. Studies on Creep Deformation and Rupture Behavior of 316LN SS Multi-Pass Weld Joints Fabricated with Two Different Electrode Sizes

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Kumar, J. Ganesh; Parida, P. K.; Ganesan, V.; Laha, K.

    2017-02-01

    Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.

  6. Steady state creep behavior of particulate-reinforced titanium matrix composites

    SciTech Connect

    Ranganath, S.; Mishra, R.S.

    1996-03-01

    The steady state creep behavior of unreinforced Ti, Ti-Ti{sub 2}C and Ti-TiB-Ti{sub 2}C composites has been examined in the temperature range 823--923 K. It is shown that the creep deformation of unreinforced Ti is governed by climb-controlled creep mechanism for which the stress exponent is between 4.1 and 4.3 and the activation energy is 236 kJ mol{sup {minus}1}. For composites, the stress exponents are between 6 and 7 at 823 K but are similar to unreinforced Ti at 923 K. The measured steady state creep rate of composites is found to be 2--3 orders of magnitude lower than unreinforced Ti in the investigated temperature range. It is then established that the origin of creep strengthening at 823--923 K is due to the combined effects of increased modulus of composites and the refined microstructure. It is further shown that the change of stress exponent of composites at 823 K is because of the change in creep mechanism from lattice-diffusion controlled dislocation climb to pipe-diffusion controlled dislocation climb. By analyzing the creep data, a modification in the dimensionless constant, A = 3.2 {times} 10{sup 5} exp({minus}24.2V{sub r}) for lattice-diffusion regime and A = 9.4 {times} 10{sup 5} exp({minus}28.1V{sub r}) for pipe-diffusion regime, where V{sub r} is the volume fraction of reinforcements, is suggested to account for the influence of reinforcements on creep kinetics.

  7. Study of the rope nonlinear creep behaviors and its influencing factors in the assembly of sheave drives

    NASA Astrophysics Data System (ADS)

    Xu, Chun Tian; Li, Jian Guang; Yao, Ying Xue; Du, Jin Guang; Ding, Jian; Fang, Hong Gen

    2015-08-01

    From three aspects of the stress, temperature, and time, rope creep research is often carried out based on its own ontology without various operation conditions. Thus, it is difficult to accurately reflect its creep behavior in real working conditions. The rope creep, caused by the preload for a long time, will affect the assembly and working synchronous accuracy of sheave drives in the assembly of docking mechanisms. However, it is quite difficult to analyze the rope creep behavior only with simple creep phenomenon, and the experiments still play an important role in obtaining uncertain creep information. In this paper, to study the rope creep behavior of sheave drives in assembling the docking mechanisms, a creep constitutive model is built based on the experimental creep data by the modified Norton-Bailey equation. Also, the rope creep strain laws, affected by the operating conditions, are analyzed. This lays a foundation for improving the assembly efficiency and precision compensation of the serial sheave drives. Experiments validated the effectiveness of the model.

  8. Stress rupture and creep behavior of a low pressure plasma-sprayed NiCoCrAlY coating alloy in air and vacuum

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1987-01-01

    The creep behavior of a NiCoCrAlY coating alloy in air and vacuum at 660 and 850 C is studied. The microstructure of the coating alloy is described. Analysis of the creep curves reveal that the secondary creep rates, the transition from secondary to tertiary creep, and the strain-to-failure are affected by the environment, preexposure, stress, and temperature. It is observed that the rupture lives of the NiCoCrAlY alloy at 660 and 850 C are greater in air than in vacuum. Several mechanisms that may explain the lack of crack growth from surface-connected pores during tests in air are proposed.

  9. Stress rupture and creep behavior of a low pressure plasma-sprayed NiCoCrAlY coating alloy in air and vacuum

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1987-01-01

    The creep behavior of a NiCoCrAlY coating alloy in air and vacuum at 660 and 850 C is studied. The microstructure of the coating alloy is described. Analysis of the creep curves reveal that the secondary creep rates, the transition from secondary to tertiary creep, and the strain-to-failure are affected by the environment, preexposure, stress, and temperature. It is observed that the rupture lives of the NiCoCrAlY alloy at 660 and 850 C are greater in air than in vacuum. Several mechanisms that may explain the lack of crack growth from surface-connected pores during tests in air are proposed.

  10. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  11. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  12. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    NASA Astrophysics Data System (ADS)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  13. Increased variability of bone tissue mineral density resulting from estrogen deficiency influences creep behavior in a rat vertebral body.

    PubMed

    Kim, Do-Gyoon; Navalgund, Anand R; Tee, Boon Ching; Noble, Garrett J; Hart, Richard T; Lee, Hye Ri

    2012-11-01

    Progressive vertebral deformation increases the fracture risk of a vertebral body in the postmenopausal patient. Many studies have observed that bone can demonstrate creep behavior, defined as continued time-dependent deformation even when mechanical loading is held constant. Creep is a characteristic of viscoelastic behavior, which is common in biological materials. We hypothesized that estrogen deficiency-dependent alteration of the mineral distribution of bone at the tissue level could influence the progressive postmenopausal vertebral deformity that is observed as the creep response at the organ level. The objective of this study was thus to examine whether the creep behavior of vertebral bone is changed by estrogen deficiency, and to determine which bone property parameters are responsible for the creep response of vertebral bone at physiological loading levels using an ovariectomized (OVX) rat model. Correlations of creep parameters with bone mineral density (BMD), tissue mineral density (TMD) and architectural parameters of both OVX and sham surgery vertebral bone were tested. As the vertebral creep was not fully recovered during the post-creep unloading period, there was substantial residual displacement for both the sham and OVX groups. A strong positive correlation between loading creep and residual displacement was found (r=0.868, p<0.001). Of the various parameters studied, TMD variability was the parameter that best predicted the creep behavior of the OVX group (p<0.038). The current results indicated that creep caused progressive, permanent reduction in vertebral height for both the sham and OVX groups. In addition, estrogen deficiency-induced active bone remodeling increased variability of trabecular TMD in the OVX group. Taken together, these results suggest that increased variability of trabecular TMD resulting from high bone turnover influences creep behavior of the OVX vertebrae. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Increased Variability of Bone Tissue Mineral Density Resulting from Estrogen Deficiency Influences Creep Behavior in a Rat Vertebral Body

    PubMed Central

    Kim, Do-Gyoon; Navalgund, Anand R.; Tee, Boon Ching; Noble, Garrett J.; Hart, Richard T.; Lee, Hye Ri

    2012-01-01

    Progressive vertebral deformation increases the fracture risk of a vertebral body in the postmenopausal patient. Many studies have observed that bone can demonstrate creep behavior, defined as continued time-dependent deformation even when mechanical loading is held constant. Creep is a characteristic of viscoelastic behavior, which is common in biological materials. We hypothesized that estrogen deficiency-dependent alteration of the mineral distribution of bone at the tissue level could influence the progressive postmenopausal vertebral deformity that is observed as the creep response at the organ level. The objective of this study was thus to examine whether the creep behavior of vertebral bone is changed by estrogen deficiency, and to determine which bone property parameters are responsible for the creep response of vertebral bone at physiological loading levels using an ovariectomized (OVX) rat model. Correlations of creep parameters with bone mineral density (BMD), tissue mineral density (TMD) and architectural parameters of both OVX and sham surgery vertebral bone were tested. As the vertebral creep was not fully recovered during the post-creep unloading period, there was substantial residual displacement for both the sham and OVX groups. A strong positive correlation between loading creep and residual displacement was found (r=0.868, p<0.001). Of the various parameters studied, TMD variability was the parameter that best predicted the creep behavior of the OVX group (p<0.038). The current results indicated that creep caused progressive, permanent reduction in vertebral height for both the sham and OVX groups. In addition, estrogen deficiency-induced active bone remodeling increased variability of trabecular TMD in the OVX group. Taken together, these results suggest that increased variability of trabecular TMD resulting from high bone turnover influence creep behavior of the OVX vertebrae. PMID:22944606

  15. Analysis of available creep and creep-rupture data for commercially heat-treated alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    The Ni-Cr-Fe-Nb alloy 718 is a widely used material in elevated- temperature applications. Currently, it is approved by the American Society of Mechanical Engineers ASME Boiler and Pressure Vessel Code only as a bolting material for elevated-temperature nuclear service. This report presents analyses of available creep and creep-rupture data for commercially heat-treated alloy 718 toward the development of allowable stress levels for this material in general elevated-temperature nuclear service. Available data came from 14 heats of bar, plate, and forging material over the temperature range from 538 to 704{degrees}C. The longest rupture time encompassed by the data was almost 87,000 h. Generalized regression analyses were performed to yield an analytical expression for rupture life as a function of stress and temperature. Heat-to-heat variations were accounted for by lot-centering'' the data. Effects of different solution heat treatment temperatures (T{sub s}) were accounted for by normalizing the creep stresses to the data for T{sub s} = 954{degrees}C. Thus, the results are strictly applicable only for material with this solution treatment. Time and strain to tertiary creep were predicted as functions of rupture life. Creep strain-time data were represented by normalization to the time and strain to tertiary creep and development of master creep curves.'' The results allow estimation of time-dependent allowable stress per American Society of Mechanical Engineers Code Class N-47, and the creep strain-time relationships can be used to develop isochronous stress-strain curves. 29 refs., 44 figs., 14 tabs.

  16. Effect of Tungsten on Long-Term Microstructural Evolution and Impression Creep Behavior of 9Cr Reduced Activation Ferritic/Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Vijayanand, V. D.; Sudha, C.; Saroja, S.

    2017-01-01

    The present study describes the changes in the creep properties associated with microstructural evolution during thermal exposures to near service temperatures in indigenously developed reduced activation ferritic-martensitic steels with varying tungsten (1 and 1.4 wt pct W) contents. The creep behavior has been studied employing impression creep (IC) test, and the changes in impression creep behavior with tungsten content have been correlated with the observed microstructures. The results of IC test showed that an increase in 0.4 pct W decreases the creep rate to nearly half the value. Creep strength of 1.4 pct W steel showed an increase in steels aged for short durations which decreased as aging time increased. The microstructural changes include coarsening of precipitates, reduction in dislocation density, changes in microchemistry, and formation of new phases. The formation of various phases and their volume fractions have been predicted using the JMatPro software for the two steels and validated by experimental methods. Detailed transmission electron microscopy analysis shows coarsening of precipitates and formation of a discontinuous network of Laves phase in 1.4 W steel aged for 10,000 hours at 823 K (550 °C) which is in agreement with the JMatPro simulation results.

  17. Longitudinal Mechano-Sorptive Creep Behavior of Chinese Fir in Tension during Moisture Adsorption Processes

    PubMed Central

    Peng, Hui; Lu, Jianxiong; Jiang, Jiali; Cao, Jinzhen

    2017-01-01

    To provide comprehensive data on creep behaviors at relative humidity (RH) isohume conditions and find the basic characteristics of mechano-sorptive (MS) creep (MSC), the tensile creep behaviors, “viscoelastic creep (VEC)” at equilibrium moisture content and MSC during adsorption process, were performed on Chinese fir in the longitudinal direction under 20%, 40%, 60% and 80% RH (25 °C) and at 1, 1.3, and 1.6 MPa, respectively. The free swelling behavior was also measured, where the climate conditions corresponded with MSC tests. Based on the databases of free swelling, VEC, and MSC, the existence of MS effect was examined, and the application of the rheological model under the assumption of partitioned strain was investigated. The results revealed that both VEC and MSC increased with magnitude of applied stress, and the increasing RH level. Under all RH isohume conditions, the total strain of MSC was greater than that of VEC. The influence of RH level on VEC was attributed to the water plasticization effect, whereas that on MSC was presumed to be the effect of water plasticization and unstable state in the wood cell wall. In addition, the RH level promoted the relaxation behavior in MSC, while it slightly affected the relaxation behavior in VEC. In the future, the rheological model could consider the link between load configuration and the anatomic structural feature of wood. PMID:28796174

  18. Longitudinal Mechano-Sorptive Creep Behavior of Chinese Fir in Tension during Moisture Adsorption Processes.

    PubMed

    Peng, Hui; Lu, Jianxiong; Jiang, Jiali; Cao, Jinzhen

    2017-08-10

    To provide comprehensive data on creep behaviors at relative humidity (RH) isohume conditions and find the basic characteristics of mechano-sorptive (MS) creep (MSC), the tensile creep behaviors, "viscoelastic creep (VEC)" at equilibrium moisture content and MSC during adsorption process, were performed on Chinese fir in the longitudinal direction under 20%, 40%, 60% and 80% RH (25 °C) and at 1, 1.3, and 1.6 MPa, respectively. The free swelling behavior was also measured, where the climate conditions corresponded with MSC tests. Based on the databases of free swelling, VEC, and MSC, the existence of MS effect was examined, and the application of the rheological model under the assumption of partitioned strain was investigated. The results revealed that both VEC and MSC increased with magnitude of applied stress, and the increasing RH level. Under all RH isohume conditions, the total strain of MSC was greater than that of VEC. The influence of RH level on VEC was attributed to the water plasticization effect, whereas that on MSC was presumed to be the effect of water plasticization and unstable state in the wood cell wall. In addition, the RH level promoted the relaxation behavior in MSC, while it slightly affected the relaxation behavior in VEC. In the future, the rheological model could consider the link between load configuration and the anatomic structural feature of wood.

  19. Laminate Analyses, Micromechanical Creep Response, and Fatigue Behavior of Polymer Matrix Composite Materials.

    DTIC Science & Technology

    1982-12-01

    FATIGUE BEHAVIOR of POLYMER MATRIX COMPOSITE MATERIALS , 4 " .’* .. . . ". ... .. ... . . ~December 1982 41 .. FINAL REPORT .Army Research Office I I...DEPARTMENT REPORT UWME-DR-201-108-1 LAMINATE ANALYSES, MICROMECHANICAL CREEP RESPONSE, AND FATIGUE BEHAVIOR OF POLYMER MATRIX COMPOSITE MATERIALS...Behavior of Polymer Matrix Composite 16 Sept. 1979 - 30 Nov. 1982 Materials 6 PERFORMING ORG. REPORT NUMBER UWME-DR-201-108-1 7. AUTHOR(.) S. CONTRACT

  20. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1976-01-01

    A method of analysis was developed for predicting permanent cyclic creep deflections in stiffened panel structures. This method uses creep equations based on cyclic tensile creep tests and a computer program to predict panel deflections as a function of mission cycle. Four materials were investigated - a titanium alloy (Ti-6Al-4V), a cobalt alloy (L605), and two nickel alloys (Rene'41 and TDNiCr). Steady-state and cyclic creep response data were obtained by testing tensile specimens fabricated from thin gage sheet (0.025 and 0.63 cm nominal). Steady-state and cyclic creep equations were developed which describe creep as a function of time, temperature and load. Tests were also performed on subsize (6.35 x 30.5 cm) rib and corrugation stiffened panels. These tests were used to correlate creep responses between elemental specimens and panels. The panel response was analyzed by use of a specially written computer program.

  1. Effect of frozen storage on the creep behavior of human intervertebral discs.

    PubMed

    Dhillon, N; Bass, E C; Lotz, J C

    2001-04-15

    A biomechanical study of the compressive creep behavior of the human intervertebral disc before and after frozen storage. To determine whether frozen storage alters the time-dependent response of the intact human intervertebral disc. The biomechanical properties of the intervertebral disc are generally determined using specimens that have been previously frozen. Although it is well established that freezing does not alter the elastic response of the disc, recent data demonstrate that freezing permanently alters the time-dependent mechanical behavior of porcine discs. Twenty lumbar motion segments from 10 human spines were harvested between 12 and 36 hours postmortem. The specimens were randomly assigned to one of two groups: Group 1 was tested promptly, stored frozen for 3 weeks, then thawed, and tested a second time; Group 2 was stored frozen for 3 weeks, thawed, and then tested. Each specimen was subjected to 5 cycles of compressive creep under 1 MPa for 20 minutes, followed by a 40-minute recovery under no load. After testing each specimen was graded on a degeneration scale. A fluid transport model was used to parameterize the creep data. There was no statistically significant effect of freezing on the elastic or creep response of the discs. The degree of pre-existing degeneration had a significant effect on the creep response, with the more degenerated discs appearing more permeable. Frozen storage for a reasonable time with a typical method does not significantly alter the creep response of human lumbar discs. Freezing may produce subtle effects, but these potential artifacts do not appear to alter the discs' time-dependent behavior in any consequential way. These results may not apply to tissue kept frozen for long durations and with poor packaging.

  2. Behavior of Repeating Earthquake Sequences in Central California and the Implications for Subsurface Fault Creep

    SciTech Connect

    Templeton, D C; Nadeau, R; Burgmann, R

    2007-07-09

    Repeating earthquakes (REs) are sequences of events that have nearly identical waveforms and are interpreted to represent fault asperities driven to failure by loading from aseismic creep on the surrounding fault surface at depth. We investigate the occurrence of these REs along faults in central California to determine which faults exhibit creep and the spatio-temporal distribution of this creep. At the juncture of the San Andreas and southern Calaveras-Paicines faults, both faults as well as a smaller secondary fault, the Quien Sabe fault, are observed to produce REs over the observation period of March 1984-May 2005. REs in this area reflect a heterogeneous creep distribution along the fault plane with significant variations in time. Cumulative slip over the observation period at individual sequence locations is determined to range from 5.5-58.2 cm on the San Andreas fault, 4.8-14.1 cm on the southern Calaveras-Paicines fault, and 4.9-24.8 cm on the Quien Sabe fault. Creep at depth appears to mimic the behaviors seen of creep on the surface in that evidence of steady slip, triggered slip, and episodic slip phenomena are also observed in the RE sequences. For comparison, we investigate the occurrence of REs west of the San Andreas fault within the southern Coast Range. Events within these RE sequences only occurred minutes to weeks apart from each other and then did not repeat again over the observation period, suggesting that REs in this area are not produced by steady aseismic creep of the surrounding fault surface.

  3. Effect of resin variables on the creep behavior of high density hardwood composite panels

    Treesearch

    R.C. Tang; Jianhua Pu; C.Y Hse

    1993-01-01

    The flexural creep behavior of oriented strandboards (OSB) fabricated with mixed high, density hardwood flakes was investigated. Three types of adhesives, liquid phenolic-formaldehyde (LPF), melamine modified urea-formaldehyde (MUF), and LPF (face)/MUF (core) were chosen in this investigation. The resin contents (RC) used were 3.5 percent and 5.0 percent. The flakes...

  4. Creep rupture analysis of a beam resting on high temperature foundation

    NASA Technical Reports Server (NTRS)

    Gu, Randy J.; Cozzarelli, Francis A.

    1988-01-01

    A simplified uniaxial strain controlled creep damage law is deduced with the use of experimental observation from a more complex strain dependent law. This creep damage law correlates the creep damage, which is interpreted as the density variation in the material, directly with the accumulated creep strain. Based on the deduced uniaxial strain controlled creep damage law, a continuum mechanical creep rupture analysis is carried out for a beam resting on a high temperature elastic (Winkler) foundation. The analysis includes the determination of the nondimensional time for initial rupture, the propagation of the rupture front with the associated thinning of the beam, and the influence of creep damage on the deflection of the beam. Creep damage starts accumulating in the beam as soon as the load is applied, and a creep rupture front develops at and propagates from the point at which the creep damage first reaches its critical value. By introducing a series of fundamental assumptions within the framework of technical Euler-Bernoulli type beam theory, a governing set of integro-differential equations is derived in terms of the nondimensional bending moment and the deflection. These governing equations are subjected to a set of interface conditions at the propagating rupture front. A numerical technique is developed to solve the governing equations together with the interface equations, and the computed results are presented and discussed in detail.

  5. Effect of Nanoclay on the Flexural Creep Behavior of Wood/Plastic Composites

    NASA Astrophysics Data System (ADS)

    Kord, B.; Sheykholeslami, A.; Najafi, A.

    2016-01-01

    The effect of nanoclay on the short-term flexural creep behavior of polypropylene/wood flour composites was investigated. The results obtained showed that the flexural strength and modulus increased with contentt of nanoclay up to 3 phc and then decreased. The fractional deflection and relative creep decreased with increasing content of nanoclay. X-ray diffraction patterns and transmission electron microscopy revealed that the nanocomposites formed were intercalated. Morphological findings testified that the samples containing 3 phc of nanoclay had the highest degree of intercalation and dispersion.

  6. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    SciTech Connect

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-10-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degrees C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.

  7. Microstructural behavior of 8Cr-ODS martensitic steels during creep deformation

    NASA Astrophysics Data System (ADS)

    Shinozuka, K.; Esaka, H.; Tamura, M.; Tanigawa, H.

    2011-10-01

    Oxide dispersion strengthened (ODS) steels show a high anisotropy in their creep behavior because of the δ-ferrite grain elongated in the hot-rolled direction and the characteristic formation of creep cavities. In this work, the relationship between the δ-ferrite grain and the growth of creep cavities in 8Cr-ODS steels was investigated. The samples of two ODS steels with different δ-ferrite volume fractions were machined parallel and perpendicular to the hot-rolled direction. Creep rupture tests and interrupted tests were performed at 700 °C and about 197 MPa. Cavities formed in the martensite along δ-ferrite grains during creep deformation. The area fraction of the cavities of all specimens increased in proportion to the cube root of test time. When the volume fraction of δ-ferrite was high and δ-ferrite grains elongated parallel to the load direction, δ-ferrite then obstructed the propagation of cracks. However, when the volume fraction of δ-ferrite was low and δ-ferrite grains elongated perpendicular to the load direction, δ-ferrite grains had little effect on crack propagation.

  8. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    PubMed

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  9. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    PubMed Central

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-01-01

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load. PMID:28773144

  10. Tensile and Creep Behavior of Extruded AA6063/SiC{sub p} Al MMCs

    SciTech Connect

    Khalifa, Tarek A.; Mahmoud, Tamer S.

    2010-03-01

    Composites of AA6063 Al alloy reinforced with SiC particles (SiC{sub p}) were prepared by the vortex method. Hot extrusion was carried out for the as cast composites with a reduction in area of 25%. Tensile and creep behavior of as-cast and extruded composites were studied at elevated temperatures. Tensile tests carried out at room temperature showed that for the as-cast composites, the addition of SiC{sub p} up to 10% by weight improves the strength but reduces ductility. Further addition of SiC{sub p} reduces the strength and ductility of the composites. At 150 and 300 deg. C the matrix alloy exhibits higher strength than the composites. Extrusion generally raised the strength of the composites at both room and elevated temperatures. Time rupture creep tests carried out at 300 deg. C showed that the composites exhibit higher creep resistance as compared to the matrix alloy except at relatively low stresses where the matrix has a better creep resistance. Extrusion improved the resistance of composites to creep rupture.

  11. 1300 K Creep Behavior of [001] Oriented Ni-49Al-1Hf (at.%) Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Locci, I. E.; Darolia, Ram; Bowman, R.

    1999-01-01

    A study of the 1300 K compressive and tensile creep properties of [001]-oriented NiAl-1Hf (D209) single crystals has been undertaken. Neither post homogenization cooling treatment, minor chemical variations within an ingot or from ingot-to-ingot, nor testing procedure had a significant effect on mechanical behavior; however a heat treatment which dissolved the initial G-phase precipitates and promoted formation of Heusler particles led to a strength reduction. Little primary creep was found utilizing direct measurement of strain, and a misorientation of 18 deg from the [001] did not reduce the creep strength. The effects of heat treatments on properties and a comparison of the flow stress-strain rate data to those predicted by the Jaswon-Cottrell solid solution hardening model indicate that the 1300 K strength in NiAl-1Hf single crystals is mainly due to precipitation hardening mechanisms.

  12. Compressive Creep Behavior of Spark Plasma Sintered 8 mol% Yttria Stabilized Cubic Zirconia

    NASA Astrophysics Data System (ADS)

    Robles Arellano, K. D.; Bichler, L.; Mondal, K.; Fong, R.

    2014-10-01

    The present paper describes compressive creep behavior of cubic 8 mol% Yttria-stabilized Zirconia, fabricated by spark plasma sintering, in the temperature range of 1300-1330 °C at a stress level of 78-193 MPa in vacuum. The pre- and post-creep microstructures, along with the values of the stress exponent ( n = 1.7-2.7) and the activation energy ( Q = 711-757 kJ/mol) suggest that a mixed mode of plastic deformation, dominated by grain boundary sliding, occurred in this material. The relatively high activation energy observed was related to the pinning of the grain boundaries by voids during creep, leading to microcrack formation, shear strain-induced grain exfoliation, and finally creation of new voids at grain boundaries.

  13. Strength Behavior, Creep Failure and Permeability Change of a Tight Marble Under Triaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Zaobao; Shao, Jianfu

    2017-03-01

    The coupled hydro-mechanical behaviors of a tight marble are investigated by a series of laboratory tests with continuous gas injection during the hydrostatic compression, triaxial compression and compressive creep tests. Hydrostatic compression tests are firstly carried out in three steps to identify the viscous effect of hydrostatic stress on deformation and permeability of the marble. Coupled triaxial tests are then conducted at a constant axial strain rate under five different confining pressures ( P c) with continuous gas injection. Coupled creep behaviors of the marble are also characterized by a constant deviatoric stress test under P c = 30 MPa with gas flowing at a constant injection pressure. The high-stress unloading failure behavior of the marble is finally investigated by an unloading test with a previous multi-step creep phase to realize a high-stress state as well as to investigate the time-dependent deformation of marble under different deviatoric stresses. Experimental results reveal that gas permeability of the marble shows an evident rate-dependent effect in hydrostatic compression. Mechanical behaviors of the tight marble are closely depended on the applied P c in triaxial tests, and its permeability exhibits a decrease phase at initial deviatoric loading and turns to increase at a critical stress corresponding to the initial yield stress. Marble can withstand more important plastic deformation under high P c than under lower ones. Gas flow seems to be more sensitive than the strains to characterize the creep behaviors of the marble. No time-dependent strains are observed when deviatoric creep stress is lower than 50% of its peak strength under P c = 30 MPa.

  14. Effects of processing variables on the creep behavior of investment cast Ti-48Al-2Nb-2Cr

    SciTech Connect

    Keller, M.M.; Jones, P.E.; Porter, W.J. III; Eylon, D.

    1995-12-31

    Intermetallics based on ordered {gamma}-TiAl are being considered for the replacement of steels and nickel-based superalloys for high temperature aerospace and automotive applications. This study investigates the creep behavior of investment cast Ti-48Al-2Nb-2Cr with microstructures ranging from duplex to nearly lamellar. Constant load creep tests were conducted in air at temperatures of 650 C and 760 C and at stress levels of 104MPa, 155MPa, and 207MPa. The effects of cooling rates during casting, aluminum content, oxygen level, and microstructure on creep properties are discussed. The activation energy for creep and stress exponent are also reported.

  15. Application Of Elastic Perfectly Plastic Cyclic Analysis To Assessment Of Creep Strain

    SciTech Connect

    Carter, Peter; Jetter, Robert I; Sham, Sam

    2012-01-01

    A cyclic elastic-perfectly plastic analysis method is proposed which provides a conservative estimate to cyclic creep strain accumulation within the ratchet boundary. The method is to check for ratcheting based on an elastic-perfectly material with a temperature-dependent pseudo yield stress defined by temperature, time and stress to give 1% creep strain. It does not require stress classification and is also applicable to a full range of temperature above and below the creep regime. This simplified method could be used as a rapid screening calculation, with full time-dependent creep analysis used if necessary.

  16. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    SciTech Connect

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-15

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127x12.7x6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  17. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    NASA Astrophysics Data System (ADS)

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-01

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127×12.7×6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  18. Creep behavior of an A286 type stainless steel

    SciTech Connect

    DeCicco, H. . E-mail: decicco@cnea.gov.ar; Luppo, M.I.; Raffaeli, H.; Di Gaetano, J.; Gribaudo, L.M.; Ovejero-Garcia, J.

    2005-08-15

    A model for steady state deformation of the commercial {gamma}' precipitation hardened alloy A286 at moderately high temperature is presented. This model is mainly based on the theory of thermally activated glide. The activation parameters such as the maximum free energy necessary to overcome obstacles to glide, the threshold stress for jerky glide and the activation volume of the rate controlling process are derived from experimental results and allowed rationalization of all the measurements in the range of stresses and temperatures investigated. Creep tests were carried out at constant stress in the range of 180-750 MPa at 600, 640, 670 and 700 deg. C in air. Transmission electron microscopy has permitted determination of the size of the {gamma}' particles and the average distance between them.

  19. The microstructure and creep behavior of cold rolled udimet 188 sheet.

    PubMed

    Boehlert, C J; Longanbach, S C

    2011-06-01

    Udimet 188 was subjected to thermomechanical processing (TMP) in an attempt to understand the effects of cold-rolling deformation on the microstructure and tensile-creep behavior. Commercially available sheet was cold rolled to varying amounts of deformation (between 5-35% reduction in sheet thickness) followed by a solution treatment at 1,464 K (1,191 °C) for 1 h and subsequent air cooling. This sequence was repeated four times to induce a high-volume fraction of low-energy grain boundaries. The resultant microstructure was characterized using electron backscattered diffraction. The effect of the TMP treatment on the high-temperature [1,033-1,088 K (760-815 °C)] creep behavior was evaluated. The measured creep stress exponents (6.0-6.8) suggested that dislocation creep was dominant at 1,033 K (760 °C) for stresses ranging between 100-220 MPa. For stresses ranging between 25-100 MPa at 1,033 K (760 °C), the stress exponents (2.3-2.8) suggested grain boundary sliding was dominant. A significant amount of grain boundary cracking was observed both on the surface and subsurface of deformed samples. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during the elevated-temperature tensile-creep deformation. Cracking occurred preferentially along general high-angle grain boundaries (GHAB) and less than 25% of the cracks were found on low-angle grain boundaries (LAB) and coincident site lattice boundaries (CSLB). Creep rupture experiments were performed at T = 1,088 K (815 °C) and σ = 165 MPa and the greatest average time-to-rupture was exhibited by the TMP sheet with the greatest fraction of LAB+CSLB. However, a clear correlation was not exhibited between the grain boundary character distribution and the minimum creep rates. The findings of this work suggest that although grain boundary engineering may be possible for this alloy, simply relating the fraction of grain boundary types to the creep resistance is not

  20. Creep Damage Analysis of a Lattice Truss Panel Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Li, Shaohua; Luo, Yun; Xu, Shugen

    2017-01-01

    The creep failure for a lattice truss sandwich panel structure has been predicted by finite element method (FEM). The creep damage is calculated by three kinds of stresses: as-brazed residual stress, operating thermal stress and mechanical load. The creep damage at tensile and compressive loads have been calculated and compared. The creep rate calculated by FEM, Gibson-Ashby and Hodge-Dunand models have been compared. The results show that the creep failure is located at the fillet at both tensile and creep loads. The damage rate at the fillet at tensile load is 50 times as much as that at compressive load. The lattice truss panel structure has a better creep resistance to compressive load than tensile load, because the creep and stress triaxiality at the fillet has been decreased at compressive load. The maximum creep strain at the fillet and the equivalent creep strain of the panel structure increase with the increase of applied load. Compared with Gibson-Ashby model and Hodge-Dunand models, the modified Gibson-Ashby model has a good prediction result compared with FEM. However, a more accurate model considering the size effect of the structure still needs to be developed.

  1. Tensile and creep rupture behavior of P/M processed Nb-base alloy, WC-3009

    SciTech Connect

    Hebsur, M.G.; Titran, R.H.

    1988-09-01

    Due to its high strength at temperatures up to 1600 K, fabrication of niobium base alloy WC-3009 (Nb30Hf9W) by traditional methods is difficult. Powder metallurgy (P/M) processing offers an attractive fabrication alternative for this high strength alloy. Spherical powders of WC-3009 produced by electron beam atomizing (EBA) process were successfully consolidated into a one inch diameter rod by vacuum hot pressing and swaging techniques. Tensile strength of the fully dense P/M material at 300-1590 K were similar to the arc-melted material. Creep rupture tests in vacuum indicated that WC-3009 exhibits a class 1 solid solution (glide controlled) creep behavior in the 1480 to 1590 K temperature range and stress range of 14 to 70 MPa. The creep behavior was correlated with temperature and stress using a power law relationship. The calculated stress exponent n, was about 3.2 and the apparent activation energy, Q, was about 270 kJ/mol. The large creep ductility exhibited by WC-3009 was attributed to its high strain rate sensitivity.

  2. The Mechanical Properties and Modeling of Creep Behavior of UHMWPE/Nano-HA Composites

    NASA Astrophysics Data System (ADS)

    Li, Fan; Gao, Lilan; Gao, Hong; Cui, Yun

    2017-09-01

    Composites with different levels of hydroxyapatite (HA) content and ultra-high molecular weight polyethylene (UHMWPE) were prepared in this work. Mechanical properties of the composites were examined here, and to evaluate the effect of HA particles on the time-dependent behavior of the pure matrix, the creep and recovery performance of composites at various stress levels were also researched. As expected, the addition of HA influenced the time-dependent response of the UHMWPE and the effect had a strong dependence on the HA content. The creep and recovery strain of the composites significantly decreased with increasing HA content, and tensile properties were also impaired, which was due to the concentration of HA fillers. The mechanism and effect of HA dispersed into the UHMWPE matrix were examined by scanning electron microscopy. Additionally, since variations in the adjusted parameters revealed the impact of HA on the creep behavior of the UHMWPE matrix, Findley's model was employed. The results indicated that the analytical model was accurate for the prediction of creep of the pure matrix and its composites.

  3. Tensile and creep rupture behavior of P/M processed Nb-base alloy, WC-3009

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Titran, Robert H.

    1988-01-01

    Due to its high strength at temperatures up to 1600 K, fabrication of niobium base alloy WC-3009 (Nb30Hf9W) by traditional methods is difficult. Powder metallurgy (P/M) processing offers an attractive fabrication alternative for this high strength alloy. Spherical powders of WC-3009 produced by electron beam atomizing (EBA) process were successfully consolidated into a one inch diameter rod by vacuum hot pressing and swaging techniques. Tensile strength of the fully dense P/M material at 300-1590 K were similar to the arc-melted material. Creep rupture tests in vacuum indicated that WC-3009 exhibits a class 1 solid solution (glide controlled) creep behavior in the 1480 to 1590 K temperature range and stress range of 14 to 70 MPa. The creep behavior was correlated with temperature and stress using a power law relationship. The calculated stress exponent n, was about 3.2 and the apparent activation energy, Q, was about 270 kJ/mol. The large creep ductility exhibited by WC-3009 was attributed to its high strain rate sensitivity.

  4. Endochronic theory of transient creep and creep recovery

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Chen, L.

    1979-01-01

    Short time creep and creep recovery were investigated by means of the endochronic theory of viscoplasticity. It is shown that the constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation can all ber derived from the general constitutive equation by imposing appropriate constraints. In this unified approach, the effect of strain-hardening is naturally accounted for when describing creep and creep recovery. The theory predicts with reasonable accuracy the creep and creep recovery behaviors for Aluminum 1100-0 at 150 C. It was found that the strain-rate history at prestraining stage affects the subsequent creep. A critical stress was also established for creep recovery. The theory predicts a forward creep for creep recovery stress greater than the critical stress. For creep recovery stress less than the critical stress, the theory then predicts a normal strain recovery.

  5. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  6. Creep-Rupture Behavior and Recrystallization in Cold-Bent Boiler Tubing for USC Applications

    SciTech Connect

    Shingledecker, John P

    2008-01-01

    Creep-rupture experiments were conducted on candidate Ultrasupercritical (USC) alloy tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.

  7. Geotechnical simulation of tertiary creep behavior of landslides induced by extreme rainfall

    NASA Astrophysics Data System (ADS)

    Dok, Atitkagna; Fukuoka, Hiroshi

    2013-04-01

    Rainstorm indirectly provokes landslides because of its ability to level up the groundwater table after certain hours dropping. This process causes excess pore water pressure generation and soil liquefaction at the sliding surface and determines the behavior of landslides triggered by extreme rainfall. Creep deformations are commonly observed in a slope before sliding down. Creep behavior, in particular tertiary creep behavior, is therefore the main focus in predicting the final failure time of a slope. Progressive failure/tertiary creep deformation is the stage when strain rate exponentially increases just before final collapse. This study aims at simulating geotechnical model of tertiary creep behavior in soils, which was empirically discovered by Saito (1965) and Fukuzono (1985) to help issue warning of rainfall-induced landslides in developing countries where there is no implemented methodology for issuing effective warming of landslides yet. Tertiary creep to failure is reproduced by pore-pressure-controlled test in ring shear apparatus, through which obvious relationship of A and α (alpha) values was obtained, following consistent range with those found in previous studies under slightly deviated trend due to different test condition: pore-pressure-controlled and shear stress development tests. Constant shear speed test under shear speed of v=1cm/s was conducted in the ring shear apparatus to obtain the relation curve of shear resistance and shear displacement, from which exponential expression of creep behavior is originated. The model formula is governed by two constants: m and γ (gamma) whose relation with constants A and alpha was examined. Geotechnical simulation of creep behavior is then constructed by assuming that shear strength of soil increases and remains constant after reaching its maximum value in residual condition. This is to quantify normally consolidated condition of soils in natural slope. Shear resistance diminishes, while pore pressure

  8. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    SciTech Connect

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit; Rink, Karl

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  9. A Comparison of Tension and Compression Creep in a Polymeric Composite and the Effects of Physical Aging on Creep Behavior

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine

    1996-01-01

    Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.

  10. Effect of Microstructure on Creep Crack Growth Behavior of a Near- α Titanium Alloy IMI-834

    NASA Astrophysics Data System (ADS)

    Satyanarayana, D. V. V.; Omprakash, C. M.; Sridhar, T.; Kumar, Vikas

    2009-01-01

    In the present study, the effect of microstructure ( i.e., α + β and transformed β) on creep crack growth (CCG) behavior of a near-alpha (IMI 834) titanium alloy has been explored at temperatures 550 °C and 600 °C. For characterizing the CCG behavior of the alloy, both stress intensity factor ( K) and energy integral parameter ( C t ) were used in the present investigation. The use of stress intensity factor ( K) as crack-tip parameter is not appropriate in the present study as no unique correlation between crack growth rate and K could be obtained from the observed trend due to transients in the creep crack rate data. On the other hand, C t parameter for both microstructural conditions consolidates CCG data into a single trend. The alloy with fully transformed β microstructure exhibits better CCG resistance as compared to bimodal ( α + β) microstructure. This is consistent with the fact that the transformed β structure offers superior creep resistance as compared to α + β microstructure. Microstructural examination has revealed that CCG for both microstructural conditions is accompanied by formation of damage zone in the form of numerous environmental-assisted secondary surface cracks (perpendicular to the stress axis) ahead of the main crack tip. For α + β microstructure of the alloy, the surface creep cracks were formed by growth and coalescence of microcracks nucleated by fracture of primary α particles. While in the interior of the specimens, CCG occurred by growth and coalescence of microvoids nucleated at primary α/transformed β (matrix) interfaces. For β microstructure of the alloy, while the surface creep cracks formed by growth and coalescence of microvoids nucleated at titanium enriched surface oxide particles, in the interior CCG occurred by nucleation of intergranular cavities.

  11. Creep Behavior in Interlaminar Shear of a SiC/SiC Ceramic Composite with a Self-healing Matrix

    NASA Astrophysics Data System (ADS)

    Ruggles-Wrenn, M. B.; Pope, M. T.

    2014-02-01

    Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1,200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbide overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16-22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Larger creep strains were accumulated in steam. However, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.

  12. Geometry and Material Constraint Effects on Creep Crack Growth Behavior in Welded Joints

    NASA Astrophysics Data System (ADS)

    Li, Y.; Wang, G. Z.; Xuan, F. Z.; Tu, S. T.

    2017-02-01

    In this work, the geometry and material constraint effects on creep crack growth (CCG) and behavior in welded joints were investigated. The CCG paths and rates of two kinds of specimen geometry (C(T) and M(T)) with initial cracks located at soft HAZ (heat-affected zone with lower creep strength) and different material mismatches were simulated. The effect of constraint on creep crack initiation (CCI) time was discussed. The results show that there exists interaction between geometry and material constraints in terms of their effects on CCG rate and CCI time of welded joints. Under the condition of low geometry constraint, the effect of material constraint on CCG rate and CCI time becomes more obvious. Higher material constraint can promote CCG due to the formation of higher stress triaxiality around crack tip. Higher geometry constraint can increase CCG rate and reduce CCI time of welded joints. Both geometry and material constraints should be considered in creep life assessment and design for high-temperature welded components.

  13. Tensile Creep and Stress-rupture Behavior of Polymer Derived Sic Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1994-01-01

    Tensile creep and stress-rupture studies were conducted on polymer derived Nicalon, Hi-Nicalon, and SiC/BN-coated Nicalon SiC fibers. Test conditions were temperatures from 1200 to 1400 C, stresses from 100 to 1600 MPa, stress application times up to 200 hours, and air, argon, and vacuum test environments. For all fibers, creep occurred predominantly in the primary stage. Hi-Nicalon had much higher 0.2 and 1 percent creep strengths than as-produced as well as-coated Nicalon fibers. The stress-rupture strength of Hi-Nicalon up to 100 hours was also higher than that of the coated and as-produced Nicalon fibers. SiC/BN coating on Nicalon increased only the short-term low-temperature rupture strength. Limited testing in argon and vacuum suggests that for all fiber types, creep and rupture resistances are reduced in comparison to the results in air. Possible mechanisms for the observed behavior are discussed.

  14. Progress toward analytical description of the creep strain-time behavior of engineering alloys

    SciTech Connect

    Booker, M.K.

    1980-01-01

    Elevated-temperature design methods in the United States often require a comprehensive description of the properties of the construction materials. These descriptions include representations for creep strain-time behavior as a function of stress, temperature, and material variability. Work conducted at this laboratory in the past five years toward the development of analytical techniques to derive such representations is summarized. Results for several common elevated-temperature structural materials are presented to illustrate the techniques.

  15. Creep Behavior of an Oxide/Oxide Composite with Monazite Coating at Elevated Temperatures

    DTIC Science & Technology

    2005-03-01

    research composite of that nature was the General Electric Gen-IV. Results from Zawada et al (37) show fairly poor creep resistance of the N610 fiber...A: Applied Science and Manufacturing: 1005-1013 (1995). 36. Zawada , Larry P., Randall S. Hay, Shin S. Lee, and James Staehler. “Characterization...and High-Temperature Mechanical Behavior of an Oxide/Oxide Composite,” Journal of the American Ceramic Society, 86 [6]: 981-90 (2003). 37. Zawada

  16. Creep behavior of sweetgum OSB: Effect of load level and relative humidity

    Treesearch

    J.H. Pu; R.C. Tang; Chung-Yun Hse

    1994-01-01

    flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (0SB), under constant (65% and 95%) and cyclic (65% ↔ 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75°F(23.9°C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20%...

  17. Creep behavior of sweetgum OSB: effect of load level and relative humidity

    Treesearch

    J.H. Pu; R.C. Tang; Chung-Yun Hse

    1994-01-01

    Flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (OSB). under constnat (65% and 95%) and cyclic (65% 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75 F (23.9 C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20% and...

  18. A New Local Debonding Model with Application to the Transverse Tensile and Creep Behavior of Continuously Reinforced Titanium Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2000-01-01

    A new, widely applicable model for local interfacial debonding in composite materials is presented. Unlike its direct predecessors, the new model allows debonding to progress via unloading of interfacial stresses even as global loading of the composite continues. Previous debonding models employed for analysis of titanium matrix composites are surpassed by the accuracy, simplicity, and efficiency demonstrated by the new model. The new model was designed to operate seamlessly within NASA Glenn's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), which was employed to simulate the time- and rate-dependent (viscoplastic) transverse tensile and creep behavior of SiC/Ti composites. MAC/GMC's ability to simulate the transverse behavior of titanium matrix composites has been significantly improved by the new debonding model. Further, results indicate the need for a more accurate constitutive representation of the titanium matrix behavior in order to enable predictions of the composite transverse response, without resorting to recalibration of the debonding model parameters.

  19. Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-term Performance of Solid Oxide Fuel Cells

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-10-14

    The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multi-physics simulation of SOFCs. The effect of creep of glass ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

  20. Limit case analysis of the "stable indenter velocity" method for obtaining creep stress exponents from constant load indentation creep tests

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Dean, J.; Clyne, T. W.

    2017-02-01

    This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.

  1. Reliability and Creep/Fatigue Analysis of a CMC Component

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.; Gyekenyesi, John P.

    2007-01-01

    High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight and enable higher operating temperatures requiring less cooling; thus leading to increased engine efficiencies. There is a need for convenient design tools that can accommodate various loading conditions and material data with their associated uncertainties to estimate the minimum predicted life as well as the failure probabilities of a structural component. This paper presents a review of the life prediction and probabilistic analyses performed for a CMC turbine stator vane. A computer code, NASALife, is used to predict the life of a 2-D woven silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) turbine stator vane due to a mission cycle which induces low cycle fatigue and creep. The output from this program includes damage from creep loading, damage due to cyclic loading and the combined damage due to the given loading cycle. Results indicate that the trends predicted by NASALife are as expected for the loading conditions used for this study. In addition, a combination of woven composite micromechanics, finite element structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Results indicate that reducing the scatter in proportional limit strength of the vane material has the greatest effect in improving the overall reliability of the CMC vane.

  2. Analysis of pellet cladding interaction and creep of U 3SIi2 fuel for use in light water reactors

    NASA Astrophysics Data System (ADS)

    Metzger, Kathryn E.

    difficult to predict fuel-cladding mechanical behavior. This information is essential for designing accident tolerant fuel systems where ceramic claddings, like silicon carbide (SiC) are proposed. This research provides a model for both the thermal and irradiation creep behavior for U3Si2. This body of research is comprised of both experimental and modeling components. Characterization of the fuel microstructure includes; optical microscopy with pore and grain size analysis, helium pycnometry for density determination, mercury intrusion porosimetry, compositional analysis in the form of XRD, second phase identification using EDX, electrical resistance measurement via four point probe, determination of hardness and toughness through Vickers indentation testing, and determination of elastic properties using the impulse excitation method. Post-sintering grain size data allowed for the determination of grain boundary activation energy and diffusion coefficients, which were used to develop creep models. This was extended to lattice and irradiation enhanced diffusion in order to develop a U3Si2 creep model over thermal and irradiation creep regimes. In addition to the creep model, thermal and swelling behavior models for U3Si2 were implemented into the BISON fuel performance code. A series of simulations evaluated the performance and behavior of U3Si2 under typical light water reactor conditions with advanced SiC ceramic cladding. Simulation results show that fuel creep relieves stress in the ceramic cladding and postpones the. moment of fuel-clad contact. However, the stress reduction to the cladding is minimal because the fuel creep rate is low while the swelling rate is high. Future work should include the investigation of monolithic U3Si2 irradiation swelling since the current model relies upon the swelling data of U3Si2 particles in a metallic dispersion fuel. Additionally, planned thermal creep testing at the University of South Carolina can provide confirmation of the U3Si

  3. Creep failure analysis for ceramic composites containing viscous interfaces

    SciTech Connect

    Beyerlein, I.J.; An, L.; Raj, R.

    1998-09-01

    This paper describes an experimental and theoretical study of the creep fracture of advanced ceramic composites under steady axial tension. Such composites consist of a high fraction of elongated ceramic grains, varying substantially in aspect ratio and embedded in a glassy matrix phase. For creep testing, a model test system was prepared, which consisted of well-aligned elongated mica platelets ({approximately} 60 vol%) and residual glass phase ({approximately} 40 vol%) in its final heat-treatment stage. The creep curves of several specimens under various applied loads and at a temperature (800 C) higher than the T{sub g} of the glass matrix ({approximately} 650 C) were obtained up to creep fracture. Micrographs of the creep fracture surfaces revealed substantial grain pull-out and cavitation in the matrix phase with virtually no transgranular fracture. The objective of this work is to simulate the creep response and fracture based on the accumulation of localized void growth and microstructural parameters, using a computational mechanics technique, called viscous break interaction (VBI), developed to compute stress fields around strongly interacting fractures or voids in composites with fibrous microstructures. To simulate the creep process up to fracture, a Monte Carlo model is developed which couples VBI with a statistical description of grain length. Both the experimental and simulation results show that random lengths and random overlap of the aligned grains naturally lead to (i) local and microstructure-sensitive damage evolution up to ultimate failure and (ii) substantial variation in failure times of seemingly identical specimens.

  4. Creep-Fatigue Behavior of Alloy 617 at 850 and 950°C, Revision 2

    SciTech Connect

    Carroll, L.; Carroll, M.

    2015-05-01

    Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests including hold times up to 9000 s at maximum tensile strain were conducted at 850 and 950 degrees C. At both temperatures, the fatigue resistance decreased when a hold time was added at peak tensile strain. The magnitude of this effect depended on the specific mechanisms and whether they resulted in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatigue for a particular temperature and strain range combination. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance at 950 degrees C but did continue to degrade the lifetimes at 850 degrees C.

  5. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    NASA Astrophysics Data System (ADS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  6. Elevated temperature tension, compression and creep-rupture behavior of (001)-oriented single crystal superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Miner, Robert V.

    1987-01-01

    Tensile and compressive flow behavior at various temperatures and strain rates, and tensile creep rupture behavior at 850 and 1050 C and various stresses were studied for (001)-oriented single crystals of the Ni-base superalloy PWA 1480. At temperatures up to 760 C, the flow stress is insensitive to strain rate and of greater magnitude in tension than in compression. At temperatures of 800 C and above, the flow stress decreases continuously with decreasing strain rate and the tension/compression anisotropy diminishes. The second stage creep rate and rupture time exhibited power law relationships with the applied stress for both 850 and 1050 C, however with different stress dependencies. The stress exponent for the steady state creep rate was about 7 at 1050 C, but much higher at 850 C, about 12. Directional coarsening of the gamma' phase occurred during creep at 1050 C, but not at 850 C.

  7. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy

    SciTech Connect

    Wang, L. Wang, D.; Liu, T.; Li, X.W.; Jiang, W.G.; Zhang, G.; Lou, L.H.

    2015-06-15

    Different amounts of carbon were added to a single-crystal nickel-based superalloy. The microstructural evolution of these alloys before and after high-temperature creep tests was investigated by employing scanning electron microscopy and transmission electron microscopy. Upon increasing the carbon contents, the volume fraction and diameter of the carbides increased gradually: however, the creep lives of the alloys increased slightly at first and subsequently decreased. The formation of second-phase particles, such as the nano-sized M{sub 23}C{sub 6}, blocky and needle-shaped μ phase, was observed in the creep samples, which was closely related to the high-temperature creep behaviors. - Highlights: • Creep behaviors of alloys with different amounts of carbon were investigated. • The creep rupture lives increased and later decreased with more carbon. • Second-phase particles were responsible for the different creep behaviors.

  8. A Critical Analysis of the Conventionally Employed Creep Lifing Methods.

    PubMed

    Abdallah, Zakaria; Gray, Veronica; Whittaker, Mark; Perkins, Karen

    2014-04-29

    The deformation of structural alloys presents problems for power plants and aerospace applications due to the demand for elevated temperatures for higher efficiencies and reductions in greenhouse gas emissions. The materials used in such applications experience harsh environments which may lead to deformation and failure of critical components. To avoid such catastrophic failures and also increase efficiency, future designs must utilise novel/improved alloy systems with enhanced temperature capability. In recognising this issue, a detailed understanding of creep is essential for the success of these designs by ensuring components do not experience excessive deformation which may ultimately lead to failure. To achieve this, a variety of parametric methods have been developed to quantify creep and creep fracture in high temperature applications. This study reviews a number of well-known traditionally employed creep lifing methods with some more recent approaches also included. The first section of this paper focuses on predicting the long-term creep rupture properties which is an area of interest for the power generation sector. The second section looks at pre-defined strains and the re-production of full creep curves based on available data which is pertinent to the aerospace industry where components are replaced before failure.

  9. A Critical Analysis of the Conventionally Employed Creep Lifing Methods

    PubMed Central

    Abdallah, Zakaria; Gray, Veronica; Whittaker, Mark; Perkins, Karen

    2014-01-01

    The deformation of structural alloys presents problems for power plants and aerospace applications due to the demand for elevated temperatures for higher efficiencies and reductions in greenhouse gas emissions. The materials used in such applications experience harsh environments which may lead to deformation and failure of critical components. To avoid such catastrophic failures and also increase efficiency, future designs must utilise novel/improved alloy systems with enhanced temperature capability. In recognising this issue, a detailed understanding of creep is essential for the success of these designs by ensuring components do not experience excessive deformation which may ultimately lead to failure. To achieve this, a variety of parametric methods have been developed to quantify creep and creep fracture in high temperature applications. This study reviews a number of well-known traditionally employed creep lifing methods with some more recent approaches also included. The first section of this paper focuses on predicting the long-term creep rupture properties which is an area of interest for the power generation sector. The second section looks at pre-defined strains and the re-production of full creep curves based on available data which is pertinent to the aerospace industry where components are replaced before failure. PMID:28788623

  10. Influence of Hold Time on Creep-Fatigue Behavior of an Advanced Austenitic Alloy

    SciTech Connect

    Mark Carroll; Laura Carroll

    2011-09-01

    An advanced austenitic alloy, HT-UPS (high temperature-ultrafine precipitate strengthened), is a candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS provides improved creep resistance through a composition based on 316 stainless steel (SS) with additions of Ti and Nb to form nano-scale MC precipitates in the austenitic matrix. The low cycle fatigue and creep-fatigue behavior of a HT-UPS alloy has been investigated at 650 C, 1.0% total strain, and an R ratio of -1 with hold times as long as 9000 sec at peak tensile strain. The cyclic deformation response of HT-UPS is compared to that of 316 SS. The cycles to failure are similar, despite differences in peak stress profiles and the deformed microstructures. Cracking in both alloys is transgranular (initiation and propagation) in the case of continuous cycle fatigue, while the primary cracks also propagate transgranularly during creep-fatigue cycling. Internal grain boundary damage as a result of the tensile hold is present in the form of fine cracks for hold times of 3600 sec and longer and substantially more internal cracks are visible in 316 SS than HT-UPS. The dislocation substructures observed in the deformed material are different. An equiaxed cellular structure is observed in 316 SS, whereas tangles of dislocations are present at the nanoscale MC precipitates in HT-UPS and no cellular substructure is observed.

  11. PROCESSING, MICROSTRUCTURE AND CREEP BEHAVIOR OF Mo-Si-B-BASED INTERMETALLIC ALLOYS FOR VERY HIGH TEMPERATURE STRUCTURAL APPLICATIONS

    SciTech Connect

    Vijay K. Vasudevan

    2005-12-21

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. During this year, the compressive creep behavior of a Mo-3Si-1B (in wt.%) alloy at 1100 and 1200 C were studied and related to the deformation mechanisms through electron microscopy observations of microstructural changes and deformation structures. The microstructure of this alloy was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. Results of compressive creep tests at 1200 and 1100 C showed that the creep rates were quite high at stress levels between 250 and 500 MPa, Two minima in the creep strain rate versus strain data were noted, one at small strain values and the second at much larger strains. A stress exponent of 4.26 was obtained upon plotting the strain rate corresponding to the first minima versus stress, which suggests that dislocation climb and glide dominate the creep process in the early stages. On the other hand, the large strain, minimum creep rate versus stress data gave a stress exponent of {approx}1.18, which indicates diffusional mechanisms and recrystallization dominate the later stages of the creep process. At 1100 C, a stress exponent of 2.26 was obtained, which suggests that both diffusional and dislocation mechanisms contribute to the creep strain. Based on the minimum creep rate data at 1100 C and 1200 C, the activation energy for creep was determined to be 525 kJ/mole, which is somewhat higher than that reported for self diffusion in {alpha}-Mo. Microstructural observations of post-crept samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. In addition, TEM observations revealed the presence of recrystallized grains and sub-grain boundaries composed of dislocation arrays

  12. Effects of Steam Environment on Creep Behavior of Nextel™610/Monazite/Alumina Composite at 1,100°C

    NASA Astrophysics Data System (ADS)

    Ruggles-Wrenn, Marina B.; Yeleser, Tufan; Fair, Geoff E.; Davis, Janet B.

    2009-12-01

    The tensile creep behavior of a N610™/LaPO4/Al2O3 composite was investigated at 1,100°C in laboratory air and in steam. The composite consists of a porous alumina matrix reinforced with Nextel 610 fibers woven in an eight-harness satin weave fabric and coated with monazite. The tensile stress-strain behavior was investigated and the tensile properties measured at 1,100°C. The addition of monazite coating resulted in ~33% improvement in ultimate tensile strength (UTS) at 1,100°C. Tensile creep behavior was examined for creep stresses in the 32-72 MPa range. Primary and secondary creep regimes were observed in all tests. Minimum creep rate was reached in all tests. In air, creep strains remained below 0.8% and creep strain rates approached 2 × 10-8 s-1. Creep run-out defined as 100 h at creep stress was achieved in all tests conducted in air. The presence of steam accelerated creep rates and significantly reduced creep lifetimes. In steam, creep strain reached 2.25%, and creep strain rate approached 2.6 × 10-6 s-1. In steam, creep run-out was not achieved. The retained strength and modulus of all specimens that achieved run-out were characterized. Comparison with results obtained for N610™/Al2O3 (control) specimens revealed that the use of the monazite coating resulted in considerable improvement in creep resistance at 1,100°C both in air and in steam. Composite microstructure, as well as damage and failure mechanisms were investigated.

  13. Analysis of creep strain during tensile fatigue of cortical bone.

    PubMed

    Cotton, John R; Zioupos, Peter; Winwood, Keith; Taylor, Mark

    2003-07-01

    During fatigue tests of cortical bone specimens, at the unload portion of the cycle (zero stress) non-zero strains occur and progressively accumulate as the test progresses. This non-zero strain is hypothesised to be mostly, if not entirely, describable as creep. This work examines the rate of accumulation of this strain and quantifies its stress dependency. A published relationship determined from creep tests of cortical bone (Journal of Biomechanics 21 (1988) 623) is combined with knowledge of the stress history during fatigue testing to derive an expression for the amount of creep strain in fatigue tests. Fatigue tests on 31 bone samples from four individuals showed strong correlations between creep strain rate and both stress and "normalised stress" (sigma/E) during tensile fatigue testing (0-T). Combined results were good (r(2)=0.78) and differences between the various individuals, in particular, vanished when effects were examined against normalised stress values. Constants of the regression showed equivalence to constants derived in creep tests. The universality of the results, with respect to four different individuals of both sexes, shows great promise for use in computational models of fatigue in bone structures.

  14. Effect of helium on irradiation creep behavior of B-doped F82H irradiated in HFIR

    SciTech Connect

    Ando, M.; Nozawa, Takashi; Hirose, Takanori; Tanigawa, H.; Wakai, E.; Stoller, Roger E; Myers, Janie

    2015-07-30

    The diameter of pressurized tubes of F82H and B-doped F82H irradiated up to similar to 6 dpa have been measured by a non-contacting laser profilometer. The irradiation creep strains of F82H irradiated at 573 and 673K were almost linearly dependent on the effective stress level for stresses below 260 MPa and 170 MPa, respectively. The creep strain of (BN)-B-10-F82H was similar to that of F82H IEA at each effective stress level except 294 MPa at 573K irradiation. For 673K irradiation, the creep strain of some (BN)-B-10-F82H tubes was larger than that of F82H tubes. However, the generation of similar to 300 appm He did not cause a large difference in the irradiation creep behavior at 6 dpa.

  15. Effect of helium on irradiation creep behavior of B-doped F82H irradiated in HFIR

    DOE PAGES

    Ando, M.; Nozawa, Takashi; Hirose, Takanori; ...

    2015-07-30

    The diameter of pressurized tubes of F82H and B-doped F82H irradiated up to similar to 6 dpa have been measured by a non-contacting laser profilometer. The irradiation creep strains of F82H irradiated at 573 and 673K were almost linearly dependent on the effective stress level for stresses below 260 MPa and 170 MPa, respectively. The creep strain of (BN)-B-10-F82H was similar to that of F82H IEA at each effective stress level except 294 MPa at 573K irradiation. For 673K irradiation, the creep strain of some (BN)-B-10-F82H tubes was larger than that of F82H tubes. However, the generation of similar tomore » 300 appm He did not cause a large difference in the irradiation creep behavior at 6 dpa.« less

  16. Creep behavior of a rapidly solidified Al-5Cr-2Zr alloy between room temperature and 823 K

    SciTech Connect

    Brahmi, A.; Gerique, T.; Lieblich, M.; Torralba, M.

    1996-12-15

    Rapidly solidified (RS) Al-Cr-Zr alloys are established contenders for applications in the aircraft industry where lower cost, lightweight substitutes for titanium alloys are being sought for use in the temperature range of 473 to 723 K. Creep resistance is one of the critical properties of any material intended for high temperature applications. Therefore, a precise knowledge of creep behavior and a clear understanding of the mechanisms controlling creep in these materials are of great importance. The good thermal stability exhibited by the RS Al-5Cr-2Zr (wt.%) alloy makes it a good candidate for applications where high creep resistance is needed. This paper presents the results of creep behavior over a wide range of temperatures (0.32 to 0.88 Tm, where Tm = 933 K is the melt temperature of pure aluminum) of an Al-5Cr-2Zr alloy processed by gas atomization and extrusion and includes a brief discussion on the creep mechanisms that may be involved.

  17. Creep behavior of a {beta}{prime}(NiAl) precipitation strengthened ferritic Fe-Cr-Ni-Al alloy

    SciTech Connect

    Zhu, S.M.; Tjong, S.C.; Lai, J.K.L.

    1998-05-22

    Creep in precipitation-strengthened alloys usually exhibits a pronounced transition in the stress vs creep rate relationship due to dislocations bypassing of particles by climb at low stresses. In the present study, a single-slope behavior is observed in creep of {beta}{prime}(NiAl) strengthened ferritic Fe-19Cr-4Ni-2Al alloy in the temperature range 873--923 K. The alloy exhibits anomalously high values of apparent stress exponent and activation energy (980 kJ/mol). Transmission electron microscopy examination of the deformation microstructure reveals the occurrence of attractive dislocation/particle interaction, a feature which is usually observed in dispersion-strengthened alloys. Such an attractive dislocation particle interaction makes the local climb of dislocations over particles a realistic configuration at low stresses. The creep data are analyzed by the back-stress approach and by the recent dislocation-climb theories based on attractive interaction between dislocations and particles. By considering a back stress, all data can be rationalized by a power-law with a stress exponent of 4 and a creep activation energy close to the self-diffusion energy of the matrix lattice. Local climb together with the attractive but not strong interactions between the dislocations and particles is suggested to be the operative deformation mechanism at low stresses and to account for the single-slope behavior in the stress/creep rate relationship of this alloy.

  18. Compressive creep behavior of alloys based on B2 FeAl

    NASA Technical Reports Server (NTRS)

    Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.

    1987-01-01

    Alloys based on FeAl are attractive alternative materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.

  19. Compressive creep behavior of alloys based on B2 FeAl

    NASA Technical Reports Server (NTRS)

    Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.

    1986-01-01

    Alloys based on FeAl are attractive alternate materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.

  20. On the behavior of dissipative systems in contact with a heat bath: Application to Andrade creep

    NASA Astrophysics Data System (ADS)

    Sullivan, T.; Koslowski, M.; Theil, F.; Ortiz, M.

    2009-07-01

    We develop a theory of statistical mechanics for dissipative systems governed by equations of evolution that assigns probabilities to individual trajectories of the system. The theory is made mathematically rigorous and leads to precise predictions regarding the behavior of dissipative systems at finite temperature. Such predictions include the effect of temperature on yield phenomena and rheological time exponents. The particular case of an ensemble of dislocations moving in a slip plane through a random array of obstacles is studied numerically in detail. The numerical results bear out the analytical predictions regarding the mean response of the system, which exhibits Andrade creep.

  1. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE PAGES

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; ...

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  2. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    SciTech Connect

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  3. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  4. Creep behavior of tantalum alloy T-222 at 1365 to 1700 K

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1974-01-01

    High vacuum creep tests on the tantalum T-222 alloy at 0.42 to 0.52 T sub m show that the major portion of the creep curves, up to at least 1 percent strain, can be best described by an increasing creep rate, with strain varying linearly with time. Correlation and extrapolation of the creep curves on the basis of increasing creep rates results in more accurate engineering design data than would use of approximated linear rates. Based on increasing creep rates, the stress for 1 percent strain in 10,000 hours for T-222 is about four times greater than for the Ta-10W alloy. Increasing the grain size results in increased creep strength. Thermal aging prior to testing caused precipitation of the hexagonal close packed (Hf,Ta) sub 2 C, which initially increased creep strength. However, this dimetal carbide was converted during creep testing to face-centered cubic (Hf,Ta)C.

  5. Effects of Temperature and Environment on Creep Behavior of an Oxide-Oxide Ceramic Matrix Composite

    DTIC Science & Technology

    2007-03-01

    MPa. In steam creep stresses ranged from 100 to 160 MPa. Primary and secondary creep, but no tertiary creep, were observed in all tests. Minimum...creep rates. At 1000 °C creep run-out, defined as 100 hours at creep stress, was achieved in all tests. At 1100 °C run-out was achieved at 150 MPa...in laboratory air, but only at 100 MPa in steam. The residual strength and modulus of all specimens that achieved run-out were characterized. At

  6. Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1995-01-01

    Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.

  7. An experimental and theoretical investigation of the low temperature creep deformation behavior of single phase titanium alloys

    NASA Astrophysics Data System (ADS)

    Oberson, P. Gregory

    Titanium alloys are used for many applications due to their desirable properties, including its high strength-to-weight ratio, corrosion resistance, and biocompatibility. Titanium alloys are used extensively for aerospace, chemical, nuclear, industrial, biomedical, and consumer applications. In many applications, titanium components may be subject to stresses for extended periods of time. It has long been known that single-phase hexagonally close-packed (HCP) alpha and body-centered cubic (BCC) beta titanium alloys deform over time, or creep, at low temperatures (<0.25*Tm). As such, creep is an important factor to consider when assessing the structural reliability of titanium components. However, the factors that affect creep behavior such as grain size and alloy chemistry and the deformation mechanisms associated with creep such as slip and twinning are not well understood. The aim of this investigation is to experimentally and theoretically study the creep deformation behavior of single-phase alpha and beta titanium alloys. The first part of the investigation concerns alpha-Ti alloys. The low temperature creep behavior was studied experimentally, using alpha-Ti-1.6wt.%V as the model alloy. Creep testing was performed at a range of temperatures and slip and twinning were identified as creep deformation mechanisms by optical, SEM and TEM microscopy. The activation energy for creep was measured for the first time for an alpha-Ti than deforms by twinning. The activation energy was found to increase as a function of creep strain, suggesting that there is a change in the predominant deformation mechanism from slip at low strain to twinning at high strain. The reason for this change is explained by a model for twin nucleation caused by dislocation pileups. The theoretical aspect of the study of alpha-Ti, concerns the phenomenon of slow twin growth (time-dependent twinning) during low temperature creep. This phenomenon is unusual and poorly understood as twins in bulk

  8. Creep characterization of solder bumps using nanoindentation

    NASA Astrophysics Data System (ADS)

    Du, Yingjie; Liu, Xiao Hu; Fu, Boshen; Shaw, Thomas M.; Lu, Minhua; Wassick, Thomas A.; Bonilla, Griselda; Lu, Hongbing

    2017-08-01

    Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.

  9. Creep characterization of solder bumps using nanoindentation

    NASA Astrophysics Data System (ADS)

    Du, Yingjie; Liu, Xiao Hu; Fu, Boshen; Shaw, Thomas M.; Lu, Minhua; Wassick, Thomas A.; Bonilla, Griselda; Lu, Hongbing

    2016-10-01

    Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.

  10. Creep behavior of thin laminates of iron-cobalt alloys for use in switched reluctance motors and generators

    NASA Astrophysics Data System (ADS)

    Fingers, Richard Todd

    The United States Air Force is in the process of developing magnetic bearings as well as an aircraft Integrated Power Unit and an Internal Starter/Generator for main propulsion engines. These developments are the driving force behind a new emphasis on high temperature, high strength magnetic materials for power applications. Analytical work, utilizing elasticity theory, in conjunction with design requirements, indicates a need for magnetic materials to have strengths in excess of 80 ksi up to about 1000sp°F. It is this combination of desired material characteristics that is the motivation for this effort to measure, model, and predict the creep behavior of such advanced magnetic materials. Hipercosp°ler Alloy 50HS, manufactured by Carpenter Technology Corporation, is one of the leading candidates for application and is studied in this effort by subjecting mechanical test specimens to a battery of tensile and creep tests. The tensile tests provide stress versus strain behaviors that clearly indicate: a yield point, a heterogeneous deformation described as Luders elongation, the Portevin-LeChatelier effect at elevated temperatures, and, most often, a section of homogeneous deformation that concluded with necking and fracture. Creep testing indicated two distinct types of behavior. The first was a traditional response with primary, secondary and tertiary stages, while the second type could be characterized by an abrupt increase in strain rate that acted as a transition from one steady state behavior to another. This second linear region was then followed by the tertiary stage. The relationship between the tensile response and the creep responses is discussed. Analyses of the mechanical behavior includes double linear regression of empirically modeled data, scanning electron microscopy for microstructural investigations, isochronous stress-strain relations, and constant strain rate testing to relate the tensile and creep test parameters. Also, elastic and creep

  11. Effects of Zr Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Kabirian, F.; Mahmudi, R.

    2010-12-01

    The effects of 0.2, 0.6, and 1.0 wt pct Zr additions on the microstructure and creep behavior of AZ91 Mg alloy were investigated by impression tests carried out under constant punching stress ( σ imp) in the range 100 to 650 MPa, corresponding to the modulus-compensated stress levels of {{0.007 le σ_{{imp}} } {G le 0.044}} , at temperatures in the range 425 K to 570 K (152 °C to 297 °C). The alloy containing 0.6 wt pct Zr showed the best creep resistance mainly due to the favorable formation of Al3Zr2 and Al2Zr intermetallic compounds, reduction in the volume fraction of the eutectic β-Mg17Al12 phase, and solid solution hardening effects of Al in the Mg matrix. Based on the obtained stress exponents of 4.2 to 6.5 and activation energies of 90.7 to 127.1 kJ/mol, it is proposed that two parallel mechanisms of lattice and pipe-diffusion-controlled dislocation climb compete. Dislocation climb controlled by dislocation pipe diffusion prevails at high stresses, whereas climb of edge dislocations is the controlling mechanism at low stresses.

  12. The role of proteoglycans in the nanoindentation creep behavior of human dentin.

    PubMed

    Bertassoni, Luiz E; Kury, Matheus; Rathsam, Catherine; Little, Christopher B; Swain, Michael V

    2015-03-01

    Attempts to understand the mechanical behavior of dentin and other mineralized tissues have been primarily focused on the role of their more abundant matrix components, such as collagen and hydroxyapatite. The structural mechanisms endowing these biological materials with outstanding load bearing properties, however, remain elusive to date. Furthermore, while their response to deformation has been extensively studied, mechanisms contributing to their recovery from induced deformation remain poorly described in the literature. Here, we offer novel insights into the participation of proteoglycans (PG) and glycosaminoglycans (GAG) in regulating the nanoindentation creep deformation and recovery of mineralized and demineralized dentin. Accordingly, after the enzymatic digestion of either PGs and associated GAGs or only GAGs, the nanoindentation creep deformation of dentin increased significantly, while the relative recovery of both the mineralized and demineralized dentin dropped by 40-70%. In summary, our results suggest that PGs and GAGs may participate in a nanoscale mechanism that contributes significantly to the outstanding durability of dentin and possibly other mineralized tissues of similar composition.

  13. Creep analysis of solid oxide fuel cell with bonded compliant seal design

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.

    2013-12-01

    Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.

  14. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    NASA Astrophysics Data System (ADS)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  15. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  16. Creep-Fatigue Behavior of Alloy 617 at 850°C

    SciTech Connect

    Carroll, Laura

    2015-05-01

    Creep-fatigue deformation is expected to be a significant contributor to the potential factors that limit the useful life of the Intermediate Heat Exchanger (IHX) in the Very High Temperature Reactor (VHTR) nuclear system.[1] The IHX of a high temperature gas reactor will be subjected to a limited number of transient cycles due to start-up and shut-down operations imparting high local stresses on the component. This cycling introduces a creep-fatigue type of interaction as dwell times occur intermittently. The leading candidate alloy for the IHX is a nickel-base solid solution strengthened alloy, Alloy 617, which must safely operate near the expected reactor outlet temperature of up to 950 °C.[1] This solid solution strengthened nickel-base alloy provides an interesting creep-fatigue deformation case study because it has characteristics of two different alloy systems for which the cyclic behavior has been extensively investigated. Compositionally, it resembles nickel-base superalloys, such as Waspalloy, IN100, and IN718, with the exception of its lower levels of Al. At temperatures above 800 °C, the microstructure of Alloy 617, however, does not contain the ordered ?’ or ?’’ phases. Thus microstructurally, it is more similar to an austenitic stainless steel, such as 316 or 304, or Alloy 800H comprised of a predominantly solid solution strengthened matrix phase with a dispersion of inter- and intragranular carbides. Previous studies of the creep-fatigue behavior of Alloy 617 at 950 °C indicate that the fatigue life is reduced when a constant strain dwell is added at peak tensile strain.[2-5] This results from the combination of faster crack initiation occurring at surface-connected grain boundaries due to oxidation from the air environment along with faster, and intergranular, crack propagation resulting from the linking of extensive interior grain boundary cracking.[3] Saturation, defined as the point at which further increases in the strain

  17. Effect of nitrogen high temperature plasma based ion implantation on the creep behavior of Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Oliveira, A. C.; Oliveira, R. M.; Reis, D. A. P.; Carreri, F. C.

    2014-08-01

    Nitrogen high temperature plasma based ion implantation (HTPBII) performed on Ti-6Al-4V significantly improved the creep behavior of the alloy. Treatments were performed for 1 h at a working pressure of 4 mbar and negative high voltage pulses of 7.5 kV, 30 μs and 500 Hz were applied on the specimens heated at 800 °C and 900 °C, respectively. Microstructural characterization of the treated samples revealed the formation of nitrided layers, with simultaneous formation of TiN and Ti2N. The most intense peaks of these compounds were obtained at higher treatment temperature, probably due to the diffusion of nitrogen into titanium. The presence of nitrides caused surface hardening up to three times higher in comparison with untreated alloy. Constant load creep tests were conducted on a standard creep machine in air atmosphere, at stress level of 319 MPa at 600 °C. Significant reductions of the steady-state creep rates (ɛ) were measured for martensitic Ti-6Al-4V treated by nitrogen HTPBII, reaching minimum creep rates of 0.0318 h-1 in comparison with 0.1938 h-1 for untreated sample. The improvement of the creep resistance seems to be associated with the formation of a thick nitrided layer, which acts as a barrier to oxygen diffusion into the material. In addition, the increase of the grain size generated by the heating of the substrate during the treatment can affect some creep mechanisms, leading to a significant reduction of ɛ.

  18. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    PubMed Central

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-01-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908

  19. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    NASA Astrophysics Data System (ADS)

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  20. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading.

    PubMed

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-19

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  1. RNA-Seq Analysis of the Sclerotinia homoeocarpa – Creeping Bentgrass Pathosystem

    PubMed Central

    Opiyo, Stephen O.; Reddyvari-Channarayappa, Venu; Mitchell, Thomas K.; Boehm, Michael J.

    2012-01-01

    Sclerotinia homoeocarpa causes dollar spot disease, the predominate disease on highly-maintained turfgrass. Currently, there are major gaps in our understanding of the molecular interactions between S. homoeocarpa and creeping bentgrass. In this study, 454 sequencing technology was used in the de novo assembly of S. homoeocarpa and creeping bentgrass transcriptomes. Transcript sequence data obtained using Illumina's first generation sequencing-by-synthesis (SBS) were mapped to the transcriptome assemblies to estimate transcript representation in different SBS libraries. SBS libraries included a S. homoeocarpa culture control, a creeping bentgrass uninoculated control, and a library for creeping bentgrass inoculated with S. homoeocarpa and incubated for 96 h. A Fisher's exact test was performed to determine transcripts that were significantly different during creeping bentgrass infection with S. homoeocarpa. Fungal transcripts of interest included glycosyl hydrolases, proteases, and ABC transporters. Of particular interest were the large number of glycosyl hydrolase transcripts that target a wide range of plant cell wall compounds, corroborating the suggested wide host range and saprophytic abilities of S. homoeocarpa. Several of the multidrug resistance ABC transporters may be important for resistance to both fungicides and plant defense compounds. Creeping bentgrass transcripts of interest included germins, ubiquitin transcripts involved in proteasome degradation, and cinnamoyl reductase, which is involved in lignin production. This analysis provides an extensive overview of the S. homoeocarpa-turfgrass pathosystem and provides a starting point for the characterization of potential virulence factors and host defense responses. In particular, determination of important host defense responses may assist in the development of highly resistant creeping bentgrass varieties. PMID:22905098

  2. Primary and secondary creep in aluminum alloys as a solid state transformation

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2016-08-01

    Despite the massive literature and the efforts devoted to understand the creep behavior of aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters and experimental conditions is, at present, still missing. The analysis of creep is typically carried out in terms of the so-called steady or secondary creep regime. The present work offers an alternative view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers primary and secondary creep together as solid state isothermal transformations, similar to recrystallization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-Kolmogorov equation, typically used to analyze these transformations, can also be employed to explain creep deformation. The description is fully compatible with present (empirical) models of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at different temperatures and stresses to validate the proposed model.

  3. Finite element elastic-plastic-creep and cyclic life analysis of a cowl lip

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Melis, Matthew E.; Halford, Gary R.

    1990-01-01

    Results are presented of elastic, elastic-plastic, and elastic-plastic-creep analyses of a test-rig component of an actively cooled cowl lip. A cowl lip is part of the leading edge of an engine inlet of proposed hypersonic aircraft and is subject to severe thermal loadings and gradients during flight. Values of stresses calculated by elastic analysis are well above the yield strength of the cowl lip material. Such values are highly unrealistic, and thus elastic stress analyses are inappropriate. The inelastic (elastic-plastic and elastic-plastic-creep) analyses produce more reasonable and acceptable stress and strain distributions in the component. Finally, using the results from these analyses, predictions are made for the cyclic crack initiation life of a cowl lip. A comparison of predicted cyclic lives shows the cyclic life prediction from the elastic-plastic-creep analysis to be the lowest and, hence, most realistic.

  4. Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane

    NASA Astrophysics Data System (ADS)

    Boubakri, A.; Haddar, N.; Elleuch, K.; Bienvenu, Y.

    2011-10-01

    Changes in mechanical and physical properties of polyurethane thermoplastic during aging at 70 °C and 90 °C were investigated. The loss weight response was analyzed by gravimetric measurements under these temperatures. Changes in appearance and morphology of TPU after thermal aging were revealed by optical microscopy. The prolongation of the thermal exposure time, up to 270 days, leads to a progressive increase in tensile strength. In fact, elastic modulus and stress at 200% of strain were increased with thermal exposure time. These results can be explained by the increase of thermal stability due to the increase of material rigidity and the decrease in chain mobility. The evolution of the mechanical properties from tensile tests seems to be well correlated to the creep behavior. Finally, Scanning Electron Microscopy (SEM) revealed the modification of TPU morphology fracture surface after thermal aging.

  5. Creep Behavior of Intact and Cracked Limestone Under Multi-Level Loading and Unloading Cycles

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Zhang, Lianyang; Wang, Weijun; Wan, Wen; Li, Shuqing; Ma, Wenhao; Wang, Yixian

    2017-06-01

    A series of triaxial creep tests were carried out on intact and cracked Maokou limestone specimens under multi-level loading and unloading cycles. A new data processing algorithm is proposed to analyze the experimental data and divide the total strain into instantaneous and creep strains, with the instantaneous strain consisting of instantaneous elastic and plastic strains and the creep strain consisting of viscoelastic and visco-plastic strains. The results show that the viscoelastic strain converges to a certain value with time, but the visco-plastic strain keeps increasing with time, although both tend to increase with higher deviatoric stress. The ratio of the visco-plastic strain to the total creep strain also tends to increase when the deviatoric stress is higher. The steady-state creep strain rate increases with higher deviatoric stress or lower confining pressure, and the relation between the steady-state creep strain rate and the deviatoric stress can be well described by an exponential expression. The results also show that the preexisting cracks in the limestone have a great effect on its creep properties. At the same confining pressure and deviatoric stress, the cracked limestone shows larger instantaneous and creep strains (especially visco-plastic strains), longer duration of primary creep, and a higher steady-state creep strain rate than the intact limestone.

  6. Creep/Rupture Behavior of Melt-Infiltrated SiC/SiC Composites Being Investigated

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    2001-01-01

    The failure behavior of melt-infiltrated SiC/SiC ceramic matrix composites is under investigation at the NASA Glenn Research Center as part of NASA's Ultra-Efficient Engine Technology Program. This material was originally developed under the High Speed Research Office's Enabling Propulsion Materials Program. Creep and rupture data provide accelerated testing information to predict material behavior under engine use situations (1500 to 2400 F). This information gives insights into various material development paths to improve composites as well as improve understanding of failure mechanisms. The left figure shows the fracture surface of a CMC material following over 200 hr of testing at 2400 F. This surface demonstrates the kind of fibrous pullout desirable for maximum crack deflection, hence non-brittle failure. Microscopy suggests that creep and rupture of these materials can best be considered as a probabilistic property, rather than a material property. Fiber failure occurs first in isolated regions, while stronger adjacent fibers remain intact. The right figure shows a region where oxide deposits blur and round the fiber images. Because the oxidation kinetics of SiC are well understood, this oxide scale can be used as a measure of the length of time various regions of the composites have been exposed to the environment, hence providing vital information regarding the sequence of failure. The oxide scale in the right figure indicates an early failure of this tow of fibers, whereas adjacent tows remain oxide free, suggesting failure much later in time. The path of various cracks can be followed throughout the composite in this manner, suggesting failure mechanisms.

  7. Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation.

    PubMed

    Alothman, Othman Y; Fouad, H; Al-Zahrani, S M; Eshra, Ayman; Al Rez, Mohammed Fayez; Ansari, S G

    2014-08-28

    High Density Polyethylene (HDPE) is one of the most often used polymers in biomedical applications. The limitations of HDPE are its visco-elastic behavior, low modulus and poor bioactivity. To improve HDPE properties, HA nanoparticles can be added to form polymer composite that can be used as alternatives to metals for bone substitutes and orthopaedic implant applications. In our previous work (BioMedical Engineering OnLine 2013), different ratios of HDPE/HA nanocomposites were prepared using melt blending in a co-rotating intermeshing twin screw extruder. The accelerated aging effects on the tensile properties and torsional viscoelastic behavior (storage modulus (G') and Loss modulus (G")) at 80°C of irradiated and non-irradiated HDPE/HA was investigated. Also the thermal behavior of HDPE/HA were studied. In this study, the effects of gamma irradiation on the tensile viscoelastic behavior (storage modulus (E') and Loss modulus (E")) at 25°C examined for HDPE/HA nanocomposites at different frequencies using Dynamic Mechanical Analysis (DMA). The DMA was also used to analyze creep-recovery and relaxation properties of the nanocomposites. To analyze the thermal behavior of the HDPE/HA nanocomposite, Differential Scanning Calorimetry (DSC) was used. The microscopic examination of the cryogenically fractured surface revealed a reasonable distribution of HA nanoparticles in the HDPE matrix. The DMA showed that the tensile storage and loss modulus increases with increasing the HA nanoparticles ratio and the test frequency. The creep-recovery behavior improves with increasing the HA nanoparticle content. Finally, the results indicated that the crystallinity, viscoelastic, creep recovery and relaxation behavior of HDPE nanocomposite improved due to gamma irradiation. Based on the experimental results, it is found that prepared HDPE nanocomposite properties improved due to the addition of HA nanoparticles and irradiation. So, the prepared HDPE/HA nanocomposite appears to

  8. Creep-characteristics of a tropical wood-polymer composite

    NASA Astrophysics Data System (ADS)

    Chia, L. H. L.; Teoh, S. H.; Boey, F. Y. C.

    Wood polymer composite (WPC) specimens were produced by impregnating a tropical wood with methyl methacrylate and subsequently polymerised by γ-irradiation. Beam specimens of varying weight percentages of polymer were then subjected to a three point bend creep test under a constant load condition, for 250, 300 and 350 N. A Norton-Bailey (power law) mathematical model was used to describe the creep behavior, with the creep components determined by a nonlinear regression analysis. Significant creep improvements were obtained from the composite specimens as compared to the untreated wood specimens. Results indicated that maximum creep resistance is obtained when the amount of polymer loading exceeded 30%. An interfacial interaction between the polymer and the wood cell wall was used to account for the behavior of the increase in the creep resistance.

  9. Wear and creep behavior of total knee implants undergoing wear testing.

    PubMed

    Teeter, Matthew G; Parikh, Amit; Taylor, Marc; Sprague, Jeff; Naudie, Douglas D

    2015-01-01

    We sought to determine what dimensional changes occurred from wear testing of a total knee implant, as well as any changes within the polyethylene subsurface. Three fixed bearing implants underwent wear simulator testing to 6.1 million cycles. Gravimetric analysis and micro-CT scans were performed pre-test, mid-test, and post-test. Wear volume and surface deviations were greater during 0-3.2 million cycles (91 ± 12mm(3)) than from 3.2 to 6.1 million cycles (52 ± 18mm(3)). Deviations (wear and creep) occurred across all surfaces of the tibial inserts, including the articular surface, backside surface, sides, and locking mechanism. No subsurface changes were found. The micro-CT results were a useful adjunct to gravimetric analysis, defining the dimensional changes that occurred with testing and ruling out subsurface fatigue. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Tensile and creep behavior of a silicon carbide fiber-reinforced aluminosilicate composite

    SciTech Connect

    Khobaib, M.; Zawada, L.

    1991-08-01

    Tensile and tensile creep tests were conducted with a Nicalon/aluminosilicate (Si-C-O/1723) glass composite. Tensile tests were conducted at room temperature, and the creep tests were conducted at 600, 700, and 750 C. Room temperature tensile test failure features exhibited a tortuous crack path and extensive fiber pull-out. The failure features in creep were characterized by flat fracture and little fiber pull-out. The environment appeared to play a significant role in creep failure of this composite system. 6 refs.

  11. Creep-Rupture Behavior of a Woven Ceramic Matrix Composite at Elevated Temperatures in a Humid Environment

    DTIC Science & Technology

    2006-03-01

    284-291 (1999) 4. LaRochelle, K. J . Tensile Stress Rupture Behavior of a Woven Ceramic Matrix Composite in Humid Environments at Intermediate...Composites,” Journal of the. American Ceramic. Society, 78 [8]: 2097-100 (1995). 13. Musil , S.S. Characterization of Creep Behavior of Oxide/Oxide...1989). 17. Filipuzzi, L., G. Camus, R. Naslain, and J . Thebault. “ Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: I, An

  12. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive

    NASA Technical Reports Server (NTRS)

    Dembosky, Stanley K.; Sancaktar, Erol

    1985-01-01

    The bonded shear creep and constant strain rate behaviors of zero, one, and three percent endcapped thermoplastic polyimidesulfone adhesive were examined at room and elevated temperatures. Endcapping was accomplished by the addition of phthalic anhydrides. The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Ludwik's and Crochet's relations were used to describe the experimental failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed. The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Crochet's relations based on Maxwell and Chase-Goldsmith models were fit to delayed failure data. Ludwik's equations revealed negligible rate dependence. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.

  13. Creep behavior of alloys based on TiAl containing TiB sub 2 and TiN particulates

    SciTech Connect

    Martin, P.L.; Carter, D.H.; Aikin, R.M. Sr. ); Aikin, R.M. Jr.; Christodoulou, L. )

    1990-01-01

    Ordered alloys based on the L1{sub 0} crystal structure compound TiAl were tested in constant stress creep. The alloys ranged from 45 to 47 at. % Al with and without V substitutions. The ingot processing, utilizing the XD{trademark} technique, incorporated 1 to 5 {mu}m diameter particles of boride or nitride compounds. Emphasis was placed on characterizing the initial stages of creep using digital data acquisition and analysis in the range 70 to 280 MPa stress and 760 to 850{degrees}C temperature. When TiN (converting to Ti{sub 2}AlN in processing) and TiB{sub 2} are both added to the matrix, the creep properties are significantly improved. Fine particles were observed to decorate dislocations and to have nucleated homogeneously within the TiAl grains. 16 refs., 7 figs., 3 tabs.

  14. Preliminary Development of a Unified Viscoplastic Constitutive Model for Alloy 617 with Special Reference to Long Term Creep Behavior

    SciTech Connect

    Sham, Sam; Walker, Kevin P.

    2008-01-01

    The expected service life of the Next Generation Nuclear Plant is 60 years. Structural analyses of the Intermediate Heat Exchanger (IHX) will require the development of unified viscoplastic constitutive models that address the material behavior of Alloy 617, a construction material of choice, over a wide range of strain rates. Many unified constitutive models employ a yield stress state variable which is used to account for cyclic hardening and softening of the material. For low stress values below the yield stress state variable these constitutive models predict that no inelastic deformation takes place which is contrary to experimental results. The ability to model creep deformation at low stresses for the IHX application is very important as the IHX operational stresses are restricted to very small values due to the low creep strengths at elevated temperatures and long design lifetime. This paper presents some preliminary work in modeling the unified viscoplastic constitutive behavior of Alloy 617 which accounts for the long term, low stress, creep behavior and the hysteretic behavior of the material at elevated temperatures. The preliminary model is presented in one-dimensional form for ease of understanding, but the intent of the present work is to produce a three-dimensional model suitable for inclusion in the user subroutines UMAT and USERPL of the ABAQUS and ANSYS nonlinear finite element codes. Further experiments and constitutive modeling efforts are planned to model the material behavior of Alloy 617 in more detail.

  15. Creep behavior in SiC whisker-reinforced alumina composite

    SciTech Connect

    Lin, H.T.; Becher, P.F.

    1994-10-01

    Grain boundary sliding (often accompanied by cavitation) is a major contributor to compressive and tensile creep deformation in fine-grained aluminas, both with and without whisker-reinforcement. Studies indicate that the creep response of alumina composites reinforced with SiC whiskers can be tailored by controlling the composite microstructure and composition. The addition of SiC whiskers (< 30 vol%) significantly increases the creep resistance of fine-grained (1--2 {mu}m) alumina in air at temperatures of 1,200 and 1,300 C. However, at higher whisker contents (30 and 50 vol%), the creep resistance is degraded due to enhanced surface oxidation reactions accompanied by extensive creep cavitation. Densification aids (i.e., Y{sub 2}O{sub 3}), which facilitate silica glass formation and thus liquid phase densification of the composites, can also result in degradation of creep resistance. On the other hand, increasing the matrix grain size or decreasing the whisker aspect ratio (increased whisker number density) results in raising the creep resistance of the composites. These observations not only explain the variability in the creep response of various SiC whisker-reinforced alumina composites but also indicate factors that can be used to enhance the elevated temperature performance.

  16. Creep Behavior and Degradation of Subgrain Structures Pinned by Nanoscale Precipitates in Strength-Enhanced 5 to 12 Pct Cr Ferritic Steels

    NASA Astrophysics Data System (ADS)

    Ghassemi Armaki, Hassan; Chen, Ruiping; Maruyama, Kouichi; Igarashi, Masaaki

    2011-10-01

    Creep behavior and degradation of subgrain structures and precipitates of Gr. 122 type xCr-2W-0.4Mo-1Cu-VNb ( x = 5, 7, 9, 10.5, and 12 pct) steels were evaluated during short-term and long-term static aging and creep with regard to the Cr content of steel. Creep rupture life increased from 5 to 12 pct Cr in the short-term creep region, whereas in the long-term creep region, it increased up to 9 pct Cr and then decreased with the addition of Cr from 9 to 12 pct. Behavior of creep rupture life was attributed to the size of elongated subgrains. In the short-term creep region, subgrain size decreased from 5 to 12 pct Cr, corresponding to the longer creep strength. However, in the long-term creep region after 104 hours, subgrain size increased up to 9 pct Cr and then decreased from 9 to 12 pct, corresponding to the behavior of creep rupture life. M23C6 and MX precipitates had the highest number fraction among all of the precipitates present in the studied steels. Cr concentration dependence of spacing of M23C6 and MX precipitates exhibited a V-like shape during short-term as well as long-term aging at 923 K (650 °C), and the minimum spacing of precipitates belonged to 9 pct Cr steel, corresponding to the lowest recovery speed of subgrain structures. In the short-term creep region, subgrain coarsening during creep was controlled by strain and proceeded slower with the addition of Cr, whereas in long-term creep region, subgrain coarsening was controlled by the stability of precipitates rather than due to the creep plastic deformation and took place faster from 9 to 12 pct and 9 to 5 pct Cr. However, M23C6 precipitates played a more important role than MX precipitates in the control of subgrain coarsening, and there was a closer correlation between spacing of M23C6 precipitates and subgrain size during static aging and long-term creep region.

  17. Extrapolation of creep behavior of high-density polyethylene liner in the Catch Basin of grout vaults

    SciTech Connect

    Whyatt, G.A.

    1995-07-01

    Testing was performed to determine if gravel particles will creep into and puncture the high-density polyethylene (HDPE) liner in the catch basin of a grout vault over a nominal 30-year period. Testing was performed to support a design without a protective geotextile cover after the geotextile was removed from the design. Recently, a protective geotextile cover over the liner was put back into the design. The data indicate that the geotextile has an insignificant effect on the creep of gravel into the liner. However, the geotextile may help to protect the liner during construction. Two types of tests were performed to evaluate the potential for creep-related puncture. In the first type of test, a very sensitive instrument measured the rate at which a probe crept into HDPE over a 20-minute period at temperatures of 176{degrees}F to 212{degrees}F (80{degrees}C to 100{degrees}C). The second type of test consisted of placing the liner between gravel and mortar at 194{degrees}F (90{degrees}C) and 45.1 psi overburden pressure for periods up to 1 year. By combining data from the two tests, the long-term behavior of the creep was extrapolated to 30 years of service. After 30 years of service, the liner will be in a nearly steady condition and further creep will be extremely small. The results indicate that the creep of gravel into the liner will not create a puncture during service at 194{degrees}F (90{degrees}C). The estimated creep over 30 years is expected to be less than 25 mils out of the total initial thickness of 60 mils. The test temperature of 194{degrees}F (90{degrees}C) corresponds to the design basis temperature of the vault. Lower temperatures are expected at the liner, which makes the test conservative. Only the potential for failure of the liner resulting from creep of gravel is addressed in this report.

  18. Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Shahbeigi Roodposhti, Peiman; Sarkar, Apu; Murty, Korukonda L.; Scattergood, Ronald O.

    2016-09-01

    This review sheds light on the creep properties of AZ91 magnesium alloys with a major emphasis on the influence of microstructure on the creep resistance and underlying creep deformation mechanism based on stress exponent and activation energy. Effects of processing routes such as steel mold casting, die casting, and thixoforming are considered. Roles of a wide range of additional alloying elements such as Si, Sb, Bi, Ca, Sn, REs, and combined addition of them on the microstructure modification were investigated. The reaction between these elements and the Mg or Al in the matrix develops some thermally stable intermetallic phases which improves the creep resistance at elevated temperatures, however does not influence the creep mechanism.

  19. Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2002-01-01

    New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.

  20. Creep Behavior and Deformation Mechanisms for Nanocluster-Strengthened Ferritic Steels

    SciTech Connect

    Brandes, Matthew C; Kovarik, L.; Miller, Michael K; Daehn, Glenn; Mills, Michael J.

    2011-01-01

    Mechanically alloyed, nanostructured ferritic steels represent a class of alloys that can display high resistance to radiation and creep deformation, which are derived from the presence of nanoclusters, precipitates and solute segregation to the grain boundaries. The creep responses for a 14YWT nanostructured ferritic steel were measured over a range of temperatures and stress levels. The stress exponent was observed to vary non-linearly with applied stress; stress exponents were found to decrease with decreasing stress approaching unity at low stress. Transmission electron microscopy studies clearly demonstrated that creep deformation proceeds by a dislocation glide within nanoscale grains and that glide dislocations are attracted to and pinned by nanoclusters. In light of these observations, a new model of the creep response, inspired by the Kocks-Argon-Ashby model, is developed to explain the low creep rates and small stress exponents that are exhibited by these alloys.

  1. Indentation creep behavior of a direct-filling silver alternative to amalgam.

    PubMed

    Xu, H H; Liao, H; Eichmiller, F C

    1998-12-01

    Amalgam creep has been identified as a key parameter associated with marginal breakdown and corrosion. The aim of this study was to evaluate the time-dependent deformation (creep) of a novel silver filling material as an alternative to amalgam. We made the silver specimens by pressing a precipitated powder at room temperature to a density that can be achieved in clinical hand consolidation. The surface of the silver was either polished or burnished. To examine local contact creep and the effect of surface finishing, we used an indentation creep method in which a Vickers indenter was loaded on the specimen surface at a load of 10 N with dwell times of 5 sec to 6x10(4) sec. We used a bonded-interface technique to examine subsurface creep mechanisms. The flexural strength (mean+/-SD; n = 10) was 86+/-20 MPa for amalgam, 180+/-21 MPa for polished silver, and 209+/-19 MPa for burnished silver-values which are significantly different from each other (family confidence coefficient = 0.95; Tukey's multiple-comparison test). Indentation creep manifested as hardness number decreasing with increased dwell time. With dwell time increasing from 5 sec to 6x10(4) sec, the hardness number of amalgam was reduced by approximately 80%; that of the polished silver and the burnished silver was reduced by only 40%. Subsurface creep in amalgam consisted of the shape change of the alloy particles from spherical to elongated shapes, and the separation of matrix grains from each other, possibly due to grain-boundary sliding. Creep of the polished silver occurred by densification reducing porosity and increasing hardness; that of the burnished silver occurred by the displacement of the burnished layer. These results suggest that, due to creep-induced subsurface work-hardening and densification, the consolidated silver exhibits a higher resistance to indentation creep than does amalgam. The hardness number of silver approaches that of amalgam after prolonged indentation loading.

  2. Development of constitutive models for cyclic plasticity and creep behavior of super alloys at high temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.

  3. Creep Crack Growth Behavior of Alloys 617 and 800H in Air and Impure Helium Environments at High Temperatures

    NASA Astrophysics Data System (ADS)

    Grierson, D. S.; Cao, G.; Brooks, P.; Pezzi, P.; Glaudell, A.; Kuettel, D.; Fischer, G.; Allen, T.; Sridharan, K.; Crone, W. C.

    2017-03-01

    The environmental degradation of intermediate heat exchanger (IHX) materials in impure helium has been identified as an area with major ramifications on the design of very high-temperature reactors (VHTR). It has been reported that in some helium environments, non-ductile failure is a significant failure mode for Alloy 617 with long-term elevated-temperature service. Non-ductile failure of intermediate exchangers can result in catastrophic consequences; unfortunately, the knowledge of creep crack initiation and creep crack growth (CCG) in candidate alloys is limited. Current codes and code cases for the candidate alloys do not provide specific guidelines for effects of impure helium on the high-temperature behavior. The work reported here explores creep crack growth characterization of Alloy 617 and Alloy 800H at elevated temperatures in air and in impure helium environments, providing information on the reliability of these alloys in VHTR for long-term service. Alloy 617 was found to exhibit superior CCG resistance compared to Alloy 800H. For Alloy 617 tested at 973 K (700 °C), a notable increase in the resistance to crack growth was measured in air compared to that measured in the helium environment; CCG results for Alloy 800H suggest that air and helium environments produce similar behavior. Testing of grain boundary-engineered (GBE) Alloy 617 samples revealed that, although the technique produces superior mechanical properties in many respects, the GBE samples exhibited inferior resistance to creep crack growth compared to the other Alloy 617 samples tested under similar conditions. Grain size is noted as a confounding factor in creep crack growth resistance.

  4. Creep Crack Growth Behavior of Alloys 617 and 800H in Air and Impure Helium Environments at High Temperatures

    NASA Astrophysics Data System (ADS)

    Grierson, D. S.; Cao, G.; Brooks, P.; Pezzi, P.; Glaudell, A.; Kuettel, D.; Fischer, G.; Allen, T.; Sridharan, K.; Crone, W. C.

    2016-11-01

    The environmental degradation of intermediate heat exchanger (IHX) materials in impure helium has been identified as an area with major ramifications on the design of very high-temperature reactors (VHTR). It has been reported that in some helium environments, non-ductile failure is a significant failure mode for Alloy 617 with long-term elevated-temperature service. Non-ductile failure of intermediate exchangers can result in catastrophic consequences; unfortunately, the knowledge of creep crack initiation and creep crack growth (CCG) in candidate alloys is limited. Current codes and code cases for the candidate alloys do not provide specific guidelines for effects of impure helium on the high-temperature behavior. The work reported here explores creep crack growth characterization of Alloy 617 and Alloy 800H at elevated temperatures in air and in impure helium environments, providing information on the reliability of these alloys in VHTR for long-term service. Alloy 617 was found to exhibit superior CCG resistance compared to Alloy 800H. For Alloy 617 tested at 973 K (700 °C), a notable increase in the resistance to crack growth was measured in air compared to that measured in the helium environment; CCG results for Alloy 800H suggest that air and helium environments produce similar behavior. Testing of grain boundary-engineered (GBE) Alloy 617 samples revealed that, although the technique produces superior mechanical properties in many respects, the GBE samples exhibited inferior resistance to creep crack growth compared to the other Alloy 617 samples tested under similar conditions. Grain size is noted as a confounding factor in creep crack growth resistance.

  5. Dependence of Precipitation Behavior and Creep Strength on Cr Content in High Cr Ferritic Heat Resistant Steels

    NASA Astrophysics Data System (ADS)

    Murata, Yoshinori; Yamashita, Koji; Morinaga, Masahiko; Hara, Toru; Miki, Kazuhiro; Azuma, Tsukasa; Ishiguro, Toru; Hashizume, Ryokichi

    It is known that high temperature tensile strength increases with increasing Cr content in Cr containing heat resistant steels. Recently, however, it was found that long-term creep strength decreased with increasing Cr content in the heat resistant steels containing 8.5-12%Cr. In this study, precipitation behavior of M23C6 carbide and the Z phase after creep tests was investigated using two kinds of high Cr ferritic steels (9Cr and 10.5Cr). As a result, 10.5Cr steel exhibited larger average particle size of M23C6 than 9Cr steel irrespective of creep stress levels, but the amount of M23C6 carbide was almost the same in both steels. On the other hand, the amount of the Z phase became large in 10.5Cr steel compared with 9Cr steel. These experimental results indicate that high level of Cr content accelerates precipitation and coalescence rate of both M23C6 carbide and the Z phase, resulting in degradation of long term creep strength in 10.5 Cr steel compared to 9Cr steel.

  6. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization

    NASA Astrophysics Data System (ADS)

    Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.

    2016-06-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.

  7. Coupling between creep and redox behavior in nickel - yttria stabilized zirconia observed in-situ by monochromatic neutron imaging

    NASA Astrophysics Data System (ADS)

    Makowska, Malgorzata Grazyna; Kuhn, Luise Theil; Frandsen, Henrik Lund; Lauridsen, Erik Mejdal; De Angelis, Salvatore; Cleemann, Lars Nilausen; Morgano, Manuel; Trtik, Pavel; Strobl, Markus

    2017-02-01

    Ni-YSZ (nickel - yttria stabilized zirconia) is a material widely used for electrodes and supports in solid oxide electrochemical cells. The mechanical and electrochemical performance of these layers, and thus the whole cell, depends on their microstructure. During the initial operation of a cell, NiO is reduced to Ni. When this process is conducted under external load, like also present in a stack assembly, significant deformations of NiO/Ni-YSZ composite samples are observed. The observed creep is orders of magnitude larger than the one observed after reduction during operation. This phenomenon is referred to as accelerated creep and is expected to have a significant influence on the microstructure development and stress field present in the Ni-YSZ in solid oxide electrochemical cells (SOCs), which is highly important for the durability of the SOC. In this work we present energy selective neutron imaging studies of the accelerated creep phenomenon in Ni/NiO-YSZ composite during reduction and also during oxidation. This approach allowed us to observe the phase transition and the creep behavior simultaneously in-situ under SOC operation-like conditions.

  8. Stick-slip and creep behavior in lubricated granular material: Insights into the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Hayman, Nicholas W.; Lavier, Luc L.

    2014-05-01

    Crustal deformation can occur via stick-slip events, viscous creep, or strain transients at variable rates. Here we explore such strain transients with physical experiments comprising a quasi-two-dimensional shear zone with elastic, acrylic discs and interstitial viscous silicone. Experiments of solely elastic discs produce stick-slip events and an overall (constant volume) strengthening. The addition of the viscous silicone enhances localization but does not greatly change the overall pattern of strengthening. It does, however, damp the stick-slip events, leading to transient, creep-like behavior that approaches the behavior of a Maxwell body. There is no gradual transition from frictional to viscous deformation with increasing amounts of silicone, suggesting that the mixed rheology is in effect as soon as an interstitial fluid is present. Our experiments support the hypothesis that a possible cause for strain transients in nature is an interstitial viscous phase in shear zones.

  9. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  10. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  11. Creep-rupture behavior of iron superalloys in high-pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1984-01-01

    The creep-rupture properties of five iron-base and one cobalt-base high temperature alloys were investigated to assess the feasibility of using the alloys as construction materials in a Stirling engine. The alloys were heat treated and hardness measurements were taken. Typical microstructures of the alloys are shown. The creep-rupture properties of the alloys were determined at 760 and 815 C in 15.0 MPa H2 for 200 to 1000 hours. Plots of rupture life versus stress for the six superalloys are presented along with creep strain-time plots.

  12. Long-time creep behavior of Nb-1Zr alloy containing carbon

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1986-01-01

    Creep tests were conducted on the Nb-1Zr base alloy with and without carbon. Testing was performed at 10 to the -6 MPa in the 1350 to 1400 K range. Creep times, to 1 percent strain, ranged from 60 to 6000 hr. All 1 percent creep data were filled by linear regression to a temperature compensating rate equation. The Nb-1Zr-0.06C alloy, tested in a weakened aged condition, appears to be four times as strong as the Nb-1Zr alloy.

  13. Computational analysis of nonlinear creep of polyphase aggregates: Influence of phase morphology

    NASA Astrophysics Data System (ADS)

    Cook, A. C.; Vel, S. S.; Gerbi, C.; Johnson, S. E.

    2014-09-01

    The constitutive laws of polyphase aggregates dominantly depend on the operative deformation mechanisms, phase morphology and modes, and environmental conditions. Each of these factors has the potential to dramatically affect bulk mechanical properties as well as the local stress and strain rate distributions. To focus on the effects of phase morphology, we have developed a rigorous multiscale approach based on asymptotic expansion homogenization. The proposed methodology has two fundamental goals: (1) accurately predict bulk behavior in aggregates by explicitly taking into account phase morphology and (2) calculate detailed distributions of strain rates, stresses, and viscosities in heterogeneous materials. The methodology is able to consider general nonlinear phase constitutive laws that relate strain rates to stresses, temperature, and other factors such as water fugacity and grain size. We demonstrate the approach by analyzing power law creep of computer-generated and natural polyphase systems and benchmarking the results against analytical solutions. As an outcome of this analysis, we find that the approximation of an aggregate as a power law material is reasonable for isotropic, homogeneous phase distributions but breaks down significantly with high degrees of phase organization. We also present distributions in strain rate, stress, and viscosity for different applied loading conditions. Results exhibit areas of high internal stresses and substantial localization. We describe and provide a freely available software package supporting these calculations.

  14. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    NASA Astrophysics Data System (ADS)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-06-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{{s}} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  15. Antiskid control of railway train braking based on adhesion creep behavior

    NASA Astrophysics Data System (ADS)

    Zuo, Jianyong; Chen, Zhongkai

    2012-05-01

    In modern trains wheelset skidding leads to the deterioration of braking behavior, the degradation of comfort, as well as a boost in system hazards. Because of the nonlinearity and unknown characteristics of wheelset adhesion, simplifications are widely adopted in the modeling process of conventional antiskid controllers. Therefore, conventional antiskid controllers usually cannot perform satisfactorily. In this paper, systematic computer simulation and field tests for railway antiskid control system are introduced. The operating principal of antiskid control system is explained, which is fundamental to the simulation of antiskid brakes, and the simulation model is introduced, which incorporates both the adhesion creep curve and a pneumatic submodel of antiskid control system. In addition, the characteristics of adhesion curves and the simulation target are also provided. Using DHSplus, the pneumatic submodel is created to analyze the performance of the different control strategies of antiskid valves. Then the system simulation is realized by combining the kinematical characteristics of railway trains and the pneumatic submodel. The simulation is performed iteratively to obtain the optimized design of the antiskid control system. The design result is incorporated in the hardware design of the antiskid control system and is evaluated in the field tests in Shanghai Subway Line 1. Judging by the antiskid efficiency, the antiskid braking performance observed in the field tests shows the superiority of the optimized design. Therefore, the proposed simulation method, especially in view of its ease of application, appears to be a useful one for designing railway antiskid control systems.

  16. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle

    USGS Publications Warehouse

    Kirby, S.H.; Raleigh, C.B.

    1973-01-01

    The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.

  17. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 2: Phase 2 subsize panel cyclic creep predictions

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.

  18. A Physics-Based Crystallographic Modeling Framework for Describing the Thermal Creep Behavior of Fe-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Wen, W.; Capolungo, L.; Patra, A.; Tomé, C. N.

    2017-05-01

    In this work, a physics-based thermal creep model is developed based on the understanding of the microstructure in Fe-Cr alloys. This model is associated with a transition state theory-based framework that considers the distribution of internal stresses at sub-material point level. The thermally activated dislocation glide and climb mechanisms are coupled in the obstacle-bypass processes for both dislocation and precipitate-type barriers. A kinetic law is proposed to track the dislocation densities evolution in the subgrain interior and in the cell wall. The predicted results show that this model, embedded in the visco-plastic self-consistent framework, captures well the creep behaviors for primary and steady-state stages under various loading conditions. The roles of the mechanisms involved are also discussed.

  19. A Physics-Based Crystallographic Modeling Framework for Describing the Thermal Creep Behavior of Fe-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Wen, W.; Capolungo, L.; Patra, A.; Tomé, C. N.

    2017-02-01

    In this work, a physics-based thermal creep model is developed based on the understanding of the microstructure in Fe-Cr alloys. This model is associated with a transition state theory-based framework that considers the distribution of internal stresses at sub-material point level. The thermally activated dislocation glide and climb mechanisms are coupled in the obstacle-bypass processes for both dislocation and precipitate-type barriers. A kinetic law is proposed to track the dislocation densities evolution in the subgrain interior and in the cell wall. The predicted results show that this model, embedded in the visco-plastic self-consistent framework, captures well the creep behaviors for primary and steady-state stages under various loading conditions. The roles of the mechanisms involved are also discussed.

  20. A novel on chip test method to characterize the creep behavior of metallic layers under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Lapouge, P.; Onimus, F.; Vayrette, R.; Raskin, J.-P.; Pardoen, T.; Bréchet, Y.

    2016-08-01

    An on chip test method has been developed to characterize the irradiation creep behavior of thin freestanding films under uniaxial tension. The method is based on the use of a long beam involving large internal stress protected from the irradiation flux that imposes a spring like deformation to a specimen beam. These elementary freestanding structures fabricated using a combination of deposition, lithography and release steps are multiplied with different dimensions in order to test different levels of stress and of initial plastic deformation. The method has been validated on 200 and 500 nm thick copper films under heavy copper ions irradiation. The irradiation creep rate is shown to be at least one order of magnitude larger than in the absence of irradiation.

  1. Spectral and dynamic analysis of plastic instabilities during serrated creep of the aluminum-magnesium alloy

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Zolotov, A. E.; Zheltov, M. A.; Denisov, A. A.; Gasanov, M. F.

    2014-05-01

    The force response to the development of a macroscopic plastic deformation jump under the conditions of serrated creep of the aluminummagnesium alloy 5456 has been studied using spectral and dynamic analysis methods. The flicker-noise structure of the force response indicating the self-organized criticality state has been revealed. It has been found that a short-term state of plastic instability flatter spontaneously appears during the development of the macroscopic deformation step.

  2. The Effect of Thermomechanical Processing on the Tensile, Fatigue, and Creep Behavior of Magnesium Alloy AM60

    SciTech Connect

    Chen, Zhe; Huang, J; Decker, R; Lebeau, S; Walker, Larry R; Cavin, Odis Burl; Watkins, Thomas R; Boehlert, C. J.

    2011-01-01

    Tensile, fatigue, fracture toughness, and creep experiments were performed on a commercially available magnesium-aluminum alloy (AM60) after three processing treatments: (1) as-THIXOMOLDED (as-molded), (2) THIXOMOLDED then thermomechanically processed (TTMP), and (3) THIXOMOLDED then TTMP then annealed (annealed). The TTMP procedure resulted in a significantly reduced grain size and a tensile yield strength greater than twice that of the as-molded material without a debit in elongation to failure ({epsilon}{sub f}). The as-molded material exhibited the lowest strength, while the annealed material exhibited an intermediate strength but the highest {epsilon}{sub f} (>1 pct). The TTMP and annealed materials exhibited fracture toughness values almost twice that of the as-molded material. The as-molded material exhibited the lowest fatigue threshold values and the lowest fatigue resistance. The annealed material exhibited the greatest fatigue resistance, and this was suggested to be related to its balance of tensile strength and ductility. The fatigue lives of each material were similar at both room temperature (RT) and 423 K (150 C). The tensile-creep behavior was evaluated for applied stresses ranging between 20 and 75 MPa and temperatures between 373 and 473 K (100 and 200 C). During both the fatigue and creep experiments, cracking preferentially occurred at grain boundaries. Overall, the results indicate that thermomechanical processing of AM60 dramatically improves the tensile, fracture toughness, and fatigue behavior, making this alloy attractive for structural applications. The reduced creep resistance after thermomechanical processing offers an opportunity for further research and development.

  3. Creep and Creep-Fatigue of Alloy 617 Weldments

    SciTech Connect

    Wright, Jill K.; Carroll, Laura J.; Wright, Richard N.

    2014-08-01

    Alloy 617 is the primary candidate material for the heat exchanger of a very high temperature gas cooled reactor intended to operate up to 950°C. While this alloy is currently qualified in the ASME Boiler and Pressure Vessel Code for non-nuclear construction, it is not currently allowed for use in nuclear designs. A draft Code Case to qualify Alloy 617 for nuclear pressure boundary applications was submitted in 1992, but was withdrawn prior to approval. Prior to withdrawal of the draft, comments were received indicating that there was insufficient knowledge of the creep and creep-fatigue behavior of Alloy 617 welds. In this report the results of recent experiments and analysis of the creep-rupture behavior of Alloy 617 welds prepared using the gas tungsten arc process with Alloy 617 filler wire. Low cycle fatigue and creep-fatigue properties of weldments are also discussed. The experiments cover a range of temperatures from 750 to 1000°C to support development of a new Code Case to qualify the material for elevated temperature nuclear design. Properties of the welded material are compared to results of extensive characterization of solution annealed plate base metal.

  4. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment

    PubMed Central

    Ma, Yingmei; Shukla, Vijaya; Merewitz, Emily B.

    2017-01-01

    Creeping bentgrass is an important cool-season turfgrass species sensitive to drought. Treatment with polyamines (PAs) has been shown to improve drought tolerance; however, the mechanism is not yet fully understood. Therefore, this study aimed to evaluate transcriptome changes of creeping bentgrass in response to drought and exogenous spermidine (Spd) application using RNA sequencing (RNA-Seq). The high-quality sequences were assembled and 18,682 out of 49,190 (38%) were detected as coding sequences. A total of 22% and 19% of genes were found to be either up- or down-regulated due to drought while 20% and 34% genes were either up- or down- regulated in response to Spd application under drought conditions, respectively. Gene ontology (GO) and enrichment analysis were used to interpret the biological processes of transcripts and relative transcript abundance. Enriched or differentially expressed transcripts due to drought stress and/or Spd application were primarily associated with energy metabolism, transport, antioxidants, photosynthesis, signaling, stress defense, and cellular response to water deprivation. This research is the first to provide transcriptome data for creeping bentgrass under an abiotic stress using RNA-Seq analysis. Differentially expressed transcripts identified here could be further investigated for use as molecular markers or for functional analysis in responses to drought and Spd. PMID:28445484

  5. Fatigue-creep lifetime analysis of four advanced central receiver concepts

    NASA Astrophysics Data System (ADS)

    Jones, J.

    1981-01-01

    Four advanced central receiver concepts were analyzed for their fatigue-creep design lifetimes. Using the flux profiles provided by the designers, the thermal hydraulic performance of an individual tube in a receiver panel was ascertained by computer analysis. A linear model of the tube crown strain for the tube on given thermal and structural finite element analyses were performed. The computed stresses and strains were used in evaluation of the creep and fatigue design lifetimes by N-47 and compared to the desired lifetime of 30 years. Three of the four designs met or exceeded the desired lifetime and the fourth met the desired lifetime when the factor of safety incorporated in N-47 was reduced. All four designs were judged adequate for the current level of design effort.

  6. Investigation of Three Analytical Hypothesis for Determining Material Creep Behavior under Varied Loads, with an Application to 2024-T3 Aluminum-Alloy Sheet in Tension at 400 F

    NASA Technical Reports Server (NTRS)

    Berkovits, Avraham

    1961-01-01

    Three existing hypotheses are formulated mathematically to estimate tensile creep strain under varied loads and constant temperature from creep data obtained under constant load and constant temperature. hypotheses investigated include the time-hardening, strain-hardening, and life-fraction rules. Predicted creep behavior is compared with data obtained from tensile creep tests of 2024-T3 aluminum-alloy sheet at 400 F under cyclic-load conditions. creep strain under varied loads is presented on the basis of an equivalent stress, derived from the life-fraction rule, which reduces the varied-load case to a constant-load problem. Creep strain in the region of interest for structural design and rupture times, determined from the hypotheses investigated, are in fair agreement with data in most cases, although calculated values of creep strain are generally greater than the experimental values because creep recovery is neglected in the calculations.

  7. Analysis of EST sequences suggests recent origin of allotetraploid colonial and creeping bentgrasses.

    PubMed

    Rotter, David; Bharti, Arvind K; Li, Huaijun Michael; Luo, Chongyuan; Bonos, Stacy A; Bughrara, Suleiman; Jung, Geunhwa; Messing, Joachim; Meyer, William A; Rudd, Stephen; Warnke, Scott E; Belanger, Faith C

    2007-08-01

    Advances in plant genomics have permitted the analysis of several members of the grass family, including the major domesticated species, and provided new insights into the evolution of the major crops on earth. Two members, colonial bentgrass (Agrostis capillaris L.) and creeping bentgrass (A. stolonifera L.) have only recently been domesticated and provide an interesting case of polyploidy and comparison to crops that have undergone human selection for thousands of years. As an initial step of characterizing these genomes, we have sampled roughly 10% of their gene content, thereby also serving as a starting point for the construction of their physical and genetic maps. Sampling mRNA from plants subjected to environmental stress showed a remarkable increase in transcription of transposable elements. Both colonial and creeping bentgrass are allotetraploids and are considered to have one genome in common, designated the A2 genome. Analysis of conserved genes present among the ESTs suggests the colonial and creeping bentgrass A2 genomes diverged from a common ancestor approximately 2.2 million years ago (MYA), thereby providing an enhanced evolutionary zoom in respect to the origin of maize, which formed 4.8 MYA, and tetraploid wheat, which formed only 0.5 MYA and is the progenitor of domesticated hexaploid wheat.

  8. Evaluation of hoop creep behaviors in long-term dry storage condition of pre-hydrided and high burn-up nuclear fuel cladding

    SciTech Connect

    Kim, Sun-Ki; Bang, J.G.; Kim, D.H.; Yang, Y.S.

    2007-07-01

    Related to the degradation of the mechanical properties of Zr-based nuclear fuel cladding tubes under long term dry storage condition, the mechanical tests which can simulate the degradation of the mechanical properties properly are needed. Especially, the degradation of the mechanical properties by creep mechanism seems to be dominant under long term dry storage condition. Accordingly, in this paper, ring creep tests were performed in order to evaluate the creep behaviors of high burn-up fuel cladding under a hoop loading condition in a hot cell. The tests are performed with Zircaloy-4 fuel cladding whose burn-up is approximately {approx}60,000 MWd/tU in the temperature range from 350 deg. to 550 deg.. The tests are also performed with pre-hydrided Zircaloy-4 and ZIRLO up to 1,000 ppm. First of all, the hoop loading grip for the ring creep test was designed in order that a constant curvature of the specimen was maintained during the creep deformation, and the graphite lubricant was used to minimize the friction between the outer surface of the die insert and the inner surface of the ring specimen. The specimen for the ring creep test was designed to limit the deformation within the gauge section and to maximize the uniformity of the strain distribution. It was confirmed that the mechanical properties under a hoop loading condition can be correctly evaluated by using this test technique. In this paper, secondary creep rate with increasing hydrogen content are drawn, and then kinetic data such as pre-exponential factor and activation energy for creep process are also drawn. In addition, creep life are predicted by obtaining LMP (Larson-Miller parameter) correlation in the function of hydrogen content and applied stress to yield stress ratio. (authors)

  9. Creep behavior and in-depth microstructural characterization of dissimilar joints

    PubMed Central

    Kauffmann, F; Klein, T; Klenk, A; Maile, K

    2013-01-01

    The 700 °C power plants currently under development will utilize Ni-base alloys such as alloy 617 for components to be operated at temperatures >650 °C. Due to economic reasons for components or parts of components which are subjected to temperatures <650 °C, 2% Cr or 9–12% Cr steels is used, depending on the required mechanical properties. This makes the dissimilar joining of Ni-base alloys and Cr steels a necessity in these plants. Experimental investigations show that these joints have to be identified as weak points with regard to damage development under creep and creep-fatigue loading. The present investigation focuses on welds between the alloy 617 and 2% Cr steel. Under creep load the fracture occurs near the fusion line between the 2% Cr steel base metal and alloy 617 weld metal. To explain the reasons for this fracture location, the microstructure of this fusion line was investigated using TEM and FIB techniques after welding and after creep loading. The TEM investigations have shown a small zone in the weld metal near the fusion line exhibiting chromium depletion and clearly reduced amounts of chromium carbides, leading to a weakening of this zone. PMID:27877551

  10. Creep behavior and in-depth microstructural characterization of dissimilar joints.

    PubMed

    Kauffmann, F; Klein, T; Klenk, A; Maile, K

    2013-02-01

    The 700 °C power plants currently under development will utilize Ni-base alloys such as alloy 617 for components to be operated at temperatures >650 °C. Due to economic reasons for components or parts of components which are subjected to temperatures <650 °C, 2% Cr or 9-12% Cr steels is used, depending on the required mechanical properties. This makes the dissimilar joining of Ni-base alloys and Cr steels a necessity in these plants. Experimental investigations show that these joints have to be identified as weak points with regard to damage development under creep and creep-fatigue loading. The present investigation focuses on welds between the alloy 617 and 2% Cr steel. Under creep load the fracture occurs near the fusion line between the 2% Cr steel base metal and alloy 617 weld metal. To explain the reasons for this fracture location, the microstructure of this fusion line was investigated using TEM and FIB techniques after welding and after creep loading. The TEM investigations have shown a small zone in the weld metal near the fusion line exhibiting chromium depletion and clearly reduced amounts of chromium carbides, leading to a weakening of this zone.

  11. Creep behavior and in-depth microstructural characterization of dissimilar joints

    NASA Astrophysics Data System (ADS)

    Kauffmann, F.; Klein, T.; Klenk, A.; Maile, K.

    2013-02-01

    The 700 °C power plants currently under development will utilize Ni-base alloys such as alloy 617 for components to be operated at temperatures >650 °C. Due to economic reasons for components or parts of components which are subjected to temperatures <650 °C, 2% Cr or 9-12% Cr steels is used, depending on the required mechanical properties. This makes the dissimilar joining of Ni-base alloys and Cr steels a necessity in these plants. Experimental investigations show that these joints have to be identified as weak points with regard to damage development under creep and creep-fatigue loading. The present investigation focuses on welds between the alloy 617 and 2% Cr steel. Under creep load the fracture occurs near the fusion line between the 2% Cr steel base metal and alloy 617 weld metal. To explain the reasons for this fracture location, the microstructure of this fusion line was investigated using TEM and FIB techniques after welding and after creep loading. The TEM investigations have shown a small zone in the weld metal near the fusion line exhibiting chromium depletion and clearly reduced amounts of chromium carbides, leading to a weakening of this zone.

  12. Creep Behavior of Structural Insulated Panels (SIPS): Results from a Pilot Study

    Treesearch

    Dwight McDonald; Marshall Begel; C. Adam Senalik; Robert Ross; Thomas D. Skaggs; Borjen Yeh; Thomas Williamson

    2014-01-01

    Structural insulated panels (SIPs) have been recognized as construction materials in the International Residential Code (IRC) since 2009. Although most SIPs are used in wall applications, they can also be used as roof or floor panels that are subjected to long-term transverse loading, for which SIP creep performance may be critical in design. However, limited...

  13. Creep Behavior at 1273 K (1000 °C) in Nb-Bearing Austenitic Heat-Resistant Cast Steels Developed for Exhaust Component Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2016-07-01

    A series of Nb-bearing austenitic heat-resistant cast steels with variations of N/C ratios were investigated, and the morphological change of Nb(C,N) from faceted blocks, mixed flake-blocks to "Chinese-script" was observed as N/C ratios decreased. The creep behavior of these alloys was studied at 1273 K (1000 °C), and the longest creep life and lowest creep rate occurred in model alloys with script Nb(C,N). Residual δ-ferrites and (Cr,Fe)23C6 were adverse to creep properties. This work indicates that the control of N/C ratio is required for the as-cast microstructural strengthening.

  14. Microstructural Evolution and Creep-Rupture Behavior of A-USC Alloy Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; DuPont, John N.; Siefert, John A.; Shingledecker, John P.

    2016-09-01

    Characterization of the microstructural evolution of fusion welds in alloys slated for use in advanced ultrasupercritical (A-USC) boilers during creep has been performed. Creep-rupture specimens involving INCONEL® 740, NIMONIC® 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and Haynes® 282® (Haynes and 282 are registered trademarks of Haynes International) have been analyzed via light optical microscopy, scanning electron microscopy, X-ray diffraction, and thermodynamic and kinetic modeling. Focus has been given to the microstructures that develop along the grain boundaries in these alloys during creep at temperatures relevant to the A-USC process cycle, and particular attention has been paid to any evidence of the formation of local γ'-denuded or γ'-free zones. This work has been performed in an effort to understand the microstructural changes that lead to a weld strength reduction factor (WSRF) in these alloys as compared to solution annealed and aged alloy 740 base metal. γ' precipitate-free zones have been identified in alloy 740 base metal, solution annealed alloy 740 weld metal, and alloy 263 weld metal after creep. Their development during long-term thermal exposure is correlated with the stabilization of phases that are rich in γ'-forming elements ( e.g., η and G) and is suppressed by precipitation of phases that do not contain the γ' formers ( e.g., M23C6 and μ). The location of failure and creep performance in terms of rupture life and WSRF for each welded joint is presented and discussed.

  15. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  16. Creep feeding effects on male Nellore calves influencing behavior and performance of their dams.

    PubMed

    Martins, Leandro Soares; Paulino, Mário Fonseca; Rennó, Luciana Navajas; Detmann, Edenio; de Almeida, Daniel Mageste; Ortega, Roman Maza; Moreno, Deilen Paff Sotelo; Cárdenas, Javier Enrique Garces

    2017-08-17

    The objective of the present study was to evaluate the effect of different schemes of calves' supplementation in a creep feeding system, on the behavior of Bos indicus calves and dams, and also the influence of the calves' supplementation on dams' performance. Forty-eight Nellore male calves (147 ± 7 kg body weight and 3 months of age) in the suckling phase and their dams (476 ± 9 kg and 6 years of age) were studied in a completely randomized design. The experiment was divided into two periods of 71 days. The treatments were 5- and 10-g supplement dry matter (DM)/kg BW day offered in periods 1 and 2, respectively (5S/10S); 10- and 5-g supplement DM/kg BW day offered in periods 1 and 2, respectively (10S/5S); 7.5-g supplement DM/kg BW day in both periods 1 and 2 (7.5S); and mineral mix ad libitum in both periods 1 and 2 (MM). No differences (P < 0.05) in body condition score (BCS), final body weight (FBW), and average daily gain (ADG) were found in dams' performance. Calves from MM treatment spent more time (P < 0.05) grazing than the supplemented calves from 5S/10S and 10S/5S treatments, in the first period. No difference in suckling time was found between the treatments (P > 0.05) in the first evaluated period. Calves from 10S/5S treatment spent more time suckling and less time eating supplements (P < 0.05) than 5S/10S treatment animals, in the second evaluated period. Dams of MM treatment's calves had more idle time and lower grazing time when compared with the mothers of calves from 5S/10S and 10S/5S treatments. It was concluded that different schedules of Nellore calves' supplementation on pasture do not affect their mothers' performance, and supplementation decreases the grazing time of calves in the suckling phase.

  17. Numerical Methods for Creep Analysis in Geotechnical Problems.

    DTIC Science & Technology

    1981-12-01

    relation- ships of the theory of curvilinear coordinates provide a general expression for the area, Marsden and Tromba (1975). pp 314. viz. Az) = 2 + 6(Xz...National Laboratories, 1978. Kuske, A. and Robertson, G. Photoelastic Stress Analysis. Wiley Interscience, 1974. Marsden, J.E., and Tromba , A.J., Vector

  18. Moving singularity creep crack growth analysis with the /Delta T/c and C/asterisk/ integrals. [path-independent vector and energy rate line integrals

    NASA Technical Reports Server (NTRS)

    Stonesifer, R. B.; Atluri, S. N.

    1982-01-01

    The physical meaning of (Delta T)c and its applicability to creep crack growth are reviewed. Numerical evaluation of (Delta T)c and C(asterisk) is discussed with results being given for compact specimen and strip geometries. A moving crack-tip singularity, creep crack growth simulation procedure is described and demonstrated. The results of several crack growth simulation analyses indicate that creep crack growth in 304 stainless steel occurs under essentially steady-state conditions. Based on this result, a simple methodology for predicting creep crack growth behavior is summarized.

  19. Moving singularity creep crack growth analysis with the /Delta T/c and C/asterisk/ integrals. [path-independent vector and energy rate line integrals

    NASA Technical Reports Server (NTRS)

    Stonesifer, R. B.; Atluri, S. N.

    1982-01-01

    The physical meaning of (Delta T)c and its applicability to creep crack growth are reviewed. Numerical evaluation of (Delta T)c and C(asterisk) is discussed with results being given for compact specimen and strip geometries. A moving crack-tip singularity, creep crack growth simulation procedure is described and demonstrated. The results of several crack growth simulation analyses indicate that creep crack growth in 304 stainless steel occurs under essentially steady-state conditions. Based on this result, a simple methodology for predicting creep crack growth behavior is summarized.

  20. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    SciTech Connect

    Vijay Vasudevan

    2008-03-31

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which

  1. Creep Behavior of 95.8Sn-3.5Ag-0.7Cu Solder Joints, and a Modified Constitutive Model for the Joints

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Li, G. Y.; Luo, S. M.; Wang, K. Q.; Zhou, B.

    2015-07-01

    The creep behavior of 95.8Sn-3.5Ag-0.7Cu shear-lap solder joints was investigated at different shear stresses ranging from 2-26 MPa and test temperatures of 25, 75, and 125°C. The stress exponent can be clearly defined in the low-stress ( τ < 12 MPa) and high stress ( τ > 15 MPa) ranges. The stress exponent is larger in the high-stress range, and decreases with increasing temperature in both low and high-stress ranges. The average modulus compensated shear stress transition point and the average activation energy were determined to be 1.08 × 10-3 and 90.59 kJ/mol, respectively. A creep constitutive model with internal stress incorporated into the Garofalo hyperbolic sine law model was used to describe the creep behavior of 95.8Sn-3.5Ag-0.7Cu shear-lap solder joints. In this model, the relationship between creep strain rate and shear stress was determined by introducing internal stress that is a function of the shear stress in the low-stress range and a function of particle size and volume fraction of intermetallic particles in the high-stress range. The internal stress was calculated on the basis of the different creep mechanisms in the low and high-stress ranges. Results showed that the modified creep constitutive model was consistent with experimental data, which indicates that the model can be used to predict the creep behavior of 95.8Sn-3.5Ag-0.7Cu shear-lap solder joints.

  2. Creep deformation of dispersion-strengthened copper

    SciTech Connect

    Broyles, S.E.; Anderson, K.R.; Groza, J.R.; Gibeling, J.C.

    1996-05-01

    The creep behavior of an internally oxidized, Al{sub 2}O{sub 3} dispersion-strengthened copper alloy, GlidCop Al-15, has been investigated in the temperature range of 745 to 994 K. The results exhibit a high apparent stress exponent (10 to 21) and a high apparent activation energy for creep (253.3 kJ/mole). To describe the creep behavior of this alloy, the Roesler-Arzt model for attractive particle/dislocation interaction is applied. The results are in good agreement with the model when account is taken of the effects of the fine elongated grains and heavily dislocated structures revealed through transmission electron microscopy. The analysis demonstrates that the dislocation/particle interaction is of moderate strength in this alloy, consistent with the observation that the particle/matrix interface is partially coherent. In addition, the analysis reveals that the choice of mechanism and corresponding activation energy for vacancy diffusion has only a small effect on the calculated model parameters. It is argued that the weak dependence of subgrain size on stress demonstrates that creep deformation is particle controlled, rather than subgrain size controlled. In addition, the poorly developed subgrain structure and high dislocation densities are attributed to the presence of the fine oxide particles. Finally, the dependence of rupture time on stress is shown to be consistent with a description of creep fracture based on diffusive cavity growth with continuous nucleation.

  3. Precipitate Evolution and Creep Behavior of a W-Free Co-based Superalloy

    NASA Astrophysics Data System (ADS)

    Liu, Qinyuan; Coakley, James; Seidman, David N.; Dunand, David C.

    2016-12-01

    The morphological and temporal evolution of γ ^' } (L1_2)-precipitates is studied in a polycrystalline Co-based superalloy (Co-30Ni-9.9Al-5.1Mo-1.9Nb at. pct) free of tungsten, aged at 1173 K (900 °C). Over a 1000 {{{hours}}} heat-treatment, the γ ^' } morphology evolves due to precipitate coalescence. The particles grow in size and the volume fraction decreases, while there is no significant change in the microhardness value. Compressional creep tests at 1123 K (850 °C) on a specimen aged at 1173 K (900 °C) demonstrate that the creep resistance is comparable to the original, W-containing, higher-density Co-based superalloy (Co-9Al-9.8W at. pct). This represents the first creep study of the Co-Al-Mo-Nb-based superalloy system. The W-free alloy exhibits directional coarsening of the γ ^' } precipitates in the direction perpendicular to the applied compressive stress, which indicates a positive misfit. This is consistent with neutron diffraction results.

  4. Estimation of shelf life of natural rubber latex exam-gloves based on creep behavior.

    PubMed

    Das, Srilekha Sarkar; Schroeder, Leroy W

    2008-05-01

    Samples of full-length glove-fingers cut from chlorinated and nonchlorinated latex medical examination gloves were aged for various times at several fixed temperatures and 25% relative humidity. Creep testing was performed using an applied stress of 50 kPa on rectangular specimens (10 mm x 8 mm) of aged and unaged glove fingers as an assessment of glove loosening during usage. Variations in creep curves obtained were compared to determine the threshold aging time when the amount of creep became larger than the initial value. These times were then used in various models to estimate shelf lives at lower temperatures. Several different methods of extrapolation were used for shelf-life estimation and comparison. Neither Q-factor nor Arrhenius activation energies, as calculated from 10 degrees C interval shift factors, were constant over the temperature range; in fact, both decreased at lower temperatures. Values of Q-factor and activation energies predicted up to 5 years of shelf life. Predictions are more sensitive to values of activation energy as the storage temperature departs from the experimental aging data. Averaging techniques for prediction of average activation energy predicted the longest shelf life as the curvature is reduced.

  5. Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method.

    PubMed

    Liu, Kaifeng; Ovaert, Timothy C

    2011-04-01

    Hydrogels are cross-linked polymer networks swollen with water and are being considered as potential replacements for deceased load bearing tissues such as cartilage. Hydrogels show nonlinear time dependent behavior, and are a challenge to model. A three-element poro-viscoelastic constitutive model was developed based on the structure and nature of the hydrogel. To identify the material parameters, an inverse finite element (FE) technique was used that combines experimental results with FE modeling and an optimization method. Unconfined compression creep tests were conducted on poly(vinyl alcohol) (PVA) and poly(ethylene-co-vinyl alcohol)-poly(vinyl pyrrolidone) (EVAL-PVP) hydrogels manufactured by injection molding. Results from the creep experiments showed that for PVA hydrogels, an increase in polymer concentration correlates with a decrease in the equilibrium water content (EWC) and the creep strain. In EVAL-PVP hydrogels, an increase in the hydrophobic segments (EVAL) correlates with a decrease in the EWC as well as the creep strain. An inverse FE method was used to identify the viscoelastic material parameters of the hydrogels in combination with creep testing using the poro-viscoelastic three-element constitutive model. The elastic modulus estimated from the inverse FE technique showed good agreement with the modulus estimated directly from the test data. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Modified creep and shrinkage prediction model B3 for serviceability limit state analysis of composite slabs

    NASA Astrophysics Data System (ADS)

    Gholamhoseini, Alireza

    2016-03-01

    Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.

  7. Creep Deformation, Rupture Analysis, Heat Treatment and Residual Stress Measurement of Monolithic and Welded Grade 91 Steel for Power Plant Components

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna

    Modified 9Cr-1 Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR), and in fossil-fuel fired power plants at higher temperatures and stresses. The tensile creep behavior of Grade 91 steel was studied in the temperature range of 600°C to 750°C and stresses between 35 MPa and 350 MPa. Heat treatment of Grade 91 steel was studied by normalizing and tempering the steel at various temperatures and times. Moreover, Thermo-Ca1c(TM) calculation was used to predict the precipitate stability and their evolution, and construct carbon isopleths of Grade 91 steel. Residual stress distribution across gas tungsten arc welds (GTAW) in Grade 91 steel was measured by the time-of-flight neutron diffraction using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM, USA. Analysis of creep results yielded stress exponents of ˜9-11 in the higher stress regime and ˜1 in the lower stress regime. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate-controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep. Creep rupture data were analyzed in terms of Monkman-Grant relation and Larson-Miller parameter. Creep damage tolerance factor and stress exponent were used to identify the cause of creep damage. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy to elucidate the failure mechanisms. Fracture mechanism map for Grade 91 steel was developed based on the available material parameters and experimental observations. The microstructural

  8. Biaxial Creep Specimen Fabrication

    SciTech Connect

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  9. Prediction of elemental creep. [steady state and cyclic data from regression analysis

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Rummler, D. R.

    1975-01-01

    Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.

  10. Effects of fuel particle size and fission-fragment-enhanced irradiation creep on the in-pile behavior in CERCER composite pellets

    NASA Astrophysics Data System (ADS)

    Zhao, Yunmei; Ding, Shurong; Zhang, Xunchao; Wang, Canglong; Yang, Lei

    2016-12-01

    The micro-scale finite element models for CERCER pellets with different-sized fuel particles are developed. With consideration of a grain-scale mechanistic irradiation swelling model in the fuel particles and the irradiation creep in the matrix, numerical simulations are performed to explore the effects of the particle size and the fission-fragment-enhanced irradiation creep on the thermo-mechanical behavior of CERCER pellets. The enhanced irradiation creep effect is applied in the 10 μm-thick fission fragment damage matrix layer surrounding the fuel particles. The obtained results indicate that (1) lower maximum temperature occurs in the cases with smaller-sized particles, and the effects of particle size on the mechanical behavior in pellets are intricate; (2) the first principal stress and radial axial stress remain compressive in the fission fragment damage layer at higher burnup, thus the mechanism of radial cracking found in the experiment can be better explained.

  11. Crack growth behavior under creep-fatigue conditions using compact and double edge notch tension-compression specimens

    NASA Astrophysics Data System (ADS)

    Narasimha Chary, Santosh Balaji

    inspection of fatigue surfaces, it has been found that that better alignment control procedures are needed to ensure symmetric crack fronts for the DEN(T-C) specimen. Creep-fatigue crack growth tests were conducted on 9Cr-1Mo (P91) steels at 625°C with various hold times. These tests were conducted using C(T) specimens under constant load amplitude conditions (tension-tension) and DEN(T-C) specimens under displacement like conditions (tension-compression). Crack growth data generated under creep-fatigue conditions using standard C(T) specimens correlated well with crack growth data generated using DEN(T-C) specimens. The crack growth rates per cycle increased significantly with increase in hold time when crack growth data were plotted with the cyclic stress intensity parameter, Delta-K. A transient behavior in the initial portion of da/dN versus Delta-K plots were observed for the hold time tests, as reported previously by several other researchers. It is shown for the C(T) specimens that the creep-fatigue interactions during crack growth for various hold times are represented better by the (Ct)avg parameter implying that the P91 steel behaves in a creep-ductile manner. Significant differences (factors of 2 to 5) were observed between the calculated values of (Ct)avg and those based on measured values of force-line deflection. It is also shown that there is a high risk of obtaining invalid data in longer hold time tests under force-control conditions. The usefulness of DEN(T-C) specimens for crack growth studies under displacement controlled conditions to combat ratcheting problems in tests conducted under load conditions is established. The tests conditions for the round-robin program on creep-fatigue crack growth testing in support of ASTM E-2760 are finalized. Further developments needed in creep-fatigue crack growth testing are also presented.

  12. Experimental Study on the Mechanical, Creep, and Viscoelastic Behavior of TiO2/Glass/Epoxy Hybrid Nanocomposites

    NASA Astrophysics Data System (ADS)

    Salehi, H. R.; Salehi, M.

    2016-11-01

    The mechanical and viscoelastic properties of hybrid glass/epoxy nanocomposites whose matrix was doped with 0.25, 0.5, and 1 vol.% of TiO2 nanoparticles were investigated in tension and bending. The nanoparticles were found to increase the strength of the composites by 20-30% and their stiffness by 10-20%. In addition, their creep resistance also grew. A SEM analysis of microstructure of the composites revealed that these improvements were caused by an increased adhesion between fibers and the matrix and enhanced properties of the matrix itself.

  13. The creep and wear of highly cross-linked polyethylene: a three-year randomised, controlled trial using radiostereometric analysis.

    PubMed

    Glyn-Jones, S; McLardy-Smith, P; Gill, H S; Murray, D W

    2008-05-01

    The creep and wear behaviour of highly cross-linked polyethylene and standard polyethylene liners were examined in a prospective, double-blind randomised, controlled trial using radiostereometric analysis. We randomised 54 patients to receive hip replacements with either highly cross-linked polyethylene or standard liners and determined the three-dimensional penetration of the liners over three years. After three years the mean total penetration was 0.35 mm (SD 0.14) for the highly cross-linked polyethylene group and 0.45 mm (SD 0.19) for the standard group. The difference was statistically significant (p = 0.0184). From the pattern of penetration it was possible to discriminate creep from wear. Most (95%) of the creep occurred within six months of implantation and nearly all within the first year. There was no difference in the mean degree of creep between the two types of polyethylene (highly cross-linked polyethylene 0.26 mm, SD 0.17; standard 0.27 mm, SD 0.2; p = 0.83). There was, however, a significant difference (p = 0.012) in the mean wear rate (highly cross-linked polyethylene 0.03 mm/yr, SD 0.06; standard 0.07 mm/yr, SD 0.05). Creep and wear occurred in significantly different directions (p = 0.01); creep was predominantly proximal whereas wear was anterior, proximal and medial. We conclude that penetration in the first six months is creep-dominated, but after one year virtually all penetration is due to wear. Highly cross-linked polyethylene has a 60% lower rate of wear than standard polyethylene and therefore will probably perform better in the long term.

  14. MELCOR Analysis of Steam Generator Tube Creep Rupture in Station Blackout Severe Accident

    SciTech Connect

    Liao, Y.; Vierow, K.

    2005-12-15

    A pressurized water reactor steam generator tube rupture (SGTR) is of concern because it represents a bypass of the containment for radioactive materials to the environment. In a station blackout accident, tube integrity could be threatened by creep rupture, particularly if cracks are present in the tube walls. Methods are developed herein to improve assessment capabilities for SGTR by using the severe-accident code MELCOR. Best-estimate assumptions based on recent research and computational fluid dynamics calculations are applied in the MELCOR analysis to simulate two-dimensional natural circulation and to determine the relative creep-rupture timing in the reactor coolant pressure boundary components. A new method is developed to estimate the steam generator (SG) hottest tube wall temperature and the tube critical crack size for the SG tubes to fail first. The critical crack size for SG tubes to fail first is estimated to be 20% of the wall thickness larger than by a previous analysis. Sensitivity studies show that the failure sequence would change if some assumptions are modified. In particular, the uncertainty in the countercurrent flow limit model could reverse the failure sequence of the SG tubes and surge line.

  15. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  16. Effect of particle size and temperature on rheology and creep behavior of barley β-d-glucan concentrate dough.

    PubMed

    Ahmed, Jasim

    2014-10-13

    Concentrated β-D-glucan has been added in the formulation of food products development that attributing human health. The purpose of this study is to assess the role of particle size (74, 105, 149, 297 and 595 μm) of barley β-D-glucan concentrate (BGC) on two fundamental rheological properties namely oscillatory rheology and creep in a dough system (sample to water = 1:2). The water holding capacity, sediment volume fraction and protein content increased with an increase in particle size from 74 μm to 595 μm, which directly influences the mechanical strength and visco-elasticity of the dough. The dough exhibited predominating solid-like behavior (elastic modulus, G'>viscous modulus, G"). The G' decreased systematically with increasing temperature from 25 to 85 °C at the frequency range of 0.1-10 Hz except for the dough having particle size of 105 μm, which could be associated with increase in protein content in the fraction. A discrete retardation spectrum is employed to the creep data to obtain retardation time and compliance parameters which varied significantly with particle size and the process temperature. All those information could be helpful to identify the particle size range of BGC that could be useful to produce a β-D-glucan enriched designed food.

  17. Microstructural Evolution and Creep Rupture Behavior of INCONEL RTM Alloy 740H Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H., Jr.

    Electron microscopy techniques were used to investigate the causes of reduced creep-rupture life in INCONEL® alloy 740H ® fusion welds with a specific focus on understanding the formation and evolution of γ'-free zones along grain boundaries. Investigation of creep-rupture specimens revealed four operational factors that influence the formation of these precipitate-free zones, and the identity of large second phase particles typically found within them has been determined. A stress-free aging has demonstrated the influence of stress on the formation of the precipitate-free regions and has illustrated what appear to be the initial stages of their development. It is concluded that the mechanism of precipitate-free zone formation in alloy 740H is moderate discontinuous precipitation accompanied by significant discontinuous growth of the γ' phase. These discontinuous reactions are likely exacerbated by microsegregation within the welded microstructure and by the mechanical deformation associated with grain boundary sliding during creep. Thermodynamic and kinetic modeling were used to determine appropriate heat treatment schedules for homogenization and second phase dissolution of welds in alloy 740H. Following these simulations, a two-step heat treatment process was applied to specimens from a single pass gas tungsten arc weld (GTAW). Scanning electron microscopy (SEM) has been used to assess the changes in the distribution of alloying elements as well as changes in the fraction of second phase particles within the fusion zone. Experimental results demonstrate that homogenization of alloy 740H weld metal can be achieved by an 1100°C/4hr treatment. Complete dissolution of second phase particles could not be completely achieved, even at exposure to temperatures near the alloy's solidus temperature. These results are in good agreement with thermodynamic and kinetic predictions.

  18. The Effect of Stabilization Heat Treatments on the Tensile and Creep Behavior of an Advanced Nickel-Based Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    As part of NASA s Advanced Subsonic Technology Program, a study of stabilization heat treatment options for an advanced nickel-base disk alloy, ME 209, was performed. Using a simple, physically based approach, the effect of stabilization heat treatments on tensile and creep properties was analyzed in this paper. Solutions temperature, solution cooling rate, and stabilization temperature/time were found to have a significant impact on tensile and creep properties. These effects were readily quantified using the following methodology. First, the effect of solution cooling rate was assessed to determine its impact on a given property. The as-cooled property was then modified by using two multiplicative factors which assess the impact of solution temperature and stabilization parameters. Comparison of experimental data with predicted values showed this physically based analysis produced good results that rivaled the statistical analysis employed, which required numerous changes in the form of the regression equation depending on the property and temperature in question. As this physically based analysis uses the data for input, it should be noted that predictions which attempt to extrapolate beyond the bounds of the data must be viewed with skepticism. Future work aimed at expanding the range of the stabilization/aging parameters explored in this study would be highly desirable, especially at the higher solution cooling rates.

  19. Sintering and Creep Behavior of Plasma-Sprayed Zirconia and Hafnia Based Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1998-01-01

    The sintering and creep of plasma-sprayed ceramic thermal barrier coatings under high temperature conditions are complex phenomena. Changes in thermomechanical and thermophysical properties and in the stress response of these coating systems as a result of the sintering and creep processes are detrimental to coating thermal fatigue resistance and performance. In this paper, the sintering characteristics of ZrO2-8wt%y2O3, ZrO2-25wt%CeO2-2.5wt%Y2O3, ZrO2-6w%NiO- 9wt%Y2O3, ZrO2-6wt%Sc2O3-2wt%y2O3 and HfO2-27wt%y2O3 coating materials were investigated using dilatometry. It was found that the HfO2-Y2O3 and baseline ZrO2-Y2O3 exhibited the best sintering resistance, while the NiO-doped ZrO2-Y2O3 showed the highest shrinkage strain rates during the tests. Higher shrinkage strain rates of the coating materials were also observed when the specimens were tested in Ar+5%H2 as compared to in air. This phenomenon was attributed to an enhanced metal cation interstitial diffusion mechanism under the reducing conditions. It is proposed that increased chemical stability of coating materials will improve the material sintering resistance.

  20. A Generalized Maxwell Model for Creep Behavior of Artery Opening Angle

    PubMed Central

    Zhang, W.; Guo, X.; Kassab, G. S.

    2009-01-01

    An artery ring springs open into a sector after a radial cut. The opening angle characterizes the residual strain in the unloaded state, which is fundamental to understanding stress and strain in the vessel wall. A recent study revealed that the opening angle decreases with time if the artery is cut from the loaded state, while it increases if the cut is made from the no-load state due to viscoelasticity. In both cases, the opening angle approaches the same value in 3 hours. This implies that the characteristic relaxation time is about 10,000 sec. Here, the creep function of a generalized Maxwell model (a spring in series with six Voigt bodies) is used to predict the temporal change of opening angle in multiple time scales. It is demonstrated that the theoretical model captures the salient features of the experimental results. The proposed creep function may be extended to study the viscoelastic response of blood vessels under various loading conditions. PMID:19045526

  1. Compression creep of filamentary composites

    NASA Technical Reports Server (NTRS)

    Graesser, D. L.; Tuttle, M. E.

    1988-01-01

    Axial and transverse strain fields induced in composite laminates subjected to compressive creep loading were compared for several types of laminate layups. Unidirectional graphite/epoxy as well as multi-directional graphite/epoxy and graphite/PEEK layups were studied. Specimens with and without holes were tested. The specimens were subjected to compressive creep loading for a 10-hour period. In-plane displacements were measured using moire interferometry. A computer based data reduction scheme was developed which reduces the whole-field displacement fields obtained using moire to whole-field strain contour maps. Only slight viscoelastic response was observed in matrix-dominated laminates, except for one test in which catastrophic specimen failure occurred after a 16-hour period. In this case the specimen response was a complex combination of both viscoelastic and fracture mechanisms. No viscoelastic effects were observed for fiber-dominated laminates over the 10-hour creep time used. The experimental results for specimens with holes were compared with results obtained using a finite-element analysis. The comparison between experiment and theory was generally good. Overall strain distributions were very well predicted. The finite element analysis typically predicted slightly higher strain values at the edge of the hole, and slightly lower strain values at positions removed from the hole, than were observed experimentally. It is hypothesized that these discrepancies are due to nonlinear material behavior at the hole edge, which were not accounted for during the finite-element analysis.

  2. Generation of long time creep data on refractory alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1970-01-01

    Creep tests were conducted on two tantalum alloys (ASTAR 811C and T-111 alloy), on a molybdenum alloy (TZM), and on CVD tungsten. The T-111 alloy 1% creep life data have been subjected to Manson's station function analysis, and the progress on this analysis is described. In another test program, the behavior of T-111 alloy with continuously varying temperatures and stresses has been studied. The results indicated that the previously described analysis predicts the observed creep behavior with reasonable accuracy. In addition to the T-111 test program, conventional 1% creep life data have been obtained for ASTAR 811C alloy. Previously observed effects of heat treatment on the creep strength of this material have been discussed and a model involving carbide strengthening primarily at the grain boundaries, rather than in a classical dispersion hardening mechanism, has been proposed to explain the observed results.

  3. A physics-based crystallographic modeling framework for describing the thermal creep behavior of Fe-Cr alloys

    DOE PAGES

    Wen, Wei; Capolungo, Laurent; Patra, Anirban; ...

    2017-02-23

    In this work, a physics-based thermal creep model is developed based on the understanding of the microstructure in Fe-Cr alloys. This model is associated with a transition state theory based framework that considers the distribution of internal stresses at sub-material point level. The thermally activated dislocation glide and climb mechanisms are coupled in the obstacle-bypass processes for both dislocation and precipitate-type barriers. A kinetic law is proposed to track the dislocation densities evolution in the subgrain interior and in the cell wall. The predicted results show that this model, embedded in the visco-plastic self-consistent (VPSC) framework, captures well the creepmore » behaviors for primary and steady-state stages under various loading conditions. We also discuss the roles of the mechanisms involved.« less

  4. Creep-rupture behavior of candidate Stirling engine alloys after long-term aging at 760 deg C in low-pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1984-01-01

    Nine candidate Stirling automotive engine alloys were aged at 760 C for 3500 hr in low pressure hydrogen or argon to determine the resulting effects on mechanical behavior. Candidate heater head tube alloys were CG-27, W545, 12RN72, INCONEL-718, and HS-188 while candidate cast cylinder-regenerator housing alloys were SA-F11, CRM-6D, XF-818, and HS-31. Aging per se is detrimental to the creep rupture and tensile strengths of the iron base alloys. The presence of hydrogen does not significantly contribute to strength degradation. Based percent highway driving cycle; CG-27 has adequate 3500 hr - 870 C creep rupture strength and SA-Fll, CRM-6D, and XF-818 have adequate 3500 hr - 775 C creep rupture strength.

  5. Creep-rupture behavior of candidate Stirling engine alloys after long-term aging at 760/sup 0/C in low-pressure hydrogen

    SciTech Connect

    Titran, R.H.

    1984-05-01

    Nine candidate Stirling automotive engine alloys were aged at 760/sup 0/C for 3500 h in low pressure hydrogen or argon to determine the resulting effects on mechanical behavior. Candidate heater head tube alloys were CG-27, W545, 12RN72, INCONEL-718, and HS-188 while candidate cast cylinder-regenerator housing alloys were SA-F11, CRM-6D, XF-818, and HS-31. Aging per se is detrimental to the creep-rupture and tensile strengths of the iron-base alloys. The presence of hydrogen does not significantly contribute to strength degradation. Based on current MOD 1A Stirling engine design criteria of a 55% urban - 45% highway driving cycle; CG-27 has adequate 3500 h - 87/sup 0/C creep-rupture strength and SA-F11, CRM-6D, and XF-818 have adequate 3500 h - 775/sup 0/C creep-rupture strength.

  6. Contemporary overview of soil creep phenomenon

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz; Dobak, Paweł

    2017-06-01

    Soil creep deformation refers to phenomena which take place in many areas and research in this field of science is rich and constantly developing. The article presents an analysis of the literature on soil creep phenomena. In light of the complexity of the issues involved and the wide variety of perspectives taken, this attempt at systematization seeks to provide a reliable review of current theories and practical approaches concerning creep deformation. The paper deals with subjects such as definition of creep, creep genesis, basic description of soil creep dynamics deformation, estimation of creep capabilities, various fields of creep occurrence, and an introduction to creep modeling. Furthermore, based on this analysis, a new direction for research is proposed.

  7. Effect of Thermal Cycling on Creep Behavior of Powder-Metallurgy-Processed and Hot-Rolled Al and Al-SiC Particulate Composites

    NASA Astrophysics Data System (ADS)

    Pal, Sharmilee; Bhanuprasad, V. V.; Mitra, R.; Ray, K. K.

    2009-12-01

    The tensile creep behavior of powder metallurgy (P/M)-processed and hot-rolled commercially pure Al and Al-5 or Al-10 vol pct SiC particulate composites has been evaluated after subjecting to 0, 2, and 8 thermal cycles between 500 °C and 0 °C with rapid quenching. The images of microstructures obtained using scanning and transmission electron microscopy as well as changes in the electrical resistivity, Young’s modulus, and microhardness have been examined in the samples subjected to thermal cycling, in order to compare the effects of structural damage and strengthening by dislocation generation. The damage is caused by voids formed by vacancy coalescence, and is more severe in pure Al than in Al-SiCp composites, because the particle-matrix interfaces in the composites act as effective sinks for vacancies. Creep tests have shown that the application of 2 thermal cycles lowers the creep strain rates in both pure Al and Al-SiCp composites. However, the creep resistance of pure Al gets significantly deteriorated, unlike the mild deterioration in the Al-5 SiCp composite, while the time to rupture for the Al-10 SiCp composite is increased. The dislocation structure and subgrain sizes in the Al and in the matrices of the Al-SiCp composites in the as-rolled condition, after thermal cycling, and after creep tests, have been compared and related to the creep behavior. The dimple sizes of the crept fracture surfaces appear to be dependent on the void density, tertiary component of strain, and time to rupture.

  8. On The Creep Behavior and Deformation Mechanisms Found in an Advanced Polycrystalline Nickel-Base Superalloy at High Temperatures

    NASA Astrophysics Data System (ADS)

    Deutchman, Hallee Zox

    Polycrystalline Ni-base superalloys are used as turbine disks in the hot section in jet engines, placing them in a high temperature and stress environment. As operating temperatures increase in search of better fuel efficiency, it becomes important to understand how these higher temperatures are affecting mechanical behavior and active deformation mechanisms in the substructure. Not only are operating temperatures increasing, but there is a drive to design next generation alloys in shorter time periods using predictive modeling capabilities. This dissertation focuses on mechanical behavior and active deformation mechanisms found in two different advanced polycrystalline alloy systems, information which will then be used to build advanced predictive models to design the next generation of alloys. The first part of this dissertation discusses the creep behavior and identifying active deformation mechanisms in an advanced polycrystalline Ni-based superalloy (ME3) that is currently in operation, but at higher temperatures and stresses than are experienced in current engines. Monotonic creep tests were run at 700°C and between 655-793MPa at 34MPa increments, on two microstructures (called M1 and M2) produced by different heat treatments. All tests were crept to 0.5% plastic strain. Transient temperature and transient stress tests were used determine activation energy and stress exponents of the M1 microstructure. Constant strain rate tests (at 10-4s-1) were performed on both microstructures as well. Following creep testing, both M1 and M2 microstructures were fully characterized using Scanning Electron Microscopy (SEM) for basic microstructure information, and Scanning Transmission Electron Microscopy (STEM) to determine active deformation mechanism. It was found that in the M1 microstructure, reorder mediated activity (such as discontinuous faulting and microtwinning) is dominant at low stresses (655-724 MPa). Dislocations in the gamma matrix, and overall planar

  9. Body area networks at radio frequencies: Creeping waves and antenna analysis

    NASA Astrophysics Data System (ADS)

    Ali, Khaleda; Keshmiri, Farshad; Brizzi, Alessio; Hao, Yang; Craeye, Christophe

    2015-11-01

    On-body communication technology development requires a better knowledge of antenna radiation and wave propagation along the body, in both near and far fields. Therefore, Green's functions associated with penetrable cylinders are briefly reviewed, considering frequencies at which the body is not much larger than the wavelength and with a particular attention given to the near fields. A unified approach based on current sheets is provided and an acceleration technique is proposed. This is validated with the help of an FDTD software, which also allows the analysis of non-canonical cross-sections. The properties of creeping waves launched by sources parallel and perpendicular to the body are studied, in particular from the point of view of their phase velocity, and a very simple fitting model is proposed. It is also explained how the Green function can be exploited to analyze antennas very efficiently with the help of an integral-equation approach.

  10. Analysis of EST Sequences Suggests Recent Origin of Allotetraploid Colonial and Creeping Bentgrasses

    USDA-ARS?s Scientific Manuscript database

    Colonial bentgrass (Agrostis capillaris L.) and creeping bentgrass (A. stolonifera L.) are closely related turfgrass species used extensively on golf courses in temperate regions throughout the world. One of the major management problems for creeping bentgrass is the fungal disease dollar spot. Co...

  11. Creep Properties of Sn-1.0Ag-0.5Cu Lead-Free Solder with Ni Addition

    NASA Astrophysics Data System (ADS)

    Che, F. X.; Zhu, W. H.; Poh, Edith S. W.; Zhang, X. R.; Zhang, Xiaowu; Chai, T. C.; Gao, S.

    2011-03-01

    In this work, tensile creep tests for Sn-1.0Ag-0.5Cu-0.02Ni solder have been conducted at various temperatures and stress levels to determine its creep properties. The effects of stress level and temperature on creep strain rate were investigated. Creep constitutive models (such as the simple power-law model, hyperbolic sine model, double power-law model, and exponential model) have been reviewed, and the material constants of each model have been determined based on experimental results. The stress exponent and creep activation energy have been studied and compared with other researchers' results. These four creep constitutive models established in this paper were then implemented into a user-defined subroutine in the ANSYS™ finite-element analysis software to investigate the creep behavior of Sn-1.0Ag-0.5Cu-0.02Ni solder joints of thin fine-pitch ball grid array (TFBGA) packages for the purpose of model comparison and application. Similar simulation results of creep strain and creep strain energy density were achieved when using the different creep constitutive models, indicating that the creep models are consistent and accurate.

  12. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 3, phase 3: Full size heat shield data correlation and design criteria. [reentry

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    Analysis methods for predicting cyclic creep deflection in stiffened metal panel structures, were applied to full size panels. Results were compared with measured deflections from cyclic tests of thin gage L605, Rene' 41, and TDNiCr full size corrugation stiffened panels. A design criteria was then formulated for metallic thermal protection panels subjected to creep. A computer program was developed to calculate creep deflections.

  13. Creep rupture behavior of polypropylene suture material and its applications as a time-release mechanism

    SciTech Connect

    Kusy, R.P.; Whitley, J.Q.

    1983-05-01

    The controlled failure of polypropylene (PP) sutures is studied via creep rupture tests. From plots of log time (tB) vs. stress (sigma), linear relationships are generated over the failure times of 1-1000 h. Results show that as a function of stress, the time dependence varies with irradiation dose (15, 20, 25, and 50 Mrad), irradiation atmosphere (air and vacuum), suture diameter (7-0, 6-0, 5-0, and 4-0), and test temperature (26 and 37 degrees C). For a given stress, the time to failure is least for the greatest dose in the presence of air and at the highest temperature. When suture loops are wrapped around a small wire sheave, however, failure occurs in the largest suture as much as two decades sooner than the smallest suture studied. Within the limitations stated herein, they are independent of test method, loop diameter, aging, and humidity. Consequently, after irradiation in vacuum and postirradiation heat treatment, the processed material may be stored at room temperature for at least 1 month. Such materials are advocated when the time release of a dental or medical device is required, for example, in the self-activating cleft palate appliance.

  14. Oxidation and creep behavior of Mo*5*Si*3* based materials

    SciTech Connect

    Meyer, Mitch

    1995-06-19

    Mo5Si3 shows promise as a high temperature creep resistant material. The high temperature oxidation resistance of Mo5Si3 has been found to be poor, however, limiting its use in oxidizing atmospheres. Undoped Mo5Si3 exhibits mass loss in the temperature range 800°-1200°C due to volatilization of molybdenum oxide, indicating that the silica scale does not provide a passivating layer. The addition of boron results in protective scale formation and parabolic oxidation kinetics in the temperature range of 1050{degrees}-1300°C. The oxidation rate of Mo5Si3 was decreased by 5 orders of magnitude at 1200°C by doping with less than two weight percent boron. Boron doping eliminates catastrophic "pest" oxidation at 800°C. The mechanism for improved oxidation resistance of boron doped Mo5Si3 is due to scale modification by boron.

  15. Long-Term Creep Behavior of the Intervertebral Disk: Comparison between Bioreactor Data and Numerical Results.

    PubMed

    Castro, A P G; Paul, C P L; Detiger, S E L; Smit, T H; van Royen, B J; Pimenta Claro, J C; Mullender, M G; Alves, J L

    2014-01-01

    The loaded disk culture system is an intervertebral disk (IVD)-oriented bioreactor developed by the VU Medical Center (VUmc, Amsterdam, The Netherlands), which has the capacity of maintaining up to 12 IVDs in culture, for approximately 3 weeks after extraction. Using this system, eight goat IVDs were provided with the essential nutrients and submitted to compression tests without losing their biomechanical and physiological properties, for 22 days. Based on previous reports (Paul et al., 2012, 2013; Detiger et al., 2013), four of these IVDs were kept in physiological condition (control) and the other four were previously injected with chondroitinase ABC (CABC), in order to promote degenerative disk disease (DDD). The loading profile intercalated 16 h of activity loading with 8 h of loading recovery to express the standard circadian variations. The displacement behavior of these eight IVDs along the first 2 days of the experiment was numerically reproduced, using an IVD osmo-poro-hyper-viscoelastic and fiber-reinforced finite element (FE) model. The simulations were run on a custom FE solver (Castro et al., 2014). The analysis of the experimental results allowed concluding that the effect of the CABC injection was only significant in two of the four IVDs. The four control IVDs showed no signs of degeneration, as expected. In what concerns to the numerical simulations, the IVD FE model was able to reproduce the generic behavior of the two groups of goat IVDs (control and injected). However, some discrepancies were still noticed on the comparison between the injected IVDs and the numerical simulations, namely on the recovery periods. This may be justified by the complexity of the pathways for DDD, associated with the multiplicity of physiological responses to each direct or indirect stimulus. Nevertheless, one could conclude that ligaments, muscles, and IVD covering membranes could be added to the FE model, in order to improve its accuracy and properly

  16. Dynamic Creep Buckling: Analysis of Shell Structures Subjected to Time-dependent Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Carlson, R. L.; Riff, R.

    1985-01-01

    The objective of the present research is to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. A complete, true ab-initio rate theory of kinematics and kinetics for continuum and curved thin structures, without any restriction on the magnitude of the strains or the deformations, was formulated. The time dependence and large strain behavior are incorporated through the introduction of the time rates of metric and curvature in two coordinate systems: fixed (spatial) and convected (material). The relations between the time derivative and the covariant derivative (gradient) were developed for curved space and motion, so the velocity components supply the connection between the equations of motion and the time rates of change of the metric and curvature tensors.

  17. Dynamic Creep Buckling: Analysis of Shell Structures Subjected to Time-dependent Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Carlson, R. L.; Riff, R.

    1985-01-01

    The objective of the present research is to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. A complete, true ab-initio rate theory of kinematics and kinetics for continuum and curved thin structures, without any restriction on the magnitude of the strains or the deformations, was formulated. The time dependence and large strain behavior are incorporated through the introduction of the time rates of metric and curvature in two coordinate systems: fixed (spatial) and convected (material). The relations between the time derivative and the covariant derivative (gradient) were developed for curved space and motion, so the velocity components supply the connection between the equations of motion and the time rates of change of the metric and curvature tensors.

  18. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  19. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  20. The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa

    NASA Astrophysics Data System (ADS)

    Bor, H. Y.; Ma, C. Y.; Chao, C. G.

    2000-05-01

    The effects of Mg microadditions on the high-temperature/low stress (1255 K/200 MPa) creep properties and fracture behavior of a Mar-M247 superalloy were investigated in this study. The results of quantitative statistical analyses showed that when Mg microadditions up to 50 ppm were made, the MC carbides located at grain boundaries (designated GB MC) were significantly refined and spheroidized and the number of MC carbides decreased. In addition, the M23C6 carbides present on GBs dramatically increased with increasing Mg contents up to 50 ppm, and the creep resistance was enhanced under the test condition of 1255 K/200 MPa. However, the creep performance of a Mar-M247 superalloy containing 80 ppm Mg deteriorated due to the formation of an extremely large amount of MC carbide and a decrease in the number of M23C6 carbides at GBs. The cracks mainly initiated and propagated along GBs in both the Mg-free and Mg-containing Mar-M247 superalloys under 1255 K/200 MPa, and the finial rupture was caused by intergranular fracture. Under the present creep condition, the optimal Mg microaddition to a Mar-M247 superalloy should be 30 to 50 ppm.

  1. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  2. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  3. Low-temperature creep of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  4. Thermal creep analysis of noble metal alloys for the ceramic-fused-to-metal technique.

    PubMed

    Fischer, J; Baltzer, N; Fleetwood, P W

    1999-01-01

    Distortion of metal frameworks for the ceramic fused to metal technique during firing is attributed to thermal creep of the alloys. Usually thermal creep measurements are performed at constant load and constant temperature over varying time periods. Because metal frameworks for the ceramic-fused-to-metal technique are cyclically stressed, a three-point bending test for dynamic measurement of creep in a modified dilatometer was developed. Bending of 14 commercially available noble metal alloys was determined in the as-cast state, as well as after simulation of the firing process. The sag at 950 degrees C, which is the firing temperature of the ceramic, was chosen as an indicator for creep. No correlation of this value to other technical data of the alloys was observed, but it was found that sag correlates with the sum of the Au and Ag content of the alloys. A strong sag was observed with high (Au + Ag) content. The lowest sag values were found with a content in the range of 50 atom % (Au + Ag). At lower (Au + Ag) content Pd becomes the main component in the alloys, and the values for sag increased slightly. The method for dynamic measurement of creep gave reproducible results and offers a possible test for rapid qualitative creep assessment. Copyright 1999 John Wiley & Sons, Inc.

  5. Creep and Creep Recovery Response of Load Cells Tested According to U.S. and International Evaluation Procedures

    PubMed Central

    Bartel, Thomas W.; Yaniv, Simone L.

    1997-01-01

    The 60 min creep data from National Type Evaluation Procedure (NTEP) tests performed at the National Institute of Standards and Technology (NIST) on 65 load cells have been analyzed in order to compare their creep and creep recovery responses, and to compare the 60 min creep with creep over shorter time periods. To facilitate this comparison the data were fitted to a multiple-term exponential equation, which adequately describes the creep and creep recovery responses of load cells. The use of such a curve fit reduces the effect of the random error in the indicator readings on the calculated values of the load cell creep. Examination of the fitted curves show that the creep recovery responses, after inversion by a change in sign, are generally similar in shape to the creep response, but smaller in magnitude. The average ratio of the absolute value of the maximum creep recovery to the maximum creep is 0.86; however, no reliable correlation between creep and creep recovery can be drawn from the data. The fitted curves were also used to compare the 60 min creep of the NTEP analysis with the 30 min creep and other parameters calculated according to the Organization Internationale de Métrologie Légale (OIML) R 60 analysis. The average ratio of the 30 min creep value to the 60 min value is 0.84. The OIML class C creep tolerance is less than 0.5 of the NTEP tolerance for classes III and III L. PMID:27805151

  6. Compressive Creep Behavior of NEXTEL(TradeMark) 720/Alumina Ceramic Matrix Composite at 1200 Degrees C in Air and in Steam Environment

    DTIC Science & Technology

    2006-06-17

    Zawada . “Creep Rupture Behavior of ±45° Oxide/Oxide NextelTM720/AS Composite,” in 25th Annual Conference on Composites Advanced Ceramics Materials...oxide composites,” Aerospace Science and Technology, 7: 211-221 (2003). 54. Parthasarathy, T.A., Zawada , L.P., John, R., Cinibulk, M. K...Stephan T. Gonczy, Edgar Lara- Curzio, Noel E. Ashbaugh, and Larry P. Zawada , Eds., American Society for Testing and Materials (1997). 58

  7. Oscillatory rheology and creep behavior of barley β-D-glucan concentrate dough: effect of particle size, temperature, and water content.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Al-Attar, Hasan

    2015-01-01

    Small amplitude oscillatory rheology and creep behavior of β-glucan concentrate (BGC) dough were studied as function of particle size (74, 105, 149, 297, and 595 μm), BGC particle-to-water ratio (1:4, 1:5, and 1:6), and temperature (25, 40, 55, 70, and 85 °C). The color intensity and protein content increased with decreasing particle size by creating more surface areas. The water holding capacity (WHC) and sediment volume fraction increased with increasing particle size from 74 to 595 μm, which directly influences the mechanical rigidity and viscoelasticity of the dough. The dough exhibited predominating solid-like behavior (elastic modulus, G' > viscous modulus, G″). A discrete retardation spectrum is employed to the creep data to obtain retardation time and compliance parameters, which varied significantly with particle size and the process temperature. Creep tests exhibited more pronounced effect on dough behavior compared to oscillatory measurement. The protein denaturation temperature was insignificantly increased with particle fractions from 107 to 110 °C. All those information could be helpful to identify the particle size range and WHC of BGC that could be useful to produce a β-d-glucan enriched designed food.

  8. Size and thickness effect on creep behavior in conventional and vitamin E-diffused highly crosslinked polyethylene for total hip arthroplasty.

    PubMed

    Takahashi, Yasuhito; Tateiwa, Toshiyuki; Shishido, Takaaki; Masaoka, Toshinori; Kubo, Kosuke; Yamamoto, Kengo

    2016-09-01

    Since the early 2000s, the use of large femoral heads is becoming increasingly popular in total hip arthroplasty (THA), which provides an improved range of motion and joint stability. Large femoral heads commonly necessitate to be coupled with thinner acetabular liners than the conventionally used because of the limited sizes of outer shells (especially for patients with small pelvic size). However, the influence of the liner thinning on the mechanical performance is still not clearly understood. The objective of this study was to experimentally clarify the size and thickness effect on the rates of compressive creep strain in conventional (virgin low-crosslinked) and vitamin E-diffused highly crosslinked, ultra-high molecular weight polyethylene (UHMWPE) acetabular liners. We applied uniaxial compression to these liners of various internal diameters (28, 32 and 36mm) and thicknesses (4.8, 6.8 and 8.9mm) up to 4320min under the constant load of 3000N. Vitamin E-diffused highly crosslinked UHMWPE components showed significantly greater creep resistance than the conventional ones. In the both types of UHMWPE, the rates of creep strain significantly decreased by increasing the internal diameter and thickness. Varying the component thickness contributed more largely to the creep behavior rather than the internal diameter. Our results suggest the positive mechanical advantage of using large femoral heads, but at the same time, a considerable liner thinning is not recommended for minimizing creep strain. Therefore, the further in-vitro as well as in-vivo research are necessary to conclude the optimal balance of head diameter and liner thickness within the limited sizes of outer shells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of Zn and Sb Additions on the Impression Creep Behavior of Lead-Free Sn-3.5Ag Solder Alloy

    NASA Astrophysics Data System (ADS)

    Pourmajidian, M.; Mahmudi, R.; Geranmayeh, A. R.; Hashemizadeh, S.; Gorgannejad, S.

    2016-01-01

    The effect of separate additions of 1.5 wt.% Zn and 1.5 wt.% Sb on the creep behavior of Sn-3.5 wt.% Ag lead-free solder alloy was investigated by impression testing. The tests were carried out under constant punching stresses in the range of 60-120 MPa and at temperatures in the range of 298-370 K. Both of the ternary alloys showed creep resistances higher than that of the eutectic binary Sn-3.5Ag alloy. The superior creep resistance of the ternary Sn-3.5Ag-1.5Sb alloy is attributed to the strong solid solutioning effect of antimony in the tin matrix, while the formation of AgZn particles and refinement of the Ag3Sn precipitates account for the higher creep resistance of the Sn-3.5Ag-1.5Zn alloy. The average stress exponents of 8.2, 8.5, and 8.6 and activation energies of 47.4 kJ mol-1, 45.3 kJ mol-1, , and 43.3 kJ mol-1 were obtained for Sn-3.5Ag, Sn-3.5Ag-1.5Zn, and Sn-3.5Ag-1.5Sb, respectively. These activation energies are close to 46 kJ mol-1 for dislocation pipe diffusion of tin. This, together with the stress exponents of 8.2-8.6, suggests that dislocation climb controlled by dislocation pipe diffusion is the predominant creep mechanism in these alloys.

  10. 3D discrete dislocation dynamics study of creep behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander

    2017-05-01

    A three-dimensional (3D) discrete dislocation dynamics (DDD) creep model is developed to investigate creep behavior under uniaxial tensile stress along the crystallographic [001] direction in Ni-base single crystal superalloys, which takes explicitly account of dislocation glide, climb and vacancy diffusion, but neglects phase transformation like rafting of γ‧ precipitates. The vacancy diffusion model takes internal stresses by dislocations and mismatch strains into account and it is coupled to the dislocation dynamics model in a numerically efficient way. This model is helpful for understanding the fundamental creep mechanisms in superalloys and clarifying the effects of dislocation glide and climb on creep deformation. In cases where the precipitate cutting rarely occurs, e.g. due to the high anti-phase boundary energy and the lack of superdislocations, the dislocation glide in the γ matrix and the dislocation climb along the γ/γ‧ interface dominate plastic deformation. The simulation results show that a high temperature or a high stress both promote dislocation motion and multiplication, so as to cause a large creep strain. Dislocation climb accelerated by high temperature only produces a small plastic strain, but relaxes the hardening caused by the filling γ channels and lets dislocations further glide and multiply. The strongest variation of vacancy concentration occurs in the horizontal channels, where more mixed dislocations exit and tend to climb. The increasing internal stresses due to the increasing dislocation density are easily overcome by dislocations under a high external stress that leads to a long-term dislocation glide accompanied by multiplication.

  11. Finite Element Based Stress Analysis of Graphite Component in High Temperature Gas Cooled Reactor Core Using Linear and Nonlinear Irradiation Creep Models

    SciTech Connect

    Mohanty, Subhasish; Majumdar, Saurindranath

    2015-01-01

    Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.

  12. Creep Deformation of Allvac 718Plus

    DOE PAGES

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics aremore » common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.« less

  13. Creep Deformation of Allvac 718Plus

    SciTech Connect

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  14. Creep Deformation of Allvac 718Plus

    NASA Astrophysics Data System (ADS)

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2015-01-01

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range of 923 K to 1005 K (650 °C to 732 °C) at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature-stress regime this alloy exhibits Class M-type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys, this gamma prime strengthened superalloy does not exhibit steady-state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common among the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non-Nb-bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  15. Countercontrol in behavior analysis

    PubMed Central

    Delprato, Dennis J.

    2002-01-01

    Countercontrol is a functional class of behavior that is part of Skinner's analysis of social behavior. Countercontrol refers to behavioral episodes comprised of socially mediated aversive controlling conditions and escape or avoidance responses that do not reinforce, and perhaps even punish, controllers' responses. This paper suggests that neglect of countercontrol in modern behavior analysis is unfortunate because the concept applies to interpersonal and social relations the fundamental operant principle that human behavior is both controlled and controlling—humans are not passive and inflexible. Countercontrol is addressed here in terms of conceptual status, contemporary developments in behavior analysis, its importance in a behavior-analytic approach to freedom and cultural design, applications, and research. The main conclusion is that Skinner's formulation of counter-control is scientifically supported and worthy of increased prominence in behavior analysis. PMID:22478386

  16. The microstructures and creep and attenuation behaviors of ice-iodine and ice/hydrate eutectic aggregates at planetary conditions

    NASA Astrophysics Data System (ADS)

    McCarthy, Christine

    2009-12-01

    The solidification behavior, microstructure and mechanical response of several two-phase aggregates of ice-I + salt hydrates were experimentally and theoretically studied; the binary systems explored were selected based on their potential application to the study of tectonics and heat flow on the Jovian moon Europa. Eutectic solidification of systems H2O-Na 2SO4, H2O-MgSO4, H2O-Na 2CO3, and H2O-H2SO4 was analyzed from a theromodynamic and kinetic perspective and the resulting microstructures by cryogenic scanning electron microscope. Classical eutectic microstructures---fine (mum)-scale intergrowths of ice and hydrate arranged in colonies---are formed in each system, the intergrowth morphology of which can be predicted from the volume fraction of the phase having the highest partial molar entropy of solution and from the magnitude of that entropy. The mechanical testing of ice-I and MgSO4·11H2O ("MS11"; chosen because it has been suggested as a better fit to the near-infrared spectral data of Europa) has shown that the microstructure of the eutectic---in particular the high volume of phase and colony boundaries---endows the aggregate with mechanical properties distinctly different from that of pure ice. In creep, the finely dispersed hydrate, which is distinctly stronger than ice, suppresses significantly the glide of dislocations; the result is a material both stronger and more brittle than pure ice. The eutectic rheology thus opens the possibility for semi-brittle flow in a two-phase, hydrate-ice planetary shell, affecting the tectonic responses. Attenuation in pure polycrystalline ice is effected by diffusional dissipation on low-angle (subgrain) boundaries augmented by non-linear losses wrought by glide of lattice dislocations. Grain boundaries can become significant in the attenuation response under dynamic conditions where a dislocation rheology dictates creep dynamics and the grain size is approximately equal to the subgrain size. In the absence of cracking

  17. Microtexture Analysis and Modeling of Ambient Fatigue and Creep-Fatigue Damages in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, Jalaj; Singh, A. K.; Raman, S. Ganesh Sundara; Kumar, Vikas

    2017-02-01

    In the present investigation, microtexture analysis using electron back-scattered diffraction technique has been performed to study fatigue- and creep-fatigue damages and associated deformation structures in Ti-6Al-4V alloy. Special emphasis has been given to low-angle grain boundary configuration and its possible application as a damage indicator. Damage is mostly present in the form of voids as investigated through scanning electron microscopy. Stored deformation energies have been evaluated for the strain-controlled fatigue-, the stress-controlled fatigue-, and the creep-fatigue-tested samples. Stored deformation energies have also been analyzed vis-à-vis total damage energies to quantify the contribution of damages to various samples. A relation between the stored deformation energy and the applied strain amplitude has been proposed in this study.

  18. Evaluation of vancomycin MIC creep in methicillin-resistant Staphylococcus aureus infections-a systematic review and meta-analysis.

    PubMed

    Diaz, R; Afreixo, V; Ramalheira, E; Rodrigues, C; Gago, B

    2017-06-23

    Vancomycin is currently the primary option treatment for methicillin-resistant Staphylococcus aureus (MRSA). However, an increasing number of MRSA isolates with high MICs, within the susceptible range (vancomycin MIC creep), are being reported worldwide. Resorting to a meta-analysis approach, this study aims to assess the evidence of vancomycin MIC creep. We searched for studies in the PubMed database. The inclusion criteria for study eligibility included the possibility of retrieving the reported data values of vancomycin MIC and information concerning the applied MIC methodology. The mean values of vancomycin MICs, of all 29 234 S. aureus isolates reported in the 55 studies included in the meta-analysis, were 1.23 mg/L (95% CI 1.13-1.33) and 1.20 mg/L (95% CI 1.13-1.28) determined by Etest and broth microdilution method, respectively. No significant differences were observed between these two methodologies. We found negative correlation between pooled mean/pooled proportion and time strata. We have found no evidence of the MIC creep phenomenon. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Creep fracture during solute-drag creep and superplastic deformation

    SciTech Connect

    Taleff, E.M.; Lesuer, D.R.; Syn, C.K.; Henshall, G.A.

    1996-10-01

    Creep fracture behavior has been studied in Al-Mg and Al-Mg-Mn alloys undergoing solute-drag creep and in microduplex stainless steel undergoing both solute-drag creep and superplastic deformation. Failure in these materials is found to be controlled by two mechanisms, neck formation and cavitation. The mechanism of creep fracture during solute-drag creep in Al-Mg is found to change from necking-controlled fracture to cavitation-controlled fracture as Mn content is increased. Binary Al-Mg material fails by neck formation during solute-drag creep, and cavities are formed primarily in the neck region due to high hydrostatic stresses. Ternary alloys of Al-Mg- Mn containing 0.25 and 0.50 wt % Mn exhibit more uniform cavitation, with the 0.50 Mn alloy clearly failing by cavity interlinkage. Failure in the microduplex stainless steel is dominated by neck formation during solute-drag creep deformation but is controlled by cavity growth and interlinkage during superplastic deformation. Cavitation was measured at several strains, and found to increase as an exponential function of strain. An important aspect of cavity growth in the stainless steel is the long latency time before significant cavitation occurs. For a short latency period, cavitation acts to significantly reduce ductility below that allowed by neck growth alone. This effect is most pronounced in materials with a high strain-rate sensitivity, for which neck growth occurs very slowly.

  20. Evaluation of cast creep occurring during simulated clubfoot correction

    PubMed Central

    Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald, F

    2016-01-01

    The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster-of-Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p < 0.0001). The most creep displacement occurred in the plaster-of-Paris (2.0 degrees), then the semi-rigid fiberglass (1.0 degrees), and then the rigid fiberglass (0.4 degrees). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi—linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care. PMID:23636764

  1. Evaluation of cast creep occurring during simulated clubfoot correction.

    PubMed

    Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald F

    2013-08-01

    The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti-corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster of Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p < 0.0001). The most creep displacement occurred in the plaster of Paris (2.0°), then the semi-rigid fiberglass (1.0°), and then the rigid fiberglass (0.4°). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi-linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care.

  2. Investigation on the Flexural Creep Stiffness Behavior of PC-ABS Material Processed by Fused Deposition Modeling Using Response Surface Definitive Screening Design

    NASA Astrophysics Data System (ADS)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-03-01

    The resistance of polymeric materials to time-dependent plastic deformation is an important requirement of the fused deposition modeling (FDM) design process, its processed products, and their application for long-term loading, durability, and reliability. The creep performance of the material and part processed by FDM is the fundamental criterion for many applications with strict dimensional stability requirements, including medical implants, electrical and electronic products, and various automotive applications. Herein, the effect of FDM fabrication conditions on the flexural creep stiffness behavior of polycarbonate-acrylonitrile-butadiene-styrene processed parts was investigated. A relatively new class of experimental design called "definitive screening design" was adopted for this investigation. The effects of process variables on flexural creep stiffness behavior were monitored, and the best suited quadratic polynomial model with high coefficient of determination ( R 2) value was developed. This study highlights the value of response surface definitive screening design in optimizing properties for the products and materials, and it demonstrates its role and potential application in material processing and additive manufacturing.

  3. Early age stresses and creep-shrinkage interaction of restrained concrete

    NASA Astrophysics Data System (ADS)

    Altoubat, Salah Ahmed

    2000-10-01

    Experimental and numerical analyses were performed to characterize the early age tensile creep and shrinkage behavior of concrete. A uniaxial restrained shrinkage test was developed. The experiment tested two identical specimens: restrained and unrestrained. The test was controlled by computer, and the shrinkage deformation was checked continuously and compared to a threshold value of 5 mum, which when exceeded, triggered an increase in tensile load to recover the shrinkage strain in the restrained specimen. Thus, a restrained condition is achieved and the stress generated by shrinkage mechanisms was measurable. The experiment revealed how shrinkage stresses developed and how creep mechanisms reduced shrinkage strain. The tests revealed that shrinkage stresses in the first days after casting are significant and caused fracture of the concrete. The rate of stress evolution influenced the time and stress of first cracking. The tensile creep of concrete formed a substantial part of the time dependent deformation and reduced the shrinkage stresses by 50%. A method separating drying creep mechanisms of concrete into stress-induced shrinkage and microcracking was developed. The method required measurement of creep and shrinkage of concrete under drying, sealed, and moist curing conditions. The moist-curing test produce the basic creep; the sealed test provided data on basic creep and stress-induced shrinkage, and the drying test provided data on basic creep, stress-induced shrinkage and microcracking. The basic creep results of young concrete indicated a high creep rate in the initial 10--20 hours after loading. Then, the rate decreased and the creep function approached a stable value. The initial rate of creep was sensitive to age at loading in the first two days, and became age-independent after a few days. The analysis revealed stress-induced shrinkage as a major mechanism of drying creep for plain and fiber reinforced concrete (FRC). Microcracking forms a significant

  4. Creep Behavior of P92 Steel in the Steam Environment at 600 °C Using Miniature Three-Point Bend Test

    NASA Astrophysics Data System (ADS)

    Huang, Yuhui; Xuan, Fu-Zhen

    2016-12-01

    A miniature three-point bend test system with steam-circulating device was introduced in order to study the interaction behavior between steam oxidation and tensile, compressive creep of P92 steel at 600 °C. It was observed that the formation of oxidation scale accelerated creep deformation which induced by reducing the effective stress on underlying metal. The oxidation mechanisms as well as oxidation kinetics on tensile and compressive surface were examined by scanning electron microscope, x-ray diffraction and energy-dispersive spectrometer. It can be revealed that applied tensile and compressive loading had strong influence on oxidation rate rather than on oxidation mechanism. Furthermore, a mechanical model coupled with oxidation scale growth was proposed to predict the deformation rate of the miniature three-point specimen which could agree well with the experimental results.

  5. Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.

    PubMed

    Nowak, Joanna; Nowak, Bartosz; Kaczmarek, Mariusz

    2015-01-01

    This paper addresses the diagnostic idea proposed in [11] to measure the parameter called rate of creep of axillary fold of tissue using modified Harpenden skinfold caliper in order to distinguish normal and edematous tissue. Our simulations are intended to help understanding the creep phenomenon and creep rate parameter as a sensitive indicator of edema existence. The parametric analysis shows the tissue behavior under the external load as well as its sensitivity to changes of crucial hydro-mechanical tissue parameters, e.g., permeability or stiffness. The linear viscoelastic and poroelastic models of normal (single phase) and oedematous tissue (twophase: swelled tissue with excess of interstitial fluid) implemented in COMSOL Multiphysics environment are used. Simulations are performed within the range of small strains for a simplified fold geometry, material characterization and boundary conditions. The predicted creep is the result of viscosity (viscoelastic model) or pore fluid displacement (poroelastic model) in tissue. The tissue deformations, interstitial fluid pressure as well as interstitial fluid velocity are discussed in parametric analysis with respect to elasticity modulus, relaxation time or permeability of tissue. The creep rate determined within the models of tissue is compared and referred to the diagnostic idea in [11]. The results obtained from the two linear models of subcutaneous tissue indicate that the form of creep curve and the creep rate are sensitive to material parameters which characterize the tissue. However, the adopted modelling assumptions point to a limited applicability of the creep rate as the discriminant of oedema.

  6. Analysis of Autopilot Behavior

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Polson, Peter; Feay, Mike; Palmer, Everett; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Aviation and cognitive science researchers have identified situations in which the pilot's expectations for behavior of autopilot avionics are not matched by the actual behavior of the avionics. These "automation surprises" have been attributed to differences between the pilot's model of the behavior of the avionics and the actual behavior encoded in the avionics software. A formal technique is described for the analysis and measurement of the behavior of the cruise pitch modes of a modern Autopilot. The analysis characterizes the behavior of the Autopilot as situation-action rules. The behavior of the cruise pitch mode logic for a contemporary modern Autopilot was found to include 177 rules, including Level Change (23), Vertical Speed (16), Altitude Capture (50), and Altitude Hold (88). These rules are determined based on the values of 62 inputs. Analysis of the rule-based model also shed light on the factors cited in the literature as contributors to "automation surprises."

  7. Analysis of Autopilot Behavior

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Polson, Peter; Feay, Mike; Palmer, Everett; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Aviation and cognitive science researchers have identified situations in which the pilot's expectations for behavior of autopilot avionics are not matched by the actual behavior of the avionics. These "automation surprises" have been attributed to differences between the pilot's model of the behavior of the avionics and the actual behavior encoded in the avionics software. A formal technique is described for the analysis and measurement of the behavior of the cruise pitch modes of a modern Autopilot. The analysis characterizes the behavior of the Autopilot as situation-action rules. The behavior of the cruise pitch mode logic for a contemporary modern Autopilot was found to include 177 rules, including Level Change (23), Vertical Speed (16), Altitude Capture (50), and Altitude Hold (88). These rules are determined based on the values of 62 inputs. Analysis of the rule-based model also shed light on the factors cited in the literature as contributors to "automation surprises."

  8. Interseismic deformation and creep along the Sumatran fault, Indonesia from InSAR time-series analysis

    NASA Astrophysics Data System (ADS)

    Tong, X.; Sandwell, D. T.; Schmidt, D. A.

    2015-12-01

    The fast subduction (~60 mm/yr) of the Indo-Australia plate underneath the Sunda microplate in Southeast Asia causes major seismic and tsunami hazards to surrounding regions. Previous land-based GPS studies have revealed that the plate motion composes of ~45 mm/yr of subduction directed normal to the Sunda trench and ~23 mm/yr of right-lateral strike-slip along the 1000km long Sumatran fault. The decoupling of the forearc blocks from the overriding plate leads to slip partitioning at this highly oblique subduction zone. Geological and geodetic studies have suggested that the long-term fault slip rate along the Sumatran fault increases significantly from southern to northern Sumatra. We analyzed the SAR data from the L-band ALOS-1 satellite to image the interseismic deformation along the Sumatran fault. To extract the deformation signal from the interferometric phase observations, we have improved the conventional SBAS methodology by including the decorrelation information of the interferograms into the inverse problem. Instead of discarding the noisy data present in a fraction of the interferograms, we keep all the pixels in the processing chain and weight the observed phase data based on the correlation using the covariance matrix. This new InSAR technique is less prone to the unwrapping errors and it results in a spatially coherent signal with dense coverage and high precision. The InSAR time-series analysis has detected up to ~20 mm/yr of fault creep on the Aceh segment along the Northern Sumatran fault. The spatial extent of the aseismic creep reaches at least 100 km, measured from N5.2, E95.7 to N4.5, E96.5. The along-strike variation of the aseismic creep has an inverse "U" shape. We will present new line-of-sight interseismic velocity and along-strike variation of fault creep rate along the Northern Sumatran fault in Southeast Asia.

  9. Zen and Behavior Analysis

    ERIC Educational Resources Information Center

    Bass, Roger

    2010-01-01

    Zen's challenge for behavior analysis is to explain a repertoire that renders analysis itself meaningless--a result following not from scientific or philosophical arguments but rather from a unique verbal history generated by Zen's methods. Untying Zen's verbal knots suggests how meditation's and koans' effects on verbal behavior contribute to…

  10. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2013-01-01

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.

  11. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    NASA Astrophysics Data System (ADS)

    Koyanagi, T.; Shimoda, K.; Kondo, S.; Hinoki, T.; Ozawa, K.; Katoh, Y.

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. The apparent stress exponent of the irradiation creep slightly exceeded unity, and instantaneous creep coefficient at 380-790 °C was estimated to be ∼1 × 10-5 [MPa-1 dpa-1] at ∼0.1 dpa and 1 × 10-7 to 1 × 10-6 [MPa-1 dpa-1] at ∼1 dpa. The irradiation creep strain appeared greater than that for the high purity SiC. Microstructural observation and data analysis indicated that the grain-boundary sliding associated with the secondary phases contributes to the irradiation creep at 380-790 °C to 0.01-0.11 dpa.

  12. Effects of thermomechanical processing on tensile and long-time creep behavior of Nb-1 percent Zr-0.1 percent C sheet

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Uz, Mehmet

    1994-01-01

    Effects of thermomechanical processing on the mechanical properties of Nb-1 wt. percent Zr-0.1 wt. percent C, a candidate alloy for use in advanced space power systems, were investigated. Sheet bars were cold rolled into 1-mm thick sheets following single, double, or triple extrusion operations at 1900 K. All the creep and tensile specimens were given a two-step heat treatment 1 hr at 1755 K + 2 hr 1475 K prior to testing. Tensile properties were determined at 300 as well as at 1350 K. Microhardness measurements were made on cold rolled, heat treated, and crept samples. Creep tests were carried out at 1350 K and 34.5 MPa for times of about 10,000 to 19,000 hr. The results show that the number of extrusions had some effects on both the microhardness and tensile properties. However, the long-time creep behavior of the samples were comparable, and all were found to have adequate properties to meet the design requirements of advanced power systems regardless of thermomechanical history. The results are discussed in correlation with processing and microstructure, and further compared to the results obtained from the testing of Nb-1 wt. percent Zr and Nb-1 wt. percent Zr-0.06 wt. percent C alloys.

  13. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800 deg C

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Scheuermann, Coulson M.

    1987-01-01

    A promising iron-base cast alloy is being developed as part of the DOE/NASA Stirling Engine Systems Project under contract DEN 3-282 with the United Technologies Research Center. This report presents the results of a study at the Lewis Research Center of the alloy's creep-rupture properties. The alloy was tested under a variety of conditions and was found to exhibit the normal 3-stage creep response. The alloy compared favorably with others being used or under consideration for the automotive Stirling engine cylinder/regenerator housing.

  14. Creep of dry clinopyroxene aggregates

    NASA Astrophysics Data System (ADS)

    Bystricky, Misha; Mackwell, Stephen

    2001-01-01

    We have determined diffusional and dislocation creep rheologies for clinopyroxenite Ca1.0Mg0.8Fe0.2Si2O6 under dry conditions by deforming natural and hot-pressed samples at confining pressures of 300-430 MPa and temperatures of 1100°-1250°C with the oxygen fugacity buffered by either nickel-nickel oxide or iron-wüstite powders. The coarse-grained natural Sleaford Bay clinopyroxenite yielded a stress exponent of n = 4.7 ± 0.2 and an activation energy for creep of Q = 760 ± 40 kJ mol-1, consistent with deformation in the dislocation creep regime. The strength of the natural clinopyroxenite is consistent with previous high-temperature measurements of dislocation creep behavior of Sleaford Bay clinopyroxenite by Kirby and Kronenberg [1984] and Boland and Tullis [1986]. Fine-grained clinopyroxenite was prepared from ground powders of the natural clinopyroxenite. Hot-pressed samples were deformed under similar conditions to the natural samples. Mixed-mode deformation behavior was observed, with diffusional creep (n = 1) at lower differential stresses and dislocation creep (with n and Q similar to those of the natural samples) at higher differential stresses. Within the dislocation creep field the predried hot-pressed samples generally yielded creep rates that were about an order of magnitude faster than the natural samples. Thus, even at the highest differential stresses, a component of strain accommodation by grain boundary diffusion was present in the hot-pressed samples. Optical and electron microscope investigations of the deformation microstructures of the natural and hot-pressed samples show evidence for mechanical twinning and activation of dislocation slip systems. When extrapolated to geological conditions expected in the deep crust and upper mantle on Earth and other terrestrial planets, the strength of dry single-phase clinopyroxene aggregates is very high, exceeding that of dry olivine-rich rocks.

  15. Simultaneous observations of reaction kinetics, creep behavior, and AE activities during syndeformational antigorite dehydration at high pressures

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Iwasato, T.; Higo, Y.; Kato, T.; Kaneshima, S.; Uehara, S.; Koizumi, S.; Imamura, M.; Tange, Y.

    2015-12-01

    Intermediate-depth earthquakes are seismic activities in Wadati-Benioff zone at depths from 60 km to 300 km, where subducting plates deform plastically rather than brittle failure. Although it has been reported that unstable faulting occurred during antigorite dehydration even at higher pressures than ~2 GPa (e.g., Jung et al., 2009), the recent study by Chernak and Hirth (2011) revealed that the syndefromational antigorite dehydration does not produces stick-slip instabilities but stable fault slip. In the present study, we newly developed an AE monitoring system for high-pressure reaction-deformation processes combined with D-DIA and synchrotron monochromatic X-ray to observe reaction kinetics, creep behaviors, and AE activities simultaneously. We applied this technique to investigate shear instability during syndeformational antigorite dehydration. High-pressure deformation experiments were conducted up to ~8 GPa, ~1050 K, and strain rates of 3.4-9.2 x 10-5 s-1 in compression using a D-DIA type apparatus installed at BL-04B1, SPring-8. 50 keV mono X-ray were used to measure reaction kinetics and stress-strain data. To monitor shear instabilities by detecting AEs, six piezoelectric devices were positioned between first and second stage anvils of MA 6-6 type system. We used three kinds of starting materials of polycrystalline antigorite, fine-grained forsterite polycrystal, and two-phase mixtures of antigorite and San Carlos olivine (10%, 30%, and 50%atg). Clear contrasts were observed in AE activities between forsterite and antigorite samples. AE activities detected within the forsterite polycrystal suggested (semi) brittle behaviors at low pressures during the cold compression stage.
Almost no AEs were detected within the antigorite samples during any stages of cold compression, ramping, deformation, and syndeformational dehydration although localized deformation textures were observed in recovered samples. Instead, we detected some AEs outside the sample

  16. Lattice continuum and diffusional creep

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  17. Lattice continuum and diffusional creep

    PubMed Central

    2016-01-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate. PMID:27274696

  18. Lattice continuum and diffusional creep.

    PubMed

    Mesarovic, Sinisa Dj

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  19. Creep, fatigue and creep-fatigue interactions in modified 9% Chromium - 1% Molybdenum (P91) steels

    NASA Astrophysics Data System (ADS)

    Kalyanasundaram, Valliappa

    Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the proposed research are to characterize the creep, fatigue and C-F behavior of grade P91 steels at 625 C and develop robust constitutive models for simulating/predicting their microstructural response under different loading conditions. This work will utilize experimental data from 16 laboratories worldwide that conducted tests (creep, fatigue and C-F) on grade P91 steel at 625°C in a round-robin (RR) program. Along with 7 creep deformation and rupture tests, 32 pure fatigue and 46 C-F tests from the RR are considered in this work. A phenomenological constitutive model formulated in this work needs just five fitting parameters to simulate/predict the monotonic, pure fatigue and C-F behavior of grade P91 at 625 C. A modified version of an existing constitutive model is also presented for particularly simulating its isothermal creep deformation and rupture behavior. Experimental results indicate that specimen C-F lives, as measured by the 2% load drop criterion, seem to decrease with increasing strain ranges and increasing hold times at 625°C. Metallographic assessment of the tested specimens shows that the damage mode in both pure fatigue and 600 seconds hold time cyclic tests is predominantly transgranular fatigue with some presence of

  20. Oxidation resistance and compressive creep behavior of boron doped Mo{sub 5}Si{sub 3}

    SciTech Connect

    Meyer, M.K.; Akinc, M. |; Kramer, M.J.

    1995-10-01

    Use of Mo{sub 5}Si{sub 3} in high temperature applications is limited by oxidation induced catastrophic failure above 800 C. Oxidation resistance of Mo{sub 5}Si{sub 3} is substantially improved from 800--1,300 C by the addition of boron. The oxidation rate at 1,200 C was decreased by five orders of magnitude with less than 2 weight percent boron addition. The improvement in oxidation resistance of B doped Mo{sub 5}Si{sub 3} is due to formation of a protective scale layer due to viscous flow. The compressive creep rate of B doped Mo{sub 5}Si{sub 3} was measured at various temperature/stress levels and found to be similar to that of the undoped material. The creep rate of B doped Mo{sub 5}Si{sub 3} was measured as 1.8 {times} 10{sup {minus}7} s{sup {minus}1} at 1,242 C and 138 MPa. Creep tests were conducted at 140--180 MPa and 1,220--1,320 C. Average creep activation energy and stress exponent in this range were found to be E{sub a} {approx} 400 kJ/mol and n = 4.3 respectively.

  1. Parameter correlation of high-temperature creep constitutive equation for RPV metallic materials

    NASA Astrophysics Data System (ADS)

    Xie, Lin-Jun; Ren, Xin; Shen, Ming-Xue; Tu, Li-Qun

    2015-10-01

    Constant-temperature and constant-load creep tests of SA-508 stainless steel were performed at six temperatures, and the creep behavior and properties of this material were determined. Constitutive models were established based on an isothermal creep method to describe the high-temperature creep behavior of SA-508. Material parameter k, stress exponent nσ, and temperature exponent nt of the established constitutive models were determined through experimental data via numerical optimization techniques. The relationship of k, nσ, and nt was evaluated, and a new coefficient model of k-T, nσ-T, nt-T, and nt-nσ was formulated through the parameters of the isothermal creep equation. Moreover, the isothermal creep equation for this material at every temperature point from 450 °C to 1000 °C was obtained from the models. This method can serve as a reference for isothermal creep analysis and provide a way for the safety assessment of components of reactor pressure vessels.

  2. Steady State Creep of Zirconium at High and Intermediate Temperatures

    SciTech Connect

    Rosen, R.S.; Hayes, T.A.

    2000-04-08

    Creep of zirconium and zirconium alloys has been labeled ''anomalous.'' Researchers often report that zirconium and its alloys never reach true steady state creep and have stress exponents that continuously change with stress and temperature. Many varied interpretations have been offered explaining the creep behavior of zirconium. Some have suggested that creep is diffusion controlled, while others maintain that creep is dislocation glide controlled. Cumulative zirconium creep data will be presented based on an extensive literature review. An interpretation of results will be presented and compared to previous interpretations.

  3. Temperature effects on the strainrange partitioning approach for creep-fatigue analysis

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Hirschberg, M. H.; Manson, S. S.

    1972-01-01

    Examination is made of the influence of temperature on the strainrange partitioning approach to creep-fatigue. Results for Cr-Mo steel and Type 316 stainless steel show the four partitioned strainrange-life relationships to be temperature insensitive to within a factor of two on cyclic life. Monotonic creep and tensile ductilities were also found to be temperature insensitive to within a factor of two. The approach provides bounds on cyclic life that can be readily established for any type of inelastic strain cycle. Continuous strain cycling results obtained over a broad range of high temperatures and frequencies are in excellent agreement with bounds provided by the approach. The observed transition from one bound to the other is also in good agreement with the approach.

  4. Creep Deformation of B2 Alumindes

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1991-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  5. Creep deformation of B2 aluminides

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1992-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  6. Creep/Stress Rupture Behavior of 3D Woven SiC/SiC Composites with Sylramic-iBN, Super Sylramic-iBN and Hi-Nicalon-S Fibers at 2700F in Air

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    2017-01-01

    To determine the influence of fiber types on creep durability, 3D SiC/SiC CMCs were fabricated with Sylramic-iBN, super Sylramic-iBN and Hi-Nicalon-S fibers and the composite specimens were then tested under isothermal tensile creep at 14820C at 69, 103 and 138 MPa for up to 300hrs in air. The failed specimens were examined by scanning electron microscopy (SEM) and computed tomography (CT) for fracture mode analysis. The creep data of these composites are compared with those of other SiC/SiC composites in the literature. The results of this study will be presented.

  7. Flexural creep behaviour of jute polypropylene composites

    NASA Astrophysics Data System (ADS)

    Chandekar, Harichandra; Chaudhari, Vikas

    2016-09-01

    Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.

  8. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  9. Effect of Cross-linking Density on Creep and Recovery Behavior in Epoxy-Based Shape Memory Polymers (SMEPs) for Structural Applications

    NASA Astrophysics Data System (ADS)

    Rao, Kavitha V.; Ananthapadmanabha, G. S.; Dayananda, G. N.

    2016-12-01

    Epoxy-based shape memory polymers (SMEPs) are gaining importance in the area of aerospace structures due to their high strength and stiffness which is a primary requirement for an SMEP in structural applications. The understanding of viscoelastic behavior of SMEPs is very essential to assess their shape memory effect. In the present work, three types of SMEPs with varying cross-linking densities were developed by curing an aromatic epoxy resin with aliphatic amines. Glass transition temperature ( T g) was measured for these SMEPs using advanced rheometric expansion system, and from the T g measurements, a range of temperatures from glassy to rubbery regimes were chosen. At selected temperatures, creep-recovery tests were performed in order to evaluate the viscoelastic behavior of SMEPs and also to investigate the effect of temperature on creep-recovery. Further, a three-parameter viscoelastic model (Zener) was used to fit the data obtained from experiments. Model parameters like moduli of the springs and viscosity of the dashpot were evaluated by curve fitting. Results revealed that Zener model was well suited to describe the viscoelastic behavior of SMEPs as a function of test temperatures.

  10. In-situ X-ray observations of creep behavior during the olivine-spinel transformation in fayalite

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Doi, N.; Imamura, M.; Kato, T.; Higo, Y.; Tange, Y.

    2016-12-01

    Most of constituent minerals in subducting slab cause high-pressure transformations in mantle transition zone, which largely affects rheology of the deep slab. Previous studies have suggested that the grain-size reduction due to non-equilibrium olivine-spinel transformation leads to weakening and shear instability in the slab, which may be responsible for the slab stagnation and deep earthquakes. However, there have been few experimental studies to examine the coupling process between transformation and deformation at high pressure quantitatively. Here we report preliminary results on in-situ X-ray observations of creep behaviors during the olivine-spinel transformation in fayalite (Fe2SiO4). High-pressure deformation experiments were conducted using Deformation-DIA apparatus in the beamline of BL04B1 at the synchrotron facility of SPring-8. Monochromatic X-ray (energy 50-60 keV) was used as the incident beam. We measured time-resolved two-dimensional X-ray diffraction patterns and X-ray radiography images to obtain stress-strain and transformation-time (strain) curves, simultaneously. After annealing polycrystalline fayalite at 3.5 GP and 1173 K for 2 hours, we observed the olivine-spinel transformation at 5-9 GPa and 873-1173 K with and without deformation (in uniaxial compression with constant strain rate of 4-5 x 10-5 s-1). Overpressures needed for the transformation increased with decreasing temperature from 1.5 GPa and 1173 K to 3.8 GPa at 973 K in the case of no deformation. When the sample was deformed, the overpressures decreased by 0.5-1 GPa compared to the case of no deformation, suggesting the enhancement of spinel nucleation. Transformation was not observed at 873 K even when the overpressure reached to 4 GPa with deformation. Stress in olivine, spinel, and the bulk sample (from stress marker arranged in tandem) were similar at the initial stage, and then spinel becomes dominant deformation phase at around 50% transformation. During the

  11. Multi-scale InSAR analysis of aseismic creep across the San Andreas, Calevaras,and Hayward Fault systems

    NASA Astrophysics Data System (ADS)

    Agram, P. S.; Simons, M.

    2011-12-01

    We apply the Multi-scale Interferometric Time-series (MInTS) technique, developed at Caltech,to study spatial variations in aseismic creep across the San Andreas, Calaveras and Hayward Faultsystems in Central California.Interferometric Synthetic Aperture Radar (InSAR) Time-series methods estimate the spatio-temporal evolution of surface deformation using multiple SAR interferograms. Traditional time-series analysis techniques like persistent scatterers and short baseline methods assume the statistical independence of InSAR phase measurements over space and time when estimating deformation. However, existing atmospheric phase screen models clearly show that noise in InSAR phase observations is correlated over the spatial domain. MInTS is an approach designed to exploit the correlation of phase observations over space to significantly improve the signal-to-noise ratio in the estimated deformation time-series compared to the traditional time-series InSAR techniques. The MInTS technique reduces the set of InSAR observations to a set of almost uncorrelated observations at various spatial scales using wavelets. Traditional inversion techniques can then be applied to the wavelet coefficients more effectively. Creep across the Central San Andreas Fault and the Hayward Fault has been studied previously using C-band (6 cm wavelength) ERS data, but detailed analysis of the transition zone between the San Andreas and Hayward Faults was not possible due to severe decorrelation. Improved coherence at L-band (24 cm wavelength) significantly improves the spatial coverage of the estimated deformation signal in our ALOS PALSAR data set. We analyze 450 ALOS PALSAR interferograms processed using 175 SAR images acquired between Dec 2006 and Dec 2010 that cover the area along the San Andreas Fault System from Richmond in the San Francisco Bay Area to Maricopa in the San Joaquin Valley.We invert the InSAR phase observations to estimate the constant Line-of-Sight (LOS) deformation

  12. EVALUATION OF SPECIFICATION RANGES FOR CREEP STRENGTH ENHANCED FERRITIC STEELS

    SciTech Connect

    Shingledecker, John P; Santella, Michael L; Wilson, Keely A

    2008-01-01

    Creep Strength Enhanced Ferritic Steels (CSEF) such as Gr. 91, 911, 92, and 122 require a fully martensitic structure for optimum properties, mainly good creep strength. However, broad chemical compositional ranges are specified for these steel grades which can strongly influence the microstructures obtained. In this study, we have produced chemical compositions within the specification ranges for these alloys which intentionally cause the formation of ferrite or substantially alter the lower intercritical temperatures (A1) so as to affect the phase transformation behavior during tempering. Thermodynamic modeling, thermo-mechanical simulation, tensile testing, creep testing, and microstructural analysis were used to evaluate these materials. The results show the usefulness of thermodynamic calculations for setting rational chemical composition ranges for CSEF steels to control the critical temperatures, set heat-treatment temperature limits, and eliminate the formation of ferrite.

  13. Comprehensive Creep and Thermophysical Performance of Refractory Materials

    SciTech Connect

    Ferber, M.K.; Wereszczak, A.; Hemrick, J.A.

    2006-06-29

    Furnace designers and refractory engineers recognize that optimized furnace superstructure design and refractory selection are needed as glass production furnaces are continually striving toward greater output and efficiencies. Harsher operating conditions test refractories to the limit, while changing production technology (such as the conversion to oxy-fuel from traditional air-fuel firing) can alter the way the materials perform [1-3]. Refractories for both oxy- and air-fuel fired furnace superstructures (see Fig. 1) are subjected to high temperatures that may cause them to creep excessively or subside during service if the refractory material is not creep resistant, or if it is subjected to high stress, or both. Furnace designers can ensure that superstructure structural integrity is maintained if the creep behavior of the refractory material is well understood and well represented by appropriate engineering creep models. Several issues limit the abilities of furnace designers to (1) choose the optimum refractory for their applications, (2) optimize the engineering design, or (3) predict the service mechanical integrity of their furnace superstructures. Published engineering creep data are essentially nonexistent for almost all commercially available refractories used for glass furnace superstructures. The limited data that do exist are supplied by the various refractory suppliers. Unfortunately, the suppliers generally have different ways of conducting their mechanical testing, and they interpret and report their data differently. This inconsistency makes it hard for furnace designers to draw fair comparisons between competing grades of candidate refractories. Furthermore, the refractory suppliers' data are often not available in a form that can be readily used for furnace design or for the prediction and design of long-term structural integrity of furnace superstructures. As a consequence, the U.S. Department of Energy (DOE) Industrial Technology Program (ITP

  14. Autistic behavior, behavior analysis, and the gene

    PubMed Central

    Malott, Richard W.

    2004-01-01

    This article addresses the meaning of autism, the etiology of autistic behavior and values, the nature-nurture debate, contingencies vs. genes, and resistance to a behavioral analysis of autism. PMID:22477285

  15. Behavioral Task Analysis

    DTIC Science & Technology

    2010-01-01

    depicting hierarchical behavioral task relationships as well. An extensive list of such tools is given in Wikipedia articles at http...Hierarchical task analysis . In D. Diaper & N. A. Stanton (Eds .), The handbook of task analysis for human-computer interaction (pp. 67-82). Mahwah, NJ

  16. Creep deformation of TD-nickel chromium

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Ebert, L. J.

    1976-01-01

    An investigation was conducted of the mechanical behavioral characteristics of thoria-dispersed (TD) NiCr materials at elevated temperatures. The experimental procedure used is discussed along with the significance of the obtained results. Attention is given to basic creep behavior and creep thermal activation parameter measurements. It is found that the overall creep behavior of TD-NiCr can be explained on the basis of the relative contributions of two parallel-concurrent deformation mechanisms, including diffusion controlled grain boundary sliding and dislocation motion.

  17. Large earthquakes and creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  18. Large earthquakes and creeping faults

    NASA Astrophysics Data System (ADS)

    Harris, Ruth A.

    2017-03-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  19. Viscoelastic creep of high-temperature concrete

    SciTech Connect

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme.

  20. Analysis of Accelerometer Data from a Woven Inflatable Creep Burst Test

    NASA Technical Reports Server (NTRS)

    James, George H.; Grygier, Michael; Selig, Molly M.

    2015-01-01

    Accelerometers were used to montor an inflatable test article during a creep test to failure. The test article experienced impulse events that were classified based on the response of the sensors and their time-dependent manifestation. These impulse events required specialized techniques to process the structural dynamics data. However, certain phenomena were defined as worthy of additional study. An assessment of one phenomena (a frequency near 1000Hz) showed a time dependent frequency and an amplitude that increased significantly near the end of the test. Hence, these observations are expected to drive future understanding of and utility in inflatable space structures.

  1. A thermo-mechanical framework for analysis of grain size evolution during high temperature creep

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Chrysochoos, A.; Daridon, L.

    2013-12-01

    We develop a theoretical description of high temperature creep with microstructural evolution. The model considers non-linear thermodynamics of irreversible processes (TIP), accounting for dissipated energy associated with creep processes and microstructural changes, as well as energy stored in the microstructure. The "Generalized Standard Materials" (GSM) formalism used here allows for strong coupling among multiple processes through the use of free energy (Helmholtz) and dissipation potentials that are functions of mechanical, thermal and internal or structural state variables. We represent dislocation density and grain size as the structural state variables, to which energy dissipation and storage are associated. We develop two versions of the model, the first with only the grain size and the second with both dislocation density and grain size. These choices reflect current discussion on the physical mechanisms that determine the steady state grain size. We incorporate distinct but coupled processes such as dislocation production, annealing, grain growth, and several creep mechanisms. The first model is designed to evaluate the "field boundary hypothesis" for the steady state grain size and the second to explore the Twiss piezometer model. The hypothesis that a steady state grain size value is associated with a level of energy dissipation (e.g. the "wattmeter") can also be evaluated in the GSM framework. One general advantage of the GSM approach relative to many current grain size evolution models is that the partitioning of energy input between stored and dissipated energy rates is not assumed, but emerges from the derivation and calculation of the stored and dissipated work. We design the approach to extract as much information as possible from torsion experiments (starting with olivine), which contain a continuous range of thermodynamic states (from zero strain at the torsion axis to a maximum at the edge of the sample) during primary (transient) and

  2. Zen and Behavior Analysis

    PubMed Central

    Bass, Roger

    2010-01-01

    Zen's challenge for behavior analysis is to explain a repertoire that renders analysis itself meaningless—a result following not from scientific or philosophical arguments but rather from a unique verbal history generated by Zen's methods. Untying Zen's verbal knots suggests how meditation's and koans' effects on verbal behavior contribute to Enlightenment and Samādhi. The concept of stimulus singularity is introduced to account for why, within Zen's frame of reference, its methods can be studied but its primary outcomes (e.g., Samādhi and Satori) cannot be described in any conventional sense. PMID:22479128

  3. Positive Behavior Support and Applied Behavior Analysis

    ERIC Educational Resources Information Center

    Johnston, J. M.; Foxx, R. M.; Jacobson, J. W.; Green, G.; Mulick, J. A.

    2006-01-01

    This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We…

  4. A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Jiang, Yu-Qiang; Zhou, Hua-Min; Liu, Guan

    2014-12-01

    Exposure of aluminum alloy to an elastic loading, during "creep-aging forming" or other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The creep behaviors of 7075 aluminum alloy are investigated by uniaxial tensile creep experiments over wide ranges of temperature and external stress. The results show that the creep behaviors of the studied aluminum alloy strongly depend on the creep temperature, external stress, and creep time. With the increase of creep temperature and external stress, the creep strain increases quickly. In order to overcome the shortcomings of the Bailey-Norton law and θ projection method, a new constitutive model is proposed to describe the variations of creep strain with time for the studied aluminum alloy. In the proposed model, the dependences of creep strain on the creep temperature, external stress, and creep time are well taken into account. A good agreement between the predicted and measured creep strains shows that the established creep constitutive model can give an accurate description of the creep behaviors of 7075 aluminum alloy. Meanwhile, the obtained stress exponent indicates that the creep process is controlled by the dislocation glide, which is verified by the microstructural observations.

  5. Creep Measurement Video Extensometer

    NASA Technical Reports Server (NTRS)

    Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John

    2011-01-01

    Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.

  6. Spall formation in solution mined storage caverns based on a creep and fracture analysis

    SciTech Connect

    MUNSON,DARRELL E.

    2000-02-02

    Because of limited direct observation, understanding of the interior conditions of the massive storage caverns constructed in Gulf Coast salt domes is realizable only through predictions of salt response. Determination of the potential for formation of salt spans, leading to eventual salt falls, is based on salt creep and fracture using the Multimechanism-Deformation Coupled Fracture (MCDF) model. This is a continuum model for creep, coupled to continuum damage evolution. The model has been successfully tested against underground results of damage around several test rooms at the Waste Isolation Pilot Plant (WIPP). Model simulations, here, evaluate observations made in the Strategic Petroleum Reserve (SPR) storage caverns, namely, the accumulation of material on cavern floors and evidence of salt falls. A simulation of a smooth cavern wall indicates damage is maximum at the surface but diminishes monotonically into the salt, which suggests the source of salt accumulation is surface sluffing. If a protuberance occurs on the wall, fracture damage can form beneath the protuberance, which will eventually cause fracture, and lead to a salt fall.

  7. Numerical analysis of thermal creep flow in curved channels for designing a prototype of Knudsen micropump

    NASA Astrophysics Data System (ADS)

    Leontidis, V.; Brandner, J. J.; Baldas, L.; Colin, S.

    2012-05-01

    The possibility to generate a gas flow inside a channel just by imposing a tangential temperature gradient along the walls without the existence of an initial pressure difference is well known. The gas must be under rarefied conditions, meaning that the system must operate between the slip and the free molecular flow regimes, either at low pressure or/and at micro/nano-scale dimensions. This phenomenon is at the basis of the operation principle of Knudsen pumps, which are actually compressors without any moving parts. Nowadays, gas flows in the slip flow regime through microchannels can be modeled using commercial Computational Fluid Dynamics softwares, because in this regime the compressible Navier-Stokes equations with appropriate boundary conditions are still valid. A simulation procedure has been developed for the modeling of thermal creep flow using ANSYS Fluent®. The implementation of the boundary conditions is achieved by developing User Defined Functions (UDFs) by means of C++ routines. The complete first order velocity slip boundary condition, including the thermal creep effects due to the axial temperature gradient and the effect of the wall curvature, and the temperature jump boundary condition are applied. The developed simulation tool is used for the preliminary design of Knudsen micropumps consisting of a sequence of curved and straight channels.

  8. Quantitative analysis of microstructure deformation in creep fenomena of ferritic SA-213 T22 and austenitic SA-213 TP304H material

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Taufik, Ahmad; Gunawan, Agus Yodi; Siregar, Rustam Efendi

    2013-09-01

    The failure of critical component of fossil fired power plant that operated in creep range (high stress, high temperature and in the long term) depends on its microstructure characteristics. Ferritic low carbon steel (2.25Cr-1Mo) and Austenitic stainless alloy (18Cr-8Ni) are used as a boiler tube in the secondary superheater outlet header to deliver steam before entering the turbin. The tube failure is occurred in a form of rupture, resulting trip that disrupts the continuity of the electrical generation. The research in quantification of the microstructure deformation has been done in predicting the remaining life of the tube through interrupted accelerated creep test. For Austenitic Stainless Alloy (18Cr-8Ni), creep test was done in 550°C with the stress 424.5 MPa and for Ferritic Low Carbon Steel (2.25Cr-1Mo) in 570°C with the stress 189 MPa. The interrupted accelerated creep test was done by stopping the observation in condition 60%, 70%, 80% and 90% of remaining life, the creep test fracture was done before. Then the micro hardness test, photo micro, SEM and EDS were obtained from those samples. Refer to ASTM E122, microstructure parameters were calculated. The results indicated that there are a consistency of decreasing their grain diameters, increasing their grain size numbers, micro hardness, and the length of crack or void number per unit area with the decreasing of remaining life. While morphology of grain (stated in parameter α=LV/LH) relatively constant for austenitic. However, for ferritic the change of morphology revealed significantly. Fracture mode propagation of ferritic material is growth with voids transgranular and intergranular crack, and for austenitic material the fracture growth with intergranular creep fracture void and wedge crack. In this research, it was proposed a formulation of mathematical model for creep behavior corresponding their curve fitting resulted for the primary, secondary and tertiary in accelerated creep test. In

  9. Applied Behavior Analysis

    ERIC Educational Resources Information Center

    Szapacs, Cindy

    2006-01-01

    Teaching strategies that work for typically developing children often do not work for those diagnosed with an autism spectrum disorder. However, teaching strategies that work for children with autism do work for typically developing children. In this article, the author explains how the principles and concepts of Applied Behavior Analysis can be…

  10. Application of kinetic theory to the analysis of high-temperature creep rupture of metals under complex stress (review)

    NASA Astrophysics Data System (ADS)

    Lokoshchenko, A. M.

    2012-07-01

    This paper gives an analytical review of the results obtained using the kinetic theory of creep and creep rupture to analyze the creep rupture of metals under complex stress. Special note is made of the outstanding contribution of Soviet scientists L. M. Kachanov and Yu. N. Rabotnov, who introduced the concept of material damage and developed the fundamentals of the kinetic theory. Different versions of this theory are used in studies of Russian and foreign scientists. The possibility of applying the kinetic theory to model the deformation and fracture of metals under creep conditions using scalar, vector, and tensor damage parameters and their combinations is considered.

  11. A Phenomenological Description of Primary Creep in Class M Materials

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Freed, A. D.

    1999-01-01

    Observations of creep microstructures in the primary creep region in class M materials show a remarkable similarity with those formed in the exponential creep regime. As a result, it is proposed that the constitutive creep law for normal primary creep is similar to that for the exponential creep regime. A phenomenological description is discussed to rationalize these microstructural observations in terms of a normalized strain rate vs. stress plot. The implications of this plot in describing different testing procedures, steady-state flow, and on the observed deviations from the universal creep law are discussed. The plot is also extended to explain the observed similarities in the transient creep behavior in pre-strained materials and in stress change experiments.

  12. Invitation to Consumer Behavior Analysis

    ERIC Educational Resources Information Center

    Foxall, Gordon R.

    2010-01-01

    This article presents an introduction to consumer behavior analysis by describing the Behavioral Perspective Model of consumer choice and showing how research has, first, confirmed this framework and, second, opened up behavior analysis and behavioral economics to the study of consumer behavior in natural settings. It concludes with a discussion…

  13. Invitation to Consumer Behavior Analysis

    ERIC Educational Resources Information Center

    Foxall, Gordon R.

    2010-01-01

    This article presents an introduction to consumer behavior analysis by describing the Behavioral Perspective Model of consumer choice and showing how research has, first, confirmed this framework and, second, opened up behavior analysis and behavioral economics to the study of consumer behavior in natural settings. It concludes with a discussion…

  14. Creep substructure formation in sodium chloride single crystals in the power law and exponential creep regimes

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Pharr, G. M.

    1989-01-01

    Creep tests conducted on NaCl single crystals in the temperature range from 373 to 1023 K show that true steady state creep is obtained only above 873 K when the ratio of the applied stress to the shear modulus is less than or equal to 0.0001. Under other stress and temperature conditions, corresponding to both power law and exponential creep, the creep rate decreases monotonically with increasing strain. The transition from power law to exponential creep is shown to be associated with increases in the dislocation density, the cell boundary width, and the aspect ratio of the subgrains along the primary slip planes. The relation between dislocation structure and creep behavior is also assessed.

  15. Analysis of factors responsible for the accelerated creep rupture of 12% Cr martensitic steel weld joints

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. S.; Okhapkin, K. A.; Mikhailov, M. S.; Skutin, V. S.; Zubova, G. E.; Fedotov, B. V.

    2016-06-01

    In the process of the investigation of the heat resistance of a 0.07C-12Cr-Ni-Mo-V-Nb steel of the martensitic-ferritic class, a reduction was revealed in the long-term strength of its welded joints to below the level of the strength of the base metal. To establish the causes for the accelerated failure of the welded joints, an imitation of the thermal cycles was carried out that produce the structure of the heataffected zone using a dilatometer. In the samples with the structure that corresponds to that of the heataffected zone, a local zone of softening was revealed. The investigations of the metal structure using transmission electron microscopy have shown that the reduction in the creep rupture strength was caused by structural changes under the conditions of the thermal cycle of welding upon the staying of the steel in the temperature range between the Ac 1 and Ac 3 points.

  16. Effects of creep damage, shot peening, and case hardening on magnetic Barkhausen noise analysis

    SciTech Connect

    Sipahi, L.B. Iowa State Univ., Ames, IA . Inst. for Physical Research and Technology)

    1994-11-01

    The micromagnetic emissions, commonly known as Barkhausen noise, are very sensitive to variations in the microstructure and sub-surface stress states of magnetic materials. Steel pipelines at power plants often have creep damage due to microstructural changes in their service life. Early detection of this damage will prevent costly failures. There is also an increasing demand to characterize the sub-surface stress states in structural materials such as high strength materials used in landing gear components in the aerospace industry. Shot peening is used to improve the fatigue strength of these components by the introduction of residual compressive stresses to the surface. Because the magnitude of Barkhausen noise varies with the magnitude of compressive stress, these noise measurements can be used for in-situ evaluation of the effectiveness of the shot peening process. Furthermore, surface modification such as case hardened magnetic samples can be easily observed using micromagnetic Barkhausen noise (MBE) to determine further modification needs.

  17. Heat-to-heat variability of irradiation creep and swelling of HT9 irradiated to high neutron fluence at 400-600{degrees}C

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.

    1996-10-01

    Irradiation creep data on ferritic/martensitic steels are difficult and expensive to obtain, and are not available for fusion-relevant neutron spectra and displacement rates. Therefore, an extensive creep data rescue and analysis effort is in progress to characterize irradiation creep of ferritic/martensitic alloys in other reactors and to develop a methodology for applying it to fusion applications. In the current study, four tube sets constructed from three nominally similar heats of HT9 subjected to one of two heat treatments were constructed as helium-pressurized creep tubes and irradiated in FFTF-MOTA at four temperatures between 400 and 600{degrees}C. Each of the four heats exhibited a different stress-free swelling behavior at 400{degrees}C, with the creep rate following the swelling according to the familiar B{sub o} + DS creep law. No stress-free swelling was observed at the other three irradiation temperatures. Using a stress exponent of n = 1.0 as the defining criterion, {open_quotes}classic{close_quotes} irradiation creep was found at all temperatures, but, only over limited stress ranges that decreased with increasing temperature. The creep coefficient B{sub o} is a little lower ({approx}50%) than that observed for austenitic steel, but the swelling-creep coupling coefficient D is comparable to that of austenitic steels. Primary transient creep behavior was also observed at all temperatures except 400{degrees}C, and thermal creep behavior was found to dominate the deformation at high stress levels at 550 and 600{degrees}C.

  18. Seasonal Creep on Longitudinal Valley Fault, Taiwan: Fault Hydrology before and after the 2003 Chengkung Earthquake

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Huang, M. H.; Lee, J. C.; Manga, M.; Mu, C. H.; Burgmann, R.

    2016-12-01

    We present hydrologic, geodetic, and seismic data on the Longitudinal Valley Fault (LVF) in eastern Taiwan- the plate boundary between the Eurasian plate and the Philippine Sea plate. Based on creepmeter data and Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), most creep on the southern LVF (averaging 2 cm/yr) is seasonal with elastic strain building during the autumn/winter and released in creep events during the rainy spring/summer. Results from PSInSAR, GPS, and leveling suggest seasonal creep extends locally to > 200 m depth and we highlight the spatial distribution of this seasonal creep. The seasonality implies a relationship between hydrology (either through pore pressure diffusion or loading) and tectonic deformation. The timing of creep correlates with rain although the interannual variations in creep amplitude do not correlate with interannual changes in well levels or precipitation. This implies a more complicated coupling between hydrology and deformation within the fault zone. To understand the hydrologic process, we use a 2D poroelastic model to track pore fluid pressure changes within the fault zone to understand this seasonal behavior. We then use mud volcanoes and hot springs thermobarometers to further constrain the depth and rate of fluid flow around the Longitudinal Valley. We use these simulations to understand the fault zone hydrology when there are no significant earthquakes. Creep accelerated after the 2003 Mw 6.8 Chengkung Earthquake in SE Taiwan. Correcting for post-seismic afterslip, the amplitude of creep seasonality also increased for the three years after the earthquake suggesting a change in hydrologic properties. We compare changes in well levels and seismic velocity in the shallow crust near the LVF using ambient noise cross-correlation analysis to further understand these changes. The seasonal creep on the LVF and the dense geodetic, seismic, and hydrologic network make this a unique opportunity to probe

  19. Effect of welding on creep damage evolution in P91B steel

    NASA Astrophysics Data System (ADS)

    Baral, J.; Swaminathan, J.; Chakrabarti, D.; Ghosh, R. N.

    2017-07-01

    Study of creep behavior of base metal (without weld) and welded specimens of P91B steel over a range of temperatures (600-650 °C) and stresses (50-180 MPa) showed similar values of minimum creep-rates for both specimens at higher stress regime (>100 MPa) whilst, significantly higher creep rates in the case of welded specimens at lower stress regime. Considering that welded specimen is comprised of two distinct structural regimes, i.e. weld affected zone and base metal, a method has been proposed for estimating the material parameters describing creep behavior of those regimes. Stress-strain distribution across welded specimen predicted from finite element analysis based on material parameters revealed preferential accumulation of stress and creep strain at the interface between weld zone and base metal. This is in-line with the experimental finding that creep rupture preferentially occurs at inter-critical heat affected zone in welded specimens owing to ferrite-martensite structure with coarse Cr23C6 particles.

  20. Measurement of soil creep by inclinometer

    Treesearch

    Robert R. Ziemer

    1977-01-01

    Abstract - Continued inclinometer measurements at borehole sites installed in 1964 in northern California suggest that previously reported rates of soil creep are excessively high. Upon analysis of 35 access casings located in forested and grassland sites, no consistent direction of soil movement could be detected. In addition, no significant rate of soil creep could...

  1. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  2. Chemical controls on fault behavior: weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, David A.

    2013-01-01

    The serpentinized ultramafic rocks found in many plate-tectonic settings commonly are juxtaposed against crustal rocks along faults, and the chemical contrast between the rock types potentially could influence the mechanical behavior of such faults. To investigate this possibility, we conducted triaxial experiments under hydrothermal conditions (200-350°C), shearing serpentinite gouge between forcing blocks of granite or quartzite. In an ultramafic chemical environment, the coefficient of friction, µ, of lizardite and antigorite serpentinite is 0.5-0.6, and µ increases with increasing temperature over the tested range. However, when either lizardite or antigorite serpentinite is sheared against granite or quartzite, strength is reduced to µ ~ 0.3, with the greatest strength reductions at the highest temperatures (temperature weakening) and slowest shearing rates (velocity strengthening). The weakening is attributed to a solution-transfer process that is promoted by the enhanced solubility of serpentine in pore fluids whose chemistry has been modified by interaction with the quartzose wall rocks. The operation of this process will promote aseismic slip (creep) along serpentinite-bearing crustal faults at otherwise seismogenic depths. During short-term experiments serpentine minerals reprecipitate in low-stress areas, whereas in longer experiments new Mg-rich phyllosilicates crystallize in response to metasomatic exchanges across the serpentinite-crustal rock contact. Long-term shear of serpentinite against crustal rocks will cause the metasomatic mineral assemblages, which may include extremely weak minerals such as saponite or talc, to play an increasingly important role in the mechanical behavior of the fault. Our results may explain the distribution of creep on faults in the San Andreas system.

  3. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    SciTech Connect

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  4. Applied Behavior Analysis in Education.

    ERIC Educational Resources Information Center

    Cooper, John O.

    1982-01-01

    Applied behavioral analysis in education is expanding rapidly. This article describes the dimensions of applied behavior analysis and the contributions this technology offers teachers in the area of systematic applications, direct and daily measurement, and experimental methodology. (CJ)

  5. Interfacial Control of Creep Deformation in Ultrafine Lamellar TiAl

    SciTech Connect

    Hsiung, L M

    2002-11-26

    Solute effect on the creep resistance of two-phase lamellar TiAl with an ultrafine microstructure creep-deformed in a low-stress (LS) creep regime [where a linear creep behavior was observed] has been investigated. The resulted deformation substructure and in-situ TEM experiment revealed that interface sliding by the motion of pre-existing interfacial dislocations is the predominant deformation mechanism in LS creep regime. Solute segregation at lamellar interfaces and interfacial precipitation caused by the solute segregation result in a beneficial effect on the creep resistance of ultrafine lamellar TiAl in LS creep regime.

  6. Making Ice Creep in the Classroom

    NASA Astrophysics Data System (ADS)

    Prior, David; Vaughan, Matthew; Banjan, Mathilde; Hamish Bowman, M.; Craw, Lisa; Tooley, Lauren; Wongpan, Pat

    2017-04-01

    Understanding the creep of ice has direct application to the role of ice sheet flow in sea level and climate change and to modelling of icy planets and satellites of the outer solar system. Additionally ice creep can be used as an analogue for the high temperature creep of rocks, most particularly quartzites. We adapted technologies developed for ice creep experiments in the research lab, to build some inexpensive ( EU200) rigs to conduct ice creep experiments in an undergraduate (200 and 300 level) class in rock deformation. The objective was to give the students an experience of laboratory rock deformation experiments so that they would understand better what controls the creep rate of ice and rocks. Students worked in eight groups of 5/6 students. Each group had one deformation rig and temperature control system. Each group conducted two experiments over a 2 week period. The results of all 16 experiments were then shared so that all students could analyse the mechanical data and generate a "flow law" for ice. Additionally thin sections were made of each deformed sample so that some microstructural analysis could be incorporated in the data analysis. Students were able to derive a flow law that showed the relationship of creep rate to both stress and temperature. The flow law matches with those from published research. The class did provide a realistic introduction to laboratory rock deformation experiments and helped students' understanding of what controls the creep of rocks.

  7. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  8. Creep-rupture and fractographic analysis of Stirling engine superalloys tested in air and 15 MPa hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Titran, R. H.

    1986-01-01

    A brief comparative analytical and microstructural evaluation of creep-rupture performance of two iron-base superalloys in air and 15 MPa of hydrogen, is presented. Creep rupture data are presented for the sheet alloy 19-9DL and the cast alloy XF-818, including temperature, initial stress, rupture life, minimum creep rate, time to reach one percent creep strain, and total elongation. In 19-9DL, both rupture life and minimum creep rate are more sharply dependent on small stress changes than in XF-818 in the given environment, and 19-9DL appears to become a more creep-resistant material with increasing Q (apparent activation energy) while the opposite is noted for XF-818. There appears to be no environmental effect on minimum creep rate for 19-9DL, whereas Q becomes less negative for XF-818 for 15 MPa of H2. Multiple cracks leading to rupture are observed on the fracture surfaces, with sheet specimens showing many more cracks close to the fracture surface than cast specimens.

  9. Creep-rupture and fractographic analysis of Stirling engine superalloys tested in air and 15 MPa hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Titran, R. H.

    1986-01-01

    A brief comparative analytical and microstructural evaluation of creep-rupture performance of two iron-base superalloys in air and 15 MPa of hydrogen, is presented. Creep rupture data are presented for the sheet alloy 19-9DL and the cast alloy XF-818, including temperature, initial stress, rupture life, minimum creep rate, time to reach one percent creep strain, and total elongation. In 19-9DL, both rupture life and minimum creep rate are more sharply dependent on small stress changes than in XF-818 in the given environment, and 19-9DL appears to become a more creep-resistant material with increasing Q (apparent activation energy) while the opposite is noted for XF-818. There appears to be no environmental effect on minimum creep rate for 19-9DL, whereas Q becomes less negative for XF-818 for 15 MPa of H2. Multiple cracks leading to rupture are observed on the fracture surfaces, with sheet specimens showing many more cracks close to the fracture surface than cast specimens.

  10. Creep Laboratory manual

    NASA Astrophysics Data System (ADS)

    Osgerby, S.; Loveday, M. S.

    1992-06-01

    A manual for the NPL Creep Laboratory, a collective name given to two testing laboratories, the Uniaxial Creep Laboratory and the Advanced High Temperature Mechanical Testing Laboratory, is presented. The first laboratory is devoted to uniaxial creep testing and houses approximately 50 high sensitivity creep machines including 10 constant stress cam lever machines. The second laboratory houses a low cycle fatigue testing machine of 100 kN capacity driven by a servo-electric actuator, five machines for uniaxial tensile creep testing of engineering ceramics at temperatures up to 1600C, and an electronic creep machine. Details of the operational procedures for carrying out uniaxial creep testing are given. Calibration procedures to be followed in order to comply with the specifications laid down by British standards, and to provide traceability back to the primary standards are described.

  11. Decadal strain along creeping faults in the Needles District, Paradox Basin Utah determined with InSAR Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Kravitz, K.; Furuya, M.; Mueller, K. J.

    2013-12-01

    The Needles District, in Canyonlands National Park in Utah exposes an array of actively creeping normal faults that accommodate gravity-driven extension above a plastically deforming substrate of evaporite deposits. Previous interferogram stacking and InSAR analysis of faults in the Needles District using 35 ERS satellite scenes from 1992 to 2002 showed line-of-sight deformation rates of ~1-2 mm/yr along active normal faults, with a wide strain gradient along the eastern margin of the deforming region. More rapid subsidence of ~2-2.5 mm/yr was also evident south of the main fault array across a broad platform bounded by the Colorado River and a single fault scarp to the south. In this study, time series analysis was performed on SAR scenes from Envisat, PALSAR, and ERS satellites ranging from 1992 to 2010 to expand upon previous results. Both persistent scatterer and small baseline methods were implemented using StaMPS. Preliminary results from Envisat data indicate equally distributed slip rates along the length of faults within the Needles District and very little subsidence in the broad region further southwest identified in previous work. A phase ramp that appears to be present within the initial interferograms creates uncertainty in the current analysis and future work is aimed at removing this artifact. Our new results suggest, however that a clear deformation signal is present along a number of large grabens in the northern part of the region at higher rates of up to 3-4 mm/yr. Little to no creep is evident along the single fault zone that bounds the southern Needles, in spite of the presence of a large and apparently active fault. This includes a segment of this fault that is instrumented by a creepmeter that yields slip rates on the order of ~1mm/yr. Further work using time series analysis and a larger sampling of SAR scenes will be used in an effort to determine why differences exist between previous and current work and to test mechanics-based modeling

  12. Gyro pump wear and deformation analysis in vivo study: creep deformation.

    PubMed

    Nakata, K; Yoshikawa, M; Takano, T; Maeda, T; Nonaka, K; Linneweber, J; Kawahito, S; Glueck, J; Fujisawa, A; Makinouchi, K; Yokokawa, M; Nosé, Y

    2000-08-01

    The Gyro pump has a double pivot bearing system to support its impeller. In this study, the integrity of the bearing system was examined after ex vivo studies. The pumps were implanted into calves and evaluated for different periods as a paracorporeal left ventricular assist device (LVAD). One pump was subjected to a test of 30 days, 1 for 15 days, 4 for 14 days, 1 for 10 days, 1 for 7 days, 2 for 4 days, and 4 for 2 days. One additional pump was subjected to percutaneous cardiopulmonary support (PCPS) condition for 6 days (total pressure head 500 mm Hg with a pump flow rate of 3 L/min). The anticoagulation treatment consisted of a continuous administration of heparin to maintain an achieved clotting time (ACT) of 200-250 s during the LVAD study and 250-300 s during the PCPS study. After the experiment, the pumps were disassembled, and the wear and deformation of male and female bearings were analyzed. There were no dimensional changes on male bearings but there were on female bearings. Wear and deformation of the female bearings were calculated as follows: wear and deformation = (depth of female before pumping) - (depth after pumping). Thirteen assembled Gyro pumps were disassembled to measure the depth of the female bearings before pumping. There was no statistical relationship between the wear and deformation and the motor speed x driving period. From these results, the deformation was not due to wear but to the creep or elastic deformation. This study suggested that the double pivot bearing system of the Gyro pump is highly durable.

  13. Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    NASA Technical Reports Server (NTRS)

    Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac

    2009-01-01

    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.

  14. Magnetic flux creep in HTSC and Anderson-Kim theory (Review Article)

    NASA Astrophysics Data System (ADS)

    Lykov, A. N.

    2014-09-01

    Theoretical results and experimental data on flux creep in high-temperature superconductors (HTSC) are analyzed in this review paper. When reviewing experimental work, the main attention is paid to the most striking experimental results which have had a major impact on the study of flux creep in HTSC. On the other hand, the analysis of theoretical results is focused on the studies which explain the features of flux creep by introducing modifications to the Anderson-Kim (AK) theory, i.e., on the studies that have not received sufficient attention earlier. However, it turned out that the modified AK theory could explain a number of features of flux creep in HTSC: the scaling behavior of current-voltage curves in HTSC, the finite rate of flux creep at ultralow temperatures, the logarithmic dependence of the effective pinning potential on the transport current and its decrease with temperature. The harmonic potential field which is used in this approach makes it possible to solve accurately both the problem of viscous vortex motion and the problem of thermally activated flux creep in this magnetic field. Moreover, the energy distribution of pinning potential and the interaction of vortices with each other are also taken into account in the approach. Thus, the modification of the AK theory consists, essentially, in its refinement and achieving a more realistic approximation.

  15. Moving Forward: Positive Behavior Support and Applied Behavior Analysis

    ERIC Educational Resources Information Center

    Tincani, Matt

    2007-01-01

    A controversy has emerged about the relationship between positive behavior support and applied behavior analysis. Some behavior analysts suggest that positive behavior support and applied behavior analysis are the same (e.g., Carr & Sidener, 2002). Others argue that positive behavior support is harmful to applied behavior analysis (e.g., Johnston,…

  16. CREEP MODELING FOR INJECTION-MOLDED LONG-FIBER THERMOPLASTICS

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2008-06-30

    This paper proposes a model to predict the creep response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the nonlinear viscoelastic behavior described by the Schapery’s model. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber length and orientation distributions were measured and used in the analysis that applies the Eshelby’s equivalent inclusion method, the Mori-Tanaka assumption (termed as the Eshelby-Mori-Tanaka approach) and the fiber orientation averaging technique to compute the overall strain increment resulting from an overall constant applied stress during a given time increment. The creep model for LFTs has been implemented in the ABAQUS finite element code via user-subroutines and has been validated against the experimental creep data obtained for long-glass-fiber/polypropylene specimens. The effects of fiber orientation and length distributions on the composite creep response are determined and discussed.

  17. Positive Behavior Support and Applied Behavior Analysis

    PubMed Central

    Johnston, J.M; Foxx, Richard M; Jacobson, John W; Green, Gina; Mulick, James A

    2006-01-01

    This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We also consider the features of PBS that have facilitated its broad dissemination and how ABA might benefit from emulating certain practices of the PBS movement. PMID:22478452

  18. An experimental and theoretical study of creep in woven polymer composites

    NASA Astrophysics Data System (ADS)

    Govindarajan, S.

    The creep behavior of woven polymer composites has been investigated through both analytical and experimental methods with emphasis on the high temperature creep behavior. Experiments were carried out on composites manufactured through both autoclave (vacuum bag) and compression molding methods while the analysis included consideration of the geometry and constitution which were related to the curing cycle in a previous research. In the experimental study, composites made of epoxy-based and PMR-based composites were manufactured and tested. As these two resins have different operating temperature ranges, the experiments provided valuable information about their resistance to creep at elevated temperatures. The compression-molded PMR15 specimens were manufactured to contain different resin and void contents and were used to provide experimental data on the effects of varying constituent ratios. An automated material testing system along with a strain measurement system was designed and assembled to facilitate the experimental study. The experimental data was later analyzed using theoretical visco-elastic and geometric models. Initially an existing geometric model was used to analyze the creep behavior of the composite laminate. A modified version of this which considered the presence of voids in a Gaussian (random) distribution was developed later to consider the presence of a void-filled polymer matrix. Using the Arrhenius free energy equations, the high temperature behavior of the polymer and fibers were accounted for. Through these models, the material parameters associated with creep and other time dependent phenomena were obtained using inverse simulation on the experimental data. A new tool that extends this modeling to predict the behavior under any random loading was introduced. The modeling has been shown to successfully predict the creep and other visco-elastic behavior in the composite.

  19. Effect of unloading time on interrupted creep in copper

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1994-06-01

    The effect of unloading time on the interrupted creep behavior of polycrystalline copper specimens was investigated over the temperature range 298--773 K. Up to 553 K, cyclic creep acceleration could be explained in terms of deformation and hardening using a dislocation glide model with recovery during unloading being due to dislocation climb. At higher temperatures, recrystallization effects probably influence behavior.

  20. Behavioral contingency analysis.

    PubMed

    Mechner, Francis

    2008-06-01

    This paper presents a formal symbolic language, with its own specialized vocabulary and grammar, for codifying any behavioral contingency, including the complex multiparty contingencies encountered in law, economics, business, public affairs, sociology, education, and psychotherapy. This language specifies the "if, then" and temporal relationships between acts and their consequences for the parties involved. It provides for the notation of the probabilities, magnitudes, positive or negative valences, or time delays of the consequences for the parties, and for the parties that would perceive, misperceive, not perceive, predict, mispredict, or not predict events. The language's fractal-like hierarchical and recursive grammar provides for the flexible combination and permutation of the modifiers of the language's four nouns: acts, consequences, time intervals, and agents of acts; and its four verbs: consequate, prevent, perceive, and predict-thereby giving the language the ability to describe and codify various nuances of such complex contingencies as fraud, betting, blackmail, various types of games, theft, crime and punishment, contracts, family dynamics, racing, competition, mutual deterrence, feuding, bargaining, deception, borrowing, insurance, elections, global warming, tipping for service, vigilance, sexual overtures, decision making, and mistaken identity. Applications to the management of practical situations and techniques for doing so, as well as applications in current behavior analysis research and neuroscience, are discussed.

  1. Concrete creep at transient temperature: constitutive law and mechanism

    SciTech Connect

    Chern, J.C.; Bazant, Z.P.; Marchertas, A.H.

    1985-01-01

    A constitutive law which describes the transient thermal creep of concrete is presented. Moisture and temperature are two major parameters in this constitutive law. Aside from load, creep, cracking, and thermal (shrinkage) strains, stress-induced hygrothermal strains are also included in the analysis. The theory agrees with most types of test data which include basic creep, thermal expansion, shrinkage, swelling, creep at cyclic heating or drying, and creep at heating under compression or bending. Examples are given to demonstrate agreement between the theory and the experimental data. 15 refs., 6 figs.

  2. Analysis of a creeping marls event in the coastal cliffs of Bessin, Basse-Normandie, France

    NASA Astrophysics Data System (ADS)

    Vioget, Alizée; Michoud, Clément; Jaboyedoff, Michel; Maquaire, Olivier; Costa, Stéphane; Davidson, Robert; Derron, Marc-Henri

    2015-04-01

    The cliffs' retreat is a major issue for the management of coastal territories. Two coastal areas in "Calvados" and "Pays de Caux", French Normandy, are studied. The Bessin cliff is about 4.3 km long and lies between the World War II artillery batteries of Longues-sur-Mer and Arromanches-les-Bains. On the coastline, the cliff's height varies between 10 and 75 meters above sea level. The site's lithology is mainly composed by two formations: the Bessin limestones lie on top of the Port marls, which act as an aquitard. More or less important water outflows are therefore observed at the contact between the marls and the limestone. For this communication, we aim to focus on a complex landslide that happened in May 2013 near Cape Manvieux, estimating volumes and modelling the landslide kinematics. For that purpose, some field observations and measurement have been made in order to make a realistic profile and to understand the steps which lead to this 27 m high and 110 m wide event. In addition, a terrestrial LiDAR (Optech Ilris3D) acquisition of the instability was performed in July 2013 and is compared with the Litto3D (the continued DEM over land and see) acquired in 2011 by the IGN. This comparison shows a maximum cliffs' retreat of about 27 m and 30'000 m3 and a deposit accumulation of about 8 m height. In addition, a limestone rock column of 2'000 m3 and 18 m height within the toppled deposits could still collapse in a short time. Up to now, these site-specific investigations, set in the context of instabilities within the entire study area, let us suppose that the current state of the instability was created by multiple successive events. The landslide could hence be caused by a complex mix of creeping marls conditioned by its water content and pressure induced by overlying formations and toppling of limestone destabilised by the formation of back subvertical crack due to limestone exhumation debuttressing.

  3. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect

    Guerrero, H.; Restivo, M.

    2011-08-01

    concrete mixture that did not employ humidity sensors and the admixtures used in this program. Yuan and Wan tried to predict the shrinkage strains and stresses in the Kim and Lee experiment, but did not include a creep analysis. Grasley and Lange conducted full restraint load tests on a concrete prism instrumented with humidity sensors over a 7 day curing period. The hypothetical case of full-scale placement of the Cap Concrete was also analyzed using the developed analytical methods. The calculation performed in this report is for scoping purposes only.

  4. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    SciTech Connect

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng; Alankar, Alankar; Subramanian, Gopinath; Stanek, Christopher

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. CASL has endeavored to improve upon this approach by incorporating a microstructurally-based, atomistically-informed, zirconium alloy mechanical deformation analysis capability into the BISON-CASL engineering scale fuel performance code. Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tome´ [2], has been coupled with BISON-CASL to represent the mechanistic material processes controlling the deformation behavior of the cladding. A critical component of VPSC is the representation of the crystallographic orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON-CASL and provides initial results utilizing the coupled functionality.

  5. Creep properties of Sn-Ag solder joints containing intermetallic particles

    NASA Astrophysics Data System (ADS)

    Choi, S.; Lee, J. G.; Guo, F.; Bieler, T. R.; Subramanian, K. N.; Lucas, J. P.

    2001-06-01

    The creep behavior of the eutectic tin-silver joints and tin-silver composite solder joints containing 20 vol.% of Cu6Sn5, Ni3Sn4, and FeSn2 intermetallic reinforcements introduced by in-situ methods was investigated. These creep tests were carried out using single shear lap solder joints at room temperature, 85°C, and 125°C. The creep resistance was similar in magnitude for all alloys, and with increasing temperature, the stressexponents decreased in a manner consistent with power-law breakdown behavior. The FeSn2 intermetallic reinforced composite solder was found to be the most creep-resistant alloy at room temperature. Creep failure was observed to occur within the solder matrix in all these solder joints. Although a detailed analysis of the processes involved was difficult because of smearing of the features in the fracture surface, there were indications of grain-boundary separation, ductile fracture, and interfacial separation.

  6. Nonlinear creep damage constitutive model for soft rocks

    NASA Astrophysics Data System (ADS)

    Liu, H. Z.; Xie, H. Q.; He, J. D.; Xiao, M. L.; Zhuo, L.

    2017-02-01

    In some existing nonlinear creep damage models, it may be less rigorous to directly introduce a damage variable into the creep equation when the damage variable of the viscous component is a function of time or strain. In this paper, we adopt the Kachanov creep damage rate and introduce a damage variable into a rheological differential constitutive equation to derive an analytical integral solution for the creep damage equation of the Bingham model. We also propose a new nonlinear viscous component which reflects nonlinear properties related to the axial stress of soft rock in the steady-state creep stage. Furthermore, we build an improved Nishihara model by using this new component in series with the correctional Nishihara damage model that describes the accelerating creep, and deduce the rheological constitutive relation of the improved model. Based on superposition principle, we obtain the damage creep equation for conditions of both uniaxial and triaxial compression stress, and study the method for determining the model parameters. Finally, this paper presents the laboratory test results performed on mica-quartz schist in parallel with, or vertical to the schistosity direction, and applies the improved Nishihara model to the parameter identification of mica-quartz schist. Using a comparative analysis with test data, results show that the improved model has a superior ability to reflect the creep properties of soft rock in the decelerating creep stage, the steady-state creep stage, and particularly within the accelerating creep stage, in comparison with the traditional Nishihara model.

  7. Behavior analysis and linguistic productivity

    PubMed Central

    Malott, Richard W.

    2003-01-01

    The greatest intellectual challenge to the field of behavior analysis may be understanding linguistic productivity (e.g., being able to correctly say and understand novel sentences). One of the main issues concerning linguistic productivity is whether behavioral productivity is, itself, a fundamental behavioral process, as claimed by the proponents of relational frame theory, or whether we can understand linguistic productivity in terms of more fundamental behavioral principles. PMID:22477252

  8. Lower head creep rupture failure analysis associated with alternative accident sequences of the Three Mile Island Unit 2

    SciTech Connect

    Sang Lung, Chan

    2004-07-01

    The objective of this lower head creep rupture analysis is to assess the current version of MELCOR 1.8.5-RG against SCDAP/RELAP5 MOD 3.3kz. The purpose of this assessment is to investigate the current MELCOR in-vessel core damage progression phenomena including the model for the formation of a molten pool. The model for stratified molten pool natural heat transfer will be included in the next MELCOR release. Presently, MELCOR excludes the gap heat-transfer model for the cooling associated with the narrow gap between the debris and the lower head vessel wall. All these phenomenological models are already treated in SCDAP/RELAP5 using the COUPLE code to model the heat transfer of the relocated debris with the lower head based on a two-dimensional finite-element-method. The assessment should determine if current MELCOR capabilities adequately cover core degradation phenomena appropriate for the consolidated MELCOR code. Inclusion of these features should bring MELCOR much closer to a state of parity with SCDAP/RELAP5 and is a currently underway element in the MELCOR code consolidation effort. This assessment deals with the following analysis of the Three Mile Island Unit 2 (TMI-2) alternative accident sequences. The TMI-2 alternative accident sequence-1 includes the continuation of the base case of the TMI-2 accident with the Reactor Coolant Pumps (RCP) tripped, and the High Pressure Injection System (HPIS) throttled after approximately 6000 s accident time, while in the TMI-2 alternative accident sequence-2, the reactor coolant pumps is tripped after 6000 s and the HPIS is activated after 12,012 s. The lower head temperature distributions calculated with SCDAP/RELAP5 are visualized and animated with open source visualization freeware 'OpenDX'. (author)

  9. Thermomechanical behavior of plasma-sprayed ZrO2-Y2O3 coatings influenced by plasticity, creep, and oxidation

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Chung, B. T. F.; Mcdonald, Glen E.; Hendricks, Robert C.

    1987-01-01

    Thermocycling of ceramic-coated turbomachine components produces high thermomechanical stresses that are mitigated by plasticity and creep but aggravated by oxidation, with residual stresses exacerbated by all three. These residual stresses, coupled with the thermocyclic loading, lead to high compressive stresses that cause the coating to spall. A ceramic-coated gas path seal is modeled with consideration given to creep, plasticity, and oxidation. The resulting stresses and possible failure modes are discussed.

  10. Thermomechanical behavior of plasma-sprayed ZrO2-Y2O3 coatings influenced by plasticity, creep and oxidation

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Chung, B. T. F.; Mcdonald, Glen E.; Hendricks, Robert C.

    1987-01-01

    Thermocycling of ceramic-coated turbomachine components produces high thermomechanical stresses that are mitigated by plasticity and creep but aggravated by oxidation, with residual stresses exacerbated by all three. These residual stresses, coupled with the thermocyclic loading, lead to high compressive stresses that cause the coating to spall. A ceramic-coated gas path seal is modeled with consideration given to creep, plasticity, and oxidation. The resulting stresses and possible failure modes are discussed.

  11. Creep and shrinkage effects on integral abutment bridges

    NASA Astrophysics Data System (ADS)

    Munuswamy, Sivakumar

    Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the

  12. Pure climb creep mechanism drives flow in Earth's lower mantle.

    PubMed

    Boioli, Francesca; Carrez, Philippe; Cordier, Patrick; Devincre, Benoit; Gouriet, Karine; Hirel, Pierre; Kraych, Antoine; Ritterbex, Sebastian

    2017-03-01

    At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance to plastic shear exhibited by ringwoodite and bridgmanite on creep mechanisms under mantle conditions. To evaluate the consequences of this effect, we model dislocation creep by dislocation dynamics. The calculation yields to an original dominant creep behavior for lower mantle silicates where strain is produced by dislocation climb, which is very different from what can be activated under high stresses under laboratory conditions. This mechanism, named pure climb creep, is grain-size-insensitive and produces no crystal preferred orientation. In comparison to the previous considered diffusion creep mechanism, it is also a more efficient strain-producing mechanism for grain sizes larger than ca. 0.1 mm. The specificities of pure climb creep well match the seismic anisotropy observed of Earth's lower mantle.

  13. Creep rupture behavior due to molybdenum rich M{sub 6}C carbide in 1.0Cr-1.0Mo-0.25V bainitic steel weldment

    SciTech Connect

    Oh, Y.K.; Kim, G.S.; Indacochea, J.E.

    1999-06-04

    Some reports show that Cr-Mo-V steel structures fabricated by welding has a high percent of failures in the microstructurally altered and inhomogeneous heat affected zone (HAZ). The failure usually takes place either at the coarse grain HAZ (CGHAZ) or intercritical HAZ (ICHAZ). Failure at creep condition is related to either cracking at grain boundary triple junctions or the formation of cavities (or voids) on grain boundaries that are approximately normal to the applied stress. Cavities are normally formed by grain boundary sliding causing stress concentrations at precipitates in the grain boundaries. Cavities will then develop at the precipitates whenever plastic flow or diffusion is not fast enough to prevent it. The precipitates that provide cavity nucleation sites are mostly sulfides and carbides. The carbides that provide cavity sites are usually M{sub 23}C{sub 6} and M{sub 6}C. Although considerable researchers have been carried out in the carbides that provide cavitation, the mechanism governs creep behavior during welding remains uncertain. Therefore, the objective of this study is to correlate carbide morphology and its effect on creep rupture behavior in 1.0 Cr-1.0Mo-0.25V bainitic steel weldment.

  14. Creep-Fatigue Crack Growth Behavior of Pb-Containing and Pb-Free Solders at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Fakpan, Kittichai; Otsuka, Yuichi; Mutoh, Yoshiharu; Inoue, Shunsuke; Nagata, Kohsoku; Kodani, Kazuya

    2012-09-01

    Fatigue crack growth tests of lead-containing (Sn-37Pb) and lead-free (Sn-3.0Ag-0.5Cu) solders were conducted at frequencies ranging from 0.1 Hz to 10 Hz at stress ratio of 0.1, at room temperature and at 70°C. The J-integral range (Δ J) and the modified J-integral ( C *) were used in assessing the cycle-dependent and time-dependent crack growth behavior for both solders. The experimental results showed that the crack growth behavior of both solders at the lower frequency and higher temperature was predominantly time dependent, whereas the crack growth behavior of both solders at the higher frequency and lower temperature was predominantly cycle dependent, with the transition in fatigue crack growth behavior from cycle dependent to time dependent expressed as f + 6500exp(1/ T) = 6520. In both the cycle-dependent and time-dependent regions, the crack growth resistance of the lead-free solder was higher than that of lead-containing solder. Fracture surface observations showed that, as the frequency decreased and/or the temperature increased, the fracture path changed from transgranular to intergranular for Sn-37Pb solder, and from transgranular to mixed transgranular-intergranular for Sn-3.0Ag-0.5Cu solder.

  15. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    NASA Astrophysics Data System (ADS)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  16. Algorithms for elasto-plastic-creep postbuckling

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1984-01-01

    This paper considers the development of an improved constrained time stepping scheme which can efficiently and stably handle the pre-post-buckling behavior of general structure subject to high temperature environments. Due to the generality of the scheme, the combined influence of elastic-plastic behavior can be handled in addition to time dependent creep effects. This includes structural problems exhibiting indefinite tangent properties. To illustrate the capability of the procedure, several benchmark problems employing finite element analyses are presented. These demonstrate the numerical efficiency and stability of the scheme. Additionally, the potential influence of complex creep histories on the buckling characteristics is considered.

  17. Algorithms for elasto-plastic-creep postbuckling

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1984-01-01

    This paper considers the development of an improved constrained time stepping scheme which can efficiently and stably handle the pre-post-buckling behavior of general structure subject to high temperature environments. Due to the generality of the scheme, the combined influence of elastic-plastic behavior can be handled in addition to time dependent creep effects. This includes structural problems exhibiting indefinite tangent properties. To illustrate the capability of the procedure, several benchmark problems employing finite element analyses are presented. These demonstrate the numerical efficiency and stability of the scheme. Additionally, the potential influence of complex creep histories on the buckling characteristics is considered.

  18. Creep-Fatigue Failure Diagnosis

    PubMed Central

    Holdsworth, Stuart

    2015-01-01

    Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676

  19. Creep-Fatigue Failure Diagnosis.

    PubMed

    Holdsworth, Stuart

    2015-11-16

    Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis.

  20. Slow creep in soft granular packings.

    PubMed

    Srivastava, Ishan; Fisher, Timothy S

    2017-05-14

    Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.

  1. Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

    SciTech Connect

    K. Linga Murty

    2008-08-11

    Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep

  2. Women in applied behavior analysis

    PubMed Central

    McSweeney, Frances K.; Donahoe, Patricia; Swindell, Samantha

    2000-01-01

    The status of women in applied behavior analysis was examined by comparing the participation of women in the Journal of Applied Behavior Analysis (JABA) to their participation in three similar journals. For all journals, the percentage of articles with at least one female author, the percentage of authors who are female, and the percentage of articles with a female first author increased from 1978 to 1997. Participation by women in JABA was equal to or greater than participation by women in the comparison journals. However, women appeared as authors on papers in special sections of Behavior Modification substantially more often when the editor was female than when the editor was male. In addition, female membership on the editorial boards of JABA, Behavior Modification, and Behaviour Research and Therapy failed to increase from 1978 to 1997. We conclude that a “glass ceiling” reduces the participation of women at the highest levels of applied behavior analysis and related fields. PMID:22478351

  3. Orientation and Alloying Effects on Creep Strength in Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Smith, Timothy Michael, Jr.

    The creep deformation mechanisms present during creep at intermediate stress and temperatures in ME3 were further investigated using diffraction contrast imaging. Both conventional transmission electron microscopy and scanning transmission electron microscopy were utilized. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815ºC, and at stresses ranging from 274-724MPa. Both polycrystalline and single crystal creep tests were conducted. The single crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760°C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsic stacking faults (SESFs). In contrast, these faulting modes occurred much less frequently during creep at 815ºC under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behavior and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760°C and above, where the secondary gamma' coarsened and the tertiary gamma' precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasizing the influence of stress and temperature on the underlying creep mechanisms. Next, the effects of varying crystal orientation and composition on active deformation modes are explored for two different, commercially used Ni-base disk alloys, ME3 and ME501. Understanding these effects will allow for improved predictive deformation modeling and consequently faster advancements in Ni-base alloy development. In order to investigate these effects, compression creep tests were conducted on [001] and [110] oriented single crystal specimens of the disk alloys ME3 and ME501, at different stress/temperature regimes. At 760

  4. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel

    PubMed Central

    Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Krscanski, Sanjin; Brcic, Marino; Li, Qiang; Niu, Jitai

    2016-01-01

    The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed. PMID:28773424

  5. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.

    PubMed

    Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Krscanski, Sanjin; Brcic, Marino; Li, Qiang; Niu, Jitai

    2016-04-20

    The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed.

  6. Damage Assessment of Creep Tested and Thermally Aged Udimet 520 Using Acousto-Ultrasonics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Kautz, Harold E.; Cao, Wei

    2001-01-01

    Due to elevated temperatures and excessive stresses, turbine components may experience creep behavior. As a result, it is desirable to monitor and assess the current condition of such components. This study employed the Acousto-Ultrasonics (AU) method in an effort to monitor the state of the material at various percentages of used up creep life in the nickel base alloy, Udimet 520. A stepped specimen (i.e., varying cross sectional area) was employed which allowed for a postmortem nondestructive evaluation (NDE) analysis of the various levels of used up life. The overall objectives here were two fold: First, a user friendly, graphical interface AU system was developed, and second the new AU system was applied as an NDE tool to assess distributed damage resulting from creep. The experimental results demonstrated that the AU method shows promise as an NDE tool capable of detecting material changes as a function of used up creep life. Furthermore, the changes in the AU parameters were mainly attributed to the case of combined load and elevated temperature (i.e., creep) and not simply because of a timed exposure at elevated temperature (i.e., heat treatment or thermal aging).

  7. Irradiation Induced Creep of Graphite

    SciTech Connect

    Burchell, Timothy D; Murty, Prof K.L.; Eapen, Dr. Jacob

    2010-01-01

    The current status of graphite irradiation induced creep strain prediction is reviewed and the major creep models are described. The ability of the models to quantitatively predict the irradiation induced creep strain of graphite is reported. Potential mechanisms of in-crystal creep are reviewed as are mechanisms of pore generation under stress. The case for further experimental work is made and the need for improved creep models across multi-scales is highlighted.

  8. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    SciTech Connect

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports.

  9. Dione Creeping Canyons

    NASA Image and Video Library

    2006-10-23

    Bright fractures creep across the surface of icy Dione. This extensive canyon system is centered on a region of terrain that is significantly darker that the rest of the moon. Part of the darker terrain is visible at right

  10. Numerical simulations of creep in ductile-phase toughened intermetallic matrix composites

    SciTech Connect

    Henshall, G.A.; Strum, M.J.

    1994-04-07

    Analytical and finite element method (FEM) simulations of creep in idealized ductile-phase toughened intermetallic composites are described. For these strong-matrix materials, the two types of analyses predict similar time-independent composite creep rates if each phase individually exhibits only steady-state creep. The composite creep rate becomes increasingly higher than that of the monolithic intermetallic as the stress exponent of the intermetallic and the volume fraction and creep rate of the ductile phase increase. FEM analysis shows that the shape of the ductile phase does not affect the creep rate but may affect the internal stress and strain distributions, and thus damage accumulation rates. If primary creep occurs in one or both of the individual phases, the composite also exhibits primary creep. In this case, there can be significant deviations in the creep curves computed by the analytical and FEM models. The model predictions are compared with data for the Nb5Si3/Nb system.

  11. Improved Creep Behavior of a High Nitrogen Nb-Stabilized 15Cr-15Ni Austenitic Stainless Steel Strengthened by Multiple Nanoprecipitates

    NASA Astrophysics Data System (ADS)

    Ha, Vu The; Jung, Woo Sang; Suh, Jin Yoo

    2011-11-01

    Austenitic stainless steels are expected to be a major material for boiler tubes and steam turbines in future ultra-supercritical (USC) fossil power plants. It is of great interest to maximize the creep strength of the materials without increasing the cost. Precipitation strengthening was found to be the best and cheapest way for increasing the creep strength of such steels. This study is concerned with improving creep properties of a high nitrogen Nb-stabilized 15Cr-15Ni austenitic alloy through introducing a high number of nanosized particles into the austenitic matrix. The addition of around 4 wt pct Mn and 0.236 wt pct N into the 15Cr-15Ni-0.46Si-0.7Nb-1.25Mo-3Cu-Al-B-C matrix in combination with a special multicycled aging-quenching heat treatment resulted in the fine dispersion of abundant quantities of thermally stable (Nb,Cr,Fe)(C,N) precipitates with sizes of 10 to 20 nm. Apart from the carbonitrides, it was found that a high number of coherent copper precipitates with size 40 to 60 nm exist in the microstructure. Results of creep tests at 973 K and 1023 K (700 °C and 750 °C) showed that the creep properties of the investigated steel are superior compared to that of the commercial NF709 alloy. The improved creep properties are attributed to the improved morphology and thermal stability of the carbonitrides as well as to the presence of the coherent copper precipitates inside the austenitic matrix.

  12. Compaction creep of sands due to time-dependent grain failure: Effects of chemical environment, applied stress, and grain size

    NASA Astrophysics Data System (ADS)

    Brzesowsky, R. H.; Hangx, S. J. T.; Brantut, N.; Spiers, C. J.

    2014-10-01

    Time-dependent brittle creep plays a role in controlling compaction of sands and sandstones under upper crustal conditions, influencing phenomena such as production-induced reservoir compaction, surface subsidence, and induced seismicity. Brittle creep also plays a role in determining the mechanical behavior of gouge-rich faults. We performed uniaxial creep experiments on sand to investigate the effects of chemical environment (dry versus solution flooded), grain size (d = 196-378 µm), and applied effective stress (σa up to 30 MPa), at room temperature conditions favoring grain-scale brittle processes. Creep measurements were complemented with acoustic emission (AE) detection and microstructural analysis to characterize the main creep mechanism. Wet samples showed much higher creep strains than dry-tested samples. AE event counts showed a direct relation between grain failure and creep strain, with higher AE rates occurring in the wet samples. Therefore, we inferred that time-dependent deformation was dominated by subcritical crack growth, resulting in grain failure accompanied by intergranular sliding rearrangements, and that crack growth in the presence of chemically active fluids was controlled by stress corrosion. The sensitivity of the compaction rate of the sands to d and σa can be expressed as ɛ˙∝diσaj where i ≈ 6 and j ≈ 21 under dry conditions and i ≈ 9 and j ≈ 15 under wet conditions. Our results were compared to a simple model based on Hertzian contact theory, linear elastic fracture mechanics, and subcritical crack growth. This model showed agreement between the observed stress and grain size sensitivities of creep, within a factor of 2.

  13. Creep behavior of modified 9% CrMo cast steel for application in coal-fired steam power plants. Final report

    SciTech Connect

    Mayer, K.H.; Koenig, H.

    1995-02-01

    Laboratory creep studies of modified 9% CrMo cast ferritic steel indicate that its performance will be very similar to that of the popular ASME P-91 9% Cr wrought ferritic steel. This report includes an investigation of the physical parameters and properties of modified 9% CrMo cast ferritic steel, including castability and weldability; thermal, low-cycle fatigue, corrosion, and creep strength; and long-term toughness in tests of up to 50,000 hours on large components and specimens.

  14. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  15. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  16. Creep behaviour of Cu-30 percent Zn at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1991-01-01

    The present, intermediate-temperature (573-823 K) range investigation of creep properties for single-phase Cu-30 percent Zn alpha-brass observed inverse, linear, and sigmoidal primary-creep transients above 573 K under stresses that yield minimum creep rates in the 10 to the -7th to 2 x 10 to the -4th range; normal primary creep occurred in all other conditions. In conjunction with a review of the pertinent literature, a detailed analysis of these data suggests that no clearly defined, classes M-to-A-to-M transition exists in this alloy notwithstanding the presence of both classes' characteristics under nominally similar stresses and temperatures.

  17. Creep behaviour of Cu-30 percent Zn at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1991-01-01

    The present, intermediate-temperature (573-823 K) range investigation of creep properties for single-phase Cu-30 percent Zn alpha-brass observed inverse, linear, and sigmoidal primary-creep transients above 573 K under stresses that yield minimum creep rates in the 10 to the -7th to 2 x 10 to the -4th range; normal primary creep occurred in all other conditions. In conjunction with a review of the pertinent literature, a detailed analysis of these data suggests that no clearly defined, classes M-to-A-to-M transition exists in this alloy notwithstanding the presence of both classes' characteristics under nominally similar stresses and temperatures.

  18. The role of cobalt on the creep of Waspaloy

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  19. Tensile creep of single phase gamma TiAl

    SciTech Connect

    Hayes, R.W.; Martin, P.L.

    1995-12-31

    The uniaxial tension creep behavior of two single phase gamma TiAl alloys having the nominal compositions Ti-53Al-1Nb and Ti-51Al-2Mn (at. pct.) was studied over the temperature range 760 C to 900 C at initial applied stress levels ranging from 20.6 MPa to 345 MPa. For the Ti-53Al-1Nb alloy, two regions of creep deformation identified as either dislocation motion controlled or diffusional were found depending on the temperature and stress level. For the Ti-51Al-2Mn alloy only power law creep was observed. The tertiary creep behavior is also examined for each of these gamma TiAl alloys. Tertiary creep is evaluated using a two state-variable approach to describe the damage processes leading to an acceleration of strain rate in tertiary creep. Metallographic evaluation of failed creep specimens revealed the presence of dynamic recrystallization in the Ti-51Al-2Mn alloy. No evidence of dynamic recrystallization was found under any conditions for the Ti-53Al-1Nb alloy. These observations are related to the differences in composition and the compositional dependence of the fundamental deformation processes occurring within the minimum strain rate and tertiary creep regimens.

  20. Hot-isostatic pressing of U-10Zr by grain boundary diffusion and creep cavitation. Part 2: Theory and data analysis

    SciTech Connect

    McDeavitt, S.M.; Solomon, A.A.

    1997-08-01

    Uranium-10 wt % zirconium (U-10Zr) is a fuel alloy that has been used in the Experimental Breeder Reactor-II (EBR-II). The high burnup that was desired in this fuel system made high demands on the mechanical compatibility between fuel and cladding both during normal operation and during safety-related transients when rapid differential expansion may cause high stresses. In general, this mechanical stress can be reduced by cladding deformation if the cladding is sufficiently ductile at high burnup, and/or by fuel hot-pressing. Fortunately, the fuel is very porous when it contacts the cladding, but this porosity gradually fills with solid fission products (primarily lanthanides) that may limit the fuel`s compressibility. If the porosity remains open, gaseous fission products are released and the porous fuel creeps rather than hot-presses under contact stresses. If the pores are closed by sintering or by solid fission products, the porous fuel will hot-isostatic press (HIP), as represented by the models to be discussed. HIP experiments performed at 700 C on U-10Zr samples with different impurity phase contents (Part 1) are analyzed in terms of several creep cavitation models. The coupled diffusion/creep cavitation model of Chen and Argon shows good quantitative agreement with measured HIP rates for hydride- and metal-derived U-10Zr materials, assuming that pores are uniformly distributed on grain boundaries and are of modal size, and that far-field strain rates are negligible. The analysis predicts, for the first time, an asymmetry between HIP and swelling at identical pressure-induced driving forces due to differences in grain boundary stresses. The differences in compressibility of hydride- and metal-derived U-10Zr can be partially explained by differences in pore size and spacing. The relevance of the experiments to description of in-reactor densification under external pressure or contact stress due to fuel/cladding mechanical interaction is discussed.

  1. Surveying Professionals' Views of Positive Behavior Support and Behavior Analysis

    ERIC Educational Resources Information Center

    Filter, Kevin J.; Tincani, Matt; Fung, Daniel

    2009-01-01

    Positive behavior support (PBS) is an empirically driven approach to improve quality of life influenced by the science of behavior analysis. Recent discussions have evolved around PBS, behavior analysis, and their relationship within education and human services fields. To date, few data have been offered to guide behaviorally oriented…

  2. Surveying Professionals' Views of Positive Behavior Support and Behavior Analysis

    ERIC Educational Resources Information Center

    Filter, Kevin J.; Tincani, Matt; Fung, Daniel

    2009-01-01

    Positive behavior support (PBS) is an empirically driven approach to improve quality of life influenced by the science of behavior analysis. Recent discussions have evolved around PBS, behavior analysis, and their relationship within education and human services fields. To date, few data have been offered to guide behaviorally oriented…

  3. Fluctuations and Scaling in Creep Deformation

    NASA Astrophysics Data System (ADS)

    Rosti, Jari; Koivisto, Juha; Laurson, Lasse; Alava, Mikko J.

    2010-09-01

    The spatial fluctuations of deformation are studied in the creep in Andrade’s power law and the logarithmic phases, using paper samples. Measurements by the digital image correlation technique show that the relative strength of the strain rate fluctuations increases with time, in both creep regimes. In the Andrade creep phase characterized by a power-law decay of the strain rate γt˜t-θ, with θ≈0.7, the fluctuations obey Δγt˜t-γ, with γ≈0.5. The local deformation follows a data collapse appropriate for a phase transition. Similar behavior is found in a crystal plasticity model, with a jamming or yielding transition.

  4. Creep deformation characteristics of ductile discontinuous fiber reinforced composites

    SciTech Connect

    Biner, S.B.

    1993-10-01

    Role of material parameters and geometric parameters of ductile reinforcing phase on the creep deformation behavior of 20% discontinuously reinforced composite was numerically investigated including debonding and pull-out mechanisms. Results indicate that for rigidly bonded interfaces, the creep rate of the composite is not significantly influenced by the material properties and geometric parameters of the ductile reinforcing phase due to development of large hydrostatic stress and constrained deformation in the reinforcement. For debonding interfaces, the geometric parameters of the reinforcing phase are important; however, event with very weak interfacial behavior low composite creep rates can be achieved by suitable selection of the geometric parameters of the ductile reinforcing phase.

  5. Compaction-induced elevated pore pressure and creep pulsing in California faults

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, M.; Shirzaei, M.

    2016-12-01

    The creeping segment of San Andreas Fault (CSAF) is recognized as a weak fault, namely, cannot sustain large earthquake stress drops. Moreover, variable creep rate constrained using kinematic models of geodetic and seismic data implies that the fault frictional strength is both spatially and temporally variable. Intrinsic low friction of fault zone material and locally elevated pore pressure due to ascend of mantle-derived fluid are proposed as possible justifications for CSAF weakness. However, lack of plausible explanation for creep pulsing observed at seismogenic zone in both hypotheses, calls for rethinking of the underlying mechanisms and processes governing the CSAF behavior. Here we provide evidence for the role of pore pressure variation in changing the fault frictional strength, not primarily due to mantle fluids. Using a rate- and state-dependent friction model, we estimate fault frictional properties between 2003 and 2011, and link their apparent temporal variations to undulation of effective normal stress. Since there is no evidence that tectonic stressing rate varies during this study period, we conclude that the variation of effective normal stress is a result of pore pressure change in the fault zone. We show that temporally variable pore pressure and its inferred spatial heterogeneity correlate perfectly with the variation of surface creep rate obtained using InSAR observations. Furthermore, our analysis of microseismicity suggests that the temporal variation of Gutenberg-Richter b-value and released seismic moment has respectively positive and negative correlation with the pore pressure variations. Our results highlight the role of 3D seal-bounded compartments formed through the compaction of intergranular pore spaces, leading to spatially heterogeneous elevated pore pressure and initiation of accelerated creep events. Frictional dilation due to creep acceleration, on the other hand, causes redistribution and reduction of the pore pressure

  6. Creep of trabecular bone from the human proximal tibia.

    PubMed

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L; McKittrick, Joanna

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Creep of trabecular bone from the human proximal tibia

    PubMed Central

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L.; McKittrick, Joanna

    2014-01-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for two hours and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37°C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. PMID:24857486

  8. Preparation of creep data sheet: Material strength data sheet

    NASA Astrophysics Data System (ADS)

    Tanaka, Chiaki; Yagi, Koichi; Ikeda, Sadao; Ito, Hiroshi; Baba, Eiji; Shimizu, Masaru; Tanaka, Hideo; Yokokawa, Kenji; Nagai, Hideo; Kanamaru, Osamu

    1993-01-01

    Continuing from the first and the second term, creep rupture data sheet on metals for high temperatures was continued targeting for 100,000 hours. Creep strain data sheet for elastic analysis, conceived in the second term was carried out this term. Additionally, research was planned into the Cr group steel, which is increasingly in demand for high temperature equipment, and material sampling and testing commenced accordingly. In 1986, the creep data sheet (B Version) was published for the first time, including the creep rupture data exceeding final target of 100,000 hours. Since then, B versions were published on 12 different materials this term. There has been much research using the data from creep data sheets and test samples, including creep strain characteristics, stress relaxation characteristics, creep rupture characteristics and life estimate, with substantial results. In the creep test technology aiming for highly reliable data, deterioration factors of thermocouples were investigated. The results from creep data sheets and related research contributed to improvement in strength reliability of metals at high temperatures.

  9. Creep behaviour of modified 9Cr-1Mo ferritic steel

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Isaac Samuel, E.

    2011-05-01

    Creep deformation and fracture behaviour of indigenously developed modified 9Cr-1Mo steel for steam generator (SG) tube application has been examined at 823, 848 and 873 K. Creep tests were performed on flat creep specimens machined from normalised and tempered SG tubes at stresses ranging from 125 to 275 MPa. The stress dependence of minimum creep rate obeyed Norton's power law. Similarly, the rupture life dependence on stress obeyed a power law. The fracture mode remained transgranular at all test conditions examined. The analysis of creep data indicated that the steel obey Monkman-Grant and modified Monkman-Grant relationships and display high creep damage tolerance factor. The tertiary creep was examined in terms of the variations of time to onset of tertiary creep with rupture life, and a recently proposed concept of time to reach Monkman-Grant ductility, and its relationship with rupture life that depends only on damage tolerance factor. SG tube steel exhibited creep-rupture strength comparable to those reported in literature and specified in the nuclear design code RCC-MR.

  10. Relation between creep compliance and elastic modulus in organic-rich shales observed through laboratory experiments.

    NASA Astrophysics Data System (ADS)

    Sone, Hiroki; Zoback, Mark

    2013-04-01

    We studied the ductile creep behavior of organic-rich shales from shale gas reservoirs in North America through laboratory triaxial experiments to better understand controls on the physical behavior of these rocks over time and the effect of creep on other rock properties. Laboratory experiments conducted at room-temperature conditions show that creep deformation observed at in-situ differential stress conditions is approximately linear with the applied differential pressure. The creep behavior is also anisotropic such that creep occurs more in the bedding-perpendicular direction than in the bedding-parallel direction. The reduction in sample volume during creep suggests that the creep is accommodated by a small amount of pore compaction occurring in the clay-aggregates and/or the relatively porous kerogen in the rock. Thus, the tendency to creep (creep compliance) is generally observed to increases with clay and kerogen volume. However, the strongest correlation is found between creep compliance and Young's modulus. A strong negative correlation between creep compliance and elastic Young's modulus exists regardless of the sample orientation and despite the wide range of sample mineralogy (5-50% clay, 5-60% quartz-feldspar-pyrite, 0-80% carbonates). This correlation is quite interesting as inelastic creep and elastic stiffness depend on somewhat different physical attributes. We attempt to quantitatively explain the correlation between creep behavior and elastic stiffness by appealing to a stress-partitioning that occurs between the soft components (clay and kerogen) and stiff components (quartz, feldspar, pyrite, carbonates) of the shale rock. First, the stress-partitioning occurring within the soft and stiff components is quantified based on the rock composition, elastic properties of the individual components, and the overall average Young's modulus of the rock. By combining the stress-partitioning behavior with knowledge that the creep behavior is linear

  11. Creep of Two-Phase Microstructures for Microelectronic Applications

    SciTech Connect

    Reynolds, Heidi Linch

    1998-12-01

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  12. Inferred depth of creep on the Hayward Fault, central California

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.

    1993-01-01

    A relation between creep rate at the surface trace of a fault, the depth to the bottom of the creeping zone, and the rate of stress accumulation on the fault is derived from Weertman's 1964 friction model of slip on a fault. A 5??1 km depth for the creeping zone on the Hayward fault is estimated from the measured creep rate (5mm/yr) at the fault trace and the rate of stress increase on the upper segment of the fault trace inferred from geodetic measurements across the San Francisco Bay area. Although fault creep partially accommodates the secular slip rate on the Hayward fault, a slip deficit is accumulating equivalent to a magnitude 6.6 earthquake on each 40 km segment of the fault each century. Thus, the current behavior of the fault is consistent with its seismic history, which includes two moderate earthquakes in the mid-1800s. -Authors

  13. ORNL irradiation creep facility

    SciTech Connect

    Reiley, T.C.; Auble, R.L.; Beckers, R.M.; Bloom, E.E.; Duncan, M.G.; Saltmarsh, M.J.; Shannon, R.H.

    1980-09-01

    A machine was developed at ORNL to measure the rates of elongation observed under irradiation in stressed materials. The source of radiation is a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). This choice allows experiments to be performed which simulate the effects of fast neutrons. A brief review of irradiation creep and experimental constraints associated with each measurement technique is given. Factors are presented which lead to the experimental choices made for the Irradiation Creep Facility (ICF). The ICF consists of a helium-filled chamber which houses a high-precision mechanical testing device. The specimen to be tested must be thermally stabilized with respect to the temperature fluctuations imposed by the particle beam which passes through the specimen. Electrical resistance of the specimen is the temperature control parameter chosen. Very high precision in length measurement and temperature control are required to detect the small elongation rates relevant to irradiation creep in the test periods available (approx. 1 day). The apparatus components and features required for the above are presented in some detail, along with the experimental procedures. The damage processes associated with light ions are discussed and displacement rates are calculated. Recent irradiation creep results are given, demonstrating the suitability of the apparatus for high resolution experiments. Also discussed is the suitability of the ICF for making high precision thermal creep measurements.

  14. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Powers, L. M.; Jadaan, O. M.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilized commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the CARES/CREEP (Ceramics Analysis and Reliability Evaluation of Structures/CREEP) integrated design programs, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benechmark problems and engine components are included.

  15. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Powers, L. M.; Jadaan, O. M.; Gyekenyesi, J. P.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural application such as in advanced turbine engine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilizes commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life, of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the Ceramics Analysis and Reliability Evaluation of Structures/CREEP (CARES/CREEP) integrated design program, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benchmark problems and engine components are included.

  16. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Powers, L. M.; Jadaan, O. M.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilized commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the CARES/CREEP (Ceramics Analysis and Reliability Evaluation of Structures/CREEP) integrated design programs, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benechmark problems and engine components are included.