Science.gov

Sample records for creep radiation creep

  1. ORNL irradiation creep facility

    SciTech Connect

    Reiley, T.C.; Auble, R.L.; Beckers, R.M.; Bloom, E.E.; Duncan, M.G.; Saltmarsh, M.J.; Shannon, R.H.

    1980-09-01

    A machine was developed at ORNL to measure the rates of elongation observed under irradiation in stressed materials. The source of radiation is a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). This choice allows experiments to be performed which simulate the effects of fast neutrons. A brief review of irradiation creep and experimental constraints associated with each measurement technique is given. Factors are presented which lead to the experimental choices made for the Irradiation Creep Facility (ICF). The ICF consists of a helium-filled chamber which houses a high-precision mechanical testing device. The specimen to be tested must be thermally stabilized with respect to the temperature fluctuations imposed by the particle beam which passes through the specimen. Electrical resistance of the specimen is the temperature control parameter chosen. Very high precision in length measurement and temperature control are required to detect the small elongation rates relevant to irradiation creep in the test periods available (approx. 1 day). The apparatus components and features required for the above are presented in some detail, along with the experimental procedures. The damage processes associated with light ions are discussed and displacement rates are calculated. Recent irradiation creep results are given, demonstrating the suitability of the apparatus for high resolution experiments. Also discussed is the suitability of the ICF for making high precision thermal creep measurements.

  2. Study on effects of solar radiation and rain on shrinkage, shrinkage cracking and creep of concrete

    SciTech Connect

    Asamoto, Shingo; Ohtsuka, Ayumu; Kuwahara, Yuta; Miura, Chikako

    2011-06-15

    In this paper, the effects of actual environmental actions on shrinkage, creep and shrinkage cracking of concrete are studied comprehensively. Prismatic specimens of plain concrete were exposed to three sets of artificial outdoor conditions with or without solar radiation and rain to examine the shrinkage. For the purpose of studying shrinkage cracking behavior, prismatic concrete specimens with reinforcing steel were also subjected to the above conditions at the same time. The shrinkage behavior is described focusing on the effects of solar radiation and rain based on the moisture loss. The significant environment actions to induce shrinkage cracks are investigated from viewpoints of the amount of the shrinkage and the tensile strength. Finally, specific compressive creep behavior according to solar radiation and rainfall is discussed. It is found that rain can greatly inhibit the progresses of concrete shrinkage and creep while solar radiation is likely to promote shrinkage cracking and creep.

  3. Endochronic theory of transient creep and creep recovery

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Chen, L.

    1979-01-01

    Short time creep and creep recovery were investigated by means of the endochronic theory of viscoplasticity. It is shown that the constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation can all ber derived from the general constitutive equation by imposing appropriate constraints. In this unified approach, the effect of strain-hardening is naturally accounted for when describing creep and creep recovery. The theory predicts with reasonable accuracy the creep and creep recovery behaviors for Aluminum 1100-0 at 150 C. It was found that the strain-rate history at prestraining stage affects the subsequent creep. A critical stress was also established for creep recovery. The theory predicts a forward creep for creep recovery stress greater than the critical stress. For creep recovery stress less than the critical stress, the theory then predicts a normal strain recovery.

  4. Irradiation Induced Creep of Graphite

    SciTech Connect

    Burchell, Timothy D; Murty, Prof K.L.; Eapen, Dr. Jacob

    2010-01-01

    The current status of graphite irradiation induced creep strain prediction is reviewed and the major creep models are described. The ability of the models to quantitatively predict the irradiation induced creep strain of graphite is reported. Potential mechanisms of in-crystal creep are reviewed as are mechanisms of pore generation under stress. The case for further experimental work is made and the need for improved creep models across multi-scales is highlighted.

  5. Biaxial Creep Specimen Fabrication

    SciTech Connect

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  6. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  7. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  8. Tensile creep of dental amalgam.

    PubMed

    Greener, E H; Szurgot, K; Lautenschlager, E P

    1982-04-01

    Rather than the usual compressive dental creep, various types of one week old dental amalgams were continuously monitored in tensile creep. Testing was done at 37, 45 and 50 degrees C, in a specially designed apparatus capable of 0 to 60 degrees C while maintaining a constant true tensile stress of 17 MPa. For the first time, the classical four stages of creep were observed at elevated temperatures in the low Cu amalgams, including creep rupture. The high Cu systems displayed only transient creep up to 50 degrees C and no rupture. Approximately one half the stress was needed in tension to provide the equivalent creep in compression. PMID:7082735

  9. Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the

  10. Avoiding Project Creep.

    ERIC Educational Resources Information Center

    Kennerknecht, Norbert J.; Scarnati, James T.

    1998-01-01

    Discusses how to keep school district capital-improvement projects within budget. Examines areas where runaway costs creep into a project and ways of cutting or lessening these costs, such as using standard agreements, controlling architect's expense reimbursements, developing a quality-control process, and reducing document duplication. (GR)

  11. Creep behaviour and creep mechanisms of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep

  12. Creep and creep-rupture behavior of Alloy 718

    SciTech Connect

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760{degree}C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs.

  13. Creep Measurement Video Extensometer

    NASA Technical Reports Server (NTRS)

    Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John

    2011-01-01

    Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.

  14. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  15. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  16. Creep-Fatigue Interaction Testing

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.

  17. Rationalization of Creep Data of Creep-Resistant Steels on the Basis of the New Power Law Creep Equation

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Yang, M.; Song, X. L.; Jia, J.; Xiang, Z. D.

    2016-07-01

    The conventional power law creep equation (Norton equation) relating the minimum creep rate to creep stress and temperature cannot be used to predict the long-term creep strengths of creep-resistant steels if its parameters are determined only from short-term measurements. This is because the stress exponent and activation energy of creep determined on the basis of this equation depend on creep temperature and stress and these dependences cannot be predicted using this equation. In this work, it is shown that these problems associated with the conventional power law creep equation can be resolved if the new power law equation is used to rationalize the creep data. The new power law creep equation takes a form similar to the conventional power law creep equation but has a radically different capability not only in rationalizing creep data but also in predicting the long-term creep strengths from short-term test data. These capabilities of the new power law creep equation are demonstrated using the tensile strength and creep test data measured for both pipe and tube grades of the creep-resistant steel 9Cr-1.8W-0.5Mo-V-Nb-B (P92 and T92).

  18. Lattice continuum and diffusional creep

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  19. Creep in electronic ceramics

    SciTech Connect

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  20. Creep of posterior dental composites.

    PubMed

    Papadogianis, Y; Boyer, D B; Lakes, R S

    1985-01-01

    The creep of microspecimens of posterior dental composites was studied using a torsional creep apparatus. Shear stresses were maintained for 3 h and recovery was followed for 50 h. Creep curves were obtained at 21, 37, and 50 degrees C and four torque levels. The effect of conditioning the specimens in water up to 8 weeks was studied. The posterior composites exhibited linear viscoelastic behavior at low deformations. They had higher shear moduli and greater resistance to creep than conventional and microfilled composites. In aging experiments, maximum shear moduli occurred when specimens were 48 h to 1 week old. Subsequent softening was attributed to water absorption. Residual strain was highest when the composites were stressed within 24 h of initiating polymerization. Residual strain was very low in specimens 48 h to 8 weeks of age.

  1. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing

    NASA Astrophysics Data System (ADS)

    Wang, Honglong; Xu, Lu; Li, Rong; Hu, Jiangtao; Wang, Mouhua; Wu, Guozhong

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) sheet was cross-linked by γ irradiation in air with a dose of up to 300 kGy at a dose rate of 5 kGy/h and further treated by post-annealing at 120 °C for 4 h in vacuum. Variations in chemical structure, thermostability, crystallinity, creep resistance, and tensile properties were investigated and compared mainly by gel content, TGA, DSC, and creep and tensile measurements. Gel content measurements indicated that cross-linking was predominant over chain scission during irradiation and post-annealing. Radiation cross-linking resulted in an obvious improvement in the creep resistance and tensile properties of UHMWPE. Through cross-linking, the operational temperature and yield strength of the irradiated and subsequently annealed UHMWPE sheet were improved by more than 100 °C and 14%, respectively, at a dose of 300 kGy. Simultaneously, Young's modulus was increased to 1413 MPa, compared with 398 MPa of pristine UHMWPE. Annealing after irradiation further improved the creep resistance and Young's modulus. Highly cross-linked UHMWPE can even be maintained at 250 °C for a long time without any obvious deformation.

  2. (Irradiation creep of graphite)

    SciTech Connect

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  3. Remaining Creep Life Assessment Techniques Based on Creep Cavitation Modeling

    NASA Astrophysics Data System (ADS)

    Ankit, Kumar

    2009-05-01

    The boiler and its components are built with assumed nominal design and reasonable life of operation about two to three decades (one or two hundred thousand hours). These units are generally replaced or life is extended at the end of this period. Under normal operating conditions, after the initial period of teething troubles, the reliability of these units remains fairly constant up to about two decades of normal operation. The failure rate then increases as a result of their time-dependent material damage. Further running of these units may become uneconomical and dangerous in some cases. In the following article, step-by-step methodology to quantify creep cavitation based on statistical probability analysis and continuum damage mechanics has been described. The concepts of creep cavity nucleation have also been discussed with a special emphasis on the need for development of a model based on creep cavity growth kinetics.

  4. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and

  5. Creep of laminated aluminum composites

    NASA Astrophysics Data System (ADS)

    Moore, W.; Davies, T. J.

    1980-08-01

    The creep behavior of a laminate system consisting of alternate layers of pure aluminum and SAP (sintered aluminum powder) sheet has been examined in the temperature range 323 to 473 K and in the stress range 35 to 68 MN m-2. It was observed that secondary creep strain in the laminates was greater than in elemental SAP; the secondary creep strain rate in laminates was lower than that in pure aluminum and the creep rate decreased with increasing fracture of SAP. A stress exponent ( n) value of ˜20 was observed for most of the laminates and was reasonably constant for 3, 5, 7, and 9 ply laminates and volume fractions V f ) in the range 0.3 < V f < 0.65. For higher volume fractions of SAP the mechanical behavior of the laminates was similar to that of SAP. The experimental activation energy for creep of 30.5 ± 5 Kcal mol-1 correlates well with that for self-diffusion in aluminum. Laminating induced appreciable ductility to the SAP.

  6. Creep of plasma sprayed zirconia

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.

    1982-01-01

    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding.

  7. Fluid Creep and Over-resuscitation.

    PubMed

    Saffle, Jeffrey R

    2016-10-01

    Fluid creep is the term applied to a burn resuscitation, which requires more fluid than predicted by standard formulas. Fluid creep is common today and is linked to several serious edema-related complications. Increased fluid requirements may accompany the appropriate resuscitation of massive injuries but dangerous fluid creep is also caused by overly permissive fluid infusion and the lack of colloid supplementation. Several strategies for recognizing and treating fluid creep are presented. PMID:27600130

  8. Creep and Creep-Fatigue of Alloy 617 Weldments

    SciTech Connect

    Wright, Jill K.; Carroll, Laura J.; Wright, Richard N.

    2014-08-01

    Alloy 617 is the primary candidate material for the heat exchanger of a very high temperature gas cooled reactor intended to operate up to 950°C. While this alloy is currently qualified in the ASME Boiler and Pressure Vessel Code for non-nuclear construction, it is not currently allowed for use in nuclear designs. A draft Code Case to qualify Alloy 617 for nuclear pressure boundary applications was submitted in 1992, but was withdrawn prior to approval. Prior to withdrawal of the draft, comments were received indicating that there was insufficient knowledge of the creep and creep-fatigue behavior of Alloy 617 welds. In this report the results of recent experiments and analysis of the creep-rupture behavior of Alloy 617 welds prepared using the gas tungsten arc process with Alloy 617 filler wire. Low cycle fatigue and creep-fatigue properties of weldments are also discussed. The experiments cover a range of temperatures from 750 to 1000°C to support development of a new Code Case to qualify the material for elevated temperature nuclear design. Properties of the welded material are compared to results of extensive characterization of solution annealed plate base metal.

  9. Life at Mission Creep U

    ERIC Educational Resources Information Center

    Dubrow, Greg; Moseley, Bryan; Dustin, Daniel

    2006-01-01

    The term "mission creep" was originally coined nearly a hundred years ago to describe the gradual process by which a military mission's stated methods and goals change, and recently the term has been applied to incremental organizational changes. In this article, the term is used to describe what happens when a teaching-oriented college or…

  10. Creep Deformation of Allvac 718Plus

    SciTech Connect

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  11. Creep Deformation of Allvac 718Plus

    DOE PAGES

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics aremore » common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.« less

  12. Dislocation Creep in Magnesium Calcite

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, X.; Evans, B. J.

    2003-12-01

    To investigate the effect of dissolved Mg on plastic deformation of calcite, we performed triaxial deformation experiments on synthetic calcite with varying amount of Mg content. Mixtures of powders of calcite and dolomite were isostatically hot pressed (HIP) at 850° C and 300 MPa confining pressure for different intervals (2 to 20hrs) resulting in homogeneous aggregates of high-magnesium calcite; Mg content varied from 0.07 to 0.17 mol%. Creep tests were performed at differential stresses from 20 to 160 MPa at 700 to 800° C. Grain sizes before and after deformation were determined from the images obtained from scanning electron microscope (SEM) and optical microscope. Grain sizes are in the range of 5 to 20 microns depending on the HIP time, and decrease with increasing magnesium content. Both BSE images and chemical analysis suggest that all dolomite are dissolved and the Mg distribution is homogeneous through the sample, after 2 hrs HIP. At stresses below 40 MPa, the samples deformed in diffusion region (Coble creep), as described previously by Herwegh. The strength decreases with increasing magnesium content, owing to the difference of grain size. At stresses above 80 MPa, the stress exponent is greater than 3, indicating an increased contribution of dislocation creep. The transition between diffusion to dislocation creep occurs at higher stresses for the samples with higher magnesium content and smaller grain size. Preliminary data suggests a slight increase in strength with increasing magnesium content, but more tests are needed to verify this effect. In a few samples, some strain weakening may have been evident. The activation energy in the transition region (at 80 MPa) is ˜200 KJ/mol with no dependence on magnesium content, agreeing with previous measurements of diffusion creep in natural and synthetic marbles.

  13. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  14. Structural-phase state and creep of mixed nitride fuel

    NASA Astrophysics Data System (ADS)

    Konovalov, I. I.; Tarasov, B. A.; Glagovsky, E. M.

    2016-04-01

    By the analysis of thermal creep data in conjunction with structural-phase state the most likely mechanisms of UN creep are considered. An equation relating the thermal and radiation creep of nitride fuel with such important parameters as plutonium content, porosity, grain size, the content of impurities of transition metals and oxygen, the carbon content has been suggested. At stationary operating parameters in reactor the creep of nitride fuel with technical purity is defined by the thermal component at mechanism of intergranular slip and by the radiation component, which plays a significant role at temperatures below 1100°C. Both types of creep in a first approximation have a linear dependence on the stress.

  15. Proton Irradiation Creep in Pyrocarbon

    SciTech Connect

    Was, Gary S.; Campbell, Anne

    2011-10-01

    This project aims to understand irradiation creep in pyrocarbon using proton irradiation under controlled stresses and temperatures. Experiments will be conducted over a range of temperatures and stresses per the proposal submitted. The work scope will include the preparation of samples, measurement of deposition thickness, thickness uniformity, and anisotropy. The samples produced will be made in strips, which will be used for the creep experiments. Materials used will include pyrolytic carbon (PyC), Highly Oriented Pyrolytic Graphite (HOPG), or graphite strip samples in that order depending upon success. Temperatures tested under will range from 800°C to 1200°C, and stresses from 6MPa to 20.7MPa. Optional testing may occur at 900°C and 1100°C and stresses from 6MPa to 20.7MPa if funding is available.

  16. Creep of Structural Nuclear Composites

    SciTech Connect

    Will Windes; R.W. Lloyd

    2005-09-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor (VHTR) design. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. One of the primary degradation mechanisms anticipated for these core components is high temperature thermal and irradiation enhanced creep. As a consequence, high temperature test equipment, testing methodologies, and test samples for very high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Actual testing of both tubular and flat, "dog-bone"-shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures are currently being established from these high temperature mechanical tests.

  17. Creep dynamics in soft matter

    NASA Astrophysics Data System (ADS)

    Cabriolu, Raffaela

    Detecting any precursors of failure in Soft Matter Systems (SMS) is an inter-disciplinary topic with important applications (e.g. prediction of failure in engineering processes). Further, it provides an ideal benchmark to understand how mechanical stress and failure impacts the flow properties of amorphous condensed matter. Furthermore, some SMS are viscoelastic, flowing like viscous liquids or deforming like a solid according to applied forces. Often SMS are fragile and local rearrangements trigger catastrophic macroscopic failure. Despite the importance of the topic little is known on the local creep dynamics before the occurrence of such catastrophic events. To study creep and failure at an atomic/molecular level and at time scales that are not easily accessible by experiments we chose to carry out microscopic simulations. In this work we present the response of a colloidal system to uniaxial tensile stress applied and we compare our results to experimental works [8].

  18. Compression creep of filamentary composites

    NASA Technical Reports Server (NTRS)

    Graesser, D. L.; Tuttle, M. E.

    1988-01-01

    Axial and transverse strain fields induced in composite laminates subjected to compressive creep loading were compared for several types of laminate layups. Unidirectional graphite/epoxy as well as multi-directional graphite/epoxy and graphite/PEEK layups were studied. Specimens with and without holes were tested. The specimens were subjected to compressive creep loading for a 10-hour period. In-plane displacements were measured using moire interferometry. A computer based data reduction scheme was developed which reduces the whole-field displacement fields obtained using moire to whole-field strain contour maps. Only slight viscoelastic response was observed in matrix-dominated laminates, except for one test in which catastrophic specimen failure occurred after a 16-hour period. In this case the specimen response was a complex combination of both viscoelastic and fracture mechanisms. No viscoelastic effects were observed for fiber-dominated laminates over the 10-hour creep time used. The experimental results for specimens with holes were compared with results obtained using a finite-element analysis. The comparison between experiment and theory was generally good. Overall strain distributions were very well predicted. The finite element analysis typically predicted slightly higher strain values at the edge of the hole, and slightly lower strain values at positions removed from the hole, than were observed experimentally. It is hypothesized that these discrepancies are due to nonlinear material behavior at the hole edge, which were not accounted for during the finite-element analysis.

  19. Postseismic relaxation and transient creep

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Yu, S.-B.

    2005-01-01

    Postseismic deformation has been observed in the epicentral area following the 1992 Landers (M = 7.3), 1999 Chi-Chi (M = 7.6), 1999 Hector Mine (M = 7.1), 2002 Denali (M = 7.9), 2003 San Simeon (M = 6.5), and 2004 Parkfield (M = 6.0) earthquakes. The observations consist of repeated GPS measurements of the position of one monument relative to another (separation ???100 km). The early observations (t < 0.1 year) are well fit by the function a' + c'log(t), where t is the time after the earthquake and a' and c' are constants chosen to fit the data. Because a log(t) time dependence is characteristic of transient (primary) creep, the early postseismic response may be governed by transient creep as Benioff proposed in 1951. That inference is provisional as the stress conditions prevailing in postseismic relaxation are not identical to the constant stress condition in creep experiments. The observed logarithmic time dependence includes no characteristic time that might aid in identifying the micromechanical cause.

  20. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  1. Empirical law for fault-creep events

    USGS Publications Warehouse

    Crough, S.T.; Burford, R.O.

    1977-01-01

    Fault-creep events measured on the San Andreas and related faults near Hollister, California, can be described by a rheological model consisting of a spring, power-law dashpotand sliding block connected in series. An empirical creep-event law, derived from many creep-event records analyzed within the constraints of the model, provides a remarkably simple and accurate representation of creep-event behavior. The empirical creep law is expressed by the equation: D(t)= Df [1-1/{ct(n-1)Dfn-1+1}/(n-1)] where D is the value of displacement at time t following the onset of an event, Df is the final equilibrium value of the event displacementand C is a proportionality constant. This discovery should help determine whether the time-displacement character of creep events is controlled by the material properties of fault gouge, or by other parameters. ?? 1977.

  2. Cumulative creep damage for polycarbonate and polysulfone

    NASA Technical Reports Server (NTRS)

    Zhang, M.; Brinson, H. F.

    1985-01-01

    The literature for creep to failure cumulative damage laws are reviewed. Creep to failure tests performed on polycarbonate and polysulfone under single and two step loadings are discussed. A cumulative damage law or modified time fraction rule is developed using a power law for transient creep response as the starting point. Experimental results are approximated well by the new rule. Damage and failure mechanisms associated with the two materials are suggested.

  3. Electrochemical control of creep in nanoporous gold

    SciTech Connect

    Ye, Xing-Long; Jin, Hai-Jun

    2013-11-11

    We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.

  4. Creep Deformation of B2 Alumindes

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1991-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  5. Model for transient creep of southeastern New Mexico rock salt

    SciTech Connect

    Herrmann, W; Wawersik, W R; Lauson, H S

    1980-11-01

    In a previous analysis, existing experimental data pertaining to creep tests on rock salt from the Salado formation of S.E. New Mexico were fitted to an exponential transient creep law. While very early time portions of creep strain histories were not fitted very well for tests at low temperatures and stresses, initial creep rates in particular generally being underestimated, the exponential creep law has the property that the transient creep strain approaches a finite limit with time, and is therefore desirable from a creep modelling point of view. In this report, an analysis of transient creep is made. It is found that exponential transient creep can be related to steady-state creep through a universal creep curve. The resultant description is convenient for creep analyses where very early time behavior is not important.

  6. Effect of Tungsten on Primary Creep Deformation and Minimum Creep Rate of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar; Mathew, M. D.

    2014-10-01

    Effect of tungsten on transient creep deformation and minimum creep rate of reduced activation ferritic-martensitic (RAFM) steel has been assessed. Tungsten content in the 9Cr-RAFM steel has been varied between 1 and 2 wt pct, and creep tests were carried out over the stress range of 180 and 260 MPa at 823 K (550 °C). The tempered martensitic steel exhibited primary creep followed by tertiary stage of creep deformation with a minimum in creep deformation rate. The primary creep behavior has been assessed based on the Garofalo relationship, , considering minimum creep rate instead of steady-state creep rate . The relationships between (i) rate of exhaustion of transient creep r' with minimum creep rate, (ii) rate of exhaustion of transient creep r' with time to reach minimum creep rate, and (iii) initial creep rate with minimum creep rate revealed that the first-order reaction-rate theory has prevailed throughout the transient region of the RAFM steel having different tungsten contents. The rate of exhaustion of transient creep r' and minimum creep rate decreased, whereas the transient strain ɛ T increased with increase in tungsten content. A master transient creep curve of the steels has been developed considering the variation of with . The effect of tungsten on the variation of minimum creep rate with applied stress has been rationalized by invoking the back-stress concept.

  7. Cumulative creep damage for polycarbonate and polysulfone

    NASA Technical Reports Server (NTRS)

    Zhang, M. J.; Straight, M. R.; Brinson, H. F.

    1985-01-01

    Creep to failure tests performed on polycarbonate and polysulfone under single and two step loadings are discussed. A cumulative damage law or modified time fraction rule is developed using a power law for transient creep response as the starting point. Experimental results are approximated well by the new rule. Damage and failure mechanisms associated with the two materials are suggested.

  8. Creep resistant high temperature martensitic steel

    SciTech Connect

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  9. Irradiation creep of vanadium-base alloys

    SciTech Connect

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  10. Creep and relaxation behavior of Inconel-617

    SciTech Connect

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-08-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation.

  11. Irradiation creep of dispersion strengthened copper alloy

    SciTech Connect

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  12. Kinematic hardening in creep of Zircaloy

    NASA Astrophysics Data System (ADS)

    Sedláček, Radan; Deuble, Dietmar

    2016-10-01

    Results of biaxial creep tests with stress changes on Zircaloy-2 tube samples are presented. A Hollomon-type viscoplastic strain hardening model is extended by the Armstrong-Frederic nonlinear kinematic hardening law, resulting in a mixed (i.e. isotropic and kinematic) strain hardening model. The creep tests with stress changes and similar tests published in the literature are simulated by the models. It is shown that introduction of the kinematic strain hardening in the viscoplastic strain hardening model is sufficient to describe the creep transients following stress drops, stress reversals and stress removals.

  13. Prediction of creep of polymer concrete

    SciTech Connect

    Khristova, Yu.; Aniskevich, K.

    1995-11-01

    We studied the applicability of the phenomenological approach to the prediction of long-time creep of polymer concrete consisting of polyester binder with diabase filler and diabase aggregate. We discovered that the principles of temperature-time analogy, of moisture-time analogy, and of temperature-moisture-time analogy are applicable to the description of the diagrams of short-time creep and to the prediction of long-time creep of polymer concrete at different temperatures and constant moisture content of the material.

  14. Thermodynamic approach to creep and plasticity

    SciTech Connect

    Loefstedt, R.

    1997-06-01

    A solid subjected to a small load distorts rapidly in the manner predicted by elasticity theory. On a much longer time scale, the solid will creep. This dissipative motion is an important consideration in the engineering design of, for example, aircraft engines, but the macroscopic equations of motion describing this deformation are based on empirical observations. The principles of thermodynamics specify the dissipative fluxes appropriate to the classical equations of elasticity, which include one, unique to solids, which describes creep. The thermodynamic theory is presented, and the insights into the underlying microscopic mechanisms of creep, gleaned from the macroscopic formalism, are also discussed. {copyright} {ital 1997} {ital The American Physical Society}

  15. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    NASA Technical Reports Server (NTRS)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  16. Creep substructure formation in sodium chloride single crystals in the power law and exponential creep regimes

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Pharr, G. M.

    1989-01-01

    Creep tests conducted on NaCl single crystals in the temperature range from 373 to 1023 K show that true steady state creep is obtained only above 873 K when the ratio of the applied stress to the shear modulus is less than or equal to 0.0001. Under other stress and temperature conditions, corresponding to both power law and exponential creep, the creep rate decreases monotonically with increasing strain. The transition from power law to exponential creep is shown to be associated with increases in the dislocation density, the cell boundary width, and the aspect ratio of the subgrains along the primary slip planes. The relation between dislocation structure and creep behavior is also assessed.

  17. Creep of plain weave polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  18. Creep relaxation and fully reversible creep of foam core sandwich composites in seawater

    NASA Astrophysics Data System (ADS)

    de la Paz, Ismael; Shafiq, Basir

    2015-12-01

    Foam core sandwich composites were subjected to (i) creep to failure, (ii) cyclic creep-relaxation and (iii) fully reversible cyclic creep loading in seawater in order to mimic an actual ship hull's service lifetime scenario. The results indicate a strong dependence of lifetime on the mode of loading. A significant reduction in the overall life was observed under cyclic creep as compared with the conventional creep to failure. Creep relaxation (R=1) tests were performed at loading-relaxation periods of 24/24, 24/12, 24/6, 12/12 and 6/6 h, while the fully reversible (R=-1) creep tests were conducted at loading-reversed loading times of 36/36, 24/24, 12/12, 6/6, and 3/3 h. The results suggest that creep-relaxation lifetime characteristics depend predominantly on the relaxation time as opposed to loading times, i.e. longer relaxation periods lead to shorter life. Whereas, fully reversible creep appears to be dependent upon the number of reversals whereby, life is observed to reduce as the number of reversals increase. These significant observations are explained in terms of various possible paths to interface cell wall collapse. Modes of failure were predominantly indentation and core compression in the vicinity of the loading site.

  19. Long-Term Creep and Creep Rupture Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Rahman, M.; Mach, A.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)

    2001-01-01

    Tensile creep behavior of SiC/SiNC ceramic matrix composites at elevated temperatures and at various stress levels have been investigated for turbine engine applications. The objective of this research is to present creep behavior of SiC/SiCN composites at stress levels above and below the monotonic proportional limit strength and predict the life at creep rupture conditions. Tensile creep-rupture tests were performed on an Instron 8502 servohydraulic testing machine at constant load conditions up to a temperature limit of 1000 C. Individual creep curves indicate three stages such as primary, secondary, and tertiary. The creep rate increased linearly at an early stage and then gradually became exponential at higher strains. The stress exponent and activation energy were also obtained at 700 and 1000 C. The specimen lifetime was observed to be 55 hrs at 121 MPa and at 700 C. The life span reduced to 35 hrs at 143 MPa and at 1000 C. Scanning electron microscopy observations revealed significant changes in the crystalline phases and creep damage development. Creep failures were accompanied by extensive fiber pullout, matrix cracking, and debonding along with fiber fracture. The creep data was applied to Time-Temperature-Stress superposition model and the Manson-Haferd parametric model for long-time life prediction.

  20. Tensile creep and creep-recovery behavior of a SiC-fiber-Si3N4-matrix composite

    NASA Technical Reports Server (NTRS)

    Holmes, John W.; Park, Yong H.; Jones, J. W.

    1993-01-01

    The tensile creep and creep-recovery behavior of a hot-pressed unidirectional SiC-fiber/Si3N4-matrix composite was investigated at 1200 C in air, in order to determine how various sustained and cyclic creep loading histories would influence the creep rate, accumulated creep strain, and the amount of strain recovered upon specimen unloading. The data accumulated indicate that the fundamental damage mode for sustained tensile creep at stresses of 200 and 250 MPa was periodic fiber fracture and that the creep life and the failure mode at 250 MPa were strongly influenced by the rate at which the initial creep stress was applied. Cyclic loading significantly lowered the duration of primary creep and the overall creep-strain accumulation. The implications of the results for microstructural and component design are discussed.

  1. Creep behavior of niobium alloy PWC-11

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1987-01-01

    The high vacuum creep and creep-rupture behavior of a Nb-1Zr-.1C alloy (PWC 11) was investigated at 1350 and 1400 K with an applied stress of 40 MPa. The material was tested in the following four conditions: annealed (1 hr 1755 K/2 hr 1475 K); annealed plus EB welded; annealed plus aged for 1000 hr at 1350 or 1400 K; and annealed, welded, and aged. It was found that the material in the annealed state was the most creep-resistant condition tested, and that aging the alloy for 1000 hr without an applied stress greatly reduced that strength; however, it was still approximately three times as creep resistant as Nb-1Zr. Additionally, the EB weld region was stronger than the base metal in each condition tested, and phase extraction of the dispersed precipitate revealed the presence of a 70%ZrC-30%NbC cubic monocarbide phase.

  2. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  3. Spatial fluctuations in transient creep deformation

    NASA Astrophysics Data System (ADS)

    Laurson, Lasse; Rosti, Jari; Koivisto, Juha; Miksic, Amandine; Alava, Mikko J.

    2011-07-01

    We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by digital image correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases—the spatially averaged creep rate obeys the Andrade law epsilont ~ t - 0.7, while the time dependence of the spatial fluctuations of the local creep rates is given by Δepsilont ~ t - 0.5. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2d linear interface model or the quenched Edwards-Wilkinson equation.

  4. Micromechanics of brittle creep in rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Baud, P.; Heap, M. J.; Meredith, P. G.

    2012-08-01

    In the upper crust, the chemical influence of pore water promotes time dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail at stresses well below their short-term failure strength, and even at constant applied stress (“brittle creep”). Here we provide a micromechanical model describing time dependent brittle creep of water-saturated rocks under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of cracks in compression are derived from the sliding wing crack model of Ashby and Sammis (1990), and the crack length evolution is computed from Charles' law. The macroscopic strains and strain rates computed from the model are non linear, and compare well with experimental results obtained on granite, low porosity sandstone and basalt rock samples. Primary creep (decelerating strain) corresponds to decelerating crack growth, due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as an inflexion between those two end-member phases. The minimum strain rate at the inflexion point can be estimated analytically as a function of model parameters, effective confining pressure and temperature, which provides an approximate creep law for the process. The creep law is used to infer the long term strain rate as a function of depth in the upper crust due to the action of the applied stresses: in this way, sub-critical cracking reduces the failure stress in a manner equivalent to a decrease in cohesion. We also investigate the competition with pressure solution in porous rocks, and show that the transition from sub

  5. Review of recent irradiation-creep results

    SciTech Connect

    Coghlan, W.A.

    1982-05-01

    Materials deform faster under stress in the presence of irradiation by a process known as irradiation creep. This phenomenon is important to reactor design and has been the subject of a large number of experimental and theoretical investigations. The purpose of this work is to review the recent experimental results to obtain a summary of these results and to determine those research areas that require additional information. The investigations have been classified into four subgroups based on the different experimental methods used. These four are: (1) irradiation creep using stress relaxation methods, (2) creep measurements using pressurized tubes, (3) irradiation creep from constant applied load, and (4) irradiation creep experiments using accelerated particles. The similarity and the differences of the results from these methods are discussed and a summary of important results and suggested areas for research is presented. In brief, the important results relate to the dependence of creep on swelling, temperature, stress state and alloying additions. In each of these areas new results have been presented and new questions have arisen which require further research to answer. 65 references.

  6. Impression Creep Behavior of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Naveena; Vijayanand, D.

    2013-02-01

    Impression creep tests have been carried out at 923 K on 316LN SS containing 0.07, 0.14, and 0.22 wt.% nitrogen, under different applied stress levels. It was observed that the impression creep depth versus time curves were similar to the creep curves obtained from conventional uniaxial creep tests. The impression creep curves were characterized by a loading strain and primary and secondary creep stages similar to uniaxial creep curves. The tertiary stage observed in uniaxial creep curves was absent. The steady-state impression velocity was found to increase with increasing applied stress. The equivalent steady-state creep rates calculated from impression velocities were found to be in good agreement with the steady-state creep rates obtained from conventional uniaxial creep tests. Equivalence between applied stress and steady-state impression velocity with uniaxial creep stress and steady-state creep rate, respectively, has been established based on the laws of mechanics for time-dependent plasticity. It was found that impression velocity was sensitive to the variation in nitrogen content in the steel; impression velocity decreased with increasing nitrogen content, and the results obtained in this study were in agreement with those obtained from uniaxial creep tests.

  7. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  8. Hayward fault: Large earthquakes versus surface creep

    USGS Publications Warehouse

    Lienkaemper, James J.; Borchardt, Glenn; Borchardt, Glenn; Hirschfeld, Sue E.; Lienkaemper, James J.; McClellan, Patrick H.; Williams, Patrick L.; Wong, Ivan G.

    1992-01-01

    The Hayward fault, thought a likely source of large earthquakes in the next few decades, has generated two large historic earthquakes (about magnitude 7), one in 1836 and another in 1868. We know little about the 1836 event, but the 1868 event had a surface rupture extending 41 km along the southern Hayward fault. Right-lateral surface slip occurred in 1868, but was not well measured. Witness accounts suggest coseismic right slip and afterslip of under a meter. We measured the spatial variation of the historic creep rate along the Hayward fault, deriving rates mainly from surveys of offset cultural features, (curbs, fences, and buildings). Creep occurs along at least 69 km of the fault's 82-km length (13 km is underwater). Creep rate seems nearly constant over many decades with short-term variations. The creep rate mostly ranges from 3.5 to 6.5 mm/yr, varying systemically along strike. The fastest creep is along a 4-km section near the south end. Here creep has been about 9mm/yr since 1921, and possibly since the 1868 event as indicated by offset railroad track rebuilt in 1869. This 9mm/yr slip rate may approach the long-term or deep slip rate related to the strain buildup that produces large earthquakes, a hypothesis supported by geoloic studies (Lienkaemper and Borchardt, 1992). If so, the potential for slip in large earthquakes which originate below the surficial creeping zone, may now be 1/1m along the southern (1868) segment and ≥1.4m along the northern (1836?) segment. Substracting surface creep rates from a long-term slip rate of 9mm/yr gives present potential for surface slip in large earthquakes of up to 0.8m. Our earthquake potential model which accounts for historic creep rate, microseismicity distribution, and geodetic data, suggests that enough strain may now be available for large magnitude earthquakes (magnitude 6.8 in the northern (1836?) segment, 6.7 in the southern (1868) segment, and 7.0 for both). Thus despite surficial creep, the fault may be

  9. Creep events and creep noise in gravitational-wave interferometers: Basic formalism and stationary limit

    NASA Astrophysics Data System (ADS)

    Levin, Yuri

    2012-12-01

    In gravitational-wave interferometers, test masses are suspended on thin fibers which experience considerable tension stress. Sudden microscopic stress release in a suspension fiber, which I call a “creep event,” would excite motion of the test mass that would be coupled to the interferometer’s readout. The random test-mass motion due to a time sequence of creep events is referred to as “creep noise.” In this paper I present an elastodynamic calculation for the test-mass motion due to a creep event. I show that within a simple suspension model, the main coupling to the optical readout occurs via a combination of a “dc” horizontal displacement of the test mass and excitation of the violin and pendulum modes, and not, as was thought previously, via lengthening of the fiber. When the creep events occur sufficiently frequently and their statistics is time independent, the creep noise can be well approximated by a stationary Gaussian random process. I derive the functional form of the creep noise spectral density in this limit, with the restrictive assumption that the creep events are statistically independent from each other.

  10. Creep behavior of epoxy resin during irradiation at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Nishiura, Tetsuya; Nishijima, Shigehiro; Okada, Toichi

    1999-11-01

    Creep tests of an epoxy resin during bending and irradiation have been carried out to investigate the synergistic effects of radiation and stress on mechanical properties of the resin. Simultaneous application of stress and irradiation on the epoxy resin enhanced creep rates in comparison with the application of stress on an irradiated sample. In order to clarify the mechanism of the radiation-induced creep, measurements of solvent swelling of specimens have been performed. The swelling increased with the dose and the increase of the swelling corresponds to the increase of the chain scission. The mechanism of increased deformation of the resin during irradiation is proposed to be caused by increased chain scission following the release of the local strain energy.

  11. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Hochella, W. A.; Lytton, J. L.

    1973-01-01

    The techniques of electron microscopy were used to examine the microstructural changes which occur during primary creep for two important types of engineering alloys: (1) alloys strengthened by solid-solution additions, and (2) dispersion-strengthened alloys. The metals chosen for study are unalloyed titanium, Ti-6Al-4V, and the cobalt-base alloy, Haynes 188. Results to date on NGR 47-004-108 show that development of prior dislocation substructure in Haynes 188 by 10% prestrain and annealing for one hour at 1800 F increases the time to reach 0.5% creep strain at 1600 F by more than an order of magnitude for creep stresses from 3 to 20 ksi. For creep at 1800 F, similar results were obtaind for stresses above 7 ksi, but the prior substructure decreases creep resistance below 7 ksi. This effect appears to be related to instability of grain structure at 1800 F in prestrained material.

  12. Tensile creep and creep fracture of a fiber-reinforced SiC/SiC composite

    SciTech Connect

    Wilshire, B.; Carreno, F.; Percival, M.J.L.

    1998-08-11

    Several studies have been completed on silicon carbide fiber-reinforced silicon carbide (SiC{sub f}/SiC) composites produced with carbon-coated fibres having a 0/90{degree} architecture. Yet, while mechanical property measurements have been made at temperatures up to 1,473K in air and argon high-temperature creep tests have been carried out only under protective atmospheres. To clarify the creep behavior patterns displayed by continuous-fiber-reinforced CMCs, while simultaneously providing information relevant to aeroengine turbine design, the tensile creep and creep fracture properties of a 0/90{degree} SiC{sub f}/SiC composite have been determined over a stress range giving creep rupture lives up to approximately 2,000 hours in air at 1,573K.

  13. Small Punch Creep Studies for Optimization of Nitrogen Content in 316LN SS for Enhanced Creep Resistance

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Ganesh Kumar, J.; Ganesan, V.; Laha, K.

    2014-02-01

    Small punch creep (SPC) studies have been carried out to evaluate the creep properties of 316LN stainless steel (SS) at 923 K (650 °C) at various stress levels. The results have been compared with uniaxial creep rupture data obtained from conventional creep tests. The minimum deflection rate was found to obey Norton power law. SPC rupture life was correlated with uniaxial creep rupture life. The influence of nitrogen content on the creep rupture properties of 316LN SS was investigated in the range of 0.07 to 0.14 wt pct. SPC rupture life increased and the minimum deflection rate decreased with the increase in nitrogen content. The trends were found to be in agreement with the results obtained from uniaxial creep rupture tests. These studies have established that SPC is a fast and reliable technique to screen creep properties of different experimental heats of materials for optimizing the chemical composition for developing creep-resistant materials.

  14. Effect of solute interactions in columbium /Nb/ on creep strength

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The creep strength of 17 ternary columbium (Nb)-base alloys was determined using an abbreviated measuring technique, and the results were analyzed to identify the contributions of solute interactions to creep strength. Isostrength creep diagrams and an interaction strengthening parameter, ST, were used to present and analyze data. It was shown that the isostrength creep diagram can be used to estimate the creep strength of untested alloys and to identify compositions with the most economical use of alloy elements. Positive values of ST were found for most alloys, showing that interaction strengthening makes an important contribution to the creep strength of these ternary alloys.

  15. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  16. Granular controls of hillslope deformation and creep

    NASA Astrophysics Data System (ADS)

    Ferdowsi, B.; Jerolmack, D. J.; Ortiz, C. P.

    2015-12-01

    Sediment transport on hillslopes has been described as "creep", and has been modeled as a "diffusive" process by invoking random disturbance of soil in the presence of a gradient. In this framework, physical and biological agents are envisioned to cause dilation of the soil that is greatest at the surface and decays with depth. Thus, there is a kind of internal energy of the sediment that allows flow, even below the angle of repose. This transport has not yet been connected, however, to the more general phenomenon of creep in disordered, particulate systems. Work in such "soft matter" materials has shown that disordered solids are fragile, and may deform slowly by localized particle rearrangement under static loads much smaller than the yield stress at which fluid-like flow occurs. The transition from creep to granular flow has not been thoroughly examined. Here we use particle dynamics simulations to examine creep and granular flow dynamics and the transition between them, and to test the ability of a granular physics model to describe observations of hillslope soil creep. We employ a well-developed discrete element model, with frictional and over-damped interactions among grains to approximate the conditions of earth hillslopes. Transient and equilibrium particle dynamics are described for a range of inclination angles that transit the angle of repose. We verify that sub-threshold creep occurs, even in the absence of internal energy, and describe its dynamic signature. Moreover, simulations show that the transition from creeping to a sustained granular flow is continuous as the angle of repose is crossed. We then perturb the granular system with acoustic vibrations, to directly compare the model with previously-reported laboratory experiments of acoustically-driven hillslope transport. We test the ability of the model to reproduce the heuristic nonlinear hillslope flux law. Results reveal that the bulk movement of hillslope sediment over long timescales may be

  17. A Unified View of Engineering Creep Parameters

    SciTech Connect

    Eno, Daniel R.; Young, George A.; Sham, Sam

    2008-01-01

    Creep data are often analyzed using derived engineering parameters to correlate creep life (either time to rupture, or time to a specified strain) to applied stress and temperature. Commonly used formulations include Larson-Miller, Orr-Sherby-Dorn, Manson-Haferd, and Manson-Succop parameterizations. In this paper, it is shown that these parameterizations are all special cases of a common general framework based on a linear statistical model. Recognition of this fact allows for statistically efficient estimation of material model parameters and quantitative statistical comparisons among the various parameterizations in terms of their ability to fit a material database, including assessment of a stress-temperature interaction in creep behavior. This provides a rational basis for choosing the best parameterization to describe a particular material. Furthermore, using the technique of maximum likelihood estimation to estimate model parameters allows for a statistically proper treatment of runouts in a test database via censored data analysis methods, and for construction of probabilistically interpretable upper and lower bounds on creep rate. A generalized Larson-Miller formulation is developed, which is comparable in complexity to the Manson-Haferd parameter, but utilizes a reciprocal temperature dependence. The general framework for analysis of creep data is illustrated with analysis of Alloy 617 and Alloy 230 test data.

  18. Unified creep-plasticity model for halite

    SciTech Connect

    Krieg, R. D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior.

  19. Sources of Variation in Creep Testing

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  20. A Phenomenological Description of Primary Creep in Class M Materials

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Freed, A. D.

    1999-01-01

    Observations of creep microstructures in the primary creep region in class M materials show a remarkable similarity with those formed in the exponential creep regime. As a result, it is proposed that the constitutive creep law for normal primary creep is similar to that for the exponential creep regime. A phenomenological description is discussed to rationalize these microstructural observations in terms of a normalized strain rate vs. stress plot. The implications of this plot in describing different testing procedures, steady-state flow, and on the observed deviations from the universal creep law are discussed. The plot is also extended to explain the observed similarities in the transient creep behavior in pre-strained materials and in stress change experiments.

  1. Creep on a composite resin in water.

    PubMed

    Hirano, S; Hirasawa, T

    1989-06-01

    The compressive creep test of a composite resin (0-3.5 kg/mm2 stress levels) was conducted in water for 500 h. Linear regressions were obtained between the creep strains and the compressive stress levels at various hours. It is possible to predict the creep strain of the composite from the regression when it reaches water absorbed equilibrium after 500 h. The stress of the hygroscopic expansion was calculated from the linear regressions. The maximum stress due to the hygroscopic examination of the composite was 0.74 kg/mm2 at equilibrium of the water absorbed of the composite. The linear regressions at several compressive stress levels were obtained within 30-50 hr in the strain-log time diagrams. PMID:2638964

  2. Fluctuations and Scaling in Creep Deformation

    NASA Astrophysics Data System (ADS)

    Rosti, Jari; Koivisto, Juha; Laurson, Lasse; Alava, Mikko J.

    2010-09-01

    The spatial fluctuations of deformation are studied in the creep in Andrade’s power law and the logarithmic phases, using paper samples. Measurements by the digital image correlation technique show that the relative strength of the strain rate fluctuations increases with time, in both creep regimes. In the Andrade creep phase characterized by a power-law decay of the strain rate γt˜t-θ, with θ≈0.7, the fluctuations obey Δγt˜t-γ, with γ≈0.5. The local deformation follows a data collapse appropriate for a phase transition. Similar behavior is found in a crystal plasticity model, with a jamming or yielding transition.

  3. Creep on a composite resin in water.

    PubMed

    Hirano, S; Hirasawa, T

    1989-06-01

    The compressive creep test of a composite resin (0-3.5 kg/mm2 stress levels) was conducted in water for 500 h. Linear regressions were obtained between the creep strains and the compressive stress levels at various hours. It is possible to predict the creep strain of the composite from the regression when it reaches water absorbed equilibrium after 500 h. The stress of the hygroscopic expansion was calculated from the linear regressions. The maximum stress due to the hygroscopic examination of the composite was 0.74 kg/mm2 at equilibrium of the water absorbed of the composite. The linear regressions at several compressive stress levels were obtained within 30-50 hr in the strain-log time diagrams.

  4. Creep turns linear in narrow ferromagnetic nanostrips

    PubMed Central

    Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; Van Waeyenberge, Bartel

    2016-01-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media. PMID:26843125

  5. Porosity evolution in a creeping single crystal

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Needleman, A.

    2012-04-01

    Experimental observations on tensile specimens in Srivastava et al (2012 in preparation) indicated that the growth of initially present processing induced voids in a nickel-based single crystal superalloy played a significant role in limiting creep life. Also, creep tests on single crystal superalloy specimens typically show greater creep strain rates and/or reduced creep life for thinner specimens than predicted by current theories. In order to quantify the role of void growth in single crystals in creep loading, we have carried out three-dimensional finite deformation finite element analyses of unit cells containing a single initially spherical void. The materials are characterized by a rate-dependent crystal plasticity constitutive relation accounting for primary and secondary creep. Two types of imposed loading are considered: an applied true stress (force/unit current area) that is time independent; and an applied nominal stress (force/unit initial area) that is time independent. Isothermal conditions are assumed. The evolution of porosity is calculated for various values of stress triaxiality and of the Lode parameter. The evolution of porosity with time is sensitive to whether constant true stress or constant nominal stress loading is applied. However, the evolution of porosity with the overall unit cell strain is insensitive to the mode of loading. At high values of stress triaxiality, the response is essentially independent of the value of the Lode parameter. At sufficiently low values of the stress triaxiality, the porosity evolution depends on the value of the Lode parameter and void collapse can occur. Also, rather large stress concentrations can develop which could play a role in the observed thickness dependence.

  6. Quantum Creep and Quantum-Creep Transitions in 1D Sine-Gordon Chains.

    PubMed

    Krajewski, Florian R; Müser, Martin H

    2004-01-23

    Discrete sine-Gordon (SG) chains are studied with path-integral molecular dynamics. Chains commensurate with the substrate show the transition from pinning to quantum creep at bead masses slightly larger than in the continuous SG model. Within the creep regime, a field-driven transition from creep to complete depinning is identified. The effects of disorder on the chain's dynamics depend on the potential's roughness exponent H. For example, quantum fluctuations are generally too small to depin the chain if H=1/2, while an H=0 chain can be pinned or unpinned depending on the bead masses. Thermal fluctuations always depin the chain. PMID:14753858

  7. Algorithms for elasto-plastic-creep postbuckling

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1984-01-01

    This paper considers the development of an improved constrained time stepping scheme which can efficiently and stably handle the pre-post-buckling behavior of general structure subject to high temperature environments. Due to the generality of the scheme, the combined influence of elastic-plastic behavior can be handled in addition to time dependent creep effects. This includes structural problems exhibiting indefinite tangent properties. To illustrate the capability of the procedure, several benchmark problems employing finite element analyses are presented. These demonstrate the numerical efficiency and stability of the scheme. Additionally, the potential influence of complex creep histories on the buckling characteristics is considered.

  8. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  9. Creep deformation at crack tips in elastic-viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Riedel, H.

    1981-02-01

    THE EVALUATION of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C∗h, can be defined which correlates the near-tip field to the applied load. It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K 1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C∗h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C∗ is the relevant load parameter for predominantly secondary creep of the whole specimen.

  10. Analysis of available creep and creep-rupture data for commercially heat-treated alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    The Ni-Cr-Fe-Nb alloy 718 is a widely used material in elevated- temperature applications. Currently, it is approved by the American Society of Mechanical Engineers ASME Boiler and Pressure Vessel Code only as a bolting material for elevated-temperature nuclear service. This report presents analyses of available creep and creep-rupture data for commercially heat-treated alloy 718 toward the development of allowable stress levels for this material in general elevated-temperature nuclear service. Available data came from 14 heats of bar, plate, and forging material over the temperature range from 538 to 704{degrees}C. The longest rupture time encompassed by the data was almost 87,000 h. Generalized regression analyses were performed to yield an analytical expression for rupture life as a function of stress and temperature. Heat-to-heat variations were accounted for by lot-centering'' the data. Effects of different solution heat treatment temperatures (T{sub s}) were accounted for by normalizing the creep stresses to the data for T{sub s} = 954{degrees}C. Thus, the results are strictly applicable only for material with this solution treatment. Time and strain to tertiary creep were predicted as functions of rupture life. Creep strain-time data were represented by normalization to the time and strain to tertiary creep and development of master creep curves.'' The results allow estimation of time-dependent allowable stress per American Society of Mechanical Engineers Code Class N-47, and the creep strain-time relationships can be used to develop isochronous stress-strain curves. 29 refs., 44 figs., 14 tabs.

  11. First principles model of carbonate compaction creep

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Dysthe, Dag Kristian; Jamtveit, Bjørn

    2016-05-01

    Rocks under compressional stress conditions are subject to long-term creep deformation. From first principles we develop a simple micromechanical model of creep in rocks under compressional stress that combines microscopic fracturing and pressure solution. This model was then upscaled by a statistical mechanical approach to predict strain rate at core and reservoir scale. The model uses no fitting parameter and has few input parameters: effective stress, temperature, water saturation porosity, and material parameters. Material parameters are porosity, pore size distribution, Young's modulus, interfacial energy of wet calcite, the dissolution, and precipitation rates of calcite, and the diffusion rate of calcium carbonate, all of which are independently measurable without performing any type of deformation or creep test. Existing long-term creep experiments were used to test the model which successfully predicts the magnitude of the resulting strain rate under very different effective stress, temperature, and water saturation conditions. The model was used to predict the observed compaction of a producing chalk reservoir.

  12. Experimental pressure solution creep of polymineralic aggregates

    NASA Astrophysics Data System (ADS)

    Zoubtsov, S.; Renard, F.; Gratier, J.-P.; Guiguet, R.; Dysthe, D. K.; Traskine, V.

    2003-04-01

    Unexpected creep behavior is obtained when experimentally compacting an aggregate containing two different minerals. Sieved mixtures of calcite and halite grains are experimentally compacted in pressure cells in the presence of a saturated aqueous solution. The individual halite grains deform easily by pressure solution creep whereas calcite grains act as hard objects and resist compaction. The fastest rate of compaction of the mixed aggregates is not obtained for a 100% halite aggregate but for a content of halite grains between 45% and 75%. This unusual creep behavior reflects the competition between two mechanisms at the grain scale: intergranular pressure solution at grain contacts and grain boundary healing between halite grains that prevent further compaction. Our experimental data can be used to estimate the relative rates of pressure solution and contact healing on halite crystals. Moreover, we can describe this effect with a single unknown parameter that represents surface effects of pressure solution at various contacts. This behaviour has fundamental implications for the rheological properties of rocks of the earth's crust which can be monomineralic or which can be the result of a mixing of different minerals, as in the case of a fault gouge for example. Key words: compaction, diagenesis, pressure solution, creep

  13. Estimation of long-term creep behavior of salt

    SciTech Connect

    Chun, R.C.

    1980-08-01

    A computer routine for both primary and secondary creep laws has been developed using a modified strain hardening law. The computations reveal that results from Heard's steady-state creep law and Lomenick and Bradshaw's primary creep law can differ from each other by a factor of thirty after about 6 hours of creep deformation, but the difference diminishes as time becomes large. The belief that these two creep laws may yield long-term results that are orders of magnitude apart is shown to be unfounded.

  14. Creep and Environmental Effects on High Temperature Creep-Fatigue Behavior of Alloy 617

    SciTech Connect

    L. J. Carroll; C. Cabet; R. Madland; R. Wright

    2011-06-01

    Alloy 617 is the leading candidate material for Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR), expected to have an outlet temperature as high as 950 C. System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior in both air and impure helium, representative of the VHTR primary coolant. Strain controlled LCF tests including hold times at maximum tensile strain were conducted at total strain range of 0.3% in air at 950 C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The fatigue resistance decreased when a hold time was added at peak tensile stress, consistent with the observed change in fracture mode from transgranular to intergranular with introduction of a tensile hold. Increases in the tensile hold time, beyond 180 sec, was not detrimental to the creep-fatigue resistance. Grain boundary damage in the form of grain boundary cracking was present in the bulk of the creep-fatigue specimens. This bulk cracking was quantified and found to be similar for hold times of up to 1800 sec consistent with the saturation in failure lives and rapid stress relaxation observed during the creep portion of the creep-fatigue cycle.

  15. Creep deformation mechanism mapping in nickel base disk superalloys

    DOE PAGES

    Smith, Timothy M.; Unocic, Raymond R.; Deutchman, Hallee; Mills, Michael J.

    2016-05-10

    We investigated the creep deformation mechanisms at intermediate temperature in ME3, a modern Ni-based disk superalloy, using diffraction contrast imaging. Both conventional transmission electron microscopy (TEM) and scanning TEM were utilised. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815 °C and at stresses ranging from 274 to 724 MPa. Both polycrystalline and single-crystal creep tests were conducted. The single-crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760 °C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsicmore » stacking faults. In contrast, these faulting modes occurred much less frequently during creep at 815 °C under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behaviour and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760 °C and above, where the secondary coarsened and the tertiary precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasising the influence of stress and temperature on the underlying creep mechanisms.« less

  16. Tensile Creep of Polycrystalline Near-Stoichiometric NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2002-01-01

    Long term tensile creep studies were conducted on binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed depending on stress and temperature. It was concluded that the creep of NiAl is limited by dislocation mobility. The stress exponent for creep, n, increased from 5.5 at 1200 K to 13.9 at 700 K. The true activation energy for creep, Qc, was constant and equal to about 400 kJ per mole between 20 and 50 MPa but decreased to a constant value of 250 kJ per mole between 50 and 110 MPa. The activation energy was observed to be stress dependent above 110 MPa. The tensile creep results reported in this investigation were compared with compression creep data reported in the literature. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable nature of the atom vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  17. Nonlinear creep damage constitutive model for soft rocks

    NASA Astrophysics Data System (ADS)

    Liu, H. Z.; Xie, H. Q.; He, J. D.; Xiao, M. L.; Zhuo, L.

    2016-06-01

    In some existing nonlinear creep damage models, it may be less rigorous to directly introduce a damage variable into the creep equation when the damage variable of the viscous component is a function of time or strain. In this paper, we adopt the Kachanov creep damage rate and introduce a damage variable into a rheological differential constitutive equation to derive an analytical integral solution for the creep damage equation of the Bingham model. We also propose a new nonlinear viscous component which reflects nonlinear properties related to the axial stress of soft rock in the steady-state creep stage. Furthermore, we build an improved Nishihara model by using this new component in series with the correctional Nishihara damage model that describes the accelerating creep, and deduce the rheological constitutive relation of the improved model. Based on superposition principle, we obtain the damage creep equation for conditions of both uniaxial and triaxial compression stress, and study the method for determining the model parameters. Finally, this paper presents the laboratory test results performed on mica-quartz schist in parallel with, or vertical to the schistosity direction, and applies the improved Nishihara model to the parameter identification of mica-quartz schist. Using a comparative analysis with test data, results show that the improved model has a superior ability to reflect the creep properties of soft rock in the decelerating creep stage, the steady-state creep stage, and particularly within the accelerating creep stage, in comparison with the traditional Nishihara model.

  18. Soil creep as factor of landscape change

    NASA Astrophysics Data System (ADS)

    Lucke, Bernhard

    2016-04-01

    Many erosion models assume that soils are transported grain-by-grain, and thus calculate loss and deposition according to parameters such as bulk density and average grain size. However, there are indications that clay-rich soils, such as the widespread Red Mediterranean Soils or Terrae Rossae, behave differently. This is illustrated by a case study of historic landscape changes in Jordan, where evidence for soil creep as main process of soil movement was found in the context of ancient cemeteries. Due to a dominance of smectites, the Red Mediterranean Soils in this area shrink and form cracks during the dry period. Because of the cracks and underlying limestone karst, they can swallow strong rains without high erosion risk. However, when water-saturated, these soils expand and can start creeping. Buried geoarchaeological features like small water channels on formerly cleared rocks suggest that soils can move a few cm uplslope when wet, and buried graves illustrate that soil creep can create new level surfaces, sealing cavities but not completely filling them. Such processes seem associated with slumping and earth flows as instable rocks might collapse under the weight of a creeping soil. While it is very difficult to measure such processes, landscape archaeology offers at least an indirect approach that could be suited to estimate the scale and impact of soil creep. Analogies with modern rainfalls, including record levels of precipitation during the winter 1991/1992, indicate that similar levels of soil moisture have not been reached during times of modern instrumental rainfall monitoring. This suggests that very strong deluges must have occurred during historical periods, that could potentially cause tremendous damage to modern infrastructure if happening again.

  19. Impression creep characterization of TiAl weldments

    SciTech Connect

    Gibbs, W.S.; Aikin, R.M. Sr.; Martin, P.L.; Patterson, R.A.

    1990-01-01

    The Impression Creep technique has been applied to XD{trademark} TiAl weldments to evaluate the local creep resistance of the fusion zone and the heat affected zone. The material used in this study was TiAl produced by Martin Marietta Research Laboratories, using their patented ingot processing which incorporates 1 to 10 {mu}m diameter particles of carbide, nitride or boride compounds. The impression creep technique uses a small indenter to locally evaluate the creep resistance of the heterogeneous microstructure developed during the welding process. The indenters used in this investigation were 1 mm in diameter. Results obtained from the impression creep tests are compared to results obtained from constant stress tensile creep tests on the base material. Creep resistance of the heat affected zone and the fusion zone are compared to and contrasted with the base material strength. 19 refs., 2 figs., 2 tabs.

  20. Mechanical behavior of low porosity carbonate rock: from brittle creep to ductile creep

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2013-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this experimental study, we focus on the mechanical behavior of a low porosity (9%) white Tavel (France) carbonate rock (>98% calcite) at P-Q conditions beyond the elastic domain. It has been shown that in sandstones composed of quartz, cracks are developing under these conditions. However, in carbonates, calcite minerals can meanwhile also exhibit microplasticity. The samples were deformed in the triaxial cell of the Ecole Normale Superieure de Paris at effective confining pressures ranging from 35 MPa to 85 MPa and room temperature. Experiments were carried on dry and water saturated samples to explore the role played by the pore fluids. Time dependency was investigated by a creep steps methodology: at each step, differential stress was increased rapidly and kept constant for at least 24h. During these steps elastic wave velocities (P and S) and permeability were measured continuously. Our results show two different creep behaviors: (1) brittle creep is observed at low confining pressures, whereas (2) ductile creep is observed at higher confining pressures. These two creep behaviors have a different signature in term of elastic wave velocities and permeability changes. Indeed, in the brittle domain, the primary creep is associated with a decrease of elastic wave velocities and an increase of permeability, and no secondary creep is observed. In the ductile domain, the primary creep

  1. Investigation of Uncertainty from Creep and Creep Recovery of Force Calibration Result in Accordance with ISO 376:2011

    NASA Astrophysics Data System (ADS)

    Chaemthet, Kittipong; Amornsakun, Chanchai; Sumyong, Noppadon; Changpan, Tawat; Heamawatanachai, Sumet

    This paper presents an investigation of the uncertainties from creep and creep recovery of force proving instruments calibrated at NIMT in year 2012 and 2013. In this study, the NIMT's 100kN deadweight force standard machine was used as a standard to calibrate force proving instruments (from various manufacturers and models) in accordance with ISO 376:2011. The comparison of creep uncertainties calculated from creep measured at maximum load (Cmax), creep recovery measured at zero load (Czero) and reversibility errors were also investigated. The results of this study show that, for most of the calibration results (>60%), the maximum value between WCmax/WCzero and WCzero/WCmax were larger than 2. Indicating that, WCmax and WCzero could not assume to be equal. For the comparison between creep uncertainties calculated from creep error and reversibility error, more than 80% of the calibration results, the creep uncertainties calculated from reversibility were larger than 3 time of the calculated values form creep measurement. These gave conclusion that, for the unknown history of creep and reversibility characteristic of instruments, it is more appropriate to estimate the uncertainty of creep from reversibility error.

  2. Tensile creep and creep rupture behavior of monolithic and SiC-whisker-reinforced silicon nitride ceramics

    SciTech Connect

    Ohji, Tatsuki; Yamauchi, Yukihiko )

    1993-12-01

    The tensile creep and creep rupture behavior of silicon nitride was investigated at 1,200 to 1,350 C using hot-pressed materials with and without SiC whiskers. Stable steady-state creep was observed under low applied stresses at 1,200 C. Accelerated creep regimes, which were absent below 1,300 C, were identified above that temperature. The appearance of accelerated creep at the higher temperatures attributable to formation of microcracks throughout a specimen. The whisker-reinforced material exhibited better creep resistance than the monolith at 1,200 C. Considerably high values 3 to 5, were obtained for the creep exponent in the overall temperature range. The exponent tended to decrease with decreasing applied stress at 1,200 C. The primary creep mechanism was considered cavitation-enhanced creep. Specimen lifetimes followed the Monkman-Grant relationship except for fractures with large accelerated creep regimes. The creep rupture behavior is discussed in association with cavity formation and crack adolescence.

  3. Axial creep-rupture time of boron-aluminum composites

    SciTech Connect

    Goda, Koichi; Hamada, Jun`ichi

    1995-11-01

    Axial creep tests of a 10vol% boron-aluminum hotpressed monolayer composite were carried out under several constant loads at 300 C in air. The composite behaved with slight primary creep, but did not show appreciable secondary creep. Several specimens encountered a momentary increase of strain during the creep test which separated the creep curve into two regions, because of the individual fiber breaks in the composite. And then, almost all the specimens suddenly fractured without tertiary creep. From the viewpoint of reliability engineering the statistical properties of the creep-rupture time were investigated. The average creep-rupture time decreased with an increase in the applied stress, and the relatively large coefficient of variation was estimated in every case, being around 1,000%. However, these scatters were estimated to be smaller than the scatter of creep-rupture time in the boron fiber itself. That means, the reliability of the fiber`s creep-rupture time is improved by compositing with matrix material.

  4. Creep contributes to the fatigue behavior of bovine trabecular bone.

    PubMed

    Bowman, S M; Guo, X E; Cheng, D W; Keaveny, T M; Gibson, L J; Hayes, W C; McMahon, T A

    1998-10-01

    Repetitive, low-intensity loading from normal daily activities can generate fatigue damage in trabecular bone, a potential cause of spontaneous fractures of the hip and spine. Finite element models of trabecular bone (Guo et al., 1994) suggest that both creep and slow crack growth contribute to fatigue failure. In an effort to characterize these damage mechanisms experimentally, we conducted fatigue and creep tests on 85 waisted specimens of trabecular bone obtained from 76 bovine proximal tibiae. All applied stresses were normalized by the previously measured specimen modulus. Fatigue tests were conducted at room temperature; creep tests were conducted at 4, 15, 25, 37, 45, and 53 degrees C in a custom-designed apparatus. The fatigue behavior was characterized by decreasing modulus and increasing hysteresis prior to failure. The hysteresis loops progressively displaced along the strain axis, indicating that creep was also involved in the fatigue process. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates. Strong and highly significant power-law relationships were found between cycles-to-failure, time-to-failure, steady-state creep rate, and the applied loads. Creep analyses of the fatigue hysteresis loops also generated strong and highly significant power law relationships for time-to-failure and steady-state creep rate. Lastly, the products of creep rate and time-to-failure were constant for both the fatigue and creep tests and were equal to the measured failure strains, suggesting that creep plays a fundamental role in the fatigue behavior of trabecular bone. Additional analysis of the fatigue strain data suggests that creep and slow crack growth are not separate processes that dominate at high and low loads, respectively, but are present throughout all stages of fatigue.

  5. Compression and Tensile Creep of Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2005-01-01

    Compression creep and long term tensile creep studies were conducted on cast and extruded binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed in both compression and tension creep depending on stress and temperature although an asymmetrical response was observed under these two stress states. It was concluded that the primary creep of NiAl is limited by dislocation mobility. The stress exponents, n, for compression and tensile creep were similar varying between about 5 and 14. However, there were significant differences in the stress dependence of the activation energies for compression and tensile creep. The true activation energy for tensile creep, Q(sub c), was constant and equal to about 400 kJ/mol between 20 and 50 MPa but decreased to a constant value of 250 kJ/mol between 50 and 110 MPa. The activation energy was observed to be inversely stress dependent above 110 MPa. In contrast, Q(sub c) = 300 kJ/mol for compression creep was constant between 25 and 70 MPa and inversely dependent on the true stress above 70 MPa. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable natures of the atom-vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  6. Micromechanics effects in creep of metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1995-12-01

    The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewski et al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law.

  7. The Creep of Laminated Synthetic Resin Plastics

    NASA Technical Reports Server (NTRS)

    Perkuhn, H

    1941-01-01

    The long-time loading strength of a number of laminated synthetic resin plastics was ascertained and the effect of molding pressure and resin content determined. The best value was observed with a 30 to 40 percent resin content. The long-time loading strength also increases with increasing molding pressure up to 250 kg/cm(exp 2); a further rise in pressure affords no further substantial improvement. The creep strength is defined as the load which in the hundredth hour of loading produces a rate of elongation of 5 X 10(exp -4) percent per hour. The creep strength values of different materials were determined and tabulated. The effect of humidity during long-term tests is pointed out.

  8. A universal function of creep rate

    NASA Astrophysics Data System (ADS)

    Li, Jing-Tian; Rong, Xi-Ming; Wang, Jian-Lu; Zhang, Bang-Qiang; Ning, Xi-Jing

    2015-09-01

    In this paper, we derive a universal function from a model based on statistical mechanics developed recently, and show that the function is well fitted to all the available experimental data which cannot be described by any function previously established. With the function predicting creep rate, it is unnecessary to consider which creep mechanism dominates the process, but only perform several experiments to determine the three constants in the function. It is expected that the new function would be widely used in industry in the future. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274073 and 51071048), the Shanghai Leading Academic Discipline Project, China (Grant No. B107), and the Key Discipline Innovative Training Program of Fudan University, China.

  9. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  10. Creep, compressibility differences emerging in geothermal studies

    SciTech Connect

    Not Available

    1983-11-01

    This article discusses geopressured formations situated at depths of 12,000 to 15,000 feet and below. The trapped formations, in which enormous pressure and heat have built up, consist mainly of sandstones containing salty water and dissolved methane gas. Studies of geopressured rocks have revealed nonlinear variations in compressibility, creep, permeability, resistivity, and other factors related to flow rates and reservoir characterization. Compressibility and creep are tested by placing salt water and a sample of sandstone in a pressure vessel that simulates geopressured conditions. Rock compaction studies are being conducted at elevated temperatures (385/sup 0/F) in order to determine how compressibility and other rock behavior are affected by geopressured temperature. It is suggested that the geopressuredgeothermal formations that lie along the curve of the US Gulf Coast could provide a new source of energy.

  11. The effect of dissolved magnesium on creep of calcite II: transition from diffusion creep to dislocation creep

    NASA Astrophysics Data System (ADS)

    Xu, Lili; Renner, Jörg; Herwegh, Marco; Evans, Brian

    2009-03-01

    We extended a previous study on the influence of Mg solute impurity on diffusion creep in calcite to include deformation under a broader range of stress conditions and over a wider range of Mg contents. Synthetic marbles were produced by hot isostatic pressing (HIP) mixtures of calcite and dolomite powders for different intervals (2-30 h) at 850°C and 300 MPa confining pressure. The HIP treatment resulted in high-magnesian calcite aggregates with Mg content ranging from 0.5 to 17 mol%. Both back-scattered electron images and chemical analysis suggested that the dolomite phase was completely dissolved, and that Mg distribution was homogeneous throughout the samples at the scale of about two micrometers. The grain size after HIP varied from 8 to 31 μm, increased with time at temperature, and decreased with increasing Mg content (>3.0 mol%). Grain size and time were consistent with a normal grain growth equation, with exponents from 2.4 to 4.7, for samples containing 0.5-17.0 mol% Mg, respectively. We deformed samples after HIP at the same confining pressure with differential stresses between 20 and 200 MPa using either constant strain rate or stepping intervals of loading at constant stresses in a Paterson gas-medium deformation apparatus. The deformation tests took place at between 700 and 800°C and at strain rates between 10-6 and 10-3 s-1. After deformation to strains of about 25%, a bimodal distribution of large protoblasts and small recrystallized neoblasts coexisted in some samples loaded at higher stresses. The deformation data indicated a transition in mechanism from diffusion creep to dislocation creep. At stresses below 40 MPa, the strength was directly proportional to grain size and decreased with increasing Mg content due to the reductions in grain size. At about 40 MPa, the sensitivity of log strain rate to log stress, ( n), became greater than 1 and eventually exceeded 3 for stresses above 80 MPa. At a given strain rate and temperature, the stress at

  12. An automated system for creep testing

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier; Weigman, Bernard J.

    1992-01-01

    A completely automated data collection system was devised to measure, analyze, and graph creep versus time using a PC, a 16 channel multiplexed analog to digital converter, and low friction potentiometers to measure length. The sampling rate for each experiment can be adjusted in the software to meet the needs of the material tested. Data is collected and stored on a diskette for permanent record and also for later data analysis on a different machine.

  13. Magnetic field annealing for improved creep resistance

    DOEpatents

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  14. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  15. The role of creep in high temperature low cycle fatigue.

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Spera, D. A.

    1971-01-01

    The significance of the role that creep can play in governing high-temperature, low-cycle fatigue resistance is investigated by conducting strain cycling tests on two high-temperature stainless steel alloys and making concurrent measurements of stress, temperature, and strain at various frequencies. The results are then analyzed in terms of damage imposed by creep and fatigue components. It is shown that creep can play an important and sometimes dominant role in low cycle fatigue at high temperatures. The results of the study include the findings that: (1) the simple life-fraction theory described is adequate for calculating creep damage when the cyclic creep rupture curve is used as a basis for analysis; (2) a method of universal slopes originally developed for room temperature use is sufficiently accurate at high temperature to be used to calculate pure fatigue damage; and (3) a linear creep-fatigue damage rule can explain the transitions observed from one failure mode to another.

  16. Flux Creep and Giant Flux Creep in High Tc Hg,Pb-based Superconductors

    NASA Astrophysics Data System (ADS)

    Kirven, Douglas; Owens, Frank; Iqbal, Z.; Bleiweiss, M.; Lungu, A.; Datta, T.

    1996-03-01

    Dynamic behavior of the trapped flux in fields of up to 17.5 T was studied in a set of Hg-Pb based superconductors with a Tc in excess of 130 K. Depending on the experimental conditions, both creep and giant flux creep dynamics were observed. Results were analyzed using to standard models such as Anderson-Kim and giant-flux creep models (GFC). The plots of relaxation rate of remnant magnetization versus temperature show a peak below Tc. These results were compared with other Cu-O compounds. A distribution of activation energies was found from the magnetization rate. The activation energy distribution shows a peak around 50 K. The peak determines the temperature where the flux flow rate is a maximum. A universal relation of the resistive behavior was also found as a function of temperature and field. The zero-field/field-cooled results gave a reversibility curve that also obeyed a universal power relation.

  17. Transition between dislocation creep and diffusion creep in upper greenschist- to lower amphibolite-facies metacherts

    NASA Astrophysics Data System (ADS)

    Okudaira, T.; Ogawa, D.; Miyazaki, T.; Michibayashi, K.

    2009-12-01

    To clarify the dominant deformation mechanism in continental middle crust at an arc-trench system, we used an SEM-EBSD system to measure the lattice-preferred orientations of quartz grains in fine-grained (~10 μm) metachert from the low-grade (chlorite and chlorite-biotite zones) part of the Ryoke metamorphic belt, SW Japan. The metacherts are composed mainly by quartz (> 94 vol.%), with small amounts of chlorite, muscovite and biotite. Quartz grain-sizes vary from 9 to 20 μm in diameter; grain sizes of quartz are weakly related to quartz modal abundances. Quartz c-axis fabrics do not exhibit distinct patterns that could be formed by dislocation creep. Fabric intensities are calculated: values of fabric intensity index proposed by Lisle (1985) and those of by Skemer et al. (2005), that is 'M-index', are 0.060-0.074 and 0.027-0.073, respectively. These values are very small, indicating that the quartz c-axis fabric patterns are comparable with a random distribution. In these samples, there are deformed radiolarian fossils and they are used as strain marker to analyze strain geometry and magnitude of the metacherts. According to the results of strain analysis using Rφ-f method, k-value and strain magnitude are 0.4-1.0 and 0.6-0.7, respectively. The strain magnitude is enough to form distinct fabric patterns, when dislocation creep is a dominant deformation mechanism. Therefore, in the metachert samples studied here, it suggests that dominant deformation mechanism is not dislocation creep, but diffusion creep. Although, when the grain size of quartz is ~10 mm, shear stress is ~several tens megapascal and upper greenschist- to lower amphibolite-facies condition (~500°C at 200-300 MPa), it has been considered that high-strained natural quartzose rocks, e.g., quartz-rich layers in banded ultramylonites, deformed by dislocation creep, the very-fine grained metacherts from the Ryoke metamorphic belt formed under the upper greenschist- to lower amphibolite

  18. Creep behaviour of Cu-30 percent Zn at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1991-01-01

    The present, intermediate-temperature (573-823 K) range investigation of creep properties for single-phase Cu-30 percent Zn alpha-brass observed inverse, linear, and sigmoidal primary-creep transients above 573 K under stresses that yield minimum creep rates in the 10 to the -7th to 2 x 10 to the -4th range; normal primary creep occurred in all other conditions. In conjunction with a review of the pertinent literature, a detailed analysis of these data suggests that no clearly defined, classes M-to-A-to-M transition exists in this alloy notwithstanding the presence of both classes' characteristics under nominally similar stresses and temperatures.

  19. Creep behavior of Utah oil shale subject to uniaxial loading

    SciTech Connect

    Chong, K.P.; Dana, G.F.; Chen, J.L.

    1982-06-01

    This paper presents results of a study on the creep behavior of Utah oil shale. A Conbel Model 355 pneumatic driven testing machine is used. The set of duplicate test specimens required for creep testing were cut from a single oil shale layer using a wire saw to avoid any surface damage. A rheological model was developed for creep behavior of oil shale as a function of stress level and organic content. Data from creep testing and Fischer assay analyses were used to demonstrate correlation between various stress levels and organic contents for samples taken from the Mahogany Zone of the Parachute Creek Member in Utah's Cowboy Canyon.

  20. Contribution to irradiation creep arising from gas-driven bubbles

    SciTech Connect

    Woo, C.H.; Garner, F.A.

    1998-03-01

    In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantial creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.

  1. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    SciTech Connect

    Tai Asayama; Yukio Tachibana

    2007-09-30

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  2. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Powers, L. M.; Jadaan, O. M.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilized commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the CARES/CREEP (Ceramics Analysis and Reliability Evaluation of Structures/CREEP) integrated design programs, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benechmark problems and engine components are included.

  3. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Powers, L. M.; Jadaan, O. M.; Gyekenyesi, J. P.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural application such as in advanced turbine engine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilizes commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life, of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the Ceramics Analysis and Reliability Evaluation of Structures/CREEP (CARES/CREEP) integrated design program, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benchmark problems and engine components are included.

  4. Assessment of Creep Events as Potential Earthquake Precursors: Application to the Creeping Section of the San Andreas Fault, California

    NASA Astrophysics Data System (ADS)

    Thurber, C.; Sessions, R.

    We report the analysis of over 16 years of fault creep and seismicity data from part of the creeping section of the San Andreas fault to examine and assess the temporal association between creep events and subsequent earthquakes. The goal is to make a long-term evaluation of creep events as a potential earthquake precursor. We constructed a catalog of creep events from available digital creepmeter data and compared it to a declustered seismicity catalog for the area between San Juan Bautista and San Benito, California, for 1980 to 1996. For magnitude thresholds of 3.8 and above and time windows of 5 to 10 days, we find relatively high success rates (40% to 55% 'hits') but also very high false alarm rates (generally above 90%). These success rates are statistically significant (0.0007 < P < 0.04). We also tested the actual creep event catalog against two different types of synthetic seismicity catalogs, and found that creep events are followed closely in time by earthquakes from the real catalog far more frequently than the average for the synthetic catalogs, generally by more than two standard deviations. We find no identifiable spatial pattern between the creep events and earthquakes that are hit or missed. We conclude that there is a significant temporal correlation between creep events and subsequent small to moderate earthquakes, however that additional information (such as from other potential precursory phenomena) is required to reduce the false alarm rate to an acceptable level.

  5. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    SciTech Connect

    Ren, W.; Brinkman, C.R.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  6. Variations in creep rate along the Hayward Fault, California, interpreted as changes in depth of creep

    USGS Publications Warehouse

    Simpson, R.W.; Lienkaemper, J.J.; Galehouse, J.S.

    2001-01-01

    Variations ill surface creep rate along the Hayward fault are modeled as changes in locking depth using 3D boundary elements. Model creep is driven by screw dislocations at 12 km depth under the Hayward and other regional faults. Inferred depth to locking varies along strike from 4-12 km. (12 km implies no locking.) Our models require locked patches under the central Hayward fault, consistent with a M6.8 earthquake in 1868, but the geometry and extent of locking under the north and south ends depend critically on assumptions regarding continuity and creep behavior of the fault at its ends. For the northern onshore part of the fault, our models contain 1.4-1.7 times more stored moment than the model of Bu??rgmann et al. [2000]; 45-57% of this stored moment resides in creeping areas. It is important for seismic hazard estimation to know how much of this moment is released coseismically or as aseismic afterslip.

  7. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Sommers, B. R.; Lytton, J. L.

    1977-01-01

    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.

  8. Mechanical response of ceramics to creep loading

    SciTech Connect

    Blumenthal, W.R.

    1983-08-01

    The mechanical response of small, semi-elliptical, identification-induced surface cracks in fine-grain alumina was studied. The deformation behavior of the crack tip region was monitored using crack opening and surface displacements. Results indicate values of the secondary creep exponent, n, between 1.5 and 2 with a temperature dependence consistent with secondary creep data from the same material. Crack growth was measured at 1300 and 1400/sup 0/C and a narrow power-law growth regime was revealed. Again the power-law exponent and activation energy were very close to creep values. Asymptotic behavior was exhibited near both K/sub Ic/ and K/sub th/, the crack growth threshold. The threshold occurred near 0.4 K/sub Ic/, independent of temperature. Crack tip damage in the form of grain boundary cavities growing by diffusion was responsible for crack extension. The damage also exerts a strong influence on the displacement field as predicted by recent theories. The crack growth threshold is preceded by a transition in the size and distribution of damage. At K/sub I/ near K/sub Ic/ the damage is restricted to a few facets directly ahead of the crack tip. Near K/sub th/ damage concentrates in side-lobes far ahead of the crack tip and at angles between 20/sup 0/ to 60/sup 0/ from the plane of the crack. The transition between frontal and side-lobe damage is anticipated to be moderately dependent on grain size. 34 figures.

  9. Study of irradiation creep of vanadium alloys

    SciTech Connect

    Tsai, H.; Strain, R.V.; Smith, D.L.

    1997-08-01

    Thin-wall tubing was produced from the 832665 (500 kg) heat of V-4 wt.% Cr-4 wt.% Ti to study its irradiation creep behavior. The specimens, in the form of pressurized capsules, were irradiated in Advanced Test Reactor and High Flux Isotope Reactor experiments (ATR-A1 and HFIR RB-12J, respectively). The ATR-A1 irradiation has been completed and specimens from it will soon be available for postirradiation examination. The RB-12J irradiation is not yet complete.

  10. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  11. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  12. Effect of unloading time on interrupted creep in copper

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1994-06-01

    The effect of unloading time on the interrupted creep behavior of polycrystalline copper specimens was investigated over the temperature range 298--773 K. Up to 553 K, cyclic creep acceleration could be explained in terms of deformation and hardening using a dislocation glide model with recovery during unloading being due to dislocation climb. At higher temperatures, recrystallization effects probably influence behavior.

  13. The search for creep on the faults of northern California

    NASA Astrophysics Data System (ADS)

    Funning, Gareth; Jin, Lizhen

    2013-04-01

    Shallow aseismic fault creep is a behaviour exhibited by very few faults in the world. Instead of the stick-slip frictional regime that most faults follow, creeping faults move, steadily or episodically, throughout the interseismic period of the earthquake cycle. Creep effectively reduces the fault surface area capable of rupture in earthquakes, and thus knowledge of its extent is critical for the correct assessment of seismic hazard. In addition, by comparing the geographical locations of creeping fault areas with mapped lithologies, we may be able to better understand the underlying causes or mechanisms. We present here the results of our ongoing research into the distribution of creeping fault areas in northern California, where the majority of reported cases are located. We map the surface deformation field of the plate boundary system south and north of the San Francisco Bay Area using persistent scatterer InSAR, which provides a dense spatial coverage of surface deformation measurements across the region, and 'ground truth' these, where possible, with additional surface deformation measurements from GPS. In so doing, we identify deformation consistent with right-lateral shallow creep on sections of five major faults (the Hayward, Calaveras, San Andreas, Rodgers Creek and Concord faults). On the Hayward fault, we are able to map both the extent and distribution of creep rates at depth, constraining the location of a locked zone that is presumably the source of major earthquakes on the fault. We are not able to identify a consistent lithological control for the creep behaviour.

  14. Accelerated characterization for long-term creep behavior of polymer

    NASA Astrophysics Data System (ADS)

    Zhao, Rongguo; Chen, Chaozhong; Li, Qifu; Luo, Xiyan

    2008-11-01

    Based on the observation that high stress results in increasing creep rate of polymeric material, which is analogous to the time-temperature equivalence, where high temperature accelerates the process of creep or relaxation of polymer, the time-stress equivalence is investigated. The changes of intrinsic time in polymer induced by temperature and stress are studied using the free volume theory, and a clock model based on the time-temperature and time-stress equivalence is constructed to predict the long-term creep behavior of polymer. Polypropylene is used for this work. The specimens with shape of dumbbell are formed via injection molding. The short-term creep tests under various stress levels are carried out at ambient temperature. The creep strains of specimens are modeled according to the concept of time-stress equivalence, and the corresponding stress shift factors are calculated. A master creep curve is built by the clock model. The result indicates that the time-stress superposition principle provides an accelerated characterization method in the laboratory. Finally, the time-dependent axial elongations at sustained stress levels, whose values are close to the tensile strength of polypropylene, are measured. The three phases of creep, i.e., the transient, steady state and accelerated creep phases, are studied, and the application and limitation of the time-stress superposition principle are discussed.

  15. Temperature, Thermal Stress, And Creep In A Structure

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1991-01-01

    Report presents comparison of predicted and measured temperatures, thermal stresses, and residual creep stresses in heated and loaded titanium structure. Study part of continuing effort to develop design capability to predict and reduce deleterious effects of creep, which include excessive deformations, residual stresses, and failure.

  16. Potential for Time Compression in Creep-Fatigue Property Evaluation

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    This paper presents several engineering techniques for shorter time to characterize creep fatigue resistance. The topics include: 1) Classification of 100 Existing Creep-Fatigue Models; 2) Strainrange Partitioning (SRP) Approach; 3) Inelastic Strainrange SRP-Life Extrapolation Approaches; and 4) Total Strain Version of SRP. This paper is presented in viewgraph form.

  17. Creep behavior of abaca fibre reinforced composite material

    SciTech Connect

    Tobias, B.C.; Lieng, V.T.

    1996-12-31

    This study investigates the creep behavior of abaca fibre reinforced composite lamina. The optimum proportions of constituents and loading conditions, temperature and stresses, are investigated in terms of creep properties. Lamina with abaca fibre volume fractions of 60, 70 and 80 percent, embedded in polyester resin were fabricated. Creep tests in tension at three temperature levels 20{degrees}C, 100{degrees}C and 120{degrees}C and three constant stress levels of 0. 1 MPa, 0. 13 Mpa and 0. 198 MPa using a Dynamic Mechanical Analyzer (DMA) were performed. The creep curves show standard regions of an ideal creep curve such as primary and secondary creep stage. The results also show that the minimum creep rate of abaca fibre reinforced composite increases with the increase of temperature and applied stress. Plotting the minimum creep rate against stress, depicts the variations of stress exponents which vary from 1.6194 at 20{degrees}C to 0.4576 at 120{degrees}C.

  18. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  19. Creep degradation in oxide-dispersion-strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    Oxide dispersion strengthened Ni-base alloys in wrought bar form are studied for creep degradation effects similar to those found in thin gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and three types of advanced ODS-NiCrAl alloys. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, the appearance of dispersoid-free bands, grain boundary cavitation, and internal oxidation in the microstructure were interpreted as creep degradation effects. This work showed that many ODS alloys are subject to creep damage. Degradation of tensile properties occurred after very small amounts of creep strain, ductility being the most sensitive property. All the ODS alloys which were creep damaged possessed a large grain size. Creep damage appears to have been due to diffusional creep which produced dispersoid-free bands around boundaries acting as vacancy sources. Low angle and possibly twin boundaries acted as vacancy sources.

  20. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  1. Out-of-pile creep behavior of uranium carbide

    NASA Technical Reports Server (NTRS)

    Wright, T. R.; Seltzer, M. S.

    1974-01-01

    Compression creep tests were investigated on various UC-based fuel materials having a variation in both density and composition. Specimens were prepared by casting and by hot pressing. Steady-state creep rates were measured under vacuum at 1400 to 1800 C in the stress range 500-4000 psi.

  2. The role of cobalt on the creep of Waspaloy

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  3. Continuous creep measurements on the North Anatolian Fault at Ismetpasa

    NASA Astrophysics Data System (ADS)

    Ozener, Haluk; Aytun, Alkut; Aktug, Bahadir; Dogru, Asli; Mencin, David; Ergintav, Semih; Bilham, Roger

    2016-04-01

    A graphite creep-meter was installed across the North Anatolian fault near a wall at Ismetpasa, Turkey, that has been offset by fault creep processes more than 51 cm since its construction in 1957. The creep-meter is 40-cm-deep, 16.5-m-long and crosses the fault at 30 degrees within a 2 cm diameter telescopic PVC conduit. The SW end of the 6-mm-diameter graphite rod is fastened to a buried stainless steel tripod, and motion of its free end relative to a similar tripod at its NE end is monitored by two sensors: an LVDT with 6 μm resolution and 13 mm range, and a Hall-effect rotary transducer with 30 μm resolution and 1.5 m range. The two sensors track each other to better than 1%. Data are sampled every 30 minutes and are publically available via the Iridium satellite with a delay of less than 1 hour. Since May 2014, for periods of months the surface fault has been inactive, followed by several weeks or months of slow slip at rates of ≈3 mm/yr and with cumulative slip amplitude less than 1 mm, terminated by a pair of distinct creep events with durations of up to 8 days and amplitudes of up to 2.3 mm, after which slip ceases until the next episode. Maximum slip rates on the surface fault are 0.54 mm/hour at the onset of a creep event. The decay time constant of the two pairs of creep events we have observed varies from 3 to 5 hours, similar to those observed by Altay and Sav, (1982) who operated a creepmeter here from 1980-1989. The decadal creep rate observed by these authors was 7.35±0.9 mm/yr, whereas our currently observed least-squares creep-rate is 5.4±1 mm/yr based on 19 months of data. Since most of the annual of the creep occurs in large creep events (80%), we anticipate that our rate will change with elapsed time, and our uncertainty will decrease accordingly. As expected, the 2014-2016 observed creep rate is somewhat lower than the regional creep on the fault deduced from Insar analysis and GPS observations (≈7-8 mm/yr), but both the amplitude of

  4. Development of creep resistant austenitic stainless steels for advanced steam cycle superheater application. [Uses of radiation effects to guide alloy development

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.

    1987-01-01

    The compositions of several 14Cr-16Ni austenitic stainless steels were modified with combinations of minor and residual alloying elements to produce excellent creep strength based on unique precipitate microstructures. These modifications produce fine MC and phosphide precipitates in the matrix for strength and various coarser carbide phases along the grain boundaries for ductility and rupture resistance. Creep-rupture resistance of these modified 14-16 steels is much better than that of type 316 or Inconel 800H and better than that of 17-14CuMo at 700C in the mill-annealed condition. Analysis of microstructure and correlation with creep properties suggests that precipitate effects are primarily responsible for the properties improvement. The ideas and insight for design of the novel precipitate microstructures stem from microcompositional information obtained using state-of-the-art analytical electron microscopy (AEM). 5 refs., 13 figs., 1 tab.

  5. Strong ground motions generated by earthquakes on creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.; Abrahamson, Norman A.

    2014-01-01

    A tenet of earthquake science is that faults are locked in position until they abruptly slip during the sudden strain-relieving events that are earthquakes. Whereas it is expected that locked faults when they finally do slip will produce noticeable ground shaking, what is uncertain is how the ground shakes during earthquakes on creeping faults. Creeping faults are rare throughout much of the Earth's continental crust, but there is a group of them in the San Andreas fault system. Here we evaluate the strongest ground motions from the largest well-recorded earthquakes on creeping faults. We find that the peak ground motions generated by the creeping fault earthquakes are similar to the peak ground motions generated by earthquakes on locked faults. Our findings imply that buildings near creeping faults need to be designed to withstand the same level of shaking as those constructed near locked faults.

  6. Predicting sample lifetimes in creep fracture of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Koivisto, Juha; Ovaska, Markus; Miksic, Amandine; Laurson, Lasse; Alava, Mikko J.

    2016-08-01

    Materials flow—under creep or constant loads—and, finally, fail. The prediction of sample lifetimes is an important and highly challenging problem because of the inherently heterogeneous nature of most materials that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual samples by exploiting the "universal" features in the sample-inherent creep curves, particularly the passage to an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation localization controls the shape of the creep curve and thus the degree of lifetime predictability.

  7. Predicting sample lifetimes in creep fracture of heterogeneous materials.

    PubMed

    Koivisto, Juha; Ovaska, Markus; Miksic, Amandine; Laurson, Lasse; Alava, Mikko J

    2016-08-01

    Materials flow-under creep or constant loads-and, finally, fail. The prediction of sample lifetimes is an important and highly challenging problem because of the inherently heterogeneous nature of most materials that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual samples by exploiting the "universal" features in the sample-inherent creep curves, particularly the passage to an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation localization controls the shape of the creep curve and thus the degree of lifetime predictability. PMID:27627383

  8. Application Of Shakedown Analysis To Cyclic Creep Damage Limits

    SciTech Connect

    Carter, Peter; Jetter, Robert I; Sham, Sam

    2012-01-01

    Shakedown analysis may be used to provide a conservative estimate of local rupture and hence cyclic creep damage for use in a creep-fatigue assessment. The shakedown analysis is based on an elastic-perfectly plastic material with a temperature-dependent pseudo yield stress defined to guarantee that a shakedown solution exists which does not exceed rupture stress and temperature for a defined life. The ratio of design life to the estimated maximum cyclic life is the shakedown creep damage. The methodology does not require stress classification and is also applicable to cycles over the full range of temperature above and below the creep regime. Full cyclic creep and damage analysis is the alternative when shakedown analysis appears to be excessively conservative.

  9. Potential drop monitoring of creep damage at a weld

    NASA Astrophysics Data System (ADS)

    Corcoran, Joseph; Nagy, Peter B.; Cawley, Peter

    2016-02-01

    Creep failure at welds will often be the life limiting factor for pressurised power station components, offering a site for local damage accumulation. Monitoring the creep state of welds will be of great value to power station management and potential drop monitoring may provide a useful tool. This paper provides a preliminary study of potential drop monitoring of creep damage at a weldment, suggesting a measurement arrangement for a previously documented quasi-DC technique that is well suited to the application. The industrial context of the problem of creep damage at a weldment is explored, together with a numerical simulation of the effect of cracking, finally, a cross-weld accelerated creep test demonstrating the promise of the technique is presented.

  10. Effect of misalignment on mechanical behavior of metals in creep. [computer programs

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1979-01-01

    Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.

  11. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    NASA Astrophysics Data System (ADS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  12. Testing Protocol for Module Encapsulant Creep (Presentation)

    SciTech Connect

    Kempe, M. D.; Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.; Moseley, J. M.; Shah, Q.; Tamizhmani, G.; Sakurai, K.; Inoue, M.; Doi, T.; Masuda, A.

    2012-02-01

    Recently there has been an interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically crosslinked materials, e.g., ethylene-vinyl acetate. The related motivations include the desire to: reduce lamination time or temperature; use less moisture-permeable materials; or use materials with better corrosion characteristics. However, the use of any thermoplastic material in a high-temperature environment raises safety and performance concerns, as the standardized tests currently do not expose the modules to temperatures in excess of 85C, yet modules may experience temperatures above 100C in operation. Here we constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass mock modules using different encapsulation materials of which only two were designed to chemically crosslink. One module set was exposed outdoors with insulation on the back side in Arizona in the summer, and an identical set was exposed in environmental chambers. High precision creep measurements and performance measurements indicate that despite many of these polymeric materials being in the melt state at some of the highest outdoor temperatures achievable, very little creep was seen because of their high viscosity, temperature heterogeneity across the modules, and in the case of the crystalline-silicon modules, the physical restraint of the backsheet. These findings have very important implications for the development of IEC and UL qualification and safety standards, and in regards to the necessary level of cure during the processing of crosslinking encapsulants.

  13. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  14. Analysis of Multistage and Other Creep Data for Domal Salts

    SciTech Connect

    Munson, D.E.

    1998-10-01

    There have existed for some time relatively sparse creep databases for a number of domal salts. Although all of these data were analyzed at the time they were reported, to date there has not been a comprehensive, overall evaluation within the same analysis framework. Such an evaluation may prove of value. The analysis methodology is based on the Multimechanism Deformation (M-D) description of salt creep and the corresponding model parameters determined from conventional creep tests. The constitutive model of creep wss formulated through application of principles involved in micromechanical modeling. It was possible, at minimum, to obtain the steady state parameters of the creep model from the data on the domal salts. When this was done, the creep of the domal salts, as compared to the well-defined Waste Isolation Pilot Plant (WIPP) bedded clean salt, was either essentially identical to, or significantly harder (more creep resistant) than WIPP salt. Interestingly, the domal salts form two distinct groups, either sofl or hard, where the difference is roughly a factor often in creep rate between the twcl groups. As might be expected, this classification corresponds quite well to the differences in magnitude of effective creep volume losses of the Strategic Petroleum Reserve (SPR) caverns as determined by the CAVEMAN cavern pressure history analysis, depending upon the specific dome or region within the dome. Creep response shoulcl also correlate to interior cavern conditions that produce salt falls. WMle, in general, the caverns in hard sah have a noticeably greater propensity for salt falls, a smaller number of similar events are exhibited even in the caverns in soft salt.

  15. Characterization and impression creep testing of silicon aluminum oxynitride ceramics

    NASA Astrophysics Data System (ADS)

    Fox, Kevin M.

    2005-11-01

    Three Yb-containing SiAlON materials were studied for potential use as hot section components in advanced microturbine engines. Two of the materials consisted of equiaxed alpha-SiAlON grains, elongated beta-SiAlON grains, and an amorphous intergranular phase containing a relatively large amount of Yb. The third material consisted of alpha- and beta-SiAlON grains with equiaxed morphologies and virtually no intergranular phase. An instrument was designed and constructed for impression creep testing of the YbSiAlON materials. Uniaxial compression creep experiments were also performed for comparison. In compression creep, the SiAlON materials exhibited activation energies that were similar to those of other SiAlONs reports in the literature, and stress exponents that were approximately 1. In impression creep, the SiAlONs tested exhibited activation energies similar to those reported in the literature for SiAlONs tested in uniaxial compression and tension. However, the SiAlON composition with equiaxed beta-SiAlON grains showed an exaggerated activation energy due to a change in creep mechanism above 1340°C. The measured stress exponents in impression creep were approximately 2. The stress state present below the punch in impression creep caused dilation to occur in the grain structure. The dilation results in an increase in the volume of the multi-grain junctions, and an increased dependence of strain rate on stress. The enlarged multi-grain junctions can become filled with the intergranular glassy phase. These large pockets of the glassy phase can enable an additional creep mechanism whereby the equiaxed grains slide past each other viscously. All of the SiAlONs developed an additional volume of the intergranular glassy phase during creep testing. A microstructure containing elongated beta-SiAlON grains is most effective in enhancing creep performance of the Yb-SiAlON materials tested. The impression creep data for the Yb-SiAlON materials can be related to the

  16. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    SciTech Connect

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  17. Interface Evolution During Transient Pressure Solution Creep

    NASA Astrophysics Data System (ADS)

    Dysthe, D. K.; Podladchikov, Y. Y.; Renard, F.; Jamtveit, B.; Feder, J.

    When aggregates of small grains are pressed together in the presence of small amounts of solvent the aggregate compacts and the grains tend to stick together. This hap- pens to salt and sugar in humid air, and to sediments when buried in the Earths crust. Stress concentration at the grain contacts cause local dissolution, diffusion of the dissolved material out of the interface and deposition on the less stressed faces of the grains{1}. This process, in geology known as pressure solution, plays a cen- tral role during compaction of sedimentary basins{1,2}, during tectonic deformation of the Earth's crust{3}, and in strengthening of active fault gouges following earth- quakes{4,5}. Experimental data on pressure solution has so far not been sufficiently accurate to understand the transient processes at the grain scale. Here we present ex- perimental evidence that pressure solution creep does not establish a steady state inter- face microstructure as previously thought. Conversely, cumulative creep strain and the characteristic size of interface microstructures grow as the cubic root of time. A sim- ilar transient phenomenon is known in metallurgy (Andrade creep) and is explained here using an analogy with spinodal dewetting. 1 Weyl, P. K., Pressure solution and the force of crystallization - a phenomenological theory. J. Geophys. Res., 64, 2001-2025 (1959). 2 Heald, M. T., Cementation of Simpson and St. Peter Sandstones in parts of Okla- homa, Arkansas and Missouri, J. Geol. Chicago, 14, 16-30 (1956). 3 Schwartz, S., Stöckert, B., Pressure solution in siliciclastic HP-LT metamorphic rocks constraints on the state of stress in deep levels of accretionary complexes. Tectonophysics, 255, 203-209 (1996). 4 Renard, F., Gratier, J.P., Jamtveit, B., Kinetics of crack-sealing, intergranular pres- sure solution, and compaction around active faults. J. Struct. Geol., 22, 1395-1407, (2000). 5 Miller, S. A., BenZion, Y., Burg, J. P.,A three-dimensional fluid-controlled earth

  18. Long-term monitoring of creep rate along the Hayward fault and evidence for a lasting creep response to 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Lienkaemper, J.J.; Galehouse, J.S.; Simpson, R.W.

    2001-01-01

    We present results from over 30 yr of precise surveys of creep along the Hayward fault. Along most of the fault, spatial variability in long-term creep rates is well determined by these data and can help constrain 3D-models of the depth of the creeping zone. However, creep at the south end of the fault stopped completely for more than 6 years after the M7 1989 Loma Prieta Earthquake (LPEQ), perhaps delayed by stress drop imposed by this event. With a decade of detailed data before LPEQ and a decade after it, we report that creep response to that event does indeed indicate the expected deficit in creep.

  19. Creep deformation mechanisms in modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna; Basirat, Mehdi; Charit, Indrajit; Potirniche, Gabriel P.; Rink, Karl K.; Sahaym, Uttara

    2012-04-01

    Modified 9Cr-1Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR). The tensile creep behavior of modified 9Cr-1Mo steel (Grade 91) was studied in the temperature range of 873-1023 K and stresses between 35 MPa and 350 MPa. Analysis of creep results yielded stress exponents of ∼9-11 in the higher stress regime and ∼1 in the lower stress regime. The high stress exponent in the power-law creep regime was rationalized by invoking the concept of threshold stress, which represents the lattice diffusion controlled dislocation climb process. Without threshold stress compensation, the activation energy was 510 ± 51 kJ/mol, while after correcting for the threshold stress, the activation energy decreased to 225 ± 24 kJ/mol. This value is close to the activation energy for lattice self-diffusion in α-Fe. Threshold stress calculations were performed for the high stress regime at all test temperatures. The calculated threshold stress showed a strong dependence on temperature. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep.

  20. Proton irradiation creep of FM steel T91

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Was, Gary S.

    2015-04-01

    Ferritic-martensitic (FM) steel T91 was subjected to irradiation with 3 MeV protons while under load at stresses of 100-200 MPa, temperatures between 400 °C and 500 °C, and dose rates between 1.4 × 10-6 dpa/s and 5 × 10-6 dpa/s to a total dose of less than 1 dpa. Creep behavior was analyzed for parametric dependencies. The temperature dependence was found to be negligible between 400 °C and 500 °C, and the dose rate dependence was observed to be linear. Creep rate was proportional to stress at low stress values and varied with stress to the power 14 above 160 MPa. The large stress exponent of the proton irradiation creep experiments under high stress suggested that dislocation glide was driving both thermal and irradiation creep. Microstructure observations of anisotropic dislocation loops also contributed to the total creep strain. After subtracting the power law creep and anisotropic dislocation loop contributions, the remaining creep strain was accounted for by dislocation climb enabled by stress induced preferential absorption (SIPA) and preferential dislocation glide (PAG).

  1. Cyclic creep and anelastic relaxation analysis of an ODS superalloy

    NASA Astrophysics Data System (ADS)

    Nardone, Vincent C.; Kimmerle, William L.; Tien, John K.

    1986-09-01

    This paper documents the effect of stress and temperature on the cyclic minimum strain rate at two different loading frequencies for the oxide dispersion strengthened (ODS) superalloy, INCONEL* MA 6000. The apparent stress exponent and activation energy for cyclic creep at both frequencies studied are shown to be greater than values observed for static creep. The large values of the stress exponent and activation energy for cyclic creep are proposed to result from anelastic strain storage delaying nonrecoverable creep during the on-load portion of the cyclic creep loading, such that the “effective stress” driving nonrecoverable creep is only a small fraction of the applied stress. In addition, the temperature dependence of the anelastic relaxation that occurs during the off-load portion of the cyclic creep loading is determined. The activation energy found for the relaxation process is equal to about one-half that for self-diffusion in nickel. A mechanism of localized climb of dislocations over the oxide dispersoids present in INCONEL MA 6000 is postulated to account for the observed activation energy of the relaxation process.

  2. Creep failure analysis for ceramic composites containing viscous interfaces

    SciTech Connect

    Beyerlein, I.J.; An, L.; Raj, R.

    1998-09-01

    This paper describes an experimental and theoretical study of the creep fracture of advanced ceramic composites under steady axial tension. Such composites consist of a high fraction of elongated ceramic grains, varying substantially in aspect ratio and embedded in a glassy matrix phase. For creep testing, a model test system was prepared, which consisted of well-aligned elongated mica platelets ({approximately} 60 vol%) and residual glass phase ({approximately} 40 vol%) in its final heat-treatment stage. The creep curves of several specimens under various applied loads and at a temperature (800 C) higher than the T{sub g} of the glass matrix ({approximately} 650 C) were obtained up to creep fracture. Micrographs of the creep fracture surfaces revealed substantial grain pull-out and cavitation in the matrix phase with virtually no transgranular fracture. The objective of this work is to simulate the creep response and fracture based on the accumulation of localized void growth and microstructural parameters, using a computational mechanics technique, called viscous break interaction (VBI), developed to compute stress fields around strongly interacting fractures or voids in composites with fibrous microstructures. To simulate the creep process up to fracture, a Monte Carlo model is developed which couples VBI with a statistical description of grain length. Both the experimental and simulation results show that random lengths and random overlap of the aligned grains naturally lead to (i) local and microstructure-sensitive damage evolution up to ultimate failure and (ii) substantial variation in failure times of seemingly identical specimens.

  3. Creep in solid 4He at temperatures below 1 K

    NASA Astrophysics Data System (ADS)

    Zhuchkov, V. A.; Lisunov, A. A.; Maidanov, V. A.; Neoneta, A. S.; Rubanskyi, V. Yu.; Rubets, S. P.; Rudavskii, E. Ya.; Smirnov, S. N.

    2015-03-01

    Creep in solid 4He at temperatures of ˜100-1000 mK is studied experimentally by detecting the flow of helium through a frozen porous membrane under a constant external force. Creep curves are measured for different temperatures and mechanical stresses. This method has made it possible to detect low creep rates in helium down to the lowest temperatures in these experiments. It is found that throughout this temperature range, creep is thermally activated and the activation energy decreases with falling temperature and increasing mechanical stress. An analysis shows that for temperatures above ≈500 mK, Nabarro-Herring diffusive creep takes place in solid helium with mass transfer by self diffusion of atoms and a counterflow of vacancies. The experimental data have been used to obtain the self-diffusion coefficient as a function of temperature for different stresses. At temperatures below ≈500 mK creep takes place at a very low flow rate (˜10-13 cm/s) and a very low activation energy (˜0.5-0.7 K), while the creep mechanism remains unclear.

  4. Silicon Nitride Creep Under Various Specimen-Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Holland, Frederic A.

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC 132) was performed at 1300 C in air using five different specimen-loading configurations: (1) pure tension, (2) pure compression, (3) four-point uniaxial flexure, (4) ball-on-ring biaxial flexure, and (5) ring-on-ring biaxial flexure. This paper reports experimental results as well as test techniques developed in this work. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compression loading, nominal creep strain generally decreased with time, resulting in a less-defined steady-state condition. Of the four creep formulations-power-law, hyperbolic sine, step, and redistribution--the conventional power-law formulation still provides the most convenient and reasonable estimation of the creep parameters of the NC 132 material. The data base to be obtained will be used to validate the NASA Glenn-developed design code CARES/Creep (ceramics analysis and reliability evaluation of structures and creep).

  5. Solder creep-fatigue interactions with flexible leaded parts

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Wen, L. C.; Mon, G. R.; Jetter, E.

    1992-01-01

    With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.

  6. The effect of annealing on the creep of plasma sprayed ceramics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.; Mullen, R. L.

    1983-01-01

    The creep of plasma sprayed ZrO2-8Y2O3 was measured at temperatues from 98 to 1250 C (180 to 220 F), and compared to creep of identical samples after annealing at temperatures from 98 to 1316 C (1800 to 2400 F). Loads and temperatures which produced significant creep of as sprayed ceramics produced no creep after annealing.

  7. Creep-fatigue modelling in structural steels using empirical and constitutive creep methods implemented in a strip-yield model

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for

  8. Interfacial Control of Creep Deformation in Ultrafine Lamellar TiAl

    SciTech Connect

    Hsiung, L M

    2002-11-26

    Solute effect on the creep resistance of two-phase lamellar TiAl with an ultrafine microstructure creep-deformed in a low-stress (LS) creep regime [where a linear creep behavior was observed] has been investigated. The resulted deformation substructure and in-situ TEM experiment revealed that interface sliding by the motion of pre-existing interfacial dislocations is the predominant deformation mechanism in LS creep regime. Solute segregation at lamellar interfaces and interfacial precipitation caused by the solute segregation result in a beneficial effect on the creep resistance of ultrafine lamellar TiAl in LS creep regime.

  9. High temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, Philip J.; Swindeman, Robert W.; Goodwin, Gene M.

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  10. Improved high temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  11. Note: Creep character of piezoelectric actuator under switched capacitor charge pump control

    NASA Astrophysics Data System (ADS)

    Ma, Yu Ting; Huang, Liang; Liu, Yong Bin; Feng, Zhi Hua

    2011-04-01

    A major deficiency in piezoelectric actuator performance is caused by hysteresis and creep effects. Switched capacitor charge pump control was previously proved to be an effective way to reduce hysteresis. In this work, creep character of a piezoelectric stack under charge pump control is investigated and modeled. Experiments show that the creep can be reduced by about 77% compared with the one under voltage control. The creep factor denoting the degree of creep shows hysteresis loops similar to displacement outputs under voltage control.

  12. In-situ Creep Testing Capability Development for Advanced Test Reactor

    SciTech Connect

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  13. Creep of Mg-PSZ at room temperature

    SciTech Connect

    Finlayson, T.R. . Dept. of Physics); Gross, A.K. . Dept. of Materials Engineering); Griffiths, J.R. . Div. of Manufacturing Technology); Kisi, E.H. . Faculty of Science and Technology)

    1994-03-01

    Transient [beta], or Andrade, creep occurs when magnesia-partially-stabilized zirconia is loaded in tension at room temperature. The equation relating the longitudinal or tensile creep strain [var epsilon][sub l][sup c] to the tensile stress, [sigma], and to the time, t, has been determined to be [var epsilon][sub l][sup c] = A[sigma][sup m]t[sup n] in which the constants A, m, and n depend on the phase content of the zirconia. Observations are reported of the tetragonal-to-monoclinic and tetragonal-to-orthorhombic phase transformations which occur during creep: there is also a progressive development of microcracking. It is shown that a combination of these phenomena can account for the observed creep behavior.

  14. Creep Behavior of a New Cast Austenitic Alloy

    SciTech Connect

    Shingledecker, John P; Maziasz, Philip J; Evans, Neal D; Pollard, Michael J

    2007-01-01

    A new cast austenitic alloy, CF8C-Plus, has been developed by Oak Ridge National Laboratory (ORNL) and Caterpillar for a wide range of high temperature applications including diesel exhaust components and turbine casings. The creep strength of the CF8C-Plus steel is much greater than that of the standard cast CF8C stainless steel and is comparable to the highest strength wrought commercial austenitic stainless steels and alloys, such as NF709. The creep properties of CF8C-Plus are discussed in terms of the alloy design methodology and the evaluation of some long-term creep tested specimens (over 20,000 hours). Microcharacterization shows that the excellent creep strength is due mainly to the precipitation of very fine nano-scale and stable MC carbides, without the formation of deleterious intermetallic phases.

  15. Tantalum alloys resist creep deformation at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1966-01-01

    Dispersion-strengthened tantalum-base alloys possess high strength and good resistance to creep deformation at elevated temperatures in high vacuum environments. They also have ease of fabrication, good weldability, and corrosion resistance to molten alkali metals.

  16. Irradiation creep of candidate materials for advanced nuclear plants

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Hoffelner, W.

    2013-10-01

    In the present paper, irradiation creep results of an intermetallic TiAl alloy and two ferritic oxide dispersion strengthened (ODS) steels are summarized. In situ irradiation creep measurements were performed using homogeneous implantation with α- and p-particles to maximum doses of 0.8 dpa at displacement damage rates of 2-8 × 10-6 dpa/s. The strains of miniaturized flat dog-bone specimens were monitored under uniaxial tensile stresses ranging from 20 to 400 MPa at temperatures of 573, 673 and 773 K, respectively. The effects of material composition, ODS particle size, and bombarding particle on the irradiation creep compliance was studied and results are compared to literature data. Evolution of microstructure during helium implantation was investigated in detail by TEM and is discussed with respect to irradiation creep models.

  17. Finite Element Analysis of Plastic Deformation During Impression Creep

    NASA Astrophysics Data System (ADS)

    Naveena; Ganesh Kumar, J.; Mathew, M. D.

    2015-04-01

    Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.

  18. Creep-fatigue analysis by strain-range partitioning.

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Hirschberg, M. H.

    1971-01-01

    The framework of a new method is outlined for treating creep-fatigue behavior of metals. Inelastic strain-ranges are partitioned into the components of (1) completely reversed plasticity, (2) tensile plasticity reversed by compressive creep, or tensile creep reversed by compressive plasticity, and (3) completely reversed creep. Each of these components is shown to be related to cyclic life by a Manson-Coffin type power-law equation. A linear life fraction rule is used to combine the damaging effects of the individual components enabling the prediction of life. Test results are presented for a 2.25 Cr-1 Mo steel as well as limited information for a Type 316 stainless steel.

  19. An Improved Correlation between Impression and Uniaxial Creep

    SciTech Connect

    Hsueh, Chun-Hway; Miranda, Pedro; Becher, Paul F

    2006-01-01

    A semiempirical correlation between impression and uniaxial creep has been established by Hyde et al. [Int. J. Mech. Sci. 35, 451 (1993) ] using finite element results for materials exhibiting general power-law creep with the stress exponent n in the range 2 {<=} n {<=} 15. Here, we derive the closed-form solution for a special case of viscoelastic materials, i.e., n = 1, subjected to impression creep and obtain the exact correlation between impression and uniaxial creep. This analytical solution serves as a checkpoint for the finite element results. We then perform finite element analyses for the general case to derive a semiempirical correlation, which agrees well with both analytical viscoelastic results and the existing experimental data. Our improved correlation agrees with the correlation of Hyde et al. for n {>=} 4, and the difference increases with decreasing n for n<4.

  20. Diffusion-controlled creep in mixed-conducting oxides

    SciTech Connect

    Routbort, J.L.; Goretta, K.C.; Cook, R.E.; Wolfenstine, J.; Armstrong, T.R.; Clauss, C.; Dominguez-Rodriguez, A.

    1996-06-01

    Steady-state creep rate of the mixed conducting oxides La{sub 1-x}Sr{sub x}MnO{sub 3} (x=0.1, 0.15, 0.25) and La{sub 0.7}Ca{sub 0.3}MnO{sub 3} has been investigated between 1150 and 1300 C. Creep parameters and TEM indicate that deformation is controlled by lattice diffusion of one of the cations. Dependence of creep rate on Sr concentration, combined with a point-defect model, confirms this hypothesis; however the oxygen partial pressure dependence of creep (from 10{sup -1} to 2x10{sup 4} Pa) cannot be accounted for within the framework of a simple point-defect model.

  1. The role of professional societies in limiting indication creep.

    PubMed

    Riggs, Kevin R; Ubel, Peter A

    2015-02-01

    New technology is a major driver of health care inflation. One contributor to this inflation is indication creep, the diffusion of interventions that have been proven beneficial in specific patient populations into untested broader populations who may be less likely to benefit. Professional societies sometimes promote indication creep, as we illustrate with the case of therapeutic hypothermia after cardiac arrest. Professional societies are in a unique position to limit indication creep. We propose that, at a minimum, professional societies should refrain from recommending new diagnostic and therapeutic technologies in their guidelines until they have been proven beneficial in the targeted populations. In some circumstances, professional societies could be more active in combatting indication creep, either recommending against expanded use of clinical interventions when evidence is lacking, or coordinating efforts to collect data in these broader populations.

  2. Creep behavior of 6 micrometer linear low density polyethylene film

    NASA Technical Reports Server (NTRS)

    Simpson, J. M.; Schur, W. W.

    1993-01-01

    Creep tests were performed to provide material characteristics for a 6.4-micron polyethylene film used to construct high altitude balloons. Results suggest simple power law relationships are adequate for stresses below about 4.83 MPa.

  3. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  4. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  5. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  6. Irradiation creep properties of a near-isotropic graphite

    NASA Astrophysics Data System (ADS)

    Oku, T.; Fujisaki, K.; Eto, M.

    1988-05-01

    Two irradiation creep tests on near-isotropic graphite (SM1-24) for HTGRs were performed at around 900 °C in the JMTR. Neutron fluences ranged from 5.50 × 10 24 n/m 2 (E> 29 fJ) to 12.4 × 10 24 n/m 2 (E> 29 fJ) , depending on the position of the specimen. Irradiation creep strain (ɛ 0) was obtained from the equation ɛ c = (σ/E 0)[1-exp(-bΦ)] + KσΦ , by measuring dimensional changes in unloaded and loaded tensile specimens before and after irradiation, where E 0 is the Young's modulus before irradiation, K the creep coefficient, and b a constant. The value of K was estimated assuming that 1-exp(-bΦ) ˜-1 over the range of neutron fluence tested here. Mercury porosimetry was employed to add consideration to the mechanism of irradiation creep using unloaded and loaded specimens. The irradiation creep strain is proportional to stress and to neutron fluence for larger fluences. The irradiation creep coefficient is in inverse proportion to Young's modulus before irradiation, KE 0 = 0.247 . From the values of the average Young's moduli before irradiation for two irradiation creep tests, the creep coefficient was estimated to be 3.03 × 10 -29 (MPa/m 2) -1 and 3.18 × 10 -29(MPa/m 2) -1, respectively. The mercury pore diameter distribution changes upon irradiation, that is pores smaller than 10 μm disappear partly, the total porosity decreases, and the stress tends to facilitate disappearance of the pores. The Young's modulus increases as a result of irradiation. The increase in Young's modulus after a creep tests is smaller than that after irradiation only. The experimental result obtained here is consistent with the explanation for the mechanism of irradiation creep in which two to six interstitial clusters as a pinning point to basal slip disappear during the irradiation creep test.

  7. Magnetic measurement of creep damage: modeling and measurement

    NASA Astrophysics Data System (ADS)

    Sablik, Martin J.; Jiles, David C.

    1996-11-01

    Results of inspection of creep damage by magnetic hysteresis measurements on Cr-Mo steel are presented. It is shown that structure-sensitive parameters such as coercivity, remanence and hysteresis loss are sensitive to creep damage. Previous metallurgical studies have shown that creep changes the microstructure of he material by introducing voids, dislocations, and grain boundary cavities. As cavities develop, dislocations and voids move out to grain boundaries; therefore, the total pinning sources for domain wall motion are reduced.This, together with the introduction of a demagnetizing field due to the cavities, results in the decrease of both coercivity, remanence and hence, concomitantly, hysteresis loss. Incorporating these structural effects into a magnetomechanical hysteresis model developed previously by us produces numerical variations of coercivity, remanence and hysteresis loss consistent with what is measured. The magnetic model has therefore been used to obtain appropriately modified magnetization curves for each element of creep-damaged material in a finite element (FE) calculation. The FE calculation has been used to simulate magnetic detection of non-uniform creep damage around a seam weld in a 2.25 Cr 1Mo steam pipe. In particular, in the simulation, a magnetic C-core with primary and secondary coils was placed with its pole pieces flush against the specimen in the vicinity of the weld. The secondary emf was shown to be reduced when creep damage was present inside the pipe wall at the cusp of the weld and in the vicinity of the cusp. The calculation showed that the C- core detected creep damage best if it spanned the weld seam width and if the current in the primary was such that the C- core was not magnetically saturated. Experimental measurements also exhibited the dip predicted in emf, but the measurements are not yet conclusive because the effects of magnetic property changes of weld materials, heat- affected material, and base material have

  8. Creep and fracture of dispersion-strengthened materials

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    1991-01-01

    The creep and fracture of dispersion strengthened materials is reviewed. A compilation of creep data on several alloys showed that the reported values of the stress exponent for creep varied between 3.5 and 100. The activation energy for creep exceeded that for lattice self diffusion in the matrix in the case of some materials and a threshold stress behavior was generally reported in these instances. The threshold stress is shown to be dependent on the interparticle spacing and it is significantly affected by the initial microstructure. The effect of particle size and the nature of the dispersoid on the threshold stress is not well understood at the present time. In general, most studies indicate that the microstructure after creep is similar to that before testing and very few dislocations are usually observed. It is shown that the stress acting on a dispersoid due to a rapidly moving dislocation can exceed the particle yield strength of the G sub p/1000, where G sub p is the shear modulus of the dispersoid. The case when the particle deforms is examined and it is suggested that the dislocation creep threshold stress of the alloy is equal to the yield strength of the dispersoid under these conditions. These results indicate that the possibility that the dispersoid creep threshold stress is determined by either the particle yield strength or the stress required to detach a dislocation from the dispersoid matrix interface. The conditions under which the threshold stress is influenced by one or the other mechanism are discussed and it is shown that the particle yield strength is important until the extent of dislocation core relaxation at the dispersoid matrix interface exceeds about 25 pct. depending on the nature of the particle matrix combination. Finally, the effect of grain boundaries and grain morphology on the creep and fracture behavior of dispersoid strengthened alloys is examined.

  9. The high temperature creep behavior of oxides and oxide fibers

    NASA Technical Reports Server (NTRS)

    Jones, Linda E.; Tressler, Richard E.

    1991-01-01

    A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.

  10. Theory of collective flux creep. [in high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Feigel'man, M. V.; Geshkenbein, V. B.; Larkin, A. I.; Vinokur, V. M.

    1989-01-01

    The nature of flux-creep phenomena in the case of collective pinning by weak disorder is discussed. The Anderson concept of flux bundle is explored and developed. The dependence of the bundle activation barrier U on current j is studied and is shown to be of power-law type: U(j) is proportional to j exp -alpha. The values of exponent alpha for the different regimes of collective creep are found.

  11. An Evaluation for Creep of 3013 Inner Can Lids

    SciTech Connect

    DAUGHERTY, W. L.; GIBBS, K. M.; LOUTHAN JR., M. R.; DUNN, K. A.

    2005-09-01

    The deflection of Type 304L austenitic stainless steel can lids on inner 3013 containers is monitored to identify any buildup of pressure within the container. This paper provides the technical basis to conclude that creep-induced deformation of these lids will be insignificant unless the temperature of storage exceeds 400 C. This conclusion is based on experimental literature data for Types 304 and 316 stainless steel and on a phenomenological evaluation of potential creep processes.

  12. Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures

    SciTech Connect

    J.K. Benz; L.J. Carroll; J.K. Wright; R.N. Wright; T. Lillo

    2014-06-01

    Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 °C to 1000 °C). Creep at 1023 K (750 °C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent y' precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 °C) and is verified to be near zero at 1173 K (900 °C)—temperatures directly correlating to the formation and dissolution of y' precipitates, respectively. The y' precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 °C) to various strains, and modeling of stresses necessary for y' precipitate dislocation bypass, suggests that the climb of dislocations around the y' precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the y' precipitates.

  13. Models of Anisotropic Creep in Integral Wing Panel Forming Processes

    NASA Astrophysics Data System (ADS)

    Oleinikov, A. I.; Oleinikov, A. A.

    2016-08-01

    For a sufficiently wide range of stresses the titanic and aluminummagnesium alloys, as a rule, strained differently in the process of creep under tension and compression along a fixed direction. There are suggested constitutive relations for the description of the steady-state creep of transversely isotropic materials with different tension and compression characteristics. Experimental justification is given to the proposed constitutive equations. Modeling of forming of wing panels of the aircraft are considered.

  14. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  15. Transient creep and semibrittle behavior of crystalline rocks

    USGS Publications Warehouse

    Carter, N.L.; Kirby, S.H.

    1978-01-01

    We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.

  16. Verification of creep performance of a ceramic gas turbine blade

    SciTech Connect

    Lin, H.T.; Becher, P.F.; Ferber, M.K.; Parthasarathy, V.

    1998-03-01

    Tensile creep tests were carried out on a Norton NT164 silicon nitride ceramic turbine blade containing 4 wt. % Y{sub 2}O{sub 3} sintering additive at 1,370 C in air under selected stress levels. The objective of this study was to measure the creep properties of test specimens extracted from a complex shaped ceramic gas turbine blade to verify the response of actual components. The creep results indicated that specimens from both the airfoil and dovetail sections exhibited creep rates that were about 4 to 100 times higher than those obtained from both the buttonhead and dogbone creep specimens machined from the developmental billets fabricated with the same composition and processing procedures. Electron microscopy analyses suggested that high creep rates and short lifetimes observed in specimens extracted from the turbine blade resulted from a higher glassy phase(s) content and smaller number density of elongated grain microstructure. Silicon nitride ceramics with an in-situ reinforced elongated microstructure have been the primary candidates for both advanced automotive and land-based gas turbine engine applications.

  17. Cumulative creep fatigue damage in 316 stainless steel

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1989-01-01

    The cumulative creep-fatigue damage behavior of 316 stainless steel at 1500 F was experimentally established for the two-level loading cases of fatigue followed by fatigue, creep fatigue followed by fatigue, and fatigue followed by creep fatigue. The two-level loadings were conducted such that the lower life (high strain) cycling was applied first for a controlled number of cycles and the higher life (low strain) cycling was conducted as the second level to failure. The target life levels in this study were 100 cycles to failure for both the fatigue and creep-fatigue lowlife loading, 5000 cycles to failure for the higher life fatigue loading and 10,000 cycles to failure for the higher life creep-fatigue loading. The failed specimens are being examined both fractographically and metallographically to ascertain the nature of the damaging mechanisms that produced failure. Models of creep-fatigue damage accumulation are being evaluated and knowledge of the various damaging mechanisms is necessary to ensure that predictive capability is instilled in the final failure model.

  18. Permeability Evolution of Granite Gneiss During Triaxial Creep Tests

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, W. Y.; Wang, H. L.; Wang, W.; Wang, R. B.

    2016-09-01

    Permeability is an important factor for seepage analysis of rock material, and a key factor in ensuring the safety of underground works. In this study, the permeability evolution of granite gneiss during triaxial creep tests was investigated. In the context of an underground oil storage cavern in China, a series of hydro-mechanical coupling creep tests were conducted on rock cores of granite gneiss at three different pore pressures to reveal the effect of pore pressure on the permeability evolution and to investigate the correlation between the permeability and volumetric strain during the creep process. During the creep tests, the permeability decreases in the initial loading phase. At all deviatoric stress levels, the permeability remains stable in the steady creep stage and increases rapidly in the accelerated creep stage. Based on the test data, the initial permeability, steady permeability and peak permeability at various stress levels are defined. The effect of pore pressure on the permeability is captured by a linear model. In addition, the relationship between permeability and volumetric strain can be described as a process divided into three phases, with different functions in each phase.

  19. Triggered dynamics in a model of different fault creep regimes

    PubMed Central

    Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina

    2014-01-01

    The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397

  20. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  1. Micromechanics of Brittle Creep Under Triaxial Loading Conditions

    NASA Astrophysics Data System (ADS)

    Meredith, P. G.; Brantut, N.; Baud, P.; Heap, M. J.

    2011-12-01

    In the upper crust, the chemical influence of pore water promotes time-dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail (i) at stresses far below their short-term failure strength, and (ii) even at constant applied stress ("brittle creep"). Here we provide a micromechanical model and experimental results describing time-dependent brittle creep of water-saturated granite under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of microcracks in compression are derived from the sliding wing-crack model of Ashby and Sammis (1990). Crack length evolution is computed from Charles' law. The macroscopic strain and strain rates are then computed from the change in energy potential due to microcrack growth. They are non-linear, and compare well with complementary experimental results obtained on granite samples. Primary creep (decelerating strain) corresponds to decreasing crack growth rate , due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as merely an inflexion between the two end-member phases.

  2. Creep properties of Pb-free solder joints

    SciTech Connect

    Song, H.G.; Morris Jr., J.W.; Hua, F.

    2002-04-01

    Describes the creep behavior of three Sn-rich solders that have become candidates for use in Pb-free solder joints: Sn-3.5Ag, Sn-3Ag-0.5Cu and Sn-0.7Cu. The three solders show the same general behavior when tested in thin joints between Cu and Ni/Au metallized pads at temperatures between 60 and 130 C. Their steady-state creep rates are separated into two regimes with different stress exponents(n). The low-stress exponents range from {approx}3-6, while the high-stress exponents are anomalously high (7-12). Strikingly, the high-stress exponent has a strong temperature dependence near room temperature, increasing significantly as the temperature drops from 95 to 60 C. The anomalous creep behavior of the solders appears to be due to the dominant Sn constituent. Joints of pure Sn have stress exponents, n, that change with stress and temperature almost exactly like those of the Sn-rich solder joints. Research on creep in bulk samples of pure Sn suggests that the anomalous temperature dependence of the stress exponent may show a change in the dominant mechanism of creep. Whatever its source, it has the consequence that conventional constitutive relations for steady-state creep must be used with caution in treating Sn-rich solder joints, and qualification tests that are intended to verify performance should be carefully designed.

  3. The activation energy for creep of columbium /niobium/.

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulden, M. E.

    1973-01-01

    The activation energy for creep of nominally pure columbium (niobium) was determined in the temperature range from 0.4 to 0.75 T sub M by measuring strain rate changes induced by temperature shifts at constant stress. A peak in the activation energy vs temperature curve was found with a maximum value of 160 kcal/mole. A pretest heat treatment of 3000 F for 30 min resulted in even higher values of activation energy (greater than 600 kcal/mole) in this temperature range. The activation energy for the heat-treated columbium (Nb) could not be determined near 0.5 T sub M because of unusual creep curves involving negligible steady-state creep rates and failure at less than 5% creep strain. It is suggested that the anomalous activation energy values and the unusual creep behavior in this temperature range are caused by dynamic strain aging involving substitutional atom impurities and that this type of strain aging may be in part responsible for the scatter in previously reported values of activation energy for creep of columbium (Nb) near 0.5 T sub M.

  4. Influence of cold work level on the irradiation creep and creep rupture of titanium-modified austenitic stainless steels

    SciTech Connect

    Garner, F.A.; Hamilton, M.L. ); Eiholzer, C.R. ); Toloczko, M.B. ); Kumar, A.S. )

    1992-06-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% form the conventional 20% level was detrimental to its performance, especially for applications above 550{degrees}C. The 20% cold work level is preferable to the 10% level, in terms of both in- reactor creep rapture response and initial strength.

  5. Irradiation creep and creep rupture of titanium-modified austenitic stainless steels and their dependence on cold work level

    SciTech Connect

    Garner, F.A.; Hamilton, M.L.; Eiholzer, C.R.; Toloczko, M.B.; Kumar, A.S.

    1991-11-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% from the conventional 20% level was detrimental to its performance, especially for applications above 550{degrees}c. The 20% cold work level is preferable to the 10% level, in terms of both in-reactor creep rupture response and initial strength.

  6. Stochastic modeling of crack initiation and short-crack growth under creep and creep-fatigue conditions

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ghosn, Louis J.; Ohtani, Ryuichi

    1992-01-01

    A simplified stochastic model is proposed for crack initiation and short-crack growth under creep and creep-fatigue conditions. Material inhomogeneity provides the random nature of crack initiation and early growth. In the model, the influence of microstructure is introduced by the variability of: (1) damage accumulation along grain boundaries, (2) critical damage required for crack initiation or growth, and (3) the grain-boundary length. The probabilities of crack initiation and growth are derived by using convolution integrals. The model is calibrated and used to predict the crack density and crack-growth rate of short cracks of 304 stainless steel under creep and creep-fatigue conditions. The mean-crack initiation lives are predicted to be within an average deviation of about 10 percent from the experimental results. The predicted comulative distributions of crack-growth rate follow the experimental data closely. The applicability of the simplified stochastic model is discussed and the future research direction is outlined.

  7. Stochastic modeling of crack initiation and short-crack growth under creep and creep-fatigue conditions

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ghosn, Louis J.; Ohtani, Ryuichi

    1989-01-01

    A simplified stochastic model is proposed for crack initiation and short-crack growth under creep and creep-fatigue conditions. Material inhomogeneity provides the random nature of crack initiation and early growth. In the model, the influence of microstructure is introduced by the variability of: (1) damage accumulation along grain boundaries, (2) critical damage required for crack initiation or growth, and (3) the grain-boundary length. The probabilities of crack initiation and growth are derived by using convolution integrals. The model is calibrated and used to predict the crack density and crack-growth rate of short cracks of 304 stainless steel under creep and creep-fatigue conditions. The mean-crack initiation lives are predicted to be within an average deviation of about 10 percent from the experimental results. The predicted cumulative distributions of crack-growth rate follow the experimental data closely. The applicability of the simplified stochastic model is discussed and the future research direction is outlined.

  8. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  9. Creep behavior of tantalum alloy T-222 at 1365 to 1700 K

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1974-01-01

    High vacuum creep tests on the tantalum T-222 alloy at 0.42 to 0.52 T sub m show that the major portion of the creep curves, up to at least 1 percent strain, can be best described by an increasing creep rate, with strain varying linearly with time. Correlation and extrapolation of the creep curves on the basis of increasing creep rates results in more accurate engineering design data than would use of approximated linear rates. Based on increasing creep rates, the stress for 1 percent strain in 10,000 hours for T-222 is about four times greater than for the Ta-10W alloy. Increasing the grain size results in increased creep strength. Thermal aging prior to testing caused precipitation of the hexagonal close packed (Hf,Ta) sub 2 C, which initially increased creep strength. However, this dimetal carbide was converted during creep testing to face-centered cubic (Hf,Ta)C.

  10. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  11. A Statistical Test for Identifying the Number of Creep Regimes When Using the Wilshire Equations for Creep Property Predictions

    NASA Astrophysics Data System (ADS)

    Evans, Mark

    2016-10-01

    A new parametric approach, termed the Wilshire equations, offers the realistic potential of being able to accurately lift materials operating at in-service conditions from accelerated test results lasting no more than 5000 hours. The success of this approach can be attributed to a well-defined linear relationship that appears to exist between various creep properties and a log transformation of the normalized stress. However, these linear trends are subject to discontinuities, the number of which appears to differ from material to material. These discontinuities have until now been (1) treated as abrupt in nature and (2) identified by eye from an inspection of simple graphical plots of the data. This article puts forward a statistical test for determining the correct number of discontinuities present within a creep data set and a method for allowing these discontinuities to occur more gradually, so that the methodology is more in line with the accepted view as to how creep mechanisms evolve with changing test conditions. These two developments are fully illustrated using creep data sets on two steel alloys. When these new procedures are applied to these steel alloys, not only do they produce more accurate and realistic looking long-term predictions of the minimum creep rate, but they also lead to different conclusions about the mechanisms determining the rates of creep from those originally put forward by Wilshire.

  12. Comprehensive Creep and Thermophysical Performance of Refractory Materials

    SciTech Connect

    Ferber, M.K.; Wereszczak, A.; Hemrick, J.A.

    2006-06-29

    Furnace designers and refractory engineers recognize that optimized furnace superstructure design and refractory selection are needed as glass production furnaces are continually striving toward greater output and efficiencies. Harsher operating conditions test refractories to the limit, while changing production technology (such as the conversion to oxy-fuel from traditional air-fuel firing) can alter the way the materials perform [1-3]. Refractories for both oxy- and air-fuel fired furnace superstructures (see Fig. 1) are subjected to high temperatures that may cause them to creep excessively or subside during service if the refractory material is not creep resistant, or if it is subjected to high stress, or both. Furnace designers can ensure that superstructure structural integrity is maintained if the creep behavior of the refractory material is well understood and well represented by appropriate engineering creep models. Several issues limit the abilities of furnace designers to (1) choose the optimum refractory for their applications, (2) optimize the engineering design, or (3) predict the service mechanical integrity of their furnace superstructures. Published engineering creep data are essentially nonexistent for almost all commercially available refractories used for glass furnace superstructures. The limited data that do exist are supplied by the various refractory suppliers. Unfortunately, the suppliers generally have different ways of conducting their mechanical testing, and they interpret and report their data differently. This inconsistency makes it hard for furnace designers to draw fair comparisons between competing grades of candidate refractories. Furthermore, the refractory suppliers' data are often not available in a form that can be readily used for furnace design or for the prediction and design of long-term structural integrity of furnace superstructures. As a consequence, the U.S. Department of Energy (DOE) Industrial Technology Program (ITP

  13. Creep healing of fractures in rock salt

    SciTech Connect

    Costin, L. S.; Wawersik, W. R.

    1980-08-01

    Fracture and healing experiments were performed on specimens of bedded salt from the Salado formation, southeastern New Mexico. Short rod specimens (100 mm in diameter) were loaded to failure in tension. During each test, a crack was initiated along the axis of the specimen. The fracture toughness of the salt was determined from the resulting load-crack opening displacement record. After the test, each specimen was pieced back together, jacketed and placed in a pressure vessel under hydrostatic pressure for several days. The confining pressure (10 to 35 MPa), temperature (22 to 100/sup 0/C) and healing time (4 to 8 days) were varied to determine the effect of each on the healing process. Upon removal from the pressure vessel, each sample was retested and the toughness of the healed fracture was determined. Results show that the salt specimens regained 70 to 80% of their original strength under all conditions except at the lowest temperature and pressure where specimens regained only 20 to 30% of their original strength. It is suspected that the primary mechanism involved is creep of asperities along the fracture surface which forms an interlocking network. Thus, the healing pressure is probably the most significant variable.

  14. Creep and fracture of a model yoghurt

    NASA Astrophysics Data System (ADS)

    Manneville, Sebastien; Leocmach, Mathieu; Perge, Christophe; Divoux, Thibaut

    2014-11-01

    Biomaterials such as protein or polysaccharide gels are known to behave qualitatively as soft solids and to rupture under an external load. Combining optical and ultrasonic imaging to shear rheology we show that the failure scenario of a model yoghurt, namely a casein gel, is reminiscent of brittle solids: after a primary creep regime characterized by a macroscopically homogeneous deformation and a power-law behavior which exponent is fully accounted for by linear viscoelasticity, fractures nucleate and grow logarithmically perpendicularly to shear, up to the sudden rupture of the gel. A single equation accounting for those two successive processes nicely captures the full rheological response. The failure time follows a decreasing power-law with the applied shear stress, similar to the Basquin law of fatigue for solids. These results are in excellent agreement with recent fiber-bundle models that include damage accumulation on elastic fibers and exemplify protein gels as model, brittle-like soft solids. Work funded by the European Research Council under Grant Agreement No. 258803.

  15. Does light attract piglets to the creep area?

    PubMed

    Larsen, M L V; Pedersen, L J

    2015-06-01

    Hypothermia, experienced by piglets, has been related to piglet deaths and high and early use of a heated creep area is considered important to prevent hypothermia. The aims of the present study were to investigate how a newly invented radiant heat source, eHeat, would affect piglets' use of the creep area and whether light in the creep area works as an attractant on piglets. A total of 39 sows, divided between two batches, were randomly distributed to three heat source treatments: (1) standard infrared heat lamp (CONT, n=19), (2) eHeat with light (EL, n=10) and (3) eHeat without light (ENL, n=10). Recordings of piglets' use of the creep area were made as scan sampling every 10 min for 3 h during two periods, one in daylight (0900 to 1200 h) and one in darkness (2100 to 2400 h), on day 1, 2, 3, 7, 14 and 21 postpartum. On the same days, piglets were weighted. Results showed an interaction between treatment and observation period (P<0.05) with a lower use of the creep area during darkness compared with daylight for CONT and EL litters, but not for ENL litters. Piglets average daily weight gain was not affected by treatment, but was positively correlated with piglets' birth weight and was lower in batch 1 compared with batch 2. Seen from the present results, neither eHeat nor light worked as an attractant on piglets; in contrast, piglets preferred to sleep in the dark and it would therefore be recommended to turn off the light in the creep area during darkness. Heating up the creep area without light can be accomplished by using a radiant heat source such as eHeat in contrast to the normally used light-emitting infrared heat lamp.

  16. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-01-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  17. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  18. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-09-14

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  19. Experimental investigations of creep in gold RF-MEMS microstructures

    NASA Astrophysics Data System (ADS)

    Somà, Aurelio; De Pasquale, Giorgio; Saleem, Muhammad Mubasher

    2015-05-01

    Lifetime prediction and reliability evaluation of micro-electro-mechanical systems (MEMS) are influenced by permanent deformations caused by plastic strain induced by creep. Creep in microstructures becomes critical in those applications where permanent loads persist for long times and thermal heating induces temperature increasing respect to the ambient. Main goal of this paper is to investigate the creep mechanism in RF-MEMS microstructures by means of experiments. This is done firstly through the detection of permanent deformation of specimens and, then, by measuring the variation of electro-mechanical parameters (resonance frequency, pull-in voltage) that provide indirect evaluation of mechanical stiffness alteration from creep. To prevent the errors caused be cumulative heating of samples and dimensional tolerances, three specimens with the same nominal geometry have been tested per each combination of actuation voltage and temperature. Results demonstrated the presence of plastic deformation due to creep, combined with a component of reversible strain linked to the viscoelastic behavior of the material.

  20. Driven Interfaces: From Flow to Creep Through Model Reduction

    NASA Astrophysics Data System (ADS)

    Agoritsas, Elisabeth; García-García, Reinaldo; Lecomte, Vivien; Truskinovsky, Lev; Vandembroucq, Damien

    2016-08-01

    The response of spatially extended systems to a force leading their steady state out of equilibrium is strongly affected by the presence of disorder. We focus on the mean velocity induced by a constant force applied on one-dimensional interfaces. In the absence of disorder, the velocity is linear in the force. In the presence of disorder, it is widely admitted, as well as experimentally and numerically verified, that the velocity presents a stretched exponential dependence in the force (the so-called `creep law'), which is out of reach of linear response, or more generically of direct perturbative expansions at small force. In dimension one, there is no exact analytical derivation of such a law, even from a theoretical physical point of view. We propose an effective model with two degrees of freedom, constructed from the full spatially extended model, that captures many aspects of the creep phenomenology. It provides a justification of the creep law form of the velocity-force characteristics, in a quasistatic approximation. It allows, moreover, to capture the non-trivial effects of short-range correlations in the disorder, which govern the low-temperature asymptotics. It enables us to establish a phase diagram where the creep law manifests itself in the vicinity of the origin in the force-system-size-temperature coordinates. Conjointly, we characterise the crossover between the creep regime and a linear-response regime that arises due to finite system size.

  1. Irradiation creep relaxation of void swelling-driven stresses

    NASA Astrophysics Data System (ADS)

    Hall, M. M.

    2013-01-01

    Swelling-driven-creep test specimens are used to measure the compressive stresses that develop due to constraint of irradiation void swelling. These specimens use a previously non-irradiated 20% CW Type 316 stainless steel holder to axially restrain two Type 304 stainless steel tubular specimens that were previously irradiated in the US Experimental Breeder Reactor (EBR-II) at 490 °C. One specimen was previously irradiated to fluence levels in the void nucleation regime (9 dpa) and the other in the quasi-steady void growth regime (28 dpa). A lift-off compliance measurement technique was used post-irradiation to determine compressive stresses developed during reirradiation of the two specimen assemblies in Row 7 of EBR-II at temperatures of 547 °C and 504 °C, respectively, to additional damage levels each of about 5 dpa. Results obtained on the higher fluence swelling-driven-creep specimen show that compressive stress due to constraint of swelling retards void swelling to a degree that is consistent with active load uniaxial compression specimens that were irradiated as part of a previously reported multiaxial in-reactor creep experiment. Swelling results obtained on the lower fluence swelling-driven creep specimen show a much larger effect of compressive stress in reducing swelling, demonstrating that the larger effect of stress on swelling is on void nucleation as compared to void growth. Test results are analyzed using a recently proposed multiaxial creep-swelling model.

  2. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    PubMed

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  3. Tensile and creep data on type 316 stainless steel

    SciTech Connect

    Sikka, V. K.; Booker, B. L.P.; Booker, M. K.; McEnerney, J. W.

    1980-01-01

    This report summarizes tensile and creep data on 13 heats of type 316 stainless steel. It includes ten different product forms (three plates, four pipes, and three bars) of the reference heat tested at ORNL. Tensile data are presented in tabular form and analyzed as a function of temperature by the heat centering method. This method yielded a measure of variations within a single heat as well as among different heats. The upper and lower scatter bands developed by this method were wider at the lower temperatures than at the high temperatures (for strength properties), a trend reflected by the experimental data. The creep data on both unaged and aged specimens are presented in tabular form along with creep curves for each test. The rupture time data are compared with the ASME Code Case minimum curve at each test temperature in the range from 538 to 704{sup 0}C. The experimental rupture time data are also compared with the values predicted by using the rupture model based on elevated-temperature ultimate tensile strength. A creep ductility trend curve was developed on the basis of the reference heat data and those published in the literature on nitrogen effects. To characterize the data fully, information was also supplied on vendor, product form, fabrication method, material condition (mill-annealed vs laboratory annealed and aged), grain size, and chemical composition for various heats. Test procedures used for tensile and creep results are also discussed.

  4. The fabrication and creep properties of superalloy-zirconia composites

    NASA Astrophysics Data System (ADS)

    Oruganti, R. K.; Ghosh, A. K.

    2003-01-01

    Many high-temperature structural materials applications require mismatch strain compatibility that can be provided by graded composites. Applications such as ceramic thermal-barrier coatings on superalloy substrates require compatibility to minimize interfacial stresses and degradation effects. The interfaces in such cases could be metal-matrix composites containing a graded distribution of the ceramic phase within the superalloy matrix whose creep properties during elevated temperature service are unknown. This article reviews creep properties of a typical superalloy, René95, containing partially stabilized zirconia. These composites were prepared via powder metallurgy, during which zirconia was found to react with γ' (Ni3Al) to form Al2O3, resulting in the depletion of γ' from the superalloy matrix. Due to the combined effects of chemical changes and grain refinement, considerable creep strengthening was achieved at low creep rates, but weakening was observed at higher creep rates. A composite load transfer model is used to isolate the effect of particles on strengthening.

  5. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  6. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; et al

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  7. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    SciTech Connect

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.

  8. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    NASA Astrophysics Data System (ADS)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  9. Driven Interfaces: From Flow to Creep Through Model Reduction

    NASA Astrophysics Data System (ADS)

    Agoritsas, Elisabeth; García-García, Reinaldo; Lecomte, Vivien; Truskinovsky, Lev; Vandembroucq, Damien

    2016-09-01

    The response of spatially extended systems to a force leading their steady state out of equilibrium is strongly affected by the presence of disorder. We focus on the mean velocity induced by a constant force applied on one-dimensional interfaces. In the absence of disorder, the velocity is linear in the force. In the presence of disorder, it is widely admitted, as well as experimentally and numerically verified, that the velocity presents a stretched exponential dependence in the force (the so-called `creep law'), which is out of reach of linear response, or more generically of direct perturbative expansions at small force. In dimension one, there is no exact analytical derivation of such a law, even from a theoretical physical point of view. We propose an effective model with two degrees of freedom, constructed from the full spatially extended model, that captures many aspects of the creep phenomenology. It provides a justification of the creep law form of the velocity-force characteristics, in a quasistatic approximation. It allows, moreover, to capture the non-trivial effects of short-range correlations in the disorder, which govern the low-temperature asymptotics. It enables us to establish a phase diagram where the creep law manifests itself in the vicinity of the origin in the force-system-size-temperature coordinates. Conjointly, we characterise the crossover between the creep regime and a linear-response regime that arises due to finite system size.

  10. Mapping microscale strain heterogeneity during creep deformation

    NASA Astrophysics Data System (ADS)

    Quintanilla Terminel, A.; Evans, J.

    2013-12-01

    We use a new technique combining microfabrication technology and compression tests to map the strain field at a micrometric scale in polycrystalline materials. This technique allows us to map local strain while measuring macroscopic strain and rheological properties, and provides insight into the relative contribution of various plasticity mechanisms under varying creep conditions. The micro-strain mapping technique was applied to Carrara Marble under different deformation regimes, at 300 MPa and temperatures ranging from 200 to 700 °C. At 600 °C, strain of 10%, and strain rate of 3e-5s-1, the local strain at twin and grain boundaries is up to 5 times greater than the average sample strain. At these conditions, strains averaged across a particular grain may vary by as much as 100%, but the strain field becomes more homogeneous with increasing strain. For example, for the analyzed experiments, the average wavelength of the strain heterogeneity is 70 micrometers at 10% strain, but increases to 110 micrometers at 20%. For a strain of 10%, heterogeneity is increased at slower strain rate (at 1e-5s-1). This increase seems to be associated with a more important role of twin boundary and grain boundary migration. As expected, twin densities are markedly greater at the lower temperature, though it is still unclear whether the relative twin volume is greater. However, twin strains are still important at 600 °C and accommodate an average of 14 % of the total strain at 10% deformation and a strain rate of 3e-5s-1.

  11. Creep Function of a Single Living Cell

    PubMed Central

    Desprat, Nicolas; Richert, Alain; Simeon, Jacqueline; Asnacios, Atef

    2005-01-01

    We used a novel uniaxial stretching rheometer to measure the creep function J(t) of an isolated living cell. We show, for the first time at the scale of the whole cell, that J(t) behaves as a power-law J(t) = Atα. For N = 43 mice myoblasts (C2-7), we find α = 0.24 ± 0.01 and A = (2.4 ± 0.3) 10−3 Pa−1 s−α. Using Laplace Transforms, we compare A and α to the parameters G0 and β of the complex modulus G*(ω) = G0ωβ measured by other authors using magnetic twisting cytometry and atomic force microscopy. Excellent agreement between A and G0 on the one hand, and between α and β on the other hand, indicated that the power-law is an intrinsic feature of cell mechanics and not the signature of a particular technique. Moreover, the agreement between measurements at very different size scales, going from a few tens of nanometers to the scale of the whole cell, suggests that self-similarity could be a central feature of cell mechanical structure. Finally, we show that the power-law behavior could explain previous results first interpreted as instantaneous elasticity. Thus, we think that the living cell must definitely be thought of as a material with a large and continuous distribution of relaxation time constants which cannot be described by models with a finite number of springs and dash-pots. PMID:15596508

  12. The dependence of irradiation creep in austenitic alloys on displacement rate and helium to dpa ratio

    SciTech Connect

    Garner, F.A.; Toloczko, M.B.; Grossbeck, M.L.

    1998-03-01

    Before the parametric dependencies of irradiation creep can be confidently determined, analysis of creep data requires that the various creep and non-creep strains be separated, as well as separating the transient, steady-state, and swelling-driven components of creep. When such separation is attained, it appears that the steady-state creep compliance, B{sub o}, is not a function of displacement rate, as has been previously assumed. It also appears that the formation and growth of helium bubbles under high helium generation conditions can lead to a significant enhancement of the irradiation creep coefficient. This is a transient influence that disappears as void swelling begins to dominate the total strain, but this transient can increase the apparent creep compliance by 100--200% at relatively low ({le}20) dpa levels.

  13. Room-temperature transverse compressive creep of thick Kevlar fabric/ epoxy laminates

    SciTech Connect

    Ericksen, R.H.; Guess, T.R.

    1980-01-01

    Creep and recovery of thick Kevlar 49/epoxy composites were investigated in transverse compressive loading at room temperature. Cylindrical samples with void contents of 4 and 14 percent were tested along with those of unreinforced resin. The composites exhibited logarithmic creep. Creep rates were 2 times higher over the entire stress range for the high porosity composites. At a stress of 87 MPa the resin creep curve was similar to that of the composites. At higher stresses, the resin crept faster and exhibited more strain. It is proposed that axial compressive creep of the cylindrical composite specimens is governed by Poisson induced strains leading to tensile loading of the reinforcing fibers. Axial initial strain and creep rate data for the composite were converted to radial data using measured values of Poisson ratio. These values of composite specimen radial creep rate were in good agreement with tensile creep data of Kevlar 49 fibers.

  14. Primary and secondary creep in aluminum alloys as a solid state transformation

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2016-08-01

    Despite the massive literature and the efforts devoted to understand the creep behavior of aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters and experimental conditions is, at present, still missing. The analysis of creep is typically carried out in terms of the so-called steady or secondary creep regime. The present work offers an alternative view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers primary and secondary creep together as solid state isothermal transformations, similar to recrystallization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-Kolmogorov equation, typically used to analyze these transformations, can also be employed to explain creep deformation. The description is fully compatible with present (empirical) models of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at different temperatures and stresses to validate the proposed model.

  15. Creep Life Prediction of Ceramic Components Using the Finite Element Based Integrated Design Program (CARES/Creep)

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1997-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. Such long life requirements necessitate subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this work is to present a design methodology for predicting the lifetimes of structural components subjected to multiaxial creep loading. This methodology utilizes commercially available finite element packages and takes into account the time varying creep stress distributions (stress relaxation). In this methodology, the creep life of a component is divided into short time steps, during which, the stress and strain distributions are assumed constant. The damage, D, is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. For components subjected to predominantly tensile loading, failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity.

  16. Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2014-01-01

    Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatigue tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.

  17. Constitutive Modeling of High Temperature Uniaxial Creep-Fatigue and Creep-Ratcheting Responses of Alloy 617

    SciTech Connect

    P.G. Pritchard; L.J. Carroll; T. Hassan

    2013-07-01

    Inconel Alloy 617 is a high temperature creep and corrosion resistant alloy and is a leading candidate for use in Intermediate Heat Exchangers (IHX) of the Next Generation Nuclear Plants (NGNP). The IHX of the NGNP is expected to experience operating temperatures in the range of 800 degrees - 950 degrees C, which is in the creep regime of Alloy 617. A broad set of uniaxial, low-cycle fatigue, fatigue-creep, ratcheting, and ratcheting-creep experiments are conducted in order to study the fatigue and ratcheting responses, and their interactions with the creep response at high temperatures. A unified constitutive model developed at North Carolina State University is used to simulate these experimental responses. The model is developed based on the Chaboche viscoplastic model framework. It includes cyclic hardening/softening, strain rate dependence, strain range dependence, static and dynamic recovery modeling features. For simulation of the alloy 617 responses, new techniques of model parameter determination are developed for optimized simulations. This paper compares the experimental responses and model simulations for demonstrating the strengths and shortcomings of the model.

  18. Creep Burst Testing of a Woven Inflatable Module

    NASA Technical Reports Server (NTRS)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  19. Treatment of material creep and nonlinearities in flexible mulitbody dynamics

    SciTech Connect

    Xie, M.; Amirouche, F.M.L.

    1994-01-01

    This paper addresses the modeling of the generalized active forces resulting from deformable bodies when subjected to high temperature conditions, elastic-plastic deformations, creep effects, and material nonlinearities. The effects of elastic-plastic deformations are studied making use of the nonlinear stress-strain relationship and the geometrical stiffness concepts. Creep conditions resulting from high temperature are studied through several proposed models. Materials nonlinearities for isotropic and composites are accounted for by their tangential elasticity matrix. A general procedure used in the study of multibody systems dynamics with elastic-plastic bodies depicting the characteristics mentioned is developed. This includes an explicit formulation of the equations of motion using Kane`s equations, finite element method, continuum mechanics, and modal coordinate reduction techniques. A numerical simulation of a flexible robotic arm with a prescribed angular velocity subject to high temperature conditions is analyzed. The effects of creep are discussed.

  20. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  1. NEGLIGIBLE CREEP CONDITIONS FOR MOD 9 CR 1 MO STEEL

    SciTech Connect

    Ren, Weiju; Riou, Bernard; Escaravage, Claude; Swindeman, Robert W; Cabrillat, Marie-Th�r�se; Allais, Lucien

    2006-01-01

    Mod 9 Cr 1 Mo Steel (grade 91) is one of the materials envisaged for the Reactor Pressure Vessel of Very High Temperature Reactors. To avoid the implementation of a surveillance program covering the monitoring of the creep damage throughout the whole life of the reactor, it is recommended to operate the Reactor Pressure Vessel in the negligible creep regime. In this paper, the background of negligible creep criteria available in nuclear Codes is first recalled and their limitations were analyzed. Then, guidance for deriving criteria more appropriate for mod 9 Cr 1 Mo steel is provided. Finally, R&D actions in the U. S. and France to support the new approaches are discussed and recommended.

  2. Power-law creep and residual stresses in carbopol microgels

    NASA Astrophysics Data System (ADS)

    Lidon, Pierre; Manneville, Sebastien

    We report on the interplay between creep and residual stresses in carbopol microgels. When a constant shear stress σ is applied below the yield stress σc, the strain is shown to increase as a power law of time, γ (t) =γ0 +(t / τ) α , with and exponent α ~= 0 . 38 that is strongly reminiscent of Andrade creep in hard solids. For applied shear stresses lower than some characteristic value of about σc / 10 , the microgels experience a more complex creep behavior that we link to the existence of residual stresses and to weak aging of the system after preshear. The influence of the preshear protocol, of boundary conditions and of microgel concentration on residual stresses is investigated. We discuss our results in light of previous works on colloidal glasses and other soft glassy systems.

  3. Creep and recovery behavior analysis of space mesh structures

    NASA Astrophysics Data System (ADS)

    Tang, Yaqiong; Li, Tuanjie; Ma, Xiaofei

    2016-11-01

    The Schapery's nonlinear viscoelastic theory and nonlinear force-density method have been investigated to analyze the creep and recovery behaviors of space deployable mesh reflectors in this paper. Based on Schapery's nonlinear viscoelastic theory, we establish the creep and recovery constitutive model for cables whose pretensions were applied stepwise in time. This constitutive model has been further used for adjustment of cables' elongation rigidity. In addition, the time-dependent tangent stiffness matrix is calculated by the partial differentiation of the corresponding load vector with respect to the nodal coordinate vector obtained by the nonlinear force-density method. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the time-dependent nonlinear statics equations. Finally, a hoop truss reflector antenna is presented as a numerical example to illustrate the efficiency of the proposed method for the creep and recovery behavior analysis of space deployable mesh structures.

  4. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1985-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  5. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  6. Deformation and crack growth response under cyclic creep conditions

    SciTech Connect

    Brust, F.W. Jr.

    1995-12-31

    To increase energy efficiency, new plants must operate at higher and higher temperatures. Moreover, power generation equipment continues to age and is being used far beyond its intended original design life. Some recent failures which unfortunately occurred with serious consequences have clearly illustrated that current methods for insuring safety and reliability of high temperature equipment is inadequate. Because of these concerns, an understanding of the high-temperature crack growth process is very important and has led to the following studies of the high temperature failure process. This effort summarizes the results of some recent studies which investigate the phenomenon of high temperature creep fatigue crack growth. Experimental results which detail the process of creep fatigue, analytical studies which investigate why current methods are ineffective, and finally, a new approach which is based on the T{sup *}-integral and its ability to characterize the creep-fatigue crack growth process are discussed. The potential validity of this new predictive methodology is illustrated.

  7. Vortex creep in TFA-YBCO nanocomposite films

    NASA Astrophysics Data System (ADS)

    Rouco, V.; Bartolomé, E.; Maiorov, B.; Palau, A.; Civale, L.; Obradors, X.; Puig, T.

    2014-11-01

    Vortex creep in YBa2Cu3O7 - x (YBCO) films grown from the trifluoracetate (TFA) chemical route with BaZrO3 and Ba2YTaO6 second-phase nanoparticles (NPs) has been investigated by magnetic relaxation measurements. We observe that in YBCO nanocomposites the phenomenological crossover line from the elastic to the plastic creep regime is shifted to higher magnetic fields and temperatures. The origin of this shift lies on the new isotropic-strong vortex pinning contribution appearing in these nanocomposites, induced by local lattice distortions. As a consequence, we demonstrate that the addition of non-coherent NPs produces a decrease in the creep rate S in most of the phase diagram, particularly, in the range of fields and temperatures (T\\gt 60 K, {{μ }0}H\\gt 0.5 T) relevant for large scale applications.

  8. The effect of annealing on the creep of plasma-sprayed ceramics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.; Mullen, R. L.

    1983-01-01

    The creep of plasma sprayed ZrO2-8Y2O3 was measured at temperatures from 98 to 1250 C (180 to 220 F), and compared to creep of identical samples after annealing at temperatures from 98 to 1316 C (1800 to 2400 F). Loads and temperatures which produced significant creep of as sprayed ceramics produced no creep after annealing. Previously announced in STAR as N83-24799

  9. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  10. Creep and tensile properties of several oxide dispersion strengthened nickel base alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The creep properties at 1365 K of several oxide dispersion strengthened (ODS) alloys were studied, where the creep exposures involved low strains, on the order of 1% or less, after nominally 100 hours of testing. It was found that ODS alloys possess threshold stresses for creep. Creep in polycrystalline ODS alloys is an inhomogeneous process. The threshold stresses in large grain size ODS Ni-20Cr and Ni-16Cr-4/5Al type alloys are dependent on the grain aspect ratio.

  11. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  12. Grain size-sensitive creep in ice II

    USGS Publications Warehouse

    Kubo, T.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2006-01-01

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  13. Creep failure of cracking heater at a petrochemical plant

    SciTech Connect

    El-Batahgy, A. . E-mail: elbatahgy@yahoo.com; Zaghloul, B.

    2005-03-15

    After two and half years of operation, a bend tube in a cracking heater at an ethylene plant failed due to creep cracking. Creep damage occurred as a result of metallurgical instability including coarsening of carbides that caused softening and initiation of voids or wedge-type intergranular cracks. This was accelerated due to increasing inner surface temperature during decoking process. Thermal fatigue contributed to the failure as a result of temperature variations due to several shutdown-startup operations. To minimize such failure in futures, periodic inspection to monitor crack formation was scheduled. Nondestructive tests including dye penetrant test for surface cracking and radiographic test for internal crack were implemented.

  14. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1987-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena modern engines utilize single-crystal, nickel-based superalloys as the material of choice in critical applications. Recent research activities at Lewis on single-crystal blading material as well as future research initiatives on metal matrix composites related to creep and fatigue are discussed. The goal of these research efforts is improving the understanding of microstructure-property relationships and thereby guide material development.

  15. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1990-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena, modern engines utilize single-crystal, nickel-base superalloys as the material of choice in critical applications. This paper will present recent research activities at NASA's Lewis Research Center on single-crystal blading material, related to creep and fatique. The goal of these research efforts is to improve the understanding of microstructure-property relationships and thereby guide material development.

  16. Transient creep and convective instability of the lithosphere

    NASA Astrophysics Data System (ADS)

    Birger, Boris I.

    2012-12-01

    Laboratory experiments with rock samples show that transient creep, at which strain grows with time and strain rate decrease at constant stress, occurs while creep strains are sufficiently small. The transient creep at high temperatures is described by the Andrade rheological model. Since plate tectonics allows only small deformations in lithospheric plates, creep of the lithosphere plates is transient whereas steady-state creep, described by non-Newtonian power-law rheological model, takes place in the underlying mantle. At the transient creep, the effective viscosity, found in the study of postglacial flows, differs significantly from the effective viscosity, which characterizes convective flow, since timescales of these flows are very different. Besides, the transient creep changes the elastic crust thickness estimated within the power-law rheology of the lithosphere. Two problems of convective stability for the lithosphere with the Andrade rheology are solved. The solution of the first problem shows that the state, in which large-scale convective flow in the mantle occurs under lithospheric plates, is unstable and must bifurcate into another more stable state at which the lithospheric plates become mobile and plunge into the mantle at subduction zones. If the lithosphere had the power-law fluid rheology, the effective viscosity of the stagnant lithospheric plates would be extremely high and the state, in which large-scale convection occurs under the stagnant plates, would be stable that contradicts plate tectonics. The mantle convection forms mobile lithospheric plates if the effective viscosity of the plate is not too much higher than the effective viscosity of the underlying mantle. The Andrade rheology lowers the plate effective viscosity corresponding to the power-law fluid rheology and, thus, leads to instability of the state in which the plates are stagnant. The solution of the second stability problem shows that the state, in which the lithospheric plate

  17. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  18. Activation volume for creep in the upper mantle.

    PubMed

    Ross, J V; Ave'lallemant, H G; Carter, N L

    1979-01-19

    The activation volume for creep, V*, of olivine-rich rocks has been determined in pressure-differential creep experiments on dunite at temperatures from 1100 degrees to 1350 degrees C and confining pressures from 5 to 15 kilobars. Values of V* range from 10.6 to 15.4 cubic centimeters per mole with a mean value of 13.4 cubic centimeters per mole, near that expected for oxygen ion self-diffusion. The quantity V* is incorporated into existing flow equations; in combination with observations on naturally deformed mantle xenoliths, estimates are given of the variation with depth of stress, strain rate, and viscosity. PMID:17738997

  19. Grain size-sensitive creep in ice II.

    PubMed

    Kubo, Tomoaki; Durham, William B; Stern, Laura A; Kirby, Stephen H

    2006-03-01

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system. PMID:16513977

  20. Postcrack creep of polymeric fiber-reinforced concrete in flexure

    SciTech Connect

    Kurtz, S.; Balaguru, P.

    2000-02-01

    Results of an experimental investigation of the creep-time behavior of polypropylene and nylon fiber-reinforced concrete (FRC) are presented. Gravity loads were applied in flexure to precracked low volume fraction (0.1%) polypropylene and nylon FRC beams. Beams were tested at a range of stress levels to produce three outcomes: load sustained indefinitely (low stress), creep failure (intermediate stress), and rapid failure (high stress). Emphasis was placed on determining the maximum flexural stress that is sustainable indefinitely. The results indicate that polypropylene FRC has higher initial strength but nylon FRC can sustain a higher stress level. For both groups the sustainable stress is much lower than the postcrack strength.

  1. Grain size-sensitive creep in ice II.

    PubMed

    Kubo, Tomoaki; Durham, William B; Stern, Laura A; Kirby, Stephen H

    2006-03-01

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  2. Treatment of multiaxial creep-fatigue by strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.

    1976-01-01

    Strainrange partitioning is a recently developed method for treating creep-fatigue interaction at elevated temperature. Most of the work to date has been on uniaxially loaded specimens, where as practical applications often involve load multiaxiality. It is shown how the method can be extended to treat multiaxiality through a set of rules for combining the strain components in the three principal directions. Closed hysteresis loops, as well as plastic and creep strain ratcheting are included. An application to hold-time tests in torsion will be used to illustrate the approach.

  3. In-pile and post-irradiation creep of type 304 stainless steel under different neutron spectra

    NASA Astrophysics Data System (ADS)

    Kurata, Y.; Itabashi, Y.; Mimura, H.; Kikuchi, T.; Amezawa, H.; Shimakawa, S.; Tsuji, H.; Shindo, M.

    2000-12-01

    In addition to post-irradiation creep tests, in-pile creep tests were performed using newly developed technology with in situ measurement under different neutron spectra. The in-pile creep properties of type 304 stainless steel at 550°C appear to depend on neutron spectrum, but a spectral effect on post-irradiation creep properties is not clearly seen. The rupture time of in-pile creep under a high thermal neutron flux condition is the shortest. The order of the rupture time following the high thermal flux condition is post-irradiation creep, in-pile creep with a thermal neutron shield condition and finally creep of unirradiated material, all in increasing order. It is suggested that the acceleration of creep deformation and fracture observed in irradiation creep tests may be related to enhancement of thermal creep in terms of FMD increased under a high thermal neutron flux in addition to increased helium embrittlement.

  4. Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

    SciTech Connect

    K. Linga Murty

    2008-08-11

    Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep

  5. Contribution of recovery mechanisms of microstructure during long-term creep of Gr.91 steels

    NASA Astrophysics Data System (ADS)

    Ghassemi-Armaki, H.; Chen, R. P.; Maruyama, K.; Igarashi, M.

    2013-02-01

    Creep rupture life and microstructural degradation have been studied in two heats of Gr.91 steels. The coarsening of subgrains and precipitates, mainly M23C6 and MX, has been evaluated during static aging and creep. Hardness of head (static aging) and gauge (creep) portions of crept samples were measured to know their relation with microstructural degradation during long-term exposure. The correlation between subgrain size and spacing of precipitates and hardness has been equated. As an example, there is a close correlation between hardness value and inverse subgrains size in Gr.91 steels, regardless of aging or creep conditions. The appearance of three recovery mechanisms was found during long-term creep, namely: strain-induced recovery, pure static recovery and strain-assisted static recovery. By equated correlations between subgrain size, precipitates and hardness, the contribution of three recovery mechanisms to subgrain coarsening and hardness drop were calculated for two creep conditions at 700 °C in long-term creep region, where breakdown of creep strength has happen. The calculated data accord well with experimental data obtained from aged and crept samples. The contribution of static recovery to the subgrain coarsening and consequent hardness drop during long-term creep increases with increasing creep time. The significant contribution of both static recovery mechanisms can result in the breakdown of creep strength in long-term creep region.

  6. Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Griffith, W. I.; Morris, D. H.

    1980-01-01

    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.

  7. Creep and creep rupture of laminated graphite/epoxy composites. Ph.D. Thesis. Final Report, 1 Oct. 1979 - 30 Sep. 1980

    NASA Technical Reports Server (NTRS)

    Dillard, D. A.; Morris, D. H.; Brinson, H. F.

    1981-01-01

    An incremental numerical procedure based on lamination theory is developed to predict creep and creep rupture of general laminates. Existing unidirectional creep compliance and delayed failure data is used to develop analytical models for lamina response. The compliance model is based on a procedure proposed by Findley which incorporates the power law for creep into a nonlinear constitutive relationship. The matrix octahedral shear stress is assumed to control the stress interaction effect. A modified superposition principle is used to account for the varying stress level effect on the creep strain. The lamina failure model is based on a modification of the Tsai-Hill theory which includes the time dependent creep rupture strength. A linear cumulative damage law is used to monitor the remaining lifetime in each ply.

  8. Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes

    USGS Publications Warehouse

    Shelly, D.R.; Peng, Z.; Hill, D.P.; Aiken, C.

    2011-01-01

    The passage of radiating seismic waves generates transient stresses in the Earth's crust that can trigger slip on faults far away from the original earthquake source. The triggered fault slip is detectable in the form of earthquakes and seismic tremor. However, the significance of these triggered events remains controversial, in part because they often occur with some delay, long after the triggering stress has passed. Here we scrutinize the location and timing of tremor on the San Andreas fault between 2001 and 2010 in relation to distant earthquakes. We observe tremor on the San Andreas fault that is initiated by passing seismic waves, yet migrates along the fault at a much slower velocity than the radiating seismic waves. We suggest that the migrating tremor records triggered slow slip of the San Andreas fault as a propagating creep event. We find that the triggered tremor and fault creep can be initiated by distant earthquakes as small as magnitude 5.4 and can persist for several days after the seismic waves have passed. Our observations of prolonged tremor activity provide a clear example of the delayed dynamic triggering of seismic events. Fault creep has been shown to trigger earthquakes, and we therefore suggest that the dynamic triggering of prolonged fault creep could provide a mechanism for the delayed triggering of earthquakes. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  9. LONG DISTANCE POLLEN-MEDIATED GENE FLOW FROM CREEPING BENTGRASS

    EPA Science Inventory

    Researchers from USEPA WED have measured gene flow from experimental fields of Roundup? herbicide resistant genetically modified (GM) creeping bentgrass a grass used primarily on golf courses, to compatible non-crop relatives. Using a sampling design based on the estimated time ...

  10. Mission Creep and Teaching at the Master's University

    ERIC Educational Resources Information Center

    Henderson, Bruce B.

    2009-01-01

    The accusation of mission creep at master's institutions is not erroneous. It has been occurring for decades. The imitation of the research universities by other institutions is not good for the institutions, for their faculty members, or for the cause of college teaching. Research and scholarship need to be differentiated so that scholarliness,…

  11. Mission Creep: The Federal Government and America's Schools

    ERIC Educational Resources Information Center

    Bryant, James A., Jr.

    2006-01-01

    "Mission Creep: The Federal Government and America's Schools" is a historical overview of the progressive encroachment if the United States' federal government into the area of education. This involvement began as a way to compete with the Soviet Union in the areas of science and technology but has since morphed into virtually all areas…

  12. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  13. MOLECULAR DYNAMICS STUDY OF DIFFUSIONAL CREEP IN NANOCRYSTALLINE UO2

    SciTech Connect

    Tapan G. Desai; Paul C. Millett; Dieter Wolf

    2008-09-01

    We present the results of molecular dynamics (MD) simulations to study hightemperature deformation of nanocrystalline UO2. In qualitative agreement with experimental observations, the oxygen sub-lattice undergoes a structural transition at a temperature of about 2200 K (i.e., well below the melting point of 3450 K of our model system), whereas the uranium sub-lattice remains unchanged all the way up to melting. At temperatures well above this structural transition, columnar nanocrystalline model microstructures with a uniform grain size and grain shape were subjected to constantstress loading at levels low enough to avoid microcracking and dislocation nucleation from the GBs. Our simulations reveal that in the absence of grain growth, the material deforms via GB diffusion creep (also known as Coble creep). Analysis of the underlying self-diffusion behavior in undeformed nanocrystalline UO2 reveals that, on our MD time scale, the uranium ions diffuse only via the grain boundaries (GBs) whereas the much faster moving oxygen ions diffuse through both the lattice and the GBs. As expected for the Coble-creep mechanism, the creep activation energy agrees well with that for GB diffusion of the slowest moving species, i.e., of the uranium ions.

  14. Physical simulations of cavity closure in a creeping material

    SciTech Connect

    Sutherland, H.J.; Preece, D.S.

    1985-09-01

    The finite element method has been used extensively to predict the creep closure of underground petroleum storage cavities in rock salt. Even though the numerical modeling requires many simplifying assumptions, the predictions have generally correlated with field data from instrumented wellheads, however, the field data are rather limited. To gain an insight into the behavior of three-dimensional arrays of cavities and to obtain a larger data base for the verification of analytical simulations of creep closure, a series of six centrifuge simulation experiments were performed using a cylindrical block of modeling clay, a creeping material. Three of the simulations were conducted with single, centerline cavities, and three were conducted with a symmetric array of three cavities surrounding a central cavity. The models were subjected to body force loading using a centrifuge. For the single cavity experiments, the models were tested at accelerations of 100, 125 and 150 g's for 2 hours. For the multi-cavity experiments, the simulations were conducted at 100 g's for 3.25 hours. The results are analyzed using dimensional analyses. The analyses illustrate that the centrifuge simulations yield self-consistent simulations of the creep closure of fluid-filled cavities and that the interaction of three-dimensional cavity layouts can be investigated using this technique.

  15. Creep anomaly in electrospun fibers made of globular proteins

    NASA Astrophysics Data System (ADS)

    Regev, Omri; Arinstein, Arkadii; Zussman, Eyal

    2013-12-01

    The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force.

  16. Non-Contact Measurements of Creep Properties of Refractory Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  17. Influence of particle surface roughness on creeping granular motion.

    PubMed

    Sheng, Li-Tsung; Chang, Wei-Ching; Hsiau, Shu-San

    2016-07-01

    A core is formed at the center of a quasi-two-dimensional rotating drum filled more than half with granular material. The core rotates slightly faster than the drum (precession) and decreases in radius over time (erosion) due to the granular creeping motion that occurs below the freely flowing layer. This paper focuses on the effect of the surface roughness of particles on core dynamics, core precession, and core erosion. Two different surface roughness of glass particles having the same diameter were used in the experiments. The surface structures of the particles were quantitatively compared by measuring the coefficients of friction and using a simple image contrast method. The experiments were performed with five different filling levels in a 50-cm-diameter rotating drum. According to the results, core precession and core erosion are both dependent on the particle surface roughness. Core precession becomes weaker and erosion becomes stronger when using particles having a rough surface in the experiments. To explain the physics of core dynamics, the particles' surface roughness effect on the freely flowing layer and the creeping motion region were also investigated. The granular bed velocity field, maximum flowing layer depth δ, shear rate in the flowing layer γ[over ̇], and the creeping region decay constant y_{0} were also calculated in this paper. The effect of the particles' surface roughness on these physical variables well illustrates the physics of core dynamics and creeping granular motion.

  18. Creeping bentgrass putting green response to foliar nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ABSTRACT In 2009 and 2010, three independent fertility trials were conducted on a putting green (PG) managed within the Pennsylvania State University Joseph Valentine Turfgrass Research Center (University Park, PA). The objective was to identify Penn A-1/A-4 creeping bentgrass putting green quality ...

  19. Influence of particle surface roughness on creeping granular motion

    NASA Astrophysics Data System (ADS)

    Sheng, Li-Tsung; Chang, Wei-Ching; Hsiau, Shu-San

    2016-07-01

    A core is formed at the center of a quasi-two-dimensional rotating drum filled more than half with granular material. The core rotates slightly faster than the drum (precession) and decreases in radius over time (erosion) due to the granular creeping motion that occurs below the freely flowing layer. This paper focuses on the effect of the surface roughness of particles on core dynamics, core precession, and core erosion. Two different surface roughness of glass particles having the same diameter were used in the experiments. The surface structures of the particles were quantitatively compared by measuring the coefficients of friction and using a simple image contrast method. The experiments were performed with five different filling levels in a 50-cm-diameter rotating drum. According to the results, core precession and core erosion are both dependent on the particle surface roughness. Core precession becomes weaker and erosion becomes stronger when using particles having a rough surface in the experiments. To explain the physics of core dynamics, the particles' surface roughness effect on the freely flowing layer and the creeping motion region were also investigated. The granular bed velocity field, maximum flowing layer depth δ , shear rate in the flowing layer γ ˙, and the creeping region decay constant y0 were also calculated in this paper. The effect of the particles' surface roughness on these physical variables well illustrates the physics of core dynamics and creeping granular motion.

  20. Creep and stress relaxation modeling of polycrystalline ceramic fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Morscher, Gregory N.

    1994-01-01

    A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading about 800 C, these fibers display creep related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of a mechanism-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the Bend Stress Relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model, but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model tensile creep predictions based on the BSR test results with the literature data show good agreement, supporting both the predictive capability of the model and the use of the BSR text as a simple method for parameter determination for other fibers.

  1. Creep rupture testing of carbon fiber-reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Burton, Kathryn Anne

    Carbon fiber is becoming more prevalent in everyday life. As such, it is necessary to have a thorough understanding of, not solely general mechanical properties, but of long-term material behavior. Creep rupture testing of carbon fiber is very difficult due to high strength and low strain to rupture properties. Past efforts have included testing upon strands, single tows and overwrapped pressure vessels. In this study, 1 inch wide, [0°/90°]s laminated composite specimens were constructed from fabric supplied by T.D. Williamson Inc. Specimen fabrication methods and gripping techniques were investigated and a method was developed to collect long term creep rupture behavior data. An Instron 1321 servo-hydraulic material testing machine was used to execute static strength and short term creep rupture tests. A hanging dead-weight apparatus was designed to perform long-term creep rupture testing. The testing apparatus, specimens, and specimen grips functioned well. Collected data exhibited a power law distribution and therefore, a linear trend upon a log strength-log time plot. Statistical analysis indicated the material exhibited slow degradation behavior, similar to previous studies, and could maintain a 50 year carrying capacity at 62% of static strength, approximately 45.7 ksi.

  2. Field theory and diffusion creep predictions in polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Villani, A.; Busso, E. P.; Forest, S.

    2015-07-01

    In polycrystals, stress-driven vacancy diffusion at high homologous temperatures leads to inelastic deformation. In this work, a novel continuum mechanics framework is proposed to describe the strain fields resulting from such a diffusion-driven process in a polycrystalline aggregate where grains and grain boundaries are explicitly considered. The choice of an anisotropic eigenstrain in the grain boundary region provides the driving force for the diffusive creep processes. The corresponding inelastic strain rate is shown to be related to the gradient of the vacancy flux. Dislocation driven deformation is then introduced as an additional mechanism, through standard crystal plasticity constitutive equations. The fully coupled diffusion-mechanical model is implemented into the finite element method and then used to describe the biaxial creep behaviour of FCC polycrystalline aggregates. The corresponding results revealed for the first time that such a coupled diffusion-stress approach, involving the gradient of the vacancy flux, can accurately predict the well-known macroscopic strain rate dependency on stress and grain size in the diffusion creep regime. They also predict strongly heterogeneous viscoplastic strain fields, especially close to grain boundaries triple junctions. Finally, a smooth transition from Herring and Coble to dislocation creep behaviour is predicted and compared to experimental results for copper.

  3. CREEP MODELING FOR INJECTION-MOLDED LONG-FIBER THERMOPLASTICS

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2008-06-30

    This paper proposes a model to predict the creep response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the nonlinear viscoelastic behavior described by the Schapery’s model. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber length and orientation distributions were measured and used in the analysis that applies the Eshelby’s equivalent inclusion method, the Mori-Tanaka assumption (termed as the Eshelby-Mori-Tanaka approach) and the fiber orientation averaging technique to compute the overall strain increment resulting from an overall constant applied stress during a given time increment. The creep model for LFTs has been implemented in the ABAQUS finite element code via user-subroutines and has been validated against the experimental creep data obtained for long-glass-fiber/polypropylene specimens. The effects of fiber orientation and length distributions on the composite creep response are determined and discussed.

  4. Influence of particle surface roughness on creeping granular motion.

    PubMed

    Sheng, Li-Tsung; Chang, Wei-Ching; Hsiau, Shu-San

    2016-07-01

    A core is formed at the center of a quasi-two-dimensional rotating drum filled more than half with granular material. The core rotates slightly faster than the drum (precession) and decreases in radius over time (erosion) due to the granular creeping motion that occurs below the freely flowing layer. This paper focuses on the effect of the surface roughness of particles on core dynamics, core precession, and core erosion. Two different surface roughness of glass particles having the same diameter were used in the experiments. The surface structures of the particles were quantitatively compared by measuring the coefficients of friction and using a simple image contrast method. The experiments were performed with five different filling levels in a 50-cm-diameter rotating drum. According to the results, core precession and core erosion are both dependent on the particle surface roughness. Core precession becomes weaker and erosion becomes stronger when using particles having a rough surface in the experiments. To explain the physics of core dynamics, the particles' surface roughness effect on the freely flowing layer and the creeping motion region were also investigated. The granular bed velocity field, maximum flowing layer depth δ, shear rate in the flowing layer γ[over ̇], and the creeping region decay constant y_{0} were also calculated in this paper. The effect of the particles' surface roughness on these physical variables well illustrates the physics of core dynamics and creeping granular motion. PMID:27575202

  5. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, Vito; Nissley, David; Lin, Li-Sen Jim

    1985-01-01

    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.

  6. Creep anomaly in electrospun fibers made of globular proteins.

    PubMed

    Regev, Omri; Arinstein, Arkadii; Zussman, Eyal

    2013-12-01

    The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force. PMID:24483479

  7. Creep Mechanisms of a Ni-Co-Based-Wrought Superalloy with Low Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Tian, Chenggang; Xu, Ling; Cui, Chuanyong; Sun, Xiaofeng

    2015-10-01

    In order to study the influences of stress and temperature on the creep deformation mechanisms of a newly developed Ni-Co-based superalloy with low stacking fault energy, creep experiments were carried out under a stress range of 345 to 840 MPa and a temperature range of 923 K to 1088 K (650 °C to 815 °C). The mechanisms operated under the various creep conditions were identified and the reasons for their transformation were well discussed. A deformation mechanism map under different creep conditions was summarized, which provides a qualitative representation of the operative creep mechanisms as a function of stress and temperature.

  8. Effect of solutes in binary columbium /Nb/ alloys on creep strength

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400 F for solute concentrations to 20 at.%, using a new method of creep-strength measurement. The technique permits rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase the creep strength of columbium except tantalum. This element did not strengthen columbium until the concentration exceeded 10 at.%. Hafnium, zirconium, and vanadium strengthed columbium most at low temperatures and concentrations, whereas tungsten, molybdenum, and rhenium contributed more to creep strength at high temperatures and concentrations.

  9. Tensile creep of silicon carbide whisker-reinforced alumina composites

    NASA Astrophysics Data System (ADS)

    Quan, Guang-Chun

    Alumina composites with 10, 20 and 30 volume % SiC whiskers were fabricated using colloidal processing methods followed by uniaxial hot pressing. The tensile creep properties of these materials have been studied between 1200°C and 1400°C. The composite slurries showed the best stability at pH = 2, which led to uniform distribution of whiskers in the final products. However, at pH ≥ 6 flocculation occurred between whiskers, resulting in whisker agglomerates in the matrix. Distribution of whiskers was characterised using neutron diffraction methods, which indicated that the whisker orientation could not be altered significantly by adjusting pH. All the composites showed much superior tensile creep resistance compared to pure alumina and the effect of increasing whisker volume fraction was significant up to 30%. Relatively high stress exponents were found, which is most probably associated with much enhanced cavitational creep in tension. The activation energy varied with whisker volume fraction, temperature and applied stress in a complex manner. This combined with the temperature-dependent stress exponents makes the identification of creep mechanisms difficult. Nevertheless, it appears that at moderate stress level grain boundary diffusion and grain boundary sliding (GBS) become more significant as whisker volume fraction increases. The composites containing 20 and 30% whiskers showed significant anelastic strain recovery (˜0.001) following tensile creep, which is consistent with earlier reports that involved bending creep tests. The whisker bending effect was studied by measuring the peak width of (111) SiC planes (perpendicular to the whisker axis) at various conditions. The difference in the peak width at room temperature was found to be insignificant before and after creep. Moreover, during in-situ neutron diffraction measurement at 1400°C, no measurable variation in the peak width was recorded from the crept samples that were cooled under load. It may be

  10. Temperature-dependent transient creep and dynamics of cratonic lithosphere

    NASA Astrophysics Data System (ADS)

    Birger, Boris I.

    2013-11-01

    Large-scale mantle convection forms the upper boundary layer (lithosphere) where the vertical temperature drop is about 1300 K. Theoretical rheology and laboratory experiments with rock samples show that transient creep occurs while creep strains are sufficiently small. The transient creep is described by the temperature-dependent Andrade rheological model. Since plate tectonics allows only small deformations in lithospheric plates, creep of the lithosphere plates is transient whereas steady-state creep, described by non-Newtonian power-law rheological model, takes place in the underlying mantle. The solution of stability problem shows that the lithosphere is stable but small-scale convective oscillations are attenuated very weakly in regions of thickened lithosphere beneath continental cratons (subcratonic roots) where the thickness of the lithosphere is about 200 km. These oscillations create small-scale convective cells (the horizontal dimensions of the cells are of the order of the subcratonic lithosphere thickness). Direction of motion within the cells periodically changes (the period of convective oscillations is of the order of 3 × 108 yr). In this study, the oscillations of cratonic lithosphere caused by initial relief perturbation are considered. This relief perturbation is assumed to be created by overthrusting in orogenic belts surrounding cratons. The perturbation of the Earth's surface relief leads to a fast isothermal process of isostatic recovery. In the presence of vertical temperature gradient, vertical displacements, associated with the recovery process in the lithosphere interior, instantly produce the initial temperature perturbations exciting thermoconvective oscillations in the cratonic lithosphere. These small-amplitude convective oscillations cause oscillatory crustal movements which form sedimentary basins on cratons.

  11. New martensitic steels for fossil power plant: Creep resistance

    NASA Astrophysics Data System (ADS)

    Kaybyshev, R. O.; Skorobogatykh, V. N.; Shchenkova, I. A.

    2010-02-01

    In this paper, we consider the origin of high-temperature strength of heat-resistant steels belonging to martensitic class developed on the basis of the Fe—9%Cr alloy for the boiler pipes and steam pipelines of power plants at steam temperatures of up to 620°C and pressures to 300 atm. In addition, we give a brief information on the physical processes that determine the creep strength and consider the alloying philosophy of traditional heat-resistant steels. The effect of the chemical and phase composition of heat-resistant steels and their structure on creep strength is analyzed in detail. It is shown that the combination of the solid-solution alloying by elements such as W and Mo, as well as the introduction of carbides of the MX type into the matrix with the formation of a dislocation structure of tempered martensite, ensures a significant increase in creep resistance. The steels of the martensitic class withstand creep until an extensive polygonization starts in the dislocation structure of the tempered martensite(“troostomartensite”), which is suppressed by V(C,N) and Nb(C,N) dispersoids. Correspondingly, the service life of these steels is determined by the time during which the dispersed nanocarbonitrides withstand coalescence, while tungsten and molybdenum remain in the solid solution. The precipitation of the Laves phases Fe2(W,Mo) and the coalescence of carbides lead to the development of migration of low-angle boundaries, and the steel loses its ability to resist creep.

  12. A creep model for metallic composites based on matrix testing: Application to Kanthal composites

    NASA Technical Reports Server (NTRS)

    Binienda, W. K.; Robinson, D. N.; Arnold, S. M.; Bartolotta, Paul A.

    1990-01-01

    An anisotropic creep model is formulated for metallic composites with strong fibers and low to moderate fiber volume percent (less than 40 percent). The idealization admits no creep in the local fiber direction and assumes equal creep strength in longitudinal and transverse shear. Identification of the matrix behavior with that of the isotropic limit of the theory permits characterization of the composite through uniaxial creep tests on the matrix material. Constant and step-wise creep tests are required as a data base. The model provides an upper bound on the transverse creep strength of a composite having strong fibers embedded in a particular matrix material. Comparison of the measured transverse strength with the upper bound gives an assessment of the integrity of the composite. Application is made to a Kanthal composite, a model high-temperature composite system. Predictions are made of the creep response of fiber reinforced Kanthal tubes under interior pressure.

  13. Tensile and Creep-Rupture Evaluation of a New Heat of Haynes Alloy 25

    SciTech Connect

    Shingledecker, J.P.; Glanton, D.B.; Martin, R.L.; Sparks, B.L.; Swindeman, R.W.

    2007-02-14

    From 1999 to 2006, a program was undertaken within the Materials Science and Technology Division, formerly the Metals and Ceramics Division, of Oak Ridge National Laboratory to characterize the tensile and creep-rupture properties of a newly produced heat of Haynes alloy 25 (L-605). Tensile properties from room temperature to 1100 C were evaluated for base material and welded joints aged up to 12,000 hours at 675 C. Creep and creep-rupture tests were conducted on base metal and cross-weldments from 650 to 950 C. Pressurized tubular creep tests were conducted to evaluate multiaxial creep-rupture response of the material. Over 800,000 hours of creep test data were generated during the test program with the longest rupture tests extending beyond 38,000 hours, and the longest creep-rate experiments exceeding 40,000 hours.

  14. Prediction of elemental creep. [steady state and cyclic data from regression analysis

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Rummler, D. R.

    1975-01-01

    Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.

  15. Microstructural changes during creep of CMSX-4 single crystal Ni base superalloy at 750 degrees C.

    PubMed

    Dubiel, B T; Czyrska-Filemonowicz, A

    2010-03-01

    TEM studies of creep tested CMSX-4 nickel-base single crystal superalloy were performed to analyse a microstructure evolution during creep at temperature 750 degrees C, and uniaxial tensile stress of 675 MPa. Microstructural analyses were focused mainly on examination of dislocation configurations during primary and secondary creep stages of high temperature deformation. At such low temperature and high stress creep deformation proceed by cutting of gamma' particles by dislocations. It was found that primary creep is initiated by movement of dislocations with Burgers vector a/2 <110> in the gamma phase. The second type of dislocations active at primary creep stage are extended dislocation ribbons with overall a<112> Burgers vector, separated by superlattice stacking faults, cutting both the gamma and gamma' phases. The movement of the dislocation ribbons is inhibited at secondary creep stage by dislocation networks formed at gamma-gamma' interfaces. PMID:20500397

  16. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1988-01-01

    The creep behavior and microstructural stability of tungsten fiber reinforced niobium and niobium 1 percent zirconium was determined at 1400 and 1500 K in order to assess the potential of this material for use in advanced space power systems. The creep behavior of the composite materials could be described by a power law creep equation. A linear relationship was found to exist between the minimum creep rate of the composite and the inverse of the composite creep rupture life. The composite materials had an order of magnitude increase in stress to achieve 1 percent creep strain and in rupture strength at test temperatures of 1400 and 1500 K compared to unreinforced material. The composite materials were also stronger than the unreinforced materials by an order of magnitude when density was taken into consideration. Results obtained on the creep behavior and microstructural stability of the composites show significant potential improvement in high temperature properties and mass reduction for space power system components.

  17. Determination of Creep Behavior of Thermal Barrier Coatings Under Laser Imposed High Thermal and Stress Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    A laser sintering/creep technique has been established to determine the creep behavior of thermal barrier coatings under steady-state high heat flux conditions. For a plasma sprayed zirconia-8 wt. % yttria coating, a significant primary creep strain and a low apparent creep activation energy were observed. Possible creep mechanisms involved include stress induced mechanical sliding and temperature and stress enhanced cation diffusion through the splat and grain boundaries. The elastic modulus evolution, stress response, and total accumulated creep strain variation across the ceramic coating are simulated using a finite difference approach. The modeled creep response is consistent with experimental observations.

  18. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  19. Long-term performance of ceramic matrix composites at elevated temperatures: Modelling of creep and creep rupture

    SciTech Connect

    Curtin, W.A.; Fabeny, B.; Ibnabdeljalil, M.; Iyengar, N.; Reifsnider, K.L.

    1996-07-31

    The models developed, contain explicit dependences on constituent material properties and their changes with time, so that composite performance can be predicted. Three critical processes in ceramic composites at elevated temperatures have been modeled: (1) creep deformation of composite vs stress and time-dependent creep of fibers and matrix, and failure of these components; (2) creep deformation of ``interface`` around broken fibers; and (3) lifetime of the composite under conditions of fiber strength loss over time at temperature. In (1), general evolution formulas are derived for relaxation time of matrix stresses and steady-state creep rate of composite; the model is tested against recent data on Ti-MMCs. Calculations on a composite of Hi-Nicalon fibers in a melt-infiltrated SiC matrix are presented. In (2), numerical simulations of composite failure were made to map out time-to-failure vs applied load for several sets of material parameters. In (3), simple approximate relations are obtained between fiber life and composite life that should be useful for fiber developers and testers. Strength degradation data on Hi-Nicalon fibers is used to assess composite lifetime vs fiber lifetime for Hi-Nicalon fiber composites.

  20. Small Two-Bar Specimen Creep Testing of Grade P91 Steel at 650°C

    NASA Astrophysics Data System (ADS)

    Ali, Balhassn S. M.; Hyde, Tom H.; Sun, Wei

    2016-03-01

    Commonly used small creep specimen types, such as ring and impression creep specimens, are capable of providing minimum creep strain rate data from small volumes of material. However, these test types are unable to provide the creep rupture data. In this paper the recently developed two-bar specimen type, which can be used to obtain minimum creep strain rate and creep rupture creep data from small volumes of material, is described. Conversion relationships are used to convert (i) the applied load to the equivalent uniaxial stress, and (ii) the load line deformation rate to the equivalent uniaxial creep strain rate. The effects of the specimen dimension ratios on the conversion factors are also discussed in this paper. This paper also shows comparisons between two-bar specimen creep test data and the corresponding uniaxial creep test data, for grade P91 steel at 650°C.

  1. Analyses of Transient and Tertiary Small Punch Creep Deformation of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, J.; Ganesan, V.; Laha, K.

    2016-09-01

    Creep deformation behavior of 316LN stainless steel (SS) under small punch creep (SPC) and uniaxial creep test has been assessed and compared at 923 K (650 °C). The transient and tertiary creep deformation behaviors have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δ_{{T}} \\cdot (1 - {{e}}^{ - κ \\cdot t} ) + dot{δ }_{{s}} t + δ3 {{e}}^{{[ {φ ( {t - t_{{r}} } )} ]}} on the basis of Dobes and Cadek equation for uniaxial creep strain. Trends in the variations of (i) rate of exhaustion of transient creep ( κ) with steady-state deflection rate ( dot{δ }_{{s}} ) (ii) ` κ' with time to attain steady-state deflection rate, and (iii) initial creep deflection rate with steady-state deflection rate implied that transient SPC deformation obeyed first-order reaction rate theory. The rate of exhaustion of transient creep ( r') values that were determined from uniaxial creep tests were correlated with those obtained from SPC tests. Master curves representing transient creep deformation in both SPC and uniaxial creep tests have been derived and their near coincidence brings unique equivalence between both the test techniques. The relationships between (i) rate of acceleration of tertiary creep ( φ) and steady-state deflection rate, (ii) ` φ' and time spent in tertiary stage, and (iii) final creep deflection rate and steady-state deflection rate revealed that first-order reaction rate theory governed SPC deformation throughout the tertiary region also. Interrelationship between the transient, secondary, and tertiary creep parameters indicated that the same mechanism prevailed throughout the SPC deformation.

  2. Creep Behavior of Organic-Rich Shales - Evidences of Microscale Strain Partitioning

    NASA Astrophysics Data System (ADS)

    Sone, H.; Morales, L. F. G.; Dresen, G. H.

    2015-12-01

    Laboratory creep experiments conducted using organic-rich shales show that these rocks exhibit some ductility under sustained loading conditions although they may appear to be elastic and brittle (Young's modulus 15-80 GPa) at shorter time scales. At room-temperature and in-situ pressure conditions, creep strain observed after 3 hours of sustained loading reach strains on the order of 10-5per megapascal of applied differential stress. The creep behavior is highly anisotropic such that creep occurs more in the direction perpendicular to the bedding plane than in the direction parallel to the bedding plane. In general, we find that the creep behavior is largely controlled by the amount of clay mineral and organic content. This is also supported by evidences of elastic stiffening and sample volume reduction during creep which imply that the creep is accommodated by localized compaction occurring within clay-aggregates and/or organic materials, the relatively porous members in the rock. We also find that the tendency to creep has a unique relation with the Young's modulus regardless of the loading direction or the mineral composition. Sone and Zoback (2013) explained this correlation by appealing to the stress partitioning behavior that occurs between the relatively stiff and soft components of the rock, and also by assuming that creep only occurs within the soft components, namely the clay and organic contents, with a specific local 3-hour creep compliance value of 10-4 MPa-1. In order to confirm that such strain-partitioning occurs during creep deformation, we also performed creep experiments under a scanning electron microscope using a deformation stage setup. Such experiments allow us to directly observe the deformation and quantify the strain-partitioning occurring between the different mineral constituents with the aid of digital image correlation analysis. Results suggest that strain-partitioning do occur during creep deformation and inferred creep properties of

  3. Testing the inference of creep on Rodgers Creek Fault

    NASA Astrophysics Data System (ADS)

    Jin, L.; Funning, G. J.

    2010-12-01

    The Rodgers Creek fault (RCF), one of the major through-going structures in the northern San Francisco Bay area, links two known active creeping faults - the Hayward fault and the Maacama fault. Historic earthquakes that occurred on the fault prove that this fault is seismically active. However, whether or not it creeps like its neighbors remains a question. A previous study (Funning et al., 2007) identified a right-lateral fault creep at rates up to 6 mm/yr between 1992 and 2001. The estimate remains controversial, however, since the evidence on the ground is limited. Another explanation for the velocity step is a vertical hydrological signal. Here, we use Permanent Scaterers InSAR data from both ascending and descending viewing geometries to test these two hypotheses. Under the assumption that fault-related deformation acts in the fault-parallel direction, it is possible to separate the deformation measured in the two viewing geometries into its horizontal and vertical components. Therefore, we put our efforts to validate/refute our initial hypothesis of creep on RCF by processing a 39-image ascending track dataset (track 478, frame 765) and a 33-image descending track dataset (track 342, frame 2835) from the ESA Envisat satellite spanning the interval 2003-2010, using the StaMPS/MTI code (Hooper, 2008). Assuming there is a creep on RCF, we would expect to see vertical deformations in both datasets but horizontal deformations only in track 342. In order to compare the PS velocities on either side of the fault, we plot cross-fault profiles through both datasets at ~5 km intervals and detrend the profiles by fitting parallel straight lines to windows of datapoints either side of the fault. The gradients of the lines reflect the regional component of deformation, along with any residual error in satellite orbital position, while the separations represent fault offset rates. Our preliminary results show positive (towards the satellite) velocities in the Cotati Basin

  4. Creep of quartz by dislocation and grain boundary processes

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    Wet polycrystalline quartz aggregates deformed at temperatures T of 600°-900°C and strain rates of 10-4-10-6 s-1 at a confining pressure Pc of 1.5 GPa exhibit plasticity at low T, governed by dislocation glide and limited recovery, and grain size-sensitive creep at high T, governed by diffusion and sliding at grain boundaries. Quartz aggregates were HIP-synthesized, subjecting natural milky quartz powder to T=900°C and Pc=1.5 GPa, and grain sizes (2 to 25 mm) were varied by annealing at these conditions for up to 10 days. Infrared absorption spectra exhibit a broad OH band at 3400 cm-1 due to molecular water inclusions with a calculated OH content (~4000 ppm, H/106Si) that is unchanged by deformation. Rate-stepping experiments reveal different stress-strain rate functions at different temperatures and grain sizes, which correspond to differing stress-temperature sensitivities. At 600-700°C and grain sizes of 5-10 mm, flow law parameters compare favorably with those for basal plasticity and dislocation creep of wet quartzites (effective stress exponents n of 3 to 6 and activation enthalpy H* ~150 kJ/mol). Deformed samples show undulatory extinction, limited recrystallization, and c-axis maxima parallel to the shortening direction. Similarly fine-grained samples deformed at 800°-900°C exhibit flow parameters n=1.3-2.0 and H*=135-200 kJ/mol corresponding to grain size-sensitive Newtonian creep. Deformed samples show some undulatory extinction and grain sizes change by recrystallization; however, grain boundary deformation processes are indicated by the low value of n. Our experimental results for grain size-sensitive creep can be compared with models of grain boundary diffusion and grain boundary sliding using measured rates of silicon grain boundary diffusion. While many quartz mylonites show microstructural and textural evidence for dislocation creep, results for grain size-sensitive creep may apply to very fine-grained (<10 mm) quartz mylonites.

  5. Influence of the Substrate on the Creep of SN Solder Joints

    NASA Astrophysics Data System (ADS)

    Lee, K.-O.; Morris, J. W.; Hua, F.

    2010-07-01

    The creep rate of Sn solder joints is noticeably affected by joint metallization. Cu|Sn|Cu joints have significantly higher creep rates than Ni|Sn|Cu joints, which, in turn, have higher creep rates than Ni|Sn|Ni joints. Replacing Ni by Cu on both substrates increases the creep rate at 333 K (60 °C) by roughly an order of magnitude. The increased creep rate appears with no apparent change in the dominant creep mechanism; the change in the constitutive equation for creep (the Dorn equation) is in the pre-exponential factor. The decreased creep rate on substituting Ni is accompanied by an increase in the hardness of the polygranular solder but a decrease in the nanohardness of the grain interiors. The source of the strong influence of the Ni substrate appears to be the introduction of an array of Ni3Sn4 intermetallic precipitates along the grain boundaries. These precipitates inhibit grain boundary sliding, boundary reconfiguration, and grain growth during creep. The intermediate creep rate of the asymmetric Ni|Sn|Cu joint has two causes: a decrease in grain boundary mobility due to precipitate decoration and a restriction in the free volume of the joint due to rapid intermetallic growth from the substrate on the Ni side. The sources of this anomalous intermetallic growth are discussed.

  6. Prediction Procedure of Creep Rupture of Polypropylene Resin based on Time-temperature Superposition Principle

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Ikeda, Masayuki; Shimbo, Minoru; Miyano, Yasushi

    In this paper, the effects of intensity of electron beam, detergent and colorant on creep rupture of polypropylene resin (PP), which is widely used in medicine containers, were investigated and the evaluation method of the long-term forecast of creep rupture was examined. Concretely, first, PP resins including colorant or not were prepared and samples that variously changed intensity of the electron beam irradiation were made. Creep rupture test of those samples was carried in detergent having various consistencies. The effects of those factors on creep rupture were considered and long-term forecast was tried by using time-temperature superposition principle about creep deformation. The following results were obtained. (1) Although creep rupture of PP resin receives the effects of the presence of colorant, intensity of electron beam irradiation and detergent, the time-temperature dependence of creep rupture of PP resin including those affecting factors can be estimated by using the time-temperature superposition principle for creep deformation of the original PP resin. Based on this equivalency, it is possible to predict the long-term forecast of creep rupture of PP resin. (2) Creep rupture is affected by the presence of colorant, intensity of electron beam irradiation and detergent and it happens earlier when the intensity of electron beam irradiation and consistency of detergent are increased.

  7. Modeling the Role of Dislocation Substructure During Class M and Exponential Creep. Revised

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Iskovitz, Ilana Seiden; Freed, A. D.

    1995-01-01

    The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is correlated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep substructure is examined in both of these creep regimes during stress and temperature change experiments. These observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the magnitude of the stress exponent and steady state behavior are discussed. A theory is developed to predict the macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously developed multiphase, three-dimensional. dislocation substructure creep model. This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.

  8. Irradiation creep of the US Heat 832665 of V-4Cr-4Ti

    SciTech Connect

    Li, Meimei; Hoelzer, D. T.; Grossbeck, Martin L.; Rowcliffe, A. F.; Zinkle, Steven J.; Kurtz, Richard J.

    2009-04-30

    The paper presents irradiation creep data for V-4Cr-4Ti irradiated to 3.7 dpa at 425 and 600 _C in the HFIR-17J experiment. Creep deformation was characterized by measuring diametral changes of pressur-ized creep tubes before and after irradiation. It was found that the creep strain rate of the US Heat 832665 of V-4Cr-4Ti exhibited a linear relationship with stress up to _180 MPa at 425 _C with a creep coefficient of 2.50 _10_6 MPa_1 dpa_1. A linear relationship between creep rate and applied stress was observed below _110 MPa at 600 _C with a creep coefficient of 5.41 _10_6 MPa_1 dpa_1; non-linear creep behavior was observed above _110 MPa, and it may not be fully accounted by invoking thermal creep. The bilinear creep behavior observed in the same alloy irradiated in BR-10 was not observed in this study.

  9. Creep of CMSX-4 superalloy single crystals: Effects of rafting at high temperature

    SciTech Connect

    Reed, R.C.; Matan, N.; Cox, D.C.; Rist, M.A.; Rae, C.M.F.

    1999-09-29

    The creep performance of (001)-orientated CMSX-4 superalloy single crystals at temperatures beyond 1000 C is analyzed. Rafting of the {gamma}{prime} structure occurs rapidly, e.g., for the 1150 C/100 MPa tests rafting is completed within the first 10 h. At this stage and for a considerable time thereafter the creep strain rate decreases with increasing strain, implying a creep hardening effect which is absent at lower temperatures when the kinetics of rafting is less rapid. Once a critical strain {epsilon}* of (0.7 {+-} 0.3)% is reached, the creep strain increases dramatically and failure occurs within a few tens of hours. It is demonstrated that methods of interpretation which, assume a proportionality between the creep strain rate and creep strain, are unable to account for creep hardening which occurs as a consequence of rafting. A modification is proposed which accounts for the blocking of the glide/climb of {l{underscore}brace}111{r{underscore}brace}{l{underscore}angle}1{bar 1}0{r{underscore}angle} creep dislocations which occurs as the number of vertical {gamma} channels is reduced and cellular dislocation networks become stabilized. Consequently, failure must be taken to be associated with creep cavitation, which occurs predominantly around casting porosity. It is emphasized that more work is required to quantify the interaction between the various creep damage mechanisms.

  10. Generation of long time creep data on refractory alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1971-01-01

    Ultrahigh vacuum creep tests were performed on tungsten, molybdenum, and tantalum alloys to develop design creep data and to evaluate the influence of liquid lithium exposure on the creep resistance of a tantalum alloy. Test conditions were generally selected to provide 1% creep in 1000 to 10,000 hours, with the test temperatures ranging between 1600 and 2900 F (1144 K and 1866 K). One percent creep life data from a tantalum-base T-111 alloy (Ta-8%W-2%Hf) were analyzed using a station function method to provide an improved parametric representation of the T-111 data. In addition, the minimum creep rate data from an ASTAR 811C alloy (Ta-8%W-1%Re-0.7%Hf0.025%C) were analyzed to determine the stress and temperature dependence of creep rate. Results of this analysis indicated that the activation energy for creep decreased from about 150 Kcal/mole (5130 J/mole) above 2400 F (1589 K) to about 110 Kcal/mole (3760 J/mole) below 2000 F (1361 K). This temperature range corresponds to the range where the creep mechanism changes from grain boundary sliding to intragranular creep.

  11. 3D culture model of fibroblast-mediated collagen creep to identify abnormal cell behaviour.

    PubMed

    Kureshi, A K; Afoke, A; Wohlert, S; Barker, S; Brown, R A

    2015-11-01

    Native collagen gels are important biomimetic cell support scaffolds, and a plastic compression process can now be used to rapidly remove fluid to any required collagen density, producing strong 3D tissue-like models. This study aimed to measure the mechanical creep properties of such scaffolds and to quantify any enhanced creep occurring in the presence of cells (cell-mediated creep). The test rig developed applies constant creep tension during culture and measures real-time extension due to cell action. This was used to model extracellular matrix creep, implicated in the transversalis fascia (TF) in inguinal hernia. Experiments showed that at an applied tension equivalent to 15% break strength, cell-mediated creep over 24-h culture periods was identified at creep rates of 0.46 and 0.38%/h for normal TF and human dermal fibroblasts, respectively. However, hernia TF fibroblasts produced negligible cell-mediated creep levels under the same conditions. Raising the cell culture temperature from 4 to 37 °C was used to demonstrate live cell dependence of this creep. This represents the first in vitro demonstration of TF cell-mediated collagen creep and to our knowledge the first demonstration of a functional, hernia-related cell abnormality. PMID:25862069

  12. Bend stress relaxation and tensile primary creep of a polycrystalline alpha-SiC fiber

    NASA Technical Reports Server (NTRS)

    Hee Man, Yun; Goldsby, Jon C.; Morscher, Gregory N.

    1995-01-01

    Understanding the thermomechanical behavior (creep and stress relaxation) of ceramic fibers is of both practical and basic interest. On the practical level, ceramic fibers are the reinforcement for ceramic matrix composites which are being developed for use in high temperature applications. It is important to understand and model the total creep of fibers at low strain levels where creep is predominantly in the primary stage. In addition, there are many applications where the component will only be subjected to thermal strains. Therefore, the stress relaxation of composite consituents in such circumstances will be an important factor in composite design and performance. The objective of this paper is to compare and analyze bend stress relaxation and tensile creep data for alpha-SiC fibers produced by the Carborundum Co. (Niagara Falls, NY). This fiber is of current technical interest and is similar in composition to bulk alpha-SiC which has been studied under compressive creep conditions. The temperature, time, and stress dependences will be discussed for the stress relaxation and creep results. In addition, some creep and relaxation recovery experiments were performed in order to understand the complete viscoelastic behavior, i.e. both recoverable and nonrecoverable creep components of these materials. The data will be presented in order to model the deformation behavior and compare relaxation and/or creep behavior for relatively low deformation strain conditions of practical concern. Where applicable, the tensile creep results will be compared to bend stress relaxation data.

  13. Creep-fatigue response of structural ceramics: 1, Comparison of flexure, tension, and compression testing

    SciTech Connect

    Ferber, M.K.; Jenkins, M.G.; Nolan, T.A.; Yeckley, R.

    1990-12-31

    The stress sensitivities of the creep rates of commercially available Al{sub 2}O{sub 3} and Si{sub 3}N{sub 4} ceramics were measured at elevated temperatures using tension, compression, and flexure specimens. Pronounced differences in creep deformation behavior in compression and tension were observed for both ceramics. These differences were attributed to the generation of a creep-induced damage zone under tensile loading which accelerated the creep rate. The evolution of this damage zone was confirmed by (1) fractographic studies of failed tensile samples and (2) the observed stress-dependence of the creep failure strain. The creep rate-stress data generated fromn the flexure creep testing were found to be in fair agreement with results predicted from a creep deformation model. Differences between experimental and predicted creep behavior were attributed to the failure of the model to account for primary creep. This model was also capable of describing differences in the fatigue-life characteristics of a silicon nitride measured in flexure and tension.

  14. Creep-fatigue response of structural ceramics: 1, Comparison of flexure, tension, and compression testing

    SciTech Connect

    Ferber, M.K.; Jenkins, M.G.; Nolan, T.A. ); Yeckley, R. )

    1990-01-01

    The stress sensitivities of the creep rates of commercially available Al{sub 2}O{sub 3} and Si{sub 3}N{sub 4} ceramics were measured at elevated temperatures using tension, compression, and flexure specimens. Pronounced differences in creep deformation behavior in compression and tension were observed for both ceramics. These differences were attributed to the generation of a creep-induced damage zone under tensile loading which accelerated the creep rate. The evolution of this damage zone was confirmed by (1) fractographic studies of failed tensile samples and (2) the observed stress-dependence of the creep failure strain. The creep rate-stress data generated fromn the flexure creep testing were found to be in fair agreement with results predicted from a creep deformation model. Differences between experimental and predicted creep behavior were attributed to the failure of the model to account for primary creep. This model was also capable of describing differences in the fatigue-life characteristics of a silicon nitride measured in flexure and tension.

  15. Creep-rupture behavior of candidate Stirling engine iron supperalloys in high-pressure hydrogen. Volume 2: Hydrogen creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.; Hales, C.

    1984-01-01

    The creep rupture behavior of nine iron base and one cobalt base candidate Stirling engine alloys is evaluated. Rupture life, minimum creep rate, and time to 1% strain data are analyzed. The 3500 h rupture life stress and stress to obtain 1% strain in 3500 h are also estimated.

  16. Effect of creep strain on microstructural stability and creep resistance of a TiAl/Ti{sub 3}Al lamellar alloy

    SciTech Connect

    Wert, J.A.; Bartholomeusz, M.F.

    1996-01-01

    Creep of a TiAl/Ti{sub 3}Al alloy with a lamellar microstructure causes progressive spheroidization of the lamellar microstructure. Microstructural observations reveal that deformation-induced spheroidization (DIS) occurs by deformation and fragmentation of lamellae in localized shear zones at interpacket boundaries and within lamellar packets. Deformation-induced spheroidization substantially increases the interphase interfacial area per unit volume, demonstrating that DIS is not a coarsening process driven by reduction of interfacial energy per unit volume. Creep experiments reveal that DIS increases the minimum creep rate ({dot {var_epsilon}}{sub min}) during creep at constant stress and temperature; the activation energy (Q{sub c}) and stress exponent (n) for creep are both reduced as a result of DIS. Values of n and Q{sub c} for the lamellar microstructure are typical of a dislocation creep mechanism, while estimated values of n and Q{sub c} for the completely spheroidized microstructure are characteristic of a diffusional creep mechanism. The increase in {dot {var_epsilon}}{sub min} associated with DIS is thus attributed primarily to a change of creep mechanism resulting from microstructural refinement.

  17. Investigation of the rate-controlling mechanism(s) for high temperature creep and the relationship between creep and melting by use of high pressure as a variable

    SciTech Connect

    Not Available

    1991-01-01

    Using high pressure as a variable, the rate-controlling mechanism for high temperature creep and the relationship between creep and melting is investigated for silicon and nickel. An apparatus is used in which the samples are heated to melting point and subjected to 1 to 3 GigaPascal pressure. The stress behavior of the materials are then studied.

  18. InSAR measurements around active faults: creeping Philippine Fault and un-creeping Alpine Fault

    NASA Astrophysics Data System (ADS)

    Fukushima, Y.

    2013-12-01

    solved by adding the displacement offset in each interferogram as a model parameter and solving the system of equations with the minimum norm condition. This way, the unknown offsets can be automatically determined. By applying this method to the ALOS/PALSAR data acquired over the Alpine Fault, I obtained the mean velocity map showing the right-lateral relative motion of the blocks north and south of the fault and the strain concentration (large velocity gradient) around the fault. The velocity gradient around the fault has along-fault variation, probably reflecting the variation in the fault locking depth. When one aims to detect fault creeps, i.e., displacement discontinuity in space, one can additionally introduce additional parameters to describe the phase ramps in the interferograms and solve the system of equations again with the minimum norm condition. Then, the displacement discontinuity appears more clearly in the result at the cost of suppressing long-wavelength displacements. By applying this method to the ALOS/PALSAR data acquired over the Philippine Fault in Leyte Island, I obtained the mean velocity map showing fault creep at least in the northern and central parts of Leyte at a rate of around 10 mm/year.

  19. Stress versus temperature dependent activation energies in creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1990-01-01

    The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.

  20. Sandia/Stanford Unified Creep Plasticity Damage Model for ANSYS

    2006-09-03

    A unified creep plasticity (UCP) model was developed, based upon the time-dependent and time-independent deformation properties of the 95.5Sn-3.9Ag-0.6Cu (wt.%) soldier that were measured at Sandia. Then, a damage parameter, D, was added to the equation to develop the unified creep plasticity damage (UCPD) model. The parameter, D, was parameterized, using data obtained at Sandia from isothermal fatigue experiments on a double-lap shear test. The softwae was validated against a BGA solder joint exposed tomore » thermal cycling. The UCPD model was put into the ANSYS finite element as a subroutine. So, the softwae is the subroutine for ANSYS 8.1.« less

  1. Analytical simulation of weld effects in creep range

    NASA Technical Reports Server (NTRS)

    Dhalla, A. K.

    1985-01-01

    The inelastic analysis procedure used to investigate the effect of welding on the creep rupture strength of a typical Liquid Metal Fast Breeder Reactor (LMFBR) nozzle is discussed. The current study is part of an overall experimental and analytical investigation to verify the inelastic analysis procedure now being used to design LMFBR structural components operating at elevated temperatures. Two important weld effects included in the numerical analysis are: (1) the residual stress introduced in the fabrication process; and (2) the time-independent and the time-dependent material property variations. Finite element inelastic analysis was performed on a CRAY-1S computer using the ABAQUS program with the constitutive equations developed for the design of LMFBR structural components. The predicted peak weld residual stresses relax by as much as 40% during elevated temperature operation, and their effect on creep-rupture cracking of the nozzle is considered of secondary importance.

  2. Stress versus temperature dependence of activation energies for creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1992-01-01

    The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.

  3. Creeping Motion of Self Interstitial Atom Clusters in Tungsten

    NASA Astrophysics Data System (ADS)

    Zhou, Wang Huai; Zhang, Chuan Guo; Li, Yong Gang; Zeng, Zhi

    2014-05-01

    The formation and motion features of self interstitial atom (SIA) clusters in tungsten are studied by molecular dynamics (MD) simulations. The static calculations show that the SIA clusters are stable with binding energy over 2 eV. The SIA clusters exhibit a fast one dimensional (1D) motion along <111>. Through analysis of the change of relative distance between SIAs, we find that SIAs jump in small displacements we call creeping motion, which is a new collective diffusion process different from that of iron. The potential energy surface of SIAs implicates that the creeping motion is due to the strong interaction between SIAs. These imply that several diffusion mechanism for SIA clusters can operate in BCC metals and could help us explore deep insight into the performance of materials under irradiation.

  4. Creeping Motion of Self Interstitial Atom Clusters in Tungsten

    PubMed Central

    Zhou, Wang Huai; Zhang, Chuan Guo; Li, Yong Gang; Zeng, Zhi

    2014-01-01

    The formation and motion features of self interstitial atom (SIA) clusters in tungsten are studied by molecular dynamics (MD) simulations. The static calculations show that the SIA clusters are stable with binding energy over 2 eV. The SIA clusters exhibit a fast one dimensional (1D) motion along 〈111〉. Through analysis of the change of relative distance between SIAs, we find that SIAs jump in small displacements we call creeping motion, which is a new collective diffusion process different from that of iron. The potential energy surface of SIAs implicates that the creeping motion is due to the strong interaction between SIAs. These imply that several diffusion mechanism for SIA clusters can operate in BCC metals and could help us explore deep insight into the performance of materials under irradiation. PMID:24865470

  5. Creep test observation of viscoelastic failure of edible fats

    NASA Astrophysics Data System (ADS)

    Vithanage, C. R.; Grimson, M. J.; Smith, B. G.; Wills, P. R.

    2011-03-01

    A rheological creep test was used to investigate the viscoelastic failure of five edible fats. Butter, spreadable blend and spread were selected as edible fats because they belong to three different groups according to the Codex Alimentarius. Creep curves were analysed according to the Burger model. Results were fitted to a Weibull distribution representing the strain-dependent lifetime of putative fibres in the material. The Weibull shape and scale (lifetime) parameters were estimated for each substance. A comparison of the rheometric measurements of edible fats demonstrated a clear difference between the three different groups. Taken together the results indicate that butter has a lower threshold for mechanical failure than spreadable blend and spread. The observed behaviour of edible fats can be interpreted using a model in which there are two types of bonds between fat crystals; primary bonds that are strong and break irreversibly, and secondary bonds, which are weaker but break and reform reversibly.

  6. Changes in complex resistivity during creep in granite

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.

    1986-01-01

    A sample of Westerly granite was deformed under constant stress conditions: a pore pressure of 5 MPa, a confining pressure of 10 MPa, and an axial load of 170 MPa. Pore volume changes were determined by measuring the volume of pore fluid (0.01 M KClaq) injected into the sample. After 6 days of creep, characterized by accelerating volumetric stain, the sample failed along a macroscopic fault. Measurements of complex resistivity over the frequency range 0.001-300 Hz, taken at various times during creep, showed a gradual increase in both conductivity and permittivity. When analysed in terms of standard induced polarization (IP) techniques, the changing complex resistivity resulted in systematic changes in such parameters as percent frequency effect and chargeability. These results suggest that it may be possible to monitor the development of dilatancy in the source region of an impending earthquake through standard IP techniques. ?? 1986 Birka??user Verlag.

  7. Parameter identification using a creeping-random-search algorithm

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.

    1971-01-01

    A creeping-random-search algorithm is applied to different types of problems in the field of parameter identification. The studies are intended to demonstrate that a random-search algorithm can be applied successfully to these various problems, which often cannot be handled by conventional deterministic methods, and, also, to introduce methods that speed convergence to an extremal of the problem under investigation. Six two-parameter identification problems with analytic solutions are solved, and two application problems are discussed in some detail. Results of the study show that a modified version of the basic creeping-random-search algorithm chosen does speed convergence in comparison with the unmodified version. The results also show that the algorithm can successfully solve problems that contain limits on state or control variables, inequality constraints (both independent and dependent, and linear and nonlinear), or stochastic models.

  8. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 2: Phase 2 subsize panel cyclic creep predictions

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.

  9. Tensile stress and creep in thermally grown oxide.

    PubMed

    Veal, Boyd W; Paulikas, Arvydas P; Hou, Peggy Y

    2006-05-01

    Structural components that operate at high temperatures (for example, turbine blades) rely on thermally grown oxide (TGO), commonly alumina, for corrosion protection. Strains that develop in TGOs during operation can reduce the protectiveness of the TGO. However, the occurrence of growth strains in TGOs, and mechanisms that cause them, are poorly understood. It is accepted that compressive strains can develop as oxygen and metal atoms meet to form new growth within constrained oxide. More controversial is the experimental finding that large tensile stresses, close to 1 GPa, develop during isothermal growth conditions in alumina TGO formed on a FeCrAlY alloy. Using a novel technique based on synchrotron radiation, we have confirmed these previous results, and show that the tensile strain develops as the early oxide, (Fe,Cr,Al)(2)O(3), converts to alpha-Al2O3 during the growth process. This allows us to model the strain behaviour by including creep and this diffusion-controlled phase change. PMID:16604078

  10. Creep, compaction and the weak rheology of major faults

    USGS Publications Warehouse

    Sleep, N.H.; Blanpied, M.L.

    1992-01-01

    Field and laboratory observations suggest that the porosity within fault zones varies over earthquake cycles so that fluid pressure is in long-term equilibrium with hydrostatic fluid pressure in the country rock. Between earthquakes, ductile creep compacts the fault zone, increasing fluid pressure, and finally allowing frictional failure at relatively low shear stress. Earthquake faulting restores porosity and decreases fluid pressure to below hydrostatic. This mechanism may explain why major faults, such as the San Andreas system, are weak.

  11. Status of Centralized Environmental Creep Testing Facility Preparation and Upgrade

    SciTech Connect

    Ren, Weiju; Battiste, Rick

    2006-10-01

    Because the ASME Codes do not cover environmental issues that are crucial in the design and construction of VHTR system, investigation of long-term impure helium effects on metallurgical stability and properties becomes very important. The present report describes the development of centralized environmental creep testing facility, its close collaborations with the experiments in low velocity helium recirculation loop, important lessons learned, upgrades in system design in FY06, and current status of the development.

  12. Solder Creep-Fatigue Interactions with Flexible Leaded Part

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Wen, L. C.

    1994-01-01

    In most electronic packaging applications it is not a single high stress event that breaks a component solder joint; rather it is repeated or prolonged load applications that result in fatigue or creep failure of the solder. The principal strain in solder joints is caused by differential expansion between the part and its mounting environment due to hanges in temperature (thermal cycles) and/or due to temperature gradients between the part and the board.

  13. Low-frequency creep in CoNiFe films.

    NASA Technical Reports Server (NTRS)

    Bartran, D. S.; Bourne, H. C., Jr.; Chow, L. G.

    1972-01-01

    Domain wall motion excited by slow rise-time, bipolar, hard-axis pulses in vacuum deposited CoNiFe films from 1500 to 2000 A thick is studied. The results are consistent with those of comparable NiFe films. Furthermore, the wall coercivity is found to be the most significant sample property correlated to the low-frequency creep properties of all the samples.

  14. Anomalous creep in Sn-rich solder joints

    SciTech Connect

    Song, Ho Geon; Morris Jr., John W.; Hua, Fay

    2002-03-15

    This paper discusses the creep behavior of example Sn-rich solders that have become candidates for use in Pb-free solder joints. The specific solders discussed are Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu and Sn-10In-3.1Ag, used in thin joints between Cu and Ni-Au metallized pads.

  15. Creep-rupture tests of internally pressurized Inconel 702 tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.

    1973-01-01

    Seamless Inconel 702 tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1390 to 1575 F and internal helium pressures from 700 to 1800 psi. Lifetimes ranged from 29 to 1561 hr. The creep-rupture strength of the tubes was about 70 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  16. MICROMECHANICS IN CONTINOUS GRAPHITE FIBER/EPOXY COMPOSITES DURING CREEP

    SciTech Connect

    C. ZHOU; ET AL

    2001-02-01

    Micro Raman spectroscopy and classic composite shear-lag models were used to analyze the evolution with time of fiber and matrix strain/stress around fiber breaks in planar model graphite fiber-epoxy matrix composites. Impressive agreements were found between the model predictions and the experimental results. The local matrix creep leads to an increase in the load transfer length around the break under a constant load. This increases the chance of fiber breakage in the neighboring intact fibers.

  17. A fast phase space method for computing creeping rays

    SciTech Connect

    Motamed, Mohammad . E-mail: mohamad@nada.kth.se; Runborg, Olof . E-mail: olofr@nada.kth.se

    2006-11-20

    Creeping rays can give an important contribution to the solution of medium to high frequency scattering problems. They are generated at the shadow lines of the illuminated scatterer by grazing incident rays and propagate along geodesics on the scatterer surface, continuously shedding diffracted rays in their tangential direction. In this paper, we show how the ray propagation problem can be formulated as a partial differential equation (PDE) in a three-dimensional phase space. To solve the PDE we use a fast marching method. The PDE solution contains information about all possible creeping rays. This information includes the phase and amplitude of the field, which are extracted by a fast post-processing. Computationally, the cost of solving the PDE is less than tracing all rays individually by solving a system of ordinary differential equations. We consider an application to mono-static radar cross section problems where creeping rays from all illumination angles must be computed. The numerical results of the fast phase space method and a comparison with the results of ray tracing are presented.

  18. Expression of pokeweed antiviral proteins in creeping bentgrass.

    PubMed

    Dai, W D; Bonos, S; Guo, Z; Meyer, W A; Day, P R; Belanger, F C

    2003-01-01

    Fungal diseases of creeping bentgrass, an important amenity grass used extensively on golf courses, are a serious problem in golf course management. Transgenic approaches to improving disease resistance to fungal diseases are being explored in many species, and in some cases ribosome-inactivating proteins have been found to be effective. We have generated transgenic creeping bentgrass plants expressing three forms of ribosome-inactivating proteins from pokeweed, which are termed pokeweed antiviral proteins (PAP). PAP-Y and PAP-C are nontoxic mutants of PAP; PAPII is the native form of another ribosome-inactivating protein from pokeweed. In creeping bentgrass, PAP-C transformants did not accumulate the protein, suggesting that it is unstable, and in a field test these plants were not protected from infection by the fungal pathogen Sclerotinia homoeocarpa, the causal agent of dollar spot disease. PAPII transformants could accumulate stable levels of the protein but had symptoms of toxicity; one low-expressing line exhibited good disease resistance. PAP-Y transformants accumulated stable levels of protein, and under greenhouse conditions they appeared to be phenotypically normal.

  19. Development of a Generic Creep-Fatigue Life Prediction Model

    NASA Technical Reports Server (NTRS)

    Goswami, Tarun

    2002-01-01

    The objective of this research proposal is to further compile creep-fatigue data of steel alloys and superalloys used in military aircraft engines and/or rocket engines and to develop a statistical multivariate equation. The newly derived model will be a probabilistic fit to all the data compiled from various sources. Attempts will be made to procure the creep-fatigue data from NASA Glenn Research Center and other sources to further develop life prediction models for specific alloy groups. In a previous effort [1-3], a bank of creep-fatigue data has been compiled and tabulated under a range of known test parameters. These test parameters are called independent variables, namely; total strain range, strain rate, hold time, and temperature. The present research attempts to use these variables to develop a multivariate equation, which will be a probabilistic equation fitting a large database. The data predicted by the new model will be analyzed using the normal distribution fits, the closer the predicted lives are with the experimental lives (normal line 1 to 1 fit) the better the prediction. This will be evaluated in terms of a coefficient of correlation, R 2 as well. A multivariate equation developed earlier [3] has the following form, where S, R, T, and H have specific meaning discussed later.

  20. Effects of state recovery on creep buckling under variable loading

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Arnold, S. M.

    1986-01-01

    Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading. Structural alloys embody internal mechanisms that allow recovery of state with varying stress and time.

  1. A model for the stability and creep of organic materials.

    PubMed

    Jäger, Ingomar L

    2005-07-01

    A model is presented for the thermally assisted breaking of a number of bonds arranged in parallel and stressed by an individual soft spring each. Using a simplified potential for the bond it is shown that in equilibrium there are two definite regions of elastic behavior: one with all bonds intact, the other with a variable fraction of bonds broken, therefore with a tangent modulus steadily decreasing with applied stress. Criteria are given for the existence of these regions. Beyond these regions time-dependent creep to rupture is found, limited, in turn, by the theoretical fracture strength, the stress necessary for fracture without any thermal assistance, beyond which a bound state is impossible. The time-to-fracture for creep rupture is calculated and an example of the time evolution of the accelerating creep given. The results of the calculations are applied to experimental data on Wallaby tendons by Wang and Ker (J. Exp. Biol. 198 (1995) 831) and data estimated for the bond potential depth, the theoretical fracture strength and the number density of bonds involved as well as the elastic modulus of the ensemble. Values are derived under the assumption of one deformation mechanism being dominant--e.g., (sub-)fibril sliding or sliding of collagen molecules along one another--but the model cannot definitely distinguish between mechanisms. PMID:15922757

  2. Earthquakes and fault creep on the northern San Andreas fault

    USGS Publications Warehouse

    Nason, R.

    1979-01-01

    At present there is an absence of both fault creep and small earthquakes on the northern San Andreas fault, which had a magnitude 8 earthquake with 5 m of slip in 1906. The fault has apparently been dormant after the 1906 earthquake. One possibility is that the fault is 'locked' in some way and only produces great earthquakes. An alternative possibility, presented here, is that the lack of current activity on the northern San Andreas fault is because of a lack of sufficient elastic strain after the 1906 earthquake. This is indicated by geodetic measurements at Fort Ross in 1874, 1906 (post-earthquake), and 1969, which show that the strain accumulation in 1969 (69 ?? 10-6 engineering strain) was only about one-third of the strain release (rebound) in the 1906 earthquake (200 ?? 10-6 engineering strain). The large difference in seismicity before and after 1906, with many strong local earthquakes from 1836 to 1906, but only a few strong earthquakes from 1906 to 1976, also indicates a difference of elastic strain. The geologic characteristics (serpentine, fault straightness) of most of the northern San Andreas fault are very similar to the characteristics of the fault south of Hollister, where fault creep is occurring. Thus, the current absence of fault creep on the northern fault segment is probably due to a lack of sufficient elastic strain at the present time. ?? 1979.

  3. In situ tensile and creep testing of lithiated silicon nanowires

    SciTech Connect

    Boles, Steven T.; Kraft, Oliver; Thompson, Carl V.; Mönig, Reiner

    2013-12-23

    We present experimental results for uniaxial tensile and creep testing of fully lithiated silicon nanowires. A reduction in the elastic modulus is observed when silicon nanowires are alloyed with lithium and plastic deformation becomes possible when the wires are saturated with lithium. Creep testing was performed at fixed force levels above and below the tensile strength of the material. A linear dependence of the strain-rate on the applied stress was evident below the yield stress of the alloy, indicating viscous deformation behavior. The observed inverse exponential relationship between wire radius and strain rate below the yield stress indicates that material transport was controlled by diffusion. At stress levels approaching the yield strength of fully lithiated silicon, power-law creep appears to govern the strain-rate dependence on stress. These results have direct implications on the cycling conditions, rate-capabilities, and charge capacity of silicon and should prove useful for the design and construction of future silicon-based electrodes.

  4. Microstructural development and creep behavior in A286 superalloy

    SciTech Connect

    De Cicco, H.; Luppo, M.I.; Gribaudo, L.M.; Ovejero-Garcia, J

    2004-05-15

    The precipitation-hardened alloy A286 has been characterized as a function of ageing treatment, and the creep behavior has been studied in the temperature range of 600-700 deg. C and at 230-740 MPa. Microhardness tests of samples aged at different temperatures have been performed, and it was observed that the fastest precipitation kinetics of the metastable {gamma}' occurred during ageing at 730 deg. C. Further exposure at this temperature degraded the good mechanical properties of the material because the {gamma}' dissolved, and the stable {eta} phase formed. Optical and scanning and transmission electron microscopy (SEM and TEM, respectively) characterization of samples in as-received state and after ageing were performed to study the microstructural development. In all creep tests, the damage observed was intergranular. The correlation between secondary strain rate and time to failure was shown to be a modified Monkman-Grant, including the elongation to rupture and an exponent different of 1 for the strain rate to obtain a better correlation. The Larson-Miller parameter has been used to correlate creep stress, temperature and rupture time for the aged material.

  5. Ismetpasa and Destek regions; Creeping or accumulating strain

    NASA Astrophysics Data System (ADS)

    Yavasoglu, Hakan; Alkan, M. Nurullah; Aladogan, Kayhan; Ozulu, I. Murat; Ilci, Veli; Sahin, Murat; Tombus, F. Engin; Tiryakioglu, Ibrahim

    2016-04-01

    The North Anatolian Fault (NAF) is one of the most destructive fault system all over the world. In the last century, many devastating seismic event happened on it and its shear zone (NAFZ). Especially, after the 1999 Izmit and Duzce earthquakes, the earth science studies increase to save human life. To better understand the mechanism of the active fault system, tectonic stress and strain are important phenomena. According to elastic rebound theory, the locked active faults release the accumulated strain abruptly in four periods; interseismic, preseismic, coseismic and postseismic. In the literature, this phase is called the earthquake cycle. On the other hand, there is another scenario (aseismic deformation or creep) to release the strain without any remarkable seismic event. For the creep procedure, the important subject is threshold of the aseismic slip rate. If it is equal or larger than long-term slip rate, the destructive earthquakes will not occur along the fault which has aseismic slip rate. On the contrary, if the creep motion is lower than long-term slip rate along the fault, the fault has potential to produce moderate-to-large size earthquakes. In this study, the regions, Ismetpasa and Destek, have been studied to determine the aseismic deformation using GPS data. The first and second GPS campaigns have been evaluated with GAMIT/GLOBK software. Preliminary results of the project (slip-rate along the NAF in this region and aseismic deformation) will be presented.

  6. Creep rupture of fiber bundles: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Linga, G.; Ballone, P.; Hansen, Alex

    2015-08-01

    The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40 000 particles arranged on Nc=400 chains reproduce characteristic stages seen in the experimental investigations of creep in polymeric materials. A logarithmic plot of the bundle lifetime τ versus load F displays a marked curvature, ruling out a simple power-law dependence of τ on F . A power law τ ˜F-4 , however, is recovered at high load. We discuss the role of reversible bond breaking and formation on the eventual fate of the sample and simulate a different type of creep testing, imposing a constant stress rate on the sample up to its breaking point. Our simulations, relying on a coarse-grained representation of the polymer structure, introduce new features into the standard fiber bundle model, such as real-time dynamics, inertia, and entropy, and open the way to more detailed models, aiming at material science aspects of polymeric fibers, investigated within a sound statistical mechanics framework.

  7. Fabrication and creep properties of superalloy-zirconia composites

    NASA Astrophysics Data System (ADS)

    Oruganti, R. K.; Ghosh, A. K.

    2003-11-01

    Graded composite interfaces have been proposed as a means to reduce thermally induced stresses between dissimilar materials. This is expected to be useful in applications such as ceramic thermalbarrier coatings (TBCs) on superalloy substrates. The interfaces, in such cases, are metal-matrix composites containing the ceramic phase within the superalloy matrix, whose creep properties during elevated-temperature service become critically important. This study was carried out to assess the creep properties of a typical superalloy-ceramic combination, namely, a René 95 alloy containing partially stabilized zirconia. Composites of these materials were prepared via powder metallurgy. Microscopy and X-ray work revealed that the zirconia reacted with γ' (Ni3Al) to form Al2O3, which resulted in the depletion of γ' from the matrix. The creep behavior of the composites was markedly different from that of the unreinforced matrix. In addition to showing different stress exponents, the composites were stronger than the unreinforced material at low strain rates and weaker at the higher strain rates. A composite load-transfer model is used to isolate the effect of particles on strengthening. It is found that strengthening by the ceramic particles is smaller than strengthening arising from the change in chemistry of the matrix due to the addition of ZrO2.

  8. Tectonic creep in the Hayward fault zone, California

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.; Bonilla, M.G.

    1966-01-01

    Tectonic creep is slight apparently continuous movement along a fault. Evidence of creep has been noted at several places within the Hayward fault zone--a zone trending northwestward near the western front of the hills bordering the east side of San Francisco Bay. D. H. Radbruch of the Geological Survey and B. J. Lennert, consulting engineer, confirmed a reported cracking of a culvert under the University of California stadium. F. B. Blanchard and C. L. Laverty of the East Bay Municipal Utility District of Oakland studied cracks in the Claremont water tunnel in Berkeley. M. G. Bonilla of the Geological Survey noted deformation of railroad tracks in the Niles district of Fremont. Six sets of tracks have been bent and shifted. L. S. Cluff of Woodward-Clyde-Sherard and Associates and K. V. Steinbrugge of the Pacific Fire Rating Bureau noted that the concrete walls of a warehouse in the Irvington district of Fremont have been bent and broken, and the columns forced out of line. All the deformations noted have been right lateral and range from about 2 inches in the Claremont tunnel to about 8 inches on the railroad tracks. Tectonic creep almost certainly will continue to damage buildings, tunnels, and other structures that cross the narrow bands of active movement within the Hayward fault zone.

  9. Creep and recovery behaviors of magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix

    NASA Astrophysics Data System (ADS)

    Qi, S.; Yu, M.; Fu, J.; Li, P. D.; Zhu, M.

    2016-01-01

    This paper mainly investigated the creep and recovery behaviors of magnetorheological elastomers (MRE) based on polyurethane/epoxy resin (EP) graft interpenetrating polymer networks (IPNs). The influences of constant stress level, content of EP, particle distribution, magnetic field and temperature on the creep and recovery behaviors were systematically investigated. As expected, results suggested that the presence of IPNs leads to a significant improvement of creep resistance of MRE, and creep and recovery behaviors of MRE were highly dependent on magnetic field and temperature. To further understand its deformation mechanism, several models (i.e., Findley’s power law model, Burgers model, and Weibull distribution equation) were used to fit the measured creep and recovery data. Results showed that the modeling of creep and recovery of samples was satisfactorily conducted by using these models. The influences of content of EP and magnetic field on fitting parameters were discussed, and relevant physical mechanism was proposed to explain it qualitatively.

  10. The microstructure of neutron irradiated type-348 stainless steel and its relation to creep and hardening

    NASA Astrophysics Data System (ADS)

    Thomas, L. E.; Beeston, J. M.

    1982-06-01

    Annealed type-348 stainless steel specimens irradiated to 33 to 39 dpa at 350°C were examined by transmission electron microscopy to determine the cause of pronounced irradiation creep and hardening. The irradiation produced very high densities of 1-2 nm diameter helium bubbles, 2-20 nm diameter faulted (Frank) dislocation loops and 10 nm diameter precipitate particles. These defects account for the observed irradiation hardening but do not explain the creep strains. Too few point defects survive as faulted dislocation loops for significant creep by the stress-induced preferential absorption (SIPA) mechanism and there are not enough unfaulted dislocations for creep by climb-induced glide. Also, the irradiation-induced precipitates are face-centred cubic G-phase (a niobium nickel suicide), and cannot cause creep. It is suggested that the irradiation creep occurs by a grain-boundary movement mechanism such as diffusion accomodated grain-boundary sliding.

  11. The role of interfacial dislocation networks in high temperature creep of superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Draper, S. L.; Hull, D. R.; Mackay, R. A.; Nathal, M. V.

    1989-01-01

    The dislocation networks generated during high-temperature creep of several single-crystal nickel-based superalloys are analyzed. The networks continually evolve during creep at relatively low temperatures or eventually reach a more stable configuration at high temperatures. Specifically, the role of these networks in directional coarsening processes are studied, along with their formation kinetics, characteristics, and stability during creep. The results of this study combined with previous findings suggest that the directional coarsening process is strongly influenced by elastic strain energy. The dislocation networks formed during primary creep are found to be stable during all subsequent creep stages. Aspects of these dislocation networks are determined to be a product of both the applied creep stress and coherency strains.

  12. Investigation of creep by use of closed loop servo-hydraulic test system

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Yao, J. C.

    1981-01-01

    Creep tests were conducted by means of a closed loop servo-controlled materials test system. These tests are different from the conventional creep tests in that the strain history prior to creep may be carefully monitored. Tests were performed for aluminum alloy 6061-0 at 150 C and monitored by a PDP 11/04 minicomputer at a preset constant plastic-strain rate prehistory. The results show that the plastic-strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. The concepts of intrinsic time and strain rate sensitivity function are employed and modified according to the present observation.

  13. Creep of Uncoated and Cu-Cr Coated NARloy-Z

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chiang, K. T.

    1998-01-01

    Stress rupture creep tests were performed on uncoated and Cu-30vol%Cr coated NARloy-Z copper alloy specimens exposed to air at 482 C to 704 C. The results showed that creep failure in air of unprotected NARloy-Z was precipitated by brittle intergranular surface cracking produced by strain assisted grain boundary oxidation (SAGBO) which in turn caused early onset of tertiary creep. For the protected specimens, the Cu-Cr coating remained adherent throughout the tests and was effective in slowing down the rate of oxygen absorption, particularly at the higher temperatures, by formation of a continuous chromium oxide scale. As the result of reducing oxygen ingress, the coating prevented SAGBO initiated early creep failure, extended creep deformation and increased the creep rupture life of NARloy-Z over the entire 482 C to 704 C test temperature range.

  14. Creep crack growth predictions in INCO 718 using a continuum damage model

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Wilson, D. A.

    1985-01-01

    Creep crack growth tests have been carried out in compact type specimens of INCO 718 at 1200 F (649 C). Theoretical creep crack growth predictions have been carried out by incorporating a unified viscoplastic constitutive model and a continuum damage model into the ARAQUS nonlinear finite element program. Material constants for both the viscoplastic model and the creep continuum damage model were determined from tests carried out on uniaxial bar specimens of INCO 718 at 1200 F (649 C). A comparison of the theoretical creep crack growth rates obtained from the finite element predictions with the experimentally observed creep crack growth rates indicates that the viscoplastic/continuum damage model can be used to successfully predict creep crack growth in compact type specimens using material constants obtained from uniaxial bar specimens of INCO 718 at 1200 F (649 C).

  15. Semi-analytical solution of time-dependent thermomechanical creep behavior of FGM hollow spheres

    NASA Astrophysics Data System (ADS)

    Jafari Fesharaki, J.; Loghman, A.; Yazdipoor, M.; Golabi, S.

    2014-02-01

    By using a method of successive elastic solution, the time-dependent creep behavior of a functionally graded hollow sphere under thermomechanical loads has been investigated. Based on volume percentage, the mechanical and thermal properties of material, except for the Poisson's ratio, are assumed to be radially dependent. Total strains are assumed to be the sum of elastic, thermal and creep strains. Creep strains are temperature-, stress- and time-dependent. Using the Prandtl-Reuss relations and Sherby's law, histories of stresses and strains are presented from their initial elastic values at zero time up to 30 years after loading. The results show that the creep stresses and strains change with time and material inhomogeneity has influence on thermomechanical creep behavior. The aim of this work was to understand the effect of creep behavior on a functionally graded hollow sphere subjected to thermomechanical load.

  16. Influence of microstructure on creep strength of MRI 230D Mg alloy

    NASA Astrophysics Data System (ADS)

    Amberger, D.; Eisenlohr, P.; Göken, M.

    2010-07-01

    The low density of magnesium alloys makes them attractive for lightweight constructions. However, creep remains an important limitation of Mg alloys. To gain a more detailed understanding of the correlation between microstructure and creep properties in Mg alloys, creep tests have been performed on MRI 230D samples featuring various microstructures. For this purpose, the MRI 230D Mg alloy has been thixomolded into a plate with four steps of different height, which gives different microstructures in each step due to different cooling rates. With an increase in cooling rate (e.g., a decrease in step height) the interconnectivity of the eutectic phase increases at virtually constant volume fraction. The creep strength is found to decrease with decreasing interconnectivity of the eutectic phase. This implies that a eutectic phase morphology, which is highly interconnected, benefits the creep properties and should therefore be one goal in further developments for creep resistant Mg alloys.

  17. Effect of creep stress on microstructure of a Ni-Cr-W-Al-Ti superalloy

    SciTech Connect

    Doh, J.M.; Yoo, K.K.; Choi, J.; Hur, S.K.; Baik, H.K.

    1996-02-15

    Creep stress changes the morphology and distribution of the precipitates in the precipitation-hardened alloys. It leads to the formation of precipitate free zones (PFZs) near the grain boundaries. From the microstructural observation of the creep tested specimens of a Ni-Cr-W-Al-Ti superalloy, the relation between PFZs and the amount of plastic deformation in the creep-ruptured specimen is established and the validity of the existing model is discussed based upon the experimental results.

  18. Type IV Creep Damage Behavior in Gr.91 Steel Welded Joints

    NASA Astrophysics Data System (ADS)

    Hongo, Hiromichi; Tabuchi, Masaaki; Watanabe, Takashi

    2012-04-01

    Modified 9Cr-1Mo steel (ASME Grade 91 steel) is used as a key structural material for boiler components in ultra-supercritical (USC) thermal power plants at approximately 873 K (600 °C). The creep strength of welded joints of this steel decreases as a result of Type IV creep cracking that forms in the heat-affected zone (HAZ) under long-term use at high temperatures. The current article aims to elucidate the damage processes and microstructural degradations that take place in the HAZ of these welded joints. Long-term creep tests for base metal, simulated HAZ, and welded joints were conducted at 823 K, 873 K, and 923 K (550 °C, 600 °C, and 650 °C). Furthermore, creep tests of thick welded joint specimens were interrupted at several time steps at 873 K (600 °C) and 90 MPa, after which the distribution and evolution of creep damage inside the plates were measured quantitatively. It was found that creep voids are initiated in the early stages (0.2 of life) of creep rupture life, which coalesce to form a crack at a later stage (0.8 of life). In a fine-grained HAZ, creep damage is concentrated chiefly in an area approximately 20 pct below the surface of the plate. The experimental creep damage distributions coincide closely with the computed results obtained by damage mechanics analysis using the creep properties of a simulated fine-grained HAZ. Both the concentration of creep strain and the high multiaxial stress conditions in the fine-grained HAZ influence the distribution of Type IV creep damage.

  19. Limit case analysis of the "stable indenter velocity" method for obtaining creep stress exponents from constant load indentation creep tests

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Dean, J.; Clyne, T. W.

    2016-06-01

    This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.

  20. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2016-06-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  1. Methodology to predict the number of forced outages due to creep failure

    SciTech Connect

    Palermo, J.V. Jr.

    1996-12-31

    All alloy metals at a temperature above 950 degrees Fahrenheit experience creep damage. Creep failures in boiler tubes usually begin after 25 to 40 years of operation. Since creep damage is irreversible, the only remedy is to replace the tube sections. By predicting the number of failures per year, the utility can make the best economic decision concerning tube replacement. This paper describes a methodology to calculate the number of forced outages per yea due to creep failures. This methodology is particularly useful to utilities that have boilers that have at least 25 years of operation.

  2. A constitutive model for representing coupled creep, fracture, and healing in rock salt

    SciTech Connect

    Chan, K.S.; Bodner, S.R.; Munson, D.E.; Fossum, A.F.

    1996-03-01

    The development of a constitutive model for representing inelastic flow due to coupled creep, damage, and healing in rock salt is present in this paper. This model, referred to as Multimechanism Deformation Coupled Fracture model, has been formulated by considering individual mechanisms that include dislocation creep, shear damage, tensile damage, and damage healing. Applications of the model to representing the inelastic flow and fracture behavior of WIPP salt subjected to creep, quasi-static loading, and damage healing conditions are illustrated with comparisons of model calculations against experimental creep curves, stress-strain curves, strain recovery curves, time-to-rupture data, and fracture mechanism maps.

  3. Application Of Elastic Perfectly Plastic Cyclic Analysis To Assessment Of Creep Strain

    SciTech Connect

    Carter, Peter; Jetter, Robert I; Sham, Sam

    2012-01-01

    A cyclic elastic-perfectly plastic analysis method is proposed which provides a conservative estimate to cyclic creep strain accumulation within the ratchet boundary. The method is to check for ratcheting based on an elastic-perfectly material with a temperature-dependent pseudo yield stress defined by temperature, time and stress to give 1% creep strain. It does not require stress classification and is also applicable to a full range of temperature above and below the creep regime. This simplified method could be used as a rapid screening calculation, with full time-dependent creep analysis used if necessary.

  4. Cyclic creep-rupture behavior of three high-temperature alloys.

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1972-01-01

    Study of some important characteristics of the cyclic creep-rupture curves for the titanium alloy 6Al-2Sn-4Zr-2Mo at 900 and 1100 F (755 and 865 K), the cobalt-base alloy L-605 at 1180 F (910 K), and for two hardness levels of 316 stainless steel at 1300 F (980 K). The cyclic creep-rupture curve relates tensile stress and tensile time-to-rupture for strain-limited cyclic loading and has been found to be independent of the total strain range and the level of compressive stress employed in the cyclic creep-rupture tests. The cyclic creep-rupture curve was always found to be above and to the right of the conventional (constant load) monotonic creep-rupture curve by factors ranging from 2 to 10 in time-to-rupture. This factor tends to be greatest when the creep ductility is large. Cyclic creep acceleration was observed in every cyclic creep-rupture test conducted. The phenomenon was most pronounced at the highest stress levels and when the tensile and compressive stresses were completely reversed. In general, creep rates were found to be lower in compression than in tension for equal true stresses. The differences, however, were strongly material-dependent.

  5. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Laha, K.; Mathew, M. D.

    2013-07-01

    Prior cold worked (PCW) titanium-modified 14Cr-15Ni austenitic stainless steel (SS) is used as a core-structural material in fast breeder reactor because of its superior creep strength and resistance to void swelling. In this study, the influence of PCW in the range of 16-24% on creep properties of IFAC-1 SS, a titanium modified 14Cr-15Ni austenitic SS, at 923 K and 973 K has been investigated. It was found that PCW has no appreciable effect on the creep deformation rate of the steel at both the test temperatures; creep rupture life increased with PCW at 923 K and remained rather unaffected at 973 K. The dislocation structure along with precipitation in the PCW steel was found to change appreciably depending on creep testing conditions. A well-defined dislocation substructure was observed on creep testing at 923 K; a well-annealed microstructure with evidences of recrystallization was observed on creep testing at 973 K. Creep rupture life of the steel increased with the increase in PCW at 923 K. This has been attributed to the partial retention of prior cold work induced dislocations which facilitated the extensive precipitation of secondary Ti(C,N) particles on the stable dislocation substructure. Creep rupture life of the steel did not vary with PCW at 973 K due to softening by recrystallization and absence of secondary Ti(C,N).

  6. Long-time creep behavior of the niobium alloy C-103

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Klopp, W. D.

    1980-01-01

    The creep behavior of C-103 was studied as a function of stress, temperature, and grain size for test times to 19000 hr. Over the temperature range 827 to 1204 C and the stress range 6.89 to 138 MPa, only tertiary (accelerating) creep was observed. The creep strain epsilon can be related to time t by an exponential relation epsilon = epsilon(0) + K e raised to power (st) - 1), where epsilon (0) is initial creep strain, K is the tertiary creep strain parameter, and s is the tertiary creep rate parameter. The observed stress exponent 2.87 is similar to the three power law generally observed for secondary (linear) creep of Class I solid solutions. The apparent activation energy 374 kj/g mol is close to that observed for self diffusion of pure niobium. The initial tertiary creep rate was slightly faster for fine grained than for coarse-grained material. The strain parameter K can be expressed as a combination of power functions of stress and grain size and an exponential function of temperature. Strain time curves generated by using calculated values for K and s showed reasonable agreement with observed curves to strains of at least 4 percent. The time to 1 percent strain was related to stress, temperature, and grain size in a similar manner as the initial tertiary creep rate.

  7. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  8. Further Developments in Modeling Creep Effects Within Structural SiC/SiC Components

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James A.

    2008-01-01

    Anticipating the implementation of advanced SiC/SiC composites into turbine section components of future aero-propulsion engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly manipulate constituent materials and processes in order to minimize these effects. Focusing on SiC/SiC components experiencing through-thickness stress gradients (e.g., airfoil leading edge), prior NASA creep modeling studies showed that detrimental residual stress effects can develop globally within the component walls which can increase the risk of matrix cracking. These studies assumed that the SiC/SiC composites behaved as isotropic viscoelastic continuum materials with creep behavior that was linear and symmetric with stress and that the creep parameters could be obtained from creep data as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The present study expands on those prior efforts by including constituent behavior with non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.

  9. Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry

    1998-01-01

    As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.

  10. Review of data on irradiation creep of monolithic SiC

    SciTech Connect

    Garner, F.A.; Youngblood, G.E.; Hamilton, M.L.

    1996-04-01

    An effort is now underway to design an irradiation creep experiment involving SiC composites to SiC fibers. In order to successfully design such an experiment, it is necessary to review and assess the available data for monolithic SiC to establish the possible bounds of creep behavior for the composite. The data available show that monolithic SiC will indeed creep at a higher rate under irradiation compared to that of thermal creep, and surprisingly, it will do so in a temperature-dependant manner that is typical of metals.

  11. Technique for measuring irradiation creep in polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Hamilton, M.L.; Jones, R.H.

    1996-10-01

    A bend stress relaxation (BSR) test has been designed to examine irradiation enhanced creep in polycrystalline SiC fibers being considered for fiber reinforcement in SiC/SiC composite. Thermal creep results on Nicalon-CG and Hi-Nicalon were shown to be consistent with previously published data with Hi-Nicalon showing about a 100{degrees}C improvement in creep resistance. Preliminary data was also obtained on Nicalon-S that demonstrated that its creep resistance is greater than that of Hi-Nicalon.

  12. A creep apparatus to explore the quenching and ageing phenomena of PVC films

    NASA Technical Reports Server (NTRS)

    Lee, H. H. D.; Mcgarry, F. J.

    1991-01-01

    A creep apparatus has been constructed for an in situ determination of length and length change. Using this apparatus, the creep behavior of PVC thin films associated with quenching and aging was studied. The more severe the quench through the glass transition temperature, the greater is the instantaneous elastic deformation and the subsequent creep behavior. As aging proceeds, the quenched films gradually lose the ductility incurred by quenching. These results agree well with the well-known phenomena of physical aging. Thus, the changes reflecting molecular mobilities due to quenching and aging can be properly monitored by such a creep apparatus.

  13. Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals

    SciTech Connect

    Michael J. Mills

    2009-03-05

    Cast nickel-based superalloys are used for blades in land-based, energy conversion and powerplant applications, as well as in aircraft gas turbines operating at temperatures up to 1100 C, where creep is one of the life-limiting factors. Creep of superalloy single crystals has been extensively studied over the last several decades. Surprisingly, only recently has work focused specifically on the dislocation mechanisms that govern high temperature and low stress creep. Nevertheless, the perpetual goal of better engine efficiency demands that the creep mechanisms operative in this regime be fully understood in order to develop alloys and microstructures with improved high temperature capability. At present, the micro-mechanisms controlling creep before and after rafting (the microstructure evolution typical of high temperature creep) has occurred have yet to be identified and modeled, particularly for [001] oriented single crystals. This crystal orientation is most interesting technologically since it exhibits the highest creep strength. The major goal of the program entitled ''Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals'' (DOE Grant DE-FG02-04ER46137) has been to elucidate these creep mechanisms in cast nickel-based superalloys. We have utilized a combination of detailed microstructure and dislocation substructure analysis combined with the development of a novel phase-field model for microstructure evolution.

  14. Steady-State Creep of Rock Salt: Improved Approaches for Lab Determination and Modelling

    NASA Astrophysics Data System (ADS)

    Günther, R.-M.; Salzer, K.; Popp, T.; Lüdeling, C.

    2015-11-01

    Actual problems in geotechnical design, e.g., of underground openings for radioactive waste repositories or high-pressure gas storages, require sophisticated constitutive models and consistent parameters for rock salt that facilitate reliable prognosis of stress-dependent deformation and associated damage. Predictions have to comprise the active mining phase with open excavations as well as the long-term development of the backfilled mine or repository. While convergence-induced damage occurs mostly in the vicinity of openings, the long-term behaviour of the backfilled system is dominated by the damage-free steady-state creep. However, because in experiments the time necessary to reach truly stationary creep rates can range from few days to years, depending mainly on temperature and stress, an innovative but simple creep testing approach is suggested to obtain more reliable results: A series of multi-step tests with loading and unloading cycles allows a more reliable estimate of stationary creep rate in a reasonable time. For modelling, we use the advanced strain-hardening approach of Günther-Salzer, which comprehensively describes all relevant deformation properties of rock salt such as creep and damage-induced rock failure within the scope of an unified creep ansatz. The capability of the combination of improved creep testing procedures and accompanied modelling is demonstrated by recalculating multi-step creep tests at different loading and temperature conditions. Thus reliable extrapolations relevant to in-situ creep rates (10^{-9} to 10^{-13} s^{-1}) become possible.

  15. Progress in the development of a SiC{sub f}/SiC creep test

    SciTech Connect

    Hamilton, M.L.; Lewinsohn, C.A.; Jones, R.H.; Youngblood, G.E.; Garner, F.A.; Hecht, S.L.

    1996-10-01

    An effort is now underway to design an experiment that will allow the irradiation creep behavior of SiC{sub f}/SiC composites to be quantified. Numerous difficulties must be overcome to achieve this goal, including determining an appropriate specimen geometry that will fit their radiation volumes available and developing a fabrication procedure for such a specimen. A specimen design has been selected, and development of fabrication methods is proceeding. Thermal and stress analyses are being performed to evaluate the viability of the specimen and to assist with determining the design parameters. A possible alternate type of creep test is also being considered. Progress in each of these areas is described in this report.

  16. Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy

    SciTech Connect

    Wang, H.; Wang, Q.D.; Boehlert, C.J.; Yin, D.D.; Yuan, J.

    2015-01-15

    The tensile and compressive creep behavior of an extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy was investigated at temperatures ranging from 200 °C to 300 °C and under stresses ranging from 30 MPa to 120 MPa. There existed an asymmetry in the tensile and compressive creep properties. The minimum creep rate of the alloy was slightly greater in tension than in compression. The measured values of the transient strain and initial creep rate in compression were greater than those in tension. The creep stress exponent was approximately 2.5 at low temperatures (T < 250 °C) and 3.4 at higher temperatures both in tension and in compression. The compression creep activation energy at low temperatures and high temperatures was 83.4 and 184.3 kJ/mol respectively, while one activation energy (184 kJ/mol) represented the tensile–creep behavior over the temperature range examined. Dislocation creep was suggested to be the main mechanism in tensile creep and in the high-temperature regime in compressive creep, while grain boundary sliding was suggested to dominate in the low-temperature regime in compressive creep. Precipitate free zones were observed near grain boundaries perpendicular to the loading direction in tension and parallel to the loading direction in compression. Electron backscattered diffraction analysis revealed that the texture changed slightly during creep. Non-basal slip was suggested to contribute to the deformation after basal slip was introduced. In the tensile–creep ruptured specimens, intergranular cracks were mainly observed at general high-angle boundaries. - Highlights: • Creep behavior of an extruded Mg–RE alloy was characterized by EBSD. • T5 aging treatment enhanced the tension–compression creep asymmetry. • The grains grew slightly during tensile creep, but not for compressive creep. • Precipitate free zones (PFZs) were observed at specific grain boundaries. • Intergranular fracture was dominant and cracks mainly originated at

  17. Low dose irradiation creep of pure nickel. [17 or 15 MeV deuterons

    SciTech Connect

    Henager, C.H. Jr.

    1984-10-01

    A detailed climb-controlled glide model of low dose irradiation creep has been developed to rationalize irradiation creep data of pure nickel irradiated in a light ion irradiation creep apparatus. Experimental irradiation creep data were obtained to study the effects of initial microstructure and stress on low dose irradiation creep in pure nickel. Pure nickel specimens (99.992% Ni), with three different microstructures, were irradiated with 17 or 15 MeV deuterons at 473 K and stresses ranging from 0.35 to 0.9 of the unirradiated yield stress. Transmission electron microscopy revealed that the microstructure following irradiation to 0.05 dpa consisted of a high density of small dislocation loops, some small voids and network dislocations. The creep model predicted creep rates proportional to the mobile dislocation density and a comparison of experimental irradiation creep rates as a function of homologous stress revealed a dependence on initial microstructure of the magnitude predicted by the measured dislocation densities. The three microstructures that were irradiated consisted of 85% and 25% cold-worked Ni specimens and well-annealed Ni specimens. A weak stress dependence of irradiation creep was observed in 85% cold-worked Ni in agreement with experimental determinations of the stress dependence of irradiation creep by others. The weak stress dependence was shown to be a consequence of the stress independence of the dislocation climb velocity and the weak stress dependence of the barrier removal process. The irradiation creep rate was observed to be proportional to the applied stress. This linear stress dependence was suggested to be due to the stress dependence of the mobile dislocation density. 101 references, 27 figures, 11 tables.

  18. Brittle creep and subcritical crack propagation in glass submitted to triaxial conditions

    NASA Astrophysics Data System (ADS)

    Mallet, Céline; Fortin, Jérôme; Guéguen, Yves; Bouyer, Frédéric

    2015-02-01

    An experimental work is presented that aimed at improving our understanding of the mechanical evolution of cracks under brittle creep conditions. Brittle creep may be an important slow deformation process in the Earth's crust. Synthetic glass samples have been used to observe and document brittle creep due to slow crack-propagation. A crack density of 0.05 was introduced in intact synthetic glass samples by thermal shock. Creep tests were performed at constant confining pressure (15 MPa) for water saturated conditions. Data were obtained by maintaining the differential-stress constant in steps of 24 h duration. A set of sensors allowed us to record strains and acoustic emissions during creep. The effect of temperature on creep was investigated from ambient temperature to 70°C. The activation energy for crack growth was found to be 32 kJ/mol. In secondary creep, a large dilatancy was observed that did not occur in constant strain rate tests. This is correlated to acoustic emission activity associated with crack growth. As a consequence, slow crack growth has been evidenced in glass. Beyond secondary creep, failure in tertiary creep was found to be a progressive process. The data are interpreted through a previously developed micromechanical damage model that describes crack propagation. This model allows one to predict the secondary brittle creep phase and also to give an analytical expression for the time to rupture. Comparison between glass and crystalline rock indicates that the brittle creep behavior is probably controlled by the same process even if stress sensitivity for glass is lower than for rocks.

  19. Transient creep, aseismic damage and slow failure in Carrara marble deformed across the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Walker, E.; Thompson, B. D.; Fortin, J.; Guéguen, Y.; Young, R. P.

    2006-09-01

    Two triaxial compression experiments were performed on Carrara marble at high confining pressure, in creep conditions across the brittle-ductile transition. During cataclastic deformation, elastic wave velocity decrease demonstrated damage accumulation (microcracks). Keeping differential stress constant and reducing normal stress induced transient creep events (i.e., fast accelerations in strain) due to the sudden increase of microcrack growth. Tertiary creep and brittle failure followed as damage came close to criticality. Coalescence and rupture propagation were slow (60-200 seconds with ~150 MPa stress drops and millimetric slips) and radiated little energy in the experimental frequency range (0.1-1 MHz). Microstructural analysis pointed out strong interactions between intra-crystalline plastic deformation (twinning and dislocation glide) and brittle deformation (microcracking) at the macroscopic level. Our observations highlight the dependence of acoustic efficiency on the material's rheology, at least in the ultrasonic frequency range, and the role played by pore fluid diffusion as an incubation process for delayed failure triggering.

  20. Seismic anisotropy and mantle creep in young orogens

    USGS Publications Warehouse

    Meissner, R.; Mooney, W.D.; Artemieva, I.

    2002-01-01

    Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.

  1. Dynamic Modeling of Coseismic Rupture on Partially-Creeping Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Lozos, J.; Funning, G.; Oglesby, D. D.

    2013-12-01

    Partially creeping faults exhibit complex behavior in terms of which parts of the fault slip seismically versus aseismically; this complexity is both temporal and spatial. Several faults in California exhibit creep that is rapid enough to be detected geodetically using InSAR, GPS and near-field methods, such as theodolite measurements of alignment arrays. Such studies of the Hayward Fault in the San Francisco Bay Area suggest that it has a complex pattern of creeping and locked patches along strike and down dip. The spatial pattern of creeping versus locked zones may have as much of an effect on throughgoing rupture as the more general presence of creep does. We use the 3D finite element modeling code FaultMod to conduct single-cycle models of dynamic rupture on partially creeping strike slip faults, in order to determine whether coseismic rupture can propagate into creeping regions, and how the presence and distribution of creep affects the ability of rupture to propagate along strike. We implement a rate-state friction criterion, in which locked zones of the fault are represented by rate-weakening behavior, and creeping zones of the fault are assigned rate-strengthening properties. We model two simplified partial creep geometries: a locked patch at the base of a largely creeping fault (similar to what is inferred for the Hayward Fault), and a creeping patch at the surface of a predominantly locked fault (similar to what is inferred for the Rodgers Creek Fault). We find that, in the case of a locked patch within a creeping fault, rupture does not propagate more than a kilometer past the edges of the locked patch, regardless of the patch radius. The case of a creeping patch within a locked fault is more complicated. We find that the width of the locked areas around the creeping patch determine whether or not rupture is able to propagate around the creeping patch and along the full strike of the fault; if the width of locked zone between the edge of the creeping

  2. Stable creeping fault segments can become destructive as a result of dynamic weakening.

    PubMed

    Noda, Hiroyuki; Lapusta, Nadia

    2013-01-24

    Faults in Earth's crust accommodate slow relative motion between tectonic plates through either similarly slow slip or fast, seismic-wave-producing rupture events perceived as earthquakes. These types of behaviour are often assumed to be separated in space and to occur on two different types of fault segment: one with stable, rate-strengthening friction and the other with rate-weakening friction that leads to stick-slip. The 2011 Tohoku-Oki earthquake with moment magnitude M(w) = 9.0 challenged such assumptions by accumulating its largest seismic slip in the area that had been assumed to be creeping. Here we propose a model in which stable, rate-strengthening behaviour at low slip rates is combined with coseismic weakening due to rapid shear heating of pore fluids, allowing unstable slip to occur in segments that can creep between events. The model parameters are based on laboratory measurements on samples from the fault of the M(w) 7.6 1999 Chi-Chi earthquake. The long-term slip behaviour of the model, which we examine using a unique numerical approach that includes all wave effects, reproduces and explains a number of both long-term and coseismic observations-some of them seemingly contradictory-about the faults at which the Tohoku-Oki and Chi-Chi earthquakes occurred, including there being more high-frequency radiation from areas of lower slip, the largest seismic slip in the Tohoku-Oki earthquake having occurred in a potentially creeping segment, the overall pattern of previous events in the area and the complexity of the Tohoku-Oki rupture. The implication that earthquake rupture may break through large portions of creeping segments, which are at present considered to be barriers, requires a re-evaluation of seismic hazard in many areas. PMID:23302798

  3. Programs For Predicting Fatigue And Creep-Fatigue Resistances

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.

    1994-01-01

    TS-SRP/PACK set of computer programs for characterizing and predicting fatigue and creep-fatigue resistances of metallic materials under isothermal and nonisothermal fatigue conditions in high-temperature, long-life regime. Programs implement total-strain version of strainrange-partitioning (TS-SRP) method. User should be thoroughly familiar with TS-SRP method before attempting to use any of these programs. Five programs included along with alloy data base. Four programs written in FORTRAN 77. One written in BASIC version 3.0.

  4. The creep behavior of acrylic denture base resins.

    PubMed

    Sadiku, E R; Biotidara, F O

    1996-01-01

    The creep behavior of acrylic dental base resins, at room temperature and at different loading conditions, has been examined. The behaviors of these resins are similar to that of "commercial perspex" at room temperature over a period of 1000 seconds. The pseudo-elastic moduli of the blends of PMMA VC show a significant increase compared with PMMA alone. The addition of the PVC powder to the heat-cured acrylic resin increased the time-dependent elastic modulus. This increase in elastic modulus is advantageous in the production of denture based resins of improv mechanical properties.

  5. Creep-rupture tests of internally pressurized Rene 41 tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.; Weiss, B.

    1972-01-01

    Weld-drawn tubes of Rene 41 with 0.935 centimeter outside diameter and 0.064 centimeter wall thickness were tested to failure at temperatures from 1117 to 1233 K and internal helium pressures from 5.5 to 12.4 meganewtons per square meter. Lifetimes ranged from 5 to 2065 hours. The creep-rupture strength of the tubes was 50 percent lower than that of unwelded, thick sheet specimens, and 20 percent lower than that of unwelded, thin sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  6. Effect of creep in titanium alloy Ti-6Al-4V at elevated temperature on aircraft design and flight test

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1984-01-01

    Short-term compressive creep tests were conducted on three titanium alloy Ti-6Al-4V coupons at three different stress levels at a temperature of 714 K (825 F). The test data were compared to several creep laws developed from tensile creep tests of available literature. The short-term creep test data did not correlate well with any of the creep laws obtained from available literature. The creep laws themselves did not correlate well with each other. Short-term creep does not appear to be very predictable for titanium alloy Ti-6Al-4V. Aircraft events that result in extreme, but short-term temperature and stress excursions for this alloy should be approached cautiously. Extrapolations of test data and creep laws suggest a convergence toward predictability in the longer-term situation.

  7. Extended-time-scale creep measurement on Maraging cantilever blade springs

    NASA Astrophysics Data System (ADS)

    Virdone, Nicole; Agresti, Juri; Bertolini, Alessandro; DeSalvo, Riccardo; Stellacci, Rosalia; Kamp, Justin; Mantovani, Maddalena; Sannibale, Virginio; Tarallo, Marco; Kaltenegger, Lisa

    2008-08-01

    Two controlled temperature facilities were built to induce an accelerated creep rate in a Maraging steel GAS spring and to measure the material's creep over an artificially extended period of time. The data acquisition of the first experiment lasted for almost a year, but then the blades were allowed to creep for six more years before measuring the permanent deformation integrated over time. The data from this first experiment was polluted by a defect in the data acquisition software, but yielded overall creep limits and an evaluation of the Arrhenius acceleration of creep speed with temperature (1.28±0.13 °C -1). The duration of the second experiment was only 1 year but more free of systematic errors. The effective test period of this second experiment (normalized with the Arrhenius acceleration measured in the first experiment) extends in billions of years showing no sign of anomalous creep. The result of both experiments also produced a simple procedure capable of eliminating all practical effects of creep from the Advanced LIGO seismic isolation and suspensions. Measurements of creep under various stress levels, and of the thermal variations of Young's modulus (2.023 (±0.013)×10 -4 °C -1) are reported as well.

  8. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    NASA Astrophysics Data System (ADS)

    Koyanagi, T.; Shimoda, K.; Kondo, S.; Hinoki, T.; Ozawa, K.; Katoh, Y.

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. The apparent stress exponent of the irradiation creep slightly exceeded unity, and instantaneous creep coefficient at 380-790 °C was estimated to be ∼1 × 10-5 [MPa-1 dpa-1] at ∼0.1 dpa and 1 × 10-7 to 1 × 10-6 [MPa-1 dpa-1] at ∼1 dpa. The irradiation creep strain appeared greater than that for the high purity SiC. Microstructural observation and data analysis indicated that the grain-boundary sliding associated with the secondary phases contributes to the irradiation creep at 380-790 °C to 0.01-0.11 dpa.

  9. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  10. Development of Creeping Bentgrass with Resistance to Snow Mold and Dollar Spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Creeping bentgrass (Agrostis stolonifera) is the premier grass for golf course putting greens and is one of the most desirable grasses for fairways and tee boxes for much of the USA. Recent breeding advances have demonstrated that genetic variation exists within creeping bentgrass for a range of pe...

  11. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    SciTech Connect

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  12. Generation of long time creep data on refractory alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Ebert, R. R.

    1973-01-01

    Four separate studies of various aspects of the vacuum creep behavior of two tantalum alloys (T-111 and ASTAR 811C) and of pure CVD tungsten are reported. The first part of the program involved a study of the influence of high temperature pre-exposure to vacuum or to liquid lithium on the subsequent creep behavior T-111 alloy. Results of this study revealed significant effects of pre-exposure on the 1% creep life of T-111, with life reductions of about 3 orders of magnitude being observed in extreme cases. The second part of this study involved an investigation of the creep behavior of T-111 under conditions of continuously increasing stress and decreasing temperature which simulated the conditions anticipated in radioisotope capsule service. Results of this study showed that such test conditions produced a creep curve having a very unusual shape, and led to the identification of a new creep design parameter for this type of service. The third area of investigation was a study of the influence of heat treatment on the microstructure and creep behavior of ASTAR 811C. The fourth part of the program was directed toward a preliminary characterization of the 1% creep life of CVD tungsten as obtained from two different sources.

  13. Creep of ocean sediments resulting from the isolation of radioactive wastes

    SciTech Connect

    Dawson, P.R.; Chavez, P.F.; Lipkin, J.; Silva, A.J.

    1980-01-01

    Predictive models for the creep of deep ocean sediments resulting from the disposal of radioactive wastes are presented and preliminary observations of a program for evaluation of creep constitutive equation parameters are discussed. The models are used to provide calculated response of sediments under waste disposal conditions.

  14. Elevated temperature creep properties of the 54Fe-29Ni-17Co "Kovar" alloy.

    SciTech Connect

    Stephens, John Joseph, Jr.; Rejent, Jerome Andrew; Schmale, David T.

    2009-01-22

    The outline of this presentation is: (1) Applications of Kovar Alloy in metal/ceramic brazing; (2) Diffusion bonding of precision-photoetched Kovar parts; (3) Sample composition and annealing conditions; (4) Intermediate temperature creep properties (350-650 C); (5) Power law creep correlations--with and without modulus correction; (6) Compressive stress-strain properties (23-900 C); (7) Effect of creep deformation on grain growth; and (8) Application of the power law creep correlation to the diffusion bonding application. The summary and conclusions are: Elevated temperature creep properties of Kovar from 750-900 C obey a power law creep equation with a stress exponent equal to 4.9, modulus compensated activation energy of 47.96 kcal/mole. Grain growth in Kovar creep samples tested at 750 and 800 C is quite sluggish. Significant grain growth occurs at 850 C and above, this is consistent with isothermal grain growth studies performed on Kovar alloy wires. Finite element analysis of the diffusion bonding of Kovar predict that stresses of 30 MPa and higher are needed for good bonding at 850 C, we believe that 'sintering' effects must be accounted for to allow FEA to be predictive of actual processing conditions. Additional creep tests are planned at 250-650 C.

  15. Creep of a Silicon Nitride Under Various Specimen/Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Powers, Lynn M.; Holland, Frederic A.; Gyekenyesi, John P.; Holland, F. A. (Technical Monitor)

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC132) was performed at 1300 C in air using five different specimen/loading configurations, including pure tension, pure compression, four-point uniaxial flexure, ball-on-ring biaxial flexure, and ring-on-ring biaxial flexure. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compressive loading, nominal creep strain generally decreased with time, resulting in less-defined steady-state condition. Of the four different creep formulations - power-law, hyperbolic sine, step, redistribution models - the conventional power-law model still provides the most convenient and reasonable means to estimate simple, quantitative creep parameters of the material. Predictions of creep deformation for the case of multiaxial stress state (biaxial flexure) were made based on pure tension and compression creep data by using the design code CARES/Creep.

  16. Continuum Damage Mechanics Used to Predict the Creep Life of Monolithic Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Jadaan, Osama M.

    1998-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated temperature applications. High-temperature and long-duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. An analytical methodology in the form of the integrated design program-Ceramics Analysis and Reliability Evaluation of Structures/Creep (CARES/Creep) has been developed by the NASA Lewis Research Center to predict the life of ceramic structural components subjected to creep rupture conditions. This program utilizes commercially available finite element packages and takes into account the transient state of stress and creep strain distributions (stress relaxation as well as the asymmetric response to tension and compression). The creep life of a component is discretized into short time steps, during which the stress distribution is assumed constant. Then, the damage is calculated for each time step on the basis of a modified Monkman-Grant (MMG) creep rupture criterion. The cumulative damage is subsequently calculated as time elapses in a manner similar to Miner's rule for cyclic fatigue loading. Failure is assumed to occur when the normalized cumulative damage at any point in the component reaches unity. The corresponding time is the creep rupture life for that component.

  17. Interactions between creep, fatigue and strain aging in two refractory alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1972-01-01

    The application of low-amplitude, high-frequency fatigue vibrations during creep testing of two strain-aging refractory alloys (molybdenum-base TZC and tantalum-base T-111) significantly reduced the creep strength of these materials. This strength reduction caused dramatic increases in both the first stage creep strain and the second stage creep rate. The magnitude of the creep rate acceleration varied directly with both frequency and A ratio (ratio of alternating to mean stress), and also varied with temperature, being greatest in the range where the strain-aging phenomenon was most prominent. It was concluded that the creep rate acceleration resulted from a negative strain rate sensitivity which is associated with the strain aging phenomenon in these materials. (A negative rate sensitivity causes flow stress to decrease with increasing strain rate, instead of increasing as in normal materials). By combining two analytical expressions which are normally used to describe creep and strain aging behavior, an expression was developed which correctly described the influence of temperature, frequency, and A ratio on the TZC creep rate acceleration.

  18. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    SciTech Connect

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  19. Cytochrome P450 Inhibitors Reduce Creeping Bentgrass (Agrostis stolonifera) Tolerance to Topramezone

    PubMed Central

    Elmore, Matthew T.; Brosnan, James T.; Armel, Gregory R.; Kopsell, Dean A.; Best, Michael D.; Mueller, Thomas C.; Sorochan, John C.

    2015-01-01

    Creeping bentgrass (Agrostis stolonifera L.) is moderately tolerant to the p-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide topramezone. However, the contribution of plant metabolism of topramezone to this tolerance is unknown. Experiments were conducted to determine if known cytochrome P450 monooxygenase inhibitors 1-aminobenzotriazole (ABT) and malathion alone or in combination with the herbicide safener cloquintocet-mexyl influence creeping bentgrass tolerance to topramezone. Creeping bentgrass in hydroponic culture was treated with ABT (70 μM), malathion (70 μm and 1000 g ha-1), or cloquintocet-mexyl (70 μM and 1000 g ha-1) prior to topramezone (8 g ha-1) application. Topramezone-induced injury to creeping bentgrass increased from 22% when applied alone to 79 and 41% when applied with malathion or ABT, respectively. Cloquintocet-mexyl (70 μM and 1000 g ha-1) reduced topramezone injury to 1% and increased creeping bentgrass biomass and PSII quantum yield. Cloquintocet-mexyl mitigated the synergistic effects of ABT more than those of malathion. The effects of malathion on topramezone injury were supported by creeping bentgrass biomass responses. Responses to ABT and malathion suggest that creeping bentgrass tolerance to topramezone is influenced by cytochrome P450-catalyzed metabolism. Future research should elucidate primary topramezone metabolites and determine the contribution of cytochrome P450 monooxygenases and glutathione S-transferases to metabolite formation in safened and non-safened creeping bentgrass. PMID:26186714

  20. Characterisation of Laves phase precipitation and its correlation to creep rupture strength of ferritic steels

    SciTech Connect

    Zhu, S.; Yang, M.; Song, X.L.; Tang, S.; Xiang, Z.D.

    2014-12-15

    The Laves phase precipitation process was characterised by means of field emission scanning electron microscopy to demonstrate its effect on creep rupture strength of steels with a fully ferritic matrix. To eliminate the effects of carbide and carbonitride precipitations so that the creep rupture data can be analysed exclusively in relation to the Laves phase precipitation process, an alloy Fe–9Cr–3Co–3W (wt.%) without C and N additions was used for the study. Creep rupture strengths were measured and volume fraction and particle size of Laves phase precipitates in the ruptured specimens were analysed. It was found that the creep rupture strength started to collapse (or decrease more rapidly) long before the Laves phase precipitation reached equilibrium fraction. This was related to the onset of the coarsening of Laves phase particles, which precipitated only on grain boundaries and hence contributed little to precipitation strengthening. Creep deformation had no effect either on the precipitation kinetics or on the growth kinetics of Laves phase particles. - Highlights: • Laves phase precipitation at 650 °C was characterised for Fe–9Cr–3W–3Co alloy. • Laves phase precipitated predominantly on grain boundaries. • Creep deformation had no effect on Laves phase precipitation and growth kinetics. • Creep strength started to collapse long before Laves phase precipitation is ended. • Collapse of creep strength was attributed to the coarsening of Laves phase particles.

  1. Microscopic evaluation of creep-fatigue interaction in a nickel-based superalloy

    SciTech Connect

    Santella, Michael L; Yamamoto, Masato; Shingledecker, John P; Boehlert, C. J.; Ogata, Takashi

    2009-01-01

    In order to verify the applicability of Nickel-based alloy Alloy 263 for the thick component, a series of creep, fatigue and creep-fatigue experiments were carried out. To investigate the detailed damage process under the creep-fatigue condition, simple aged, crept, fatigued, and creep-fatigued specimens were subjected to electron back scattering diffraction (EBSD) pattern observation in the SEM. While the simple aged and fatigued specimens showed no remarkable local change in orientation (less than 1deg), the crept specimen exhibited inhomogeneous change of crystallographic orientation, at most 5 degrees, within the grains. This shows that the creep strain is inhomogeneously distributed in the grains due to the effect of relative constraint among the grains. The creep-fatigued specimen exhibited similar local inhomogeniety in strain distribution compared to the crept sample near the center of the grains. However, the creep-fatigued specimen showed remarkable local change in orientation at the vicinity of grain boundaries up to 15 degrees, indicating the occurrence of high strain concentration nearby the grain boundaries. A detailed observation of creep-fatigue damage evolution process in SEM revealed that the inhomogeneous grain deformation precedes the remarkable inhomogeneous deformation nearby the grain boundaries, and followed by the grain boundary cracking.

  2. Evaluation of the strength and creep-fatigue behavior of hot isostatically pressed silicon nitride

    SciTech Connect

    Ferber, M.K.; Jenkins, M.G. )

    1992-09-01

    This paper reports that the strength of a commerically available hot isostatically pressed silicon nitride was measured as a function of temperature. To evaluate long-term mechanical reliability of this material, the tensile creep and fatigue behavior was measured at 1150[degrees], 1260[degrees], and 1370[degrees]C. The stress and temperature sensitivities of the secondary (or minimum) creep strain rate were used to estimate the stress exponent and activation energy associated with the dominant creep mechanism. The fatigue characteristics were evaluated by allowing individual creep tests to continue until specimen failure. The applicability of the four-point load geometry to the study of strength and creep behavior was also determined by conducting a limited number of flexural creep tests. The tensile fatigue data revealed two distinct failure mechanisms. At 1150[degrees]C, failure was controlled by a slow crack growth mechanism. At 1260[degrees] and 1370[degrees]C, the accumulation of creep damage in the form of grain boundary cavities and cracks dominated the fatigue behavior. In this temperature regime, the fatigue life was controlled by the secondary (or minimum) creep strain rate in accordance with the Monkman-Grant relation.

  3. Irradiation Creep of Chemically Vapor Deposited Silicon Carbide as Estimated by Bend Stress Relaxation Method

    SciTech Connect

    Katoh, Yutai; Snead, Lance Lewis; Hinoki, Tatsuya; Kondo, Sosuke; Kohyama, Akira

    2007-01-01

    The bend stress relaxation technique was applied for an irradiation creep study of high purity, chemically vapor-deposited beta-phase silicon carbide (CVD SiC) ceramic. A constant bend strain was applied to thin strip samples during neutron irradiation to fluences 0.2-4.2 dpa at various temperatures in the range {approx}400 to {approx}1080 C. Irradiation creep strain at <0.7 dpa exhibited only a weak dependence on irradiation temperature. However, the creep strain dependence on fluence was non-linear due to the early domination of the initial transient creep, and a transition in creep behavior was found between 950 and 1080 C. Steady-state irradiation creep compliances of polycrystalline CVD SiC at doses >0.7 dpa were estimated to be 2.7({+-}2.6) x 10{sup -7} and 1.5({+-}0.8) x 10{sup -6} (MPa dpa){sup -1} at {approx}600 to {approx}950 C and {approx}1080 C, respectively, whereas linear-averaged creep compliances of 1-2 x 10{sup -6} (MPa dpa){sup -1} were obtained for doses of 0.6-0.7 dpa at all temperatures. Monocrystalline 3C SiC samples exhibited significantly smaller transient creep strain and greater subsequent deformation when loaded along <0 1 1> direction.

  4. Compressive Creep Response of T1000G/RS-14 Graphite/Polycyanate Composite Materials

    SciTech Connect

    Starbuck, J.M.

    1998-01-01

    The response of a T1000G/RS-14 graphite/polycyanate composite material system to transverse compressive loads is quantified via experimentation. The primary objective of the work was to quantify the effects of process environment and test environment on the T1000G/RS-14 compressive creep response. Tests were conducted on both the neat resin and the composite material system. In addition to the creep tests, static compressive strength tests were conducted to define the stress-strain response. The creep behavior for the RS-14 resin was quantified by conducting a series of tests to study the effects of different process environments (air and nitrogen), different cure temperatures, and different test environments (air and vacuum). The combined effect on the RS-14 resin compressive creep of processing in nitrogen and testing under vacuum versus processing in air and testing in air was a 47% decrease in the creep strain after 2177 hr. The test environment appeared to have a greater effect on the resin creep than the process environment. Following the conclusion of the resin creep tests, composite transverse compressive creep tests were conducted. The composite creep test cylinder was post-cured in a nitrogen environment prior to machining test specimens and all tests were conducted in a vacuum environment. The series of tests investigated the effects of initial stress level and test temperature on the creep behavior. At the end of the 2000-hr tests at 275{degrees}F on specimens stressed at 10,000 psi, the nitrogen-processed and vacuum-tested conditions reduced the composite transverse compressive creep strain by 19% compared to processing in air and testing in air. The effects of process and test environment on the creep behavior are not as great for the composite system as they were for the neat resin, primarily because of the low resin content in the composite material system. At the 275{degrees}F test temperature there was a significant increase in the composite

  5. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  6. Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Fang, H.; Gramsma, M. E.; Kwakernaak, C.; Sloof, W. G.; Tichelaar, F. D.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2016-10-01

    We have investigated the autonomous repair of creep damage by site-selective precipitation in a binary Fe-Mo alloy (6.2 wt pct Mo) during constant-stress creep tests at temperatures of 813 K, 823 K, and 838 K (540 °C, 550 °C, and 565 °C). Scanning electron microscopy studies on the morphology of the creep-failed samples reveal irregularly formed deposits that show a close spatial correlation with the creep cavities, indicating the filling of creep cavities at grain boundaries by precipitation of the Fe2Mo Laves phase. Complementary transmission electron microscopy and atom probe tomography have been used to characterize the precipitation mechanism and the segregation at grain boundaries in detail.

  7. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  8. Differences in creep performance of a HIPed silicon nitride in ambient air and inert environments

    SciTech Connect

    Wereszczak, A.A.; Kirkland, T.P.; Ferber, M.K.

    1995-04-01

    High temperature tensile creep studies of a commercially available hot isostatically pressed (HIPed) silicon nitride were conducted in ambient air and argon environments. The creep performance of this HIPed silicon nitride was found to be different in these environments. The material crept faster (and had a consequential shorter lifetime) in argon than in ambient air at 1370{degrees}C at tensile stresses between 110-140 MPa. The stress dependence of the minimum creep rate was found to be {approx} 6 in argon and {approx} 3.5 in air, while the minimum creep rates were almost an order of magnitude faster in argon than in air at equivalent tensile stresses. Differences in the creep performance are explained with reference to the presence or absence of oxygen in the two environments.

  9. The elastic modulus correction term in creep activation energies Applied to oxide dispersion strengthened superalloy

    NASA Technical Reports Server (NTRS)

    Malu, M.; Tien, J. K.

    1975-01-01

    The effect of elastic modulus and the temperature dependence of elastic modulus on creep activation energies for an oxide dispersion strengthened nickel-base superalloy are investigated. This superalloy is commercially known as Inconel Alloy MA 753, strengthened both by gamma-prime precipitates and by yttria particles. It is shown that at intermediate temperatures, say below 1500 F, where elastic modulus is weakly dependent on temperature, the modulus correction term to creep activation energy is small. Accordingly, modulus corrections are insignificant for the superalloy considered, which shows high apparent creep activation energies at this temperature. On the contrary, at very high temperatures, the elastic modulus correction term can be significant, thus reducing the creep activation energy to that of vacancy self-diffusion. In order to obtain high-temperature creep resistance, a high-value elastic modulus with a weak dependence on temperature is required.

  10. Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Shahbeigi Roodposhti, Peiman; Sarkar, Apu; Murty, Korukonda L.; Scattergood, Ronald O.

    2016-09-01

    This review sheds light on the creep properties of AZ91 magnesium alloys with a major emphasis on the influence of microstructure on the creep resistance and underlying creep deformation mechanism based on stress exponent and activation energy. Effects of processing routes such as steel mold casting, die casting, and thixoforming are considered. Roles of a wide range of additional alloying elements such as Si, Sb, Bi, Ca, Sn, REs, and combined addition of them on the microstructure modification were investigated. The reaction between these elements and the Mg or Al in the matrix develops some thermally stable intermetallic phases which improves the creep resistance at elevated temperatures, however does not influence the creep mechanism.

  11. The effect of high frequencies on the cyclic creep behavior of an ODS superalloy

    SciTech Connect

    Stefani, J.A.; Nardone, V.C.; Tien, J.K.

    1987-01-01

    The anelastic strain controlled model is capable of explaining the behavior of the cyclic creep rate as a function of frequency for the ODS superalloy MA 6000, especially the sharp drop in cyclic creep rate that occurs at a frequency of about 0.2 cycles/h. The success of the anelastic strain model depends upon the plausibility of assuming that anelastic strain storage completely delays nonrecoverable strain, i.e., that anelastic and nonrecoverable strain storage are a series process. This is an important point since, as seen in the comparison of the predicted and obtained cyclic creep results, there is the excellent fit of the data in the region where there is a sharp drop in the cyclic creep rate but a poorer fit in the higher frequency region. In the higher frequency regime, there is an observed positive cyclic creep rate when the refined anelastic model predicts a zero strain rate.

  12. Specimen Size Effect on the Creep of Si3N4

    SciTech Connect

    Barnes, A.S.; Ferber, M.K.; Kirkland, T.P.; Wereszczak, A.A.

    1999-01-25

    The effect of specimen size on the measured tensile creep behavior of a commercially available gas pressure sintered Si3N4 was examined. Button-head tensile test specimens were used for the testing, and were machined to a variety of different gage section diameters (ranging from 2.5 to 6.35 mm) or different surface-area-to-volume ratios. The specimens were then creep tested at 1350 Degrees C and 200 MPa with tensile creep strain continuously measured as a function of time. The steady-state creep rate increased and the lifetime decreased with an increase in diameter (or decrease in the ratio of gage section surface area to volume). The time and specimen size dependence of transformation of a secondary phase correlated with the observed creep rate and lifetime dependence.

  13. On apparent activation energies of creep in nickel-base superalloys

    SciTech Connect

    Picasso, A.C. |; Marzocca, A.J.

    1999-09-10

    Generally, the steady state is well defined in the creep curve in pure metals and some single-phase alloys. In this case, the diagram log {dot {epsilon}} vs. {epsilon} (where {epsilon} is the plastic strain) shows an extensive range of strain where the steady-state creep rate is maintained approximately constant. However, in those materials which present an unstable substructure, such as the particle strengthened alloys, the strain rate reaches a momentary minimum value instead of a steady-state creep rate. In this way, the minimum creep rate is observed in a regime of unstable transition. In this work, a study of the apparent activation energy of creep for IN-X750 was performed, using the differential temperature step technique. The tests were carried out near the minimum strain rate in order to analyze the influence of the material substructure on the values of the apparent activation energy.

  14. Quantitative treatment of the creep of metals by dislocation and rate-process theories

    NASA Technical Reports Server (NTRS)

    Nowick, A S; Machlin, E S

    1946-01-01

    An equation for the steady-state rate of creep has been derived by applying the theory of dislocations to the creep of pure metals. The form of this equation is in agreement with empirical equations describing creep rates. The theory was also used to predict the dependence of steady-state rate of creep on physical constants of the material and good agreement was obtained with data in the literature for pure annealed metals. The rate of creep was found to decrease with increasing modulus of rigidity. This relation suggest that one of the requirements for a heat-resisting alloy is that its matrix be a metal that has a high modulus of rigidity and therefore a high modulus of elasticity.

  15. The Application of Strain Range Partitioning Method to Torsional Creep-Fatigue Interaction

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.

    1975-01-01

    The method of strain range partitioning was applied to a series of torsional fatigue tests conducted on tubular 304 stainless steel specimens at 1200 F. Creep strain was superimposed on cycling strain, and the resulting strain range was partitioned into four components; completely reversed plastic shear strain, plastic shear strain followed by creep strain, creep strain followed by plastic strain and completely reversed creep strain. Each strain component was related to the cyclic life of the material. The damaging effects of the individual strain components were expressed by a linear life fraction rule. The plastic shear strain component showed the least detrimental factor when compared to creep strain reversed by plastic strain. In the latter case, a reduction of torsional fatigue life in the order of magnitude of 1.5 was observed.

  16. The application of 'strain range partitioning method' to torsional creep-fatigue interaction

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.; Bilir, O. G.

    1975-01-01

    The method of strain range partitioning was applied to a series of torsional fatigue tests conducted on tubular 304 stainless steel specimens at 1200 F (649 C). Creep strain was superimposed on cycling strain, and the resulting strain range was partitioned into four components; completely reversed plastic shear strain followed by creep strain, creep strain followed by plastic strain and completely reversed creep strain. Each strain component was related to the cyclic life of the material. The paper describes the experimental procedure used to achieve strain partitioning and the torsional test results are compared to those obtained from axial tests. The damaging effects of the individual strain components were expressed by a linear life fraction rule. The shear strain plastic component showed the least detrimental factor when compared to creep strain reversal by plastic strain. In the latter case, a reduction of torsional fatigue life in the order of magnitude of 1.5 was observed.

  17. Generation of long time creep data on refractory alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1970-01-01

    Creep tests were conducted on two tantalum alloys (ASTAR 811C and T-111 alloy), on a molybdenum alloy (TZM), and on CVD tungsten. The T-111 alloy 1% creep life data have been subjected to Manson's station function analysis, and the progress on this analysis is described. In another test program, the behavior of T-111 alloy with continuously varying temperatures and stresses has been studied. The results indicated that the previously described analysis predicts the observed creep behavior with reasonable accuracy. In addition to the T-111 test program, conventional 1% creep life data have been obtained for ASTAR 811C alloy. Previously observed effects of heat treatment on the creep strength of this material have been discussed and a model involving carbide strengthening primarily at the grain boundaries, rather than in a classical dispersion hardening mechanism, has been proposed to explain the observed results.

  18. Creep behavior of commercial FeCrAl foils: beneficial and detrimental effect of oxidation

    SciTech Connect

    Dryepondt, Sebastien N; Pint, Bruce A; Lara-Curzio, Edgar

    2012-01-01

    Creep tests were performed at 875 and 1050 C on commercially available FeCrAl foils (~50 m, 2 mil thickness) over a wide range of stress and duration to characterize their creep behavior. The oxide scales formed on the creep specimens were analyzed and compared to those that formed on unstressed specimens to assess the effect of stress and strain on oxide growth mechanisms. Below a specific stress threshold, creep rate and lifetime become independent of the applied load and rupture occurs due to the onset of breakaway oxidation. A creep rate model based on the strengthening of the FeCrAl foils due to load-bearing by the thermally-grown alumina scale was observed to be in good agreement with the experimental results.

  19. Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2002-01-01

    New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.

  20. Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Fang, H.; Gramsma, M. E.; Kwakernaak, C.; Sloof, W. G.; Tichelaar, F. D.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2016-07-01

    We have investigated the autonomous repair of creep damage by site-selective precipitation in a binary Fe-Mo alloy (6.2 wt pct Mo) during constant-stress creep tests at temperatures of 813 K, 823 K, and 838 K (540 °C, 550 °C, and 565 °C). Scanning electron microscopy studies on the morphology of the creep-failed samples reveal irregularly formed deposits that show a close spatial correlation with the creep cavities, indicating the filling of creep cavities at grain boundaries by precipitation of the Fe2Mo Laves phase. Complementary transmission electron microscopy and atom probe tomography have been used to characterize the precipitation mechanism and the segregation at grain boundaries in detail.

  1. Creep strength of niobium alloys, Nb-1%Zr and PWC-11

    SciTech Connect

    Titran, R.H.

    1990-01-01

    A study is being conducted at NASA Lewis Research Center to determine the feasibility of using a carbide particle strengthened Nb-1% Zr base alloy to meet the anticipated temperature and creep resistance requirements of proposed near term space power systems. In order to provide information to aid in the determination of the suitability of the PWC-11 alloy as an alternative to Nb-1% Zr in space power systems this study investigated (1) the long-time high-vacuum creep behavior of the PWC-11 material and the Nb-1% Zr alloy, (2) the effect of prior stress-free thermal aging on this creep behavior, (3) the effect of electron beam (EB) welding on this creep behavior, and (4) the stability of creep strengthening carbide particles. 14 refs., 5 figs., 2 tabs.

  2. Investigation of the effect of aggregates' morphology on concrete creep properties by numerical simulations

    SciTech Connect

    Lavergne, F.; Sab, K.; Sanahuja, J.; Bornert, M.; Toulemonde, C.

    2015-05-15

    Prestress losses due to creep of concrete is a matter of interest for long-term operations of nuclear power plants containment buildings. Experimental studies by Granger (1995) have shown that concretes with similar formulations have different creep behaviors. The aim of this paper is to numerically investigate the effect of size distribution and shape of elastic inclusions on the long-term creep of concrete. Several microstructures with prescribed size distribution and spherical or polyhedral shape of inclusions are generated. By using the 3D numerical homogenization procedure for viscoelastic microstructures proposed by Šmilauer and Bažant (2010), it is shown that the size distribution and shape of inclusions have no measurable influence on the overall creep behavior. Moreover, a mean-field estimate provides close predictions. An Interfacial Transition Zone was introduced according to the model of Nadeau (2003). It is shown that this feature of concrete's microstructure can explain differences between creep behaviors.

  3. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  4. Solid-phase creep during the expression of palm-oil filter cakes

    SciTech Connect

    Kamst, G.F.; Bruinsma, O.S.L.; Graauw, J. de

    1997-03-01

    For an adequate model of the processes of compressible cake filtration and mechanical expression, permeability and compressibility data are required. Experimental and modeling results of the creep behavior of palm-oil filter cakes at constant and time-dependent pressures are presented. Creep curves of palm-oil cakes at constant pressures cannot be modeled with linear viscoelastic models. Modeling with a modified form of the empirical equation of Nutting gives satisfactory results. This modification does not lead to unrealistic values of the porosity at extreme conditions, contrary to the original form of the equation of Nutting. Creep curves at time-dependent pressures were modeled with two nonlinear viscoelastic models, which describe the time-dependent creep behavior as a function of the pressure history and creep curves at constant pressures. Modeling with the strain-hardening model provides the best porosity predictions.

  5. Creep strength of niobium alloys, Nb-1%Zr and PWC-11

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.

    1989-01-01

    A study is being conducted at NASA Lewis Research Center to determine the feasibility of using a carbide particle strengthened Nb-1 percent Zr base alloy to meet the anticipated temperature and creep resistance requirements of proposed near term space power systems. In order to provide information to aid in the determination of the suitability of the PWC-11 alloy as an alternative to Nb-1 percent Zr in space power systems this study investigated: (1) the long-time high-vacuum creep behavior of the PWC-11 material and the Nb-1 percent Zr alloy, (2) the effect of prior stress-free thermal aging on this creep behavior, (3) the effect of electron beam (EB) welding on this creep behavior, and (4) the stability of creep strengthening carbide particles.

  6. Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Wang, Z. H.; Wu, R. F.; Qiao, J. W.

    2016-09-01

    Creep behaviors of an AlCoCrFeNi high-entropy alloy with the body-centered cubic structure were investigated by nanoindentation. The enhanced strain gradient induced by higher strain rate leads to decreased strain rate sensitivity during creep process. The present alloy exhibits excellent creep resistance, mainly due to its large entropy of mixing and highly distorted lattice structure.

  7. Creep-rupture behavior of 6 candidate stirling engine iron-base superalloys in high pressure hydrogen. Volume 1: Air creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1982-01-01

    Four wrought alloys (A-286, IN 800H, N-155, and 19-9DL) and two cast alloys (CRM-6D and XF-818) were tested to determine their creep-rupture behavior. The wrought alloys were used in the form of sheets of 0.89 mm (0.035 in.) average thickness. The cast alloy specimens were investment cast and machined to 6.35 mm (0.250 in.) gage diameter. All specimens were tested to rupture in air at different times up to 3000 h over the temperature range of 650 C to 925 C (1200 F to 1700 F). Rupture life, minimum creep rate, and time to 1% creep strain were statistically analyzed as a function of stress at different temperatures. Temperature-compensated analysis was also performed to obtain the activation energies for rupture life, time to 1% creep strain, and the minimum creep rate. Microstructural and fracture analyses were also performed. Based on statistical analyses, estimates were made for stress levels at different temperatures to obtain 3500 h rupture life and time to 1% creep strain. Test results are to be compared with similar data being obtained for these alloys under 15 MPa (2175 psi) hydrogen.

  8. Improved Creep Measurements for Ultra-High Temperature Materials

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Ye, X.; Rogers, Jan R.

    2010-01-01

    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). This method has been extended to lower temperatures and higher stresses and applied to new materials, including a niobium-based superalloy, MASC. High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility and heated with a laser. The samples are rotated with an induction motor at up to 30,000 revolutions per second. The rapid rotation loads the sample through centripetal acceleration, producing a shear stress of about 60 MPa at the center, causing the sample to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the non-contact method exploits stress gradients within the sample to determine the stress exponent in a single test.

  9. Beryllium pressure vessels for creep tests in magnetic fusion energy

    SciTech Connect

    Neef, W.S.

    1990-07-20

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

  10. In situ creep under helium implantation of titanium aluminium alloy

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Nazmy, M.; Hoffelner, W.

    2006-06-01

    The intermetallic alloy Ti-47Al-2W-0.5Si (at.%) has been homogeneously implanted with 4He2+ ions under uniaxial tensile stresses from 20 to 450 MPa to a maximum dose of about 0.16 dpa (1370 appm-He) with displacement damage rates of 2 × 10-6 dpa s-1 at temperatures of 573 and 773 K. Strain under implantation was determined by Linear Variable Displacement Transformer (LVDT), while changes of microstructure were investigated after implantation by Transmission Electron Microscopy (TEM). Irradiation creep strain showed a pronounced transient behaviour, virtually independent of temperature, with a stress dependence which can be approximately described by a creep compliance of 8 × 10-6 dpa-1 MPa-1 up to stresses of 350 MPa. The microstructure of the as-received material consisted of a patch-work of mainly lamellar γ/α2 colonies and equiaxed γ-grains with islands of precipitates. Only 'black dot' damage was observed after implantation at 573 K under different stresses, while implantation at 773 K yielded a dense population of bubbles and dislocation loops, mostly mutually attached.

  11. Rehabilitation of creep-damaged high pressure turbine rotors

    SciTech Connect

    Puri, A.; Shuster, L.; Lam, T.

    1996-12-31

    The average age of TVA`s fossil fleet is approaching 40 years; a large segment of this population contains C grade turbine rotors manufactured in the 1950`s which have poor mechanical properties relative to forging of more recent vintage. The Westinghouse high temperature (HP) rotor fleet, consisting of sixteen (Frame 1606) 160 MW units and seven (Frame RT-2566) 250 MW units, are nearing the end of their creep life in the root attachment area of the control stage. TVA has evaluated the creep damage at the root attachment area of the control stages of these rotors and developed a cost effective strategy for rehabilitating the fleet without compromising unit reliability or efficiency. Economic evaluation of the various options did not favor the replacement of these rotors. This paper will focus on Root Cause Analysis (RCA) pertaining to the investigation of Side-Entry Curtis Stage blade root crack indications as well as the rehabilitation option(s) developed and execution of same for the Allen and Gallatin family of 250 MW HP Rotors.c

  12. Localized sclerotic bone response demonstrated reduced nanomechanical creep properties.

    PubMed

    Chen, Xiuli; Goh, James Cho Hong; Teoh, Swee Hin; De, Shamal Das; Soong, Richie; Lee, Taeyong

    2013-01-01

    Sclerosis (tissue hardening) development is a common occurrence in slow growing or benign osteolytic lesions. However, there is lack of knowledge on the mechanical and material property changes associated with sclerotic bone response. The immune system is postulated to play a relevant role in evoking sclerotic bone responses. In this study, localized sclerotic response in an immunocompetent model of Walker 256 breast carcinoma in SD rats showed an apparent increase in new reactive bone formation. Sclerotic rat femurs had significant increases in bone mineral density (BMD), bone mineral content (BMC), bone volume fraction (BV/TV), bone surface density (BS/TV), trabecular number (Tb.N) and a significant decrease in trabecular separation (Tb.Sp) and structural model index (SMI) as compared to control rat femurs. Significantly reduced creep responses (increased η) were observed for both trabecular and cortical bone in sclerotic bones while no significant difference was observed in elastic modulus (E) and hardness (H) values. Therefore, we conclude that viscoelastic creep property using nanoindentation would serve as a more sensitive indicator of localized bone modeling than elastic properties. Moreover, reduced viscoelasticity can contribute towards increased microcrack propagation and therefore reduced toughness. Since significant positive correlations between elastic properties (E) and (H) with viscosity (η) were also observed, our results indicate that sclerotic response of bone metastasis would cause reduced toughness (increased η) with stiffening of material (increased E and H). PMID:23127639

  13. Advances in Non-contact Measurement of Creep Properties

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Canepari, Stacy; Rogers, Jan. R.

    2009-01-01

    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility, and heated with a laser. The laser is aligned off-center so that the absorbed photons transfer their momentum to the sample, causing it to rotate at up to 250,000+ RPM. The rapid rotation loads the sample through centripetal acceleration, causing it to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the noncontact method exploits stress gradients within the sample to determine the stress exponent in a single test. This method was validated in collaboration with the University of Tennessee for niobium at 1985 C, with agreement within the uncertainty of the conventional measurements. A similar method is being employed on Ultra-High-Temperature ZrB2- SiC composites, which may see application in rocket nozzles and sharp leading edges for hypersonic vehicles.

  14. Creep avalanches on the Central San Andreas Fault: Clues and Causes

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, M.; Shirzaei, M.; Nadeau, R. M.

    2015-12-01

    The Central segment of San Andreas Fault (CSAF) is characterized by a nearly continuous right-lateral aseismic slip. However, observations of the creep rate obtained using Characteristically Repeating Earthquakes (CREs) show a quasi-periodic temporal variation, which is recently confirmed using both InSAR surface deformation time series and geodetic-based time-dependent kinematic model of creep along the CSAF. Here, we show that the statistical analysis of creep fronts along the CSAF indicates a sporadic behavior, signature of a burst-like creep dynamics. Moreover, the probability of creep velocities follows a Gumbel distribution characterized by longer tail toward the extreme positive rates. Fourier analysis of the time series of surface creep rate indicates a self-affine regime with Hurst exponent altering between 0.6 and 0.9 during the observation period of 2003-2011. The variable Hurst component is an indicator for temporal variation in the roughness of the fault zone. To explain the causes of creep avalanches, two possible mechanisms are considered, including temporal variation in: 1) fault geometry, and 2) Ambient normal stress. We find that the overall statistical dependence between the pattern of surface creep rate and the fault geometry is insignificant. To investigate the effect of ambient normal stress, primarily due to variation in pore pressure, we implement a rate and state friction law to link the time-dependent kinematic creep model to the spatiotemporal variations of the normal stress on the velocity-strengthening fault zones. These observations and models help to understand the driving mechanisms that govern the creep rate variations at short spatial length and low velocities. Under these circumstances, the other mechanisms such as thermal pressurization are not feasible.

  15. Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces.

    PubMed

    Chen, Xi; He, Si-Yuan; Yu, Ding-Feng; Yin, Hong-Cheng; Hu, Wei-Dong; Zhu, Guo-Qiang

    2013-04-01

    An accurate creeping ray-tracing algorithm is presented in this paper to determine the tracks of creeping waves (or creeping rays) on arbitrarily shaped free-form parametric surfaces [nonuniform rational B-splines (NURBS) surfaces]. The main challenge in calculating the surface diffracted fields on NURBS surfaces is due to the difficulty in determining the geodesic paths along which the creeping rays propagate. On one single parametric surface patch, the geodesic paths need to be computed by solving the geodesic equations numerically. Furthermore, realistic objects are generally modeled as the union of several connected NURBS patches. Due to the discontinuity of the parameter between the patches, it is more complicated to compute geodesic paths on several connected patches than on one single patch. Thus, a creeping ray-tracing algorithm is presented in this paper to compute the geodesic paths of creeping rays on the complex objects that are modeled as the combination of several NURBS surface patches. In the algorithm, the creeping ray tracing on each surface patch is performed by solving the geodesic equations with a Runge-Kutta method. When the creeping ray propagates from one patch to another, a transition method is developed to handle the transition of the creeping ray tracing across the border between the patches. This creeping ray-tracing algorithm can meet practical requirements because it can be applied to the objects with complex shapes. The algorithm can also extend the applicability of NURBS for electromagnetic and optical applications. The validity and usefulness of the algorithm can be verified from the numerical results.

  16. Modeling Creep Effects within SiC/SiC Turbine Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Lang, J.

    2008-01-01

    Anticipating the implementation of advanced SiC/SiC ceramic composites into the hot section components of future gas turbine engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly select and manipulate constituent materials, processes, and geometries in order to minimize these effects. In initial studies aimed at SiC/SiC components experiencing through-thickness stress gradients, creep models were developed that allowed an understanding of detrimental residual stress effects that can develop globally within the component walls. It was assumed that the SiC/SiC composites behaved as isotropic visco-elastic materials with temperature-dependent creep behavior as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The creep models and their key results are discussed assuming state-of-the-art SiC/SiC materials within a simple cylindrical thin-walled tubular structure, which is currently being employed to model creep-related effects for turbine airfoil leading edges subjected to through-thickness thermal stress gradients. Improvements in the creep models are also presented which focus on constituent behavior with more realistic non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.

  17. Simultaneous Modeling of Transient Creep and Grain Boundary Sliding

    NASA Astrophysics Data System (ADS)

    Cooper, R. F.; Sundberg, M.

    2009-12-01

    Grain boundary sliding (GBS) has been identified as an important contributor to the plastic deformation of polycrystalline solids. This phenomenon, whether accommodated by grain boundary diffusion or dislocation slip, has implications for rheological behavior and microstructural evolution during creep. Because GBS is not an independent deformation mechanism, but rather acts in kinetic series with some other (typically) rate-limiting process, direct investigation of the precise sliding mechanism(s) is difficult during conventional large-strain creep testing. Direct observations of grain boundary sliding can be obtained, however, by: (1) observing the mechanical response of a polycrystalline solid to an oscillating load as a function of frequency using the internal friction technique, and (2) studying the short duration transient response of a polycrystalline solid to a step-function change in stress. To this end, we have conducted an experimental study of low-frequency (10-2.25creep responses of the material. Experiments were conducted in an ambient pressure, reciprocating torsion apparatus using a maximum shear stress of ~90 kPa on a very fine grained (d~5μm) aggregate of olivine and orthopyroxene (39 vol%). The attenuation spectra reveal “high-temperature background” behavior at low to moderate frequencies where attenuation diminishes smoothly and mildly with increasing frequency (QG-1 ~ f -0.3). At higher frequencies (f >10-0.5 Hz), the attenuation spectra reveal the onset of an apparent Debye peak in the attenuation spectra, likely due to elastically-accommodated GBS (GBS being rate-limiting). Previous experimental studies have demonstrated that the Andrade viscoelastic model can accurately predict both the transient creep response and

  18. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    SciTech Connect

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  19. Low Temperature Creep of a Titanium Alloy Ti-6Al-2Cb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Chu, H. P.

    1997-01-01

    This paper presents a methodology for the analysis of low temperature creep of titanium alloys in order to establish design limitations due to the effect of creep. The creep data on a titanium Ti-6Al-2Cb-1Ta-0.8Mo are used in the analysis. A creep equation is formulated to determine the allowable stresses so that creep at ambient temperatures can be kept within an acceptable limit during the service life of engineering structures or instruments. Microcreep which is important to design of precision instruments is included in the discussion also.

  20. Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Wen, Xingshuo

    The Very High Temperature Reactor (VHTR) is one of the leading concepts of the Generation IV nuclear reactor development, which is the core component of Next Generation Nuclear Plant (NGNP). The major challenge in the research and development of NGNP is the performance and reliability of structure materials at high temperature. Alloy 617, with an exceptional combination of high temperature strength and oxidation resistance, has been selected as a primary candidate material for structural use, particularly in Intermediate Heat Exchanger (IHX) which has an outlet temperature in the range of 850 to 950°C and an inner pressure from 5 to 20MPa. In order to qualify the material to be used at the operation condition for a designed service life of 60 years, a comprehensive scientific understanding of creep behavior at high temperature and low stress regime is necessary. In addition, the creep mechanism and the impact factors such as precipitates, grain size, and grain boundary characters need to be evaluated for the purpose of alloy design and development. In this study, thermomechanically processed specimens of alloy 617 with different grain sizes were fabricated, and creep tests with a systematic test matrix covering the temperatures of 850 to 1050°C and stress levels from 5 to 100MPa were conducted. Creep data was analyzed, and the creep curves were found to be unconventional without a well-defined steady-state creep. Very good linear relationships were determined for minimum creep rate versus stress levels with the stress exponents determined around 3-5 depending on the grain size and test condition. Activation energies were also calculated for different stress levels, and the values are close to 400kJ/mol, which is higher than that for self-diffusion in nickel. Power law dislocation climb-glide mechanism was proposed as the dominant creep mechanism in the test condition regime. Dynamic recrystallization happening at high strain range enhanced dislocation climb and

  1. Novel Experiments to Characterize Creep-Fatigue Degradation in VHTR Alloys

    SciTech Connect

    J. K. Wright; J. A. Simpson; L. J. Carroll; R. N. Wright; T.-L. Sham

    2013-10-01

    It is well known in energy systems that the creep lifetime of high temperature alloys is significantly degraded when a cyclic load is superimposed on components operating in the creep regime. A test method has been developed in an attempt to characterize creep-fatigue behavior of alloys at high temperature. The test imposes a hold time during the tensile phase of a fully reversed strain-controlled low cycle fatigue test. Stress relaxation occurs during the strain-controlled hold period. This type of fatigue stress relaxation test tends to emphasize the fatigue portion of the total damage and does not necessarily represent the behavior of a component in-service well. Several different approaches to laboratory testing of creep-fatigue at 950°C have been investigated for Alloy 617, the primary candidate for application in VHTR heat exchangers. The potential for mode switching in a cyclic test from strain control to load control, to allow specimen extension by creep, has been investigated to further emphasize the creep damage. In addition, tests with a lower strain rate during loading have been conducted to examine the influence of creep damage occurring during loading. Very short constant strain hold time tests have also been conducted to examine the influence of the rapid stress relaxation that occurs at the beginning of strain holds.

  2. Microstructure, creep properties, and rejuvenation of service-exposed alloy 713C turbine blades

    NASA Astrophysics Data System (ADS)

    Maccagno, T. M.; Koul, A. K.; Immarigeon, J.-P.; Cutler, L.; Allem, R.; L'Espérance, G.

    1990-12-01

    A study was carried out on the microstructure and creep properties of aero engine first-stage turbine blades made from Alloy 713C nickel-base superalloy. Results are reported for new blades, blades in two service-exposed conditions, and service-exposed blades subjected to one of three rejuvenation treatments: a recoating heat treatment, a hot isostatic pressing (HIP) + recoating heat treatment, and a HIP + controlled cooling + recoating heat treatment. The blade microstructure undergoes significant change during service, and this leads to a loss in creep properties exhibited by specimens machined from the blade airfoils. Good correlations were observed between the rupture time and the amount of blade airfoil untwist and between the minimum creep rate and the amount of untwist. The recoating heat treatment and the HIP + controlled cooling + recoating treatment were moderately successful in restoring the microstructure and creep properties of the service-exposed blades. In comparison, the HIP + recoating treatment was very successful in rejuvenating creep properties but only for blades having a chemical composition with a lower propensity to form σ phase. For the blades with an unfavorable composition, σ phase was found to form preferentially near the grain boundaries during creep testing, and this had a detrimental effect on the creep properties. Nonetheless, the degree of rejuvenation for these blades was always at least as good as that obtained through the recoating heat treatment alone.

  3. Analysis of steady state creep of southeastern New Mexico bedded salt

    SciTech Connect

    Herrmann, W.; Wawersik, W.R.; Lauson, H.S.

    1980-03-01

    Steady state creep rates have been obtained from a large suite of existing experimental creep data relating to bedded rock salt from the Salado formation of S.E. New Mexico. Experimental conditions covered an intermediate temperature range from 22/sup 0/C to 200/sup 0/C, and shear stresses from 1000 psi (7 MPa) to 6000 psi (31 MPa). An expression, based on a single diffusion controlled dislocation climb mechanism, has been found to fit the observed dependence of steady state creep rate on shear stress and temperature, yielding an activation energy of 12 kcal/mole (50 kJ/mole) and a stress exponent of 4.9. Multiple regression analysis revealed a dependence on stratigraphy, but no statistically significant dependence on pressure of specimen size. No consistent dilatancy or compaction associated with steady state creep was found, although some individual specimens dilated or compacted during creep. The steady state creep data were found to agree very well with creep data for both bedded and dome salt from a variety of other locations.

  4. Creep lifetime prediction of oxide-dispersion-strengthened nickel-base superalloys: A micromechanically based approach

    NASA Astrophysics Data System (ADS)

    Heilmaier, M.; Reppich, B.

    1996-12-01

    The high-temperature creep behavior of the oxide-dispersion-strengthened (ODS) nickel-base superalloys MA 754 and MA 6000 has been investigated at temperatures up to 1273 K and lifetimes of approximately 4000 hours using monotonic creep tests at constant true stress σ, as well as true constant extension rate tests (CERTs) atdot \\varepsilon . The derivation of creep rupture-lifetime diagrams is usually performed with conventional engineering parametric methods, according to Sherby and Dorn or Larson and Miller. In contrast, an alternative method is presented that is based on a more microstructural approach. In order to describe creep, the effective stress model takes into account the hardening contribution σ p caused by the presence of second-phase particles, as well as the classical Taylor back-stress σ p caused by dislocations. The modeled strain rate-stress dependence can be transferred directly into creep-rupture stress-lifetime diagrams using a modified Monkman-Grant (MG) relationship, which adequately describes the interrelation betweendot \\varepsilon representing dislocation motion, and lifetime t f representing creep failure. The comparison with measured creep-rupture data proves the validity of the proposed micromechanical concept.

  5. Non-Classical Creep Behavior of Fusion-Cast Alumina Refractories

    SciTech Connect

    Hemrick, James Gordon; Wereszczak, Andrew A

    2009-01-01

    The compressive creep behavior of a typical 50% -/50% -alumina fusion-cast refractory block was examined as a function of temperature. Test temperatures (1450-1650oC) were chosen to correspond to those typical of service conditions, while relatively high compressive test stresses (0.6 and 1.0 MPa compared to 0.2-0.4 MPa which is typical of service) were chosen to promote exaggerated deformation and to more accurately measure the resulting creep strain. It was found that the measured creep strain responses in this alumina were a sum of (contracting) compressive creep strain and expansion strain due to time and temperature dependent microcracking. Long term, isothtermal expansion tests were also conducted, and their results allowed for the deconvolution of the compressive creep and expansion strains present in the measured creep strain test data. The analysis shows that despite complications associated with conflicting expansion and contraction effects, classical creep analysis may be used with this alumina refractory after the strains associated with the non-steady-state mechanism are considered and accounted for.

  6. Long-term prediction of creep strains of mineral wool slabs under constant compressive stress

    NASA Astrophysics Data System (ADS)

    Gnip, Ivan; Vaitkus, Saulius; Keršulis, Vladislovas; Vėjelis, Sigitas

    2012-02-01

    The results obtained in determining the creep strain of mineral wool slabs under compressive stress, used for insulating flat roofs and facades, cast-in-place floors, curtain and external basement walls, as well as for sound insulation of floors, are presented. The creep strain tests were conducted under a compressive stress of σ c =0.35 σ 10%. Interval forecasting of creep strain was made by extrapolating the creep behaviour and approximated in accordance with EN 1606 by a power equation and reduced to a linear form using logarithms. This was performed for a lead time of 10 years. The extension of the range of the confidence interval due to discount of the prediction data, i.e. a decrease in their informativity was allowed for by an additional coefficient. Analysis of the experimental data obtained from the tests having 65 and 122 days duration showed that the prediction of creep strains for 10 years can be made based on data obtained in experiments with durations shorter than the 122 days as specified by EN 13162. Interval prediction of creep strains (with a confidence probability of 90%) was based on using the mean square deviation of the actual direct observations of creep strains in logarithmic form to have the linear trend in a retrospective area.

  7. Parameter correlation of high-temperature creep constitutive equation for RPV metallic materials

    NASA Astrophysics Data System (ADS)

    Xie, Lin-Jun; Ren, Xin; Shen, Ming-Xue; Tu, Li-Qun

    2015-10-01

    Constant-temperature and constant-load creep tests of SA-508 stainless steel were performed at six temperatures, and the creep behavior and properties of this material were determined. Constitutive models were established based on an isothermal creep method to describe the high-temperature creep behavior of SA-508. Material parameter k, stress exponent nσ, and temperature exponent nt of the established constitutive models were determined through experimental data via numerical optimization techniques. The relationship of k, nσ, and nt was evaluated, and a new coefficient model of k-T, nσ-T, nt-T, and nt-nσ was formulated through the parameters of the isothermal creep equation. Moreover, the isothermal creep equation for this material at every temperature point from 450 °C to 1000 °C was obtained from the models. This method can serve as a reference for isothermal creep analysis and provide a way for the safety assessment of components of reactor pressure vessels.

  8. A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments

    NASA Astrophysics Data System (ADS)

    Pignatelli, Isabella; Kumar, Aditya; Alizadeh, Rouhollah; Le Pape, Yann; Bauchy, Mathieu; Sant, Gaurav

    2016-08-01

    Long-term creep (i.e., deformation under sustained load) is a significant material response that needs to be accounted for in concrete structural design. However, the nature and origin of concrete creep remain poorly understood and controversial. Here, we propose that concrete creep at relative humidity ≥ 50%, but fixed moisture content (i.e., basic creep), arises from a dissolution-precipitation mechanism, active at nanoscale grain contacts, as has been extensively observed in a geological context, e.g., when rocks are exposed to sustained loads, in liquid-bearing environments. Based on micro-indentation and vertical scanning interferometry data and molecular dynamics simulations carried out on calcium-silicate-hydrate (C-S-H), the major binding phase in concrete, of different compositions, we show that creep rates are correlated with dissolution rates—an observation which suggests a dissolution-precipitation mechanism as being at the origin of concrete creep. C-S-H compositions featuring high resistance to dissolution, and, hence, creep are identified. Analyses of the atomic networks of such C-S-H compositions using topological constraint theory indicate that these compositions present limited relaxation modes on account of their optimally connected (i.e., constrained) atomic networks.

  9. Revised long-term creep rates on the Hayward Fault, Alameda and Contra Costa Counties, California

    USGS Publications Warehouse

    Lienkaemper, James J.; Galehouse, Jon S.

    1997-01-01

    Although the Hayward fault is a source of major earthquakes, it also creeps or slips aseismically, and has done so steadily for several decades (certainly since 1921 and probably since 1869). Most of the fault creeps between 3 and 6 mm/yr, except for a 4- to 6-km-long segment near its south end that creeps at about 9 mm/yr. We present results of our recent surveys to recover angles and deflection lines established across the fault in the 1960s and 1970s, but unmonitored since. We have added data from more offset cultural features to the long-term creep rate data set and made substantial improvements to the analytical method used to compute offsets. The revised creep rate values improve our knowledge of spatial and temporal variation along the fault. The more accurate revised data has reduced the estimate of the average creep rate along most of the fault from 5.1 mm/yr to 4.6 mm/yr. Creep rates in the 9 mm/yr section near the south end have remained the same.

  10. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  11. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.

    PubMed

    Jin, J; Yusoh, K; Zhang, H X; Song, M

    2016-03-01

    A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep. PMID:27455672

  12. Creep rupture of materials: Insights from a fiber bundle model with relaxation

    NASA Astrophysics Data System (ADS)

    Jagla, E. A.

    2011-04-01

    I adapted a model recently introduced in the context of seismic phenomena to study creep rupture of materials. It consists of linear elastic fibers that interact in an equal load sharing scheme, complemented with a local viscoelastic relaxation mechanism. The model correctly describes the three stages of the creep process; namely, an initial Andrade regime of creep relaxation, an intermediate regime of rather constant creep rate, and a tertiary regime of accelerated creep toward final failure of the sample. In the tertiary regime, creep rate follows the experimentally observed creep rate over time-to-failure dependence. The time of minimum strain rate is systematically observed to be about 60%-65 % of the time to failure, in accordance with experimental observations. In addition, burst size statistics of breaking events display a -3/2 power law for events close to the time of failure and a steeper decay for the all-time distribution. Statistics of interevent times shows a tendency of the events to cluster temporarily. This behavior should be observable in acoustic emission experiments.

  13. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    SciTech Connect

    Titran, R.H.; Moore, T.J.; Grobstein, T.L.

    1994-09-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electrode beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the aged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistance as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 0.6 MPa for annealed Nb-1%Zr and 2.8 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  14. Creep and shrinkage of high performance lightweight concrete: A multi-scale investigation

    NASA Astrophysics Data System (ADS)

    Lopez, Mauricio

    This multi-scale investigation aimed to provide new knowledge and understanding of creep and shrinkage of high performance lightweight concrete (HPLC) by assessing prestress losses in HPLC prestressed members in a large-scale study; by quantifying the effect of the constituent materials and external conditions on creep and shrinkage in a medium-scale study; and by improving the fundamental understanding of creep and shrinkage in a small-scale study. Creep plus shrinkage prestress losses were between two and eight times lower than those estimated for the design standards and approximately 50% of those measured in similar strength normal weight high performance concrete girders. The lower creep and shrinkage exhibited by HPLC was found to be caused by a synergy between the pre-soaked lightweight aggregate and the low water-to-cementitious material ratio matrix. That is, the water contained in the lightweight aggregate contributes to enhance hydration by providing an internal moist curing. The water in the aggregate also contributes to maintain a high internal relative humidity which reduces or eliminates autogenous shrinkage. This higher internal relative humidity also reduces creep by preventing load-induced water migration. Finally, lightweight aggregate exhibits a better elastic compatibility with the paste than normal weight aggregate. This improved elastic matching and the enhanced hydration are believed to reduce peak deformations at the ITZ which further decreases creep and shrinkage.

  15. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.

    PubMed

    Jin, J; Yusoh, K; Zhang, H X; Song, M

    2016-03-01

    A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.

  16. A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments.

    PubMed

    Pignatelli, Isabella; Kumar, Aditya; Alizadeh, Rouhollah; Le Pape, Yann; Bauchy, Mathieu; Sant, Gaurav

    2016-08-01

    Long-term creep (i.e., deformation under sustained load) is a significant material response that needs to be accounted for in concrete structural design. However, the nature and origin of concrete creep remain poorly understood and controversial. Here, we propose that concrete creep at relative humidity ≥ 50%, but fixed moisture content (i.e., basic creep), arises from a dissolution-precipitation mechanism, active at nanoscale grain contacts, as has been extensively observed in a geological context, e.g., when rocks are exposed to sustained loads, in liquid-bearing environments. Based on micro-indentation and vertical scanning interferometry data and molecular dynamics simulations carried out on calcium-silicate-hydrate (C-S-H), the major binding phase in concrete, of different compositions, we show that creep rates are correlated with dissolution rates-an observation which suggests a dissolution-precipitation mechanism as being at the origin of concrete creep. C-S-H compositions featuring high resistance to dissolution, and, hence, creep are identified. Analyses of the atomic networks of such C-S-H compositions using topological constraint theory indicate that these compositions present limited relaxation modes on account of their optimally connected (i.e., constrained) atomic networks.

  17. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    SciTech Connect

    Khabaz, Fardin Khare, Ketan S. Khare, Rajesh

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  18. A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments.

    PubMed

    Pignatelli, Isabella; Kumar, Aditya; Alizadeh, Rouhollah; Le Pape, Yann; Bauchy, Mathieu; Sant, Gaurav

    2016-08-01

    Long-term creep (i.e., deformation under sustained load) is a significant material response that needs to be accounted for in concrete structural design. However, the nature and origin of concrete creep remain poorly understood and controversial. Here, we propose that concrete creep at relative humidity ≥ 50%, but fixed moisture content (i.e., basic creep), arises from a dissolution-precipitation mechanism, active at nanoscale grain contacts, as has been extensively observed in a geological context, e.g., when rocks are exposed to sustained loads, in liquid-bearing environments. Based on micro-indentation and vertical scanning interferometry data and molecular dynamics simulations carried out on calcium-silicate-hydrate (C-S-H), the major binding phase in concrete, of different compositions, we show that creep rates are correlated with dissolution rates-an observation which suggests a dissolution-precipitation mechanism as being at the origin of concrete creep. C-S-H compositions featuring high resistance to dissolution, and, hence, creep are identified. Analyses of the atomic networks of such C-S-H compositions using topological constraint theory indicate that these compositions present limited relaxation modes on account of their optimally connected (i.e., constrained) atomic networks. PMID:27497566

  19. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions.

    PubMed

    Taneike, Masaki; Abe, Fujio; Sawada, Kota

    2003-07-17

    Creep is a time-dependent mechanism of plastic deformation, which takes place in a range of materials under low stress-that is, under stresses lower than the yield stress. Metals and alloys can be designed to withstand creep at high temperatures, usually by a process called dispersion strengthening, in which fine particles are evenly distributed throughout the matrix. For example, high-temperature creep-resistant ferritic steels achieve optimal creep strength (at 923 K) through the dispersion of yttrium oxide nanoparticles. However, the oxide particles are introduced by complicated mechanical alloying techniques and, as a result, the production of large-scale industrial components is economically unfeasible. Here we report the production of a 9 per cent Cr martensitic steel dispersed with nanometre-scale carbonitride particles using conventional processing techniques. At 923 K, our dispersion-strengthened material exhibits a time-to-rupture that is increased by two orders of magnitude relative to the current strongest creep-resistant steels. This improvement in creep resistance is attributed to a mechanism of boundary pinning by the thermally stable carbonitride precipitates. The material also demonstrates enough fracture toughness. Our results should lead to improved grades of creep-resistant steels and to the economical manufacture of large-scale steel components for high-temperature applications. PMID:12867976

  20. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1986-01-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistant as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  1. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  2. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1976-01-01

    A method of analysis was developed for predicting permanent cyclic creep deflections in stiffened panel structures. This method uses creep equations based on cyclic tensile creep tests and a computer program to predict panel deflections as a function of mission cycle. Four materials were investigated - a titanium alloy (Ti-6Al-4V), a cobalt alloy (L605), and two nickel alloys (Rene'41 and TDNiCr). Steady-state and cyclic creep response data were obtained by testing tensile specimens fabricated from thin gage sheet (0.025 and 0.63 cm nominal). Steady-state and cyclic creep equations were developed which describe creep as a function of time, temperature and load. Tests were also performed on subsize (6.35 x 30.5 cm) rib and corrugation stiffened panels. These tests were used to correlate creep responses between elemental specimens and panels. The panel response was analyzed by use of a specially written computer program.

  3. Microstructure Evolution of Alloy 625 Foil and Sheet During Creep at 750oC

    SciTech Connect

    Evans, Neal D; Maziasz, Philip J; Shingledecker, John P; Yamamoto, Yukinori

    2008-12-01

    Creep-rupture tests in air of foils and sheets of the nickel-based superalloy 625 at 750oC and 100 MPa have been conducted, and indicate the additional processing required to achieve foil form reduces creep life compared to thicker-section wrought product forms. Both scanning and transmission electron microscopy were employed to examine as-processed and creep-tested specimens to correlate observed microstructures and creep behavior. Prior to creep testing, the morphology consists of gamma phase with M6C precipitates. This morphology changes during creep to one consisting of orthorhombic delta phase extending across gamma grains, and grain boundaries dominated by the presence of rhombohedral mu phase, delta phase, and a diamond-cubic eta phase. Additionally, temperature ranges of equilibrium phase field stability were calculated using JMatPro. The phases predicted and their compositions generally agree with those observed within the superalloy after creep testing.

  4. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    NASA Astrophysics Data System (ADS)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  5. Application of Negligible Creep Criteria to Candidate Materials for HTGR Pressure Vessels

    SciTech Connect

    Jetter, Robert I; Sham, Sam; Swindeman, Robert W

    2011-01-01

    Two of the proposed High Temperature Gas Reactors (HTGRs) under consideration for a demonstration plant have the design object of avoiding creep effects in the reactor pressure vessel (RPV) during normal operation. This work addresses the criteria for negligible creep in Subsection NH, Division 1 of the ASME B&PV (Boiler and Pressure Vessel) Code, Section III, other international design codes and some currently suggested criteria modifications and their impact on permissible operating temperatures for various reactor pressure vessel materials. The goal of negligible creep could have different interpretations depending upon what failure modes are considered and associated criteria for avoiding the effects of creep. It is shown that for the materials of this study, consideration of localized damage due to cycling of peak stresses results in a lower temperature for negligible creep than consideration of the temperature at which the allowable stress is governed by creep properties. In assessing the effect of localized cyclic stresses it is also shown that consideration of cyclic softening is an important effect that results in a higher estimated temperature for the onset of significant creep effects than would be the case if the material were cyclically hardening. There are other considerations for the selection of vessel material besides avoiding creep effects. Of interest for this review are (1) the material s allowable stress level and impact on wall thickness (the goal being to minimize required wall thickness) and (2) ASME Code approval (inclusion as a permitted material in the relevant Section and Subsection of interest) to expedite regulatory review and approval. The application of negligible creep criteria to two of the candidate materials, SA533 and Mod 9Cr-1Mo (also referred to as Grade 91), and to a potential alternate, normalized and tempered 2 Cr-1Mo, is illustrated and the relative advantages and disadvantages of the materials are discussed.

  6. Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue

    PubMed Central

    Nougarou, François

    2016-01-01

    Aim The aim of this study was to identify adaptations in muscle activity distribution to spinal tissue creep in presence of muscle fatigue. Methods Twenty-three healthy participants performed a fatigue task before and after 30 minutes of passive spinal tissue deformation in flexion. Right and left erector spinae activity was recorded using large-arrays surface electromyography (EMG). To characterize muscle activity distribution, dispersion was used. During the fatigue task, EMG amplitude root mean square (RMS), median frequency and dispersion in x- and y-axis were compared before and after spinal creep. Results Important fatigue-related changes in EMG median frequency were observed during muscle fatigue. Median frequency values showed a significant main creep effect, with lower median frequency values on the left side under the creep condition (p≤0.0001). A significant main creep effect on RMS values was also observed as RMS values were higher after creep deformation on the right side (p = 0.014); a similar tendency, although not significant, was observed on the left side (p = 0.06). A significant creep effects for x-axis dispersion values was observed, with higher dispersion values following the deformation protocol on the left side (p≤0.001). Regarding y-axis dispersion values, a significant creep x fatigue interaction effect was observed on the left side (p = 0.016); a similar tendency, although not significant, was observed on the right side (p = 0.08). Conclusion Combined muscle fatigue and creep deformation of spinal tissues led to changes in muscle activity amplitude, frequency domain and distribution. PMID:26866911

  7. Compressive Creep and Thermophysical Performance of Mullite Refractories

    SciTech Connect

    Hemrick, JG

    2002-04-01

    Compressive creep testing of ten commercially available mullite refractories was performed at 1300-1450 C and at static stresses between 0.2-0.6 MPa. These refractories were examined because they are used in borosilicate glass furnace crowns and superstructures along with in sidewall applications. Additionally, despite their high cost ({approx}$500/ft{sup 3}) they are cheaper than other refractories such as chrome alumina ({approx}$3000/ft{sup 3}) or fusion-cast alumina ({approx}900/ft{sup 3}) which are used as replacements for traditional silica refractories in harsh oxy-fuel environments. The corrosion resistances of these ten materials were also evaluated. In addition, measurements were made that tracked their dimensional stability, phase content, microstructure, and composition as a function of temperature and time. The techniques used for these characterizations and their respective analyses are described. An intent of this study was to provide objective and factual results whose interpretations were left to the reader.

  8. A soft creeping robot actuated by dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Niu, Junyang; Liu, Liwu; Yu, Jiangcheng

    2014-03-01

    Dielectric elastomer actuator showed significant advantages at high energy density, large deformation with comparing to other artificial muscle. The robot actuated by dielectric elastomer will be more lightweight and have lower cost, which shows great potential in field of future planetary exploration based on a group of micro-robot. In this context, a quite simple structure for creeping was designed to make the robot more lightweight. The actuation unit of the robot is made of an ellipse frame which can expand and contract with membrane under electric field. After joining four actuation units, the robot can move forward in a cooperative manner. Fabrication and some preliminary experiments of the robot were presented and the proposed motion principle was demonstrated.

  9. Gas flow driven by thermal creep in dusty plasma

    SciTech Connect

    Flanagan, T. M.; Goree, J.

    2009-10-15

    Thermal creep flow (TCF) is a flow of gas driven by a temperature gradient along a solid boundary. Here, TCF is demonstrated experimentally in a dusty plasma. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. The design of the experiment allows isolating the effect of TCF. A stirring motion of the dust particle suspension is observed. By eliminating all other explanations for this motion, we conclude that TCF at the boundary couples by drag to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result provides an experimental verification, for the field of fluid mechanics, that TCF in the slip-flow regime causes steady-state gas flow in a confined volume.

  10. Room Temperature Creep Of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Gyekenyesi, Andrew; Levine, Stanley (Technical Monitor)

    2001-01-01

    During a recent experimental study, time dependent deformation was observed for a damaged Hi-Nicalon reinforced, BN interphase, chemically vapor infiltrated SiC matrix composites subjected to static loading at room temperature. The static load curves resembled primary creep curves. In addition, acoustic emission was monitored during the test and significant AE activity was recorded while maintaining a constant load, which suggested matrix cracking or interfacial sliding. For similar composites with carbon interphases, little or no time dependent deformation was observed. Evidently, exposure of the BN interphase to the ambient environment resulted in a reduction in the interfacial mechanical properties, i.e. interfacial shear strength and/or debond energy. These results were in qualitative agreement with observations made by Eldridge of a reduction in interfacial shear stress with time at room temperature as measured by fiber push-in experiments.

  11. A robust search paradigm with Enhanced Vine Creeping Optimization

    NASA Astrophysics Data System (ADS)

    Young, C. N.; Le Brese, C.; Zou, J. J.; Leo, C. J.

    2013-02-01

    In order to overcome a worst case scenario for a generalized evolutionary search, which is realized by assuming that conservation of information (COI) holds true, a robust search paradigm is explored building ideas based upon the Enhanced Vine Creeping Optimization (EVCO) algorithm. The proposed algorithm is a modular framework encompassing an archive, a global search and a local search module. The modular structure enables EVCO to serve not only as a stand-alone global optimization algorithm, but importantly as a framework which provides feedback metrics from the performance of a particular combination of search heuristics on different classes of problems. It is this feature of EVCO that provides the foundation of the proposed robust search paradigm. The new algorithm shows significantly better performance than its predecessor, VCO, and eight state-of-the-art evolutionary algorithms placing first or equal first in 10 out of 14 benchmark tests, while naturally providing metric information to assist in tackling the algorithm selection problem.

  12. Creep rupture as a non-homogeneous Poissonian process

    PubMed Central

    Danku, Zsuzsa; Kun, Ferenc

    2013-01-01

    Creep rupture of heterogeneous materials occurring under constant sub-critical external loads is responsible for the collapse of engineering constructions and for natural catastrophes. Acoustic monitoring of crackling bursts provides microscopic insight into the failure process. Based on a fiber bundle model, we show that the accelerating bursting activity when approaching failure can be described by the Omori law. For long range load redistribution the time series of bursts proved to be a non-homogeneous Poissonian process with power law distributed burst sizes and waiting times. We demonstrate that limitations of experiments such as finite detection threshold and time resolution have striking effects on the characteristic exponents, which have to be taken into account when comparing model calculations with experiments. Recording events solely within the Omori time to failure the size distribution of bursts has a crossover to a lower exponent which is promising for forecasting the imminent catastrophic failure. PMID:24045539

  13. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    NASA Astrophysics Data System (ADS)

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-01

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127×12.7×6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  14. Modeling irradiation creep of graphite using rate theory

    DOE PAGES

    Sarkar, Apu; Eapen, Jacob; Raj, Anant; Murty, K. L.; Burchell, T. D.

    2016-02-20

    In this work we examined irradiation induced creep of graphite in the framework of transition state rate theory. Experimental data for two grades of nuclear graphite (H-337 and AGOT) were analyzed to determine the stress exponent (n) and activation energy (Q) for plastic flow under irradiation. Here we show that the mean activation energy lies between 0.14 and 0.32 eV with a mean stress-exponent of 1.0 ± 0.2. A stress exponent of unity and the unusually low activation energies strongly indicate a diffusive defect transport mechanism for neutron doses in the range of 3-4 x 1022 n/cm2.

  15. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    SciTech Connect

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-15

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127x12.7x6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  16. Advances in Non-Contact Measurement of Creep Properties

    NASA Technical Reports Server (NTRS)

    Hyers, Robert; Canepari, Stacy; White, Erica Bischoff; Cretegny, Laurent; Rogers, jan

    2009-01-01

    As the required service temperatures for superalloys increases, so do the demands on testing for development of these alloys. Non-contact measurement of creep of refractory metals using electrostatic levitation has been demonstrated at temperatures up to 2300 C using samples of only 20-40 mg. These measurements load the spherical specimen by inertial forces due to rapid rotation. However, the first measurements relied on photon pressure to accelerate the samples to the high rotational rates of thousands of rotations per second, limiting the applicability to low stresses and high temperatures. Recent advances in this area extend this measurement to higher stresses and lower-temperatures through the use of an induction motor to drive the sample to such high rotational speeds. Preliminary results on new measurements on new materials will be presented.

  17. SANS and TEM studies of carbide precipitation and creep damage in type 304 stainless steel

    SciTech Connect

    Yoo, M.H.; Ogle, J.C.; Schneibel, J.H.; Swindeman, R.W.

    1984-01-01

    Small-angle neutron scattering (SANS) and transmission electron microscopy (TEM) studies were performed to characterize the carbide (M/sub 23/C/sub 6/) precipitation and creep damage induced in type 304 stainless steel in the primary creep stage. The size distribution of matrix carbides evaluated from SANS analyses was consistent with TEM data, and the expected accelerated kinetics of precipitation under applied stress was confirmed. Additional SANS measurements after the postcreep solution annealing were made in order to differentiate cavities from the carbides. Potential advantages and difficulties associated with characterization of creep-induced cavitation by the SANS techniques are discussed.

  18. A continuous damage model based on stepwise-stress creep rupture tests

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1985-01-01

    A creep damage accumulation model is presented that makes use of the Kachanov damage rate concept with a provision accounting for damage that results from a variable stress history. This is accomplished through the introduction of an additional term in the Kachanov rate equation that is linear in the stress rate. Specification of the material functions and parameters in the model requires two types of constituting a data base: (1) standard constant-stress creep rupture tests, and (2) a sequence of two-step creep rupture tests.

  19. Creep-rupture behavior of iron superalloys in high-pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1984-01-01

    The creep-rupture properties of five iron-base and one cobalt-base high temperature alloys were investigated to assess the feasibility of using the alloys as construction materials in a Stirling engine. The alloys were heat treated and hardness measurements were taken. Typical microstructures of the alloys are shown. The creep-rupture properties of the alloys were determined at 760 and 815 C in 15.0 MPa H2 for 200 to 1000 hours. Plots of rupture life versus stress for the six superalloys are presented along with creep strain-time plots.

  20. Ductility normalized-strainrange partitioning life relations for creep-fatigue life predictions

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.; Hirschberg, M. H.

    1977-01-01

    Procedures based on Strainrange Partitioning (SRP) are presented for estimating the effects of environment and other influences on the high temperature, low cycle, creep fatigue resistance of alloys. It is proposed that the plastic and creep, ductilities determined from conventional tensile and creep rupture tests conducted in the environment of interest be used in a set of ductility normalized equations for making a first order approximation of the four SRP inelastic strainrange life relations. Different levels of sophistication in the application of the procedures are presented by means of illustrative examples with several high temperature alloys. Predictions of cyclic lives generally agree with observed lives within factors of three.

  1. Non-contact Creep Resistance Measurement for Ultra-High Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, J.; Bradshaw, C.; Rogers, J. R.; Rathz, T. J.; Wall, J. J.; Choo, H.; Liaw, P. K.; Hyers, R. W.

    2005-01-01

    Conventional techniques for measuring creep are limited to about 1700 C, so a new technique is required for higher temperatures. This technique is based on electrostatic levitation (ESL) of a spherical sample, which is rotated quickly enough to cause creep deformation by centrifugal acceleration. Creep of samples has been demonstrated at up to 2300 C in the ESL facility at NASA MSFC, while ESL itself has been applied at over 3000 C, and has no theoretical maximum temperature. The preliminary results and future directions of this NASA-funded research collaboration will be presented.

  2. Rheological regional properties of brain tissue studied under cyclic creep/ recovery shear stresses

    NASA Astrophysics Data System (ADS)

    Boudjema, F.; Lounis, M.; Khelidj, B.; Bessai, N.

    2015-04-01

    The rheological properties of brain tissue were studied by repeated creep-recovery shear tests under static conditions for different regions. Corpus callosum CC, Thalamus Th and Corona radiata CR. Non-linear viscoelastic model was also proposed to characterize the transient/steady states of shear creep results. From the creep-recovery data it was obvious that the brain tissues show high regional anisotropy. However. the both samples exhibit fluid viscoelastic properties in the first shear stress cycle of 100 Pa, while this behaviour evolutes to solid viscoelastic with cyclic effect.

  3. Effect of creep stress on the microstructure of 9-12% Cr steel for rotor materials.

    PubMed

    Dong, Jiling; He, Yinsheng; Kim, Minsoo; Shin, Keesam

    2013-08-01

    High-chromium heat-resistant steel has been widely used as the key material to improve the condition of steam pressure and temperature in the modern high-efficiency power plants. Despite the use of the steel above 550°C for several decades, its major failure is owing to the creep fracture. In this study, the effect of creep stress on the microstructure in 9-12% Cr steel has been investigated microscopically, and it is clarified that the creep stress enhances precipitation of Laves phase and influences the lath width and dislocation density in lath interior.

  4. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Titran, R. H.

    1988-01-01

    A study was conducted to determine the feasibility of using tungsten fiber reinforced niobium or niobium-1 percent zirconium matrix composites to meet the anticipated increased temperature and creep resistance requirements imposed by advanced space power systems. The results obtained on the short time tensile properties indicated that W/Nb composites showed significant improvements in high temperature strength and offer significant mass reductions for high temperature space power systems. The prime material requirement for space power systems applications is long time creep resistance. A study was conducted to determine the effect of high temperature exposure on the properties of these composites, with emphasis upon their creep behavior at elevated temperatures.

  5. Characteristics of irradiation creep in the first wall of a fusion reactor

    SciTech Connect

    Coghlan, W.A.; Mansur, L.K.

    1981-01-01

    A number of significant differences in the irradiation environment of a fusion reactor are expected with respect to the fission reactor irradiation environment. These differences are expected to affect the characteristics of irradiation creep in the fusion reactor. Special conditions of importance are identified as the (1) large number of defects produced per pka, (2) high helium production rate, (3) cyclic operation, (4) unique stress histories, and (5) low temperature operations. Existing experimental data from the fission reactor environment is analyzed to shed light on irradiation creep under fusion conditions. Theoretical considerations are used to deduce additional characteristics of irradiation creep in the fusion reactor environment for which no experimental data are available.

  6. Creep versus Earthquake Slip: New insights from rock magnetic data

    NASA Astrophysics Data System (ADS)

    Chou, Y.-M.; Aubourg, C.; Song, S.-R.; Lee, T.-Q.; Song, Y.-F.

    2012-04-01

    Pseudotachylyte is generally believed as the best evidence of high-friction heating during earthquake. However, in clay-rich derived gouge, the temperature elevation is limited to large-scale endothermic dehydration reaction (Brantut et al., 2011). In such a context where melting is likely, it has been suggested that the characterization of neoformed mineral may be a diagnostic clue to distinguish between creep process and earthquake slip zone. Here we show evidence of neoformed magnetic mineral in the active Chelungpu fault gouge that hosts the Chi-Chi slip zone (Taiwan, Mw 7.6, 1999). Thanks to boreholes of Taiwan Chelungpu-fault Drilling Program and the recovery of fresh gouge, we get new evidence of neoformed magnetic minerals. Both rock magnetic investigation and transmission X-ray microscope image show the occurrence of neoformed 5 µm goethite (α-FeOOH) within the Chi-Chi 16 cm thick gouge. Goethite forms post-seismically from the cooling of >350°C fluids. In addition to goethite, we detect occurrence of neoformed pyrrhotite (Fe7S8). The pyrrhotite forms at the expense of pyrite, in response to elevation of temperature >500°C. Within the mm-thick Chi-Chi principal slip zone, we do not detect evidence of goethite, nor pyrrhotite. Instead, we detect magnetite (Fe3O4). We suggest that a part of magnetite formed during friction-induced temperature elevation. We propose a simple model of evolution between goethite and magnetite within the entire gouge. If confirmed elsewhere, the recognition of the assemblage of iron oxide (magnetite), iron hydroxide (goethite) and iron sulfide (pyrrhotite) is possibly a diagnostic evidence of earthquake slip rather than creep process.

  7. Reliability and Creep/Fatigue Analysis of a CMC Component

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.; Gyekenyesi, John P.

    2007-01-01

    High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight and enable higher operating temperatures requiring less cooling; thus leading to increased engine efficiencies. There is a need for convenient design tools that can accommodate various loading conditions and material data with their associated uncertainties to estimate the minimum predicted life as well as the failure probabilities of a structural component. This paper presents a review of the life prediction and probabilistic analyses performed for a CMC turbine stator vane. A computer code, NASALife, is used to predict the life of a 2-D woven silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) turbine stator vane due to a mission cycle which induces low cycle fatigue and creep. The output from this program includes damage from creep loading, damage due to cyclic loading and the combined damage due to the given loading cycle. Results indicate that the trends predicted by NASALife are as expected for the loading conditions used for this study. In addition, a combination of woven composite micromechanics, finite element structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Results indicate that reducing the scatter in proportional limit strength of the vane material has the greatest effect in improving the overall reliability of the CMC vane.

  8. Towards a more robust description of transient creep

    NASA Astrophysics Data System (ADS)

    Evans, J. B.

    2015-12-01

    Strain localization is common within crustal orogenic belts, and shear displacements of kilometers can be accommodated within zones less than ten meters wide. Strain localization is accompanied by major changes in grain size, lattice preferred orientation, major and accessory phase chemistry, pore geometry, phase dispersion, dislocation density, and twin geometry, suggesting that transients in strength have also occurred. High-strain experiments where creep dominates often show hardening up to strains of 1.0, followed by strength drops of 30-50%. In contrast with such observations, creep is often described by steady-state flow laws relying on simple descriptions of defect generation and motion. Most often, it is assumed that the kinetics of a single mechanism control deformation rate, or that the relative partitioning of strain amongst several mechanisms remains constant. But, when two or more mechanisms operate concurrently, an accurate flow law must account for kinetic interactions and changes in strain partitioning caused by the evolution of structure or changes in thermodynamic conditions. Data now at hand, strongly suggest that the evolution of structure variables including dislocation patterning, twin-boundary geometry, grain size, and LPO are coupled. The relative strain partitioning between mechanisms and the accumulation of damage leading to localization or failure is probably affected by changes in temperature, strain rate, stress, and chemical fugacity. Thus, better descriptions of strength transients will require improved theoretical and experimental constraints on the kinetics of the individual mechanisms. Importantly, whether load drops, instabilities, or seismicity are produced also depends on many additional parameters, including changes in loading conditions, the state of pore fluids, geometry of deformation, and temperature.

  9. Heterogeneous microstructures and macroscopic creep behavior of polycrystalline ice (Invited)

    NASA Astrophysics Data System (ADS)

    Lebensohn, R.

    2009-12-01

    We present results of two complementary formulations, a full-field approach based on fast Fourier transforms (FFT) [1] and a mean-field approach based on rigorous nonlinear homogenization [2] to study the influence of different microstructural features on the macroscopic behavior of polycrystalline ice. The FFT-based model is used for the prediction of local fields in columnar ice polycrystals deforming in compression by dislocation creep [3]. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals. In turn, this numerically-intensive full-field formulation is used to validate the predictions of different, more efficient homogenization approaches. We show that a recent second-order formulation, which explicitly uses information on average intragranular field fluctuations, implemented within the widely used ViscoPlastic Self-Consistent (VPSC) code [4], yields the most accurate results. References: [1] H. Moulinec and P. Suquet, Comput. Methods Appl. Mech. Eng. 157, 69 (1998). [2] P. Ponte Castañeda, J. Mech. Phys. Solids 50, 737 (2002). [3] R.A. Lebensohn, M. Montagnat, P. Mansuy et al. Acta Mater. 57, 1405, (2009). [4] R.A. Lebensohn, C.N. Tomé and P. Ponte Castañeda. Phil. Mag. 87, 4287 (2007).

  10. Colloid administration normalizes resuscitation ratio and ameliorates "fluid creep".

    PubMed

    Lawrence, Amanda; Faraklas, Iris; Watkins, Holly; Allen, Ashlee; Cochran, Amalia; Morris, Stephen; Saffle, Jeffrey

    2010-01-01

    Although colloid was a component of the original Parkland formula, it has been omitted from standard Parkland resuscitation for over 30 years. However, some burn centers use colloid as "rescue" therapy for patients who exhibit progressively increasing crystalloid requirements, a phenomenon termed "fluid creep." We reviewed our experience with this procedure. With Institutional Review Board approval, we reviewed all adult patients with > or =20%TBSA burns admitted from January 1, 2005, through December 31, 2007, who completed formal resuscitation. Patients were resuscitated using the Parkland formula, adjusted to maintain urine output of 30 to 50 ml/hr. Patients who required greater amounts of fluid than expected were given a combination of 5% albumin and lactated Ringer's until fluid requirements normalized. Results were expressed as an hourly ratio (I/O ratio) of fluid infusion (ml/kg/%TBSA/hr) to urine output (ml/kg/hr). Predicted values for this ratio vary for individual patients but are usually less than 0.5 to 1.0. Fifty-two patients were reviewed, of whom 26 completed resuscitation using crystalloid alone, and the remaining 26 required albumin supplementation (AR). The groups were comparable in age, gender, weight, mortality, and time between injury and admission. AR patients had larger total and full-thickness burns and more inhalation injuries. Patients managed with crystalloid alone maintained mean resuscitation ratios from 0.13 to 0.40, whereas AR patients demonstrated progressively increasing ratios to a maximum mean of 1.97, until albumin was started. Administration of albumin produced a dramatic and precipitous return of ratios to within predicted ranges throughout the remainder of resuscitation. No patient developed abdominal compartment syndrome. Measuring hourly I/O ratios is an effective means of expressing and tracking fluid requirements. The addition of colloid to Parkland resuscitation rapidly reduces hourly fluid requirements, restores normal

  11. Irradiation creep and density changes observed in MA957 pressurized tubes irradiated to doses of 40-110 dpa at 400-750°C in FFTF

    SciTech Connect

    Toloczko, Mychailo B.; Garner, Frank A.; Maloy, Stuart A.

    2012-12-30

    An irradiation creep and swelling study was performed on tubing constructed from the Y2O3-strengthened ODS ferritic steel MA957. As a result of the reduction operations during manufacture, the grains in the tubing were highly elongated in the direction of the tubing axis, with an aspect ratio of ~10:1. Pressurized creep tubes were irradiated in the Fast Flux Test Facility (FFTF) to doses ranging from 40 dpa to 110 dpa at temperatures ranging from 400 to 750°C. The diametral strains produced during irradiation exhibit very strong transient strains that are linearly dependent on stress and increase with irradiation temperature before reaching temperature-independent steady-state creep rates of 0.6-0.7 X 10-6 (MPa dpa)-1. Contributions to transient strains may not arise only from classical thermal creep or irradiation creep considerations, but also may result from an irradiation-stimulated growth process whereby the highly elongated grain structure reduces the aspect ratio to produce fatter grains and thereby increases in the tube diameter. One manifestation of this process is a change in tube diameter that is not accompanied by a density change characteristic of void swelling or precipitation-induced changes in lattice parameter. These results provide the first conclusive demonstration that resistance to irradiation creep can be extended to higher temperatures by dispersoid addition, and most importantly, this resistance is maintained to high radiation damage levels. However, the irradiation creep compliance is not reduced by dispersoid addition, casting some doubt on various proposed climb and glide mechanisms of irradiation creep.

  12. Effect of exposure in steam or argon on the creep properties of Ni-based alloys: Creep properties of Ni-based alloys

    SciTech Connect

    Dryepondt, S.; Unocic, K. A.; Pint, B. A.

    2012-09-17

    Although expensive, Ni-based superalloys are of interest for the ultrasupercritical steam program because of their good creep and oxidation resistance at temperature above 700 C. However, the effect of steam oxidation on the alloy mechanical properties is unknown, and creep specimens of alloy CCA617, 740 and 230 were pre-oxidized for 2000 and 4000h in steam at 800 C before testing in air at the same temperature. Exposure in steam decreased the creep properties of alloy CCA617 compared with as fabricated material, had less of an effect on alloy 740, and did not affect alloy 230. Testing of a specimen repolished after steam exposure as well as microstructure observation indicate that the oxidation affected zone at the specimen surface is not responsible for the properties degradation. Surprisingly, a similar time anneal in an inert environment resulted in a drastic decrease of creep rupture life and an increase in the creep rate and elongation at rupture. TEM analysis revealed that the mechanical properties decrease for alloy CCA617 is related to the absence of precipitates in the grain.

  13. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  14. A unified creep-plasticity model suitable for thermo-mechanical loading

    NASA Technical Reports Server (NTRS)

    Slavik, D.; Sehitoglu, H.

    1988-01-01

    An experimentally based unified creep-plasticity constitutive model was implemented for 1070 steel. Accurate rate and temperature effects were obtained for isothermal and thermo-mechanical loading by incorporating deformation mechanisms into the constitutive equations in a simple way.

  15. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system

    NASA Astrophysics Data System (ADS)

    Vorobieva, Inessa; Shebalin, Peter; Narteau, Clément

    2016-07-01

    Crustal faults accommodate slip either by a succession of earthquakes or continuous slip, and in most instances, both these seismic and aseismic processes coexist. Recorded seismicity and geodetic measurements are therefore two complementary data sets that together document ongoing deformation along active tectonic structures. Here we study the influence of stable sliding on earthquake statistics. We show that creep along the San Andreas Fault is responsible for a break of slope in the earthquake size distribution. This slope increases with an increasing creep rate for larger magnitude ranges, whereas it shows no systematic dependence on creep rate for smaller magnitude ranges. This is interpreted as a deficit of large events under conditions of faster creep where seismic ruptures are less likely to propagate. These results suggest that the earthquake size distribution does not only depend on the level of stress but also on the type of deformation.

  16. Influence of Solid Solution Hardening on Creep Properties of Single-Crystal Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Fleischmann, Ernst; Konrad, Christian; Preußner, Johannes; Völkl, Rainer; Affeldt, Ernst; Glatzel, Uwe

    2015-03-01

    Improving the creep resistance of the matrix by alloying with refractory elements is a major strengthening effect in nickel-based superalloy with rhenium as one of the most effective elements. In this work, the influence of rhenium on creep properties of single-phase single crystals with varying rhenium content and matrix-near composition is investigated. The use of single-crystalline material leads to very distinct results which are not deteriorated by grain boundary effects. So the strengthening effect can be solely attributed to the alloying element rhenium and is quantified for the first time. By comparing the creep strength of two matrix compositions with the corresponding single-crystal superalloys using the threshold stress concept, the potential of creep strengthening of the matrix in two-phase single-crystal alloys is quantified.

  17. The Application of Strainrange Partitioning Method to Multiaxial Creep-Fatigue Interaction

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.

    1978-01-01

    The method of strain range partitioning was applied to a series of torsional fatigue tests conducted on tubular 304 stainless steel specimens at 1200 F (649 C). Creep strain was superimposed on cycling strain, and the resulting strain range was partitioned into four components: (1) completely reversed plastic shear strain, (2) plastic shear strain followed by creep strain, (3) creep strain followed by plastic strain, and (4) completely reversed creep strain. Each strain component was related to the cyclic life of the material. The experimental procedure used to achieve strain partitioning is described, and the torsional test results are compared to those obtained from axial tests. The damaging effects of the individual strain components were expressed by a linear life fraction rule.

  18. Noncontact nonlinear resonant ultrasound spectroscopy to evaluate creep damage in an austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ohtani, T.; Kusanagi, Y.; Ishii, Y.

    2013-01-01

    In this paper, we described an evaluating technique of creep damage in an austenitic stainless steel by the combination with an electromagnetic acoustic transducer (EMAT) and the nonlinear resonant ultrasound spectroscopy (NRUS), which was a resonance-based technique exploiting the significant nonlinear behavior of damaged materials. In NRUS, the resonant frequency of an object is studied as a function of the excitation level. As the excitation level increases, the elastic nonlinearity was manifest by a shift in the resonance frequency. The nonlinearity with NRUS showed a peak at 50 % and a minimum at 70 % of the total creep life. This nonlinearity measurement has a potential to assess creep damage advance and predict the creep remaining life of metals.

  19. Report On Design And Preliminary Data Of Halden In-Pile Creep Rig

    SciTech Connect

    Terrani, Kurt A; Karlsen, T. M.; Yamamoto, Yukinori

    2015-09-01

    A set of in-pile creep tests is ongoing in the Halden reactor on ORNL’s candidate accident tolerant fuel cladding materials. These tests are meant to provide essential material property information that is needed for an informed analysis of these fuel concepts under normal operating conditions. These tests provide detailed information regarding swelling, thermal creep, and irradiation creep rates of these materials. The results to date have been compared with the limited set of information available in literature that is form irradiation tests in other reactors or out-of-pile tests. Most of the results are in good agreement with prior literature, except for irradiation creep rate of SiC. To elucidate the difference between the HFIR and Halden test results continued testing is necessary. The tests describe in this progress report are ongoing and will continue for at least another year.

  20. In situ Measurements of Irradiation-Induced Creep of Nanocrystalline Copper at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Özerİnç, Sezer; Averback, Robert S.; King, William P.

    2016-08-01

    We have measured irradiation-induced creep on nanocrystalline copper micropillars at elevated temperatures. The micropillars, which were ≈1 µm in diameter and ≈2 µm in height, were fabricated from magnetron-sputtered nanocrystalline copper films. The micropillars were compressed during 2.0 MeV Ar+ bombardment and the deformation measured in situ by laser interferometry. The creep rate was measured over the stress range 10-120 MPa at ≈200°C. The results show linear relationships of creep rate with both applied stress and displacement rate, yielding a creep compliance of 0.07 dpa-1 GPa-1 (dpa:displacement per atom). The findings are in good agreement with the previous results obtained using a bulge test on free-standing thin film specimens.