Science.gov

Sample records for creeping wave sizing

  1. Ultrasonic Phased Array Implementation of the Inside Diameter Creeping Wave Sizing Method

    SciTech Connect

    Timothy R. McJunkin; J. Mark Davis; Dennis C. Kunerth; Arthur D. Watkins

    2006-05-01

    This paper describes a technique for implementing the ultrasonic inside diameter (ID) creeping wave technique for detection and sizing ID connected defects using a phased array ultrasonic system. The technique uses multiple focal laws to produce the examination modes. The first focal law is designed to create a shear wave nominally at the critical angle for mode conversion to a longitudinal wave at the ID of a part, thus creating a creeping wave. This focal law is focused at the ID to improve sensitivity. The rest of the laws are designed to create tandem sound paths that progress up a vertical surface directly above the focal point of the creeping wave generation point. When a defect on the inner surface is detected with the creeping wave, the height of the defect can be measured from the response of a set of tandem laws without readjusting the position of the probe. Results from standard one-inch long notches of varying depths are presented.

  2. Creep events and creep noise in gravitational-wave interferometers: Basic formalism and stationary limit

    NASA Astrophysics Data System (ADS)

    Levin, Yuri

    2012-12-01

    In gravitational-wave interferometers, test masses are suspended on thin fibers which experience considerable tension stress. Sudden microscopic stress release in a suspension fiber, which I call a “creep event,” would excite motion of the test mass that would be coupled to the interferometer’s readout. The random test-mass motion due to a time sequence of creep events is referred to as “creep noise.” In this paper I present an elastodynamic calculation for the test-mass motion due to a creep event. I show that within a simple suspension model, the main coupling to the optical readout occurs via a combination of a “dc” horizontal displacement of the test mass and excitation of the violin and pendulum modes, and not, as was thought previously, via lengthening of the fiber. When the creep events occur sufficiently frequently and their statistics is time independent, the creep noise can be well approximated by a stationary Gaussian random process. I derive the functional form of the creep noise spectral density in this limit, with the restrictive assumption that the creep events are statistically independent from each other.

  3. Grain size-sensitive creep in ice II.

    PubMed

    Kubo, Tomoaki; Durham, William B; Stern, Laura A; Kirby, Stephen H

    2006-03-03

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  4. Grain size-sensitive creep in ice II

    USGS Publications Warehouse

    Kubo, T.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2006-01-01

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  5. Spiral Creeping Waves in Ultrasonic Angled-Beam Shear Wave Inspection of Fastener Holes in Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Knopp, Jeremy; Judd, Dave; Mandeville, John R.; Lindgren, Eric

    2006-03-01

    This paper explores the propagation and scattering of spiral creeping waves around a fastener hole. Preliminary experimental data demonstrates the presence of spiral creeping waves in angled beam inspection and the benefit for detecting cracks of varying angular location. Analytical models are used to provide insight into the propagation and focusing of spiral creeping waves around cylindrical holes. A hybrid numerical method is proposed as a measurement model for 3D scattering from holes with cracks.

  6. Creep of sound paths in consolidated granular material detected through coda wave interferometry.

    PubMed

    Espíndola, David; Galaz, Belfor; Melo, Francisco

    2016-07-01

    The time evolution of the contact force structure of a consolidated granular material subjected to a constant stress is monitored using the coda wave interferometry method. In addition, the nature of the aging and rejuvenation processes are investigated. These processes are interpreted in terms of affine and nonaffine structural path deformations. During the later stages of creep, the rearrangements of subgrains are so small that they only produce affine deformations in the contact paths, without any significant changes in the structural configuration. As a result, the strain path distribution follows the macroscopic strain. Conversely, in the presence of ultrasonic perturbations, the nonaffine grain buckling mechanism dominates, producing relatively drastic changes in the structural configuration accompanied by path deformations of the order of the grain size. This plastic mechanism induces material rejuvenation that is observed macroscopically as an ultrasonically accelerated creep.

  7. On the Benefits of Creeping Wave Antennas in Reducing Interference Between Neighboring Wireless Body Area Networks.

    PubMed

    Tsouri, Gill R; Zambito, Stephanie R; Venkataraman, Jayanti

    2017-02-01

    We consider the on-body, off-body, and body-to-body channels in wireless body area networks utilizing creeping wave antennas. Experimental setups are used to gather measurements in the 2.4 GHz band with body area networks operating in an office environment. Data packets providing received signal strength indicators are used to assess the performance of the creeping wave antenna in reducing interference at a neighboring on-body access point while supporting reliable on-body communications. Results demonstrate that creeping wave antennas provide reliable on-body communications while significantly reducing inter-network interference; the inter-network interference is shown to be 10 dB weaker than the on-body signal. In addition, the inter-network interference when both networks utilize creeping wave antennas is shown to be 3 dB weaker than the interference when monopole antennas are used.

  8. The influence of specimen size on measurement of thermal or irradiation creep in pressurized tubes

    SciTech Connect

    Garner, F.A.; Hamilton, M.L. ); Puigh, R.J.; Eiholzer, C.R.; Duncan, D.R. ); Toloczko, M.B. ); Kumar, A.S. )

    1992-08-01

    This report discusses thin-walled pressurized tubes which have been developed for measurement of thermal creep and irradiation creep. Miniaturization of these tubes allows more tests to be conducted in the limited reactor space available and decreases the impact of displacement rate gradients and temperature gradients. Studies conducted on a variety of tube sizes show that, when specimen fabrication history and irradiation conditions are properly accounted for, miniaturization can be successfully achieved without producing invalid data.

  9. In-situ creep specimen monitoring: A comparison of guided wave and local transducer techniques

    NASA Astrophysics Data System (ADS)

    Guers, Manton J.; Tittmann, Bernhard R.

    2017-02-01

    Performing in-situ measurements of specimens in research reactors is challenging because of the environmental conditions. In this paper, two approaches were investigated for performing in-situ measurements of the change in length of creep specimens. In the first method, the transducer is located outside the hostile environment, and the specimen is interrogated by transmitting ultrasonic guided waves down a wire waveguide to the creep specimen. In the second method, a piezoelectric element is mounted directly to the creep specimen. If the piezoelectric element can withstand the operating environment, higher resolution and more compact specimen design can be achieved with the directly mounted transducer elements.

  10. Can grain size sensitive creep lubricate faults during earthquake propagation?

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Holdsworth, R.; Viti, C.; Collettini, C.; Bullock, R. J.; Faoro, I.

    2014-12-01

    In the shallow portion of crustal fault zones, fracturing and cataclasis are thought to be the dominant processes during earthquake propagation. In the lower crust/upper mantle, viscous flow is inferred to facilitate aseismic creep along shear zones. Recent studies show that slip zones (SZs), in natural and experimental carbonate seismic faults, are made of nanograins with a polygonal texture, a microstructure consistent with deformation by grain boundary sliding (GBS) mechanisms. Friction experiments performed on calcite fine-grained gouges, at speed v = 1 ms-1, normal stress sn = 18 MPa, displacements d = 0.009-1.46 m, and room temperature and humidity, show a four stage-evolution of the fault strength: SI) attainment of initial value, f = 0.67; SII) increase up to peak value f = 0.82; SIII) sudden decrease to low steady-state value, f = 0.18; and SIV) sudden increase to final value, f = 0.44, during sample deceleration. Samples recovered at the end of each displacement-controlled experiments (Stages I-IV) show the following microstructures evolution of the SZ material, which is: SI) poorly consolidated, and made of fine-grained (1 < D < 5 microns), angular clasts formed by brittle fracturing and cataclasis; SII) cohesive, and made of larger clasts of calcite (D ≈ 1 microns), exhibiting a high density of free dislocations and hosting subgrains (D ≤ 200 nm), dispersed within calcite nanograins. SIII) made of nanograin aggregates exhibiting polygonal grain boundaries, and 120° triple junctions between equiaxial grains. The grains display no preferred elongation, no crystal preferred orientation and low free dislocation densities, possibly due to high temperature (> 900 C) GBS creep deformation. Our microstructural observations suggest that GBS mechanisms can operate in geological materials deformed at high strain rates along frictionally heated seismogenic slip surfaces. The observed microstructures in experimental slip zones are strikingly similar to those

  11. A thermo-mechanical framework for analysis of grain size evolution during high temperature creep

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Chrysochoos, A.; Daridon, L.

    2013-12-01

    We develop a theoretical description of high temperature creep with microstructural evolution. The model considers non-linear thermodynamics of irreversible processes (TIP), accounting for dissipated energy associated with creep processes and microstructural changes, as well as energy stored in the microstructure. The "Generalized Standard Materials" (GSM) formalism used here allows for strong coupling among multiple processes through the use of free energy (Helmholtz) and dissipation potentials that are functions of mechanical, thermal and internal or structural state variables. We represent dislocation density and grain size as the structural state variables, to which energy dissipation and storage are associated. We develop two versions of the model, the first with only the grain size and the second with both dislocation density and grain size. These choices reflect current discussion on the physical mechanisms that determine the steady state grain size. We incorporate distinct but coupled processes such as dislocation production, annealing, grain growth, and several creep mechanisms. The first model is designed to evaluate the "field boundary hypothesis" for the steady state grain size and the second to explore the Twiss piezometer model. The hypothesis that a steady state grain size value is associated with a level of energy dissipation (e.g. the "wattmeter") can also be evaluated in the GSM framework. One general advantage of the GSM approach relative to many current grain size evolution models is that the partitioning of energy input between stored and dissipated energy rates is not assumed, but emerges from the derivation and calculation of the stored and dissipated work. We design the approach to extract as much information as possible from torsion experiments (starting with olivine), which contain a continuous range of thermodynamic states (from zero strain at the torsion axis to a maximum at the edge of the sample) during primary (transient) and

  12. Evolutionary models of the Earth with a grain size-dependent rheology: diffusion versus dislocation creep

    NASA Astrophysics Data System (ADS)

    Rozel, Antoine; Golabek, Gregor; Thielmann, Marcel; Schierjott, Jana; Tackley, Paul

    2016-04-01

    We present a set of 2D numerical simulations of mantle convection considering grain size evolution and a composite visco-plastic rheology including diffusion and dislocation creep. A 1D parameterization allows us to anticipate the stress conditions for the present-day temperature profile in a convection cell. We are therefore able to obtain self-consistent 2D convecion models together with non-equilibrium grain size for present-day conditions, controlling the partitioning between diffusion and dislocation creep. However, the internal temperature of the mantle is thought to have significantly evolved throughout the history of the Earth. Using a higher internal temperature is usually believed to decrease both viscosity and internal stresses. In our case, a high temperature potentially increases the grain size, which tends to increase the viscosity: the temperature and grain size-dependence of the viscosity are in competition. We study the evolution of the diffusion-dislocation partitioning throughout the history of the Earth. We report the evolution of grain size and stress over time in our simulations. Several complex processes are included in our models. Grain size evolution is a sum of grain growth and dynamic recrystallization. All our simulations consider thermochemical convection in a compressible mantle with melting producting basaltic crust and depleted mantle. Close to the surface, melting produces basaltic material which is erupted or intruded at the base of the crust. Phase transitions reset the grain size to a low value, which influences the whole dynamics of the mantle.

  13. Grain-size-sensitive creep and its relationship to grain-size-insensitive attenuation in ice-I

    NASA Astrophysics Data System (ADS)

    Caswell, T. E.; Cooper, R. F.; Goldsby, D. L.

    2014-12-01

    Tidal dissipation in the ice shell of, e.g., Europa, occurs in the context of a periodic strain amplitude ɛa ~10-5 imposed upon a material with a deformation-effected microstructure related to tectonic activity. Tidal flexing "samples" this microstructure; the microstructure's anelastic (attenuation, Q-1) response effects dissipation. Experiments combining steady-state creep of polycrystalline ice-I with superposed sinusoidal loading demonstrated an attenuation response that is (a) an order of magnitude more attenuating than predicted by the Maxwell Solid model, (b) similar in form to the Andrade Solid model, which at high-temperature and/or low-frequency conditions is approximated by a power law, (c) modestly non-linear (i.e., Q-1 is a function of the periodic strain amplitude) and (d) insensitive to grain size [1]. The grain-size insensitivity is profound, as steady-state creep of the specimens occurred by the geologically relevant mechanism of grain boundary sliding accommodated by basal dislocation glide (GBS)—a grain-size-sensitive rheology [2]. Here GBS involves emission, motion and interaction of lattice dislocations, and dislocation structures (e.g., subgrain boundaries and secondary grain boundary dislocations) are part of the microstructure sampled by the periodic stress. Transient creep responses sample the aspects of creep microstructure that effect attenuation. In our experiments, polycrystalline ice-I specimens are crept to steady state in the GBS regime (σ = 0.5-5.0 MPa, T = 243K, d = 30-150µm) and subjected to instantaneous drops in differential stress: initial strain-rate recovery is related to the creep microstructure of the previous, higher stress. Our results map-out in stress-strain rate space a "hardness" curve consistent with dislocation microstructure self-similarity - a requirement for grain size-insensitive attenuation. Cryogenic electron backscatter diffraction (EBSD) characterizes the associated microstructure. We have not observed

  14. Compaction creep of sands due to time-dependent grain failure: Effects of chemical environment, applied stress, and grain size

    NASA Astrophysics Data System (ADS)

    Brzesowsky, R. H.; Hangx, S. J. T.; Brantut, N.; Spiers, C. J.

    2014-10-01

    Time-dependent brittle creep plays a role in controlling compaction of sands and sandstones under upper crustal conditions, influencing phenomena such as production-induced reservoir compaction, surface subsidence, and induced seismicity. Brittle creep also plays a role in determining the mechanical behavior of gouge-rich faults. We performed uniaxial creep experiments on sand to investigate the effects of chemical environment (dry versus solution flooded), grain size (d = 196-378 µm), and applied effective stress (σa up to 30 MPa), at room temperature conditions favoring grain-scale brittle processes. Creep measurements were complemented with acoustic emission (AE) detection and microstructural analysis to characterize the main creep mechanism. Wet samples showed much higher creep strains than dry-tested samples. AE event counts showed a direct relation between grain failure and creep strain, with higher AE rates occurring in the wet samples. Therefore, we inferred that time-dependent deformation was dominated by subcritical crack growth, resulting in grain failure accompanied by intergranular sliding rearrangements, and that crack growth in the presence of chemically active fluids was controlled by stress corrosion. The sensitivity of the compaction rate of the sands to d and σa can be expressed as ɛ˙∝diσaj where i ≈ 6 and j ≈ 21 under dry conditions and i ≈ 9 and j ≈ 15 under wet conditions. Our results were compared to a simple model based on Hertzian contact theory, linear elastic fracture mechanics, and subcritical crack growth. This model showed agreement between the observed stress and grain size sensitivities of creep, within a factor of 2.

  15. Composite grain size sensitive and grain size insensitive creep of bischofite, carnallite and mixed bischofite-carnallite-halite salt rock

    NASA Astrophysics Data System (ADS)

    Muhammad, Nawaz; de Bresser, Hans; Peach, Colin; Spiers, Chris

    2016-04-01

    mechanism with decreasing strain rate for both bischofite and carnallite, from grain size insensitive (GSI) dislocation creep at the higher strain rates to grain size sensitive (GSS, i.e. pressure solution) creep at slow strain rate. We can speculate about the composite GSI-GSS nature of the constitutive laws describing the creep of the salt materials.

  16. Long‐term creep rates on the Hayward Fault: evidence for controls on the size and frequency of large earthquakes

    USGS Publications Warehouse

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Bilham, Roger; Ponce, David A.; Boatwright, John; Caskey, S. John

    2012-01-01

    The Hayward fault (HF) in California exhibits large (Mw 6.5–7.1) earthquakes with short recurrence times (161±65 yr), probably kept short by a 26%–78% aseismic release rate (including postseismic). Its interseismic release rate varies locally over time, as we infer from many decades of surface creep data. Earliest estimates of creep rate, primarily from infrequent surveys of offset cultural features, revealed distinct spatial variation in rates along the fault, but no detectable temporal variation. Since the 1989 Mw 6.9 Loma Prieta earthquake (LPE), monitoring on 32 alinement arrays and 5 creepmeters has greatly improved the spatial and temporal resolution of creep rate. We now identify significant temporal variations, mostly associated with local and regional earthquakes. The largest rate change was a 6‐yr cessation of creep along a 5‐km length near the south end of the HF, attributed to a regional stress drop from the LPE, ending in 1996 with a 2‐cm creep event. North of there near Union City starting in 1991, rates apparently increased by 25% above pre‐LPE levels on a 16‐km‐long reach of the fault. Near Oakland in 2007 an Mw 4.2 earthquake initiated a 1–2 cm creep event extending 10–15 km along the fault. Using new better‐constrained long‐term creep rates, we updated earlier estimates of depth to locking along the HF. The locking depths outline a single, ∼50‐km‐long locked or retarded patch with the potential for an Mw∼6.8 event equaling the 1868 HF earthquake. We propose that this inferred patch regulates the size and frequency of large earthquakes on HF.

  17. The effects of grain size distribution on cavity nucleation and creep deformation in ceramics containing viscous grain boundary phase

    SciTech Connect

    Dey, N.; Hsia, K.J.; Socie, D.F.

    1997-10-01

    The grain size distribution in a polycrystalline ceramic material is not uniform. Such microstructural inhomogeneity may give rise to nonuniform local stress distributions. Here the authors investigate the effect of grain size distribution on the generation of local stress concentration in ceramic materials creeping by localized flow of a viscous grain boundary phase. A simple bimodal grain size distribution is first considered. The critical stress for cavity nucleation, calculated using classical Becker-Doring nucleation theory, is compared with the local stress concentration. The results show that, because of the inhomogeneity, the local stress in the grain boundary viscous phase at the locations of large grains can exceed the critical stress for cavity nucleation. The creep rate due to localized viscous flow of the grain boundary phase and cavity growth is evaluated. Although the creep behavior owing solely to viscous flow is linear with respect to applied stress, it can be highly nonlinear when cavitation occurs. Moreover, as an example, the model has been used to study creep behavior of a whisker-reinforced Si{sub 3}N{sub 4} matrix composite in which long whiskers are surrounded by small equiaxed ceramic grains.

  18. Grain size reduction due to fracturing and subsequent grain-size-sensitive creep in a lower crustal shear zone in the presence of a CO2-bearing fluid

    NASA Astrophysics Data System (ADS)

    Okudaira, Takamoto; Shigematsu, Norio; Harigane, Yumiko; Yoshida, Kenta

    2017-02-01

    To understand rheological weakening in the lower continental crust, we studied mylonites in the Paleoproterozoic Eidsfjord anorthosite, northern Norway. The zones of anorthositic mylonites range from a few millimeters to several meters thick, and include ultramylonites and protomylonites. They contain syn-kinematic metamorphic minerals, including Cl-bearing amphibole and scapolite. Thermodynamic analysis reveals that syn-deformational hydration reactions occurred at ∼600 °C and ∼700 MPa under CO2-bearing conditions. The protomylonites contain many fragmented plagioclase porphyroclasts. The fractures in porphyroclasts are filled with fine-grained plagioclase, suggesting that fracturing is a common mechanism of grain size reduction. The anorthite contents of fine-grained polygonal matrix plagioclase are different from those of porphyroclastic plagioclase, suggesting that the matrix grains nucleated and grew during syn-kinematic metamorphism. Plagioclase aggregates in the matrices of mylonites do not exhibit a distinct crystallographic preferred orientation, which implies that the dominant deformation mechanism was grain-size-sensitive creep. Consequently, in the lower crustal anorthositic mylonites, grain size reduction occurred via fracturing, rather than through dynamic recrystallization, leading to grain-size-sensitive creep. The syn-kinematic recrystallization of minor phases at plagioclase grain boundaries may suppress the growth of plagioclase and contribute to the development of grain-size-sensitive creep.

  19. Effect of particle size and temperature on rheology and creep behavior of barley β-d-glucan concentrate dough.

    PubMed

    Ahmed, Jasim

    2014-10-13

    Concentrated β-D-glucan has been added in the formulation of food products development that attributing human health. The purpose of this study is to assess the role of particle size (74, 105, 149, 297 and 595 μm) of barley β-D-glucan concentrate (BGC) on two fundamental rheological properties namely oscillatory rheology and creep in a dough system (sample to water = 1:2). The water holding capacity, sediment volume fraction and protein content increased with an increase in particle size from 74 μm to 595 μm, which directly influences the mechanical strength and visco-elasticity of the dough. The dough exhibited predominating solid-like behavior (elastic modulus, G'>viscous modulus, G"). The G' decreased systematically with increasing temperature from 25 to 85 °C at the frequency range of 0.1-10 Hz except for the dough having particle size of 105 μm, which could be associated with increase in protein content in the fraction. A discrete retardation spectrum is employed to the creep data to obtain retardation time and compliance parameters which varied significantly with particle size and the process temperature. All those information could be helpful to identify the particle size range of BGC that could be useful to produce a β-D-glucan enriched designed food.

  20. Studies on Creep Deformation and Rupture Behavior of 316LN SS Multi-Pass Weld Joints Fabricated with Two Different Electrode Sizes

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Kumar, J. Ganesh; Parida, P. K.; Ganesan, V.; Laha, K.

    2017-02-01

    Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.

  1. Flaw depth sizing using guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.

    2016-02-01

    Guided wave inspection technology is most often applied as a survey tool for pipeline inspection, where relatively low frequency ultrasonic waves, compared to those used in conventional ultrasonic nondestructive evaluation (NDE) methods, propagate along the structure; discontinuities cause a reflection of the sound back to the sensor for flaw detection. Although the technology can be used to accurately locate a flaw over long distances, the flaw sizing performance, especially for flaw depth estimation, is much poorer than other, local NDE approaches. Estimating flaw depth, as opposed to other parameters, is of particular interest for failure analysis of many structures. At present, most guided wave technologies estimate the size of the flaw based on the reflected signal amplitude from the flaw compared to a known geometry reflection, such as a circumferential weld in a pipeline. This process, however, requires many assumptions to be made, such as weld geometry and flaw shape. Furthermore, it is highly dependent on the amplitude of the flaw reflection, which can vary based on many factors, such as attenuation and sensor installation. To improve sizing performance, especially depth estimation, and do so in a way that is not strictly amplitude dependent, this paper describes an approach to estimate the depth of a flaw based on a multimodal analysis. This approach eliminates the need of using geometric reflections for calibration and can be used for both pipeline and plate inspection applications. To verify the approach, a test set was manufactured on plate specimens with flaws of different widths and depths ranging from 5% to 100% of total wall thickness; 90% of these flaws were sized to within 15% of their true value. A description of the initial multimodal sizing strategy and results will be discussed.

  2. Creep of porous rocks and measurements of elastic wave velocities under different hydrous conditions

    NASA Astrophysics Data System (ADS)

    Eslami, J.; Grgic, D.; Hoxha, D.

    2009-04-01

    of strains on a same sample, under uniaxial compression. Different hydrous conditions (saturated or partially saturated) are tested in all creep tests. In this paper, we focus on the time-dependent behavior and short-term mechanical behavior of iron ore and limestone in saturated and partially saturated domains. The main outcomes of these experiments are: (i) identification of the apparent dynamic stiffness tensor from elastic wave velocity measurements; (ii) assessment of velocity anisotropy, and its evolution under uniaxial loading. This last step allows for the quantification of the intrinsic and stress-induced anisotropies, leading eventually to an estimation of the microcracks density and distribution evolutions in the rock sample under loading.

  3. Attenuation and Shock Waves in Linear Hereditary Viscoelastic Media; Strick-Mainardi, Jeffreys-Lomnitz-Strick and Andrade Creep Compliances

    NASA Astrophysics Data System (ADS)

    Hanyga, Andrzej

    2014-09-01

    Dispersion, attenuation and wavefronts in a class of linear viscoelastic media proposed by Strick and Mainardi (Geophys J R Astr Soc 69:415-429, 1982) and a related class of models due to Lomnitz, Jeffreys and Strick are studied by a new method due to the author. Unlike the previously studied explicit models of relaxation modulus or creep compliance, these two classes support propagation of discontinuities. Due to an extension made by Strick, either of these two classes of models comprise both viscoelastic solids and fluids. We also discuss the Andrade viscoelastic media. The Andrade media do not support discontinuity waves and exhibit the pedestal effect.

  4. Effects of fuel particle size and fission-fragment-enhanced irradiation creep on the in-pile behavior in CERCER composite pellets

    NASA Astrophysics Data System (ADS)

    Zhao, Yunmei; Ding, Shurong; Zhang, Xunchao; Wang, Canglong; Yang, Lei

    2016-12-01

    The micro-scale finite element models for CERCER pellets with different-sized fuel particles are developed. With consideration of a grain-scale mechanistic irradiation swelling model in the fuel particles and the irradiation creep in the matrix, numerical simulations are performed to explore the effects of the particle size and the fission-fragment-enhanced irradiation creep on the thermo-mechanical behavior of CERCER pellets. The enhanced irradiation creep effect is applied in the 10 μm-thick fission fragment damage matrix layer surrounding the fuel particles. The obtained results indicate that (1) lower maximum temperature occurs in the cases with smaller-sized particles, and the effects of particle size on the mechanical behavior in pellets are intricate; (2) the first principal stress and radial axial stress remain compressive in the fission fragment damage layer at higher burnup, thus the mechanism of radial cracking found in the experiment can be better explained.

  5. Characterization of C/Enhanced SiC Composite During Creep-Rupture Tests Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.

    2004-01-01

    An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.

  6. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate

    USGS Publications Warehouse

    Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.

    2013-01-01

    The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.

  7. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 3, phase 3: Full size heat shield data correlation and design criteria. [reentry

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    Analysis methods for predicting cyclic creep deflection in stiffened metal panel structures, were applied to full size panels. Results were compared with measured deflections from cyclic tests of thin gage L605, Rene' 41, and TDNiCr full size corrugation stiffened panels. A design criteria was then formulated for metallic thermal protection panels subjected to creep. A computer program was developed to calculate creep deflections.

  8. Oscillatory rheology and creep behavior of barley β-D-glucan concentrate dough: effect of particle size, temperature, and water content.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Al-Attar, Hasan

    2015-01-01

    Small amplitude oscillatory rheology and creep behavior of β-glucan concentrate (BGC) dough were studied as function of particle size (74, 105, 149, 297, and 595 μm), BGC particle-to-water ratio (1:4, 1:5, and 1:6), and temperature (25, 40, 55, 70, and 85 °C). The color intensity and protein content increased with decreasing particle size by creating more surface areas. The water holding capacity (WHC) and sediment volume fraction increased with increasing particle size from 74 to 595 μm, which directly influences the mechanical rigidity and viscoelasticity of the dough. The dough exhibited predominating solid-like behavior (elastic modulus, G' > viscous modulus, G″). A discrete retardation spectrum is employed to the creep data to obtain retardation time and compliance parameters, which varied significantly with particle size and the process temperature. Creep tests exhibited more pronounced effect on dough behavior compared to oscillatory measurement. The protein denaturation temperature was insignificantly increased with particle fractions from 107 to 110 °C. All those information could be helpful to identify the particle size range and WHC of BGC that could be useful to produce a β-d-glucan enriched designed food.

  9. Semi analytical model for the effective grain size profile in the mantle of the Earth: partitioning between diffusion and dislocation creep through the Earth's history

    NASA Astrophysics Data System (ADS)

    Rozel, A. B.; Golabek, G.; Thielmann, M.; Tackley, P.

    2015-12-01

    We present a semi analytical model of mantle convection able to predict the grain size profile of the present day Earth. Grain size evolution has been studied with increasing interest over the last decades but its behavior in both mantle and lithosphere remains largely misunderstood due to its non-linearity. Several recent studies suggest that it might play a fundamental role in localization of deformation in the lithosphere but we focus here on the mantle in which we also observe important processes.We propose a 1D compressible thermal convection model based on the equality of advective heat flux and the integral of viscous dissipation in the whole domain. Imposing mass conservation, our model is able to predict all rheological parameters able to produce both present day average surface velocity and lower mantle viscosity. Composite rheologies involving dislocation creep and grain size dependent diffusion creep are considered. The effect of phase transitions on the grain size is also explicitely taken into account. We present the family of solutions for the activation volume and the viscosity jump at the 660 discontinuity according to any initial choice of activation energy. The scaling laws for rheological parameters obtained are compared to self-consistent evolutionary simulations of mantle convection in 2D spherical annulus geometry considering composite rheologies. The transition between diffusion and dislocation creep due to the cooling of the Earth is illustrated in a set of numerical simulations starting from the physical conditions of the Archean.

  10. Increasing lengths of aftershock zones with depths of moderate-size earthquakes on the San Jacinto Fault suggests triggering of deep creep in the middle crust

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Peng, Zhigang

    2016-01-01

    Recent geodetic studies along the San Jacinto Fault (SJF) in southern California revealed a shallower locking depth than the seismogenic depth outlined by microseismicity. This disagreement leads to speculations that creeping episodes drive seismicity in the lower part of the seismogenic zone. Whether deep creep occurs along the SJF holds key information on how fault slips during earthquake cycle and potential seismic hazard imposed to southern California. Here we apply a matched filter technique to 10 M > 4 earthquake sequences along the SJF since 2000 and obtain more complete earthquake catalogues. We then systematic investigate spatio-temporal evolutions of these aftershock sequences. We find anomalously large aftershock zones for earthquakes occurred below the geodetically inferred locking depth (i.e. 11-12 km), while aftershock zones of shallower main shocks are close to expectations from standard scaling relationships. Although we do not observe clear migration of aftershocks, most aftershock zones do expand systematically with logarithmic time since the main shock. All the evidences suggest that aftershocks near or below the locking depth are likely driven by deep creep following the main shock. The presence of a creeping zone below 11-12 km may have significant implications on the maximum sizes of events in this region.

  11. Creeping eruption

    MedlinePlus

    ... JavaScript. Creeping eruption is a human infection with dog or cat hookworm larvae (immature worms). Causes Hookworm eggs are found in the stool of infected dogs and cats. When the eggs hatch, the larvae ...

  12. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  13. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  14. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  15. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  16. Effect of Specimen Thickness on the Creep Response of a Ni-Based Single Crystal Superalloy (PREPRINT)

    DTIC Science & Technology

    2012-08-01

    size dependent creep response is termed the thickness debit effect. To investigate the mechanism of the thickness debit effect, isothermal, constant... creep rate even at low strain levels and a decreased time to rupture but with no systematic dependence of the creep ... 15. SUBJECT TERMS creep ...predict a size independent creep strain rate and creep rupture strain. This size dependent creep response is termed the thickness debit effect. To

  17. Confining capillary waves to control aerosol droplet size from surface acoustic wave nebulisation

    NASA Astrophysics Data System (ADS)

    Nazarzadeh, Elijah; Reboud, Julien; Wilson, Rab; Cooper, Jonathan M.

    Aerosols play a significant role in targeted delivery of medication through inhalation of drugs in a droplet form to the lungs. Delivery and targeting efficiencies are mainly linked to the droplet size, leading to a high demand for devices that can produce aerosols with controlled sizes in the range of 1 to 5 μm. Here we focus on enabling the control of the droplet size of a liquid sample nebulised using surface acoustic wave (SAW) generated by interdigitated transducers on a piezoelectric substrate (lithium niobate). The formation of droplets was monitored through a high-speed camera (600,000 fps) and the sizes measured using laser diffraction (Spraytec, Malvern Ltd). Results show a wide droplet size distribution (between 0.8 and 400 μm), while visual observation (at fast frame rates) revealed that the large droplets (>100 μm) are ejected due to large capillary waves (80 to 300 μm) formed at the free surface of liquid due to leakage of acoustic radiation of the SAWs, as discussed in previous literature (Qi et al. Phys Fluids, 2008). To negate this effect, we show that a modulated structure, specifically with feature sizes, typically 200 μm, prevents formation of large capillary waves by reducing the degrees of freedom of the system, enabling us to obtain a mean droplet size within the optimum range for drug delivery (<10 μm). This work was supported by an EPSRC grant (EP/K027611/1) and an ERC Advanced Investigator Award (340117-Biophononics).

  18. Mechanism of spontaneous and triggered shallow creep events - Implications for shallow fault zone properties

    NASA Astrophysics Data System (ADS)

    Wei, M.; Kaneko, Y.; Liu, Y.; McGuire, J. J.

    2013-12-01

    of the recovery time depends on the size of triggered slip therefore the magnitude and duration of perturbation. Perturbations that temporally increase effective normal stress do not have significant influence on the timings of future creep events. We applied our theoretical models to the Salton Trough, California, where both shallow creep events and earthquakes are common. We systematically analyzed the level of dynamic and static triggering from nearby earthquakes for the last 30 years, including moderate (> M5) to large (>M6) earthquakes. By incorporating these triggering to our fault model, we are trying to understand 1) which mechanism is dominant, static or dynamic; 2) whether a critical threshold exists, like in the generic model with synthetic dynamic perturbations for the instantaneous triggering of shallow creep events in Salton Trough; 3) the effect of fault orientation with respect to the incoming seismic waves. By developing state-of-the-art models and constraining parameters with rich datasets from Southern California, we aim to transition from a conceptual understanding of fault creep towards a quantitative and predictive understanding of the physical mechanism of creep events on continental strike-slip faults.

  19. Creep Deformation of B2 Alumindes

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1991-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  20. Creep deformation of B2 aluminides

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1992-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  1. Effect of a RF Wave on Ion Cyclotron Instability in Size Distributed Impurities Containing Plasmas

    SciTech Connect

    Sharma, A. K.; Tripathi, V. K.; Annou, R.

    2008-09-07

    The effect of a large amplitude lower hybrid wave on current driven ion cyclotron waves in a dusty plasma where dust grains are size distributed is examined. The influence of the lower hybrid wave on the stabilization of the instability is studied. The efficacy of rf is dust density dependent.

  2. Features controlling the early stages of creep deformation of Waspaloy

    NASA Technical Reports Server (NTRS)

    Ferrari, A.; Wilson, D. J.

    1974-01-01

    A model has been presented for describing primary and second stage creep. General equations were derived for the amount and time of primary creep. It was shown how the model can be used to extrapolate creep data. Applicability of the model was demonstrated for Waspaloy with gamma prime particle sizes from 75 - 1000 A creep tested in the temperature range 1000 - 1400 F (538 - 760 C). Equations were developed showing the dependence of creep parameters on dislocation mechanism, gamma prime volume fraction and size.

  3. Deformation by grain boundary sliding and slip creep versus diffusional creep

    SciTech Connect

    Ruano, O A; Sherby, O D; Wadsworth, J

    1998-11-04

    A review is presented of the debates between the present authors and other investigators regarding the possible role of diffusional creep in the plastic flow of polycrystalline metals at low stresses. These debates are recorded in eleven papers over the past seventeen years. ln these papers it has been shown that the creep rates of materials in the so-called "diffusional creep region" are almost always higher than those predicted by the diffusional creep theory. Additionally, the predictions of grain size effects and stress exponents from diffusional creep theory are often not found in the experimental data. Finally, denuded zones have been universally considered to be direct evidence for diffusional creep; but, those reported in the literature are shown to be found only under conditions where a high stress exponent is observed. Also, the locations of the denuded zones do not match those predicted. Alternative mechanisms are described in which diffusion-controlled dislocation creep and/or grain boundary sliding are the dominant deformation processes in low-stress creep. It is proposed that denuded zones are formed by stress-directed grain boundary migration with the precipitates dissolving in the moving grain boundaries. The above observations have led us to the conclusion that grain boundary sliding and slip creep are in fact the principal mechanisms for observations of plastic flow in the so-called "diffusional creep regions".

  4. Creep of plasma sprayed zirconia

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.

    1982-01-01

    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding.

  5. Solitary dust sound waves in a plasma with two-temperature ions and distributed grain size

    SciTech Connect

    Prudskikh, V. V.

    2009-01-15

    The propagation of weakly nonlinear dust sound waves in a dusty plasma containing two different-temperature ion species is explored. The nonlinear equations describing both the quadratic and cubic plasma nonlinearities are derived. It is shown that the properties of dust sound waves depend substantially on the grain size distribution. In particular, for solitary dust sound waves with a positive potential to exist in a plasma with distributed grain size, it is necessary that the difference between the temperatures of two ion species be larger than that in the case of equal-size grains.

  6. Endochronic theory of transient creep and creep recovery

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Chen, L.

    1979-01-01

    Short time creep and creep recovery were investigated by means of the endochronic theory of viscoplasticity. It is shown that the constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation can all ber derived from the general constitutive equation by imposing appropriate constraints. In this unified approach, the effect of strain-hardening is naturally accounted for when describing creep and creep recovery. The theory predicts with reasonable accuracy the creep and creep recovery behaviors for Aluminum 1100-0 at 150 C. It was found that the strain-rate history at prestraining stage affects the subsequent creep. A critical stress was also established for creep recovery. The theory predicts a forward creep for creep recovery stress greater than the critical stress. For creep recovery stress less than the critical stress, the theory then predicts a normal strain recovery.

  7. Magnetic field effects on nonlocal wave dispersion characteristics of size-dependent nanobeams

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-01-01

    In this paper, wave propagation analysis of functionally graded size-dependent nanobeams embedded in elastic foundation exposed to a longitudinal magnetic field is conducted based on nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also the presence of cutoff and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.

  8. Probing the size of extra dimensions with gravitational wave astronomy

    SciTech Connect

    Yagi, Kent; Tanahashi, Norihiro; Tanaka, Takahiro

    2011-04-15

    In the Randall-Sundrum II braneworld model, it has been conjectured, according to the AdS/CFT correspondence, that a brane-localized black hole (BH) larger than the bulk AdS curvature scale l cannot be static, and it is dual to a four-dimensional BH emitting Hawking radiation through some quantum fields. In this scenario, the number of the quantum field species is so large that this radiation changes the orbital evolution of a BH binary. We derived the correction to the gravitational waveform phase due to this effect and estimated the upper bounds on l by performing Fisher analyses. We found that the Deci-Hertz Interferometer Gravitational Wave Observatory and the Big Bang Observatory (DECIGO/BBO) can give a stronger constraint than the current tabletop result by detecting gravitational waves from small mass BH/BH and BH/neutron star (NS) binaries. Furthermore, DECIGO/BBO is expected to detect 10{sup 5} BH/NS binaries per year. Taking this advantage, we find that DECIGO/BBO can actually measure l down to l=0.33 {mu}m for a 5 yr observation if we know that binaries are circular a priori. This is about 40 times smaller than the upper bound obtained from the tabletop experiment. On the other hand, when we take eccentricities into binary parameters, the detection limit weakens to l=1.5 {mu}m due to strong degeneracies between l and eccentricities. We also derived the upper bound on l from the expected detection number of extreme mass ratio inspirals with LISA and BH/NS binaries with DECIGO/BBO, extending the discussion made recently by McWilliams [Phys. Rev. Lett. 104, 141601 (2010)]. We found that these less robust constraints are weaker than the ones from phase differences.

  9. Mechanical Limits to Size in Wave-Swept Organisms.

    DTIC Science & Technology

    1983-11-10

    predation on Daphnia by rainbow trout and yellow perch. Transactions of the American Fisheries Society. 96:1-10. Galilei , Galileo (1638) Discorsie e...nature (.., Galilei 1638, Thompson 1917, Haldane 1928). Various patterns have been noted in the ecological roles of orgenisms of different sizes...skeletons would deflect too much, break, buckle, or be too bulky to be moved (e.g., Galilei 1638, Haldane 1928, Gould 1966, Currey 1970, MacMahon 1973

  10. Prenatal thalamic waves regulate cortical area size prior to sensory processing.

    PubMed

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M; López-Bendito, Guillermina

    2017-02-03

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing.

  11. Brillouin light scattering from quantized spin waves in micron-size magnetic wires

    NASA Astrophysics Data System (ADS)

    Jorzick, J.; Demokritov, S. O.; Mathieu, C.; Hillebrands, B.; Bartenlian, B.; Chappert, C.; Rousseaux, F.; Slavin, A. N.

    1999-12-01

    An experimental study of spin-wave quantization in arrays of micron-size magnetic Ni80Fe20 wires by means of Brillouin light-scattering spectroscopy is reported. Dipolar-dominated Damon-Eshbach spin-wave modes laterally quantized in a single wire with quantized wave vector values determined by the width of the wire are studied. The frequency splitting between quantized modes, which decreases with increasing mode number, depends on the wire sizes and is up to 1.5 GHz. The transferred wave vector interval, where each mode is observed, is calculated using a light-scattering theory for confined geometries. The frequencies of the modes are calculated, taking into account finite-size effects. The results of the calculations are in a good agreement with the experimental data.

  12. Prenatal thalamic waves regulate cortical area size prior to sensory processing

    PubMed Central

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina

    2017-01-01

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854

  13. A probabilistic crack size quantification method using in-situ Lamb wave test and Bayesian updating

    NASA Astrophysics Data System (ADS)

    Yang, Jinsong; He, Jingjing; Guan, Xuefei; Wang, Dengjiang; Chen, Huipeng; Zhang, Weifang; Liu, Yongming

    2016-10-01

    This paper presents a new crack size quantification method based on in-situ Lamb wave testing and Bayesian method. The proposed method uses coupon test to develop a baseline quantification model between the crack size and damage sensitive features. In-situ Lamb wave testing data on actual structures are used to update the baseline model parameters using Bayesian method to achieve more accurate crack size predictions. To demonstrate the proposed method, Lamb wave testing on simple plates with artificial cracks of different sizes is performed using surface-bonded piezoelectric wafers, and the data are used to obtain the baseline model. Two damage sensitive features, namely, the phase change and normalized amplitude are identified using signal processing techniques and used in the model. To validate the effectiveness of the method, the damage data from an in-situ fatigue testing on a realistic lap-joint component are used to update the baseline model using Bayesian method.

  14. Physical hydrodynamic propulsion model study on creeping viscous flow through a ciliated porous tube

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Butt, Adil Wahid; Tripathi, Dharmendra; Bég, O. Anwar

    2017-03-01

    The present investigation focusses on a mathematical study of creeping viscous flow induced by metachronal wave propagation in a horizontal ciliated tube containing porous media. Creeping flow limitations are imposed, i.e. inertial forces are small compared to viscous forces and therefore a very low Reynolds number (Re ≪ 1) is taken into account. The wavelength of metachronal wave is also considered to be very large for cilia movement. The physical problem is linearized and exact solutions are developed for the differential equation problem. Mathematica software is used to compute and illustrate numerical results. The influence of slip parameter and Darcy number on velocity profile, pressure gradient and trapping of bolus are discussed with the aid of graphs. It is found that with increasing magnitude of the slip parameter, the trapped bolus inside the streamlines increases in size. The study is relevant to biological propulsion of medical micromachines in drug delivery.

  15. Pure climb creep mechanism drives flow in Earth's lower mantle.

    PubMed

    Boioli, Francesca; Carrez, Philippe; Cordier, Patrick; Devincre, Benoit; Gouriet, Karine; Hirel, Pierre; Kraych, Antoine; Ritterbex, Sebastian

    2017-03-01

    At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance to plastic shear exhibited by ringwoodite and bridgmanite on creep mechanisms under mantle conditions. To evaluate the consequences of this effect, we model dislocation creep by dislocation dynamics. The calculation yields to an original dominant creep behavior for lower mantle silicates where strain is produced by dislocation climb, which is very different from what can be activated under high stresses under laboratory conditions. This mechanism, named pure climb creep, is grain-size-insensitive and produces no crystal preferred orientation. In comparison to the previous considered diffusion creep mechanism, it is also a more efficient strain-producing mechanism for grain sizes larger than ca. 0.1 mm. The specificities of pure climb creep well match the seismic anisotropy observed of Earth's lower mantle.

  16. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  17. Spin wave excitation in yttrium iron garnet films with micron-sized antennas

    NASA Astrophysics Data System (ADS)

    Khivintsev, Y. V.; Filimonov, Y. A.; Nikitov, S. A.

    2015-02-01

    In this paper, we explore spin waves excitation in monolithic structures based on yttrium iron garnet (YIG) films with micro-sized antennas. Samples based on plain and patterned YIG film were fabricated and tested for tangential bias field geometries. We observed spin wave excitation and propagation with wave numbers up to 3.5 × 104 rad/cm. The corresponding wavelength is thus shorter more than by one order of magnitude compared to previous experiments with such films. For the sample with a periodic array of nanotrenches, we observed the effect of the shape anisotropy resulting in the shift of the spin wave propagation band in comparison to the unpatterned YIG film. Our results are very promising for the exploitation of short spin waves in YIG and provide great opportunity for significant miniaturization of YIG film based microwave devices.

  18. Spin wave excitation in yttrium iron garnet films with micron-sized antennas

    SciTech Connect

    Khivintsev, Y. V. Filimonov, Y. A.; Nikitov, S. A.

    2015-02-02

    In this paper, we explore spin waves excitation in monolithic structures based on yttrium iron garnet (YIG) films with micro-sized antennas. Samples based on plain and patterned YIG film were fabricated and tested for tangential bias field geometries. We observed spin wave excitation and propagation with wave numbers up to 3.5 × 10{sup 4} rad/cm. The corresponding wavelength is thus shorter more than by one order of magnitude compared to previous experiments with such films. For the sample with a periodic array of nanotrenches, we observed the effect of the shape anisotropy resulting in the shift of the spin wave propagation band in comparison to the unpatterned YIG film. Our results are very promising for the exploitation of short spin waves in YIG and provide great opportunity for significant miniaturization of YIG film based microwave devices.

  19. Creep Damage Analysis of a Lattice Truss Panel Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Li, Shaohua; Luo, Yun; Xu, Shugen

    2017-01-01

    The creep failure for a lattice truss sandwich panel structure has been predicted by finite element method (FEM). The creep damage is calculated by three kinds of stresses: as-brazed residual stress, operating thermal stress and mechanical load. The creep damage at tensile and compressive loads have been calculated and compared. The creep rate calculated by FEM, Gibson-Ashby and Hodge-Dunand models have been compared. The results show that the creep failure is located at the fillet at both tensile and creep loads. The damage rate at the fillet at tensile load is 50 times as much as that at compressive load. The lattice truss panel structure has a better creep resistance to compressive load than tensile load, because the creep and stress triaxiality at the fillet has been decreased at compressive load. The maximum creep strain at the fillet and the equivalent creep strain of the panel structure increase with the increase of applied load. Compared with Gibson-Ashby model and Hodge-Dunand models, the modified Gibson-Ashby model has a good prediction result compared with FEM. However, a more accurate model considering the size effect of the structure still needs to be developed.

  20. Mechanical behavior of low porosity carbonate rock: from brittle creep to ductile creep

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2013-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this experimental study, we focus on the mechanical behavior of a low porosity (9%) white Tavel (France) carbonate rock (>98% calcite) at P-Q conditions beyond the elastic domain. It has been shown that in sandstones composed of quartz, cracks are developing under these conditions. However, in carbonates, calcite minerals can meanwhile also exhibit microplasticity. The samples were deformed in the triaxial cell of the Ecole Normale Superieure de Paris at effective confining pressures ranging from 35 MPa to 85 MPa and room temperature. Experiments were carried on dry and water saturated samples to explore the role played by the pore fluids. Time dependency was investigated by a creep steps methodology: at each step, differential stress was increased rapidly and kept constant for at least 24h. During these steps elastic wave velocities (P and S) and permeability were measured continuously. Our results show two different creep behaviors: (1) brittle creep is observed at low confining pressures, whereas (2) ductile creep is observed at higher confining pressures. These two creep behaviors have a different signature in term of elastic wave velocities and permeability changes. Indeed, in the brittle domain, the primary creep is associated with a decrease of elastic wave velocities and an increase of permeability, and no secondary creep is observed. In the ductile domain, the primary creep

  1. Creep behavior of tantalum alloy T-222 at 1365 to 1700 K

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1974-01-01

    High vacuum creep tests on the tantalum T-222 alloy at 0.42 to 0.52 T sub m show that the major portion of the creep curves, up to at least 1 percent strain, can be best described by an increasing creep rate, with strain varying linearly with time. Correlation and extrapolation of the creep curves on the basis of increasing creep rates results in more accurate engineering design data than would use of approximated linear rates. Based on increasing creep rates, the stress for 1 percent strain in 10,000 hours for T-222 is about four times greater than for the Ta-10W alloy. Increasing the grain size results in increased creep strength. Thermal aging prior to testing caused precipitation of the hexagonal close packed (Hf,Ta) sub 2 C, which initially increased creep strength. However, this dimetal carbide was converted during creep testing to face-centered cubic (Hf,Ta)C.

  2. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    NASA Astrophysics Data System (ADS)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  3. On the Detection of Creep Damage in a Directionally Solidified Nickel Base Superalloy Using Nonlinear Ultrasound

    NASA Astrophysics Data System (ADS)

    Kang, Jidong; Qu, Jianmin; Saxena, Ashok; Jacobs, Larry

    2004-02-01

    A limited experimental study was conducted to investigate the feasibility of using nonlinear ultrasonic technique for assessing the remaining creep life of a directionally solidified (DS) nickel base superalloy. Specimens of this alloy were subjected to creep testing at different stress levels. Creep tests were periodically interrupted at different creep life fractions to conduct transmission ultrasonic tests to explore if a correlation exists between the higher order harmonics and the accumulated creep damage in the samples. A strong and unique correlation was found between the third order harmonic of the transmitted wave and the exhausted creep life fraction. Preliminary data also show an equally strong correlation between plastic deformation accumulated during monotonic loading and the second harmonic of the transmitted ultrasonic wave while no correlation was found between plastic strain and the third order harmonic. Thus, the nonlinear ultrasonic technique can potentially distinguish between damage due to plastic deformation and creep deformation.

  4. Biaxial Creep Specimen Fabrication

    SciTech Connect

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  5. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  6. Ventricular size and isotope cisternography in patients with acute transient rises of intracranial pressure (plateau waves)

    SciTech Connect

    Hayashi, M.; Kobayashi, H.; Fujii, H.; Yamamoto, S.

    1982-12-01

    The size of the ventricular system and cerebrospinal fluid (CSF) flow were determined in 17 patients with plateau waves, using computerized tomography (CT) and isotope cisternography. Some patients had increased intracranial pressure (ICP) resulting from space-occupying lesions and other causes, and some had normal ICP observed in normal-pressure hydrocephalus. The size and shape of the ventricular system during plateau wave phases as ascertained by CT showed little or no change as compared with its size and shape during the interval phases between two waves. It was also noticed that, in patients with supratentorial masses, the midline shift showed no difference in degree between the two phases. These findings suggest that there is little change in the intracranial CSF volume between the two phases, that is, there is little compensatory outflow of the intracranial CSF for the ICP variations. These results may also support the assumption that the plateau waves are not caused by an intermittent obstruction of the CSF pathways. Isotope cisternography showed a marked delay of clearance of radioactivity from the intracranial CSF in 15 patients. The cisternographic pattern in patients with increased ICP and the absence of ventricular dilatation demonstrated an abnormally large accumulation of radioactivity over the cerebral convexities, and the pattern in patients with normal-pressure hydrocephalus showed complete obstruction of the subarachnoid space over both cerebral convexities. These observations suggest that, in patients with plateau waves, there is a marked delay in CSF absorption. The authors postulate that the reduction of CSF absorption may create a critically tight condition within the cranial cavity and act as a contributory factor in the development of the plateau waves.

  7. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  8. Hayward fault: Large earthquakes versus surface creep

    USGS Publications Warehouse

    Lienkaemper, James J.; Borchardt, Glenn; Borchardt, Glenn; Hirschfeld, Sue E.; Lienkaemper, James J.; McClellan, Patrick H.; Williams, Patrick L.; Wong, Ivan G.

    1992-01-01

    The Hayward fault, thought a likely source of large earthquakes in the next few decades, has generated two large historic earthquakes (about magnitude 7), one in 1836 and another in 1868. We know little about the 1836 event, but the 1868 event had a surface rupture extending 41 km along the southern Hayward fault. Right-lateral surface slip occurred in 1868, but was not well measured. Witness accounts suggest coseismic right slip and afterslip of under a meter. We measured the spatial variation of the historic creep rate along the Hayward fault, deriving rates mainly from surveys of offset cultural features, (curbs, fences, and buildings). Creep occurs along at least 69 km of the fault's 82-km length (13 km is underwater). Creep rate seems nearly constant over many decades with short-term variations. The creep rate mostly ranges from 3.5 to 6.5 mm/yr, varying systemically along strike. The fastest creep is along a 4-km section near the south end. Here creep has been about 9mm/yr since 1921, and possibly since the 1868 event as indicated by offset railroad track rebuilt in 1869. This 9mm/yr slip rate may approach the long-term or deep slip rate related to the strain buildup that produces large earthquakes, a hypothesis supported by geoloic studies (Lienkaemper and Borchardt, 1992). If so, the potential for slip in large earthquakes which originate below the surficial creeping zone, may now be 1/1m along the southern (1868) segment and ≥1.4m along the northern (1836?) segment. Substracting surface creep rates from a long-term slip rate of 9mm/yr gives present potential for surface slip in large earthquakes of up to 0.8m. Our earthquake potential model which accounts for historic creep rate, microseismicity distribution, and geodetic data, suggests that enough strain may now be available for large magnitude earthquakes (magnitude 6.8 in the northern (1836?) segment, 6.7 in the southern (1868) segment, and 7.0 for both). Thus despite surficial creep, the fault may be

  9. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Powers, L. M.; Jadaan, O. M.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilized commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the CARES/CREEP (Ceramics Analysis and Reliability Evaluation of Structures/CREEP) integrated design programs, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benechmark problems and engine components are included.

  10. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Powers, L. M.; Jadaan, O. M.; Gyekenyesi, J. P.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural application such as in advanced turbine engine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilizes commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life, of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the Ceramics Analysis and Reliability Evaluation of Structures/CREEP (CARES/CREEP) integrated design program, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benchmark problems and engine components are included.

  11. Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Yu, Pengfei; Cheng, Hu; Zhang, Huan; Diao, Haoyan; Shi, Yunzhu; Chen, Bilin; Chen, Peiyong; Feng, Rui; Bai, Jie; Jing, Qin; Ma, Mingzhen; Liaw, P. K.; Li, Gong; Liu, Riping

    2016-12-01

    Nanoindentation creep behavior was studied on a coarse-grained Al0.3CoCrFeNi high-entropy alloy with a single face-centered cubic structure. The effects of the indentation size and loading rate on creep behavior were investigated. The experimental results show that the hardness, creep depth, creep strain rate, and stress exponent are all dependent on the holding load and loading rate. The creep behavior shows a remarkable indentation size effect at different maximum indentation loads. The dominant creep mechanism is dislocation creep at high indentation loads and self-diffusion at low indentation loads. An obvious loading rate sensitivity of creep behavior is found under different loading rates for the alloy. A high loading rate can lead to a high strain gradient, and numerous dislocations emerge and entangle together. Then during the holding time, a large creep deformation characteristic with a high stress exponent will happen.

  12. Size distributions of sprays produced by violent wave impacts on vertical sea walls

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Ingram, D. M.

    2016-10-01

    When a steep, breaking wave hits a vertical sea wall in shallow water, a flip-through event may occur, leading to the formation of an up-rushing planar jet. During such an event, a jet of water is ejected at a speed many times larger than the approaching wave's celerity. As the jet rises, the bounded fluid sheet ruptures to form vertical ligaments which subsequently break up to form droplets, creating a polydisperse spray. Experiments in the University of Hokkaido's 24 m flume measured the resulting droplet sizes using image analysis of high-speed video. Consideration of the mechanisms forming spray droplets shows that the number density of droplet sizes is directly proportional to a power p of the droplet radius: where p=-5/2 during the early break-up stage and p=-2 for the fully fragmented state. This was confirmed by experimental observations. Here, we show that the recorded droplet number density follows the lognormal probability distribution with parameters related to the elapsed time since the initial wave impact. This statistical model of polydisperse spray may provide a basis for modelling droplet advection during wave overtopping events, allowing atmospheric processes leading to enhanced fluxes of mass, moisture, heat and momentum in the spray-mediated marine boundary layer over coasts to be described.

  13. Size distributions of sprays produced by violent wave impacts on vertical sea walls.

    PubMed

    Watanabe, Y; Ingram, D M

    2016-10-01

    When a steep, breaking wave hits a vertical sea wall in shallow water, a flip-through event may occur, leading to the formation of an up-rushing planar jet. During such an event, a jet of water is ejected at a speed many times larger than the approaching wave's celerity. As the jet rises, the bounded fluid sheet ruptures to form vertical ligaments which subsequently break up to form droplets, creating a polydisperse spray. Experiments in the University of Hokkaido's 24 m flume measured the resulting droplet sizes using image analysis of high-speed video. Consideration of the mechanisms forming spray droplets shows that the number density of droplet sizes is directly proportional to a power p of the droplet radius: where p=-5/2 during the early break-up stage and p=-2 for the fully fragmented state. This was confirmed by experimental observations. Here, we show that the recorded droplet number density follows the lognormal probability distribution with parameters related to the elapsed time since the initial wave impact. This statistical model of polydisperse spray may provide a basis for modelling droplet advection during wave overtopping events, allowing atmospheric processes leading to enhanced fluxes of mass, moisture, heat and momentum in the spray-mediated marine boundary layer over coasts to be described.

  14. Nonlinear, Local Kinetic Damping of Finite-Size Plasma Waves Relevant to Stimulated Raman Scattering

    NASA Astrophysics Data System (ADS)

    Mori, Warren; Fahlen, Jay; Winjum, Benjamin; Grismayer, Thomas; Decyk, Viktor

    2009-11-01

    Computer simulations of stimulated Raman scattering (SRS) indicate that the instability is bursty in time and space, leading to finite-size plasma waves in both the longitudinal and transverse directions. Using particle-in-cell (PIC) simulations with an external, ponderomotive impulse driver, we present the results of detailed study of the nonlinear behavior of finite-sized plasma waves in order to better understand the long-time behavior of SRS reflectivities. In one dimension, we present recently published results (Fahlen et al., PRL 102, 245002 (2009)) showing that finite-length plasma waves erode from the rear edge as new resonant particles enter and locally damp the packet. In multiple dimensions, recent results show that finite-width plasma waves localize about their axis due primarily to local, kinetic damping at the edges. The simulations are performed using a 1D and 2D electrostatic PIC code, and also using a 2D Darwin PIC code. This work was supported by DOE under Grant Nos. DE-FG52-03-NA00065, DE-FG52-06NA26195, and DE-FG02-03ER54721.

  15. ORNL irradiation creep facility

    SciTech Connect

    Reiley, T.C.; Auble, R.L.; Beckers, R.M.; Bloom, E.E.; Duncan, M.G.; Saltmarsh, M.J.; Shannon, R.H.

    1980-09-01

    A machine was developed at ORNL to measure the rates of elongation observed under irradiation in stressed materials. The source of radiation is a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). This choice allows experiments to be performed which simulate the effects of fast neutrons. A brief review of irradiation creep and experimental constraints associated with each measurement technique is given. Factors are presented which lead to the experimental choices made for the Irradiation Creep Facility (ICF). The ICF consists of a helium-filled chamber which houses a high-precision mechanical testing device. The specimen to be tested must be thermally stabilized with respect to the temperature fluctuations imposed by the particle beam which passes through the specimen. Electrical resistance of the specimen is the temperature control parameter chosen. Very high precision in length measurement and temperature control are required to detect the small elongation rates relevant to irradiation creep in the test periods available (approx. 1 day). The apparatus components and features required for the above are presented in some detail, along with the experimental procedures. The damage processes associated with light ions are discussed and displacement rates are calculated. Recent irradiation creep results are given, demonstrating the suitability of the apparatus for high resolution experiments. Also discussed is the suitability of the ICF for making high precision thermal creep measurements.

  16. Subsurface Droplet Size Distribution generated as breaking waves entrain an oil slick

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Miller, Jesse; Katz, Joseph

    2016-11-01

    Breaking waves are a primary mechanism for entraining and dispersing oil spills. Knowledge of the resulting droplet size distribution is crucial for predicting the transport and fate of this oil. In this on-going experimental study, a controlled oil slick of varying viscosity (μd) , density (ρd), interfacial tension (σ) , and thickness δ = 0.5mm are entrained by waves of varying energy (Ew) . The changes to droplet size over time, from seconds to hours, are measured at several locations using multi-resolution holography, which covers sizes ranging from μm to mm. Using dispersants to reduce σ, the Webber number, We =Ew δ / σ , and Ohnesorge number, Oh =μd /(ρd δσ) 0 . 5 , are varied from 6 to 813 and from 0.09 to 0.95, respectively. Droplets smaller than the turbulence scale (2-30 μm - diameter), are generated by "micro-threading". Their size distribution becomes steeper and their total number increase substantially with decreasing interfacial tension. For slopes smaller than -3, measured for σ around 10-1 mN/m, the volumetric size distribution decreases with diameter, i.e. most of the oil breaks into micron-scale droplets. For high interfacial tension oil, the concentration of small droplets increases with wave energy, but this effect diminishes as σ decreases. Droplets larger than 100 μm are generated by turbulent shear. Hence, their number is impacted by μd and Ew. Increasing We from 6 to 15 (Oh from 0.09 to 2.95) increases the initial number of droplets by up to 5 times, but the distribution slopes remain largely similar. Supported by Gulf of Mexico Research Initiative (GoMRI).

  17. Structural-phase state and creep of mixed nitride fuel

    NASA Astrophysics Data System (ADS)

    Konovalov, I. I.; Tarasov, B. A.; Glagovsky, E. M.

    2016-04-01

    By the analysis of thermal creep data in conjunction with structural-phase state the most likely mechanisms of UN creep are considered. An equation relating the thermal and radiation creep of nitride fuel with such important parameters as plutonium content, porosity, grain size, the content of impurities of transition metals and oxygen, the carbon content has been suggested. At stationary operating parameters in reactor the creep of nitride fuel with technical purity is defined by the thermal component at mechanism of intergranular slip and by the radiation component, which plays a significant role at temperatures below 1100°C. Both types of creep in a first approximation have a linear dependence on the stress.

  18. New creep-fatigue damage model based on the frequency modified strain range method

    SciTech Connect

    Kim, Y.J.; Seok, C.S.; Park, J.J.

    1996-12-01

    For mechanical systems operating at high temperature, damage due to the interaction effect of creep and fatigue plays an important role. The objective of this paper is to propose a modified creep-fatigue damage model which separately analyzes the pure creep damage due to the hold time and the creep-fatigue interaction damage during the startup and the shutdown period. The creep damage was calculated by the general creep damage equation and the creep-fatigue interaction damage was calculated by the modified equation which is based on the frequency modified strain range method with strain rate term. In order to verify the proposed model, a series of high temperature low cycle fatigue tests were performed. The test specimens were made from Inconel-718 superalloy and the test parameters were wave form and hold time. A good agreement between the predicted lives based on the proposed model and experimentally obtained ones was obtained.

  19. Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the

  20. Creep degradation in oxide-dispersion-strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    Oxide dispersion strengthened Ni-base alloys in wrought bar form are studied for creep degradation effects similar to those found in thin gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and three types of advanced ODS-NiCrAl alloys. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, the appearance of dispersoid-free bands, grain boundary cavitation, and internal oxidation in the microstructure were interpreted as creep degradation effects. This work showed that many ODS alloys are subject to creep damage. Degradation of tensile properties occurred after very small amounts of creep strain, ductility being the most sensitive property. All the ODS alloys which were creep damaged possessed a large grain size. Creep damage appears to have been due to diffusional creep which produced dispersoid-free bands around boundaries acting as vacancy sources. Low angle and possibly twin boundaries acted as vacancy sources.

  1. Cavitation contributes substantially to tensile creep in silicon nitride

    SciTech Connect

    Luecke, W.E.; Wiederhorn, S.M.; Hockey, B.J.; Krause, R.F. Jr.; Long, G.G.

    1995-08-01

    During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress ({dot {var_epsilon}} {proportional_to} {sigma}{sup n}, 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains t slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution-reprecipitation of silicon nitride.

  2. Micron-Sized Particles Detected in the Vicinity of Jupiter by the Voyager Plasma Wave Instruments

    NASA Technical Reports Server (NTRS)

    Tsintikidis, D.; Gurnett, D. A.; Kurth, W. S.; Granroth, L. J.

    1996-01-01

    Wideband waveform data obtained by the plasma wave instruments onboard the Voyager 1 and 2 spacecraft have been used to study micron-sized dust particles in the vicinity of Jupiter. The technique used was developed during the flybys of Saturn, Uranus, and Neptune, and makes use of the fact that a particle striking the spacecraft at 10-20 km/s causes a voltage pulse in the plasma wave receiver. The waveform of the voltage pulse is much different than the waveform of plasma waves and provides a highly reliable method of detecting micron-sized dust particles. Although the dust impact rate observed in the vicinity of Jupiter is much lower than the rates at Saturn, Uranus, and Neptune, the particles are easily detectable. Approximately 1200 48-second frames of wideband waveform data were examined in the vicinity of Jupiter. Dust impact signatures were found in approximately 20% of these frames. The peak impact rates are about 1 impact per second, and the peak number densities are about 10(exp -5) m(exp -3). Most of the impacts occurred near the equatorial plane at radial distances less than about 35 R(sub j) from Jupiter. Analysis of the detection threshold indicates that the particles have masses greater than 10(exp -11) g, which corresponds to particles with diameters of a few micrometers or larger.

  3. Video rate passive millimeter-wave imager utilizing optical upconversion with improved size, weight, and power

    NASA Astrophysics Data System (ADS)

    Martin, Richard D.; Shi, Shouyuan; Zhang, Yifei; Wright, Andrew; Yao, Peng; Shreve, Kevin P.; Schuetz, Christopher A.; Dillon, Thomas E.; Mackrides, Daniel G.; Harrity, Charles E.; Prather, Dennis W.

    2015-05-01

    In this presentation we will discuss the performance and limitations of our 220 channel video rate passive millimeter wave imaging system based on a distributed aperture with optical upconversion architecture. We will cover our efforts to reduce the cost, size, weight, and power (CSWaP) requirements of our next generation imager. To this end, we have developed custom integrated circuit silicon-germanium (SiGe) low noise amplifiers that have been designed to efficiently couple with our high performance lithium niobate upconversion modules. We have also developed millimeter wave packaging and components in multilayer liquid crystal polymer (LCP) substrates which greatly improve the manufacturability of the upconversion modules. These structures include antennas, substrate integrated waveguides, filters, and substrates for InP and SiGe mmW amplifiers.

  4. Particle size-segregation and roll waves in geophysical mass flows

    NASA Astrophysics Data System (ADS)

    Viroulet, Sylvain; Edwards, Andrew; Kokelaar, Peter; Gray, Nico

    2014-05-01

    Particle size-segregation in geophysical mass flows can have a profound feedback on their local mobility, leading to the formation of resistive bouldery flow fronts, which spontaneously degenerate into leveed channels [1,2] that constrain the flow and enhance run-out. By including particle segregation [3], a composition dependent frictional coupling can be incorporated into depth-averaged geophysical mass flow models to capture both levee formation and flow fingering [4]. However, the channel wavelengths are crucially dependent on the underlying rheology of the flow, which is a second order effect that is still not fully understood. In this paper we analyze a simpler, but closely related, mono-disperse flow in which the granular rheology plays a crucial part in the formation, growth and coarsening of roll waves. Two regimes have been found experimentally:- (i) a classical continuous roll wave regime, and (ii) a novel discrete roll wave regime where the troughs between the wave peaks become completely stationary. This latter behaviour has been observed in debris flows in Fully, Switzerland, and the Jiangjia Gully, China. Grain-size segregation and levee formation in geophysical mass flows, Johnson, C.G., Kokelaar, B.P., Iverson, R.M., Logan, M., LaHusen, R.G. & Gray, J.M.N.T. (2012) J. Geophys. Res. 117, F01032. Fine-grained linings of leveed channels facilitate runout of granular flows, Kokelaar, B.P., Graham, R.L., Gray, J.M.N.T. & Vallance, J.W. (2014) Earth Planet. Sci. Lett. 385, 172-180. Large particle segregation, transport and accumulation in granular free-surface flows. Gray, J.M.N.T. & Kokelaar, B.P. (2010) J. Fluid Mech. 652, 105-137. Segregation-induced fingering instabilities in granular free surface flows, Woodhouse, M.J., Thornton, A.R., Johnson, C.G., Kokelaar, B.P. & Gray, J.M.N.T. (2012) J. Fluid Mech. 709, 543-580.

  5. Oil Droplet Size Distribution and Optical Properties During Wave Tank Simulated Oil Spills

    NASA Astrophysics Data System (ADS)

    Conmy, R. N.; Venosa, A.; Courtenay, S.; King, T.; Robinson, B.; Ryan, S.

    2013-12-01

    Fate and transport of spilled petroleum oils in aquatic environments is highly dependent upon oil droplet behavior which is a function of chemical composition, dispersibility (natural and chemically-enhanced) and droplet size distribution (DSD) of the oil. DSD is influenced by mixing energy, temperature, salinity, pressure, presence of dissolved and particulate materials, flow rate of release, and application of dispersants. To better understand DSD and droplet behavior under varying physical conditions, flask-scale experiments are often insufficient. Rather, wave tank simulations allow for scaling to field conditions. Presented here are experiment results from the Bedford Institute of Oceanography wave tank facility, where chemically-dispersed (Corexit 9500; DOR = 1:20) Louisiana Sweet crude, IFO-120 and ANS crude oil were exposed to mixing energies to achieve dispersant effectiveness observed in the field. Oil plumes were simulated, both surface and subsea releases with varying water temperature and flow rate. Fluorometers (Chelsea Technologies Group AQUATracka, Turner Designs Cyclops, WET Labs Inc ECO) and particle size analyzers (Sequoia LISST) were used to track the dispersed plumes in the tank and characterize oil droplets. Sensors were validated with known oil volumes (down to 300 ppb) and measured Total Petroleum Hydrocarbons (TPH) and Benzene-Toluene-Ethylbenzene-Xylene (BTEX) values. This work has large implications for tracking surface and deep sea oil plumes with fluorescence and particle size analyzers, improved weathering and biodegradation estimates, and understanding the fate and transport of spill oil.

  6. Triggered dynamics in a model of different fault creep regimes

    PubMed Central

    Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina

    2014-01-01

    The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397

  7. Degenerate four-wave mixing from layered semiconductor clusters in the quantum size regime

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Rhee, Bum Ku; McGinnis, Brian P.; Sandroff, Claude J.

    1986-11-01

    We report the first measurement of the third-order nonlinear susceptibility χ(3) in layered semiconductor clusters exhibiting pronounced quantum size effects at room temperature. BiI3 clusters prepared in colloidal form in acetonitrile had a thickness of ≂7 Å and lateral dimensions between 60 and 90 Å. Using degenerate four-wave mixing, we observed that the conjugate pulses from the small and the large gratings had comparable intensities, verifying the electronic origin of the nonlinearity. The nonlinear susceptibility was found to be 2.3×10-11 esu for a colloid with a cluster volume fraction of 10-5.

  8. Creep behaviour and creep mechanisms of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep

  9. Characterization of Surface Acoustic Wave Nebulization: Atomization dynamics and resulting droplet size distribution

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto; Heron, Scott; Huang, Yue; Goodlett, David

    2012-11-01

    High-speed imaging and Phase Doppler Particle Analyzer (PDPA) measurements are used to characterize the size and velocity distributions of micron-sized droplets produced by a surface acoustic wave (SAW) microelectronic nebulizer. The effects of drop composition, electric field amplitude and pulsation frequency, and initial drop volume have been experimentally studied. We observe that the droplets created in pure water are smaller, ~2 μm, and the plume more concentrated near the nebulizer, with small second probability peak for large diameters, ~100 μm. Pure methanol droplets have larger diameters, ~ 5 μm, and lower volume concentration in the nebulizer plume, as corresponds to less efficient atomization process. The influence of fluid viscosity and surface tension will be discussed. Measurements of the velocity distribution show a strong dependency with excitation amplitude and duty factor.

  10. Size dependence of spin-wave modes in Ni80Fe20 nanodisks

    NASA Astrophysics Data System (ADS)

    Lupo, P.; Kumar, D.; Adeyeye, A. O.

    2015-07-01

    We investigate the radial and azimuthal spin-wave (SW) resonance modes in permalloy (Py: Ni80Fe20) disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size). Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.

  11. Healing mechanism of nanocrack in nanocrystalline metals during creep process

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Pal, Snehanshu

    2017-02-01

    Molecular dynamics (MD) simulation has been performed to demonstrate the fate of cracks present inside ultrafine-grained (grain size 7 nm) nanocrystalline Ni specimen during creep deformation process. It is observed that internal nanocracks are healed within a few pico-seconds of initial part of creep process even if the constant applied load on the specimen is tensile in nature and acting normal to crack surface in the outward direction. This kind of crack-healing phenomenon can be accounted by the facts such as stress-driven grain boundary migration, grain boundary diffusion and amorphization of specimen as per results obtained from this MD simulation. This MD study also reveals that the presence of nanocrack inside ultrafine-grained NC Ni in fact slightly improves creep properties and such enhancement of the creep properties is intensified as the size of internal crack increases.

  12. Flaw Sizing in Pipes Using Long-Range Guided Wave Testing

    NASA Astrophysics Data System (ADS)

    Sanderson, R. M.; Catton, P. P.

    2011-06-01

    The absence of adequate inspection data from difficult-to-access areas on pipelines, such as cased-road crossings, makes determination of fitness for continued service and compliance with increasingly stringent regulatory requirements problematic. Screening for corrosion using long-range guided wave testing is a relatively new inspection technique. The complexity of the possible modes of vibration means the technique can be difficult to implement effectively but this also means that it has great potential for both detecting and characterizing flaws. The ability to determine flaw size would enable the direct application of standard procedures for determining fitness-for-service, such as ASME B31G, RSTRENG, or equivalent for tens of metres of pipeline from a single inspection location. This paper presents a new technique for flaw sizing using guided wave inspection data. The technique has been developed using finite element models and experimentally validated on 6″ Schedule 40 steel pipe. Some basic fitness-for-service assessments have been carried out using the measured values and the maximum allowable operating pressure was accurately determined.

  13. First principles model of carbonate compaction creep

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Dysthe, Dag Kristian; Jamtveit, Bjørn

    2016-05-01

    Rocks under compressional stress conditions are subject to long-term creep deformation. From first principles we develop a simple micromechanical model of creep in rocks under compressional stress that combines microscopic fracturing and pressure solution. This model was then upscaled by a statistical mechanical approach to predict strain rate at core and reservoir scale. The model uses no fitting parameter and has few input parameters: effective stress, temperature, water saturation porosity, and material parameters. Material parameters are porosity, pore size distribution, Young's modulus, interfacial energy of wet calcite, the dissolution, and precipitation rates of calcite, and the diffusion rate of calcium carbonate, all of which are independently measurable without performing any type of deformation or creep test. Existing long-term creep experiments were used to test the model which successfully predicts the magnitude of the resulting strain rate under very different effective stress, temperature, and water saturation conditions. The model was used to predict the observed compaction of a producing chalk reservoir.

  14. A model of compaction creep in carbonates

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Jamtveit, Bjørn; Dysthe, Dag Kristian

    2015-04-01

    Rocks in compressional stress conditions are subject to long-term creep deformations. We created a simple conceptual micomechanical model of creep in rocks combining microscopic fracturing and pressure solution. This was then scaled up to macroscopic scale by a statistical mechanical approach to predict strain rate at core scale. The model uses no fitting parameter and have a few input parameters: effective stress, porosity, pore size distribution, temperature and water saturation. Internal parameters are Young's modulus, interfacial energy of wet calcite and dissolution rates of calcite, all of which are measurable independently. Existing long-term creep experiments were used to verify the model which was able to predict the magnitude of the resulting strain in largely different effective stress, temperature and water saturation conditions. The model was also able to predict the compaction of a producing chalk reservoir with a good agreement. Further generalization of the model might function as a general theory of long-term creep of rocks in compressional settings.

  15. Creep and creep-rupture behavior of Alloy 718

    SciTech Connect

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760{degree}C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs.

  16. Droplet Size Distributions Resulting form Entrainment of Surface Oil Slick by Breaking Waves

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Katz, Joseph

    2015-11-01

    A spectrum of droplet sizes, ranging from submicron to several millimeters, is generated by breaking waves impinging on an oil slick. Their size distribution is crucial for modeling the fate of oil spill, and understanding the underlying flow physics. Digital holography microscopy (DHM) is used for measuring the droplet size distributions at high resolution (1.1 μm/pixel), and at varying temporal scale, from the initial plunging phase (seconds) to long term (hours). The time-resolved DHM data is acquired simultaneously with high speed visualizations of the breakup and large scale features of the entrainment process. Experimental conditions include: (i) plunging and spilling breakers with wave heights of 28.8, 24.9, 22.28 cm; (ii) crude oil (MC252 surrogate), and oil premixed with dispersants (Corexit-9500A) giving two order of magnitude range of water-oil interfacial tension; (iii) Crude, fish, and motor oils with viscosity of 9.4, 63.1 and 306.5 cst, respectively. Shortly after entrainment of crude oil, the droplet radius distribution is bimodal, with a primary peak in the 0-25 μm range, and a secondary peak at 200-250 μm. Adding dispersants reduces the latter to 150 μm. The drastic reduction in interfacial tension upon introduction of dispersants increases the primary peak, and causes short term micro threading. The Secondary peaks dampen within seconds, as the larger droplets rise, whereas the primary peaks are sustained for longer periods. Supported by Gulf of Mexico Research Initiative (GoMRI).

  17. A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick

    2010-01-01

    The goal of non-destructive testing (NDT) is to determine the position and size of structural defects, in order to measure the quality and evaluate the safety of building materials. Most NDT techniques are rather complex, however, requiring specialized knowledge. In this article, we introduce an experimental method for crack detection that uses Surface Acoustic Waves (SAWs) and optical measurements. The method is tested on a steel beam engraved with slots of known depth. A simple model to determine the cracks size is also proposed. At the end of the article, we describe a possible application: fatigue crack sizing on a damaged slat track. This technique represents a first step toward a better understanding of the crack growth, especially in its early stages (preferably when the cracks can still be repaired) and when it is possible to assume a linear propagation of the crack front. The ultimate goal of this research program is to develop a useful method of monitoring aircraft components during fatigue testing.

  18. Soil creep as factor of landscape change

    NASA Astrophysics Data System (ADS)

    Lucke, Bernhard

    2016-04-01

    Many erosion models assume that soils are transported grain-by-grain, and thus calculate loss and deposition according to parameters such as bulk density and average grain size. However, there are indications that clay-rich soils, such as the widespread Red Mediterranean Soils or Terrae Rossae, behave differently. This is illustrated by a case study of historic landscape changes in Jordan, where evidence for soil creep as main process of soil movement was found in the context of ancient cemeteries. Due to a dominance of smectites, the Red Mediterranean Soils in this area shrink and form cracks during the dry period. Because of the cracks and underlying limestone karst, they can swallow strong rains without high erosion risk. However, when water-saturated, these soils expand and can start creeping. Buried geoarchaeological features like small water channels on formerly cleared rocks suggest that soils can move a few cm uplslope when wet, and buried graves illustrate that soil creep can create new level surfaces, sealing cavities but not completely filling them. Such processes seem associated with slumping and earth flows as instable rocks might collapse under the weight of a creeping soil. While it is very difficult to measure such processes, landscape archaeology offers at least an indirect approach that could be suited to estimate the scale and impact of soil creep. Analogies with modern rainfalls, including record levels of precipitation during the winter 1991/1992, indicate that similar levels of soil moisture have not been reached during times of modern instrumental rainfall monitoring. This suggests that very strong deluges must have occurred during historical periods, that could potentially cause tremendous damage to modern infrastructure if happening again.

  19. Effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Pal, Snehanshu

    2017-03-01

    In this paper, molecular dynamics (MD) simulation based study of creep behavior for nanocrystalline (NC) Ni-3 at% Zr alloy having grain size 6 nm has been performed using embedded atom method (EAM) potential to study the influence of variation of temperature (1220-1450 K) as well as change in stress (0.5-1.5 GPa) on creep behavior. All the simulated creep curves for this ultra-fine grained NC Ni-Zr alloy has extensive tertiary creep regime. Primary creep regime is very short and steady state creep part is almost absent. The effect of temperatures and stress is prominent on the nature of the simulated creep curves and corresponding atomic configurations. Additionally, mean square displacement calculation has been performed at 1220 K, 1250 K, 1350 K, and 1450 K temperatures to correlate the activation energy of atomic diffusion and creep. The activation energy of creep process found to be less compared to activation energies of self-diffusion for Ni and Zr in NC Ni-3 at% Zr alloy. Formation of martensite is identified during creep process by common neighbour analysis. Presence of dislocations is observed only in primary regime of creep curve up till 20 ps, as evident from calculated dislocation density through MD simulations. Coble creep is found to be main operative mechanism for creep deformation of ultrafine grained NC Ni-3 at% Zr alloy.

  20. The effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Pal, Snehanshu

    2017-02-01

    In this paper, molecular dynamics (MD) simulation based study of creep behavior for nanocrystalline (NC) Ni-3 at% Zr alloy having grain size 6 nm has been performed using embedded atom method (EAM) potential to study the influence of variation of temperature (1220-1450 K) as well as change in stress (0.5-1.5 GPa) on creep behavior. All the simulated creep curves for this ultra-fine grained NC Ni-Zr alloy has extensive tertiary creep regime. Primary creep regime is very short and steady state creep part is almost absent. The effect of temperatures and stress is prominent on the nature of the simulated creep curves and corresponding atomic configurations. Additionally, mean square displacement calculation has been performed at 1220 K, 1250 K, 1350 K, and 1450 K temperatures to correlate the activation energy of atomic diffusion and creep. The activation energy of creep process found to be less compared to activation energies of self-diffusion for Ni and Zr in NC Ni-3 at% Zr alloy. Formation of martensite is identified during creep process by common neighbour analysis. Presence of dislocations is observed only in primary regime of creep curve up till 20 ps, as evident from calculated dislocation density through MD simulations. Coble creep is found to be main operative mechanism for creep deformation of ultrafine grained NC Ni-3 at% Zr alloy.

  1. Separation of micron-sized particles in macro-scale cavities by ultrasonic standing waves

    NASA Astrophysics Data System (ADS)

    Lipkens, B.; Dionne, J.; Trask, A.; Szczur, B.; Stevens, A.; Rietman, E.

    2010-01-01

    The separation of micron-sized particles from a steady flow of water through the use of ultrasonic standing waves is discussed. An ultrasonic resonator has been designed with a flow inlet and outlet for the water stream. The resonator is typically about 0.15 m long with a cross-section of 0.0254 m×0.0254 m. The flow inlet and outlet ports have been designed to ensure laminar flow conditions into and out of the resonator. A PZT-4, 2-MHz, transducer is used to generate ultrasonic standing waves in the resonator. At fixed frequency excitation, particles are concentrated at the stable locations of the acoustic radiation force. Particle translation is achieved by a periodic sweeping of the frequency of excitation, which generates a slowly moving standing wave. The effect of the sweep period and the sweep frequency range on particle translation speed has been investigated for the separation of 6 micron polystyrene beads. A numerical model has been developed to compute the trajectories of particles subjected to the acoustic radiation force, fluid drag force, and buoyancy force. The acoustic radiation force is determined from a one-dimensional acoustic field model. A CFD model is used to calculate the mean fluid flow into and out of the resonator and is used to calculate the fluid drag force. The equations of motion are then integrated to yield the particle trajectories. Typical particle translation speeds are on the order of 5 mm/s. Successful separation of 6 micron polystyrene beads from a water inlet flow, with typical volume flow rates of 150 ml/min, has been achieved.

  2. Scattering of Light by Electron Wave Packets: Size Doesn't Matter

    NASA Astrophysics Data System (ADS)

    Corson, John; Glasgow, Scott; Acosta, Sebastian; Ware, Michael; Peatross, Justin

    2011-05-01

    In support of a current experiment, we investigate light scattering by individual free electrons in an intense laser focus using full second quantization. This addresses the question of whether emission from a large electron packet will be suppressed owing to interference between different parts of the packet. Textbook treatments of Compton scattering generally use exact momentum states, but packets necessarily superpose many momentum states with the possibility of quantum interference (see J. Peatross, C. Muller, K. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett. 100, 153601, 2008). We investigate the details of this interference for both single- photon and coherent-state scattering. Kinematic constraints eliminate interference in the case of unidirectional stimulation, whether the scattering is single- or multi-photon in nature. To all orders of perturbation theory, the scattering exhibits no dependence on the relative phases of constituent momenta, and thus no dependence on wave packet size.

  3. Finite nuclear size and Lamb shift of p-wave atomic states

    SciTech Connect

    Milstein, A.I.; Sushkov, O.P.; Terekhov, I.S.

    2003-06-01

    We consider corrections to the Lamb shift of the p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotope shift related to the FNS. It is shown that the structure of the corrections is qualitatively different to that for the s-wave states. The perturbation theory expansion for the relative correction for a p{sub 1/2} state starts with a {alpha} ln(1/Z{alpha}) term, while for the s{sub 1/2} states it starts with a Z{alpha}{sup 2} term. Here, {alpha} is the fine-structure constant and Z is the nuclear charge. In the present work, we calculate the {alpha} terms for that 2p states, the result for the 2p{sub 1/2} state reads (8{alpha}/9{pi}){l_brace}ln[1/(Z{alpha}){sup 2}]+0.710{r_brace}. Even more interesting are the p{sub 3/2} states. In this case the 'correction' is several orders of magnitude larger than the 'leading' FNS shift. However, absolute values of energy shifts related to these corrections are very small.

  4. Irradiation creep of candidate materials for advanced nuclear plants

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Hoffelner, W.

    2013-10-01

    In the present paper, irradiation creep results of an intermetallic TiAl alloy and two ferritic oxide dispersion strengthened (ODS) steels are summarized. In situ irradiation creep measurements were performed using homogeneous implantation with α- and p-particles to maximum doses of 0.8 dpa at displacement damage rates of 2-8 × 10-6 dpa/s. The strains of miniaturized flat dog-bone specimens were monitored under uniaxial tensile stresses ranging from 20 to 400 MPa at temperatures of 573, 673 and 773 K, respectively. The effects of material composition, ODS particle size, and bombarding particle on the irradiation creep compliance was studied and results are compared to literature data. Evolution of microstructure during helium implantation was investigated in detail by TEM and is discussed with respect to irradiation creep models.

  5. Fundamental Studies on Ambient Temperature Creep Deformation Behavior of Alpha and Alpha-Beta Titanium Alloys

    DTIC Science & Technology

    2013-01-31

    is preferred at high temperatures where large grain sizes are preferred for high creep resistance . In addition, these results suggest that, when...was to be able to predict creep behavior based on the microstructure and composition of an alloy and recommend ways to improve its creep resistance ...technologically important. Titanium has a high strength to weight ratio, excellent resistance to corrosion, good weldability and it is biocompatible, making

  6. [Sample size for the estimation of F-wave parameters in healthy volunteers and amyotrophic lateral sclerosis patients].

    PubMed

    Fang, J; Cui, L Y; Liu, M S; Guan, Y Z; Ding, Q Y; Du, H; Li, B H; Wu, S

    2017-03-07

    Objective: The study aimed to investigate whether sample sizes of F-wave study differed according to different nerves, different F-wave parameters, and amyotrophic lateral sclerosis(ALS) patients or healthy subjects. Methods: The F-waves in the median, ulnar, tibial, and deep peroneal nerves of 55 amyotrophic lateral sclerosis (ALS) patients and 52 healthy subjects were studied to assess the effect of sample size on the accuracy of measurements of the following F-wave parameters: F-wave minimum latency, maximum latency, mean latency, F-wave persistence, F-wave chronodispersion, mean and maximum F-wave amplitude. A hundred stimuli were used in F-wave study. The values obtained from 100 stimuli were considered "true" values and were compared with the corresponding values from smaller samples of 20, 40, 60 and 80 stimuli. F-wave parameters obtained from different sample sizes were compared between the ALS patients and the normal controls. Results: Significant differences were not detected with samples above 60 stimuli for chronodispersion in all four nerves in normal participants. Significant differences were not detected with samples above 40 stimuli for maximum F-wave amplitude in median, ulnar and tibial nerves in normal participants. When comparing ALS patients and normal controls, significant differences were detected in the maximum (median nerve, Z=-3.560, P<0.01; ulnar nerve, t=5.019, P<0.01; tibial nerve, Z=-2.475, P<0.05; peroneal nerve, Z=-2.088, P<0.05)and mean F-wave latency (median nerve, Z=-3.243, P<0.01; ulnar nerve, t=3.876, P<0.01; tibial nerve, Z=-2.206, P<0.05; peroneal nerve, Z=-2.205, P<0.05)in all four nerves, F-wave chronodispersion (Z=-3.152, P<0.01)in the ulnar nerve, F-wave persistence in the median (Z=6.139, P<0.01)and ulnar nerves(Z=5.350, P<0.01), mean F-wave amplitude in the tibial nerve(t=2.981, P<0.01), maximum F-wave amplitude in the ulnar (Z=-2.134, P<0.05)and tibial nerves (t=2.746, P<0.01)with 20 stimuli; for chronodispersion in

  7. Costs of storing colour and complex shape in visual working memory: Insights from pupil size and slow waves.

    PubMed

    Kursawe, Michael A; Zimmer, Hubert D

    2015-06-01

    We investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp. 2). Task difficulty was manipulated by presenting different set sizes (1, 2, 4 items) and by making different features (colour, shape, or both) task-relevant. Memory performance in the colour condition was better than in the shape and both condition which did not differ. Pupil dilation and the posterior N1 increased with set size independent of type of feature. In contrast, slow waves and a posterior P2 component showed set size effects but only if shape was task-relevant. In the colour condition slow waves did not vary with set size. We suggest that pupil size and N1 indicates different states of attentional effort corresponding to the number of presented items. In contrast, slow waves reflect processes related to encoding and maintenance strategies. The observation that their potentials vary with the type of feature (simple colour versus complex shape) indicates that perceptual complexity already influences encoding and storage and not only comparison of targets with memory entries at the moment of testing.

  8. Long-time creep behavior of the niobium alloy C-103

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Klopp, W. D.

    1980-01-01

    The creep behavior of C-103 was studied as a function of stress, temperature, and grain size for test times to 19000 hr. Over the temperature range 827 to 1204 C and the stress range 6.89 to 138 MPa, only tertiary (accelerating) creep was observed. The creep strain epsilon can be related to time t by an exponential relation epsilon = epsilon(0) + K e raised to power (st) - 1), where epsilon (0) is initial creep strain, K is the tertiary creep strain parameter, and s is the tertiary creep rate parameter. The observed stress exponent 2.87 is similar to the three power law generally observed for secondary (linear) creep of Class I solid solutions. The apparent activation energy 374 kj/g mol is close to that observed for self diffusion of pure niobium. The initial tertiary creep rate was slightly faster for fine grained than for coarse-grained material. The strain parameter K can be expressed as a combination of power functions of stress and grain size and an exponential function of temperature. Strain time curves generated by using calculated values for K and s showed reasonable agreement with observed curves to strains of at least 4 percent. The time to 1 percent strain was related to stress, temperature, and grain size in a similar manner as the initial tertiary creep rate.

  9. Quantitative determination of size and shape of surface-bound DNA using an acoustic wave sensor.

    PubMed

    Tsortos, Achilleas; Papadakis, George; Mitsakakis, Konstantinos; Melzak, Kathryn A; Gizeli, Electra

    2008-04-01

    DNA bending plays a significant role in many biological processes, such as gene regulation, DNA replication, and chromosomal packing. Understanding how such processes take place and how they can, in turn, be regulated by artificial agents for individual oriented therapies is of importance to both biology and medicine. In this work, we describe the application of an acoustic wave device for characterizing the conformation of DNA molecules tethered to the device surface via a biotin-neutravidin interaction. The acoustic energy dissipation per unit mass observed upon DNA binding is directly related to DNA intrinsic viscosity, providing quantitative information on the size and shape of the tethered molecules. The validity of the above approach was verified by showing that the predesigned geometries of model double-stranded and triple-helix DNA molecules could be quantitatively distinguished: the resolution of the acoustic measurements is sufficient to allow discrimination between same size DNA carrying a bent at different positions along the chain. Furthermore, the significance of this analysis to the study of biologically relevant systems is shown during the evaluation of DNA conformational change upon protein (histone) binding.

  10. Creep Measurement Video Extensometer

    NASA Technical Reports Server (NTRS)

    Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John

    2011-01-01

    Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.

  11. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    NASA Astrophysics Data System (ADS)

    Saliba, J.; Loukili, A.; Grondin, F.

    2010-06-01

    effect on concrete, probably because of the consolidation of the hardened cement paste. The influence of creep on fracture energy, fracture toughness, and characteristic length of concrete is also studied. The fracture energy and the characteristic length of concrete increases slightly when creep occurs prior to failure and the size of the fracture process zone increases too. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases with beams subjected to creep. Relatively more ductile fracture behavior was observed with beams subjected to creep. The contribution of non-destructive and instrumental investigation methods is currently exploited to check and measure the evolution of some negative structural phenomena, such as micro-and macro-cracking, finally resulting in a creep-like behaviour. Among these methods, the non-destructive technique based on acoustic Emission proves to be very effective, especially to check and measure micro-cracking that takes place inside a structure under mechanical loading. Thus as a part of the investigation quantitative acoustic emission techniques were applied to investigate microcracking and damage localization in concrete beams. The AE signals were captured with the AE WIN software and further analyzed with Noesis software analysis of acoustic emission data. AE waveforms were generated as elastic waves in concrete due to crack nucleation. And a multichannel data acquisition system was used to record the AE waveforms. During the three point bending tests, quantitative acoustic emission (AE) techniques were used to monitor crack growth and to deduce micro fracture mechanics in concrete beams before and after creep. Several specimens are experimented in order to match each cluster with corresponding damage mechanism of the material under loading. At the same time acoustic emission was used to

  12. Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size

    NASA Astrophysics Data System (ADS)

    Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig

    2016-08-01

    Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 1300-2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  13. Creep Cavitation in Lower Crustal Shear Zones

    NASA Astrophysics Data System (ADS)

    Menegon, L. M.; Fusseis, F.; Stunitz, H. H.

    2014-12-01

    Shear zones channelize fluid flow in the Earth's crust. A number of mechanisms have been suggested to control fluid migration pathways in upper- and mid-crustal shear zones, amongst them creep cavitation, which is well-known from deforming metals and ceramics. However, little is known on deep crustal fluid migration and on how fluids are channelized and distributed in actively deforming lower crustal shear zones.This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed under lower crustal conditions (T=700-730° C, P=0.65-0.8 GPa). The ultramylonite consists of feldspathic layers and of domains of amphibole + quartz + calcite, which represent the products of hydration reactions of magmatic clinopyroxene. The average grain size in both domains is <25 μm. Microstructural observations and EBSD analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. In feldspathic layers, isolated quartz grains without a crystallographic preferred orientation occur along C'-type shear bands. All microstructures suggest that quartz precipitated in cavities. The orientation of such quartz bands overlaps with the preferred orientation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type shear bands are interpreted as high-strain cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation. The volume increase is consistent with a synkinematic formation of cavities. Thus, this study presents clear evidence that high-strain cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in cavitation bands inhibits grain growth and enhances the activity of grain-size sensitive creep, thereby maintaining

  14. Creep-Fatigue Interaction Testing

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.

  15. A coin size, 40mW, 20 grams sensor node for guided waves detection

    NASA Astrophysics Data System (ADS)

    Testoni, N.; De Marchi, L.; Ferraro, A.; Marzani, A.

    2015-03-01

    In this work, a small footprint, low power, and light weight sensor node for guided wave detection on laminate composite and metallic structures is presented. This device is meant as a basic building block for smart structure passive sensor networks development. It draws power from a two-wires data-over-power (DoP) network communication interface, which is also used for half-duplex data handling at 200kbps. Each node is roughly 20x24mm, consumes less than 40mW, and weights less than 20 grams, making it attractive for aerospace systems where size, power and weight reduction are crucial. Elastic waves generated from impacts and propagating on the structure are recorded by an innovative, patent-pending, dual-element piezoelectric transducer and processed by an embedded low-voltage 8-bit PIC. A 1Mbit SPI serial SRAM is used for data storage while program instruction are stored in the PIC embedded 7 KB ash. A low-voltage, high-speed, half-duplex RS485 transceiver with an internal, programmable termination resistance is used to interface the PIC to the bus through a filtering mesh of passive components. This mesh also connects to a low-dropout voltage regulator, allowing it to draw power from the DoP bus without interfering with data transmission. A separate gateway device has also been developed: it is capable to simultaneously interface and feed the DoP bus by drawing power either from the USB or from an external power supply. A network counting up to 256 nodes can be implemented and interfaced to a PC for real-time impact detection applications.

  16. Creep fracture during solute-drag creep and superplastic deformation

    SciTech Connect

    Taleff, E.M.; Lesuer, D.R.; Syn, C.K.; Henshall, G.A.

    1996-10-01

    Creep fracture behavior has been studied in Al-Mg and Al-Mg-Mn alloys undergoing solute-drag creep and in microduplex stainless steel undergoing both solute-drag creep and superplastic deformation. Failure in these materials is found to be controlled by two mechanisms, neck formation and cavitation. The mechanism of creep fracture during solute-drag creep in Al-Mg is found to change from necking-controlled fracture to cavitation-controlled fracture as Mn content is increased. Binary Al-Mg material fails by neck formation during solute-drag creep, and cavities are formed primarily in the neck region due to high hydrostatic stresses. Ternary alloys of Al-Mg- Mn containing 0.25 and 0.50 wt % Mn exhibit more uniform cavitation, with the 0.50 Mn alloy clearly failing by cavity interlinkage. Failure in the microduplex stainless steel is dominated by neck formation during solute-drag creep deformation but is controlled by cavity growth and interlinkage during superplastic deformation. Cavitation was measured at several strains, and found to increase as an exponential function of strain. An important aspect of cavity growth in the stainless steel is the long latency time before significant cavitation occurs. For a short latency period, cavitation acts to significantly reduce ductility below that allowed by neck growth alone. This effect is most pronounced in materials with a high strain-rate sensitivity, for which neck growth occurs very slowly.

  17. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  18. Pure climb creep mechanism drives flow in Earth’s lower mantle

    PubMed Central

    Boioli, Francesca; Carrez, Philippe; Cordier, Patrick; Devincre, Benoit; Gouriet, Karine; Hirel, Pierre; Kraych, Antoine; Ritterbex, Sebastian

    2017-01-01

    At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance to plastic shear exhibited by ringwoodite and bridgmanite on creep mechanisms under mantle conditions. To evaluate the consequences of this effect, we model dislocation creep by dislocation dynamics. The calculation yields to an original dominant creep behavior for lower mantle silicates where strain is produced by dislocation climb, which is very different from what can be activated under high stresses under laboratory conditions. This mechanism, named pure climb creep, is grain-size–insensitive and produces no crystal preferred orientation. In comparison to the previous considered diffusion creep mechanism, it is also a more efficient strain-producing mechanism for grain sizes larger than ca. 0.1 mm. The specificities of pure climb creep well match the seismic anisotropy observed of Earth’s lower mantle. PMID:28345037

  19. Rationalization of Creep Data of Creep-Resistant Steels on the Basis of the New Power Law Creep Equation

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Yang, M.; Song, X. L.; Jia, J.; Xiang, Z. D.

    2016-07-01

    The conventional power law creep equation (Norton equation) relating the minimum creep rate to creep stress and temperature cannot be used to predict the long-term creep strengths of creep-resistant steels if its parameters are determined only from short-term measurements. This is because the stress exponent and activation energy of creep determined on the basis of this equation depend on creep temperature and stress and these dependences cannot be predicted using this equation. In this work, it is shown that these problems associated with the conventional power law creep equation can be resolved if the new power law equation is used to rationalize the creep data. The new power law creep equation takes a form similar to the conventional power law creep equation but has a radically different capability not only in rationalizing creep data but also in predicting the long-term creep strengths from short-term test data. These capabilities of the new power law creep equation are demonstrated using the tensile strength and creep test data measured for both pipe and tube grades of the creep-resistant steel 9Cr-1.8W-0.5Mo-V-Nb-B (P92 and T92).

  20. EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Blum, L. W.; Bonnell, J. W.; Agapitov, O.; Paulson, K.; Kletzing, C.

    2017-02-01

    Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013-2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types—waves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.

  1. Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures

    SciTech Connect

    J.K. Benz; L.J. Carroll; J.K. Wright; R.N. Wright; T. Lillo

    2014-06-01

    Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 °C to 1000 °C). Creep at 1023 K (750 °C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent y' precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 °C) and is verified to be near zero at 1173 K (900 °C)—temperatures directly correlating to the formation and dissolution of y' precipitates, respectively. The y' precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 °C) to various strains, and modeling of stresses necessary for y' precipitate dislocation bypass, suggests that the climb of dislocations around the y' precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the y' precipitates.

  2. Creep and fracture of dispersion-strengthened materials

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    1991-01-01

    The creep and fracture of dispersion strengthened materials is reviewed. A compilation of creep data on several alloys showed that the reported values of the stress exponent for creep varied between 3.5 and 100. The activation energy for creep exceeded that for lattice self diffusion in the matrix in the case of some materials and a threshold stress behavior was generally reported in these instances. The threshold stress is shown to be dependent on the interparticle spacing and it is significantly affected by the initial microstructure. The effect of particle size and the nature of the dispersoid on the threshold stress is not well understood at the present time. In general, most studies indicate that the microstructure after creep is similar to that before testing and very few dislocations are usually observed. It is shown that the stress acting on a dispersoid due to a rapidly moving dislocation can exceed the particle yield strength of the G sub p/1000, where G sub p is the shear modulus of the dispersoid. The case when the particle deforms is examined and it is suggested that the dislocation creep threshold stress of the alloy is equal to the yield strength of the dispersoid under these conditions. These results indicate that the possibility that the dispersoid creep threshold stress is determined by either the particle yield strength or the stress required to detach a dislocation from the dispersoid matrix interface. The conditions under which the threshold stress is influenced by one or the other mechanism are discussed and it is shown that the particle yield strength is important until the extent of dislocation core relaxation at the dispersoid matrix interface exceeds about 25 pct. depending on the nature of the particle matrix combination. Finally, the effect of grain boundaries and grain morphology on the creep and fracture behavior of dispersoid strengthened alloys is examined.

  3. Investigation of the effect of aggregates' morphology on concrete creep properties by numerical simulations

    SciTech Connect

    Lavergne, F.; Sab, K.; Sanahuja, J.; Bornert, M.; Toulemonde, C.

    2015-05-15

    Prestress losses due to creep of concrete is a matter of interest for long-term operations of nuclear power plants containment buildings. Experimental studies by Granger (1995) have shown that concretes with similar formulations have different creep behaviors. The aim of this paper is to numerically investigate the effect of size distribution and shape of elastic inclusions on the long-term creep of concrete. Several microstructures with prescribed size distribution and spherical or polyhedral shape of inclusions are generated. By using the 3D numerical homogenization procedure for viscoelastic microstructures proposed by Šmilauer and Bažant (2010), it is shown that the size distribution and shape of inclusions have no measurable influence on the overall creep behavior. Moreover, a mean-field estimate provides close predictions. An Interfacial Transition Zone was introduced according to the model of Nadeau (2003). It is shown that this feature of concrete's microstructure can explain differences between creep behaviors.

  4. Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves.

    PubMed

    Destgeer, Ghulam; Ha, Byung Hang; Park, Jinsoo; Jung, Jin Ho; Alazzam, Anas; Sung, Hyung Jin

    2015-05-05

    We demonstrate a miniaturized acoustofluidic device composed of a pair of slanted interdigitated transducers (SIDTs) and a polydimethylsiloxane microchannel for achieving size-selective separation and exchange of medium around polystyrene particles in a continuous, label-free, and contactless fashion. The SIDTs, deposited parallel to each other, produce tunable traveling surface acoustic waves (TSAWs) at desired locations, which, in turn, yield an anechoic corner inside the microchannel that is used to selectively deflect particles of choice from their streamlines. The TSAWs with frequency fR originating from the right SIDT and propagating left toward the microchannel normal to the fluid flow direction, laterally deflect larger particles with diameter d1 from the hydrodynamically focused sample fluid that carries other particles as well with diameters d2 and d3, such that d1 > d2 > d3. The deflected particles (d1) are pushed into the top-left corner of the microchannel. Downstream, the TSAWs with frequency fL, such that fL > fR, disseminating from the left SIDT, deflect the medium-sized particles (d2) rightward, leaving behind the larger particles (d1) unaffected in the top-left anechoic corner and the smaller particles (d3) in the middle of the microchannel, thereby achieving particle separation. A particle not present in the anechoic corner could be deflected rightward to realize twice the medium exchange. In this work, the three-way separation of polystyrene particles with diameters of 3, 4.2, and 5 μm and 3, 5, and 7 μm is achieved using two separate devices. Moreover, these devices are used to demonstrate multimedium exchange around polystyrene particles ∼5 μm and 7 μm in diameter.

  5. Lattice continuum and diffusional creep

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  6. Lattice continuum and diffusional creep

    PubMed Central

    2016-01-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate. PMID:27274696

  7. Modeling Creep Processes in Aging Polymers

    NASA Astrophysics Data System (ADS)

    Olali, N. V.; Voitovich, L. V.; Zazimko, N. N.; Malezhik, M. P.

    2016-03-01

    The photoelastic method is generalized to creep in hereditary aging materials. Optical-creep curves and mechanical-creep or optical-relaxation curves are used to interpret fringe patterns. For materials with constant Poisson's ratio, it is sufficient to use mechanical- or optical-creep curves for this purpose

  8. Creep in electronic ceramics

    SciTech Connect

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  9. An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions.

    PubMed

    Li, Zhengkai; Spaulding, Malcolm L; French-McCay, Deborah

    2017-03-29

    A surface oil entrainment model and droplet size model have been developed to estimate the flux of oil under surface breaking waves. Both equations are expressed in dimensionless Weber number (We) and Ohnesorge number (Oh, which explicitly accounts for the oil viscosity, density, and oil-water interfacial tension). Data from controlled lab studies, large-scale wave tank tests, and field observations have been used to calibrate the constants of the two independent equations. Predictions using the new algorithm compared well with the observed amount of oil removed from the surface and the sizes of the oil droplets entrained in the water column. Simulations with the new algorithm, implemented in a comprehensive spill model, show that entrainment rates increase more rapidly with wind speed than previously predicted based on the existing Delvigne and Sweeney's (1988) model, and a quasi-stable droplet size distribution (d<~50μm) is developed in the near surface water.

  10. Experimental characterization of creep damage in a welded steel pipe section using a nonlinear ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Ehrlich, C.; Kim, J.-Y.; Jacobs, L. J.; Qu, J.; Wall, J.

    2012-05-01

    To ensure the long and safe operation of power plants, structural parts must be monitored for damage. In the case of welded steel pipes that maintain high pressures in high temperature environments, a common cause of failure is creep damage. Severe creep damage often occurs in the heat affected zone (HAZ). Previous research has shown that nonlinear acoustic techniques are sensitive to creep damage. This research develops a procedure using longitudinal waves to obtain the nonlinearity parameter on a welded steel pipe in order to detect creep damage. These experiments show higher levels of nonlinearity in the HAZ. Additional measurements on an undamaged, welded sample suggest that the high nonlinearity is due to creep (stresses at a high temperature for extended time) damage and not welding (high temperature only for a short time).

  11. Driven Interfaces: From Flow to Creep Through Model Reduction

    NASA Astrophysics Data System (ADS)

    Agoritsas, Elisabeth; García-García, Reinaldo; Lecomte, Vivien; Truskinovsky, Lev; Vandembroucq, Damien

    2016-09-01

    The response of spatially extended systems to a force leading their steady state out of equilibrium is strongly affected by the presence of disorder. We focus on the mean velocity induced by a constant force applied on one-dimensional interfaces. In the absence of disorder, the velocity is linear in the force. In the presence of disorder, it is widely admitted, as well as experimentally and numerically verified, that the velocity presents a stretched exponential dependence in the force (the so-called `creep law'), which is out of reach of linear response, or more generically of direct perturbative expansions at small force. In dimension one, there is no exact analytical derivation of such a law, even from a theoretical physical point of view. We propose an effective model with two degrees of freedom, constructed from the full spatially extended model, that captures many aspects of the creep phenomenology. It provides a justification of the creep law form of the velocity-force characteristics, in a quasistatic approximation. It allows, moreover, to capture the non-trivial effects of short-range correlations in the disorder, which govern the low-temperature asymptotics. It enables us to establish a phase diagram where the creep law manifests itself in the vicinity of the origin in the force-system-size-temperature coordinates. Conjointly, we characterise the crossover between the creep regime and a linear-response regime that arises due to finite system size.

  12. Influence of local mechanical properties of high strength steel from large size forged ingot on ultrasonic wave velocities

    NASA Astrophysics Data System (ADS)

    Dupont-Marillia, Frederic; Jahazi, Mohamad; Lafreniere, Serge; Belanger, Pierre

    2017-02-01

    In the metallurgical industry, ultrasonic inspection is routinely used for the detection of defects. For the non-destructive inspection of small high strength steel parts, the material can be considered isotropic. However, when the size of the parts under inspection is large, the isotropic material hypothesis does not necessarily hold. The aim of this study is to investigate the effect of the variation in mechanical properties such as grain size, Young's modulus, Poissons ratio, chemical composition on longitudinal and transversal ultrasonic wave velocities. A 2 cm thick slice cut from a 40-ton bainitic steel ingot that was forged and heat treated was divided into 875 parallelepiped samples of 2x4x7 cm3. A metallurgical study has been performed to identify the phase and measure the grain size. Ultrasonic velocity measurements at 2.25 MHz for longitudinal and transversal waves were performed. The original location of the parallelepiped samples in the large forged ingot, and the measured velocities were used to produce an ultrasonic velocity map. Using a local isotropy assumption as well as the local density of the parallelepiped samples calculated from the chemical composition of the ingot provided by a previously published study, Youngs modulus and Poissons ratio were calculated from the longitudinal and transversal wave velocities. Micro-tensile test was used to validate Youngs modulus obtained by the ultrasonic wave velocity and an excellent agreement was observed.

  13. Creep of dry clinopyroxene aggregates

    NASA Astrophysics Data System (ADS)

    Bystricky, Misha; Mackwell, Stephen

    2001-01-01

    We have determined diffusional and dislocation creep rheologies for clinopyroxenite Ca1.0Mg0.8Fe0.2Si2O6 under dry conditions by deforming natural and hot-pressed samples at confining pressures of 300-430 MPa and temperatures of 1100°-1250°C with the oxygen fugacity buffered by either nickel-nickel oxide or iron-wüstite powders. The coarse-grained natural Sleaford Bay clinopyroxenite yielded a stress exponent of n = 4.7 ± 0.2 and an activation energy for creep of Q = 760 ± 40 kJ mol-1, consistent with deformation in the dislocation creep regime. The strength of the natural clinopyroxenite is consistent with previous high-temperature measurements of dislocation creep behavior of Sleaford Bay clinopyroxenite by Kirby and Kronenberg [1984] and Boland and Tullis [1986]. Fine-grained clinopyroxenite was prepared from ground powders of the natural clinopyroxenite. Hot-pressed samples were deformed under similar conditions to the natural samples. Mixed-mode deformation behavior was observed, with diffusional creep (n = 1) at lower differential stresses and dislocation creep (with n and Q similar to those of the natural samples) at higher differential stresses. Within the dislocation creep field the predried hot-pressed samples generally yielded creep rates that were about an order of magnitude faster than the natural samples. Thus, even at the highest differential stresses, a component of strain accommodation by grain boundary diffusion was present in the hot-pressed samples. Optical and electron microscope investigations of the deformation microstructures of the natural and hot-pressed samples show evidence for mechanical twinning and activation of dislocation slip systems. When extrapolated to geological conditions expected in the deep crust and upper mantle on Earth and other terrestrial planets, the strength of dry single-phase clinopyroxene aggregates is very high, exceeding that of dry olivine-rich rocks.

  14. Satellites of the Saturnian system with clear signatures of the wave warpings producing alignments of "craters" of predictable sizes

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    At previous COSPAR Scientific Assembly Paris 2004 we stated that numerous traces of wave warpings will be detected by Cassini on surfaces of the Saturnian satellites 1 Now it is clear that all icy satellites notwithstanding their sizes and orbits are affected by warping action of inertia-gravity waves due to their movement in elliptical orbits more pronounced in the past with periodically changing accelerations The warping is detected in 3-4 directions ortho- and diagonal producing at intersections chains grids of even-sized craters and separating them mounds granules The crater sizes or granulations are not random but depend on orbital frequencies of satellites 2 higher frequency -- smaller relative size Earlier for terrestrial planets was demonstrated that their tectonic granules sizes are strictly inverse to their orbital frequencies Mercury pi R 16 Venus pi R 6 Earth pi R 4 Mars pi R 2 asteroids pi R 1 R-a body radius The Earth s frequency 1 1 year and granule size pi R 4 or sim 5000 km serve as a scale for comparison and calculating granule crater sizes on other bodies surfaces Satellites have two orbital frequencies in the Solar system around a planet and Sun Thus to 2 main frequencies and corresponding to them granule sizes should be added at least 2 modulated side frequencies and corresponding to them granule sizes The modulation is a division and multiplication of the higher frequency by the lower one Some examples 1 Entire surface of Hyperion is peppered with even-sized craters

  15. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  16. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-09-15

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  17. (Irradiation creep of graphite)

    SciTech Connect

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  18. Mechanical response of ceramics to creep loading

    SciTech Connect

    Blumenthal, W.R.

    1983-08-01

    The mechanical response of small, semi-elliptical, identification-induced surface cracks in fine-grain alumina was studied. The deformation behavior of the crack tip region was monitored using crack opening and surface displacements. Results indicate values of the secondary creep exponent, n, between 1.5 and 2 with a temperature dependence consistent with secondary creep data from the same material. Crack growth was measured at 1300 and 1400/sup 0/C and a narrow power-law growth regime was revealed. Again the power-law exponent and activation energy were very close to creep values. Asymptotic behavior was exhibited near both K/sub Ic/ and K/sub th/, the crack growth threshold. The threshold occurred near 0.4 K/sub Ic/, independent of temperature. Crack tip damage in the form of grain boundary cavities growing by diffusion was responsible for crack extension. The damage also exerts a strong influence on the displacement field as predicted by recent theories. The crack growth threshold is preceded by a transition in the size and distribution of damage. At K/sub I/ near K/sub Ic/ the damage is restricted to a few facets directly ahead of the crack tip. Near K/sub th/ damage concentrates in side-lobes far ahead of the crack tip and at angles between 20/sup 0/ to 60/sup 0/ from the plane of the crack. The transition between frontal and side-lobe damage is anticipated to be moderately dependent on grain size. 34 figures.

  19. Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Dabbagh, Ali; Reza Barati, Mohammad

    2016-12-01

    The analysis of the wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanoplate is carried out in the framework of a refined higher-order plate theory. In order to take into account the small-scale influence, the nonlocal elasticity theory of Eringen is employed. Furthermore, the material properties of the nanoplate are considered to be variable through the thickness based on the power-law form. Nonlocal governing equations of the MEE-FG nanoplate have been derived using Hamilton's principle. The results of the present study have been validated by comparing them with previous researches. An analytical solution of governing equations is performed to obtain wave frequencies, phase velocities and escape frequencies. The effect of different parameters, such as wave number, nonlocal parameter, gradient index, magnetic potential and electric voltage on the wave dispersion characteristics of MEE-FG nanoscale plates is studied in detail.

  20. H II Regions in Spiral Galaxies: Size Distribution, Luminosity Function, and New Isochrone Diagnostics of Density-Wave Kinematics

    DTIC Science & Technology

    2003-11-01

    conjecture to physical galaxies , placing the corotation where the distribution of H ii regions is seen to end. Tremaine & Weinberg (1984) developed an...H ii REGIONS IN SPIRAL GALAXIES : SIZE DISTRIBUTION, LUMINOSITY FUNCTION, AND NEW ISOCHRONE DIAGNOSTICS OF DENSITY-WAVE KINEMATICS M. S. Oey Lowell...Department of Physics and Astronomy, JohnsHopkins University, 3400 North Charles Street, Baltimore, MD 21218 and Xiaolei Zhang Remote Sensing Division

  1. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and

  2. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    SciTech Connect

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  3. Saturn's infrared spots at the southern and northern polar regions and calculation of their sizes by a wave modulation procedure

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    Two recently acquired IR images of two polar regions of Saturn (credit: NASA/JPL/University of Arizona) show unusually large hurricane (8000 km across, PIA08333) centered on the south pole and a huge hexagon (25000 km across, PIA09186) centered on the north pole. The hexagon feature at least is rather stable as it was observed also by Voyagers about 30 years ago. Fascinated by these tremendous and regular features scientists paid less attention to regularly disposed non-overlapping dark spots (small hurricanes) separated by lighter areas making a kind of background to these features (though at the south pole this combination was nicknamed "leopard skin" [1]). This spotted background presenting a regular combination of dark and light areas in IR radiation is interpreted as an alternation of wave produced denser and less dense gaseous blocks permitting escape more or less intensive heat radiation. Movement down squeezes gas, movement up expands it. On an average dark spots measure 450 (300-600 km) in the south and 580 (400-800 km) in the north. What kind of interfering waves makes this pattern? The wave planetology [1, 2, 3 & others] main position is: "Orbits make structures". Movements in elliptical orbits with periodically changing accelerations means a warping of a body in 4 interfering directions (as every body rotates this warping go in ortho- and diagonal directions) by inertia-gravity waves. The theorem 3 of the wave planetology states: "Celestial bodies are granular". The higher orbital frequency the smaller tectonic granule. Starting from the Sun's photosphere one has the following row of granule sizes (a half wavelength) inversely proportional to orbital frequencies: photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1, Jupiter 3πR, Saturn 7.5πR and so on. . . Before asteroids tectonic grains are detected inside bodies and well known (e.g., Sun's supergranulation). In asteroids wave 1 makes their oblong and convexo

  4. Saturn's infrared spots at the southern and northern polar regions and calculation of their sizes by a wave modulation procedure

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    Two recently acquired IR images of two polar regions of Saturn (credit: NASA/JPL/University of Arizona) show unusually large hurricane (8000 km across, PIA08333) centered on the south pole and a huge hexagon (25000 km across, PIA09186) centered on the north pole. The hexagon feature at least is rather stable as it was observed also by Voyagers about 30 years ago. Fascinated by these tremendous and regular features scientists paid less attention to regularly disposed non-overlapping dark spots (small hurricanes) separated by lighter areas making a kind of background to these features (though at the south pole this combination was nicknamed "leopard skin" [1]). This spotted background presenting a regular combination of dark and light areas in IR radiation is interpreted as an alternation of wave produced denser and less dense gaseous blocks permitting escape more or less intensive heat radiation. Movement down squeezes gas, movement up expands it. On an average dark spots measure 450 (300-600 km) in the south and 580 (400-800 km) in the north. What kind of interfering waves makes this pattern? The wave planetology [1, 2, 3 & others] main position is: "Orbits make structures". Movements in elliptical orbits with periodically changing accelerations means a warping of a body in 4 interfering directions (as every body rotates this warping go in ortho- and diagonal directions) by inertia-gravity waves. The theorem 3 of the wave planetology states: "Celestial bodies are granular". The higher orbital frequency the smaller tectonic granule. Starting from the Sun's photosphere one has the following row of granule sizes (a half wavelength) inversely proportional to orbital frequencies: photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1, Jupiter 3πR, Saturn 7.5πR and so on. . . Before asteroids tectonic grains are detected inside bodies and well known (e.g., Sun's supergranulation). In asteroids wave 1 makes their oblong and convexo

  5. Creep behavior in SiC whisker-reinforced alumina composite

    SciTech Connect

    Lin, H.T.; Becher, P.F.

    1994-10-01

    Grain boundary sliding (often accompanied by cavitation) is a major contributor to compressive and tensile creep deformation in fine-grained aluminas, both with and without whisker-reinforcement. Studies indicate that the creep response of alumina composites reinforced with SiC whiskers can be tailored by controlling the composite microstructure and composition. The addition of SiC whiskers (< 30 vol%) significantly increases the creep resistance of fine-grained (1--2 {mu}m) alumina in air at temperatures of 1,200 and 1,300 C. However, at higher whisker contents (30 and 50 vol%), the creep resistance is degraded due to enhanced surface oxidation reactions accompanied by extensive creep cavitation. Densification aids (i.e., Y{sub 2}O{sub 3}), which facilitate silica glass formation and thus liquid phase densification of the composites, can also result in degradation of creep resistance. On the other hand, increasing the matrix grain size or decreasing the whisker aspect ratio (increased whisker number density) results in raising the creep resistance of the composites. These observations not only explain the variability in the creep response of various SiC whisker-reinforced alumina composites but also indicate factors that can be used to enhance the elevated temperature performance.

  6. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    SciTech Connect

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  7. Characterisation of Laves phase precipitation and its correlation to creep rupture strength of ferritic steels

    SciTech Connect

    Zhu, S.; Yang, M.; Song, X.L.; Tang, S.; Xiang, Z.D.

    2014-12-15

    The Laves phase precipitation process was characterised by means of field emission scanning electron microscopy to demonstrate its effect on creep rupture strength of steels with a fully ferritic matrix. To eliminate the effects of carbide and carbonitride precipitations so that the creep rupture data can be analysed exclusively in relation to the Laves phase precipitation process, an alloy Fe–9Cr–3Co–3W (wt.%) without C and N additions was used for the study. Creep rupture strengths were measured and volume fraction and particle size of Laves phase precipitates in the ruptured specimens were analysed. It was found that the creep rupture strength started to collapse (or decrease more rapidly) long before the Laves phase precipitation reached equilibrium fraction. This was related to the onset of the coarsening of Laves phase particles, which precipitated only on grain boundaries and hence contributed little to precipitation strengthening. Creep deformation had no effect either on the precipitation kinetics or on the growth kinetics of Laves phase particles. - Highlights: • Laves phase precipitation at 650 °C was characterised for Fe–9Cr–3W–3Co alloy. • Laves phase precipitated predominantly on grain boundaries. • Creep deformation had no effect on Laves phase precipitation and growth kinetics. • Creep strength started to collapse long before Laves phase precipitation is ended. • Collapse of creep strength was attributed to the coarsening of Laves phase particles.

  8. Particle size, spin wave and surface effects on magnetic properties of MgFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslibeiki, B.; Varvaro, G.; Peddis, D.; Kameli, P.

    2017-01-01

    Magnesium ferrite, MgFe2O4, nanoparticles with a mean diameter varying from ∼6 to ∼17 nm were successfully synthesized using a simple thermal decomposition method at different annealing temperatures ranging in between 400 and 600 °C. Pure spinel ferrite nanoparticles were obtained at temperatures lower than 500 °C, while the presence of hematite (α-Fe2O3) impurities was observed at higher temperatures. Single-phase samples show a superparamagnetic behavior at 300 K, the saturation magnetization (Ms) becoming larger with the increase of particles size. The temperature dependence of Ms was explained in terms of surface spin-canting as well as spin wave excitations in the core. Using a modified Bloch law, [Ms(T)=Ms(0)(1-βTα)], we observed a size dependent behavior of the Bloch constant β and the exponent α, whose values increase and decrease, respectively, as the particle size reduces.

  9. Creep of quartz by dislocation and grain boundary processes

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    Wet polycrystalline quartz aggregates deformed at temperatures T of 600°-900°C and strain rates of 10-4-10-6 s-1 at a confining pressure Pc of 1.5 GPa exhibit plasticity at low T, governed by dislocation glide and limited recovery, and grain size-sensitive creep at high T, governed by diffusion and sliding at grain boundaries. Quartz aggregates were HIP-synthesized, subjecting natural milky quartz powder to T=900°C and Pc=1.5 GPa, and grain sizes (2 to 25 mm) were varied by annealing at these conditions for up to 10 days. Infrared absorption spectra exhibit a broad OH band at 3400 cm-1 due to molecular water inclusions with a calculated OH content (~4000 ppm, H/106Si) that is unchanged by deformation. Rate-stepping experiments reveal different stress-strain rate functions at different temperatures and grain sizes, which correspond to differing stress-temperature sensitivities. At 600-700°C and grain sizes of 5-10 mm, flow law parameters compare favorably with those for basal plasticity and dislocation creep of wet quartzites (effective stress exponents n of 3 to 6 and activation enthalpy H* ~150 kJ/mol). Deformed samples show undulatory extinction, limited recrystallization, and c-axis maxima parallel to the shortening direction. Similarly fine-grained samples deformed at 800°-900°C exhibit flow parameters n=1.3-2.0 and H*=135-200 kJ/mol corresponding to grain size-sensitive Newtonian creep. Deformed samples show some undulatory extinction and grain sizes change by recrystallization; however, grain boundary deformation processes are indicated by the low value of n. Our experimental results for grain size-sensitive creep can be compared with models of grain boundary diffusion and grain boundary sliding using measured rates of silicon grain boundary diffusion. While many quartz mylonites show microstructural and textural evidence for dislocation creep, results for grain size-sensitive creep may apply to very fine-grained (<10 mm) quartz mylonites.

  10. Creep and Creep-Fatigue of Alloy 617 Weldments

    SciTech Connect

    Wright, Jill K.; Carroll, Laura J.; Wright, Richard N.

    2014-08-01

    Alloy 617 is the primary candidate material for the heat exchanger of a very high temperature gas cooled reactor intended to operate up to 950°C. While this alloy is currently qualified in the ASME Boiler and Pressure Vessel Code for non-nuclear construction, it is not currently allowed for use in nuclear designs. A draft Code Case to qualify Alloy 617 for nuclear pressure boundary applications was submitted in 1992, but was withdrawn prior to approval. Prior to withdrawal of the draft, comments were received indicating that there was insufficient knowledge of the creep and creep-fatigue behavior of Alloy 617 welds. In this report the results of recent experiments and analysis of the creep-rupture behavior of Alloy 617 welds prepared using the gas tungsten arc process with Alloy 617 filler wire. Low cycle fatigue and creep-fatigue properties of weldments are also discussed. The experiments cover a range of temperatures from 750 to 1000°C to support development of a new Code Case to qualify the material for elevated temperature nuclear design. Properties of the welded material are compared to results of extensive characterization of solution annealed plate base metal.

  11. Indentation creep in nanocrystalline Fe-TiN and Ni-TiN alloys prepared by mechanical alloying

    SciTech Connect

    Ogino, Yoshikiyo; Yamasaki, Tohru; Shen, B.L.

    1997-04-01

    Mechanical properties of nanocrystalline Fe-TiN and Ni-TiN alloys with various TiN contents between 17 and 64 vol pct, which are prepared by dynamically consolidating mechanically alloyed powders, have been investigated by means of hardness measurements and indentation creep tests at intermediate temperatures. The hardness increases with decreasing grain size to about 10 nm. The indentation creep curves conform well to an equation derived from a transient creep rate equation. The analysis of creep curves indicates that the deformation occurs by a dislocation mechanism controlled by grain boundary diffusion.

  12. Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Wen, Xingshuo

    The Very High Temperature Reactor (VHTR) is one of the leading concepts of the Generation IV nuclear reactor development, which is the core component of Next Generation Nuclear Plant (NGNP). The major challenge in the research and development of NGNP is the performance and reliability of structure materials at high temperature. Alloy 617, with an exceptional combination of high temperature strength and oxidation resistance, has been selected as a primary candidate material for structural use, particularly in Intermediate Heat Exchanger (IHX) which has an outlet temperature in the range of 850 to 950°C and an inner pressure from 5 to 20MPa. In order to qualify the material to be used at the operation condition for a designed service life of 60 years, a comprehensive scientific understanding of creep behavior at high temperature and low stress regime is necessary. In addition, the creep mechanism and the impact factors such as precipitates, grain size, and grain boundary characters need to be evaluated for the purpose of alloy design and development. In this study, thermomechanically processed specimens of alloy 617 with different grain sizes were fabricated, and creep tests with a systematic test matrix covering the temperatures of 850 to 1050°C and stress levels from 5 to 100MPa were conducted. Creep data was analyzed, and the creep curves were found to be unconventional without a well-defined steady-state creep. Very good linear relationships were determined for minimum creep rate versus stress levels with the stress exponents determined around 3-5 depending on the grain size and test condition. Activation energies were also calculated for different stress levels, and the values are close to 400kJ/mol, which is higher than that for self-diffusion in nickel. Power law dislocation climb-glide mechanism was proposed as the dominant creep mechanism in the test condition regime. Dynamic recrystallization happening at high strain range enhanced dislocation climb and

  13. Autonomous Repair Mechanism of Creep Damage in Fe-Au and Fe-Au-B-N Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Kwakernaak, C.; Tichelaar, F. D.; Sloof, W. G.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2015-12-01

    The autonomous repair mechanism of creep cavitation during high-temperature deformation has been investigated in Fe-Au and Fe-Au-B-N alloys. Combined electron-microscopy techniques and atom probe tomography reveal how the improved creep properties result from Au precipitation within the creep cavities, preferentially formed on grain boundaries oriented perpendicular to the applied stress. The selective precipitation of Au atoms at the free creep cavity surface results in pore filling, and thereby, autonomous repair of the creep damage. The large difference in atomic size between the Au and Fe strongly hampers the nucleation of precipitates in the matrix. As a result, the matrix acts as a reservoir for the supersaturated solute until damage occurs. Grain boundaries and dislocations are found to act as fast transport routes for solute gold from the matrix to the creep cavities. The mechanism responsible for the self-healing can be characterized by a simple model for cavity growth and cavity filling.

  14. Propagation of electro-kinetic waves in magnetized GaN semiconductor with nano-sized ion colloids

    SciTech Connect

    Saxena, Ajay; Sharma, Giriraj; Jat, K. L.; Rishi, M. P.

    2015-07-31

    Based on hydrodynamic model of multi-component plasma, an analytical study on propagation of longitudinal electro-kinetic (LEK) waves in wurtzite and zincblende structures of GaN is carried out. Nano-sized ion colloids (NICs) are embedded in the sample by the technique of ion-implantation. The implanted NICs are considered massive by an order as compared to the host lattice points and do not participate in Based LEK perturbations. Though, the NICs are continuously bombarded by the electrons as well as the holes yet, the former acquires a net negative charge owing to relatively higher mobility of electrons and consequently results into depletion of electron density in the medium. It i s found that the presence of charged NICs significantly modifies the dispersion and amplification characteristics of LEK waves in magnetized GaN semiconductor plasma and their role becomes increasingly effective as the fraction of charge on them increases.

  15. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  16. Beam-loaded frequency shift study in an over-sized backward wave oscillator

    SciTech Connect

    Li, Zhenghong; Zhou, Zhigang; Qiu, Rong

    2014-10-15

    The oversized backward wave oscillator (BWO) can significantly decreases the internal rf electric field in the device. The beam-loaded effect is obvious in such devices and its performance is also significantly affected. Based on the characteristics of the oversized BWO, a self-consistent equation is developed to study its beam-loaded frequency shift together with particle in cell (PIC) simulations. The mechanism whereby the output rf frequency is affected by the beam's parameters and the device's structure is theoretically studied. The frequency's dependence on the drift tube length between the reflector and SWS (slow wave structures) in the device is deduced in the paper and the theoretical results agree with those obtained in PIC simulations.

  17. Creep of ice: Further studies

    NASA Technical Reports Server (NTRS)

    Heard, H. C.; Durham, W. B.; Kirby, S. H.

    1987-01-01

    Detailed studies have been done of ice creep as related to the icy satellites, Ganymede and Callisto. Included were: (1) the flow of high-pressure water ices II, III, and V, and (2) frictional sliding of ice I sub h. Work was also begun on the study of the effects of impurities on the flow of ice. Test results are summarized.

  18. Multiple-creep-test apparatus

    NASA Technical Reports Server (NTRS)

    Haehner, C. L.

    1980-01-01

    Simplified, compact apparatus uses fixtures that can test three samples at once for flexure, compression, or double-shear creep. Each fixture uses series of rods and plates to divide one load equally among three samples. Fixtures could be expanded to carry more samples by adding more rods and plates.

  19. COMPARISON OF CLADDING CREEP RUPTURE MODELS

    SciTech Connect

    P. Macheret

    2000-06-12

    The objective of this calculation is to compare several creep rupture correlations for use in calculating creep strain accrued by the Zircaloy cladding of spent nuclear fuel when it has been emplaced in the repository. These correlations are used to calculate creep strain values that are then compared to a large set of experimentally measured creep strain data, taken from four different research articles, making it possible to determine the best fitting correlation. The scope of the calculation extends to six different creep rupture correlations.

  20. Experimental and theoretical study of quantized spin-wave modes in micrometer-size permalloy wires

    NASA Astrophysics Data System (ADS)

    Roussigné, Y.; Chérif, S. M.; Dugautier, C.; Moch, P.

    2001-04-01

    Using Brillouin light scattering measurements, we have studied the properties of the spin waves in various arrays of Permalloy wires showing widths of 0.5, 1, and 1.5 μm. When the transferred in-plane wave vector κ∥, specified by the experimental setup, is perpendicular to the wires, a sampling of the Damon-Eshbach surface mode branch giving rise to a set of discrete dispersionless modes is observed. We attribute this behavior to a lateral quantization of the wave vector q∥ of the magnetic excitations. The frequency separation between two adjacent modes is found to decrease when the width D of the wires increases. However, this frequency dependence does not simply follow the expected one assuming the usual naive relation q∥,n=nπ/D, which would not allow one to give account of the behavior of the lowest mode n=0. We have performed numerical calculations of the dynamical magnetization response functions of these rectangular cross section wires using the method of finite elements. The magnetic parameters used in these calculations were derived from the experimental Brillouin spectra of the unpatterned films. Both our experiments and our calculations agree with the results expected from the unpatterned film assuming the following discrete values: q∥,0=0, q∥,n=π(n+β)/D. The zero value observed for the lowest mode n=0 simply results from the calculation and does not need for an additional hypothesis as previously proposed.

  1. Investigation of grain boundary sliding and cavitation during creep of single-phase alumina. Ph.D. Thesis

    SciTech Connect

    Blanchard, C.R.

    1994-01-01

    Using a high-purity alumina with no glassy phase as a model material, both the creep cavitation and grain boundary sliding (GBS) phenomena were studied and their kinetics quantified. The GBS measurements were performed on both tensile and compressive creep specimens with an automated machine-vision-based stereoimaging technique called DISMAP. SEM observations revealed that compressive creep at 70 and 140 MPa resulted in the nucleation of multiple creep cavities primarily on two-grain facets, secondarily at three- and four-grain junctions, and occasionally at triple points. These cavities were generally observed to be of similar size, shape, and spacing on a given grain boundary and their subsequent growth and coalescence led to the formation of facet-sized cavities leading to failure. Cavities were observed to exhibit a variety of irregular, angular shapes, suggesting that their morphologies may be governed by the crystallographic orientation of the grain facet and the corresponding surface energies. Fracture surfaces of tensile specimens tested at 35 MPa revealed creep cavities located primarily at three- and four-grain junctions and triple points, and only occasionally at two-grain facets. Finally, in the 20 MPa tensile specimen, creep cavities were located almost exclusively at grain boundary triple points. GBS measurements showed that during compressive and tensile creep, grain boundaries exhibit mode II GBS, in-plane grain rotation, in-grain shear deformation, mode I grain boundary opening, and out-of-plane GBS. No dependence of grain boundary orientation to the compressive load axis was observed on the magnitude of mode II GBS displacement. During steady-state tensile creep, the cumulative mode II GBS displacements increased linearly with creep strain and showed an increasing trend with creep time. Small-angle neutron scattering (SANS) quantification of creep cavitation revealed that the number of cavities per unit volume increases linearly with creep time.

  2. Creep Deformation of Allvac 718Plus

    DOE PAGES

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics aremore » common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.« less

  3. Creep Deformation of Allvac 718Plus

    SciTech Connect

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  4. Creep Deformation of Allvac 718Plus

    NASA Astrophysics Data System (ADS)

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2015-01-01

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range of 923 K to 1005 K (650 °C to 732 °C) at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature-stress regime this alloy exhibits Class M-type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys, this gamma prime strengthened superalloy does not exhibit steady-state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common among the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non-Nb-bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  5. On the accuracy of creep-damage predictions in thinwalled structures using the finite element method

    NASA Astrophysics Data System (ADS)

    Altenbach, H.; Kolarow, G.; Morachkovsky, O. K.; Naumenko, K.

    The constitutive model with a single damage parameter describing creep-damage behaviour of metals with respect to the different sensitivity of the damage process due to tension and compression is incorporated into the ANSYS finite element code by modifying the user defined creep material subroutine. The procedure is verified by comparison with solutions for beams and rectangular plates in bending based on the Ritz method. Various numerical tests show the sensitivity of long-term predictions to the mesh sizes and element types available for the creep analysis of thinwalled structures.

  6. SANS and TEM studies of carbide precipitation and creep damage in type 304 stainless steel

    SciTech Connect

    Yoo, M.H.; Ogle, J.C.; Schneibel, J.H.; Swindeman, R.W.

    1984-01-01

    Small-angle neutron scattering (SANS) and transmission electron microscopy (TEM) studies were performed to characterize the carbide (M/sub 23/C/sub 6/) precipitation and creep damage induced in type 304 stainless steel in the primary creep stage. The size distribution of matrix carbides evaluated from SANS analyses was consistent with TEM data, and the expected accelerated kinetics of precipitation under applied stress was confirmed. Additional SANS measurements after the postcreep solution annealing were made in order to differentiate cavities from the carbides. Potential advantages and difficulties associated with characterization of creep-induced cavitation by the SANS techniques are discussed.

  7. Dislocation Creep of Ice At Glaciological Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Qi, C.; Goldsby, D. L.

    2015-12-01

    The Glen law, a power law between effective strain rate ɛdot and effective stress τ of the form ɛdot=Aτn, where A is a temperature-dependent parameter, and n is the stress exponent of value 3, attributed to dislocation creep, has underpinned models and calculations of glacier flow for over six decades. Compilations of ice creep data from tests at ambient and elevated confining pressures, however, suggest that dislocation creep of ice is characterized by a value of n=4, not 3. While high-pressure experiments on ice provide the best constraints on the dislocation creep regime and have consistently yielded a stress exponent of ~4, most of these tests have been conducted at much-lower-than-glaciological temperatures (Durham et al., 1992). To investigate dislocation creep of ice at glaciological conditions, we deformed samples at temperatures ≥264 K and elevated confining pressures up to ~30 MPa, the maximum cryostatic pressure in the ice sheets. Samples were formed by flooding evacuated cylindrical compacts of distilled-water seed ice of particle sizes 0.18-0.25 mm or 1-1.6 mm at 273 K, followed by freezing at 243 K. Each indium-jacketed specimen was deformed in compression in a gas-medium apparatus at a single constant displacement rate to ~20% strain, at nominally constant strain rates of from 10-6 to 10-3 s-1. In each test, we obtain the peak stress after ~2-3% strain and the steady-state flow stress at larger strains. Plots of strain rate vs. both peak stress and flow stress yield a value of n=4, consistent with previous data from higher-pressure, lower-temperature tests (Durham et al., 1992) and from some ambient pressure experiments (Goldsby and Kohlstedt, 2001), and with models of climb-limited dislocation creep (Weertman, 1968). At stresses <3 MPa, tests on the finer-grained samples show a slight decrease in n to a value <4, while data for the coarser-grained samples show no such transition, consistent with the onset of dislocation-accommodated grain

  8. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  9. Analysis of anchor-size effects on pinned scroll waves and measurement of filament rigidity.

    PubMed

    Nakouzi, Elias; Jiménez, Zulma A; Biktashev, Vadim N; Steinbock, Oliver

    2014-04-01

    Inert, spherical heterogeneities can pin three-dimensional scroll waves in the excitable Belousov-Zhabotinsky reaction. Three pinning sites cause initially circular rotation backbones to approach equilateral triangles. The resulting stationary shapes show convex deviations that increase with decreasing anchor radii. This dependence is interpreted as a transition between filament termination at large surfaces and true, local pinning of a continuous curve. The shapes of the filament segments are described by a hyperbolic cosine function which is predicted by kinematic theory that considers filament tension and rigidity. The latter value is measured as (1.0±0.7)×10-6 cm4/s.

  10. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  11. Microstructural degradation mechanisms during creep in strength enhanced high Cr ferritic steels and their evaluation by hardness measurement

    NASA Astrophysics Data System (ADS)

    Ghassemi Armaki, Hassan; Chen, Ruiping; Kano, Satoshi; Maruyama, Kouichi; Hasegawa, Yasushi; Igarashi, Masaaki

    2011-09-01

    There are two creep regions with different creep characteristics: short-term creep region "H", where precipitates and subgrains are thermally stable, and long-term creep region "L", where thermal coarsening of precipitates and subgrains appear. In region "H", the normalized subgrain size (λ-λ0)/(λ∗-λ0) has a linear relation with creep strain and its slope is 10 ɛ-1. But, region L is the time range in which the static recovery and the strain-induced recovery progress simultaneously. In this region, the static recovery accelerates the strain-induced recovery, and subgrain size is larger than that line which neglects the contribution of the static recovery. In region "L", the Δλ/Δλ∗-strain present a linear relation with a slope 35 ɛ-1. There is a linear relation between hardness and subgrain size. Hardness drop, H0 - H, as a function of Larson-Miller parameter can be a good measure method for assessment of hardness drop and consequently degradation of microstructure. Hardness drop shows an identical slope in creep region "H", whereas hardness drop due to thermal aging and creep in region "L" show together a similar slope. In region "H", degradation of microstructure is mainly due to recovery of subgrains controlled by creep plastic deformation, and precipitates do not have a major role. However, in creep region "L", there are three degradation mechanisms that accelerate creep failure; (1) strain-induced recovery of subgrains due to creep plastic deformation, (2) static-recovery of subgrains and precipitates and (3) strain-induced coarsening of precipitates due to the appearance of static-recovery.

  12. Enhanced Removal of Hydrophobic Gas by Aerial Ultrasonic Waves and Two Kinds of Water Mists of Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Matsumoto, Keisuke; Miura, Hikaru

    2012-07-01

    Air pollutants can cause health problems, such as bronchitis and cancer, and are now recognized as a social problem. Hence, a method is proposed for the collection and removal of gaseous air pollutants by aerial ultrasonic waves and water mist. Typically, gas removal effects are studied using lemon oil vapor (“lemon gas”), which is a hydrophobic gas. Previous experiments using lemon gas have shown that a removal rate of up to 40% can be achieved in an intense standing wave at 20 kHz, for an amount of water mist of 1.39 cm3/s and an electrical input power of 50 W. Increasing the surface area of the water mist leads to greater removal of hydrophobic gas. In this study, the effects of gas removal are examined by conducting experiments using intense aerial ultrasonic waves to disperse two kinds of water mists, each composed of particles of different sizes: small particles (diameter: ≈3 µm) and conventional large particles (diameter: ≈60 µm).

  13. Brittle creep, damage, and time to failure in rocks

    NASA Astrophysics Data System (ADS)

    Amitrano, David; Helmstetter, AgnèS.

    2006-11-01

    We propose a numerical model based on static fatigue laws in order to model the time-dependent damage and deformation of rocks under creep. An empirical relation between time to failure and applied stress is used to simulate the behavior of each element of our finite element model. We review available data on creep experiments in order to study how the material properties and the loading conditions control the failure time. The main parameter that controls the failure time is the applied stress. Two commonly used models, an exponential tf-exp (-bσ/σ0) and a power law function tf-σb' fit the data as well. These time-to-failure laws are used at the scale of each element to simulate its damage as a function of its stress history. An element is damaged by decreasing its Young's modulus to simulate the effect of increasing crack density at smaller scales. Elastic interactions between elements and heterogeneity of the mechanical properties lead to the emergence of a complex macroscopic behavior, which is richer than the elementary one. In particular, we observe primary and tertiary creep regimes associated respectively with a power law decay and increase of the rate of strain, damage event and energy release. Our model produces a power law distribution of damage event sizes, with an average size that increases with time as a power law until macroscopic failure. Damage localization emerges at the transition between primary and tertiary creep, when damage rate starts accelerating. The final state of the simulation shows highly damaged bands, similar to shear bands observed in laboratory experiments. The thickness and the orientation of these bands depend on the applied stress. This model thus reproduces many properties of rock creep, which were previously not modeled simultaneously.

  14. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy

    SciTech Connect

    Wang, L. Wang, D.; Liu, T.; Li, X.W.; Jiang, W.G.; Zhang, G.; Lou, L.H.

    2015-06-15

    Different amounts of carbon were added to a single-crystal nickel-based superalloy. The microstructural evolution of these alloys before and after high-temperature creep tests was investigated by employing scanning electron microscopy and transmission electron microscopy. Upon increasing the carbon contents, the volume fraction and diameter of the carbides increased gradually: however, the creep lives of the alloys increased slightly at first and subsequently decreased. The formation of second-phase particles, such as the nano-sized M{sub 23}C{sub 6}, blocky and needle-shaped μ phase, was observed in the creep samples, which was closely related to the high-temperature creep behaviors. - Highlights: • Creep behaviors of alloys with different amounts of carbon were investigated. • The creep rupture lives increased and later decreased with more carbon. • Second-phase particles were responsible for the different creep behaviors.

  15. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    SciTech Connect

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  16. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    NASA Astrophysics Data System (ADS)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  17. Micromechanics of intergranular creep failure under cyclic loading

    SciTech Connect

    Giessen, E. van der; Tvergaard, V.

    1996-07-01

    This paper is concerned with a micromechanical investigation of intergranular creep failure caused by grain boundary cavitation under strain-controlled cyclic loading conditions. Numerical unit cell analyses are carried out for a planar polycrystal model in which the grain material and the grain boundaries are modeled individually. The model incorporates power-law creep of the grains, viscous grain boundary sliding between grains as well as the nucleation and growth of grain boundary cavities until they coalesce and form microcracks. Study of a limiting case with a facet-size microcrack reveals a relatively simple phenomenology under either balanced loading, slow-fast loading or balanced loading with a hold period at constant tensile stress. Next, a (non-dimensionalized) parametric study is carried out which focuses on the effect of the diffusive cavity growth rate relative to the overall creep rate, and the effects of cavity nucleation and grain boundary sliding. The model takes account of the build up of residual stresses during cycling, and it turns out that this, in general, gives rise to a rather complex phenomenology, but some cases are identified which approach the simple microcrack behavior. The analyses provide some new understanding that helps to explain the sometimes peculiar behavior under balanced cyclic creep.

  18. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  19. Wind and wave influences on sea ice floe size and leads in the Beaufort and Chukchi Seas during the summer-fall transition 2014

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Holt, Benjamin; Erick Rogers, W.; Thomson, Jim; Shen, Hayley H.

    2016-02-01

    Sea ice floe size distribution and lead properties in the Beaufort and Chukchi Seas are studied in the summer-fall transition 2014 to examine the impact on the sea ice cover from storms and surface waves. Floe size distributions are analyzed from MEDEA, Landsat8, and RADARSAT-2 imagery, with a resolution span of 1-100 m. Landsat8 imagery is also used to identify the orientation and spacing of leads. The study period centers around three large wave events during August-September 2014 identified by SWIFT buoys and WAVEWATCH III® model data. The range of floe sizes from different resolutions provides the overall distribution across a wide range of ice properties and estimated thickness. All cumulative floe size distribution curves show a gradual bending toward shallower slopes for smaller floe sizes. The overall slopes in the cumulative floe size distribution curves from Landsat8 images are lower than, while those from RADARSAT-2 are similar to, previously reported results in the same region and seasonal period. The MEDEA floe size distributions appeared to be sensitive to the passage of storms. Lead orientations, regardless of length, correlate slightly better with the peak wave direction than with the mean wave direction. Their correlation with the geostrophic wind is stronger than with the surface wind. The spacing between shorter leads correlates well with the local incoming surface wavelengths, obtained from the model peak wave frequency. The information derived shows promise for a coordinated multisensor study of storm effects in the Arctic marginal ice zone.

  20. Creep of Structural Nuclear Composites

    SciTech Connect

    Will Windes; R.W. Lloyd

    2005-09-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor (VHTR) design. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. One of the primary degradation mechanisms anticipated for these core components is high temperature thermal and irradiation enhanced creep. As a consequence, high temperature test equipment, testing methodologies, and test samples for very high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Actual testing of both tubular and flat, "dog-bone"-shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures are currently being established from these high temperature mechanical tests.

  1. Creep deformation in an alumina-silicon carbide composite produced via a directed metal oxidation process

    SciTech Connect

    Lin, H.T.; Breder, K.

    1996-08-01

    Flexural creep studies were conducted in a commercially available alumina matrix composite reinforced with SiC particulates (SiC{sub p}) and aluminum metal at temperatures from 1,200 to 1,300 C under selected stress levels in air. The alumina composite (5 to 10 {micro}m alumina grain size) containing 48 vol% SiC particulates and 13 vol% aluminum alloy was fabricated via a directed metal oxidation process (DIMOX{trademark}) and had an external 15 {micro}m oxide coating. Creep results indicated that the DIMOX Al{sub 2}O{sub 3}-SiC{sub p} composite exhibited creep rates that were comparable to alumina composites reinforced with 10 vol% (8 {micro}m grain size) and 50 vol% (1.5 {micro}m grain size) SiC whiskers under the employed test conditions. The DIMOX Al{sub 2}O{sub 3}-SiC{sub p} composite exhibited a stress exponent of 2 at 1,200 C and a higher exponent value (2.6) at {ge}1,260 C, which is associated with the enhanced creep cavitation. The creep mechanism in the DIMOX alumina composite was attributed to grain boundary sliding accommodated by diffusional processes. Creep damage observed in the DIMOX Al{sub 2}O{sub 3}-SiC{sub p} composite resulted from the cavitation at alumina two-grain facets and multiple-grain junctions where aluminum alloy was present.

  2. Creep rupture of materials: Insights from a fiber bundle model with relaxation

    NASA Astrophysics Data System (ADS)

    Jagla, E. A.

    2011-04-01

    I adapted a model recently introduced in the context of seismic phenomena to study creep rupture of materials. It consists of linear elastic fibers that interact in an equal load sharing scheme, complemented with a local viscoelastic relaxation mechanism. The model correctly describes the three stages of the creep process; namely, an initial Andrade regime of creep relaxation, an intermediate regime of rather constant creep rate, and a tertiary regime of accelerated creep toward final failure of the sample. In the tertiary regime, creep rate follows the experimentally observed creep rate over time-to-failure dependence. The time of minimum strain rate is systematically observed to be about 60%-65 % of the time to failure, in accordance with experimental observations. In addition, burst size statistics of breaking events display a -3/2 power law for events close to the time of failure and a steeper decay for the all-time distribution. Statistics of interevent times shows a tendency of the events to cluster temporarily. This behavior should be observable in acoustic emission experiments.

  3. Creep of Oxide Single Crystals

    DTIC Science & Technology

    1990-08-01

    literature data on Gd 3Ga5O1 2 (8) indicate that garnets may be highly deformation resistant at temperatures very close to their melting points...Data for Yttrium Aluminum Garnet Single Crystals Temperature Stress Creep Rate (sec 1 ) for Given Stress Direction (0C) (MPa) [111] [110] [100] 1650...Gadolinium Gallium Garnet Single Crystals," J.Mat.Sci., 17, 878-884 (1982). 9. B.M. Wanklyn, Clarendon Laboratory, personal communicaticn. 10. S.B. Austerman

  4. Postseismic relaxation and transient creep

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Yu, S.-B.

    2005-01-01

    Postseismic deformation has been observed in the epicentral area following the 1992 Landers (M = 7.3), 1999 Chi-Chi (M = 7.6), 1999 Hector Mine (M = 7.1), 2002 Denali (M = 7.9), 2003 San Simeon (M = 6.5), and 2004 Parkfield (M = 6.0) earthquakes. The observations consist of repeated GPS measurements of the position of one monument relative to another (separation ???100 km). The early observations (t < 0.1 year) are well fit by the function a' + c'log(t), where t is the time after the earthquake and a' and c' are constants chosen to fit the data. Because a log(t) time dependence is characteristic of transient (primary) creep, the early postseismic response may be governed by transient creep as Benioff proposed in 1951. That inference is provisional as the stress conditions prevailing in postseismic relaxation are not identical to the constant stress condition in creep experiments. The observed logarithmic time dependence includes no characteristic time that might aid in identifying the micromechanical cause.

  5. Compression creep of filamentary composites

    NASA Technical Reports Server (NTRS)

    Graesser, D. L.; Tuttle, M. E.

    1988-01-01

    Axial and transverse strain fields induced in composite laminates subjected to compressive creep loading were compared for several types of laminate layups. Unidirectional graphite/epoxy as well as multi-directional graphite/epoxy and graphite/PEEK layups were studied. Specimens with and without holes were tested. The specimens were subjected to compressive creep loading for a 10-hour period. In-plane displacements were measured using moire interferometry. A computer based data reduction scheme was developed which reduces the whole-field displacement fields obtained using moire to whole-field strain contour maps. Only slight viscoelastic response was observed in matrix-dominated laminates, except for one test in which catastrophic specimen failure occurred after a 16-hour period. In this case the specimen response was a complex combination of both viscoelastic and fracture mechanisms. No viscoelastic effects were observed for fiber-dominated laminates over the 10-hour creep time used. The experimental results for specimens with holes were compared with results obtained using a finite-element analysis. The comparison between experiment and theory was generally good. Overall strain distributions were very well predicted. The finite element analysis typically predicted slightly higher strain values at the edge of the hole, and slightly lower strain values at positions removed from the hole, than were observed experimentally. It is hypothesized that these discrepancies are due to nonlinear material behavior at the hole edge, which were not accounted for during the finite-element analysis.

  6. Flexural creep behaviour of jute polypropylene composites

    NASA Astrophysics Data System (ADS)

    Chandekar, Harichandra; Chaudhari, Vikas

    2016-09-01

    Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.

  7. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  8. Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.

    2013-01-01

    Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.

  9. Factors which influence directional coarsening of gamma-prime during creep in nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1984-01-01

    Changes in the morphology of the gamma prime precipitate were examined as a function of the time during creep at 982 C in 001 oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80 pct., the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The effects of initial microstructure and alloy composition of raft development and creep properties were investigated. Directional coarsening of gamma prime begins during primary creep and continues well after the onset of second state creep. The thickness of the rafts remains constant up through the onset of tertiary creep, a clear indication of the stability of the finely-spaced gamma/gamma prime lamellar structure. The thickness of the rafts which formed was equal to the initial gamma prime size which was present prior to testing. The single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma/gamma prime interfaces per unit volume of material. Reducing the Mo content by only 0.73 wt. pct. increased the creep life by a factor of three, because the precipitation of a third phase was eliminated.

  10. Factors which influence directional coarsening of Gamma prime during creep in nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1984-01-01

    Changes in the morphology of the gamma prime precipitate were examined as a function of time during creep at 982 C in 001 oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80 pct., the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The effects of initial microstructure and alloy composition of raft development and creep properties were investigated. Directional coarsening of gamma prime begins during primary creep and continues well after the onset of second state creep. The thickness of the rafts remains constant up through the onset of tertiary creep a clear indication of the stability of the finely-spaced gamma/gamma prime lamellar structure. The thickness of the rafts which formed was equal to the initial gamma prime size which was present prior to testing. The single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma/gamma prime interfaces per unit volume of material. Reducing the Mo content by only 0.73 wt. pct. increased the creep life by a factor of three, because the precipitation of a third phase was eliminated.

  11. Creep characterization of solder bumps using nanoindentation

    NASA Astrophysics Data System (ADS)

    Du, Yingjie; Liu, Xiao Hu; Fu, Boshen; Shaw, Thomas M.; Lu, Minhua; Wassick, Thomas A.; Bonilla, Griselda; Lu, Hongbing

    2016-10-01

    Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.

  12. Electrochemical control of creep in nanoporous gold

    SciTech Connect

    Ye, Xing-Long; Jin, Hai-Jun

    2013-11-11

    We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.

  13. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrasonic particle manipulation

    PubMed Central

    2013-01-01

    Background For the design and characterization of ultrasonic particle manipulation devices the pressure field in the fluid cavity is of great interest. The schlieren method provides an optical tool for the visualization of such pressure fields. Due to its purely optical nature this experimental method has got some unique advantages compared to methods like particle tracking. Results A vertical schlieren setup and an investigation with the same of a mm-sized chamber used to agglomerate particles are presented here. The schlieren images show a two-dimensional representation of the whole pressure distribution recorded simultaneously with a good resolution in time. The gained description of the pressure field is shown to be in agreement with a numerical simulation. Thermal effects as well as streaming effects are shown. Conclusions The results show the great potential of schlieren visualization to investigate ultrasonic particle manipulation devices. Visualized are pressure fields, acoustic streaming, temperature effects and effects caused by fluid volumes of different density. PMID:23842114

  14. Influence of waves and horseshoe crab spawning on beach morphology and sediment grain-size characteristics on a sandy estuarine beach

    USGS Publications Warehouse

    Jackson, N.L.; Nordstrom, K.F.; Smith, D.R.

    2005-01-01

    The effects of wave action and horseshoe crab spawning on the topography and grain-size characteristics on the foreshore of an estuarine sand beach in Delaware Bay, New Jersey, USA were evaluated using data collected over six consecutive high tides. Data were gathered inside and outside a 25 m long exclosure constructed to create a control area free of disturbance by crabs. The density of crabs in the swash zone outside the exclosure was 8??1 organisms m-2. The maximum depth of sediment activation on the upper foreshore where spawning occurred was 0??103 m during periods characterized by low significant wave heights: < 0??08 m. This depth is greater than the depth of activation by waves alone during moderate significant wave heights of 0??16 - 0??18 m but less than the maximum depth (0??127 m) recorded when spawning occurred during periods of moderate wave heights. Spawning, combined with moderate wave heights, creates a concave upper foreshore that is similar to the type of profile change that occurs during storms, thus lowering the wave-energy threshold for morphological response. Spawning during low wave heights increases the mean grain size and sorting of surface sediments caused by the addition of gravel to the swash. Sedimentological differences are most pronounced on the upper foreshore, and data from this location may be most useful when using grain-size characteristics to interpret the effect of spawning in the sedimentary record. Depths of sediment reworking by horseshoe crabs can be greater than those by subsequent storm waves, so evidence of spawning can be preserved on non-eroding beaches. Greater depth of activation by horseshoe crab spawning than by waves alone, even during moderate-energy conditions, reveals the importance of crab burrowing in releasing eggs to the water column and making them available for shore birds. ?? 2005 International Association of Sedimentologists.

  15. Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.

    1977-01-01

    The tensile properties at room temperature and at 1365 K and the tensile creep properties at low strain rates at 1365 K were measured for several oxide-dispersion-strengthened (ODS) alloys. The alloys examined included ODS Ni, ODS Ni-20Cr, and ODS Ni-16Cr-Al. Metallography of creep tested, large grain size ODS alloys indicated that creep of these alloys is an inhomogeneous process. All alloys appear to possess a threshold stress for creep. This threshold stress is believed to be associated with diffusional creep in the large grain size ODS alloys and normal dislocation motion in perfect single crystal (without transverse low angle boundaries) ODS alloys. Threshold stresses for large grain size ODS Ni-20Cr and Ni-16Cr-Al type alloys are dependent on the grain aspect ratio. Because of the deleterious effect of prior creep on room temperature mechanical properties of large grain size ODS alloys, it is speculated that the threshold stress may be the design limiting creep strength property.

  16. Investigation of Harper-Dorn creep under the condition of large strains

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Ching

    The purpose of this investigation is to identify and clarify the perspective of the nature and origin of necessary procedures and requirements for Harper-Dorn creep. Harper-Dorn creep represents to the anomalous high temperature deformation behavior, which is first reported by Harper and Dorn in aluminum under the condition of small strains about 0.01. To accomplish the purpose of this investigation, four types of large grained materials are selected: commercial purity grade lead, high purity grade lead, high purity grade polycrystalline aluminum, and high purity grade single crystalline aluminum. Creep experiments are conducted under 0.98 melting temperature of the selected materials in long term tests. Microstructures are examed by optical microscope, scanning electron microscope and transmission electron microscope. Mechanical results represent that creep curves of commercial purity grade lead are smooth and stress exponents obeys the five-power-law at both high and low stress areas. Micro-structural results show that dynamic recovery is the proper restoration mechanism for commercial purity grade lead. Mechanical results represent that creep curves of high purity grade aluminum and lead show periodic accelerations in strain. The creep results of high purity grade aluminum verify that the present test conditions correspond to the priors. Furthermore, under the condition of large strains about 0.05, it was determined that the stress exponent of Harper-Dorn creep is about 2.6 and does not reveal Newtonian behavior. Micro-structural results indicate that dynamic re-crystallization is a dominate restoration mechanism for Harper-Dorn creep in large grain size, low dislocation density, and high purity grade materials. Therefore, this investigation provides new evidence that dynamic re-crystallization occurs during Harper-Dorn creep. The evidence is proved by the occurrence of periodic accelerations in creep curves and the transition of the stress exponents

  17. Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes

    USGS Publications Warehouse

    Shelly, D.R.; Peng, Z.; Hill, D.P.; Aiken, C.

    2011-01-01

    The passage of radiating seismic waves generates transient stresses in the Earth's crust that can trigger slip on faults far away from the original earthquake source. The triggered fault slip is detectable in the form of earthquakes and seismic tremor. However, the significance of these triggered events remains controversial, in part because they often occur with some delay, long after the triggering stress has passed. Here we scrutinize the location and timing of tremor on the San Andreas fault between 2001 and 2010 in relation to distant earthquakes. We observe tremor on the San Andreas fault that is initiated by passing seismic waves, yet migrates along the fault at a much slower velocity than the radiating seismic waves. We suggest that the migrating tremor records triggered slow slip of the San Andreas fault as a propagating creep event. We find that the triggered tremor and fault creep can be initiated by distant earthquakes as small as magnitude 5.4 and can persist for several days after the seismic waves have passed. Our observations of prolonged tremor activity provide a clear example of the delayed dynamic triggering of seismic events. Fault creep has been shown to trigger earthquakes, and we therefore suggest that the dynamic triggering of prolonged fault creep could provide a mechanism for the delayed triggering of earthquakes. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  18. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1983-01-01

    The activities performed during the first year of the NASA HOST Program, Creep Fatigue Life Prediction for Engine Hot Section Materials (Isotropic), being conducted by Pratt & Whitney Aircraft are summarized. The program is a 5 year, two part effort aimed at improving the high temperature crack initiation prediction technology for gas turbine hot section components. Significant results of the program produced thus far are discussed. Cast B1900 + Hf and wrought IN 718 were selected as the base and alternate materials, respectively. A single heat of B1900 + Hf was obtained and test specimens fabricated. The material was characterized with respect to grain size, gamma prime size, carbide distribution, and dislocation density. Monotonic tensile and creep testing has shown engineering properties within anticipated scatter for this material. Examination of the tensile tests has shown a transition from inhomogeneous planar slip within the grains at lower temperatures to more homogeneous matrix deformation. Examination of the creep tests has shown a transgranular failure mode at 1400 F and an intergranular failure mode at 1600 F and 1800 F.

  19. Determining the TNT equivalence of gram-sized explosive charges using shock-wave shadowgraphy and high-speed video recording

    NASA Astrophysics Data System (ADS)

    Hargather, Michael

    2005-11-01

    Explosive materials are routinely characterized by their TNT equivalence. This can be determined by chemical composition calculations, measurements of shock wave overpressure, or measurements of the shock wave position vs. time. However, TNT equivalence is an imperfect criterion because it is only valid at a given radius from the explosion center (H. Kleine et al., Shock Waves 13(2):123-138, 2003). Here we use a large retroreflective shadowgraph system and a high-speed digital video camera to image the shock wave and record its location vs. time. Optical data obtained from different explosions can be combined to determine a characteristic shock wave x-t diagram, from which the overpressure and the TNT equivalent are determined at any radius. This method is applied to gram-sized triacetone triperoxide (TATP) charges. Such small charges can be used inexpensively and safely for explosives research.

  20. Irradiation creep of vanadium-base alloys

    SciTech Connect

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  1. Creep resistant high temperature martensitic steel

    DOEpatents

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  2. Creep resistant high temperature martensitic steel

    DOEpatents

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  3. Microstructure and creep properties of alumina.

    SciTech Connect

    Moreno, J. M. C.; Lopez, A. R.; Rodriguez, A. D.; Routbort, J. L.; Materials Science Division; Univ. of Seville

    1995-01-01

    High temperature creep of two zirconia toughened alumina ceramics, fabricated by powder processing and sol-gel precursors processing, has been studied in order to determine plastic deformation mechanisms. Compressive creep tests were carried out between 1300 and 1450 C, under stresses from 10 to 150 MPa. For the sample fabricated from powders, a stress exponent of 1.4 and an activation energy of 580 kJ/mol were found below a critical stress of 40 MPa. For larger stresses, accelerated creep rates developed. In the specimens processed from precursors, values of 1.8 for the stress exponent and 540 kJ/mol for the activation energy, over the entire range of stresses have been determined. Creep parameters and microstructural evolution of the samples during the experiments have been correlated with models to establish the dominant creep mechanism.

  4. Tensile strength and creep resistance in nanocrystalline Cu, Pd and Ag

    SciTech Connect

    Nieman, G.W.; Weertman, J.R. . Dept. of Materials Science and Engineering); Siegel, R.W. )

    1990-12-01

    Measurements of tensile strength and creep resistance have been made on bulk samples of nanocrystalline Cu, Pd and Ag consolidated from powders by cold compaction. Samples of Cu-Cu{sub 2}O have also been tested. Yield strength for samples with mean grains sizes of 5-80 nm and bulk densities on the order of 95% of theoretical density are increased 2--5 times over that measured in pure, annealed samples of the same composition with micrometer grain sizes. Ductility in the nanocrystalline Cu has exceeded 6% true strain, however, nanocrystalline Pd samples were much less ductile. Constant load creep tests performed at room temperature at stresses of >100 MPa indicate logarithmic creep. The mechanical properties results are interpreted to be due to grain size-related strengthening and processing flaw-related weakening. 26 refs., 2 figs.

  5. The Role of Dislocation Climb across Particles at Creep Conditions in 9 to 12 Pct Cr Steels

    NASA Astrophysics Data System (ADS)

    Magnusson, Hans; Sandström, Rolf

    2007-10-01

    The influence of a distribution of particles on creep strength is analyzed. The time it takes for dislocations to climb across the particles is the basis for a model that can describe the effect of particle size distribution, particle area fraction, stress, and temperature on the creep rate. The degradation of microstructure through coarsening is taken into account. The particle size distributions for M23C6 carbides and MX carbonitrides in a 9 pct Cr steel are accurately represented by an exponential function. Coarsening coefficients and phase fractions for MX and M23C6 particles are predicted using thermodynamic modeling, and show good fit to experimental data. The size distributions are used to determine the amount of dislocations, which can either climb across particles or make Orowan loops. The dislocation climb model is integrated into a creep rate prediction model and is used to reproduce experimental creep data for P92 steel.

  6. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1984-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  7. A revised analysis of micron-sized particles detected near Saturn by the Voyager 2 plasma wave instrument

    NASA Astrophysics Data System (ADS)

    Tsintikidis, D.; Gurnett, D.; Granroth, L. J.; Allendorf, S. C.; Kurth, W. S.

    1994-02-01

    The impulsive noise that the plasma wave and radio astronomy instruments detected during the Voyager 2 swing by Saturn was attributed to dust grains striking the spacecraft. This report presents a reanalysis of the dust impacts recorded by the plasma wave instrument using an improved model for the response of the electric antenna to dust impacts. The fundamental assumption used in this analysis is that the voltage induced on the antenna is proportional to the mass of the impacting grain. Using the above assumption and the antenna response constants used at Uranus and Neptune, the following conclusions can be reached. The primary dust distribution consists of a 'disk' of particles that coincides with the equator plane and has a north-south thickness of 2-Delta zeta = 962 km. A less dense 'halo' with a north-south thickness of 2-Delta zeta = 3376 km surrounds the primary distribution. The dust particle sizes are of the order of 10 microns, assuming a mass density of 1 g/cu cm. The corresponding particle masses are of the order of 10-9 g, and maximum number densities are of the order of 10-2/cu m. Most likely, the G ring is the dominate source since the particles were observed very close to that ring, namely at 2.86 RS. Other sources, like nearby moons, are not ruled out especially when perturbations due to electromagnetic forces are included. The calculated optical depth differs by about a factor of 2 from photometric studies. The current particle masses, radii, and the effective north-south thickness of the particle distribution are larger than what Gurnett et al. (1983) reported by about 2, 1, and 1 orders of magnitude, respectively. This is attributed to the fact that the collection coefficient used in this study is smaller than what was used in Gurnett et al.'s earlier publication.

  8. Principles and practices of irradiation creep experiment using pressurized mini-bellows

    SciTech Connect

    Byun, Thak Sang; Li, Meimei; Snead, Lance Lewis; Katoh, Yutai; Burchell, Timothy D; McDuffee, Joel Lee

    2013-01-01

    This article is to describe the key design principles and application practices of the newly developed in-reactor irradiation creep testing technology using pressurized mini-bellows. Miniature creep test frames were designed to fit into the high flux isotope reactor (HFIR) rabbit capsule whose internal diameter is slightly less than 10 mm. The most important consideration for this in-reactor creep testing technology was the ability of the small pressurized metallic bellows to survive irradiation at elevated temperatures while maintaining applied load to the specimen. Conceptual designs have been developed for inducing tension and compression stresses in specimens. Both the theoretical model and the in-furnace test confirmed that a gas-pressurized bellows can produce high enough stress to induce irradiation creep in subsize specimens. Discussion focuses on the possible stress range in specimens induced by the miniature gas-pressurized bellows and the limitations imposed by the size and structure of thin-walled bellows. A brief introduction to the in-reactor creep experiment for graphite is provided to connect to the companion paper describing the application practices and irradiation creep data. An experimental and calculation procedure to obtain in-situ applied stress values from post irradiation in-furnace force measurements is also presented.

  9. An Evaluation of Creep Behaviour in Friction Stir Welded MA754 Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jiye; Yuan, Wei; Mishra, Rajiv S.; Charit, Indrajit

    2014-09-01

    Effect of friction stir welding (FSW) on microstructure and creep properties of oxide dispersion strengthened (ODS) alloy MA754 were investigated. Fine-grained microstructure developed in the weld zone. TEM results showed some degree of particle agglomeration as a result of intense material flow. Creep tests of the FSW material were carried out at 973 and 1073 K. Power law creep behaviour was observed with stress exponent values of 6.9 and 6.3 at 973 and 1073 K, respectively. The results were compared to those of the as-received material. Creep resistance of FSW material was lower than that of as-received material associated with significantly reduced threshold stress. Post-weld annealing was carried out at 1598 K for 1 h. The heat treatment resulted in a coarse-grained microstructure and enhanced the creep resistance of the welded material. The creep data were compared with those of ODS Ni-Cr alloys in literature. The analysis shows the threshold stress of ODS alloys to be grain size- and temperature-dependent.

  10. High-Temperature Creep of Fine-Grained Anorthite Aggregate

    NASA Astrophysics Data System (ADS)

    Yabe, K.; Koizumi, S.; Hiraga, T.

    2014-12-01

    Rheology of the lower crust has often been compared to the creep properties of polycrystalline anorthite. Samples that have been used in previous studies (Dimanov et al., 1999; Rybacki and Dresen, 2000) were prepared through crystallization of anorthite glass which can remain in the experiment and also contain some impurities such as absorbed water, TiO2, MgO and Fe2O3. In this study, we synthesized genuinely pure polycrystalline anorthite using the technique that does not allow the contamination of water and glass phase. Also, we prepared anorthite aggregates with glass phase and/or a small amount (1wt%) of MgO to investigate the creep properties of pure and impure anorthite aggregates. Pure anorthite powders were prepared through high temperature reaction of highly pure and nano-sized powders of CaCO3, Al2O3 and SiO2 and then they were vacuum sintered (Koizumi et al., 2010). For MgO doping, we added Mg(OH)2powders at the synthesis of anorthite powders. Glass phase was introduced to the samples by sintering above melting temperature and subsequent quenching. Constant load tests under 1 atmosphere were performed at temperatures ranging from 1150 to 1380˚C and stresses of 10 to 120 MPa. We measured Arithmetic mean grain size of specimens by microstructural observations using scanning electron microscopy (SEM) before and after creep tests. Grain sizes of all the specimens were around 1 μm before and after the creep test. Log stress versus log strain rate showed a linear relationship where its slope gave a stress exponent, n of 1, indicating that all the samples were deformed under diffusion creep. Anorthite containing MgO and glass phase were more than two and one orders of magnitude weaker than genuinely pure anorthite aggregates, respectively. Further, our pure aggregate exhibited three orders of magnitude lager strength compared to the "pure" aggregate used in previous studies. These results indicate that a small amount of glass and/or impurities including water

  11. A quick-quench technique for the study of creep cavitation in metals

    SciTech Connect

    Lim, L.C.; Pak, H.P.

    1996-12-01

    Several techniques have been used by researchers to study the evolution of cavitation damage in metals and alloys during creep. Three of the most commonly used techniques are the density measurement method, metallographic polishing technique and cryogenic fracturing technique. The density measurement method suffers from the unavailability in separating cavity nucleation from growth events, hence making result interpretation on cavity nucleation difficult. The metallographic polishing technique has always been known to enlarge the size of the cavities and may not be suitable when the precise size and shape of cavities are of concern. There is also the question of the minimum size of cavities which can be revealed by such a technique. On the other hand, the material often needs to be embrittled to weaken the grain boundaries for the cryogenic fracturing technique to be applicable. As impurities have been found to significantly affect the cavitation behavior of metals and alloys, it is not known if the result obtained from the embrittled material would represent that of clean material. Another concern in the study of creep cavitation is the preservation of the tiny cavities formed after the nucleation event. This is because grain boundary cavities that are formed during high temperature creep could sinter upon the release of the applied load especially when the cavities are small, such as those formed during the initial stage of creep test. This would make detection of creep cavities during subsequent metallographic examinations inaccurate. This paper describes a quick-quench method devised to arrest this sintering effect.

  12. A quantitative method for evaluating numerical simulation accuracy of time-transient Lamb wave propagation with its applications to selecting appropriate element size and time step.

    PubMed

    Wan, Xiang; Xu, Guanghua; Zhang, Qing; Tse, Peter W; Tan, Haihui

    2016-01-01

    Lamb wave technique has been widely used in non-destructive evaluation (NDE) and structural health monitoring (SHM). However, due to the multi-mode characteristics and dispersive nature, Lamb wave propagation behavior is much more complex than that of bulk waves. Numerous numerical simulations on Lamb wave propagation have been conducted to study its physical principles. However, few quantitative studies on evaluating the accuracy of these numerical simulations were reported. In this paper, a method based on cross correlation analysis for quantitatively evaluating the simulation accuracy of time-transient Lamb waves propagation is proposed. Two kinds of error, affecting the position and shape accuracies are firstly identified. Consequently, two quantitative indices, i.e., the GVE (group velocity error) and MACCC (maximum absolute value of cross correlation coefficient) derived from cross correlation analysis between a simulated signal and a reference waveform, are proposed to assess the position and shape errors of the simulated signal. In this way, the simulation accuracy on the position and shape is quantitatively evaluated. In order to apply this proposed method to select appropriate element size and time step, a specialized 2D-FEM program combined with the proposed method is developed. Then, the proper element size considering different element types and time step considering different time integration schemes are selected. These results proved that the proposed method is feasible and effective, and can be used as an efficient tool for quantitatively evaluating and verifying the simulation accuracy of time-transient Lamb wave propagation.

  13. Ismetpasa and Destek regions; Creeping or accumulating strain

    NASA Astrophysics Data System (ADS)

    Yavasoglu, Hakan; Alkan, M. Nurullah; Aladogan, Kayhan; Ozulu, I. Murat; Ilci, Veli; Sahin, Murat; Tombus, F. Engin; Tiryakioglu, Ibrahim

    2016-04-01

    The North Anatolian Fault (NAF) is one of the most destructive fault system all over the world. In the last century, many devastating seismic event happened on it and its shear zone (NAFZ). Especially, after the 1999 Izmit and Duzce earthquakes, the earth science studies increase to save human life. To better understand the mechanism of the active fault system, tectonic stress and strain are important phenomena. According to elastic rebound theory, the locked active faults release the accumulated strain abruptly in four periods; interseismic, preseismic, coseismic and postseismic. In the literature, this phase is called the earthquake cycle. On the other hand, there is another scenario (aseismic deformation or creep) to release the strain without any remarkable seismic event. For the creep procedure, the important subject is threshold of the aseismic slip rate. If it is equal or larger than long-term slip rate, the destructive earthquakes will not occur along the fault which has aseismic slip rate. On the contrary, if the creep motion is lower than long-term slip rate along the fault, the fault has potential to produce moderate-to-large size earthquakes. In this study, the regions, Ismetpasa and Destek, have been studied to determine the aseismic deformation using GPS data. The first and second GPS campaigns have been evaluated with GAMIT/GLOBK software. Preliminary results of the project (slip-rate along the NAF in this region and aseismic deformation) will be presented.

  14. Vorticity generation in creeping flow past a magnetic obstacle.

    PubMed

    Cuevas, S; Smolentsev, S; Abdou, M

    2006-11-01

    The generation of vorticity in the two-dimensional creeping flow of an incompressible, electrically conducting viscous fluid past a localized magnetic field distribution is analyzed under the low magnetic Reynolds number approximation. It is shown that the Lorentz force produced by the interaction of the induced electric currents with the nonuniform magnetic field acts as an obstacle for the flow, creating different steady flow patterns that are reminiscent of those observed in the flow past bluff bodies. First, analytic solutions are obtained for a creeping flow past a magnetic point dipole, modeled as a Gaussian distribution. Using a perturbation scheme, the vorticity is expressed as an expansion in the small Reynolds number, and first- and second-order approximations are calculated. The induced magnetic field, pressure, and stream function are also determined. Further, full numerical finite difference solutions are obtained for a uniform creeping flow past a finite size magnetic field distribution produced by a square magnetized plate. Hartmann numbers in the range 1< or =Ha< or =100 are explored. Depending on the strength of the magnetic force, stagnation zones or steady vortical structures are obtained. The analysis contributes to the understanding of flows in nonuniform magnetic fields and flows produced by localized forces.

  15. Tidal dissipation in creeping ice and the thermal evolution of Europa

    NASA Astrophysics Data System (ADS)

    McCarthy, Christine; Cooper, Reid F.

    2016-06-01

    The thermal and mechanical evolution of Europa and comparable icy satellites-the physics behind creating and sustaining a subsurface water ocean-depends almost entirely on the mechanical dissipation of tidal energy in ice to produce heat, the mechanism(s) of which remain poorly understood. In deformation experiments, we combine steady-state creep and low-frequency, small-strain periodic loading, similar conditions in which tectonics and tidal flexing are occurring simultaneously. The data reveal that the relevant, power-law attenuation in ice (i) is non-linear, depending on strain amplitude, (ii) is independent of grain size, and (iii) exceeds in absorption the prediction of the Maxwell solid model by an order of magnitude. The Maxwell solid model is widely used to model the dynamics of planetary ice shells, so this discrepancy is important. The prevalent understanding of damping in the geophysical context is that it is controlled by chemical diffusion on grain boundaries, which renders attenuation strongly dependent on grain size. In sharp contrast, our results indicate instead the importance of intracrystalline dislocations and their spatial interactions as the critical structural variable affecting dissipation. These dislocation structures are controlled by stress and realized by accumulated plastic strain. Thus, tectonics and attenuation are coupled, which, beyond the icy satellite/subsurface ocean problem, has implications also for understanding the attenuation of seismic waves in deforming regions of the Earth's upper mantle.

  16. Irradiation creep of dispersion strengthened copper alloy

    SciTech Connect

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  17. Effect of Environment on Fatigue and Creep Crack Growth in Inconel X-750 at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Gabrielli, F.; Pelloux, R. M.

    1982-06-01

    The fatigue crack growth rates (FCGR) of Inconel X-750 were measured in air and in vacuum at 25 °C and 650 °C as a function of test frequency. The wave shape was triangular and the frequency varied from 10 Hz to 0.01 Hz. The creep crack growth rates (CCGR) were also measured on single edge notch specimens at 650 °C in air and in purified argon. For a given AK, the FCGR increases when temperature increases and frequency decreases. At low frequency the FCGR approach the creep crack growth rates. The mode of fracture changes from transgranular at 10 Hz to intergranular at 0.01 Hz. The effect of air environment is to accelerate the transition from transgranular to intergranular fracture modes with decreasing frequency. The role of oxidation in accelerating crack growth rate in fatigue and in creep is discussed in detail.

  18. Evidence of phase nucleation during olivine diffusion creep: A new perspective for mantle strain localisation

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Stünitz, Holger

    2016-12-01

    For the past decades, grain size reduction leading to diffusion creep in olivine is believed to be a very important process for strain localisation in the lithospheric mantle. However, the mechanisms of grain size reduction in this regime are still poorly understood (e.g., Platt, 2015). Here we show new experimental results that document grain size reduction and material weakening during wet olivine diffusion creep. While occurring for both, mono-phase and two-phase aggregates, grain size reduction is coeval with strain localisation and local phase mixing in olivine-pyroxene aggregates. Based on evidence of fluid inclusions and cracks filled with a fine-grained phase mixture, we conclude that grain size reduces as a result of fluid-assisted nucleation that takes place in the presence of an aqueous fluid during diffusion creep. Cavitation induced by grain boundary sliding (creep cavitation) can be inferred, and may play a critical role for olivine grain size reduction. Amongst their implications for rock rheology in general, our findings highlight a key process for strain localisation in the ductile uppermost mantle.

  19. Prediction of creep of polymer concrete

    SciTech Connect

    Khristova, Yu.; Aniskevich, K.

    1995-11-01

    We studied the applicability of the phenomenological approach to the prediction of long-time creep of polymer concrete consisting of polyester binder with diabase filler and diabase aggregate. We discovered that the principles of temperature-time analogy, of moisture-time analogy, and of temperature-moisture-time analogy are applicable to the description of the diagrams of short-time creep and to the prediction of long-time creep of polymer concrete at different temperatures and constant moisture content of the material.

  20. Thermodynamic approach to creep and plasticity

    SciTech Connect

    Loefstedt, R.

    1997-06-01

    A solid subjected to a small load distorts rapidly in the manner predicted by elasticity theory. On a much longer time scale, the solid will creep. This dissipative motion is an important consideration in the engineering design of, for example, aircraft engines, but the macroscopic equations of motion describing this deformation are based on empirical observations. The principles of thermodynamics specify the dissipative fluxes appropriate to the classical equations of elasticity, which include one, unique to solids, which describes creep. The thermodynamic theory is presented, and the insights into the underlying microscopic mechanisms of creep, gleaned from the macroscopic formalism, are also discussed. {copyright} {ital 1997} {ital The American Physical Society}

  1. Creep deformation of TD-nickel chromium

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Ebert, L. J.

    1976-01-01

    An investigation was conducted of the mechanical behavioral characteristics of thoria-dispersed (TD) NiCr materials at elevated temperatures. The experimental procedure used is discussed along with the significance of the obtained results. Attention is given to basic creep behavior and creep thermal activation parameter measurements. It is found that the overall creep behavior of TD-NiCr can be explained on the basis of the relative contributions of two parallel-concurrent deformation mechanisms, including diffusion controlled grain boundary sliding and dislocation motion.

  2. Creep substructure formation in sodium chloride single crystals in the power law and exponential creep regimes

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Pharr, G. M.

    1989-01-01

    Creep tests conducted on NaCl single crystals in the temperature range from 373 to 1023 K show that true steady state creep is obtained only above 873 K when the ratio of the applied stress to the shear modulus is less than or equal to 0.0001. Under other stress and temperature conditions, corresponding to both power law and exponential creep, the creep rate decreases monotonically with increasing strain. The transition from power law to exponential creep is shown to be associated with increases in the dislocation density, the cell boundary width, and the aspect ratio of the subgrains along the primary slip planes. The relation between dislocation structure and creep behavior is also assessed.

  3. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    NASA Technical Reports Server (NTRS)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  4. Limit case analysis of the "stable indenter velocity" method for obtaining creep stress exponents from constant load indentation creep tests

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Dean, J.; Clyne, T. W.

    2017-02-01

    This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.

  5. Creep of plain weave polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  6. Creep of plasma-sprayed-ZrO2 thermal-barrier coatings

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.; Bill, R. C., Jr.

    1982-01-01

    Specimens of plasma-sprayed-zirconia thermal-barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 6900, 13,800, and 24,100 kPa (1000, 2000, and 3500 psi) and temperatures of 1100, 1250, and 1400 C. The coatings were stabilized with lime, MgO, and two different concentrations of Y2O3. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate while the stress, particle size, and porosity had a lesser effect. Creep deformation was due to cracking and particle sliding.

  7. Creep Behavior and Degradation of Subgrain Structures Pinned by Nanoscale Precipitates in Strength-Enhanced 5 to 12 Pct Cr Ferritic Steels

    NASA Astrophysics Data System (ADS)

    Ghassemi Armaki, Hassan; Chen, Ruiping; Maruyama, Kouichi; Igarashi, Masaaki

    2011-10-01

    Creep behavior and degradation of subgrain structures and precipitates of Gr. 122 type xCr-2W-0.4Mo-1Cu-VNb ( x = 5, 7, 9, 10.5, and 12 pct) steels were evaluated during short-term and long-term static aging and creep with regard to the Cr content of steel. Creep rupture life increased from 5 to 12 pct Cr in the short-term creep region, whereas in the long-term creep region, it increased up to 9 pct Cr and then decreased with the addition of Cr from 9 to 12 pct. Behavior of creep rupture life was attributed to the size of elongated subgrains. In the short-term creep region, subgrain size decreased from 5 to 12 pct Cr, corresponding to the longer creep strength. However, in the long-term creep region after 104 hours, subgrain size increased up to 9 pct Cr and then decreased from 9 to 12 pct, corresponding to the behavior of creep rupture life. M23C6 and MX precipitates had the highest number fraction among all of the precipitates present in the studied steels. Cr concentration dependence of spacing of M23C6 and MX precipitates exhibited a V-like shape during short-term as well as long-term aging at 923 K (650 °C), and the minimum spacing of precipitates belonged to 9 pct Cr steel, corresponding to the lowest recovery speed of subgrain structures. In the short-term creep region, subgrain coarsening during creep was controlled by strain and proceeded slower with the addition of Cr, whereas in long-term creep region, subgrain coarsening was controlled by the stability of precipitates rather than due to the creep plastic deformation and took place faster from 9 to 12 pct and 9 to 5 pct Cr. However, M23C6 precipitates played a more important role than MX precipitates in the control of subgrain coarsening, and there was a closer correlation between spacing of M23C6 precipitates and subgrain size during static aging and long-term creep region.

  8. Mechanisms of cavity growth in creep

    SciTech Connect

    Chen, I.W.

    1983-01-01

    The growth of intergranular cavities under creep conditions is of considerable technological interest. However, the phenomenon is complex. First, kinetic and mechanical processes at elevated temperature are many. Second, the size distribution of cavities, being a function of time, varies from one grainboundary to the other due to the heterogeneous and continuous nucleation of new cavities. Third, the orientation and the surroundings of each grain-boundary is different, giving rise to a broad spectrum of growth conditions of different mechanical descriptions. These considerations result in an almost infinite number of cases which are too numerous to analyze deterministically. For a mechanistic understanding, certain idealizations have to be made. This paper attempts to give an up-to-date account of such understanding, with the necessary idealization, and to point out the deficiencies in the simplified picture in each case. As an outline, the authors pose the following three problems in the order of increasing complexity. The simplest case pertains to cavitation on the transverse grain-boundary in a bicrystal under a normal stress. The second idealized case deals with cavitation on transverse boundaries in a polycrystal. The third case deals with inclined boundaries when the additional component of grain-boundary sliding sometimes causes ''anomalous'' effects.

  9. Tensile creep and creep-recovery behavior of a SiC-fiber-Si3N4-matrix composite

    NASA Technical Reports Server (NTRS)

    Holmes, John W.; Park, Yong H.; Jones, J. W.

    1993-01-01

    The tensile creep and creep-recovery behavior of a hot-pressed unidirectional SiC-fiber/Si3N4-matrix composite was investigated at 1200 C in air, in order to determine how various sustained and cyclic creep loading histories would influence the creep rate, accumulated creep strain, and the amount of strain recovered upon specimen unloading. The data accumulated indicate that the fundamental damage mode for sustained tensile creep at stresses of 200 and 250 MPa was periodic fiber fracture and that the creep life and the failure mode at 250 MPa were strongly influenced by the rate at which the initial creep stress was applied. Cyclic loading significantly lowered the duration of primary creep and the overall creep-strain accumulation. The implications of the results for microstructural and component design are discussed.

  10. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2013-12-01

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive

  11. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  12. Creep behavior of niobium alloy PWC-11

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1987-01-01

    The high vacuum creep and creep-rupture behavior of a Nb-1Zr-.1C alloy (PWC 11) was investigated at 1350 and 1400 K with an applied stress of 40 MPa. The material was tested in the following four conditions: annealed (1 hr 1755 K/2 hr 1475 K); annealed plus EB welded; annealed plus aged for 1000 hr at 1350 or 1400 K; and annealed, welded, and aged. It was found that the material in the annealed state was the most creep-resistant condition tested, and that aging the alloy for 1000 hr without an applied stress greatly reduced that strength; however, it was still approximately three times as creep resistant as Nb-1Zr. Additionally, the EB weld region was stronger than the base metal in each condition tested, and phase extraction of the dispersed precipitate revealed the presence of a 70%ZrC-30%NbC cubic monocarbide phase.

  13. Some stochastic aspects of intergranular creep cavitation

    SciTech Connect

    Fariborz, S.J.; Farris, J.P.; Harlow, D.G.; Delph, T.J.

    1987-10-01

    We present some results obtained from a simplified stochastic model of intergranular creep cavitation. The probabilistic features of the model arise from the inclusion of random cavity placement on the grain boundary and time-discrete stochastic cavity nucleation. Among the predictions of the model are Weibull-distributed creep rupture failure times and a Weibull distribution of cavity radii. Both of these predictions have qualitative experimental support. 18 refs., 7 figs.

  14. Spatial fluctuations in transient creep deformation

    NASA Astrophysics Data System (ADS)

    Laurson, Lasse; Rosti, Jari; Koivisto, Juha; Miksic, Amandine; Alava, Mikko J.

    2011-07-01

    We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by digital image correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases—the spatially averaged creep rate obeys the Andrade law epsilont ~ t - 0.7, while the time dependence of the spatial fluctuations of the local creep rates is given by Δepsilont ~ t - 0.5. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2d linear interface model or the quenched Edwards-Wilkinson equation.

  15. Micromechanics of brittle creep in rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Baud, P.; Heap, M. J.; Meredith, P. G.

    2012-08-01

    In the upper crust, the chemical influence of pore water promotes time dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail at stresses well below their short-term failure strength, and even at constant applied stress (“brittle creep”). Here we provide a micromechanical model describing time dependent brittle creep of water-saturated rocks under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of cracks in compression are derived from the sliding wing crack model of Ashby and Sammis (1990), and the crack length evolution is computed from Charles' law. The macroscopic strains and strain rates computed from the model are non linear, and compare well with experimental results obtained on granite, low porosity sandstone and basalt rock samples. Primary creep (decelerating strain) corresponds to decelerating crack growth, due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as an inflexion between those two end-member phases. The minimum strain rate at the inflexion point can be estimated analytically as a function of model parameters, effective confining pressure and temperature, which provides an approximate creep law for the process. The creep law is used to infer the long term strain rate as a function of depth in the upper crust due to the action of the applied stresses: in this way, sub-critical cracking reduces the failure stress in a manner equivalent to a decrease in cohesion. We also investigate the competition with pressure solution in porous rocks, and show that the transition from sub

  16. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    SciTech Connect

    Liaw, Peter

    2014-12-31

    -principles calculations, providing deep insight of creep mechanisms of the creep-resistant ferritic superalloys. With the above investigations, the HPSFA has been proved with superior creep resistance, and its microstructure, creep mechanism, and thermal/mechanical properties have been well studied and understood. In the future, HPSFAs with different additions and sizes of precipitates will be investigated and developed to further enhance the creep resistance of the ferritic superalloys and provide promising applications of the fossil-energy power plants.

  17. Creep cavitation bands control porosity and fluid flow in lower crustal shear zones

    SciTech Connect

    Menegon, Luca; Fusseis, Florian; Stunitz, Holger; Xiao, Xianghui

    2015-03-01

    Shear zones channelize fluid flow in Earth’s crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700–730 °C, pressure = 0.65–0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in both domains is <25 mm. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistent with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size–sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites.

  18. Optimization of High Temperature Hoop Creep Response in ODS-Fe3Al Tubes

    SciTech Connect

    Kad, B.K.; Heatherington, J.H.; McKamey, C.; Wright, I.; Sikka, V.; Judkins, R.

    2003-04-22

    Oxide dispersion strengthened (ODS) Fe3Al alloys are currently being developed for heat-exchanger tubes for eventual use at operating temperatures of up to 1100 C in the power generation industry. The development challenges include (a) efforts to produce thin walled ODS-Fe3Al tubes, employing powder extrusion methodologies, with (b) adequate increased strength for service at operating temperatures to (c) mitigate creep failures by enhancing the as-processed grain size. A detailed and comprehensive research and development methodology is prescribed to produce ODS-Fe3Al thin walled tubes. Current single step extrusion consolidation methodologies typically yield 8ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness ODS-Fe3Al tubes. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Recrystallization treatments at 1200 C produce elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long. The dispersion distribution is unaltered on a micro scale by recrystallization, but the high aspect ratio grain shape typically obtained limits grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloys requires an understanding and manipulating the factors that control grain alignment and recrystallization behavior. Current efforts are focused on examining the processing dependent longitudinal vs. transverse creep anisotropy, and exploring post-extrusion methods to improve hoop creep response in ODS-Fe3Al alloy tubes. In this report we examine the mechanisms of hoop creep failure and describe our efforts to improve creep performance via variations in thermal-mechanical treatments.

  19. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  20. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Hochella, W. A.; Lytton, J. L.

    1973-01-01

    The techniques of electron microscopy were used to examine the microstructural changes which occur during primary creep for two important types of engineering alloys: (1) alloys strengthened by solid-solution additions, and (2) dispersion-strengthened alloys. The metals chosen for study are unalloyed titanium, Ti-6Al-4V, and the cobalt-base alloy, Haynes 188. Results to date on NGR 47-004-108 show that development of prior dislocation substructure in Haynes 188 by 10% prestrain and annealing for one hour at 1800 F increases the time to reach 0.5% creep strain at 1600 F by more than an order of magnitude for creep stresses from 3 to 20 ksi. For creep at 1800 F, similar results were obtaind for stresses above 7 ksi, but the prior substructure decreases creep resistance below 7 ksi. This effect appears to be related to instability of grain structure at 1800 F in prestrained material.

  1. Effect of solute interactions in columbium /Nb/ on creep strength

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The creep strength of 17 ternary columbium (Nb)-base alloys was determined using an abbreviated measuring technique, and the results were analyzed to identify the contributions of solute interactions to creep strength. Isostrength creep diagrams and an interaction strengthening parameter, ST, were used to present and analyze data. It was shown that the isostrength creep diagram can be used to estimate the creep strength of untested alloys and to identify compositions with the most economical use of alloy elements. Positive values of ST were found for most alloys, showing that interaction strengthening makes an important contribution to the creep strength of these ternary alloys.

  2. Steady State Creep of Zirconium at High and Intermediate Temperatures

    SciTech Connect

    Rosen, R.S.; Hayes, T.A.

    2000-04-08

    Creep of zirconium and zirconium alloys has been labeled ''anomalous.'' Researchers often report that zirconium and its alloys never reach true steady state creep and have stress exponents that continuously change with stress and temperature. Many varied interpretations have been offered explaining the creep behavior of zirconium. Some have suggested that creep is diffusion controlled, while others maintain that creep is dislocation glide controlled. Cumulative zirconium creep data will be presented based on an extensive literature review. An interpretation of results will be presented and compared to previous interpretations.

  3. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  4. Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes.

    PubMed

    Nabika, Hideki; Sato, Mami; Unoura, Kei

    2013-01-07

    The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune the propagation dynamics under the same chemical conditions. By using well-designed microchannels with different channel widths and depths, the propagation velocity was successfully controlled based on two independent effects: (i) a transition in the proton diffusion mode and (ii) the formation of a slanted wave front. Numerical analysis yielded a simple relationship between the propagation velocity and the microchannel configuration, which offers a simple and general way of controlling chemical wave propagation.

  5. Effect of Nb and Cu on the high temperature creep properties of a high Mn–N austenitic stainless steel

    SciTech Connect

    Lee, Kyu-Ho; Suh, Jin-Yoo; Huh, Joo-Youl; Park, Dae-Bum; Hong, Sung-Min; Shim, Jae-Hyeok; Jung, Woo-Sang

    2013-09-15

    The effect of Nb and Cu addition on the creep properties of a high Mn–N austenitic stainless steel was investigated at 600 and 650 °C. In the original high Mn–N steel, which was initially precipitate-free, the precipitation of M{sub 23}C{sub 6} (M = Cr, Fe) and Cr{sub 2}N took place mostly on grain boudaries during creep deformation. On the other hand, the minor addition of Nb resulted in high number density of Z-phases (CrNbN) and MX (M = Nb; X = C, N) carbonitrides inside grains by combining with a high content of N, while suppressing the formation of Cr{sub 2}N. The addition of Cu gave rise to the independent precipitation of nanometer-sized metallic Cu particles. The combination of the different precipitate-forming mechanisms associated with Z-phase, MX and Cu-rich precipitates turned out to improve the creep-resistance significantly. The thermodynamics and kinetics of the precipitation were discussed using thermo-kinetic simulations. - Highlights: • The creep rupture life was improved by Nb and Cu addition. • The creep resistance of the steel A2 in this study was comparable to that of TP347HFG. • The size of Z-phase and MX carbonitride did not change significantly after creep test. • The nanometer sized Cu-rich precipitate was observed after creep. • The predicted size of precipitates by MatCalc agreed well with measured size.

  6. Thermomechanical processing of HAYNES alloy No. 188 sheet to improve creep strength

    NASA Technical Reports Server (NTRS)

    Klarstrom, D. L.

    1978-01-01

    Improvements in the low strain creep strength of HAYNES alloy No. 188 thin gauge sheet by means of thermomechanical processing were developed. Processing methods designed to develop a sheet with strong crystallographic texture after recrystallization and to optimize grain size were principally studied. The effects of thickness-to-grain diameter ratio and prestrain on low strain creep strength were also briefly examined. Results indicate that the most significant improvements were obtained in the sheets having a strong crystallographic texture. The low strain creep strength of the textured sheets was observed to be superior to that of standard production sheets in the 922 K to 1255 K temperature range. Tensile, stress rupture, fabricability, and surface stability properties of the experimental sheets were also measured and compared to property values reported for the baseline production sheets.

  7. Re-examination of creep behaviour of high purity aluminium at low temperature

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Kameyama, T.; Matsunaga, T.; Kitazono, K.; Sato, E.

    2010-07-01

    The deformation behaviour of high-purity aluminium at low temperatures was investigated in order to re-examine Ashby-type deformation mechanism map. All specimens with different purities showed significant creep below room temperature. Under the same stress and temperature, the steady-state creep rate increased with increasing purity of the material. They showed stress exponents around 5.0 and apparent activation energies around 20 kJ/mol at temperatures below about 400 K, and 4.0 and 70-80 kJ/mol at temperatures above that temperature. The grain size had no effect in the low temperature region. From the microstructural observation, secondary slip system was observed. These features imply that pure aluminium deforms in the different mode from the ambient temperature creep of h.c.p. metals which has similar activation energy.

  8. Granular controls of hillslope deformation and creep

    NASA Astrophysics Data System (ADS)

    Ferdowsi, B.; Jerolmack, D. J.; Ortiz, C. P.

    2015-12-01

    Sediment transport on hillslopes has been described as "creep", and has been modeled as a "diffusive" process by invoking random disturbance of soil in the presence of a gradient. In this framework, physical and biological agents are envisioned to cause dilation of the soil that is greatest at the surface and decays with depth. Thus, there is a kind of internal energy of the sediment that allows flow, even below the angle of repose. This transport has not yet been connected, however, to the more general phenomenon of creep in disordered, particulate systems. Work in such "soft matter" materials has shown that disordered solids are fragile, and may deform slowly by localized particle rearrangement under static loads much smaller than the yield stress at which fluid-like flow occurs. The transition from creep to granular flow has not been thoroughly examined. Here we use particle dynamics simulations to examine creep and granular flow dynamics and the transition between them, and to test the ability of a granular physics model to describe observations of hillslope soil creep. We employ a well-developed discrete element model, with frictional and over-damped interactions among grains to approximate the conditions of earth hillslopes. Transient and equilibrium particle dynamics are described for a range of inclination angles that transit the angle of repose. We verify that sub-threshold creep occurs, even in the absence of internal energy, and describe its dynamic signature. Moreover, simulations show that the transition from creeping to a sustained granular flow is continuous as the angle of repose is crossed. We then perturb the granular system with acoustic vibrations, to directly compare the model with previously-reported laboratory experiments of acoustically-driven hillslope transport. We test the ability of the model to reproduce the heuristic nonlinear hillslope flux law. Results reveal that the bulk movement of hillslope sediment over long timescales may be

  9. Sources of Variation in Creep Testing

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  10. Some problems on the theory of creep

    NASA Technical Reports Server (NTRS)

    Rabotnov, Y N

    1953-01-01

    The term creep of metals is applied to the phenomenon in which, at temperatures beyond a certain limit, the metal subjected to a load slowly undergoes deformation with time. For the case of steel, the creep phenomenon must be taken into account at temperatures above 400 degrees C. Very slow deformations for a prolonged period are cumulative and lead either to inadmissible changes in the dimensions of a structural part or to its failure. The theory of creep constitutes part of the mechanics of dense media and the mechanical formulation of the problem may be given as the following: a body is subjected to the action of a given system of forces, or initial displacements are prescribed on its surface. It is required to find the stress distribution in the body and the changes or its deformations with time. For the solution of the problem of creep as thus formulated, a mechanical theory of creep is required. Such theory must necessarily bear an external, overall character based, not on the investigation of microprocesses, but on the results of mechanical tests.

  11. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    NASA Astrophysics Data System (ADS)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  12. Fluctuations and Scaling in Creep Deformation

    NASA Astrophysics Data System (ADS)

    Rosti, Jari; Koivisto, Juha; Laurson, Lasse; Alava, Mikko J.

    2010-09-01

    The spatial fluctuations of deformation are studied in the creep in Andrade’s power law and the logarithmic phases, using paper samples. Measurements by the digital image correlation technique show that the relative strength of the strain rate fluctuations increases with time, in both creep regimes. In the Andrade creep phase characterized by a power-law decay of the strain rate γt˜t-θ, with θ≈0.7, the fluctuations obey Δγt˜t-γ, with γ≈0.5. The local deformation follows a data collapse appropriate for a phase transition. Similar behavior is found in a crystal plasticity model, with a jamming or yielding transition.

  13. Creep Effects in Pultruded FRP Beams

    NASA Astrophysics Data System (ADS)

    Boscato, G.; Casalegno, C.; Russo, S.

    2016-03-01

    The paper presents results of two creep tests on pultruded open-section GFRP beams aimed to evaluate the long-term deformations, the residual deflection after unloading, and the influence of creep strains on the flexuraltorsional buckling phenomenon. Two beams were subjected to a constant load for about one year. Then one of the beams was unloaded to evaluate its residual deflection. For the other beam, the load was increased up to failure, and the residual buckling strength was compared with that of a similar beam tested up to failure. The parameters of the Findley power law are evaluated, and the experimental results are compared with those of numerical analyses and with available formulations for prediction of the time-dependent properties of composite beams. Results of the investigation testify, in particular, to a noninsignificant time-dependent increment in deflections of the beams and to a significant reduction in their buckling strength due to creep deformations.

  14. Creep turns linear in narrow ferromagnetic nanostrips

    PubMed Central

    Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; Van Waeyenberge, Bartel

    2016-01-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media. PMID:26843125

  15. Creep turns linear in narrow ferromagnetic nanostrips

    NASA Astrophysics Data System (ADS)

    Leliaert, Jonathan; van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; van Waeyenberge, Bartel

    2016-02-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media.

  16. Creep on a composite resin in water.

    PubMed

    Hirano, S; Hirasawa, T

    1989-06-01

    The compressive creep test of a composite resin (0-3.5 kg/mm2 stress levels) was conducted in water for 500 h. Linear regressions were obtained between the creep strains and the compressive stress levels at various hours. It is possible to predict the creep strain of the composite from the regression when it reaches water absorbed equilibrium after 500 h. The stress of the hygroscopic expansion was calculated from the linear regressions. The maximum stress due to the hygroscopic examination of the composite was 0.74 kg/mm2 at equilibrium of the water absorbed of the composite. The linear regressions at several compressive stress levels were obtained within 30-50 hr in the strain-log time diagrams.

  17. Creep turns linear in narrow ferromagnetic nanostrips.

    PubMed

    Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; Van Waeyenberge, Bartel

    2016-02-04

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media.

  18. Simultaneous Modeling of Transient Creep and Grain Boundary Sliding

    NASA Astrophysics Data System (ADS)

    Cooper, R. F.; Sundberg, M.

    2009-12-01

    Grain boundary sliding (GBS) has been identified as an important contributor to the plastic deformation of polycrystalline solids. This phenomenon, whether accommodated by grain boundary diffusion or dislocation slip, has implications for rheological behavior and microstructural evolution during creep. Because GBS is not an independent deformation mechanism, but rather acts in kinetic series with some other (typically) rate-limiting process, direct investigation of the precise sliding mechanism(s) is difficult during conventional large-strain creep testing. Direct observations of grain boundary sliding can be obtained, however, by: (1) observing the mechanical response of a polycrystalline solid to an oscillating load as a function of frequency using the internal friction technique, and (2) studying the short duration transient response of a polycrystalline solid to a step-function change in stress. To this end, we have conducted an experimental study of low-frequency (10-2.25wave attenuation in peridotite. These tests have been complemented by a series of small-stress microcreep tests in order to characterize the transient and steady-state creep responses of the material. Experiments were conducted in an ambient pressure, reciprocating torsion apparatus using a maximum shear stress of ~90 kPa on a very fine grained (d~5μm) aggregate of olivine and orthopyroxene (39 vol%). The attenuation spectra reveal “high-temperature background” behavior at low to moderate frequencies where attenuation diminishes smoothly and mildly with increasing frequency (QG-1 ~ f -0.3). At higher frequencies (f >10-0.5 Hz), the attenuation spectra reveal the onset of an apparent Debye peak in the attenuation spectra, likely due to elastically-accommodated GBS (GBS being rate-limiting). Previous experimental studies have demonstrated that the Andrade viscoelastic model can accurately predict both the transient creep response and

  19. Vortex creep and thermal depinning within strong pinning theory

    NASA Astrophysics Data System (ADS)

    Willa, Roland; Buchacek, Martin; Geshkenbein, Vadim B.; Blatter, Gianni

    Vortex pinning in type-II superconductors can occur through the collective action of many pins (weak collective pinning scenario) or through plastic deformations induced by a low density of defects (strong pinning scenario). For the latter case, a new formalism has recently be developed to provide a quantitative link between the microscopic pinning landscape and experimentally accessible quantities describing pinning on a macroscopic level. Examples are the critical current density jc, the I- V characteristics, or the ac Campbell length λC. Inspired by the original work of Larkin and Brazovskii on density wave pinning, we have extended the strong pinning formalism to account for thermal depinning of flux lines and vortex creep.

  20. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle

    USGS Publications Warehouse

    Kirby, S.H.; Raleigh, C.B.

    1973-01-01

    The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.

  1. Viscoelastic Creep of Vertically Aligned Carbon Nanotubes

    DTIC Science & Technology

    2010-01-01

    viscoelastic creep tests were performed on a Nano Indenter XP (MTS Nano Instruments, Oak Ridge, TN) with a spherical indenter of tip radius of 150µm. The...viscoelastic behaviour due to their ability to dissipate mechanical energy [36]. It is expected that the nano -scale helical springs will inherit the same...Oliver W C and Fabes B D 1995 The relationship between indentation and uniaxial creep in amorphous selenium J. Mater. Res. 10 2024–32 [16] Lu Y C, Tandon G

  2. Algorithms for elasto-plastic-creep postbuckling

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1984-01-01

    This paper considers the development of an improved constrained time stepping scheme which can efficiently and stably handle the pre-post-buckling behavior of general structure subject to high temperature environments. Due to the generality of the scheme, the combined influence of elastic-plastic behavior can be handled in addition to time dependent creep effects. This includes structural problems exhibiting indefinite tangent properties. To illustrate the capability of the procedure, several benchmark problems employing finite element analyses are presented. These demonstrate the numerical efficiency and stability of the scheme. Additionally, the potential influence of complex creep histories on the buckling characteristics is considered.

  3. Evolution of microstructure after irradiation creep in several austenitic steels irradiated up to 120 dpa at 320 °C

    NASA Astrophysics Data System (ADS)

    Renault-Laborne, A.; Garnier, J.; Malaplate, J.; Gavoille, P.; Sefta, F.; Tanguy, B.

    2016-07-01

    Irradiation creep was investigated in different austenitic steels. Pressurized tubes with stresses of 127-220 MPa were irradiated in BOR-60 at 320 °C to 120 dpa. Creep behavior was dependent on both chemical composition and metallurgical state of steels. Different steels irradiated with and without stress were examined by TEM. Without stress, the irradiation produced high densities of dislocation lines and Frank loops and, depending on the type of steels, precipitates. Stress induced an increase of the precipitate mean size and density and, for some grades, an increase of the mean loop size and a decrease of their density. An anisotropy of Frank loop density or size induced by stress was not observed systematically. Dislocation line microstructure seems not to be different between the stressed and unstressed specimens. No cavities were detectable in these specimens. By comparing with the data from this work, the main irradiation creep models are discussed.

  4. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  5. Nonlinear creep and ductile creep rupture of perfectly elastoplastic rods under tension

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Romanov, A. V.; Romanova, N. V.

    2008-04-01

    The paper is concerned with the problem of predicting nonlinear creep strains and time to ductile rupture of prismatic rods under constant tension. The material of the rod is assumed isotropic, homogeneous, and perfectly plastic. The problem is solved using models that take into account the change in the geometry of the rod during creep, the finiteness of the creep strains, and the effect of the initial and actual elastic strains. The conditions whereby the characteristic dimension of the rod tends to infinity and the accumulated and real strains in the viscous flow are limited are used as a failure criterion. The calculated results are compared with experimental data for a number of steels and alloys to formulate the conditions for the ductile rupture and embrittlement of metallic materials under uniaxial creep

  6. Analysis of available creep and creep-rupture data for commercially heat-treated alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    The Ni-Cr-Fe-Nb alloy 718 is a widely used material in elevated- temperature applications. Currently, it is approved by the American Society of Mechanical Engineers ASME Boiler and Pressure Vessel Code only as a bolting material for elevated-temperature nuclear service. This report presents analyses of available creep and creep-rupture data for commercially heat-treated alloy 718 toward the development of allowable stress levels for this material in general elevated-temperature nuclear service. Available data came from 14 heats of bar, plate, and forging material over the temperature range from 538 to 704{degrees}C. The longest rupture time encompassed by the data was almost 87,000 h. Generalized regression analyses were performed to yield an analytical expression for rupture life as a function of stress and temperature. Heat-to-heat variations were accounted for by lot-centering'' the data. Effects of different solution heat treatment temperatures (T{sub s}) were accounted for by normalizing the creep stresses to the data for T{sub s} = 954{degrees}C. Thus, the results are strictly applicable only for material with this solution treatment. Time and strain to tertiary creep were predicted as functions of rupture life. Creep strain-time data were represented by normalization to the time and strain to tertiary creep and development of master creep curves.'' The results allow estimation of time-dependent allowable stress per American Society of Mechanical Engineers Code Class N-47, and the creep strain-time relationships can be used to develop isochronous stress-strain curves. 29 refs., 44 figs., 14 tabs.

  7. Irreversible thermodynamics of creep in crystalline solids

    NASA Astrophysics Data System (ADS)

    Mishin, Y.; Warren, J. A.; Sekerka, R. F.; Boettinger, W. J.

    2013-11-01

    We develop an irreversible thermodynamics framework for the description of creep deformation in crystalline solids by mechanisms that involve vacancy diffusion and lattice site generation and annihilation. The material undergoing the creep deformation is treated as a nonhydrostatically stressed multicomponent solid medium with nonconserved lattice sites and inhomogeneities handled by employing gradient thermodynamics. Phase fields describe microstructure evolution, which gives rise to redistribution of vacancy sinks and sources in the material during the creep process. We derive a general expression for the entropy production rate and use it to identify of the relevant fluxes and driving forces and to formulate phenomenological relations among them taking into account symmetry properties of the material. As a simple application, we analyze a one-dimensional model of a bicrystal in which the grain boundary acts as a sink and source of vacancies. The kinetic equations of the model describe a creep deformation process accompanied by grain boundary migration and relative rigid translations of the grains. They also demonstrate the effect of grain boundary migration induced by a vacancy concentration gradient across the boundary.

  8. Estimation of long-term creep behavior of salt

    SciTech Connect

    Chun, R.C.

    1980-08-01

    A computer routine for both primary and secondary creep laws has been developed using a modified strain hardening law. The computations reveal that results from Heard's steady-state creep law and Lomenick and Bradshaw's primary creep law can differ from each other by a factor of thirty after about 6 hours of creep deformation, but the difference diminishes as time becomes large. The belief that these two creep laws may yield long-term results that are orders of magnitude apart is shown to be unfounded.

  9. Cell structure in cold worked and creep deformed phosphorus alloyed copper

    SciTech Connect

    Wu, Rui; Pettersson, Niklas; Martinsson, Åsa; Sandström, Rolf

    2014-04-01

    Transmission electron microscopy (TEM) examinations on as-received, cold worked, as well as cold worked and creep tested phosphorus-alloyed oxygen-free copper (Cu-OFP) have been carried out to study the role of the cell structure. The cell size decreased linearly with increasing plastic deformation in tension. The flow stress in the tests could also be correlated to the cell size. The observed relation between the flow stress and the cell size was in excellent agreement with previously published results. The dense dislocation walls that appeared after cold work in tension is likely to be the main reason for the dramatic increase in creep strength. The dense dislocation walls act as barriers against dislocation motion and their presence also reduces the recovery rate due to an unbalanced dislocation content.

  10. Creep and Environmental Effects on High Temperature Creep-Fatigue Behavior of Alloy 617

    SciTech Connect

    L. J. Carroll; C. Cabet; R. Madland; R. Wright

    2011-06-01

    Alloy 617 is the leading candidate material for Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR), expected to have an outlet temperature as high as 950 C. System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior in both air and impure helium, representative of the VHTR primary coolant. Strain controlled LCF tests including hold times at maximum tensile strain were conducted at total strain range of 0.3% in air at 950 C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The fatigue resistance decreased when a hold time was added at peak tensile stress, consistent with the observed change in fracture mode from transgranular to intergranular with introduction of a tensile hold. Increases in the tensile hold time, beyond 180 sec, was not detrimental to the creep-fatigue resistance. Grain boundary damage in the form of grain boundary cracking was present in the bulk of the creep-fatigue specimens. This bulk cracking was quantified and found to be similar for hold times of up to 1800 sec consistent with the saturation in failure lives and rapid stress relaxation observed during the creep portion of the creep-fatigue cycle.

  11. Nonlinear creep damage constitutive model for soft rocks

    NASA Astrophysics Data System (ADS)

    Liu, H. Z.; Xie, H. Q.; He, J. D.; Xiao, M. L.; Zhuo, L.

    2017-02-01

    In some existing nonlinear creep damage models, it may be less rigorous to directly introduce a damage variable into the creep equation when the damage variable of the viscous component is a function of time or strain. In this paper, we adopt the Kachanov creep damage rate and introduce a damage variable into a rheological differential constitutive equation to derive an analytical integral solution for the creep damage equation of the Bingham model. We also propose a new nonlinear viscous component which reflects nonlinear properties related to the axial stress of soft rock in the steady-state creep stage. Furthermore, we build an improved Nishihara model by using this new component in series with the correctional Nishihara damage model that describes the accelerating creep, and deduce the rheological constitutive relation of the improved model. Based on superposition principle, we obtain the damage creep equation for conditions of both uniaxial and triaxial compression stress, and study the method for determining the model parameters. Finally, this paper presents the laboratory test results performed on mica-quartz schist in parallel with, or vertical to the schistosity direction, and applies the improved Nishihara model to the parameter identification of mica-quartz schist. Using a comparative analysis with test data, results show that the improved model has a superior ability to reflect the creep properties of soft rock in the decelerating creep stage, the steady-state creep stage, and particularly within the accelerating creep stage, in comparison with the traditional Nishihara model.

  12. Creep deformation mechanism mapping in nickel base disk superalloys

    DOE PAGES

    Smith, Timothy M.; Unocic, Raymond R.; Deutchman, Hallee; ...

    2016-05-10

    We investigated the creep deformation mechanisms at intermediate temperature in ME3, a modern Ni-based disk superalloy, using diffraction contrast imaging. Both conventional transmission electron microscopy (TEM) and scanning TEM were utilised. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815 °C and at stresses ranging from 274 to 724 MPa. Both polycrystalline and single-crystal creep tests were conducted. The single-crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760 °C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsicmore » stacking faults. In contrast, these faulting modes occurred much less frequently during creep at 815 °C under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behaviour and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760 °C and above, where the secondary coarsened and the tertiary precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasising the influence of stress and temperature on the underlying creep mechanisms.« less

  13. Tensile Creep of Polycrystalline Near-Stoichiometric NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2002-01-01

    Long term tensile creep studies were conducted on binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed depending on stress and temperature. It was concluded that the creep of NiAl is limited by dislocation mobility. The stress exponent for creep, n, increased from 5.5 at 1200 K to 13.9 at 700 K. The true activation energy for creep, Qc, was constant and equal to about 400 kJ per mole between 20 and 50 MPa but decreased to a constant value of 250 kJ per mole between 50 and 110 MPa. The activation energy was observed to be stress dependent above 110 MPa. The tensile creep results reported in this investigation were compared with compression creep data reported in the literature. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable nature of the atom vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  14. Creep deformation mechanism mapping in nickel base disk superalloys

    SciTech Connect

    Smith, Timothy M.; Unocic, Raymond R.; Deutchman, Hallee; Mills, Michael J.

    2016-05-10

    We investigated the creep deformation mechanisms at intermediate temperature in ME3, a modern Ni-based disk superalloy, using diffraction contrast imaging. Both conventional transmission electron microscopy (TEM) and scanning TEM were utilised. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815 °C and at stresses ranging from 274 to 724 MPa. Both polycrystalline and single-crystal creep tests were conducted. The single-crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760 °C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsic stacking faults. In contrast, these faulting modes occurred much less frequently during creep at 815 °C under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behaviour and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760 °C and above, where the secondary coarsened and the tertiary precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasising the influence of stress and temperature on the underlying creep mechanisms.

  15. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    NASA Astrophysics Data System (ADS)

    Armani, Clinton J.

    comparisons with experimental results. Additionally, the utility of the Monkman-Grant relationship to predicting creep-rupture life of the fiber tows at elevated temperature in air and in steam was demonstrated. Furthermore, the effects of steam on the compressive creep performance of bulk ceramic materials were also studied. Performance of fine grained, polycrystalline alumina (Al2O3) was investigated at 1100 and 1300°C in air and in steam. To evaluate the effect of silica doping during material processing both undoped and silica doped polycrystalline alumina specimens were tested. Finally, compressive creep performance of yttrium aluminum garnet (YAG, Y3Al5O12) was evaluated at 1300°C in air and in steam. Both undoped and silica doped YAG specimens were included in the study. YAG is being considered as the next-generation oxide fiber material. However, before considerable funding and effort are invested in a fiber development program, it is necessary to evaluate the creep performance of YAG at elevated temperature in steam. Results of this research demonstrated that both the undoped YAG and the silica doped YAG exhibited exceptional creep resistance at 1300°C in steam for grain sizes ˜1 microm. These results supplement the other promising features of YAG that make it a strong candidate material for the next generation ceramic fiber.

  16. Retardations in fault creep rates before local moderate earthquakes along the San Andreas fault system, central California

    USGS Publications Warehouse

    Burford, R.O.

    1988-01-01

    the past 5 years. Retardations with durations of 21 and 19 months also occurred at Shore Road before the 1974 and 1984 earthquakes of ML=5.2 and ML=6.2, respectively. Although creep retardation remains poorly understood, several possible explanations have been discussed previously. (1) Certain onsets of apparent creep retardation may be explained as abrupt terminations of afterslip generated from previous moderate-mainshock sequences. (2) Retardations may be related to significant decreases in the rate of seismic and/or aseismic slip occurring within or beneath the underlying seismogenic zone. Such decreases may be caused by changes in local conditions related to growth of asperities, strain hardening, or dilatancy, or perhaps by passage of stress-waves or other fluctuations in driving stresses. (3) Finally, creep rates may be lowered (or increased) by stresses imposed on the fault by seismic or aseismic slip on neighboring faults. In addition to causing creep-rate increases or retardations, such fault interactions occasionally may trigger earthquakes. Regardless of the actual mechanisms involved and the current lack of understanding of creep retardation, it appears that shallow fault creep is sensitive to local and regional effects that promote or accompany intermediate-term preparation stages leading to moderate earthquakes. A strategy for more complete monitoring of fault creep, wherever it is known to occur, therefore should be assigned a higher priority in our continuing efforts to test various hypotheses concerning the mechanical relations between seismic and aseismic slip. ?? 1988 Birkha??user Verlag.

  17. Creep studies for zircaloy life prediction in water reactors

    NASA Astrophysics Data System (ADS)

    Murty, K. Linga

    1999-10-01

    Zirconium alloys, commonly used as cladding tubes in water reactors, undergo complex biaxial creep deformation. The anisotropic nature of these metals makes it relatively complex to predict their dimensional changes in-reactor. These alloys exhibit transients in creep mechanisms as stress levels change. The underlying creep mechanisms and creep anisotropy depend on the alloy composition as well as the thermomechanical treatment. The anisotropic biaxial creep of cold-worked and recrystallized Zircaloy-4 in terms of Hill’s generalized stress formulation is described, and the temperature and stress dependencies of the steady-state creep rate are reviewed. Predictive models that incorporate anelastic strain are used for transient and transients in creep.

  18. Acceleration Measurements During Landings of a 1/5.5-Size Dynamic Model of the Columbia XJL-1 Amphibian in Smooth Water and in Waves: Langley Tank Model 208M, TED No. NACA 2336

    NASA Technical Reports Server (NTRS)

    Clement, Eugene P.; Havens, Robert F.

    1947-01-01

    A 1/5.5-size powered dynamic model of the Columbia XJL-1 amphibian was landed in Langley tank no. 1 in smooth water and in oncoming waves of heights from 2.1 feet to 6.4 feet (full-size) and lengths from 50 feet to 264 feet (full-size). The motions and the vertical accelerations of the model were continuously recorded. The greatest vertical acceleration measured during the smooth-water landings was 3.1g. During landings in rough water the greatest vertical acceleration measured was 15.4g, for a landing in 6.4-foot by 165-foot waves. The impact accelerations increased with increase in wave height and, in general, decreased with increase in wave length. During the landings in waves the model bounced into the air at stalled attitudes at speeds below flying speed. The model trimmed up to the mechanical trim stop (20 deg) during landings in waves of heights greater than 2.0 feet. Solid water came over the bow and damaged the propeller during one landing in 6.4-foot waves. The vertical acceleration coefficients at first impact from the tank tests of a 1/5.5-size model were in fair agreement with data obtained at the Langley impact basin during tests of a 1/2-size model of the hull.

  19. Field study and numerical modeling of wind and surface waves at the middle-sized water body

    NASA Astrophysics Data System (ADS)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2015-04-01

    This paper presents the results of field experiments on studying the wind and waves over inland waters, which were carried out at the Gorky Reservoir in 2011-2014. The sensors were positioned at the oceanographic Froude buoy including five two-component ultrasonic sensors WindSonic by Gill Instruments at different levels (0.1, 0.85, 1.3, 2.27, 5.26 meters above the mean water surface level), one water and three air temperature sensors, and three-channel wire wave gauge. From the measured profiles of wind speed, we calculated basic parameters of the atmospheric boundary layer: the friction velocity u*, the wind speed at the standard height of 10 m U10 and the drag coefficient CD. Parameters were obtained in the range of wind speeds of 1-10 m/s. For wind speeds stronger than 3 m/s CD values were lower than those obtained before (see eg. [1,2]) and those predicted by the bulk parameterization. In the range of wind speeds of 3-5 m/s CD values are even lower than the corresponding smooth flow. However, for weak winds (less than 2.5 m/s) CD values considerably higher than expected ones. The main peculiarity of our measurements is very low location of the lowest sensor: 0.1 m against 0.89 m in [1] and 0.5 m in [2]. Moreover, the lowest sensor was not fixed on the mast, but was located on the float and followed the water surface. Analysis shows that the obtained parameters of profile are almost independent on the number of approximated wind speed levels if they include the lowest sensor. But excluding the lowest sensor gave larger values of CD similar to [1] and [2]. These results demonstrate importance of wind speed measuring close to the water surface. The new parameterization of surface drag coefficient was proposed on the basis of the obtained data. The new surface drag parameterization was used in WAVEWATCH III model applied for modeling waves at the reservoir. 1-D spectra of the field experiment were compared with those obtained in the numerical experiments with

  20. Gamma Prime Precipitation, Dislocation Densities, and TiN in Creep-Exposed Inconel 617 Alloy

    NASA Astrophysics Data System (ADS)

    Krishna, Ram; Atkinson, Helen V.; Hainsworth, Sarah V.; Gill, Simon P.

    2016-01-01

    Inconel 617 is a solid-solution-strengthened Ni-based superalloy with a small amount of gamma prime (γ') present. Here, samples are examined in the as-received condition and after creep exposure at 923 K (650 °C) for 574 hours and 45,000 hours and at 973 K (700 °C) for 4000 hours. The stress levels are intermediate (estimated, respectively, as of the order of 350, 275, and 200 MPa) and at levels of interest for the future operation of power plant. The hardness of the specimens has been measured in the gage length and the head. TEM thin foils have been obtained to quantify dislocation densities (3.5 × 1013 for the as-received, 5.0 × 1014, 5.9 × 1014, and 3.5 × 1014 lines/m2 for the creep-exposed specimens, respectively). There are no previous data in the literature for dislocation densities in this alloy after creep exposure. There is some evidence from the dislocation densities that for the creep-exposed samples, the higher hardness in the gage length in comparison with the creep test specimen head is due to work hardening rather than any other effect. Carbon replicas have been used to extract gamma prime precipitates. The morphology of γ' precipitates in the `as-received' condition was spheroidal with an average diameter of 18 nm. The morphology of these particles does not change with creep exposure but the size increases to 30 nm after 574 hours at 923 K (650 °C) but with little coarsening in 45,000 hours. At 973 K (700 °C) 4000 hours, the average gamma prime size is 32 nm. In the TEM images of the replicas, the particles overlap, and therefore, a methodology has been developed to estimate the volume fraction of gamma prime in the alloy given the carbon replica film thickness. The results are 5.8 vol pct in the as-received and then 2.9, 3.2, and 3.4 vol pct, respectively, for the creep-exposed specimens. The results are compared with predictions from thermodynamic analysis given the alloy compositions. Thermodynamic prediction shows that nitrogen

  1. High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wilson, Jeffrey D.; Force, Dale A.

    2008-01-01

    Recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented in this paper. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT has improved by a factor of ten over the previous generation Ka-Band devices.

  2. Tensile creep and creep rupture behavior of monolithic and SiC-whisker-reinforced silicon nitride ceramics

    SciTech Connect

    Ohji, Tatsuki; Yamauchi, Yukihiko )

    1993-12-01

    The tensile creep and creep rupture behavior of silicon nitride was investigated at 1,200 to 1,350 C using hot-pressed materials with and without SiC whiskers. Stable steady-state creep was observed under low applied stresses at 1,200 C. Accelerated creep regimes, which were absent below 1,300 C, were identified above that temperature. The appearance of accelerated creep at the higher temperatures attributable to formation of microcracks throughout a specimen. The whisker-reinforced material exhibited better creep resistance than the monolith at 1,200 C. Considerably high values 3 to 5, were obtained for the creep exponent in the overall temperature range. The exponent tended to decrease with decreasing applied stress at 1,200 C. The primary creep mechanism was considered cavitation-enhanced creep. Specimen lifetimes followed the Monkman-Grant relationship except for fractures with large accelerated creep regimes. The creep rupture behavior is discussed in association with cavity formation and crack adolescence.

  3. Phenomenological approach to precise creep life prediction by means of quantitative evaluation of strain rate acceleration in secondary creep

    NASA Astrophysics Data System (ADS)

    Sato, Hiroyuki; Miyano, Takaya

    2010-07-01

    A method of creep life prediction by means of Strain-Acceleration-Parameter (SAP), α, is presented. The authors show that the shape of creep curve can be characterized by SAP that reflects magnitude of strain-rate change in secondary creep. The SAP-values, α are evaluated on magnesium-aluminium solution hardened alloys. Reconstruction of creep curves by combinations of SAP and minimum-creep rates are successfully performed, and the curves reasonably agree with experiments. The advantage of the proposed method is that the required parameters evaluated from individual creep curves are directly connected with the minimum creep rate. The predicted times-to-failure agree well with that obtained by experiments, and possibility of precise life time prediction by SAP is pronounced.

  4. Micron-Sized Dust Particles Detected in the Outer Solar System by the Voyager 1 and 2 Plasma Wave Instruments

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Ansher, J. A.; Kurth, W. S.; Granroth, L. J.

    1997-01-01

    During the Voyager 1 and 2 flybys of the outer planets it has been demonstrated that the plasma wave instrument can detect small dust particles striking the spacecraft. In this paper, we examine the Voyager plasma wave data for dust impacts in the interplanetary medium at heliocentric radial distances ranging from 6 to 60 astronomical units (AU). The results show that a small but persistent level of dust impacts exists out to at least 30 to 50 AU. The average number density of these particles is about 2 x 10(exp -8)/cu m, and the average mass of the impacting particles is believed to be a few times 10(exp -11) g, which corresponds to particle diameters in the micron range. Possible sources of these particles are planets, moons, asteroids, comets, and the interstellar medium. Of these, comets appear to be the most likely source. The number densities are only weakly dependent on ecliptic latitude, which indicates that the particles probably do not originate from planets, moons, or asteroids. Comparisons with interstellar dust fluxes measured in the inner regions of the solar system by the Ulysses spacecraft indicate that the particles are not of interstellar origin.

  5. Low Size, Weight and Power Concept for Mid-Wave Infrared Optical Communication Transceivers Based on Quantum Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Luzhanskiy, Edward; Choa, Fow-Sen; Merritt, Scott; Yu, Anthony; Krainak, Michael

    2015-01-01

    The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept presented, realized and tested in the laboratory environment. Resilience to atmospheric impairments analyzed with simulated turbulence. Performance compared to typical telecom based Short Wavelength Infra-Red transceiver.

  6. Relevance of a mesoscopic modeling for the coupling between creep and damage in concrete

    NASA Astrophysics Data System (ADS)

    Saliba, J.; Grondin, F.; Matallah, M.; Loukili, A.; Boussa, H.

    2013-08-01

    In its service-life concrete is loaded and delayed strains appear due to creep phenomenon. Some theories suggest that micro-cracks nucleate and grow when concrete is submitted to a high sustained loading, thereby contributing to the weakening of concrete. Thus, it is important to understand the interaction between the viscoelastic deformation and damage in order to design reliable civil engineering structures. Several creep-damage theoretical models have been proposed in the literature. However, most of these models are based on empirical relations applied at the macroscopic scale. Coupling between creep and damage is mostly realized by adding some parameters to take into account the microstructure effects. In the authors' opinion, the microstructure effects can be modeled by taking into account the effective interactions between the concrete matrix and the inclusions. In this paper, a viscoelastic model is combined with an isotropic damage model. The material volume is modeled by a Digital Concrete Model which takes into account the "real" aggregate size distribution of concrete. The results show that stresses are induced by strain incompatibilities between the matrix and aggregates at mesoscale under creep and lead to cracking.

  7. Microstructures of beta silicon carbide after irradiation creep deformation at elevated temperatures

    SciTech Connect

    Katoh, Yutai; Kondo, Sosuke; Snead, Lance Lewis

    2008-01-01

    Microstructures of silicon carbide were examined by transmission electron microscopy (TEM) after creep deformation under neutron irradiation. Thin strip specimens of polycrystalline and monocrystalline, chemically vapor-deposited, beta-phase silicon carbide were irradiated in the high flux isotope reactor to 0.7-4.2 dpa at nominal temperatures of 640-1080 C in an elastically pre-strained bend stress relaxation configuration with the initial stress of {approx}100 MPa. Irradiation creep caused permanent strains of 0.6 to 2.3 x 10{sup -4}. Tensile-loaded near-surface portions of the crept specimens were examined by TEM. The main microstructural features observed were dislocation loops in all samples, and appeared similar to those observed in samples irradiated in non-stressed conditions. Slight but statistically significant anisotropy in dislocation loop microstructure was observed in one irradiation condition, and accounted for at least a fraction of the creep strain derived from the stress relaxation. The estimated total volume of loops accounted for 10-45% of the estimated total swelling. The results imply that the early irradiation creep deformation of SiC observed in this work was driven by anisotropic evolutions of extrinsic dislocation loops and matrix defects with undetectable sizes.

  8. Creep Behavior of Frozen Sand.

    DTIC Science & Technology

    1981-06-01

    Potash feldspar was the most abundant feldspar species. The clay minerals present were mica, illite, vermiculite and chlorite with considerable...5000X; a) Mica, b) Feldspar , c) Quartz -9- Page Fig. 111-5 Compaction - Freezing Mold 104 111-6 Cooling Curve for Partially Saturated MFS 105 111-7...aetween 74 and 250im size. The specific gravity of the sand was 2.67g/cm 3 . The mineralogy of the sand material was predominantly quartz and feldspars

  9. Creeping hair: an isolated hair burrowing in the uppermost dermis resembling larva migrans.

    PubMed

    Sakai, Rie; Higashi, Kushio; Ohta, Miyuki; Sugimoto, Yasushi; Ikoma, Yukiko; Horiguchi, Yuji

    2006-01-01

    A 55-year-old Japanese male presented with a slowly moving linear erythema that looked like an eruption of creeping disease, or cutaneous larva migrans. The eruption extended linearly along Langer's line of the lateral side of the abdomen to the lower back, leaving wave-like erythema. In the top third of the erythematous eruption, close examination demonstrated a black thin line, which was revealed to be a hair shaft by a shallow incision of the skin. After removal of the hair, the eruption diminished immediately, leaving a slight pigmentation. An ingrown pubic hair seemed to have migrated with the lower end forward along Langer's line, because of the arrangement of hair cuticle and the force of body motion. Linearly moving erythematous eruptions that look like that of larva migrans should be differentiated from creeping hair by close examination detecting burrowing hair.

  10. Axial creep-rupture time of boron-aluminum composites

    SciTech Connect

    Goda, Koichi; Hamada, Jun`ichi

    1995-11-01

    Axial creep tests of a 10vol% boron-aluminum hotpressed monolayer composite were carried out under several constant loads at 300 C in air. The composite behaved with slight primary creep, but did not show appreciable secondary creep. Several specimens encountered a momentary increase of strain during the creep test which separated the creep curve into two regions, because of the individual fiber breaks in the composite. And then, almost all the specimens suddenly fractured without tertiary creep. From the viewpoint of reliability engineering the statistical properties of the creep-rupture time were investigated. The average creep-rupture time decreased with an increase in the applied stress, and the relatively large coefficient of variation was estimated in every case, being around 1,000%. However, these scatters were estimated to be smaller than the scatter of creep-rupture time in the boron fiber itself. That means, the reliability of the fiber`s creep-rupture time is improved by compositing with matrix material.

  11. Influence of phosphorus on the creep ductility of copper

    NASA Astrophysics Data System (ADS)

    Sandström, Rolf; Wu, Rui

    2013-10-01

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180-250 °C. The material was intended for use in canisters for nuclear waste disposal. Although extra low creep ductility was not observed much below 180 °C and the temperature in the canister will never exceed 100 °C, it was feared that the creep ductility could reach low values at lower temperatures after long term exposure. If 50 ppm phosphorus was added to the copper the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the cavitation behaviour in uniaxial and multiaxial creep tests as well as the observed creep ductility for copper with and without phosphorus. A so-called double ledge model has been introduced that demonstrates why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries and limits their local deformation and thereby reduces the formation and growth of cavities. This explains why extra low creep ductility does not occur in phosphorus alloyed copper.

  12. Compression and Tensile Creep of Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2005-01-01

    Compression creep and long term tensile creep studies were conducted on cast and extruded binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed in both compression and tension creep depending on stress and temperature although an asymmetrical response was observed under these two stress states. It was concluded that the primary creep of NiAl is limited by dislocation mobility. The stress exponents, n, for compression and tensile creep were similar varying between about 5 and 14. However, there were significant differences in the stress dependence of the activation energies for compression and tensile creep. The true activation energy for tensile creep, Q(sub c), was constant and equal to about 400 kJ/mol between 20 and 50 MPa but decreased to a constant value of 250 kJ/mol between 50 and 110 MPa. The activation energy was observed to be inversely stress dependent above 110 MPa. In contrast, Q(sub c) = 300 kJ/mol for compression creep was constant between 25 and 70 MPa and inversely dependent on the true stress above 70 MPa. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable natures of the atom-vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  13. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  14. Creep damage development in structural ceramics

    SciTech Connect

    Chan, K.S.; Page, R.A. )

    1993-04-01

    Creep rupture of structural ceramics occurs by either the nucleation, growth, and coalescence of grain-boundary cavities throughout the material or the growth of a dominant flaw. Recent experimental results obtained with small-angle neutron scattering (SANS) and stereo imaging strain analysis are reviewed and used to answer a number of critical questions pertaining to both damage mechanisms. The nucleation and growth processes of grain-boundary cavities are examined using the SANS results and pertinent results from other studies. The stochastic nature of cavitation is demonstrated and discussed. Creep-crack growth is described as either a direct mass transport process or a damage zone growth process. New stereo imaging strain results pertinent to the damage zone growth process are presented and used to elucidate the crack growth process and the growth threshold.

  15. Failure of bacterial streamers in creeping flows

    NASA Astrophysics Data System (ADS)

    Biswas, Ishita; Ghosh, Ranajay; Sadrzadeh, Mohtada; Kumar, Aloke

    2016-11-01

    In the recent years, the dynamical response of filamentous bacterial aggregates called bacterial streamer in creeping flows has attracted attention. We report the observation of 'necking-type' instability leading to failure in bacterial (Pseudomonas fluorescens) streamers formed in creeping flows. Quantification of the failure process was made possible through the use of 200 nm red fluorescent polystyrene tracer particles embedded in the bacterial extracellular polymeric substances (EPS). The nonlinear failure behavior shows distinct phases of deformation with mutually different characteristic times, which end with a distinct localized failure of the streamer. We also develop a simplified analytical model to describe the experimental observations of the failure phenomena. The theoretical power law relationship between critical stretch ratio and the fluid velocity scale matches closely experimental observations.

  16. Leidenfrost Gas Ratchets Driven by Thermal Creep

    NASA Astrophysics Data System (ADS)

    Würger, Alois

    2011-10-01

    We show that thermal creep is at the origin of the recently discovered Leidenfrost ratchet, where liquid droplets float on a vapor layer along a heated sawtooth surface and accelerate to velocities of up to 40cm/s. As the active element, the asymmetric temperature profile at each ratchet summit rectifies the vapor flow in the boundary layer. This mechanism works at low Reynolds number and provides a novel tool for controlling gas flow at nanostructured surfaces.

  17. Changes in rate of fault creep

    USGS Publications Warehouse

    Harsh, P.

    1979-01-01

    Aseismic slip or fault creep is occurring on many faults in California. Although the creep rates are generally less than 10 mm/yr in most regions, the maximum observed rate along the San Andreas fault between San Juan Bautista and Gold Hill in central California exceeds 30 mm/yr. Changes in slip rates along a 162 km segment of the San Andreas fault in this region have occurred at approximately the same time at up to nine alinement array sites. Rates of creep on the fault near the epicenters of moderate earthquakes (ML 4-6) vary for periods of several years, decreasing before the main shocks and increasing thereafter, in agreement with prior observations based on creepmeter results. The change of surface slip rate is most pronounced within the epicentral region defined by aftershocks, but records from sites at distances up to 100 km show similar variations. Additionally, some variations in rate, also apparently consistent among many sites, have a less obvious relation with seismic activity and have usually taken place over shorter periods. Not all sites exhibit a significant variation in rate at the time of a regional change, and the amplitudes of the change at nearby sites are not consistently related. The time intervals between measurements at the nine array sites during a given period have not always been short with respect to the intervals between surveys at one site; hence, uneven sampling intervals may bias the results slightly. Anomalies in creep rates thus far observed, therefore, have not been demonstrably consistent precursors to moderate earthquakes; and in the cases when an earthquake has followed a long period change of rate, the anomaly has not specified time, place, or magnitude with a high degree of certainty. The consistency of rate changes may represent a large scale phenomenon that occurs along much of the San Andreas transform plate boundary. ?? 1979.

  18. A creep mechanism for metal single crystals

    SciTech Connect

    Cuitino, A.M.

    1995-12-31

    In this paper we present a mechanism of creep for metal single crystals. This creep mechanism is consistent with the hardening mechanism in metals single crystals, i.e. forest hardening. Hardening in metals is mainly due to the resistance to the dislocation motion opposed by obstacles. In single crystals, obstacles are generated by dislocation segments crossing the glide plane (forest dislocations). When a dislocation is released from an obstacle, it moves until stopped at the following obstacle inducing plastic deformation. It has been proposed as a mechanisms of creep that obstacles can be overcome by dislocation climb. However, the kind of obstacles remains in planes parallel to the gliding plane. Thus, the dislocation segment after climb is still stopped at the same obstacle and unable to glide, unless, a second jog moving in the forest dislocation meets simultaneously with the jog in the gliding segment. In this case, the gliding segment can move by the height of the forest jog. The gliding area is proportional to this height and the distance between obstacles. We call this mechanism of glide by congruent climb. Creep rate depends on the jog density and jog velocity. For a well-annealed material the number of jogs is relatively low. As plastic deformation proceeds, new jogs are formed by mainly two mechanisms: dislocation intersection and double cross slip. For a crystal undergoing single slip, the cross-slip contribution dominates jog generation, since dislocation intersections are relatively rare due to the low forest dislocation density. The situation is reversed for multiple glide as a consequence of the rapid dislocation multiplication which takes place in the active slip systems, which results in a high rate of dislocation intersection. The number of cross slip events and dislocation intersections can be readily estimated by our dislocation model of plastic deformation. Jog velocity is determined based on vacancy diffusion along the dislocation core.

  19. Numerical modeling and validation of wave heights and directionality in the ice using WAVEWATCH III

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Dumont, Dany; Accensi, Mickael; Sevigny, Caroline; Boutin, Guillaume; Rogers, Erick

    2016-04-01

    The poorly understood attenuation of waves, the key dynamic effect that defines the width of the Marginal Ice Zone, has been attributed to the combined effect of wave scattering and wave dissipation. Because scattering and dissipation have very different effects on the directional distribution of wave energy, it is possible to better understand the balance between scattering and dissipation by an analysis of the width of the directional wave spectrum. We have thus introduced dissipation and scattering terms in the spectral wave model WAVEWATCH III, and an estimation of the maximum ice floe size. Academic and realistic simulations show that the energy level and directional spreading far into the Arctic pack ice (Wadhams and Doble 2009) can be well explained by dissipative processes without the need for scattering. The same is true of observed swells in the Southern Ocean (Ardhuin et al. 2015). However, the dissipation level required to explain the observed wave height goes from 2 in the southern ocean to 12 times the viscous dissipation under a smooth ice plate. This and other data suggest that broken ice causes less dissipation than a continuous ice cover, possibly due to the dissipation by creep inside the ice when it is not broken and bends. Work is under way to parameterize that effect using the estimated maximum ice floe size.

  20. Creep cavitation in 304 stainless steel

    SciTech Connect

    Chen, I.W.; Argon, A.S.

    1981-01-01

    Creep cavitation in 304 stainless steel at 0.5 T/sub m/ was investigated. Two specially developed techniques were used to study the nucleation and growth of grain-boundary cavities. It was found that cavities nucleated heterogeneously throughout the creep history and those observed were well in their growth stage. Comparison of these observations with the theory for cavity nucleation requires that a high interfacial stress be present. Experiments suggest that such stress concentrations are present in the early stages of boundary sliding, and in additional transients associated with intermittent sliding of boundaries throughout the creep life. It was found that microstructural variations such as those caused by twins which strongly affect initial particle densities on boundaries can alter cavitation behavior drastically. Our results also show that wedge cracks are the result of accelerated linking of growing cavities in the triple point region of stress concentration and are not a separate phenomenon. Furthermore, at higher strain rates growth of cavities can be accelerated by grain boundary sliding. Lastly, evidence is given to support the view that in engineering alloys which contain complex phas constitutents particularly along grain-boundaries, cavitation in long term service is likely to be caused by cavities nucleated in connection with a prior cold forming operation. 15 figures.

  1. Magnetic field annealing for improved creep resistance

    SciTech Connect

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  2. Effect of nitrogen high temperature plasma based ion implantation on the creep behavior of Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Oliveira, A. C.; Oliveira, R. M.; Reis, D. A. P.; Carreri, F. C.

    2014-08-01

    Nitrogen high temperature plasma based ion implantation (HTPBII) performed on Ti-6Al-4V significantly improved the creep behavior of the alloy. Treatments were performed for 1 h at a working pressure of 4 mbar and negative high voltage pulses of 7.5 kV, 30 μs and 500 Hz were applied on the specimens heated at 800 °C and 900 °C, respectively. Microstructural characterization of the treated samples revealed the formation of nitrided layers, with simultaneous formation of TiN and Ti2N. The most intense peaks of these compounds were obtained at higher treatment temperature, probably due to the diffusion of nitrogen into titanium. The presence of nitrides caused surface hardening up to three times higher in comparison with untreated alloy. Constant load creep tests were conducted on a standard creep machine in air atmosphere, at stress level of 319 MPa at 600 °C. Significant reductions of the steady-state creep rates (ɛ) were measured for martensitic Ti-6Al-4V treated by nitrogen HTPBII, reaching minimum creep rates of 0.0318 h-1 in comparison with 0.1938 h-1 for untreated sample. The improvement of the creep resistance seems to be associated with the formation of a thick nitrided layer, which acts as a barrier to oxygen diffusion into the material. In addition, the increase of the grain size generated by the heating of the substrate during the treatment can affect some creep mechanisms, leading to a significant reduction of ɛ.

  3. The relationship between indentation and uniaxial creep in amorphous selenium

    SciTech Connect

    Poisl, W.H.; Oliver, W.C.; Fabes, B.D.

    1995-08-01

    Ultralow load indentation techniques can be used to obtain time-dependent mechanical properties, termed indentation creep, of materials. However, the comparison of indentation creep data to that obtained during conventional creep testing is difficult, mainly due to the determination of the strain rate experienced by the material during indentation. Using the power-law creep equation and the equation for Newtonian viscosity as a function of stress and strain rate, a relationship between indentation strain rate,{center_dot}{epsilon}{sub {ital l}}={ital @};Dh/{ital h}, and the effective strain rate occurring during the indentation creep process is obtained. Indentation creep measurements on amorphous selenium in the Newtonian viscous flow regime above the glass transition temperature were obtained. The data was then used to determine that the coefficient relating indentation strain rate to the effective strain rate is equal to 0.09, or{center_dot}{epsilon}=0.0{center_dot}{epsilon}{sub {ital l}}.

  4. Creep-characteristics of a tropical wood-polymer composite

    NASA Astrophysics Data System (ADS)

    Chia, L. H. L.; Teoh, S. H.; Boey, F. Y. C.

    Wood polymer composite (WPC) specimens were produced by impregnating a tropical wood with methyl methacrylate and subsequently polymerised by γ-irradiation. Beam specimens of varying weight percentages of polymer were then subjected to a three point bend creep test under a constant load condition, for 250, 300 and 350 N. A Norton-Bailey (power law) mathematical model was used to describe the creep behavior, with the creep components determined by a nonlinear regression analysis. Significant creep improvements were obtained from the composite specimens as compared to the untreated wood specimens. Results indicated that maximum creep resistance is obtained when the amount of polymer loading exceeded 30%. An interfacial interaction between the polymer and the wood cell wall was used to account for the behavior of the increase in the creep resistance.

  5. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  6. Cyclic creep analysis from elastic finite-element solutions

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hwang, S. Y.

    1986-01-01

    A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.

  7. On the variational computation of a large number of vibrational energy levels and wave functions for medium-sized molecules

    NASA Astrophysics Data System (ADS)

    Mátyus, Edit; Šimunek, Ján; Császár, Attila G.

    2009-08-01

    In a recent publication [J. Chem. Phys. 127, 084102 (2007)], the nearly variational DEWE approach (DEWE denotes Discrete variable representation of the Watson Hamiltonian using the Eckart frame and an Exact inclusion of a potential energy surface expressed in arbitrarily chosen coordinates) was developed to compute a large number of (ro)vibrational eigenpairs for medium-sized semirigid molecules having a single well-defined minimum. In this publication, memory, CPU, and hard disk usage requirements of DEWE, and thus of any DEWE-type approach, are carefully considered, analyzed, and optimized. Particular attention is paid to the sparse matrix-vector multiplication, the most expensive part of the computation, and to rate-determining steps in the iterative Lanczos eigensolver, including spectral transformation, reorthogonalization, and restart of the iteration. Algorithmic improvements are discussed in considerable detail. Numerical results are presented for the vibrational band origins of the C12H4 and C12H2D2 isotopologues of the methane molecule. The largest matrix handled on a personal computer during these computations is of the size of (4•108)×(4•108). The best strategy for determining vibrational eigenpairs depends largely on the actual details of the required computation. Nevertheless, for a usual scenario requiring a large number of the lowest eigenpairs of the Hamiltonian matrix the combination of the thick-restart Lanczos method, shift-fold filtering, and periodic reorthogonalization appears to result in the computationally most feasible approach.

  8. Heated mine room and pillar secondary creep response

    SciTech Connect

    Tillerson, J.R.; Dawson, P.R.

    1980-04-01

    Heated salt mine room and pillar simulations have been performed to provide information regarding parameters affecting room closure rates to designers of radioactive waste isolation facilities. A coupled secondary creep and heat transfer formulation with large strain capabilities was used to assess the effects of variations in creep law parameters, thermal properties, imposed boundary conditions, temporal integration, and meshing resolution on room closure rates. Results indicate that the greatest effect results from variations in parameters appearing in the creep constitutive equation.

  9. A microphysical model of Harper-Dorn creep

    SciTech Connect

    Wang, J.N.

    1996-03-01

    Using experimental data for Harper-Dorn creep in different materials, it is demonstrated that the flow process in this creep may be dislocation glide plus climb with the climb being rate-controlling under a constant dislocation density determined by the magnitude of the Peierls stress. A rate equation is presented which may be used to predict the occurrence of Harper-Dorn creep in any crystalline material.

  10. Creeping Faults and Seismicity: Lessons From The Hayward Fault, California

    NASA Astrophysics Data System (ADS)

    Malservisi, R.; Furlong, K. P.; Gans, C.

    While faults remain mostly locked between large strain releasing events, they can dissipate some of the accumulating elastic strain through creep. One such fault that releases a significant fraction of accumulating strain by creep is the Hayward fault in the San Francisco Bay region of California. The seismic risk associated with creeping faults such as the Hayward fault will depend in part on the net rate of moment accu- mulation (slip deficit) on the fault. Using a visco-elastic finite-element model driven by far field plate motions, we have investigated how the specific geometry of locked and free portions of the fault, and the interactions between the fault zone and the sur- rounding lithosphere influence creep on the fault plane and thus the seismic risk. In contrast to previous studies of the effects of the geometry of locked patches on the surface creep rate that specified rates on those patches, we specify only "creepable" regions and allow the system to adjust the creep rate. With our approach, we can infer fault zone geometries and physical properties that can produce the observed surface creep on the Hayward fault letting the rheology, geometry, and mechanics of sys- tem determine patterns of creep on the fault plane. Our results show that the creep rate decreases smoothly moving toward the locked patches. This leads to "creepable" (low friction) areas that accumulate a high slip deficit as compared to other low fric- tion segments of the fault. A comparison of the creep pattern from our results with Hayward fault micro-seismicity indicates that events cluster in the "creepable" re- gions with a creeping-velocity gradient that leads to a significant strain accumulation rate in the elastic material surrounding the creeping fault. This correlation provides an additional tool to map deformation patterns and strain accumulation on the fault. Micro-seismicity, surface deformation, and geodynamic modeling combine to allow us to refine our estimation of net

  11. Irradiation creep and swelling of various austenitic alloys irradiated in PFR and FFTF

    SciTech Connect

    Garner, F.A.; Toloczko, M.B.

    1996-10-01

    In order to use data from surrogate neutron spectra for fusion applications, it is necessary to analyze the impact of environmental differences on property development. This is of particular importance in the study of irradiation creep and its interactions with void swelling, especially with respect to the difficulty of separation of creep strains from various non-creep strains. As part of an on-going creep data rescue and analysis effort, the current study focuses on comparative irradiations conducted on identical gas-pressurized tubes produced and constructed in the United States from austenitic steels (20% CW 316 and 20% CW D9), but irradiated in either the Prototype Fast Reactor (PFR) in the United Kingdom or the Fast Flux Test Facility in the United States. In PFR, Demountable Subassemblies (DMSA) serving as heat pipes were used without active temperature control. In FFTF the specimens were irradiated with active ({+-}{degrees}5C) temperature control. Whereas the FFTF irradiations involved a series of successive side-by-side irradiation, measurement and reinsertion of the same series of tubes, the PFR experiment utilized simultaneous irradiation at two axial positions in the heat pipe to achieve different fluences at different flux levels. The smaller size of the DMSA also necessitated a separation of the tubes at a given flux level into two groups (low-stress and high-stress) at slightly different axial positions, where the flux between the two groups varied {le}10%. Of particular interest in this study was the potential impact of the two types of separation on the derivation of creep coefficients.

  12. Creep of Nearly Lamellar TiAl Alloy Containing W

    SciTech Connect

    Hodge, A M; Hsiung, L M; Nieh, T

    2004-04-08

    Effects of W on the creep resistance of two nearly fully lamellar TiAl alloys with 1.0 and 2.0 at.%W have been investigated. In the low stress regime (LS) a nearly quadratic (1.5creep behavior was observed. It is found that the addition of W can improve the creep resistance; however, the addition of excess W can result in the formation of {beta} phase, which produces an adverse effect on the creep strength.

  13. Contribution to irradiation creep arising from gas-driven bubbles

    SciTech Connect

    Woo, C.H.; Garner, F.A.

    1998-03-01

    In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantial creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.

  14. Micromechanical modeling of microstructural damage in creeping alloys. Final report

    SciTech Connect

    Argon, A.S.

    1984-11-15

    Fracture under service conditions at high temperatures in structures undergoing creep deformation is intergranular. Cavities on grain boundaries are produced on interfaces of hard particles during transient sliding of grain boundaries. The growth of grain boundary cavities by a combination of continuum creep and diffusional flow is often constrained by the creep deformation of the surrounding grain matrix. The constrained growth and linking of grain boundary cavities produces isolated cracked grain boundary facets which continue to grow by continuum creep and in the process accelerate overall creep flow. Cracked grain boundary facets are the principal form of creep damage, and their density per unit volume can be taken as the parameter characterizing creep damage. This damage parameter can be incorporated into three-dimensional constitutive relations of creep deformation, and these relations can be used in large strain finite element programs to solve complex engineering problems of creeping structures. All the microstructural mechanics that enter into the above description have been verified in a selection of key experiments on cavitation and crack growth.

  15. Preparation of creep data sheet: Material strength data sheet

    NASA Astrophysics Data System (ADS)

    Tanaka, Chiaki; Yagi, Koichi; Ikeda, Sadao; Ito, Hiroshi; Baba, Eiji; Shimizu, Masaru; Tanaka, Hideo; Yokokawa, Kenji; Nagai, Hideo; Kanamaru, Osamu

    1993-01-01

    Continuing from the first and the second term, creep rupture data sheet on metals for high temperatures was continued targeting for 100,000 hours. Creep strain data sheet for elastic analysis, conceived in the second term was carried out this term. Additionally, research was planned into the Cr group steel, which is increasingly in demand for high temperature equipment, and material sampling and testing commenced accordingly. In 1986, the creep data sheet (B Version) was published for the first time, including the creep rupture data exceeding final target of 100,000 hours. Since then, B versions were published on 12 different materials this term. There has been much research using the data from creep data sheets and test samples, including creep strain characteristics, stress relaxation characteristics, creep rupture characteristics and life estimate, with substantial results. In the creep test technology aiming for highly reliable data, deterioration factors of thermocouples were investigated. The results from creep data sheets and related research contributed to improvement in strength reliability of metals at high temperatures.

  16. Creep Behavior of Anisotropic Functionally Graded Rotating Discs

    NASA Astrophysics Data System (ADS)

    Rattan, Minto; Chamoli, Neeraj; Singh, Satya Bir; Gupta, Nishi

    2013-08-01

    The creep behavior of an anisotropic rotating disc of functionally gradient material (FGM) has been investigated in the present study using Hill's yield criteria and the creep behavior in this case is assumed to follow Sherby's constitutive model. The stress and strain rate distributions are calculated for disc having different types of anisotropy and the results obtained are compared graphically. It is concluded that the anisotropy of the material has a significant effect on the creep behavior of the FGM disc. It is also observed that the FGM disc shows better creep behavior than the non-FGM disc.

  17. Creep behaviour of Cu-30 percent Zn at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1991-01-01

    The present, intermediate-temperature (573-823 K) range investigation of creep properties for single-phase Cu-30 percent Zn alpha-brass observed inverse, linear, and sigmoidal primary-creep transients above 573 K under stresses that yield minimum creep rates in the 10 to the -7th to 2 x 10 to the -4th range; normal primary creep occurred in all other conditions. In conjunction with a review of the pertinent literature, a detailed analysis of these data suggests that no clearly defined, classes M-to-A-to-M transition exists in this alloy notwithstanding the presence of both classes' characteristics under nominally similar stresses and temperatures.

  18. Temporal Constraints on the Size of Gamma-ray Burst Progenitors and Implications for Gravitational Wave Follow-up

    NASA Astrophysics Data System (ADS)

    Golkhou, V. Zach; Butler, Nathaniel; Littlejohns, Owen

    2017-01-01

    Uncovering the intrinsic variability of Gamma-ray bursts (GRBs), the most energetic explosions since the Big Bang, constrains the size of the GRB emission region, and ejecta velocity, in turn providing hints on the nature of GRBs and their progenitors.We develop a novel method which ties together wavelet and structure-function analyses to measure, for the first time, the actual minimum variability timescale, Δtmin, of GRB light curves. Implementing our technique to the largest sample of GRBs collected by Swift and Fermi instruments, reveals that only less than 10% of GRBs exhibit evidence for variability on timescales below 2 ms. Investigation on various energy bands of Fermi/GBM (spanning 8 keV-1 MeV) shows that the tightest constraints on progenitor radii derive from timescales obtained from the hardest energy channel of light curves (299 -1000 keV). Our derivations for the minimum Lorentz factor, Γmin, and the minimum emission radius, R = 2 c Γmin2 Δtmin / (1+z), find Γ ≥ 400 which imply typical emission radii R ≈ 1×1014 cm for long-duration GRBs and R ≈ 3×1013 cm for short-duration GRBs (sGRBs). This information is served in an online, publicly-accessible table which is automatically updated upon a new GRB trigger event.Given the possible linkage between sGRBs and Compact Binary Coalescence events, the practical approach to finally detect the Electromagnetic counterparts of LIGO triggers is to focus our follow-up resources on sGRBs. Our sGRB selection methodology, a direct measure of the emission region size, along with the implemented vetting algorithm of extracted transient candidates found by an image subtraction code could optimize efficiently LIGO follow-up with the Ground-based Telescopes.

  19. Enhancement of the evanescent wave coupling effect in a sub-wavelength-sized GaAs/AlGaAs ridge structure by low-refractive-index surface layers.

    PubMed

    Wang, Xue-Lun; Hao, Guo-Dong; Takahashi, Tokio

    2014-10-20

    We have investigated the three-dimensional emission patterns of GaAs/AlGaAs ridge structures with a sub-wavelength-sized top-flat facet by angle-resolved photoluminescence (PL). We found that the integrated PL intensity, and hence the light-extraction efficiency, can be enhanced by about 34% just by covering the ridge surface with a thin SiO2 layer. A double-coupling effect of evanescent waves that occurs at both the semiconductor-SiO2 and SiO2-air interfaces is suggested to be responsible for the improvement, based on a finite-difference time-domain simulation of the electromagnetic field around the ridge top.

  20. Brittle and semibrittle creep in a low porosity carbonate rock

    NASA Astrophysics Data System (ADS)

    Nicolas, Aurélien; Fortin, Jérôme; Regnet, Jean-Baptiste; Dimanov, Alexandre; Guéguen, Yves

    2016-04-01

    The mechanical behavior of limestones at room temperature is brittle at low confining pressure and becomes semi-brittle with the increase of the confining pressure. The brittle behavior is characterized by a macroscopic dilatancy due to crack propagation, leading to a stress drop when cracks coalesce at failure. The semi-brittle behavior is characterized by diffuse deformation due to intra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aim of this work is to examine the influence of pore fluid and time on the mechanical behavior. Constant strain rate triaxial deformation experiments and stress-stepping creep experiments were performed on white Tavel limestone (porosity 14.7%). Elastic wave velocity evolutions were recorded during each experiment and inverted to crack densities. Constant strain rate triaxial experiments were performed for confining pressure in the range of 5-90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. In this regime, water-saturation decreases the differential stress at the onset of crack propagation and enhances macroscopic dilatancy. For Pc≥70 MPa, the behavior is semi-brittle. Inelastic compaction is due to intra-crystalline plasticity and micro-cracking. However, in this regime, our results show that water-saturation has no clear effect at the onset of inelastic compaction. Stress stepping creep experiments were performed in a range of confining pressures crossing the brittle-ductile transition. In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack propagation and/or nucleation. In the semi-brittle regime, the first steps are inelastic compactant because of plastic pore collapse. But, following stress steps are dilatant because of crack nucleation and/or propagation. However, our results show that the axial strain rate is always controlled by plastic phenomena, until the last

  1. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    SciTech Connect

    Tai Asayama; Yukio Tachibana

    2007-09-30

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  2. Dislocation creep accommodated Grain Boundary Sliding: A high strain rate/low temperature deformation mechanism in calcite ultramylonites

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard

    2014-05-01

    Grain boundary sliding (GBS) is an important grain size sensitive deformation mechanism that is often associated with extreme strain localization and superplasticity. Another mechanism has to operate simultaneously to GBS in order to prevent overlaps and voids between sliding grains. One of the most common accommodating mechanisms is diffusional creep but, recently, dislocation creep has been reported to operate simultaneous to GBS. Due to the formation of a flanking structure in nearly pure calcite marble on Syros (Cyclades, Greece) at lower greenschist facies conditions, an extremely fine grained ultramylonite developed. The microstructure of the layer is characterized by (1) calcite grains with an average grain size of 3.6 µm (developed by low temperature/high strain rate grain boundary migration recrystallization, BLG), (2) grain boundary triple junctions with nearly 120° angles and (3) small cavities preferentially located at triple junctions and at grain boundaries in extension. These features suggest that the dominant deformation mechanism was GBS. In order to get more information on the accommodation mechanism detailed microstructural and textural analyses have been performed on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. The misorientation distribution curves for correlated and uncorrelated grains follow almost perfect the calculated theoretical curve for a random distribution, which is typical for polycrystalline material deformed by GBS. However, the crystallographic preferred orientation indicates that dislocation creep might have operated simultaneously. We also report Zener-Stroh cracks resulting from dislocation pile up, indicating that dislocation movement was active. We, therefore, conclude that the dominant deformation mechanism was dislocation creep accommodated grain boundary sliding. This is consistent with the observed grain size range that plots at the field boundary between grain size insensitive and grain

  3. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    SciTech Connect

    Ren, W.; Brinkman, C.R.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  4. Failure by Creep Cracking and Creep Fatigue Interaction in Nickel Base Superalloys.

    DTIC Science & Technology

    1984-01-01

    S * - . ’I 14 The result in (12) shows that Nf 1/A p when cumulative creep damage is the mechanism of failure (in low-cycle-fatigue, Coffin - Manson ...L. C. Coffin Jr. Am. S,,c. Test. have poor resistance to cavitation. Apparently, at Mater. Spec. Tech. Publ. 520, 112(1972). least in alloys of Cu and

  5. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Sommers, B. R.; Lytton, J. L.

    1977-01-01

    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.

  6. Variations in creep rate along the Hayward Fault, California, interpreted as changes in depth of creep

    USGS Publications Warehouse

    Simpson, R.W.; Lienkaemper, J.J.; Galehouse, J.S.

    2001-01-01

    Variations ill surface creep rate along the Hayward fault are modeled as changes in locking depth using 3D boundary elements. Model creep is driven by screw dislocations at 12 km depth under the Hayward and other regional faults. Inferred depth to locking varies along strike from 4-12 km. (12 km implies no locking.) Our models require locked patches under the central Hayward fault, consistent with a M6.8 earthquake in 1868, but the geometry and extent of locking under the north and south ends depend critically on assumptions regarding continuity and creep behavior of the fault at its ends. For the northern onshore part of the fault, our models contain 1.4-1.7 times more stored moment than the model of Bu??rgmann et al. [2000]; 45-57% of this stored moment resides in creeping areas. It is important for seismic hazard estimation to know how much of this moment is released coseismically or as aseismic afterslip.

  7. Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes

    NASA Astrophysics Data System (ADS)

    Wu, Yanhui; Han, Mangui; Liu, Tao; Deng, Longjiang

    2015-07-01

    The effective permittivity of composites containing Fe-Cu-Nb-Si-B nanocrystalline micro flakes has been studied within 0.5-10 GHz. Obvious differences in microwave permittivity have been observed for composites consisting of large flakes (size range: 23-111 μm, average thickness: 4.5 μm) and small flakes (size range: 3-21 μm, average thickness: 1.3 μm). Both the real part and imaginary part of permittivity of large flake composite are much larger than these small one in a given frequency. And faster decrease of permittivity with the increasing frequency can be observed for large flake composite than that of small one. These differences in permittivity spectra of different flakes have been explained from the perspective of interfacial polarization and ac conductivity. The assumption that more extensive ohmic contact interface between large flakes and matrix has been validated by the fittings and the calculated percolation threshold. Meanwhile, the permeability spectra of both composites also have been studied by Lorentzian dispersion law. The broadened spectra can be attributed to the distribution of magnetic anisotropy fields of two kinds of ferromagnetic phases in the particles. Finally, the composite containing the small flakes exhibits better electromagnetic wave absorption properties.

  8. Creep, fatigue and creep-fatigue interactions in modified 9% Chromium - 1% Molybdenum (P91) steels

    NASA Astrophysics Data System (ADS)

    Kalyanasundaram, Valliappa

    Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the proposed research are to characterize the creep, fatigue and C-F behavior of grade P91 steels at 625 C and develop robust constitutive models for simulating/predicting their microstructural response under different loading conditions. This work will utilize experimental data from 16 laboratories worldwide that conducted tests (creep, fatigue and C-F) on grade P91 steel at 625°C in a round-robin (RR) program. Along with 7 creep deformation and rupture tests, 32 pure fatigue and 46 C-F tests from the RR are considered in this work. A phenomenological constitutive model formulated in this work needs just five fitting parameters to simulate/predict the monotonic, pure fatigue and C-F behavior of grade P91 at 625 C. A modified version of an existing constitutive model is also presented for particularly simulating its isothermal creep deformation and rupture behavior. Experimental results indicate that specimen C-F lives, as measured by the 2% load drop criterion, seem to decrease with increasing strain ranges and increasing hold times at 625°C. Metallographic assessment of the tested specimens shows that the damage mode in both pure fatigue and 600 seconds hold time cyclic tests is predominantly transgranular fatigue with some presence of

  9. Effect of temperature and microstructure on tensile and tensile creep properties of titanium silicon carbide in air

    NASA Astrophysics Data System (ADS)

    Radovic, Miladin

    The ternary carbide, Ti3SiC2, combines some of the best attributes of ceramics and metals. It is stable in inert atmospheres to temperatures above 2200°C, stiff and yet is readily machinable, oxidation, fatigue and thermal shock resistant and damage tolerant. Thus, Ti3SiC 2 is good candidate material for high temperature structural application. The aim of this work was to characterize its tensile and tensile creep properties. The mechanical behavior of Ti3SiC2 is characterized by a brittle-to-ductile (BTD) transition that is a function of strain rate. Its high strain rate sensitivity (≈0.50--0.6) is in the range that is more typical for superplastic materials, although it does not exhibit other attributes of superplasticity. Polycrystalline samples do not exhibit linear elastic behavior in tension even at room temperature. Room temperature loading-unloading tests result in closed hysteresis loops when the stress exceeds ≈120 MPa, suggesting that the mechanical response can be described as anelastic (viscoelastic). At high temperatures (1200°C) intense stress relaxation takes place; cycling loading-unloading tests at high temperature and low strain rates, demonstrate that the samples continue to elongate even during unloading, suggesting that Ti3SiC2 deforms viscoplastically. Tensile creep curves exhibit primary, steady state and tertiary regimes. The minimum creep rate can be represented by power law equation with a stress exponent of 1.5 for fine-grained (3--5 mum) samples, and 2 for coarse-grained (100--300 mum) ones. For both microstructures the activation energy for creep is ≈450 kJ/mol. The dependence on grain size is quite weak, implying that diffusion creep and/or creep mechanisms based on grain boundary sliding do not play a central role. Results of strain transient dip tests suggest that large internal stresses are developed during creep. Those internal stresses are believed to result in recoverable (anelastic) strains during unloading. The

  10. Substrate Creep on The Fatigue Life of A Model Dental Multilayer Structure

    SciTech Connect

    Zhou, J; Huang, M; Niu, X; soboyejo, W

    2006-10-09

    In this paper, we investigated the effects of substrate creep on the fatigue behavior of a model dental multilayer structure, in which a top glass layer was bonded to a polycarbonate substrate through a dental adhesive. The top glass layers were ground using 120 grit or 600 grit sand papers before bonding to create different sub-surface crack sizes and morphologies. The multilayer structures were tested under cyclic Hertzian contact loading to study crack growth and obtain fatigue life curves. The experiment results showed that the fatigue lives of the multilayer structures were impaired by increasing crack sizes in the sub-surfaces. They were also significantly reduced by the substrate creep when tested at relatively low load levels i.e. P{sub m} < 60 N (Pm is the maximum magnitude of cyclic load). But at relatively high load levels i.e. P{sub m} > 65 N, slow crack growth (SCG) was the major failure mechanisms. A modeling study was then carried out to explore the possible failure mechanisms over a range of load levels. It is found that fatigue life at relatively low load levels can be better estimated by considering the substrate creep effect (SCE).

  11. Buckling Analysis in Creep Conditions: Review and Comparison

    SciTech Connect

    Turbat, Andre; Drubay, Bernard

    2002-07-01

    In the case of structures operating at high temperature in normal or accidental conditions, the influence of creep has to be considered at the design stage because this phenomenon may reduce the lifetime significantly. This is true in particular for buckling analysis: in creep conditions, the buckling sometimes occurs after a long period under a compressive load which is lower than the critical load assessed when considering an instantaneous buckling. The main reason is that creep deformations induce an amplification of the initial geometrical imperfections and consequently a reduction of the buckling load. Some Design Codes incorporate special rules and/or methods to take creep buckling into account. Creep buckling analysis methods aim at evaluating critical loading for a given hold period with creep or alternatively critical creep time for a given loading. The Codes where creep buckling is considered also define margins with respect to critical loading: it shall be demonstrated that creep instability will not occur during the whole lifetime when multiplying the specified loading by a coefficient (design factor) depending on the situation level. For the design of NPP, specific creep buckling rules exist in the US, France and Russia. In the US, ASME, Section III, Subsection NH, which is dedicated to high temperature components design, provides limits which are applicable to general geometrical configurations and loading conditions that may cause buckling due to creep behaviour of the material. For load-controlled time-dependent creep buckling, the design factors to apply to the specified loadings are 1.5 for levels A, B or C service loadings and 1.25 for level D service loadings. A design factor is not required in the case of purely strain-controlled buckling. No specific method is provided to obtain critical loading or critical time for creep instability. In France, creep buckling rules included in RCC-MR, Chapter RB or RC 3200 are similar to those of ASME

  12. Speedy standing wave design of size-exclusion simulated moving bed: Solvent consumption and sorbent productivity related to material properties and design parameters.

    PubMed

    Weeden, George S; Wang, Nien-Hwa Linda

    2015-10-30

    Size-exclusion simulated moving beds (SEC-SMB) have been used for large-scale separations of linear alkanes from branched alkanes. While SEC-SMBs are orders of magnitude more efficient than batch chromatography, they are not widely used. One key barrier is the complexity in design and optimization. A four-zone SEC-SMB for a binary separation has seven material properties and 14 design parameters (two yields, five operating parameters, and seven equipment parameters). Previous optimization studies using numerical methods do not guarantee global optima or explicitly express solvent consumption (D/F) or sorbent productivity (PR) as functions of the material properties and design parameters. The standing wave concept is used to develop analytical expressions for D/F and PR as functions of 14 dimensionless groups, which consist of 21 material and design parameters. The resulting speedy standing wave design (SSWD) solutions are simplified for two limiting cases: diffusion or dispersion controlled. An example of SEC-SMB for insulin purification is used to illustrate how D/F and PR change with the dimensionless groups. The results show that maximum PR for both diffusion and dispersion controlled systems is mainly determined by yields, equipment parameters, material properties, and two key dimensionless groups: (1) the ratio of step time to diffusion time and (2) the ratio of diffusion time to pressure-limited convection time. A sharp trade off of D/F and PR occurs when the yield is greater than 99%. The column configuration for maximum PR is analytically related to the diffusivity ratio and the selectivity. To achieve maximum sorbent productivity, one should match step time, diffusion time, and pressure-limited convection time for diffusion controlled systems. For dispersion controlled systems, the axial dispersion time should be about 10 times the step time and about 50 times the pressure-limited convection time. Its value can be estimated from given yields, material

  13. Study of irradiation creep of vanadium alloys

    SciTech Connect

    Tsai, H.; Strain, R.V.; Smith, D.L.

    1997-08-01

    Thin-wall tubing was produced from the 832665 (500 kg) heat of V-4 wt.% Cr-4 wt.% Ti to study its irradiation creep behavior. The specimens, in the form of pressurized capsules, were irradiated in Advanced Test Reactor and High Flux Isotope Reactor experiments (ATR-A1 and HFIR RB-12J, respectively). The ATR-A1 irradiation has been completed and specimens from it will soon be available for postirradiation examination. The RB-12J irradiation is not yet complete.

  14. Wear and creep of highly crosslinked polyethylene against cobalt chrome and ceramic femoral heads.

    PubMed

    Galvin, A L; Jennings, L M; Tipper, J L; Ingham, E; Fisher, J

    2010-10-01

    The wear and creep characteristics of highly crosslinked ultrahigh-molecular-weight polyethylene (UHMWPE) articulating against large-diameter (36mm) ceramic and cobalt chrome femoral heads have been investigated in a physiological anatomical hip joint simulator for 10 million cycles. The crosslinked UHMWPE/ceramic combination showed higher volume deformation due to creep plus wear during the first 2 million cycles, and a steady-state wear rate 40 per cent lower than that of the crosslinked UHMWPE/cobalt chrome combination. Wear particles were isolated and characterized from the hip simulator lubricants. The wear particles were similar in size and morphology for both head materials. The particle isolation methodology used could not detect a statistically significant difference between the particles produced by the cobalt chrome and alumina ceramic femoral heads.

  15. The role of cobalt on the creep of Waspaloy

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  16. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  17. A Comparison of the Irradiation Creep Behavior of Several Graphites

    SciTech Connect

    Burchell, Timothy D; Windes, Will

    2016-01-01

    Graphite creep strain data from the irradiation creep capsule Advanced Graphite Creep-1 (AGC-1) are reported. This capsule was the first (prototype) of a series of five or six capsules planned as part of the AGC experiment, which was designed to fully characterize the effects of neutron irradiation and the radiation creep behavior of current nuclear graphite. The creep strain data and analysis are reported for the six graphite grades incorporated in the capsule. The AGC-1 capsule was irradiated in the Advanced Test Reactor at Idaho National Laboratory (INL) at approximately 700 C and to a peak dose of 7 dpa (displacements per atom). The specimen s final dose, temperature, and stress conditions have been reported by INL and were used during this analysis. The derived creep coefficients (K) were calculated for each grade and were found to compare well to literature data for the creep coefficient, even under the wide range of AGC-1 specimen temperatures. Comparisons were made between AGC-1 data and historical grade data for creep coefficients.

  18. Effect of unloading time on interrupted creep in copper

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1994-06-01

    The effect of unloading time on the interrupted creep behavior of polycrystalline copper specimens was investigated over the temperature range 298--773 K. Up to 553 K, cyclic creep acceleration could be explained in terms of deformation and hardening using a dislocation glide model with recovery during unloading being due to dislocation climb. At higher temperatures, recrystallization effects probably influence behavior.

  19. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  20. Error correction for Moiré based creep measurement system

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Harding, Kevin G.; Nieters, Edward J.; Tait, Robert W.; Hasz, Wayne C.; Piche, Nicole

    2014-05-01

    Due to the high temperatures and stresses present in the high-pressure section of a gas turbine, the airfoils experience creep or radial stretching. Nowadays manufacturers are putting in place condition-based maintenance programs in which the condition of individual components is assessed to determine their remaining lives. To accurately track this creep effect and predict the impact on part life, the ability to accurately assess creep has become an important engineering challenge. One approach for measuring creep is using moiré imaging. Using pad-print technology, a grating pattern can be directly printed on a turbine bucket, and it compares against a reference pattern built in the creep measurement system to create moiré interference pattern. The authors assembled a creep measurement prototype for this application. By measuring the frequency change of the moiré fringes, it is then possible to determine the local creep distribution. However, since the sensitivity requirement for the creep measurement is very stringent (0.1 micron), the measurement result can be easily offset due to optical system aberrations, tilts and magnification. In this paper, a mechanical specimen subjected to a tensile test to induce plastic deformation up to 4% in the gage was used to evaluate the system. The results show some offset compared to the readings from a strain gage and an extensometer. By using a new grating pattern with two subset patterns, it was possible to correct these offset errors.

  1. Out-of-pile creep behavior of uranium carbide

    NASA Technical Reports Server (NTRS)

    Wright, T. R.; Seltzer, M. S.

    1974-01-01

    Compression creep tests were investigated on various UC-based fuel materials having a variation in both density and composition. Specimens were prepared by casting and by hot pressing. Steady-state creep rates were measured under vacuum at 1400 to 1800 C in the stress range 500-4000 psi.

  2. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  3. Creep and the characteristic length scale of strain-energy dissipation in polycrystalline ice; implications for tidal dissipation

    NASA Astrophysics Data System (ADS)

    Caswell, T. E.; Cooper, R. F.; Goldsby, D. L.

    2015-12-01

    Many outer planet satellites possess thick, icy crusts over an ocean of liquid water. Maintaining an ocean over geologic time requires internal heating by tidal dissipation, but the mechanisms of tidal dissipation in ice are poorly resolved. The physics of dissipation in the geological context (the "high temperature background") are dominated by stress-induced chemical diffusion, which has a distinct length-scale dependence that is frequently cited as the grain size. The experiments of McCarthy [2009], however, measured attenuation simultaneously with steady-state creep in polycrystalline ice and showed distinctly grain size-insensitive dissipation. These data can instead be normalized by the steady-state creep stress, implying that the deformation-induced microstructure dominates the length scale of diffusion. Thus, the relationship between deformation-induced microstructure and dissipation is critical to understanding how tidal dissipation affects (or, perhaps, effects) the geodynamics of icy satellites. To characterize the role of deformation microstructure in strain-energy dissipation, we conducted creep and stress-reduction experiments on polycrystalline ice. The stress (0.5-5 MPa), grain size (30 & 245 μm) and temperature (233K) of the experiments place our specimens in the rheological regimes of grain boundary sliding (geometrically accommodated by basal glide) or dislocation creep, both of which accrue significant plastic strain by the motion of lattice dislocations. Stress-reductions allow a specific deformation-induced microstructure—that produced in steady-state creep—to be probed for its effective viscosity (or "hardness") at a variety of stresses. This "constant-hardness creep compliance" is affected by deviatoric stress, but not by grain size, confirming a characteristic length scale for relaxation that is dictated by deformation. The microstructures of deformed samples, analyzed via cryogenic electron backscatter diffraction (EBSD) and reflected

  4. Continuous creep measurements on the North Anatolian Fault at Ismetpasa

    NASA Astrophysics Data System (ADS)

    Ozener, Haluk; Aytun, Alkut; Aktug, Bahadir; Dogru, Asli; Mencin, David; Ergintav, Semih; Bilham, Roger

    2016-04-01

    A graphite creep-meter was installed across the North Anatolian fault near a wall at Ismetpasa, Turkey, that has been offset by fault creep processes more than 51 cm since its construction in 1957. The creep-meter is 40-cm-deep, 16.5-m-long and crosses the fault at 30 degrees within a 2 cm diameter telescopic PVC conduit. The SW end of the 6-mm-diameter graphite rod is fastened to a buried stainless steel tripod, and motion of its free end relative to a similar tripod at its NE end is monitored by two sensors: an LVDT with 6 μm resolution and 13 mm range, and a Hall-effect rotary transducer with 30 μm resolution and 1.5 m range. The two sensors track each other to better than 1%. Data are sampled every 30 minutes and are publically available via the Iridium satellite with a delay of less than 1 hour. Since May 2014, for periods of months the surface fault has been inactive, followed by several weeks or months of slow slip at rates of ≈3 mm/yr and with cumulative slip amplitude less than 1 mm, terminated by a pair of distinct creep events with durations of up to 8 days and amplitudes of up to 2.3 mm, after which slip ceases until the next episode. Maximum slip rates on the surface fault are 0.54 mm/hour at the onset of a creep event. The decay time constant of the two pairs of creep events we have observed varies from 3 to 5 hours, similar to those observed by Altay and Sav, (1982) who operated a creepmeter here from 1980-1989. The decadal creep rate observed by these authors was 7.35±0.9 mm/yr, whereas our currently observed least-squares creep-rate is 5.4±1 mm/yr based on 19 months of data. Since most of the annual of the creep occurs in large creep events (80%), we anticipate that our rate will change with elapsed time, and our uncertainty will decrease accordingly. As expected, the 2014-2016 observed creep rate is somewhat lower than the regional creep on the fault deduced from Insar analysis and GPS observations (≈7-8 mm/yr), but both the amplitude of

  5. Grain boundary engineering for intergranular fracture and creep resistance

    SciTech Connect

    Palumbo, G.; Lehockey, E.M.; Lin, P.

    1996-12-31

    The effect of special grain boundary frequency on the bulk creep performance of 99.99% Ni at 84 MPa and 450{degrees}C (grain boundary sliding regime). Increasing the frequency of `special` grain boundaries (by thermomechanical processing) from 13% to 66% results in a 16-fold reduction in steady state creep rate and a 6-fold reduction in primary creep strain. Consistent with the previous intergranular fracture analysis, a moderate increase in special boundary frequency from 13% to 45% yields the greatest reduction in the creep strain parameters. Microstructural evaluation of the specimens following testing to 1.8% total strain showed that (1) cavitation had occurred exclusively at general grain boundaries (i.e., {Sigma}>29) and (2) no cavities were formed in the material containing 66% special grain boundaries. The results of this study provide considerable promise for a `grain boundary engineering` approach towards the mitigation of intergranular-creep and -fracture in practical engineering materials.

  6. Application Of Shakedown Analysis To Cyclic Creep Damage Limits

    SciTech Connect

    Carter, Peter; Jetter, Robert I; Sham, Sam

    2012-01-01

    Shakedown analysis may be used to provide a conservative estimate of local rupture and hence cyclic creep damage for use in a creep-fatigue assessment. The shakedown analysis is based on an elastic-perfectly plastic material with a temperature-dependent pseudo yield stress defined to guarantee that a shakedown solution exists which does not exceed rupture stress and temperature for a defined life. The ratio of design life to the estimated maximum cyclic life is the shakedown creep damage. The methodology does not require stress classification and is also applicable to cycles over the full range of temperature above and below the creep regime. Full cyclic creep and damage analysis is the alternative when shakedown analysis appears to be excessively conservative.

  7. Thermally activated creep and fluidization in flowing disordered materials

    NASA Astrophysics Data System (ADS)

    Merabia, Samy; Detcheverry, François

    2016-11-01

    When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.

  8. Strong ground motions generated by earthquakes on creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.; Abrahamson, Norman A.

    2014-01-01

    A tenet of earthquake science is that faults are locked in position until they abruptly slip during the sudden strain-relieving events that are earthquakes. Whereas it is expected that locked faults when they finally do slip will produce noticeable ground shaking, what is uncertain is how the ground shakes during earthquakes on creeping faults. Creeping faults are rare throughout much of the Earth's continental crust, but there is a group of them in the San Andreas fault system. Here we evaluate the strongest ground motions from the largest well-recorded earthquakes on creeping faults. We find that the peak ground motions generated by the creeping fault earthquakes are similar to the peak ground motions generated by earthquakes on locked faults. Our findings imply that buildings near creeping faults need to be designed to withstand the same level of shaking as those constructed near locked faults.

  9. On the creep constrained diffusive cavitation of grain boundary facets

    NASA Astrophysics Data System (ADS)

    Tvergaard, Viggo

    CREEP rupture in a polycrystalline metal at a high temperature, by cavity growth on a number of grain boundary facets, is studied numerically. An axisymmetric model problem is analysed, in which a cavitating facet is represented as disk-shaped, and the model dimensions are taken to represent spacings between neighbouring cavitating facets. For the grains both power law creep and elastic deformations are taken into account, and the description of cavity growth is based on an approximate expression that incorporates the coupled influence of grain boundary diffusion and power law creep. The cases considered include creep-constrained cavity growth at low stresses, where the voids link up to form grain boundary cracks at relatively small overall strains, as well as the power law creep dominated behaviour at higher stress levels, where rupture occurs at large overall strains. The numerical results are compared with results based on various simplified analyses.

  10. Effect of misalignment on mechanical behavior of metals in creep. [computer programs

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1979-01-01

    Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.

  11. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    NASA Astrophysics Data System (ADS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  12. Effect of temperature on the formation of creep substructure in sodium chloride single crystals

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Pharr, George M.

    1992-01-01

    The effect of temperature on the substructure morphology and the cell and subgrain size was investigated experimentally in NaCl single crystals under creep in the temperature range 573-873 K. It is found that the effect of temperature on the cell and subgrain sizes is weak in comparison with the effect of stress. However, there was a qualitative change in the substructure morphology with temperature, with the cells and subgrains better defined at higher temperatures. The volume fraction of the cell boundaries decreased with increasing temperature, thereby indicating a refinement of the microstructure at higher temperatures.

  13. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  14. TMI-2 lower head creep rupture analysis

    SciTech Connect

    Thinnes, G.L.

    1988-08-01

    The TMI-2 accident resulted in approximately 40% of the reactor's core melting and collecting on the lower head of the reactor pressure vessel. The severity of the accident has raised questions about the margin of safety against rupture of the lower head in this accident since all evidence seems to indicate no major breach of the vessel occurred. Scoping heat transfer analyses of the relocated core debris and lower head have been made based upon assumed core melting scenarios and core material debris formations while in contact with the lower head. This report describes the structural finite element creep rupture analysis of the lower head using a temperature transient judged most likely to challenge the structural capacity of the vessel. This evaluation of vessel response to this transient has provided insight into the creep mechanisms of the vessel wall, a realistic mode of failure, and a means by which margin to failure can be evaluated once examination provides estimated maximum wall temperatures. Suggestions for more extensive research in this area are also provided. 6 refs., 15 figs.

  15. Testing Protocol for Module Encapsulant Creep (Presentation)

    SciTech Connect

    Kempe, M. D.; Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.; Moseley, J. M.; Shah, Q.; Tamizhmani, G.; Sakurai, K.; Inoue, M.; Doi, T.; Masuda, A.

    2012-02-01

    Recently there has been an interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically crosslinked materials, e.g., ethylene-vinyl acetate. The related motivations include the desire to: reduce lamination time or temperature; use less moisture-permeable materials; or use materials with better corrosion characteristics. However, the use of any thermoplastic material in a high-temperature environment raises safety and performance concerns, as the standardized tests currently do not expose the modules to temperatures in excess of 85C, yet modules may experience temperatures above 100C in operation. Here we constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass mock modules using different encapsulation materials of which only two were designed to chemically crosslink. One module set was exposed outdoors with insulation on the back side in Arizona in the summer, and an identical set was exposed in environmental chambers. High precision creep measurements and performance measurements indicate that despite many of these polymeric materials being in the melt state at some of the highest outdoor temperatures achievable, very little creep was seen because of their high viscosity, temperature heterogeneity across the modules, and in the case of the crystalline-silicon modules, the physical restraint of the backsheet. These findings have very important implications for the development of IEC and UL qualification and safety standards, and in regards to the necessary level of cure during the processing of crosslinking encapsulants.

  16. A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Jiang, Yu-Qiang; Zhou, Hua-Min; Liu, Guan

    2014-12-01

    Exposure of aluminum alloy to an elastic loading, during "creep-aging forming" or other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The creep behaviors of 7075 aluminum alloy are investigated by uniaxial tensile creep experiments over wide ranges of temperature and external stress. The results show that the creep behaviors of the studied aluminum alloy strongly depend on the creep temperature, external stress, and creep time. With the increase of creep temperature and external stress, the creep strain increases quickly. In order to overcome the shortcomings of the Bailey-Norton law and θ projection method, a new constitutive model is proposed to describe the variations of creep strain with time for the studied aluminum alloy. In the proposed model, the dependences of creep strain on the creep temperature, external stress, and creep time are well taken into account. A good agreement between the predicted and measured creep strains shows that the established creep constitutive model can give an accurate description of the creep behaviors of 7075 aluminum alloy. Meanwhile, the obtained stress exponent indicates that the creep process is controlled by the dislocation glide, which is verified by the microstructural observations.

  17. Numerical modeling of shallow fault creep triggered by nearby earthquakes

    NASA Astrophysics Data System (ADS)

    Wei, M.; Liu, Y.; McGuire, J. J.

    2011-12-01

    The 2010 El Mayor-Cucapha Mw 7.2 earthquake is the largest earthquake that strikes southern California in the last 18 years. It has triggered shallow fault creep on many faults in Salton Trough, Southern California, making it at least the 8th time in the last 42 years that a local or regional earthquake has done so. However, the triggering mechanism of fault creep and its implications to seismic hazard and fault mechanics is still poorly understood. For example, what determines the relative importance of static triggering and dynamic triggering of fault creep? What can we learn about the local frictional properties and normal stress from the triggering of fault creep? To understand the triggering mechanism and constrain fault frictional properties, we simulate the triggered fault creep on the Superstition Hills Fault (SHF), Salton Trough, Southern California. We use realistic static and dynamic shaking due to nearby earthquakes as stress perturbations to a 2D (in a 3D medium) planar fault model with rate-and-state frictional property variations both in depth and along strike. Unlike many previous studies, we focus on the simulation of triggered shallow fault creep instead of earthquakes. Our fault model can reproduce the triggering process, by static, dynamic , and combined stress perturbation. Preliminary results show that the magnitude of perturbation relative to the original stress level is an important parameter. In the static case, perturbation of 1% of normal stress trigger delayed fault creep whereas 10% of normal stress generate instantaneous creep. In the dynamic case, a change of two times in magnitude of perturbation can result in difference of triggered creep in several orders of magnitude. We explore combined triggering with different ratio of static and dynamic perturbation. The timing of triggering in a earthquake cycle is also important. With measurements on triggered creep on the SHF, we constrain local stress level and frictional parameters, which

  18. Theoretical study of the light pressure force acting on a spherical dielectric particle of an arbitrary size in the interference field of two plane monochromatic electromagnetic waves

    SciTech Connect

    Guzatov, D V; Gaida, L S; Afanas'ev, Anatolii A

    2008-12-31

    The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves. (light pressure)

  19. Propagation of Crack in Glasses under Creep Conditions

    NASA Astrophysics Data System (ADS)

    Mallet, C.; Fortin, J.; Guéguen, Y.; Schubnel, A.

    2012-04-01

    The context of our study is the observation of the mechanical behaviour of glass used for the storage of radioactive wastes. This implies to measure the crack propagation characteristics in glass. Results on the investigation of the micromechanics of creep under triaxial loading conditions are presented in the framework of this study. We performed the experiments in a triaxial cell, with pore fluid pressure, on boro-silicate glass. The chemical composition of the investigated glass is very close to the composition of waste vitrified packages. The matrix of the original glass (OG) is perfectly amorphous, without porosity. A few isolated air bubbles are trapped during the glass flow. Cracks are introduced in the OG through thermal shocks. The evolution of deformation (axial and radial strain) is measured using strain gages. The elastic P and S wave velocities and the acoustic emissions (AE) are also recorded. An experiment in dry conditions was performed (the pore fluid was argon gas) with a confining pressure fixed at 15 MPa. Stress step tests were performed in order to get creep data. A similar experiment was performed in water saturated conditions. Crack-closure is first observed at very low strains. Then elastic deformation is observed up to a stress level where elastic anisotropy develops. This can be clearly detected from ɛ Thomsen parameter increase. At last, at a deviatoric stress of 175 MPa (in dry conditions), we observe dilatancy. This behaviour has never been observed in original glass. Indeed, the OG behaviour is perfectly elastic and brittle. In addition, the constant stress tests show that dilatancy develops during a time constant that depends on the stress level. It can be inferred that crack propagation takes place during the constant stress steps. This behaviour is under investigation. We are also quantifying the velocity of the crack propagation by modelling this phenomenon. Indeed, the crack density can be expressed as a volumic strain, ɛv =

  20. Examination of Experimental Data for Irradiation - Creep in Nuclear Graphite

    NASA Astrophysics Data System (ADS)

    Mobasheran, Amir Sassan

    The objective of this dissertation was to establish credibility and confidence levels of the observed behavior of nuclear graphite in neutron irradiation environment. Available experimental data associated with the OC-series irradiation -induced creep experiments performed at the Oak Ridge National Laboratory (ORNL) were examined. Pre- and postirradiation measurement data were studied considering "linear" and "nonlinear" creep models. The nonlinear creep model considers the creep coefficient to vary with neutron fluence due to the densification of graphite with neutron irradiation. Within the range of neutron fluence involved (up to 0.53 times 10^{26} neutrons/m ^2, E > 50 KeV), both models were capable of explaining about 96% and 80% of the variation of the irradiation-induced creep strain with neutron fluence at temperatures of 600^circC and 900^circC, respectively. Temperature and reactor power data were analyzed to determine the best estimates for the actual irradiation temperatures. It was determined according to thermocouple readouts that the best estimate values for the irradiation temperatures were well within +/-10 ^circC of the design temperatures of 600^circC and 900 ^circC. The dependence of the secondary creep coefficients (for both linear and nonlinear models) on irradiation temperature was determined assuming that the variation of creep coefficient with temperature, in the temperature range studied, is reasonably linear. It was concluded that the variability in estimate of the creep coefficients is definitely not the results of temperature fluctuations in the experiment. The coefficients for the constitutive equation describing the overall growth of grade H-451 graphite were also studied. It was revealed that the modulus of elasticity and the shear modulus are not affected by creep and that the electrical resistivity is slightly (less than 5%) changed by creep. However, the coefficient of thermal expansion does change with creep. The consistency of

  1. Diffusion creep in the mantle may create and maintain anisotropy

    NASA Astrophysics Data System (ADS)

    Wheeler, John

    2014-05-01

    Diffusion creep is thought to play an important role in lower mantle deformation and hence must be understood in detail if Earth behaviour is to be explained. It is commonly claimed that diffusion creep gives rise to equant grain shapes and destroys any crystallographic preferred orientation (CPO), so all physical properties would be isotropic. Some experiments on olivine support the first assertion but other minerals, and polyphase rocks, commonly show inequant grain shapes in nature and experiment even when diffusion creep is thought to be a major contribution to strain. Numerical models allow rigorous exploration of the effects of deformation under conditions not easily reached in experiments. A numerical model named 'DiffForm' (Wheeler & Ford 2007) gives insight into how grain shapes and microstructures evolve during diffusion creep. Modelling shows that whilst grains may initially rotate in apparently chaotic fashion during diffusion creep, such rotations slow down as grains become inequant. Consequently, an initial CPO (formed, for example, by dislocation creep at higher strain rates) will be decreased in intensity but not destroyed. Seismic anisotropy will decrease but not disappear (Wheeler 2009). Diffusion creep is also predicted to have intense mechanical anisotropy. In simple models diffusion creep is controlled entirely by diffusion and sliding along grain boundaries; there is no crystallographic influence. An aggregate of equant grains must then be mechanically isotropic, but a model microstructure with inequant grains has marked mechanical anisotropy (Wheeler 2010) - an effect related to the fact that grain boundary sliding is an intrinsic part of diffusion creep. That work was based on a very simple microstructure with a single inequant grain shape but I present here new results showing that for more complicated microstructures, mechanical anisotropy is intense even for quite modest grain elongations. There will be feedback between strain and

  2. Creep Behaviour of Bischofite, Carnallite and Mixed Bischofite-Carnallite Salt Rock

    NASA Astrophysics Data System (ADS)

    De Bresser, J. H. P.; Muhammad, N.; Spiers, C. J.; Peach, C. J.

    2014-12-01

    Some salt deposits contain the valuable magnesium and potassium salts bischofite and carnallite, as well as halite, in the form of pure and mixed layers. During extraction of such salts from the subsurface by solution mining, the material in the undissolved walls will flow into the caverns. In order to accurately predict the flow of wall rock material, feasible production rates and related subsidence, a good understanding of the creep behaviour of bischofite, carnallite and mixed salt rocks under in situ conditions is required. We have conducted conventional triaxial compression tests on polycrystalline bischofite, carnallite and mixed bischofite-carnallite-halite rock samples machined from natural cores. The experiments were carried out at true in situ P-T conditions of 70°C and 40 MPa confining pressure. All experiments consisted of strain rate stepping runs, applying strain rates in the range 10-5 to 10-8 s-1, reaching 2-4% axial strain per step, with individual steps being followed by stress relaxation down to strain rates ~10-9 s-1. Both bischofite and carnallite reached near steady state creep behaviour within each constant strain rate step. Carnallite was found to be 4-5 times stronger than bischofite. For bischofite as well as carnallite, we observed that during stress relaxation, the conventional power law stress exponent n changed from ~5 at 10-5 to ~1 at 10-9 s-1. The absolute strength of both materials remained higher if the relaxation started at a higher stress, i.e. at a faster rate. We interpret this as indicating a difference in microstructure at the initiation of the relaxation, notably a smaller grain size related to dynamical recrystallization during the constant strain rate step. The data thus suggest that there is gradual change in mechanism with decreasing strain rate, from grain size insensitive dislocation creep to grain size sensitive (pressure solution) creep. The mixed bischofite-carnallite-halite salt rock did not approach steady state

  3. Effects of boron and phosphorus on creep properties of a ferritic/martensitic steel for fast reactor cladding applications

    SciTech Connect

    Not Available

    1994-10-01

    The thermal efficiencies of both conventional and supercritical fossil-fueled power plants can be improved by increasing the operating temperatures and pressures. Increased thermal efficiency would also result in significant fuel cost savings, as well as reduced environmental emissions per megawatt generated. Creep properties of materials currently used as tubes in the hottest areas of the boiler, the superheater and reheater sections, limit the operating temperature. As such, steels with improved creep strength compared to these conventional alloys are needed to increase the operational efficiencies of thermal-electric generating stations. A new class of creep-resistant, 10%Cr martensitic steel has been developed for use as high temperature components, especially in the electric utility, petrochemical & chemical industries. The steel differs from other 9-12%Cr steels in two important ways: It is strengthened by a uniform dispersion of very fine, coarsening-resistant TiC particles rather than chromium-rich, M{sub 23}C{sub 6} precipitates; and the TiC particles are precipitated in austenite prior to the martensitic transformation, not during tempering. By carefully controlling the thermo-mechanical treatment, three TiC sizes were incorporated into the matrix: 4, 12 and 25 nm; grain size and precipitate volume fraction (0.005) were kept constant. Creep tests on these three specimen types were done at 550{degrees}C, 600{degrees}C and 650{degrees}C. Results indicate that reducing the average particle size from 25 to 4 nm (thereby also reducing the average inter-particle spacing) decreases the steady-state creep rate by more than four orders of magnitude. The prototype steel`s composition must now be optimized, and in doing so the effects of boron and phosphorus are investigated.

  4. An efficient model to predict guided wave radiation by finite-sized sources in multilayered anisotropic plates with account of caustics

    NASA Astrophysics Data System (ADS)

    Stévenin, M.; Lhémery, A.; Grondel, S.

    2016-01-01

    Elastic guided waves (GW) are used in various non-destructive testing (NDT) methods to inspect plate-like structures, generated by finite-sized transducers. Thanks to GW long range propagation, using a few transducers at permanent positions can provide a full coverage of the plate. Transducer diffraction effects take place, leading to complex radiated fields. Optimizing transducers positioning makes it necessary to accurately predict the GW field radiated by a transducer. Fraunhofer-like approximations applied to GW in isotropic homogeneous plates lead to fast and accurate field computation but can fail when applied to multi-layered anisotropic composite plates, as shown by some examples given. Here, a model is proposed for composite plates, based on the computation of the approximate Green's tensor describing modal propagation from a source point, with account of caustics typically seen when strong anisotropy is concerned. Modal solutions are otherwise obtained by the Semi-Analytic Finite Element method. Transducer diffraction effects are accounted for by means of an angular integration over the transducer surface as seen from the calculation point, that is, over energy paths involved, which are mode-dependent. The model is validated by comparing its predictions with those computed by means of a full convolution integration of the Green's tensor with the source over transducer surface. Examples given concern disk and rectangular shaped transducers commonly used in NDT.

  5. Long-term monitoring of creep rate along the Hayward fault and evidence for a lasting creep response to 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Lienkaemper, J.J.; Galehouse, J.S.; Simpson, R.W.

    2001-01-01

    We present results from over 30 yr of precise surveys of creep along the Hayward fault. Along most of the fault, spatial variability in long-term creep rates is well determined by these data and can help constrain 3D-models of the depth of the creeping zone. However, creep at the south end of the fault stopped completely for more than 6 years after the M7 1989 Loma Prieta Earthquake (LPEQ), perhaps delayed by stress drop imposed by this event. With a decade of detailed data before LPEQ and a decade after it, we report that creep response to that event does indeed indicate the expected deficit in creep.

  6. Precipitate Evolution and Creep Behavior of a W-Free Co-based Superalloy

    NASA Astrophysics Data System (ADS)

    Liu, Qinyuan; Coakley, James; Seidman, David N.; Dunand, David C.

    2016-12-01

    The morphological and temporal evolution of γ ^' } (L1_2)-precipitates is studied in a polycrystalline Co-based superalloy (Co-30Ni-9.9Al-5.1Mo-1.9Nb at. pct) free of tungsten, aged at 1173 K (900 °C). Over a 1000 {{{hours}}} heat-treatment, the γ ^' } morphology evolves due to precipitate coalescence. The particles grow in size and the volume fraction decreases, while there is no significant change in the microhardness value. Compressional creep tests at 1123 K (850 °C) on a specimen aged at 1173 K (900 °C) demonstrate that the creep resistance is comparable to the original, W-containing, higher-density Co-based superalloy (Co-9Al-9.8W at. pct). This represents the first creep study of the Co-Al-Mo-Nb-based superalloy system. The W-free alloy exhibits directional coarsening of the γ ^' } precipitates in the direction perpendicular to the applied compressive stress, which indicates a positive misfit. This is consistent with neutron diffraction results.

  7. Creep failure analysis for ceramic composites containing viscous interfaces

    SciTech Connect

    Beyerlein, I.J.; An, L.; Raj, R.

    1998-09-01

    This paper describes an experimental and theoretical study of the creep fracture of advanced ceramic composites under steady axial tension. Such composites consist of a high fraction of elongated ceramic grains, varying substantially in aspect ratio and embedded in a glassy matrix phase. For creep testing, a model test system was prepared, which consisted of well-aligned elongated mica platelets ({approximately} 60 vol%) and residual glass phase ({approximately} 40 vol%) in its final heat-treatment stage. The creep curves of several specimens under various applied loads and at a temperature (800 C) higher than the T{sub g} of the glass matrix ({approximately} 650 C) were obtained up to creep fracture. Micrographs of the creep fracture surfaces revealed substantial grain pull-out and cavitation in the matrix phase with virtually no transgranular fracture. The objective of this work is to simulate the creep response and fracture based on the accumulation of localized void growth and microstructural parameters, using a computational mechanics technique, called viscous break interaction (VBI), developed to compute stress fields around strongly interacting fractures or voids in composites with fibrous microstructures. To simulate the creep process up to fracture, a Monte Carlo model is developed which couples VBI with a statistical description of grain length. Both the experimental and simulation results show that random lengths and random overlap of the aligned grains naturally lead to (i) local and microstructure-sensitive damage evolution up to ultimate failure and (ii) substantial variation in failure times of seemingly identical specimens.

  8. Silicon Nitride Creep Under Various Specimen-Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Holland, Frederic A.

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC 132) was performed at 1300 C in air using five different specimen-loading configurations: (1) pure tension, (2) pure compression, (3) four-point uniaxial flexure, (4) ball-on-ring biaxial flexure, and (5) ring-on-ring biaxial flexure. This paper reports experimental results as well as test techniques developed in this work. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compression loading, nominal creep strain generally decreased with time, resulting in a less-defined steady-state condition. Of the four creep formulations-power-law, hyperbolic sine, step, and redistribution--the conventional power-law formulation still provides the most convenient and reasonable estimation of the creep parameters of the NC 132 material. The data base to be obtained will be used to validate the NASA Glenn-developed design code CARES/Creep (ceramics analysis and reliability evaluation of structures and creep).

  9. Rate-Controlling Mechanisms in Five-Power-Law Creep

    SciTech Connect

    Michael E. Kassner

    2004-04-20

    OAK-B135 Rate-Controlling Mechanisms in Five-Power-Law Creep. The initial grant emphasized the rate-controlling processes for five power-law creep. The effort has six aspects: (1) Theory of Taylor hardening from the Frank dislocation network in five power law substructures. (2) The dual dynamical and hardening nature of dislocations in five power law substructures. (3) Determination of the existence of long-range internal stress in five-power law creep dislocation substructures. (4) Dynamic recovery mechanisms associated with dislocation heterogeneities during five power law creep. (5) Versatility of five power law creep concept to other (hcp) crystal structures. (6) Writing of a book on ''Fundamental of Creep in Metals and Alloys'' by M.E. Kassner and Maria-Teresa Perez-Frado (postdoctoral scholar, funded by this project) Elsevier Press, 2004, in press. These areas are consistent with the original goals of this project as delineated in the original proposal to Basic Energy Sciences. The progress in each of these areas will be discussed separately and there will be an attempt to tie each aspect together so as to allow a summary regarding the conclusions with respect to the rate-controlling mechanisms of five power-law creep.

  10. Solder creep-fatigue interactions with flexible leaded parts

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Wen, L. C.; Mon, G. R.; Jetter, E.

    1992-01-01

    With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.

  11. Creep-fatigue modelling in structural steels using empirical and constitutive creep methods implemented in a strip-yield model

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for

  12. An Approach for Impression Creep of Lead Free Microelectronic Solders

    NASA Astrophysics Data System (ADS)

    Anastasio, Onofrio A.

    2002-06-01

    Currently, the microelectronics industry is transitioning from lead-containing to lead-free solders in response to legislation in the EU and Japan. Before an alternative alloy can be designated as a replacement for current Pb-Sn extensive testing must be accomplished. One major characteristic of the alloy that must be considered is creep. Traditionally, creep testing requires numerous samples and a long tin, which thwarts the generation of comprehensive creep databases for difficult to prepare samples such as microelectronic solder joints. However, a relatively new technique, impression creep enables us to rapidly generate creep data. This test uses a cylindrical punch with a flat end to make an impression on the surface of a specimen under constant load. The steady state velocity of the indenter is found to have the same stress and temperature dependence as the conventional unidirectional creep test using bulk specimens. This thesis examines impression creep tests of eutectic Sn-Ag. A testing program and apparatus was developed constructed based on a servo hydraulic test frame. The apparatus is capable of a load resolution of 0.01N with a stability of plus/minus 0.1N, and a displacement resolution of 0.05 microns with a stability of plus/minus 0.1 microns. Samples of eutectic Sn-Ag solder were reflowed to develop the microstructure used in microelectronic packaging. Creep tests were conducted at various stresses and temperatures and showed that coarse microstructures creep more rapidly than the microstructures in the tested regime.

  13. Interfacial Control of Creep Deformation in Ultrafine Lamellar TiAl

    SciTech Connect

    Hsiung, L M

    2002-11-26

    Solute effect on the creep resistance of two-phase lamellar TiAl with an ultrafine microstructure creep-deformed in a low-stress (LS) creep regime [where a linear creep behavior was observed] has been investigated. The resulted deformation substructure and in-situ TEM experiment revealed that interface sliding by the motion of pre-existing interfacial dislocations is the predominant deformation mechanism in LS creep regime. Solute segregation at lamellar interfaces and interfacial precipitation caused by the solute segregation result in a beneficial effect on the creep resistance of ultrafine lamellar TiAl in LS creep regime.

  14. Improved high temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  15. High temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, Philip J.; Swindeman, Robert W.; Goodwin, Gene M.

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  16. Flux creep in a TEVATRON cable

    SciTech Connect

    Kuchnir, M.; Tollestrup, A.V.

    1988-08-22

    We have measured the slow magnetization decay of a short sample (2.3 cm) of Tevatron cable in fields up to 0.3 T. The special susceptometer in development for these measurements is based on a commercial SQUID and is described in detail. The observed decay is logarithmic in time as expected from flux creep in the NbTi filaments. A strong correlation was found between the decay and the magnetization status of the sample. It is too early yet to present a quantitative correlation between what we observed and the decay observed in the sextupole component of Tevatron dipoles. The detailed understanding of this phenomenon may be instrumental in guiding the search for efficient superconducting synchrotron operational procedures. 3 refs., 5 figs.

  17. Tremor evidence for dynamically triggered creep events on the deep San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Shelly, D. R.; Hill, D. P.; Aiken, C.

    2010-12-01

    Deep tectonic tremor has been observed along major subduction zones and the San Andreas fault (SAF) in central and southern California. It appears to reflect deep fault slip, and it is often seen to be triggered by small stresses, including passing seismic waves from large regional and teleseismic earthquakes. Here we examine tremor activity along the Parkfield-Cholame section of the SAF from mid-2001 to early 2010, scrutinizing its relationship with regional and teleseismic earthquakes. Based on similarities in the shape and timing of seismic waveforms, we conclude that triggered and ambient tremor share common sources and a common physical mechanism. Utilizing this similarity in waveforms, we detect tremor triggered by numerous large events, including previously unreported triggering from the recent 2009 Mw7.3 Honduras, 2009 Mw8.1 Samoa, and 2010 Mw8.8 Chile earthquakes at teleseismic distances, and the relatively small 2007 Mw5.4 Alum Rock and 2008 Mw5.4 Chino Hills earthquakes at regional distances. We also find multiple examples of systematic migration in triggered tremor, similar to ambient tremor migration episodes observed at other times. Because these episodes propagate much more slowly than the triggering waves, the migration likely reflects a small, triggered creep event. As with ambient tremor bursts, triggered tremor at times persists for multiple days, probably indicating a somewhat larger creep event. This activity provides a clear example of delayed dynamic triggering, with a mechanism perhaps also relevant for triggering of regular earthquakes.

  18. Creep of two-phase microstructures for microelectronic applications

    NASA Astrophysics Data System (ADS)

    Reynolds, Heidi Linch

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructures. The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructures found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructures in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from 0°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ag eutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructures, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  19. Creep of Two-Phase Microstructures for Microelectronic Applications

    SciTech Connect

    Reynolds, Heidi Linch

    1998-12-01

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  20. Predicting dislocation climb and creep from explicit atomistic details.

    PubMed

    Kabir, Mukul; Lau, Timothy T; Rodney, David; Yip, Sidney; Van Vliet, Krystyn J

    2010-08-27

    Here we report kinetic Monte Carlo simulations of dislocation climb in heavily deformed, body-centered cubic iron comprising a supersaturation of vacancies. This approach explicitly incorporates the effect of nonlinear vacancy-dislocation interaction on vacancy migration barriers as determined from atomistic calculations, and enables observations of diffusivity and climb over time scales and temperatures relevant to power-law creep. By capturing the underlying microscopic physics, the calculated stress exponents for steady-state creep rates agree quantitatively with the experimentally measured range, and qualitatively with the stress dependence of creep activation energies.

  1. Creep of mafic dykes infiltrated by melt in the lower continental crust (Seiland Igneous Province, Norway)

    NASA Astrophysics Data System (ADS)

    Degli Alessandrini, G.; Menegon, L.; Malaspina, N.; Dijkstra, A. H.; Anderson, M. W.

    2017-03-01

    A dry mafic dyke from a continental lower-crustal shear zone in the Seiland Igneous Province (northern Norway) experienced syn-kinematic melt-rock interaction. Viscous shearing occurred at T ≈ 800 °C, P ≈ 0.75-0.95 GPa and was coeval with infiltration of felsic melt from adjacent migmatitic metapelites. The dyke has a mylonitic microstructure where porphyroclasts of orthopyroxene, clinopyroxene and plagioclase are wrapped by a fine-grained (4-7 μm) polyphase mixture of clinopyroxene + orthopyroxene + plagioclase + quartz + ilmenite ± K-feldspar ± apatite. Microstructural observations and electron backscatter diffraction analysis indicate that the porphyroclasts deformed by a combination of dislocation glide and fracturing, with only a limited record of dislocation creep, recovery and dynamic recrystallization. We identified diffusion creep as the dominant deformation mechanism in the mixture based on the small grain size, phase mixing and weak crystallographic preferred orientation of all phases (interpreted as the result of oriented grain growth during viscous flow). The polyphase mixture did not form by dynamic recrystallization or by mechanical fragmentation of the porphyroclasts, but rather by melt-rock interaction. Thermodynamic models indicate that the syn-kinematic mineral assemblage results from the chemical interaction between a pristine mafic dyke and ca. 10 vol.% of felsic melt infiltrating from the adjacent partially molten metapelites. Extrapolation of laboratory-derived flow laws to natural conditions indicates that the formation of interconnected layers of fine-grained reaction products deforming by diffusion creep induces a dramatic weakening in the mafic granulites, with strain rates increasing up to 2-3 orders of magnitude. The reaction weakening effect is more efficient than the weakening associated with melt-assisted diffusion creep in the presence of up to 10 vol.% of infiltrated melt without formation of fine-grained reaction products

  2. Creep behavior of refractory concretes. First annual report, October 1, 1981-September 30, 1982

    SciTech Connect

    McGee, T.D.

    1982-12-01

    Objectives are to evaluate the creep of alumina refractory concretes, determine differential transient creep strain of pristine specimens, develop a mathematical model for the creep behavior of refractory concretes, investigate the creep of commercial refractory concretes, and determine the effect of fiber reinforcements on the creep of concretes. After a summary of the first four years' progress, the technical progress during the fourth year is described in detail. 97 figures. (DLC)

  3. Heat-to-Heat Variation in Creep Life and Fundamental Creep Rupture Strength of 18Cr-8Ni, 18Cr-12Ni-Mo, 18Cr-10Ni-Ti, and 18Cr-12Ni-Nb Stainless Steels

    NASA Astrophysics Data System (ADS)

    Abe, Fujio

    2016-09-01

    Metallurgical factors causing the heat-to-heat variation in time to rupture have been investigated for 300 series stainless steels for boiler and heat exchanger seamless tubes, 18Cr-8Ni (JIS SUS 304HTB), 18Cr-12Ni-Mo (JIS SUS 316HTB), 18Cr-10Ni-Ti (JIS SUS321 HTB), and 18Cr-12Ni-Nb (JIS SUS 347HTB), at 873 K to 1023 K (600 °C to 750 °C) using creep rupture data for nine heats of the respective steels in the NIMS Creep Data Sheets. The maximum time to rupture was 222,705.3 hours. The heat-to-heat variation in time to rupture of the 304HTB and 316HTB becomes more significant with longer test durations at times above ~10,000 hours at 973 K (700 °C) and reaches to about an order of magnitude difference between the strongest and weakest heats at 100,000 hours, whereas that of the 321HTB and 347HTB is very large of about an order of magnitude difference from a short time of ~100 hours to long times exceeding 100,000 hours at 873 K to 973 K (600 °C to 700 °C). The heat-to-heat variation in time to rupture is mainly explained by the effect of impurities: Al and Ti for the 304HTB and 316HTB, which reduces the concentration of dissolved nitrogen available for the creep strength by the formation of AlN and TiN during creep, and boron for the 347HTB, which enhances fine distributions of M23C6 carbides along grain boundaries. The heat-to-heat variation in time to rupture of the 321HTB is caused by the heat-to-heat variation in grain size, which is inversely proportional to the concentration of Ti. The fundamental creep rupture strength not influenced by impurities is estimated for the steels. The 100,000 hours-fundamental creep rupture strength of the 347HTB steel is lower than that of 304HTB and 316HTB at 873 K and 923 K (600 °C and 650 °C) because the slope of stress vs time to rupture curves is steeper in the 347HTB than in the 304HTB and 316HTB. The 100,000 hours-fundamental creep rupture strength of the 321HTB exhibits large variation depending on grain size.

  4. Surface integrity of creep feed ground structural ceramics

    SciTech Connect

    Buehler, W.L.

    1991-01-01

    This study investigates the mechanics of creep feed grinding of structural ceramics with particular emphasis on the integrity of the finished surface. A fractional factorial experiment of 2{sup 5} conditions was used to determine the effects of grinding wheel bond (resinoid and vitreous), grit size (80 and 180), grit concentration (50 and 100) and work speed on Al{sub 2}O{sub 3} and ZrO{sub 2} specimens. Two depths of cut were interspersed with the varied grinding conditions. Normal and tangential grinding wheel stresses were calculated from wheel entry and exit incremental, measured vertical and horizontal force data. Average normal and tangential stresses were found to be nearly constant below a local material removal rate of about 4 mm{sup 2}/sec{sup 2} (time rate of change of volumetric removal rate per unit wheel width). This implies that rubbing or plowing predominates in the low material removal rate region of the finished surface. In the higher material removal rate regions, large grinding wheel stresses imply greater abrasive grit penetration into the workpiece and a predominance of lateral fracture as a removal mechanism. An additional result of the stress determination is that exit conditions are different from entry conditions and thus highlight the effect of median fracture as a result of workpiece geometry.

  5. Creep of water ices at planetary conditions: A compilation

    USGS Publications Warehouse

    Durham, W.B.; Kirby, S.H.; Stern, L.A.

    1997-01-01

    Many constitutive laws for the flow of ice have been published since the advent of the Voyager explorations of the outer solar system. Conflicting data have occasionally come from different laboratories, and refinement of experimental techniques has led to the publication of laws that supersede earlier ones. In addition, there are unpublished data from ongoing research that also amend the constitutive laws. Here we compile the most current laboratory-derived flow laws for water ice phases I, II, III, V, and VI, and ice I mixtures with hard particulates. The rheology of interest is mainly that of steady state, and the conditions reviewed are the pressures and temperatures applicable to the surfaces and interiors of icy moons of the outer solar system. Advances in grain-size-dependent creep in ices I and II as well as in phase transformations and metastability under differential stress are also included in this compilation. At laboratory strain rates the several ice polymorphs are rheologically distinct in terms of their stress, temperature, and pressure dependencies but, with the exception of ice III, have fairly similar strengths. Hard particulates strengthen ice I significantly only at high particulate volume fractions. Ice III has the potential for significantly affecting mantle dynamics because it is much weaker than the other polymorphs and its region of stability, which may extend metastably well into what is nominally the ice II field, is located near likely geotherms of large icy moons. Copyright 1997 by the American Geophysical Union.

  6. In-situ Creep Testing Capability Development for Advanced Test Reactor

    SciTech Connect

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  7. Dependence of Precipitation Behavior and Creep Strength on Cr Content in High Cr Ferritic Heat Resistant Steels

    NASA Astrophysics Data System (ADS)

    Murata, Yoshinori; Yamashita, Koji; Morinaga, Masahiko; Hara, Toru; Miki, Kazuhiro; Azuma, Tsukasa; Ishiguro, Toru; Hashizume, Ryokichi

    It is known that high temperature tensile strength increases with increasing Cr content in Cr containing heat resistant steels. Recently, however, it was found that long-term creep strength decreased with increasing Cr content in the heat resistant steels containing 8.5-12%Cr. In this study, precipitation behavior of M23C6 carbide and the Z phase after creep tests was investigated using two kinds of high Cr ferritic steels (9Cr and 10.5Cr). As a result, 10.5Cr steel exhibited larger average particle size of M23C6 than 9Cr steel irrespective of creep stress levels, but the amount of M23C6 carbide was almost the same in both steels. On the other hand, the amount of the Z phase became large in 10.5Cr steel compared with 9Cr steel. These experimental results indicate that high level of Cr content accelerates precipitation and coalescence rate of both M23C6 carbide and the Z phase, resulting in degradation of long term creep strength in 10.5 Cr steel compared to 9Cr steel.

  8. Creep-fatigue analysis by strain-range partitioning.

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Hirschberg, M. H.

    1971-01-01

    The framework of a new method is outlined for treating creep-fatigue behavior of metals. Inelastic strain-ranges are partitioned into the components of (1) completely reversed plasticity, (2) tensile plasticity reversed by compressive creep, or tensile creep reversed by compressive plasticity, and (3) completely reversed creep. Each of these components is shown to be related to cyclic life by a Manson-Coffin type power-law equation. A linear life fraction rule is used to combine the damaging effects of the individual components enabling the prediction of life. Test results are presented for a 2.25 Cr-1 Mo steel as well as limited information for a Type 316 stainless steel.

  9. Creep behavior of 6 micrometer linear low density polyethylene film

    NASA Technical Reports Server (NTRS)

    Simpson, J. M.; Schur, W. W.

    1993-01-01

    Creep tests were performed to provide material characteristics for a 6.4-micron polyethylene film used to construct high altitude balloons. Results suggest simple power law relationships are adequate for stresses below about 4.83 MPa.

  10. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  11. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  12. Creeping attachment: autogenous graft vs dermal matrix allograft.

    PubMed

    Haeri, A; Parsell, D

    2000-09-01

    For many years, free autogenous grafts have been used as a method of gaining keratinized tissue around teeth with mucogingival problems. Creeping attachment using autogenous graft material has been actively studied. In addition, biocompatible, acellular connective-tissue material has recently been used as an alternative to free gingival grafts to increase the zone of keratinization. This report presents a patient with bilateral mucogingival defects in the canine and premolar areas. The patient received an autogenous graft on one side and a dermal matrix allograft on the contralateral side. Creeping attachments were measured and compared at 3 months and 12 months after surgery. After 12 months of healing, an average of 1.23 mm of creeping attachment was measured on the free gingival graft side and 0.96 mm of creeping attachment was measured with the dermal matrix allograft.

  13. Creep and Fatigue Interaction Characteristics of PWA1484

    DTIC Science & Technology

    2009-03-01

    103 6.4 Summary... 103 Bibliography ....................................................................................................................105 List of...temperature parameters that are used in the analysis of creep in superalloys is the Larsen-Miller parameter ( LMP ). Before we discuss the LMP , we will

  14. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  15. Does Mt Etna creep in a brittle manner?

    NASA Astrophysics Data System (ADS)

    Meredith, P. G.; Heap, M. J.; Baud, P.; Vinciguerra, S.; Bell, A. F.; Main, I. G.

    2010-12-01

    Time-dependent brittle deformation is a fundamental and pervasive process operating in the Earth’s upper crust. Its characterization is a pre-requisite to understanding and unravelling the complexities of crustal evolution and dynamics. The preferential chemical interaction between pore fluids and strained atomic bonds at crack tips, a mechanism known as stress corrosion, allows rock to fail under a constant stress that is well below its short-term strength over an extended period of time; a process known as brittle creep. Here we present the first experimental measurements of brittle creep in a basic rock (basalt from Mt Etna volcano) under triaxial stress conditions. Results from conventional creep experiments demonstrate that creep strain rates are highly and non-linearly dependent on the level of applied stress; with a 20% increase in stress producing close to three orders of magnitude increase in creep strain rate. Results from stress-stepping creep experiments show that creep strain rates are also highly dependent on the effective confining pressure. Stress corrosion reactions are inhibited at higher effective confining pressures, and this is interpreted as being due to a reduction in crack aperture that restricts the transport of reactive species to crack tips. Overall, our results also suggest that a critical level of crack damage is required before the deformation starts to accelerate to failure, regardless of the level of applied stress and the time taken to reach this point. The experimental results are discussed in terms of microstructural observations and fits to a macroscopic creep law, and compared with the observed deformation history at Mt Etna volcano.

  16. What Polar Bears Can Teach Us about Mission Creep

    DTIC Science & Technology

    2015-04-16

    Thesis 3. DATES COVERED (From - To) 21-07-2014 to 12-06-2015 4. TITLE AND SUBTITLE What Polar Bears Can Teach Us about Mission Creep 5a...What Polar Bears Can Teach Us about Mission Creep by Thomas B. Ham Colonel, United States Army Not for Commercial Use without the...express written permission of the author This page is intentionally blank What Polar Bears Can Teach Us about

  17. Creep, Plasticity, and Fatigue of Single Crystal Superalloy. (Preprint)

    DTIC Science & Technology

    2011-07-01

    control mode ( 1R ) using servo- hydraulic machines. The test specimen was heated using a low frequency (10 kHz) induction generator. Tests were...1989), Thermomechanical Fatigue , Oxidation, and Creep. Part II. Life Prediction, Metallurgical Transactions A: Physical Metallurgy and Materials...AFRL-RX-WP-TP-2011-4223 CREEP, PLASTICITY, AND FATIGUE OF SINGLE CRYSTAL SUPERALLOY Alexander Staroselsky United Technologies

  18. The high temperature creep behavior of oxides and oxide fibers

    NASA Technical Reports Server (NTRS)

    Jones, Linda E.; Tressler, Richard E.

    1991-01-01

    A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.

  19. Porosity Evolution in a Creeping Single Crystal (Preprint)

    DTIC Science & Technology

    2012-08-01

    to tertiary creep which, as will be shown subsequently, is associated with necking of the ligament between adjacent voids. Under the creep loading...conditions here the increase in strain rate accompanying necking occurs less abruptly than for the nearly rate independent materials in [13]. Here, and...loading, and for values of the Lode parameter, is that for values of the stress triaxiality χ ≥ 0.75 the analyses were terminated due to necking down of

  20. Models of Anisotropic Creep in Integral Wing Panel Forming Processes

    NASA Astrophysics Data System (ADS)

    Oleinikov, A. I.; Oleinikov, A. A.

    2016-08-01

    For a sufficiently wide range of stresses the titanic and aluminummagnesium alloys, as a rule, strained differently in the process of creep under tension and compression along a fixed direction. There are suggested constitutive relations for the description of the steady-state creep of transversely isotropic materials with different tension and compression characteristics. Experimental justification is given to the proposed constitutive equations. Modeling of forming of wing panels of the aircraft are considered.

  1. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  2. Microstructure and Creep Properties of TiAl-Ti3Al In-Situ Composites

    SciTech Connect

    Hodge, A M; Hsiung, L L

    2004-02-18

    Objectives: {lg_bullet} Exploit thermomechanical-processing techniques to fabricate TiAl/Ti3Al in-situ laminate composites with the size of lamella width down to submicron or nanometer length-scales. {lg_bullet} Characterize microstructure and elevated-temperature creep resistance of the in-situ composites. {lg_bullet} Investigate the fundamental interrelationships among microstructures, alloying additions, and mechanical properties of the in-situ composites so as to achieve the desired properties of the in-situ composites for high-temperature structural applications.

  3. Transient creep and semibrittle behavior of crystalline rocks

    USGS Publications Warehouse

    Carter, N.L.; Kirby, S.H.

    1978-01-01

    We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.

  4. The activation energy for creep of columbium /niobium/.

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulden, M. E.

    1973-01-01

    The activation energy for creep of nominally pure columbium (niobium) was determined in the temperature range from 0.4 to 0.75 T sub M by measuring strain rate changes induced by temperature shifts at constant stress. A peak in the activation energy vs temperature curve was found with a maximum value of 160 kcal/mole. A pretest heat treatment of 3000 F for 30 min resulted in even higher values of activation energy (greater than 600 kcal/mole) in this temperature range. The activation energy for the heat-treated columbium (Nb) could not be determined near 0.5 T sub M because of unusual creep curves involving negligible steady-state creep rates and failure at less than 5% creep strain. It is suggested that the anomalous activation energy values and the unusual creep behavior in this temperature range are caused by dynamic strain aging involving substitutional atom impurities and that this type of strain aging may be in part responsible for the scatter in previously reported values of activation energy for creep of columbium (Nb) near 0.5 T sub M.

  5. Permeability Evolution of Granite Gneiss During Triaxial Creep Tests

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, W. Y.; Wang, H. L.; Wang, W.; Wang, R. B.

    2016-09-01

    Permeability is an important factor for seepage analysis of rock material, and a key factor in ensuring the safety of underground works. In this study, the permeability evolution of granite gneiss during triaxial creep tests was investigated. In the context of an underground oil storage cavern in China, a series of hydro-mechanical coupling creep tests were conducted on rock cores of granite gneiss at three different pore pressures to reveal the effect of pore pressure on the permeability evolution and to investigate the correlation between the permeability and volumetric strain during the creep process. During the creep tests, the permeability decreases in the initial loading phase. At all deviatoric stress levels, the permeability remains stable in the steady creep stage and increases rapidly in the accelerated creep stage. Based on the test data, the initial permeability, steady permeability and peak permeability at various stress levels are defined. The effect of pore pressure on the permeability is captured by a linear model. In addition, the relationship between permeability and volumetric strain can be described as a process divided into three phases, with different functions in each phase.

  6. Creep properties of Pb-free solder joints

    SciTech Connect

    Song, H.G.; Morris Jr., J.W.; Hua, F.

    2002-04-01

    Describes the creep behavior of three Sn-rich solders that have become candidates for use in Pb-free solder joints: Sn-3.5Ag, Sn-3Ag-0.5Cu and Sn-0.7Cu. The three solders show the same general behavior when tested in thin joints between Cu and Ni/Au metallized pads at temperatures between 60 and 130 C. Their steady-state creep rates are separated into two regimes with different stress exponents(n). The low-stress exponents range from {approx}3-6, while the high-stress exponents are anomalously high (7-12). Strikingly, the high-stress exponent has a strong temperature dependence near room temperature, increasing significantly as the temperature drops from 95 to 60 C. The anomalous creep behavior of the solders appears to be due to the dominant Sn constituent. Joints of pure Sn have stress exponents, n, that change with stress and temperature almost exactly like those of the Sn-rich solder joints. Research on creep in bulk samples of pure Sn suggests that the anomalous temperature dependence of the stress exponent may show a change in the dominant mechanism of creep. Whatever its source, it has the consequence that conventional constitutive relations for steady-state creep must be used with caution in treating Sn-rich solder joints, and qualification tests that are intended to verify performance should be carefully designed.

  7. Developing Process of Positive Creeping Discharge along Aerial Insulated Wire

    NASA Astrophysics Data System (ADS)

    Nishi, Toshiyuki; Hanaoka, Ryoichi; Takata, Shinzo

    In high voltage aerial distribution systems, the insulated wires are supported by the insulator with the binding wire at the electric light pole. When a lightning strike happened in the neighborhood of the aerial insulated wire in a power distribution system, the inductive lightning surges invade to the central line of the wire. Then, the creeping discharges develop along the wire surface from the binding wire tip in the same time as the flashover of the insulator at a supporting point of the wire. If the wire insulator has weak points such as the pin-holes, the disaster near the wire supporting point may occur with a melting of wire due to the punch-through breakdown. To prevent such accidents, it is important to clarify the mechanism of the creeping discharge along the insulated wire which caused by the lightning strike. The polarity of creeping discharges is decided by the polarity of inductive lightning surges, and the developing length and aspect of the discharge are greatly different by the discharge polarity. The developing of these creeping discharges is attributed to complicated behaviors of the positive and negative electric charges. In the present study, we examined in detail the developing process of positive creeping discharge along the wire surface by using a high speed image converter camera. This paper describes the developing mechanism of positive creeping discharge based on the experimental results.

  8. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  9. Creep Behavior and Mechanism for CMCs with Continuous Ceramic Fibers

    NASA Astrophysics Data System (ADS)

    Chermant, Jean-Louis; Farizy, Gaëlle; Boitier, Guillaume; Darzens, Séverine; Vicens, Jean; Sangleboeuf, Jean-Christophe

    This paper gives an overview on the creep behavior and mechanism of some CMCs, with a SiC ceramic matrix, such as Cf-SiC, SiCf-SiC and SiCf-SiBC. Tensile creep tests were conducted under argon and air in order to have the influence of the environmental conditions on the macroscopical mechanical response. Nevertheless, multi-scale and multi-technique approaches were required to identify and quantify mechanism(s) which is (are) involved in the creep behavior. The initiation and propagation of damages which are occurring under high stress and temperature conditions were investigated at mesoscopic, microscopic and nanoscopic scales using SEM, TEM and HREM, in order to identify the mechanism(s) involved at each scale. Automatic image analysis was used in order to quantify the evolution of some damage morphological parameters. The macroscopical creep behavior has been investigated through a damage mechanics approach which seems to be the most promising route. A good correlation was found between the kinetics of the damage mechanisms and the creep behavior. For such ceramic matrix composites, the governing mechanism is a damage-creep one, with an additional delay effect due to formation of a glass when tests are performed under air.

  10. Micromechanics of Brittle Creep Under Triaxial Loading Conditions

    NASA Astrophysics Data System (ADS)

    Meredith, P. G.; Brantut, N.; Baud, P.; Heap, M. J.

    2011-12-01

    In the upper crust, the chemical influence of pore water promotes time-dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail (i) at stresses far below their short-term failure strength, and (ii) even at constant applied stress ("brittle creep"). Here we provide a micromechanical model and experimental results describing time-dependent brittle creep of water-saturated granite under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of microcracks in compression are derived from the sliding wing-crack model of Ashby and Sammis (1990). Crack length evolution is computed from Charles' law. The macroscopic strain and strain rates are then computed from the change in energy potential due to microcrack growth. They are non-linear, and compare well with complementary experimental results obtained on granite samples. Primary creep (decelerating strain) corresponds to decreasing crack growth rate , due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as merely an inflexion between the two end-member phases.

  11. Irradiation creep and creep rupture of titanium-modified austenitic stainless steels and their dependence on cold work level

    SciTech Connect

    Garner, F.A.; Hamilton, M.L. ); Eiholzer, C.R. ); Toloczko, M.B. ); Kumar, A.S. )

    1991-11-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% from the conventional 20% level was detrimental to its performance, especially for applications above 550{degrees}c. The 20% cold work level is preferable to the 10% level, in terms of both in-reactor creep rupture response and initial strength.

  12. Influence of cold work level on the irradiation creep and creep rupture of titanium-modified austenitic stainless steels

    SciTech Connect

    Garner, F.A.; Hamilton, M.L. ); Eiholzer, C.R. ); Toloczko, M.B. ); Kumar, A.S. )

    1992-06-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% form the conventional 20% level was detrimental to its performance, especially for applications above 550{degrees}C. The 20% cold work level is preferable to the 10% level, in terms of both in- reactor creep rapture response and initial strength.

  13. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  14. Stochastic modeling of crack initiation and short-crack growth under creep and creep-fatigue conditions

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ghosn, Louis J.; Ohtani, Ryuichi

    1989-01-01

    A simplified stochastic model is proposed for crack initiation and short-crack growth under creep and creep-fatigue conditions. Material inhomogeneity provides the random nature of crack initiation and early growth. In the model, the influence of microstructure is introduced by the variability of: (1) damage accumulation along grain boundaries, (2) critical damage required for crack initiation or growth, and (3) the grain-boundary length. The probabilities of crack initiation and growth are derived by using convolution integrals. The model is calibrated and used to predict the crack density and crack-growth rate of short cracks of 304 stainless steel under creep and creep-fatigue conditions. The mean-crack initiation lives are predicted to be within an average deviation of about 10 percent from the experimental results. The predicted cumulative distributions of crack-growth rate follow the experimental data closely. The applicability of the simplified stochastic model is discussed and the future research direction is outlined.

  15. Analysis of pellet cladding interaction and creep of U 3SIi2 fuel for use in light water reactors

    NASA Astrophysics Data System (ADS)

    Metzger, Kathryn E.

    difficult to predict fuel-cladding mechanical behavior. This information is essential for designing accident tolerant fuel systems where ceramic claddings, like silicon carbide (SiC) are proposed. This research provides a model for both the thermal and irradiation creep behavior for U3Si2. This body of research is comprised of both experimental and modeling components. Characterization of the fuel microstructure includes; optical microscopy with pore and grain size analysis, helium pycnometry for density determination, mercury intrusion porosimetry, compositional analysis in the form of XRD, second phase identification using EDX, electrical resistance measurement via four point probe, determination of hardness and toughness through Vickers indentation testing, and determination of elastic properties using the impulse excitation method. Post-sintering grain size data allowed for the determination of grain boundary activation energy and diffusion coefficients, which were used to develop creep models. This was extended to lattice and irradiation enhanced diffusion in order to develop a U3Si2 creep model over thermal and irradiation creep regimes. In addition to the creep model, thermal and swelling behavior models for U3Si2 were implemented into the BISON fuel performance code. A series of simulations evaluated the performance and behavior of U3Si2 under typical light water reactor conditions with advanced SiC ceramic cladding. Simulation results show that fuel creep relieves stress in the ceramic cladding and postpones the. moment of fuel-clad contact. However, the stress reduction to the cladding is minimal because the fuel creep rate is low while the swelling rate is high. Future work should include the investigation of monolithic U3Si2 irradiation swelling since the current model relies upon the swelling data of U3Si2 particles in a metallic dispersion fuel. Additionally, planned thermal creep testing at the University of South Carolina can provide confirmation of the U3Si

  16. Numerical simulations of creep in ductile-phase toughened intermetallic matrix composites

    SciTech Connect

    Henshall, G.A.; Strum, M.J.

    1994-04-07

    Analytical and finite element method (FEM) simulations of creep in idealized ductile-phase toughened intermetallic composites are described. For these strong-matrix materials, the two types of analyses predict similar time-independent composite creep rates if each phase individually exhibits only steady-state creep. The composite creep rate becomes increasingly higher than that of the monolithic intermetallic as the stress exponent of the intermetallic and the volume fraction and creep rate of the ductile phase increase. FEM analysis shows that the shape of the ductile phase does not affect the creep rate but may affect the internal stress and strain distributions, and thus damage accumulation rates. If primary creep occurs in one or both of the individual phases, the composite also exhibits primary creep. In this case, there can be significant deviations in the creep curves computed by the analytical and FEM models. The model predictions are compared with data for the Nb5Si3/Nb system.

  17. A Statistical Test for Identifying the Number of Creep Regimes When Using the Wilshire Equations for Creep Property Predictions

    NASA Astrophysics Data System (ADS)

    Evans, Mark

    2016-12-01

    A new parametric approach, termed the Wilshire equations, offers the realistic potential of being able to accurately lift materials operating at in-service conditions from accelerated test results lasting no more than 5000 hours. The success of this approach can be attributed to a well-defined linear relationship that appears to exist between various creep properties and a log transformation of the normalized stress. However, these linear trends are subject to discontinuities, the number of which appears to differ from material to material. These discontinuities have until now been (1) treated as abrupt in nature and (2) identified by eye from an inspection of simple graphical plots of the data. This article puts forward a statistical test for determining the correct number of discontinuities present within a creep data set and a method for allowing these discontinuities to occur more gradually, so that the methodology is more in line with the accepted view as to how creep mechanisms evolve with changing test conditions. These two developments are fully illustrated using creep data sets on two steel alloys. When these new procedures are applied to these steel alloys, not only do they produce more accurate and realistic looking long-term predictions of the minimum creep rate, but they also lead to different conclusions about the mechanisms determining the rates of creep from those originally put forward by Wilshire.

  18. Finite Element Prediction of Creep-Plastic Ratchetting and Low Cycle Creep-Fatigue for a Large SPF Tool

    NASA Astrophysics Data System (ADS)

    Deshpande, A. A.; Leen, S. B.; Hyde, T. H.

    2010-06-01

    Industrial experience shows that large superplastic forming (SPF) tools suffer from distortion due to thermal cycling, which apparently causes high temperature creep and plasticity. In addition to distortion, thermomechanical fatigue and fatigue-creep interaction can lead to cracking. The aim of this study is to predict the life-limiting thermomechanical behavior of a large SPF tool under realistic forming conditions using elastic-plastic-creep FE analyses. Nonlinear time-dependent, sequentially coupled FE analyses are performed using temperature-dependent monotonic and cyclic material data for a high-nickel, high-chromium tool material, XN40F (40% Ni and 20% Cr). The effect of monotonic and cyclic material data is compared vis-à-vis the anisothermal, elastic-plastic-stress response of the SPF tool. An uncoupled cyclic plasticity-creep material model is employed. Progressive deformation (ratchetting) is predicted locally, transverse to the predominant direction of the creep-fatigue cycling, but at the same spatial location, due to creep and cyclic plasticity, during the so-called minor cycles, which correspond to comparatively small-amplitude temperature changes associated with opening of the press doors during part loading and unloading operations.

  19. Comprehensive Creep and Thermophysical Performance of Refractory Materials

    SciTech Connect

    Ferber, M.K.; Wereszczak, A.; Hemrick, J.A.

    2006-06-29

    Furnace designers and refractory engineers recognize that optimized furnace superstructure design and refractory selection are needed as glass production furnaces are continually striving toward greater output and efficiencies. Harsher operating conditions test refractories to the limit, while changing production technology (such as the conversion to oxy-fuel from traditional air-fuel firing) can alter the way the materials perform [1-3]. Refractories for both oxy- and air-fuel fired furnace superstructures (see Fig. 1) are subjected to high temperatures that may cause them to creep excessively or subside during service if the refractory material is not creep resistant, or if it is subjected to high stress, or both. Furnace designers can ensure that superstructure structural integrity is maintained if the creep behavior of the refractory material is well understood and well represented by appropriate engineering creep models. Several issues limit the abilities of furnace designers to (1) choose the optimum refractory for their applications, (2) optimize the engineering design, or (3) predict the service mechanical integrity of their furnace superstructures. Published engineering creep data are essentially nonexistent for almost all commercially available refractories used for glass furnace superstructures. The limited data that do exist are supplied by the various refractory suppliers. Unfortunately, the suppliers generally have different ways of conducting their mechanical testing, and they interpret and report their data differently. This inconsistency makes it hard for furnace designers to draw fair comparisons between competing grades of candidate refractories. Furthermore, the refractory suppliers' data are often not available in a form that can be readily used for furnace design or for the prediction and design of long-term structural integrity of furnace superstructures. As a consequence, the U.S. Department of Energy (DOE) Industrial Technology Program (ITP

  20. Creep and fracture of a model yoghurt

    NASA Astrophysics Data System (ADS)

    Manneville, Sebastien; Leocmach, Mathieu; Perge, Christophe; Divoux, Thibaut

    2014-11-01

    Biomaterials such as protein or polysaccharide gels are known to behave qualitatively as soft solids and to rupture under an external load. Combining optical and ultrasonic imaging to shear rheology we show that the failure scenario of a model yoghurt, namely a casein gel, is reminiscent of brittle solids: after a primary creep regime characterized by a macroscopically homogeneous deformation and a power-law behavior which exponent is fully accounted for by linear viscoelasticity, fractures nucleate and grow logarithmically perpendicularly to shear, up to the sudden rupture of the gel. A single equation accounting for those two successive processes nicely captures the full rheological response. The failure time follows a decreasing power-law with the applied shear stress, similar to the Basquin law of fatigue for solids. These results are in excellent agreement with recent fiber-bundle models that include damage accumulation on elastic fibers and exemplify protein gels as model, brittle-like soft solids. Work funded by the European Research Council under Grant Agreement No. 258803.

  1. Creep Crack Growth Behavior of Alloys 617 and 800H in Air and Impure Helium Environments at High Temperatures

    NASA Astrophysics Data System (ADS)

    Grierson, D. S.; Cao, G.; Brooks, P.; Pezzi, P.; Glaudell, A.; Kuettel, D.; Fischer, G.; Allen, T.; Sridharan, K.; Crone, W. C.

    2017-03-01

    The environmental degradation of intermediate heat exchanger (IHX) materials in impure helium has been identified as an area with major ramifications on the design of very high-temperature reactors (VHTR). It has been reported that in some helium environments, non-ductile failure is a significant failure mode for Alloy 617 with long-term elevated-temperature service. Non-ductile failure of intermediate exchangers can result in catastrophic consequences; unfortunately, the knowledge of creep crack initiation and creep crack growth (CCG) in candidate alloys is limited. Current codes and code cases for the candidate alloys do not provide specific guidelines for effects of impure helium on the high-temperature behavior. The work reported here explores creep crack growth characterization of Alloy 617 and Alloy 800H at elevated temperatures in air and in impure helium environments, providing information on the reliability of these alloys in VHTR for long-term service. Alloy 617 was found to exhibit superior CCG resistance compared to Alloy 800H. For Alloy 617 tested at 973 K (700 °C), a notable increase in the resistance to crack growth was measured in air compared to that measured in the helium environment; CCG results for Alloy 800H suggest that air and helium environments produce similar behavior. Testing of grain boundary-engineered (GBE) Alloy 617 samples revealed that, although the technique produces superior mechanical properties in many respects, the GBE samples exhibited inferior resistance to creep crack growth compared to the other Alloy 617 samples tested under similar conditions. Grain size is noted as a confounding factor in creep crack growth resistance.

  2. Creep Crack Growth Behavior of Alloys 617 and 800H in Air and Impure Helium Environments at High Temperatures

    NASA Astrophysics Data System (ADS)

    Grierson, D. S.; Cao, G.; Brooks, P.; Pezzi, P.; Glaudell, A.; Kuettel, D.; Fischer, G.; Allen, T.; Sridharan, K.; Crone, W. C.

    2016-11-01

    The environmental degradation of intermediate heat exchanger (IHX) materials in impure helium has been identified as an area with major ramifications on the design of very high-temperature reactors (VHTR). It has been reported that in some helium environments, non-ductile failure is a significant failure mode for Alloy 617 with long-term elevated-temperature service. Non-ductile failure of intermediate exchangers can result in catastrophic consequences; unfortunately, the knowledge of creep crack initiation and creep crack growth (CCG) in candidate alloys is limited. Current codes and code cases for the candidate alloys do not provide specific guidelines for effects of impure helium on the high-temperature behavior. The work reported here explores creep crack growth characterization of Alloy 617 and Alloy 800H at elevated temperatures in air and in impure helium environments, providing information on the reliability of these alloys in VHTR for long-term service. Alloy 617 was found to exhibit superior CCG resistance compared to Alloy 800H. For Alloy 617 tested at 973 K (700 °C), a notable increase in the resistance to crack growth was measured in air compared to that measured in the helium environment; CCG results for Alloy 800H suggest that air and helium environments produce similar behavior. Testing of grain boundary-engineered (GBE) Alloy 617 samples revealed that, although the technique produces superior mechanical properties in many respects, the GBE samples exhibited inferior resistance to creep crack growth compared to the other Alloy 617 samples tested under similar conditions. Grain size is noted as a confounding factor in creep crack growth resistance.

  3. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    NASA Astrophysics Data System (ADS)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-06-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{{s}} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  4. A new characterization approach for studying relationships between microstructure and creep damage mechanisms of uranium dioxide

    NASA Astrophysics Data System (ADS)

    Iltis, X.; Ben Saada, M.; Mansour, H.; Gey, N.; Hazotte, A.; Maloufi, N.

    2016-06-01

    Four batches of UO2 pellets were studied comparatively, before and after creep tests, to evaluate a characterization methodology aimed to determine the links between microstructure and damage mechanisms induced by compressive creep of uranium dioxide at 1500 °C. They were observed by means of scanning electron microscopy (SEM) coupled with image analysis, to quantify their fabrication porosity and the occurrence of inter-granular cavities after creep, and electron back scattered diffraction (EBSD), especially to characterize sub-structures development associated with plastic deformation. Electron channeling contrast imaging (ECCI) was also applied to evidence dislocations, at an exploratory stage, on one of the deformed pellets. This approach helped to identify and quantify microstructural differences between batches. Their as-fabricated microstructures differed in terms of grain size and fabrication porosity distribution. The pellets which had the lowest strain rates were those with the largest number of intra-granular pores, regardless of their grain size. They also exhibited less numerous sub-boundaries within the grains. These first results clearly illustrate the benefit of systematic examinations of crept UO2 pellets at a mesoscopic scale, by SEM and EBSD, to study their deformation process. In addition, ECCI appears as a powerful tool to evidence local dislocations arrangements, in bulk samples. Even if the sampling was limited, the results of this study also tend to indicate that the intra-granular pores population, resulting from the manufacturing of the samples by powder metallurgy, could have a significant influence on the UO2 viscoplastic deformation mechanisms.

  5. Investigation on the primary creep of a nickel based alloy. [Nimonic 75 type alloy

    SciTech Connect

    Kong, Q.P.; Wang, X. )

    1993-07-01

    It is widely accepted that dislocation climb is involved in the steady state (i.e. secondary) creep at high temperatures, which is characterized by the formation and evolution of substructures. In current theories of steady state creep, dislocation climb is regarded as the rate controlling process. However, the role of dislocation climb in the primary (i.e. transient) creep at high temperatures is not clear. The present paper is to report the observations by transmission electron microscopy (TEM) on high temperature creep of a nickel based alloy. It will be shown that dislocation climb plays an important role not only in the steady state creep, but also in the primary creep.

  6. Can a brief period of double J stenting improve the outcome of extracorporeal shock wave lithotripsy for renal calculi sized 1 to 2 cm?

    PubMed Central

    Sharma, Rakesh; Das, Ranjit Kumar; Basu, Supriya; Dey, Ranjan Kumar; Gupta, Rupesh; Deb, Partha Pratim

    2017-01-01

    Purpose Extracorporeal shock wave lithotripsy (ESWL) is an established modality for renal calculi. Its role for large stones is being questioned. A novel model of temporary double J (DJ) stenting followed by ESWL was devised and outcomes were assessed. Materials and Methods The study included 95 patients with renal calculi sized 1 to 2 cm. Patients were randomized into 3 groups. Group 1 received ESWL only, whereas group 2 underwent stenting followed by ESWL. In group 3, a distinct model was applied in which the stent was kept for 1 week and then removed, followed by ESWL. Procedural details, analgesic requirements, and outcome were analyzed. Results Eighty-eight patients (male, 47; female, 41) were available for analysis. The patients' mean age was 37.9±10.9 years. Stone profile was similar among groups. Group 3 received fewer shocks (mean, 3,155) than did group 1 (mean, 3,859; p=0.05) or group 2 (mean, 3,872; p=0.04). The fragmentation rate was similar in group 3 (96.7%) and groups 1 (81.5%, p=0.12) and 2 (87.1%, p=0.16). Overall clearance in group 3 was significantly improved (83.3%) compared with that in groups 1 (63.0%, p=0.02) and 2 (64.5%, p=0.02) and was maintained even in lower pole stones. The percentage successful outcome in groups 1, 2, and 3 was 66.7%, 64.5%, and 83.3%, respectively (p=0.21). The analgesic requirement in group 2 was higher than in the other groups (p=0.00). Group 2 patients also had more grade IIIa (2/3) and IIIB (1/2) complications. Conclusions Stenting adversely affects stone clearance and also makes the later course uncomfortable. Our model of brief stenting followed by ESWL provided better clearance, comfort, and a modest improvement in outcome with fewer sittings and steinstrasse in selected patients with large renal calculi. PMID:28261679

  7. Does light attract piglets to the creep area?

    PubMed

    Larsen, M L V; Pedersen, L J

    2015-06-01

    Hypothermia, experienced by piglets, has been related to piglet deaths and high and early use of a heated creep area is considered important to prevent hypothermia. The aims of the present study were to investigate how a newly invented radiant heat source, eHeat, would affect piglets' use of the creep area and whether light in the creep area works as an attractant on piglets. A total of 39 sows, divided between two batches, were randomly distributed to three heat source treatments: (1) standard infrared heat lamp (CONT, n=19), (2) eHeat with light (EL, n=10) and (3) eHeat without light (ENL, n=10). Recordings of piglets' use of the creep area were made as scan sampling every 10 min for 3 h during two periods, one in daylight (0900 to 1200 h) and one in darkness (2100 to 2400 h), on day 1, 2, 3, 7, 14 and 21 postpartum. On the same days, piglets were weighted. Results showed an interaction between treatment and observation period (P<0.05) with a lower use of the creep area during darkness compared with daylight for CONT and EL litters, but not for ENL litters. Piglets average daily weight gain was not affected by treatment, but was positively correlated with piglets' birth weight and was lower in batch 1 compared with batch 2. Seen from the present results, neither eHeat nor light worked as an attractant on piglets; in contrast, piglets preferred to sleep in the dark and it would therefore be recommended to turn off the light in the creep area during darkness. Heating up the creep area without light can be accomplished by using a radiant heat source such as eHeat in contrast to the normally used light-emitting infrared heat lamp.

  8. Development of improved low-strain creep strength in Cabot alloy R-41 sheet. [nickel base sheet alloy for reentry shielding

    NASA Technical Reports Server (NTRS)

    Rothman, M. F.

    1984-01-01

    The feasibility of improving the low-strain creep properties of a thin gauge nickel base sheet alloy through modified heat treatment or through development of a preferred crystal-lographic texture was investigated. The basic approach taken to improve the creep strength of the material by heat treatment was to increase grain size by raising the solution treatment temperature for the alloy to the range of 1420 K to 1475 K (2100 F to 2200 F). The key technical issue involved was maintenance of adequate tensile ductility following the solutioning of M6C primary carbides during the higher temperature solution treatment. The approach to improve creep properties by developing a sheet texture involved varying both annealing temperatures and the amount of prior cold work. Results identified a heat treatment for alloy R-14 sheet which yields a substantial creep-life advantage at temperatures above 1090 K (1500 F) when compared with material given the standard heat treatment. At the same time, this treatment provides reasonable tensile ductility over the entire temperature range of interest. The mechanical properties of the material given the new heat treatment are compared with those for material given the standard heat treatment. Attempts to improve creep strength by developing a sheet texture were unsuccessful.

  9. Anelasticity and Transient Creep in NaMgF3 Perovskite at High Pressure

    NASA Astrophysics Data System (ADS)

    Weidner, D. J.; Li, L.; Vaughan, M. T.; Wang, L.

    2010-12-01

    Perovskites, such as MgSiO3 and CaSiO3, belong to the ferroelastic class of materials. In the non-cubic phase, these materials can display macroscopic strain through the migration of domain boundaries that separate crystallographic twins. Deviatoric stress can be the agent of domain wall motion. The result can be the attenuation and softening of acoustic waves or the contribution to transient creep. Dynamic oscillation experiments were carried out on NaMgF3 to study these processes on an analogue material at high pressure. Synchrotron X-ray allow quantitative analysis of stress and strain in situ. A multi-anvil deformation device (DDIA) was used to generate sinusoidal strain (amplitude of 10-4) at seismic frequencies (mHz to Hz). Both diffraction and sample images are used to define the quantitative stress - strain - time relation. The samples are polycrystalline allowing the analysis of the effectiveness of multi-grain samples in their response to the stress. We find that the strain response is a significant fraction of the spontaneous strain. Implications on the transient creep for Mg-Si perovskite are quantitatively estimated.

  10. Time-Dependent Behavior of Diabase and a Nonlinear Creep Model

    NASA Astrophysics Data System (ADS)

    Yang, Wendong; Zhang, Qiangyong; Li, Shucai; Wang, Shugang

    2014-07-01

    Triaxial creep tests were performed on diabase specimens from the dam foundation of the Dagangshan hydropower station, and the typical characteristics of creep curves were analyzed. Based on the test results under different stress levels, a new nonlinear visco-elasto-plastic creep model with creep threshold and long-term strength was proposed by connecting an instantaneous elastic Hooke body, a visco-elasto-plastic Schiffman body, and a nonlinear visco-plastic body in series mode. By introducing the nonlinear visco-plastic component, this creep model can describe the typical creep behavior, which includes the primary creep stage, the secondary creep stage, and the tertiary creep stage. Three-dimensional creep equations under constant stress conditions were deduced. The yield approach index (YAI) was used as the criterion for the piecewise creep function to resolve the difficulty in determining the creep threshold value and the long-term strength. The expression of the visco-plastic component was derived in detail and the three-dimensional central difference form was given. An example was used to verify the credibility of the model. The creep parameters were identified, and the calculated curves were in good agreement with the experimental curves, indicating that the model is capable of replicating the physical processes.

  11. Creep Analysis for a Wide Stress Range Based on Stress Relaxation Experiments

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Naumenko, Konstantin; Gorash, Yevgen

    Many materials exhibit a stress range dependent creep behavior. The power-law creep observed for a certain stress range changes to the viscous type creep if the stress value decreases. Recently published experimental data for advanced heat resistant steels indicates that the high creep exponent (in the range 5-12 for the power-law behavior) may decrease to the low value of approximately 1 within the stress range relevant for engineering structures. The aim of this paper is to confirm the stress range dependence of creep behavior based on the experimental data of stress relaxation. An extended constitutive model for the minimum creep rate is introduced to consider both the linear and the power law creep ranges. To take into account the primary creep behavior a strain hardening function is introduced. The material constants are identified for published experimental data of creep and relaxation tests for a 12%Cr steel bolting material at 500°C. The data for the minimum creep rate are well-defined only for moderate and high stress levels. To reconstruct creep rates for the low stress range the data of the stress relaxation test are applied. The results show a gradual decrease of the creep exponent with the decreasing stress level. Furthermore, they illustrate that the proposed constitutive model well describes the creep rates for a wide stress range.

  12. Effect of Thermal Cycling on Creep Behavior of Powder-Metallurgy-Processed and Hot-Rolled Al and Al-SiC Particulate Composites

    NASA Astrophysics Data System (ADS)

    Pal, Sharmilee; Bhanuprasad, V. V.; Mitra, R.; Ray, K. K.

    2009-12-01

    The tensile creep behavior of powder metallurgy (P/M)-processed and hot-rolled commercially pure Al and Al-5 or Al-10 vol pct SiC particulate composites has been evaluated after subjecting to 0, 2, and 8 thermal cycles between 500 °C and 0 °C with rapid quenching. The images of microstructures obtained using scanning and transmission electron microscopy as well as changes in the electrical resistivity, Young’s modulus, and microhardness have been examined in the samples subjected to thermal cycling, in order to compare the effects of structural damage and strengthening by dislocation generation. The damage is caused by voids formed by vacancy coalescence, and is more severe in pure Al than in Al-SiCp composites, because the particle-matrix interfaces in the composites act as effective sinks for vacancies. Creep tests have shown that the application of 2 thermal cycles lowers the creep strain rates in both pure Al and Al-SiCp composites. However, the creep resistance of pure Al gets significantly deteriorated, unlike the mild deterioration in the Al-5 SiCp composite, while the time to rupture for the Al-10 SiCp composite is increased. The dislocation structure and subgrain sizes in the Al and in the matrices of the Al-SiCp composites in the as-rolled condition, after thermal cycling, and after creep tests, have been compared and related to the creep behavior. The dimple sizes of the crept fracture surfaces appear to be dependent on the void density, tertiary component of strain, and time to rupture.

  13. Improved Creep Behavior of a High Nitrogen Nb-Stabilized 15Cr-15Ni Austenitic Stainless Steel Strengthened by Multiple Nanoprecipitates

    NASA Astrophysics Data System (ADS)

    Ha, Vu The; Jung, Woo Sang; Suh, Jin Yoo

    2011-11-01

    Austenitic stainless steels are expected to be a major material for boiler tubes and steam turbines in future ultra-supercritical (USC) fossil power plants. It is of great interest to maximize the creep strength of the materials without increasing the cost. Precipitation strengthening was found to be the best and cheapest way for increasing the creep strength of such steels. This study is concerned with improving creep properties of a high nitrogen Nb-stabilized 15Cr-15Ni austenitic alloy through introducing a high number of nanosized particles into the austenitic matrix. The addition of around 4 wt pct Mn and 0.236 wt pct N into the 15Cr-15Ni-0.46Si-0.7Nb-1.25Mo-3Cu-Al-B-C matrix in combination with a special multicycled aging-quenching heat treatment resulted in the fine dispersion of abundant quantities of thermally stable (Nb,Cr,Fe)(C,N) precipitates with sizes of 10 to 20 nm. Apart from the carbonitrides, it was found that a high number of coherent copper precipitates with size 40 to 60 nm exist in the microstructure. Results of creep tests at 973 K and 1023 K (700 °C and 750 °C) showed that the creep properties of the investigated steel are superior compared to that of the commercial NF709 alloy. The improved creep properties are attributed to the improved morphology and thermal stability of the carbonitrides as well as to the presence of the coherent copper precipitates inside the austenitic matrix.

  14. Tensile creep of alumina-silicon carbide ``nanocomposites``

    SciTech Connect

    Thompson, A.M.; Chan, H.M.; Harmer, M.P.

    1997-09-01

    The tensile creep behavior of an (Al{sub 2}O{sub 3}-SiC) nanocomposite that contains 5 vol% of 0.15 {micro}m SiC particles is examined in air under constant-load conditions. For a stress level of 100 MPa and in the temperature range of 1,200--1,300 C, the SiC reduces the creep rate of Al{sub 2}O{sub 3} by 2--3 orders of magnitude. In contrast to Al{sub 2}O{sub 3}, the nanocomposite exhibits no primary or secondary stages, with only tertiary creep being observed. Microstructural examination reveals extensive cavitation that is associated with SiC particles that are located at the Al{sub 2}O{sub 3} grain boundaries. Failure of the nanocomposite occurs via growth of subcritical cracks that are nucleated preferentially at the gauge corners. A modified test procedure enables creep lifetimes to be estimated and compared with creep rupture data. Several possible roles of the SiC particles are considered, including (1) chemical alteration of the Al{sub 2}O{sub 3} grain boundaries, (2) retarded diffusion along the Al{sub 2}O{sub 3}-SiC interface, and (3) inhibition of the accommodation process (either grain-boundary sliding or grain-boundary migration).

  15. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    NASA Astrophysics Data System (ADS)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  16. Cumulative creep damage for unidirectional composites under step loading

    NASA Astrophysics Data System (ADS)

    Guedes, Rui Miranda

    2012-11-01

    The creep lifetime prediction of unidirectional composite materials under step loading, based on constant loading durability diagram, is analyzed for the two-step creep loading condition. For this purpose different nonlinear cumulative-damage laws are revisited and applied to predict creep lifetime. One possible approach to accounting for damage accumulation is provided by the continuum-damage mechanics (CDM). However, the CDM lifetime expression obtained for constant loading condition presents some drawbacks. Specifically, the upper stress range is not accommodated by CDM form. A modification of CDM is proposed, forcing the CDM to capture the short-term creep failure. It is proven that this modified CDM (MCDM) does not yield the same predictions as the Linear Cumulative-damage law (Miner's law). Predictions obtained from the nonlinear cumulative-damage laws are compared against synthetic lifetime generated by a micromechanical model that simulates unidirectional composites under two-step creep loading condition. Comparable deviations from Miner's law are obtained by the nonlinear cumulative-damage laws.

  17. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  18. Continuous turbine blade creep measurement based on Moiré

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Tait, Robert; Harding, Kevin; Nieters, Edward J.; Hasz, Wayne C.; Piche, Nicole

    2012-11-01

    Moiré imaging has been used to measure creep in the airfoil section of gas turbine blades. The ability to accurately assess creep and other failure modes has become an important engineering challenge, because gas turbine manufacturers are putting in place condition-based maintenance programs. In such maintenance programs, the condition of individual components is assessed to determine their remaining lives. Using pad-print technology, a grating pattern was printed directly on a turbine blade for localized creep detection using the spacing change of moiré pattern fringes. A creep measurement prototype was assembled for this application which contained a lens, reference grating, camera and lighting module. This prototype comprised a bench-top camera system that can read moiré patterns from the turbine blade sensor at shutdown to determine creep level in individual parts by analyzing the moiré fringes. Sensitivity analyses and noise factor studies were performed to evaluate the system. Analysis software was also developed. A correlation study with strain gages was performed and the measurement results from the moiré system align well with the strain gage readings. A mechanical specimen subjected to a one cycle tensile test at high temperature to induce plastic deformation in the gage was used to evaluate the system and the result of this test exhibited good correlation to extensometer readings.

  19. Creep behavior of Fe-bearing olivine under hydrous conditions

    NASA Astrophysics Data System (ADS)

    Tasaka, Miki; Zimmerman, Mark E.; Kohlstedt, David L.

    2015-09-01

    To understand the effect of iron content on the creep behavior of olivine, (MgxFe(1 - x))2SiO4, under hydrous conditions, we have conducted tri-axial compressive creep experiments on samples of polycrystalline olivine with Mg contents of x = 0.53, 0.77, 0.90, and 1. Samples were deformed at stresses of 25 to 320 MPa, temperatures of 1050° to 1200°C, a confining pressure of 300 MPa, and a water fugacity of 300 MPa using a gas-medium high-pressure apparatus. Under hydrous conditions, our results yield the following expression for strain rate as a function of iron content for 0.53 ≤ x ≤ 0.90 in the dislocation creep regime: ɛ˙=ɛ˙0.90((1-x/0.1))1/2exp[226×1030.9-x/RT]. In this equation, the strain rate of San Carlos olivine, ɛ˙0.90, is a function of T, σ, and fH2O. As previously shown for anhydrous conditions, an increase in iron content directly increases creep rate. In addition, an increase in iron content increases hydrogen solubility and therefore indirectly increases creep rate. This flow law allows us to extrapolate our results to a wide range of mantle conditions, not only for Earth's mantle but also for the mantle of Mars.

  20. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Li, Lin; ...

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  1. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    SciTech Connect

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.

  2. MELCOR Analysis of Steam Generator Tube Creep Rupture in Station Blackout Severe Accident

    SciTech Connect

    Liao, Y.; Vierow, K.

    2005-12-15

    A pressurized water reactor steam generator tube rupture (SGTR) is of concern because it represents a bypass of the containment for radioactive materials to the environment. In a station blackout accident, tube integrity could be threatened by creep rupture, particularly if cracks are present in the tube walls. Methods are developed herein to improve assessment capabilities for SGTR by using the severe-accident code MELCOR. Best-estimate assumptions based on recent research and computational fluid dynamics calculations are applied in the MELCOR analysis to simulate two-dimensional natural circulation and to determine the relative creep-rupture timing in the reactor coolant pressure boundary components. A new method is developed to estimate the steam generator (SG) hottest tube wall temperature and the tube critical crack size for the SG tubes to fail first. The critical crack size for SG tubes to fail first is estimated to be 20% of the wall thickness larger than by a previous analysis. Sensitivity studies show that the failure sequence would change if some assumptions are modified. In particular, the uncertainty in the countercurrent flow limit model could reverse the failure sequence of the SG tubes and surge line.

  3. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  4. High-temperature flexural creep of ZrB2-SiC ceramics in argon atmosphere

    SciTech Connect

    Guo, Wei-Ming; Zhang, Guo-Jun; Lin, Hua-Tay

    2012-01-01

    Four-point flexure creep deformation of ZrB2-30 vol% SiC ceramics in argon atmosphere under a static load of 19 MPa for 0-100 h at 1500 and 1600 C was investigated. The strain rate at 1600 oC was 3.7 times higher than that at 1500 oC. Microstructural evolution during creep consisted of nucleation and growth of triple-point cavitations which were always associated with SiC particles. Due to the low stress, only isolated cavitations were nucleated, and no microcracks were formed. For up to 100 h at 1500 and 1600 C, the grains maintained their size and shape. The cavitations in both size and number showed no obvious difference from 26 to 100 h at 1500 C, whereas that showed a significant increase from 26 to 100 h at 1600 C. Present study suggested that ZrB2-30 vol% SiC exhibited relatively good microstructural stability and creep resistance at 1500 C in argon atmosphere.

  5. Depth Dependence of the Fault Strength in the Creeping Section of the Atotsugawa Fault, Japan

    NASA Astrophysics Data System (ADS)

    Mizoguchi, K.; Fukuyama, E.; Kitamura, K.; Takahashi, M.; Masuda, K.

    2005-12-01

    The Atotsugawa fault is located along a highly deformed region in central Japan with 60km long, striking to N60°E and dipping to 90° ± 10°. From the laser distance measurement survey, a creeping section (1.5mm/y) was found in the northeastern part [Geogr. Surv. Inst., 1997]. In this section, a low seismicity area down to a depth of 7km was found above the seismically active region down to 15 km [Ito and Wada, 1999]. In order to investigate the depth dependent feature of the fault strength, we conducted tri-axial friction tests of the Atotsugawa fault gouge under the conditions of 1, 3, 5 and 7km depth. The NIED drilled a borehole in the fault zone down to a depth of 350m in this creeping section [Omura et al., 2004] and obtained core samples consisting of fault gouge, fault breccia and fractured host rocks (granitic rocks and hornblende gneiss). The samples are taken in the gouge zone (8.5mm in thickness) located at a depth of 342 m. The samples were disaggregated in distilled water and passed through a 100μm diameter sieve for the friction tests. From the XRD analysis, the gouge sample consists of quartz, feldspar, smectite, kaolinite and micas. The average grain size in the sample was approximately 16.9μm measured by a laser diffraction particle size analyzer. The friction tests were run using a gas-medium tri-axial apparatus at the AIST, Japan [Masuda et al., 2002]. For each run, 0.5g gouge powder was put between 30° sawcut of an alumina ceramic cylinder (20mm in diameter) and sheared at a constant axial slip rate of 0.1μm/s. Each test was done with pore fluid of distilled water at the temperature-pressure conditions of 1-7 km depths assuming a hydrostatic pore-pressure gradient of 10MPa/km, a lithostatic confining pressure gradient of 26MPa/km and a geothermal gradient of 30°C/km. In all experiments, the friction increases rapidly to an axial displacement of about 0.1mm, and then it gradually increases or becomes steady state. We found a strong depth

  6. The dependence of irradiation creep in austenitic alloys on displacement rate and helium to dpa ratio

    SciTech Connect

    Garner, F.A.; Toloczko, M.B.; Grossbeck, M.L.

    1998-03-01

    Before the parametric dependencies of irradiation creep can be confidently determined, analysis of creep data requires that the various creep and non-creep strains be separated, as well as separating the transient, steady-state, and swelling-driven components of creep. When such separation is attained, it appears that the steady-state creep compliance, B{sub o}, is not a function of displacement rate, as has been previously assumed. It also appears that the formation and growth of helium bubbles under high helium generation conditions can lead to a significant enhancement of the irradiation creep coefficient. This is a transient influence that disappears as void swelling begins to dominate the total strain, but this transient can increase the apparent creep compliance by 100--200% at relatively low ({le}20) dpa levels.

  7. Room-temperature transverse compressive creep of thick Kevlar fabric/ epoxy laminates

    SciTech Connect

    Ericksen, R.H.; Guess, T.R.

    1980-01-01

    Creep and recovery of thick Kevlar 49/epoxy composites were investigated in transverse compressive loading at room temperature. Cylindrical samples with void contents of 4 and 14 percent were tested along with those of unreinforced resin. The composites exhibited logarithmic creep. Creep rates were 2 times higher over the entire stress range for the high porosity composites. At a stress of 87 MPa the resin creep curve was similar to that of the composites. At higher stresses, the resin crept faster and exhibited more strain. It is proposed that axial compressive creep of the cylindrical composite specimens is governed by Poisson induced strains leading to tensile loading of the reinforcing fibers. Axial initial strain and creep rate data for the composite were converted to radial data using measured values of Poisson ratio. These values of composite specimen radial creep rate were in good agreement with tensile creep data of Kevlar 49 fibers.

  8. Particle Hardening in Creep-Resistant Mg-Alloy MRI 230D Probed by Nanoindenting Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Backes, Björn; Durst, Karsten; Amberger, Dorothea; Göken, Mathias

    2009-02-01

    Two different Mg alloys, AZ91 and MRI 230D, have been investigated with the objective to understand the differences in high-temperature deformation behavior. AZ91 is known for its rather poor creep resistance; in contrast to this, MRI 230D is known to have a rather high resistance against plastic deformation at elevated temperatures. The microstructure and mechanical properties of as-cast and crept specimens of two Mg alloys (AZ91 and MRI 230D) were characterized by nanoindenting atomic force microscopy (NI-AFM). In the cell interior, a significant higher hardness was found for MRI 230D in comparison to AZ91. Precipitates with an average size of about 50 nm found in the cell interior of MRI 230D after creep deformation are discussed as the major hardening component.

  9. Constitutive Modeling of High Temperature Uniaxial Creep-Fatigue and Creep-Ratcheting Responses of Alloy 617

    SciTech Connect

    P.G. Pritchard; L.J. Carroll; T. Hassan

    2013-07-01

    Inconel Alloy 617 is a high temperature creep and corrosion resistant alloy and is a leading candidate for use in Intermediate Heat Exchangers (IHX) of the Next Generation Nuclear Plants (NGNP). The IHX of the NGNP is expected to experience operating temperatures in the range of 800 degrees - 950 degrees C, which is in the creep regime of Alloy 617. A broad set of uniaxial, low-cycle fatigue, fatigue-creep, ratcheting, and ratcheting-creep experiments are conducted in order to study the fatigue and ratcheting responses, and their interactions with the creep response at high temperatures. A unified constitutive model developed at North Carolina State University is used to simulate these experimental responses. The model is developed based on the Chaboche viscoplastic model framework. It includes cyclic hardening/softening, strain rate dependence, strain range dependence, static and dynamic recovery modeling features. For simulation of the alloy 617 responses, new techniques of model parameter determination are developed for optimized simulations. This paper compares the experimental responses and model simulations for demonstrating the strengths and shortcomings of the model.

  10. Creep Life Prediction of Ceramic Components Using the Finite Element Based Integrated Design Program (CARES/Creep)

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1997-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. Such long life requirements necessitate subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this work is to present a design methodology for predicting the lifetimes of structural components subjected to multiaxial creep loading. This methodology utilizes commercially available finite element packages and takes into account the time varying creep stress distributions (stress relaxation). In this methodology, the creep life of a component is divided into short time steps, during which, the stress and strain distributions are assumed constant. The damage, D, is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. For components subjected to predominantly tensile loading, failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity.

  11. Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2014-01-01

    Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatigue tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.

  12. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  13. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  14. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1985-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  15. Creep Burst Testing of a Woven Inflatable Module

    NASA Technical Reports Server (NTRS)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  16. Creep of Fine-grained Gabbro in dry Condition

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Rybacki, E.; Dresen, G.; He, C.

    2008-12-01

    Natural fine-grained gabbro were deformed at 300MPa confining pressure in a paterson-type deformation apparatus in GFZ. Creep tests were performed at temperatures ranging from 950-1150'C, stresses from 25-500 MPa, and strain rates between2.3x10-4 to 6.7x10-8s-1. The fine-grained gabbro is composed of 60 vol percent plagioclase, 30 vol percent pyroxene, 10 vol percent magnetite and ilmenite. The samples were dried at 1000`C for 167 hours before experiments. FTIR measurements show a water content of 0.008 wt percent H2O for starting samples, and 0.03 wt percent H2O for deformed samples. We performed three kinds of tests: stress step creep tests, temperature step creep test and constant stress creep with a long creep time. The data of stress-stepping creep tests and the constant stress creep test with long creep time show that the strain rates under the same stress level were increasing with cumulated creep time beyond a threshold time, which is 24 hours for temperature up to 1050 `C and 5 hours for temperature of 1100 `C, and a linear relation with slope of 1.0 was found between logarithm of strain rate and logarithm of accumulated time, suggesting time-proportional strain-rate enhancement, or equivalently, time-weakening effect of flow strength. Microstructural observations of deformed samples show that melt films occurred between grain boundaries of samples, and the melt contents increase with the creep time, indicating the mechanism of the weakening behavior. The strain rate enhancement related to melt fraction agrees to the data of Dimanov et al. [2000], and is fitted well with the model of Paterson [2000]. In order to determine a steady-state flow law with the effect of melt film excluded, the original steady-state strain rates are converted to the case with t=24 hours for experiments with temperatures up to 1050 `C, and data for temperature of 1100 `C are converted to the case with t=5 hours. The time-corrected creep data were fitted to the most commonly used

  17. Accelerating creep of the slopes of a coal mine

    NASA Astrophysics Data System (ADS)

    Cruden, D. M.; Masoumzadeh, S.

    1987-04-01

    A 249 day long record of the accelerating creep of a slope of an open-pit coal mine is analyzed, using linear regression, to test four creep laws. The Saito and Zavodni and Broadbent laws did not lead to a satisfactory estimation of the time of failure as a range of times of failure satisfied the goodness of fit criteria. Using the generalized Saito law, the upper limit for the time of failure was 168 days after the actual failure. Our prediction of a critical slide velocity for the evacuation of pit personnel and equipment, as an indication of impending failure, used two new methods employing the power and exponential laws. Three accelerating creep stages were identified, threshold velocities of 0.02 mm/min and 0.1 mm/min marked the initiation of the second and third stages, respectively.

  18. Deformation and crack growth response under cyclic creep conditions

    SciTech Connect

    Brust, F.W. Jr.

    1995-12-31

    To increase energy efficiency, new plants must operate at higher and higher temperatures. Moreover, power generation equipment continues to age and is being used far beyond its intended original design life. Some recent failures which unfortunately occurred with serious consequences have clearly illustrated that current methods for insuring safety and reliability of high temperature equipment is inadequate. Because of these concerns, an understanding of the high-temperature crack growth process is very important and has led to the following studies of the high temperature failure process. This effort summarizes the results of some recent studies which investigate the phenomenon of high temperature creep fatigue crack growth. Experimental results which detail the process of creep fatigue, analytical studies which investigate why current methods are ineffective, and finally, a new approach which is based on the T{sup *}-integral and its ability to characterize the creep-fatigue crack growth process are discussed. The potential validity of this new predictive methodology is illustrated.

  19. Power-law creep and residual stresses in carbopol microgels

    NASA Astrophysics Data System (ADS)

    Lidon, Pierre; Manneville, Sebastien

    We report on the interplay between creep and residual stresses in carbopol microgels. When a constant shear stress σ is applied below the yield stress σc, the strain is shown to increase as a power law of time, γ (t) =γ0 +(t / τ) α , with and exponent α ~= 0 . 38 that is strongly reminiscent of Andrade creep in hard solids. For applied shear stresses lower than some characteristic value of about σc / 10 , the microgels experience a more complex creep behavior that we link to the existence of residual stresses and to weak aging of the system after preshear. The influence of the preshear protocol, of boundary conditions and of microgel concentration on residual stresses is investigated. We discuss our results in light of previous works on colloidal glasses and other soft glassy systems.

  20. Creep and recovery behavior analysis of space mesh structures

    NASA Astrophysics Data System (ADS)

    Tang, Yaqiong; Li, Tuanjie; Ma, Xiaofei

    2016-11-01

    The Schapery's nonlinear viscoelastic theory and nonlinear force-density method have been investigated to analyze the creep and recovery behaviors of space deployable mesh reflectors in this paper. Based on Schapery's nonlinear viscoelastic theory, we establish the creep and recovery constitutive model for cables whose pretensions were applied stepwise in time. This constitutive model has been further used for adjustment of cables' elongation rigidity. In addition, the time-dependent tangent stiffness matrix is calculated by the partial differentiation of the corresponding load vector with respect to the nodal coordinate vector obtained by the nonlinear force-density method. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the time-dependent nonlinear statics equations. Finally, a hoop truss reflector antenna is presented as a numerical example to illustrate the efficiency of the proposed method for the creep and recovery behavior analysis of space deployable mesh structures.

  1. The effect of phosphorus on creep in copper

    NASA Astrophysics Data System (ADS)

    Sandström, Rolf; Andersson, Henrik C. M.

    2008-01-01

    Pure copper with an addition of about 50 ppm phosphorus is the planned material for the outer part of the waste package for spent nuclear fuel in Sweden. Phosphorus is added to improve the creep ductility but it also strongly increases the creep strength. In the present paper the influence of phosphorus on the strength properties of copper is analysed. Using the Labusch-Nabarro model it is demonstrated that 50 ppm has a negligible influence on the yield strength in accordance with observations. For slow moving dislocations, the interaction energy between the P-atoms and the dislocations gives rise to an agglomeration and a locking. The computed break away stresses are in agreement with the difference in creep stress of copper with and without P-additions.

  2. Study on the creep properties of distributed optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Song, Shiwei; Yang, Caiqian; Wu, Zhishen; Zhang, Yufeng; Shen, Sheng

    2010-04-01

    In this paper, based on the distributed optical fiber strain sensing technology of pulse-pre-pump Brillouin Optical Time Domain Analysis (PPP-BOTDA), the creep properties of two types of optical fiber sensors, i.e. single mode optical fiber with jacket (Type-A) and optical fiber with UV resin coating (Type-B), were studied at different load (60g~600g) amplitudes. Experimental results show that there exists some creep for both types in initial loading period and tend to level off with time. But for Type-B, the strain variation is 5% of initial strain, and the stabilization time is about 48h, both of which are obviously smaller than those of Type-A. As a result, it is revealed that Type-B is characterized by a smaller creep, suitable for the long-term monitoring of infrastructures.

  3. Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction

    NASA Astrophysics Data System (ADS)

    Neu, R. W.; Sehitoglu, Huseyin

    1989-09-01

    A life prediction model is developed for crack nucleation and early crack growth based on fatigue, environment (oxidation), and creep damage. The model handles different strain-temperature phasings (i.e., in-phase and out-of-phase thermomechanical fatigue, isothermal fatigue, and others, including nonproportional phasings). Fatigue life predictions compare favorably with experiments in 1070 steel for a wide range of test conditions and strain-temperature phasings. An oxide growth (oxide damage) model is based on the repeated microrupture process of oxide observed from microscopic measurements. A creep damage expression, which is stress-based, is coupled with a unified constitutive equation. A set of interrupted tests was performed to provide valuable damage progression information. Tests were performed in air and in helium atmospheres to isolate creep damage from oxidation damage.

  4. Adaptive re-tracking algorithm for retrieval of water level variations and wave heights from satellite altimetry data for middle-sized inland water bodies

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey

    by the improved threshold algorithm. The possibility of determination of significant wave height (SWH) in the lakes through a two-step adaptive retracking is also studied. Calculation of the parameter SWH for Gorky Reservoir from May 2010 to March 2014 showed the anomalously high values of SWH, derived from altimetry data [15], which means that the calibration of this SWH for inland waters is required. Calibration ground measurements were performed at Gorky reservoir in 2011-2013, when wave height, wind speed and air temperature were collected by equipment placed on a buoy [15] collocated with Jason-1 and Jason-2 altimetry data acquisition. The results obtained on the basis of standard algorithm and method for adaptive re-tracking at Rybinsk , Gorky , Kuibyshev , Saratov and Volgograd reservoirs and middle-sized lakes of Russia: Chany, Segozero, Hanko, Oneko, Beloye, water areas of which are intersected by the Jason-1,2 tracks, were compared and their correlation with the observed data of hydrological stations in reservoirs and lakes was investigated. It was noted that the Volgograd reservoir regional re-tracking to determine the water level , while the standard GDR data are practically absent. REFERENCES [1] AVISO/Altimetry. User Handbook. Merged TOPEX/ POSEIDON Products. Edition 3.0. AVISO. Toulouse., 1996. [2] C.M. Birkett et al., “Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry,” J. Geophys. Res., vol. 107, pp. 8059, 2002. [3] G. Brown, “The average impulse response of a rough surface and its applications,” IEEE Trans. Antennas Propagat., vol. 25, pp. 67-74, 1977. [4] I.O. Campos et al., “Temporal variations of river basin waters from Topex/Poseidon satellite altimetry. Application to the Amazon basin,” Earth and Planetary Sciences, vol. 333, pp. 633-643, 2001. [5] A.V. Kouraev et al., “Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992-2002),” Rem. Sens. Environ., vol. 93, pp. 238-245, 2004

  5. Creep of SiC Hot-Pressed with Al, B, and C

    SciTech Connect

    Sixta, Mark Eldon

    2000-03-31

    The creep of a high strength, high toughness SiC, sintered with Al, B, and C was investigated. For elevated temperature applications, the time-dependent deformation, creep response, must be fully characterized for candidate materials. The mechanisms responsible for high temperature deformation in ABC-SiC were evaluated. The creep response was compared to materials that have glassy grain boundary phases but do not have interlocked grains. The creep mechanisms were assessed.

  6. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  7. Peristaltic Creeping Flow of Power Law Physiological Fluids through a Nonuniform Channel with Slip Effect

    PubMed Central

    Chaube, M. K.; Tripathi, D.; Bég, O. Anwar; Sharma, Shashi; Pandey, V. S.

    2015-01-01

    A mathematical study on creeping flow of non-Newtonian fluids (power law model) through a nonuniform peristaltic channel, in which amplitude is varying across axial displacement, is presented, with slip effects included. The governing equations are simplified by employing the long wavelength and low Reynolds number approximations. The expressions for axial velocity, stream function, pressure gradient, and pressure difference are obtained. Computational and numerical results for velocity profile, pressure gradient, and trapping under the effects of slip parameter, fluid behavior index, angle between the walls, and wave number are discussed with the help of Mathematica graphs. The present model is applicable to study the behavior of intestinal flow (chyme movement from small intestine to large intestine). It is also relevant to simulations of biomimetic pumps conveying hazardous materials, polymers, and so forth. PMID:27057132

  8. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  9. Flux Creep in Sintered Superconducting Y-Ba-Cu-O

    NASA Astrophysics Data System (ADS)

    Matsushita, Teruo; Funaba, Seiji; Nagamatsu, Yoshiyuki; Ni, Baorong; Funaki, Kazuo; Yamafuji, Kaoru

    1989-09-01

    The flux creep rate in sintered superconducting Y-Ba-Cu-O was measured at 77 K and in fields of up to 0.1 T. The pinning potential mainly caused by flux pinning inside grains was 0.25 eV at B{=}50 mT and decreased monotonically with increasing magnetic field. The obtained results can be explained by the theoretical model with observed intragrain current density. This theoretical model suggests that the flux creep at high fields is notable even if a superconducting wire with the critical current density of 2× 1010 A/m2 at B{=}5 T is realized.

  10. Creep test results on D0 RunIIB stave

    SciTech Connect

    Lanfranco, Giobatta; /Fermilab

    2003-12-01

    The D0 RunIIb final design stave has been tested to verify its response to long term loading (creep). Two stave mockups have been investigated. Mechanical stave No.3 has been under continuous loading for 8 weeks. The maximum deflection was 3.6 {micro}m, with 80% of the total sag reached after the first two weeks. Mechanical stave No.2, despite the denomination, has been assembled successively with improved gluing assembly process and tested for six weeks. No creep mechanism has been observed in this surveyed mockup.

  11. Transient creep and convective instability of the lithosphere

    NASA Astrophysics Data System (ADS)

    Birger, Boris I.

    2012-12-01

    Laboratory experiments with rock samples show that transient creep, at which strain grows with time and strain rate decrease at constant stress, occurs while creep strains are sufficiently small. The transient creep at high temperatures is described by the Andrade rheological model. Since plate tectonics allows only small deformations in lithospheric plates, creep of the lithosphere plates is transient whereas steady-state creep, described by non-Newtonian power-law rheological model, takes place in the underlying mantle. At the transient creep, the effective viscosity, found in the study of postglacial flows, differs significantly from the effective viscosity, which characterizes convective flow, since timescales of these flows are very different. Besides, the transient creep changes the elastic crust thickness estimated within the power-law rheology of the lithosphere. Two problems of convective stability for the lithosphere with the Andrade rheology are solved. The solution of the first problem shows that the state, in which large-scale convective flow in the mantle occurs under lithospheric plates, is unstable and must bifurcate into another more stable state at which the lithospheric plates become mobile and plunge into the mantle at subduction zones. If the lithosphere had the power-law fluid rheology, the effective viscosity of the stagnant lithospheric plates would be extremely high and the state, in which large-scale convection occurs under the stagnant plates, would be stable that contradicts plate tectonics. The mantle convection forms mobile lithospheric plates if the effective viscosity of the plate is not too much higher than the effective viscosity of the underlying mantle. The Andrade rheology lowers the plate effective viscosity corresponding to the power-law fluid rheology and, thus, leads to instability of the state in which the plates are stagnant. The solution of the second stability problem shows that the state, in which the lithospheric plate

  12. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  13. Creep analysis of fuel plates for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein.

  14. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1990-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena, modern engines utilize single-crystal, nickel-base superalloys as the material of choice in critical applications. This paper will present recent research activities at NASA's Lewis Research Center on single-crystal blading material, related to creep and fatique. The goal of these research efforts is to improve the understanding of microstructure-property relationships and thereby guide material development.

  15. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1987-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena modern engines utilize single-crystal, nickel-based superalloys as the material of choice in critical applications. Recent research activities at Lewis on single-crystal blading material as well as future research initiatives on metal matrix composites related to creep and fatigue are discussed. The goal of these research efforts is improving the understanding of microstructure-property relationships and thereby guide material development.

  16. New constraints on upper mantle creep mechanism inferred from silicon grain-boundary diffusion rates

    NASA Astrophysics Data System (ADS)

    Fei, Hongzhan; Koizumi, Sanae; Sakamoto, Naoya; Hashiguchi, Minako; Yurimoto, Hisayoshi; Marquardt, Katharina; Miyajima, Nobuyoshi; Yamazaki, Daisuke; Katsura, Tomoo

    2016-01-01

    The creep in the Earth's interior is dominated either by diffusion creep which causes Newtonian mantle flow, or by dislocation creep which results in non-Newtonian mantle flow. Although previous deformation studies on olivine claimed a transition from dislocation creep to diffusion creep with depth in the upper mantle, they might misunderstand the creep rates due to experimental difficulties. Since creep in olivine is controlled by silicon diffusion, we measured the silicon grain-boundary diffusion coefficient in well-sintered iron-free olivine aggregates as a function of temperature, pressure, and water content, showing activation energy, activation volume, and water content exponent of 220 ± 30 kJ /mol, 4.0 ± 0.7 cm3 /mol, and 0.26 ± 0.07, respectively. Our results based on Si diffusion in forsterite predict that diffusion creep dominates at low pressures and low temperatures, whereas dislocation creep dominates under high pressure and high temperature conditions. Water has negligible effects on both diffusion and dislocation creep. There is a transition from diffusion creep in the shallow upper mantle to dislocation creep in deeper regions. This explains the seismic anisotropy increases at the Gutenberg discontinuity beneath oceans and at the mid-lithosphere discontinuity beneath continents.

  17. Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

    SciTech Connect

    K. Linga Murty

    2008-08-11

    Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep

  18. Hindsight Bias Doesn't Always Come Easy: Causal Models, Cognitive Effort, and Creeping Determinism

    ERIC Educational Resources Information Center

    Nestler, Steffen; Blank, Hartmut; von Collani, Gernot

    2008-01-01

    Creeping determinism, a form of hindsight bias, refers to people's hindsight perceptions of events as being determined or inevitable. This article proposes, on the basis of a causal-model theory of creeping determinism, that the underlying processes are effortful, and hence creeping determinism should disappear when individuals lack the cognitive…

  19. High temperature creep of a helium-implanted titanium aluminide alloy

    NASA Astrophysics Data System (ADS)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2011-09-01

    The creep properties of an intermetallic alloy Ti-46Al-2W-0.5Si (at%) including strain rate and time to fracture were investigated in vacuum using helium-implanted and non-implanted samples, at a temperature of 1073 K and a stress of 200 MPa. The implantation was performed using 24 MeV He-ions, homogeneously implanting the samples with up to 1333 appm (atomic parts per million) helium. The size and location of helium bubbles were determined with transmission electron microscopy (TEM). Samples implanted with helium content above 10 appm exhibited strong helium embrittlement, reducing both the time to fracture and the elongation at fracture. The corresponding critical helium bubble size r c was determined to 10 nm.

  20. 3D microstructural and microchemical characteristics of SAFOD fault gouge: implications for understanding fault creep

    NASA Astrophysics Data System (ADS)

    Warr, Laurence; Wojatschke, Jasmaria; Carpenter, Brett; Marone, Chris; Schleicher, Anja; van der Pluijm, Ben

    2013-04-01

    Fault creep on the SAFOD section of the San Andreas Fault occurs along mechanically weak fault gouge characterized by high proportions of hydrous clay minerals, namely smectite, illite-smectite and chlorite-smectite phases. These minerals are concentrated along closely spaced, interconnected polished slip surfaces that give the gouge its characteristic scaly fabric. Although it is generally accepted that the creep behavior of the gouge relates to the concentration of these minerals, the precise mechanisms by which clay minerals weaken rock is currently a topic of debate. In this contribution we present the first results from a "slice-and-view" study of SAFOD gouge material by focused ion beam - scanning electron microscopy (Zeiss Auriga FIB/SEM), which allows the reconstruction of the microstructure and microchemistry of mineralized slip surfaces in 3D. The core and cuttings samples studied were selected from ca. 3297 m measured depth and represent some of the weakest materials yet recovered from the borehole, with a frictional coefficient of ca. 0.10 and a healing rate close to zero. This gouge contains abundant serpentine and smectite minerals, the latter of which was identified by X-ray diffraction to be saponite, after Mg- and glycol intercalation. Imaging and chemical analyses reveal nanometer scale thin alteration seams of saponite clay distributed throughout the ca. 50 micron thick sheared serpentinite layer that coats the slip surfaces. The base of this layer is defined by cataclastically deformed iron oxide minerals. The 3D fabric implies the orientation of the hydrated smectite minerals, which are interconnected and lie commonly sub parallel to the slip surface, are responsible for the gouge creep behavior in the laboratory. These minerals, and related interlayered varieties, are particularly weak due to their thin particle size and large quantities of adsorbed water, properties that are expected to persist down to mid-crustal depth (ca. 10 km). Creep of

  1. Creep and creep rupture of laminated graphite/epoxy composites. Ph.D. Thesis. Final Report, 1 Oct. 1979 - 30 Sep. 1980

    NASA Technical Reports Server (NTRS)

    Dillard, D. A.; Morris, D. H.; Brinson, H. F.

    1981-01-01

    An incremental numerical procedure based on lamination theory is developed to predict creep and creep rupture of general laminates. Existing unidirectional creep compliance and delayed failure data is used to develop analytical models for lamina response. The compliance model is based on a procedure proposed by Findley which incorporates the power law for creep into a nonlinear constitutive relationship. The matrix octahedral shear stress is assumed to control the stress interaction effect. A modified superposition principle is used to account for the varying stress level effect on the creep strain. The lamina failure model is based on a modification of the Tsai-Hill theory which includes the time dependent creep rupture strength. A linear cumulative damage law is used to monitor the remaining lifetime in each ply.

  2. A brick model for asperity sintering and creep of APS TBCs

    NASA Astrophysics Data System (ADS)

    Cocks, Alan; Fleck, Norman; Lampenscherf, Stefan

    2014-02-01

    A micromechanical model is developed for the microstructural evolution of an air plasma sprayed (APS), thermal barrier coating: discrete, brick-like splats progressively sinter together at contacting asperities and also undergo Coble creep within each splat. The main microstructural features are captured: the shape, orientation and distribution of asperities between disc-shaped splats, and the presence of columnar grains within each splat. Elasticity is accounted for at the asperity contacts and within each splat, and the high contact compliance explains the fact that APS coatings have a much lower modulus (and thermal conductivity) than that of the parent, fully dense solid. The macroscopic elastic, sintering and creep responses are taken to be transversely isotropic, and remain so with microstructural evolution. Despite the large number of geometric and kinetic parameters, the main features of the behaviour are captured by a small number of characteristic material timescales: these reveal the competition between the deformation mechanisms and identify the rate controlling processes for both free and constrained sintering. The evolution of macroscopic strain, moduli and asperity size is compared for free and constrained sintering, and the level of in-plane stress within a constrained coating is predicted.

  3. Characteristics of Creep Damage for 60Sn-40Pb Solder Material

    SciTech Connect

    Wei, Y.; Chow, C.L.; Fang, H.E.; Neilsen, M.K.

    1999-08-26

    This paper presents a viscoplasticity model taking into account the effects of change in grain or phase size and damage on the characterization of creep damage in 60Sn-40Pb solder. Based on the theory of damage mechanics, a two-scalar damage model is developed for isotropic materials by introducing the free energy equivalence principle. The damage evolution equations are derived in terms of the damage energy release rates. In addition, a failure criterion is developed based on the postulation that a material element is said to have ruptured when the total damage accumulated in the element reaches a critical value. The damage coupled viscoplasticity model is discretized and coded in a general-purpose finite element program known as ABAQUS through its user-defined material subroutine UMAT. To illustrate the application of the model, several example cases are introduced to analyze, both numerically and experimentally, the tensile creep behaviors of the material at three stress levels. The model is then applied to predict the deformation of a notched specimen under monotonic tension at room temperature (22 C). The results demonstrate that the proposed model can successfully predict the viscoplastic behavior of the solder material.

  4. Creep rupture of a tropical wood polymer composite

    NASA Astrophysics Data System (ADS)

    Teoh, S. H.; Chia, L. H. L.; Boey, F. Y. C.

    Wood polymer composite (WPC) specimens were produced by impregnating a tropical wood with methyl methacrylate (MMA) and subsequently polymerised by gamma irradiation. Beam specimens of varying weight percentages of polymer were then subjected to three-point-bend creep rupture test under a constant load condition. Results indicated that the impregnation of MMA and subsequent polymerisation by irradiation to form WPC significantly increased the creep rupture resistance of the wood. Two models, namely, a three element non-linear mechanical model derived from an energy failure criterion and a power law model derived from a damage parameter concept, modelled adequately the creep rupture time of the WPC. The energy criterion model was useful because the equation parameters such as elastic modulus, anelastic modulus and resilience of WPC show a general trend of increase with the amount of polymer impregnated into the wood, and also it could predict the upper stress limit where the specimens rupture immediately on application of load and the lower stress limit where the specimens sustain the load indefinitely. Results indicated that the equation parameters increase significantly in the first 20 or 30% polymer loading in agreement with previous work. An interfacial interaction between the polymer and the wood cell wall was used to account for the behaviour of the increase in the creep rupture resistance.

  5. Non-Contact Measurements of Creep Properties of Refractory Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  6. LONG DISTANCE POLLEN-MEDIATED GENE FLOW FROM CREEPING BENTGRASS

    EPA Science Inventory

    Researchers from USEPA WED have measured gene flow from experimental fields of Roundup? herbicide resistant genetically modified (GM) creeping bentgrass a grass used primarily on golf courses, to compatible non-crop relatives. Using a sampling design based on the estimated time ...

  7. Physical simulations of cavity closure in a creeping material

    SciTech Connect

    Sutherland, H.J.; Preece, D.S.

    1985-09-01

    The finite element method has been used extensively to predict the creep closure of underground petroleum storage cavities in rock salt. Even though the numerical modeling requires many simplifying assumptions, the predictions have generally correlated with field data from instrumented wellheads, however, the field data are rather limited. To gain an insight into the behavior of three-dimensional arrays of cavities and to obtain a larger data base for the verification of analytical simulations of creep closure, a series of six centrifuge simulation experiments were performed using a cylindrical block of modeling clay, a creeping material. Three of the simulations were conducted with single, centerline cavities, and three were conducted with a symmetric array of three cavities surrounding a central cavity. The models were subjected to body force loading using a centrifuge. For the single cavity experiments, the models were tested at accelerations of 100, 125 and 150 g's for 2 hours. For the multi-cavity experiments, the simulations were conducted at 100 g's for 3.25 hours. The results are analyzed using dimensional analyses. The analyses illustrate that the centrifuge simulations yield self-consistent simulations of the creep closure of fluid-filled cavities and that the interaction of three-dimensional cavity layouts can be investigated using this technique.

  8. Effects of Lattice Connectivity on the Flux Creep Automaton

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Lindner, John F.

    2002-03-01

    We study a cellular automaton derived from the phenomenon of magnetic flux creep in two-dimensional granular superconductors. We first model the superconductor as an array of inductively coupled Josephson junctions evolving according to a set of coupled ordinary differential equations. In the limit of slowly increasing magnetic field, we then reduce these equations to a simple cellular automaton. The resulting discrete dynamics of the automaton is a stylized version of the continuous dynamics of the differential equations. The flux creep dynamics, derived from Kirchoff's laws and the Josephson relations, reduce to the corresponding gradient (or vector) sand pile automaton with an unusual non-local seeding, wherein all sites except the boundaries are seeded concurrently. Loop and line currents in the flux creep automaton correspond, respectively, to heights and gradients in the sand pile automaton. We implement the flux creep automaton on lattices that are 3-fold, 4-fold, 5-fold, and 6-fold symmetric and compare and contrast the resulting dynamics. (The 5-fold quasi-lattice is an aperiodic Penrose tiling.)

  9. Creep and stress relaxation modeling of polycrystalline ceramic fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Morscher, Gregory N.

    1994-01-01

    A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading about 800 C, these fibers display creep related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of a mechanism-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the Bend Stress Relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model, but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model tensile creep predictions based on the BSR test results with the literature data show good agreement, supporting both the predictive capability of the model and the use of the BSR text as a simple method for parameter determination for other fibers.

  10. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, Vito; Nissley, David; Lin, Li-Sen Jim

    1985-01-01

    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.

  11. Viscoelasticity and Creep Recovery of Polyimide Thin Films

    DTIC Science & Technology

    1990-06-01

    APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED MASSACHUSETTS INTITUTE OF TECHNOLOGY VLSI PUBLICATIONS AD- A225 475 OT1C rj u COPY VLSI Memo No. 90...strain & cr and the creep deflection dcr for different choices of the constants A, n, and m in the ranges of the measured displacements. Fig. 7 shows

  12. Compressive creep of polycrystalline ZrSiO{sub 4}.

    SciTech Connect

    Goretta, K. C.; Cruse, T. A.; Koritala, R. E.; Routbort, J. L.; Melendez-Martinez, J. J.; de Arellano-Lopez, A. R.; Univ. de Sevilla

    2001-08-01

    Polycrystalline ZrSiO{sub 4} ceramics were prepared from commercial powder. Silicate-based glass phase was observed at multiple-grain junctions. compressive creep tests were conducted in Ar at 1197-1400{sup o}C. For stresses of {approx}1-120 MPa, steady-state creep occurred by diffusional flow. For stresses of >3 MPa, the steady-state strain rate {dot {var_epsilon}} could be expressed as {dot {var_epsilon}} = A{sigma}{sup 1.1{+-}0.1}exp - [(470 {+-} 40 kJ/mol)/RT], where A is a constant, {sigma} the steady-state stress, R the gas constant, and T the absolute temperature. At 1400{sup o}C and 1 MPa, an increase in the value of n was observed. Electron microscopy revealed no deformation-induced change in the microstructures of any of the specimens, which is consistent with creep by diffusion-controlled grain-boundary sliding. Comparison with literature data indicated that volume diffusion of oxygen controlled the creep rate.

  13. Effects of radiation and creep on viscoelastic damping materials

    NASA Astrophysics Data System (ADS)

    Henderson, John P.; Lewis, Tom M.; Murrell, Fred H.; Mangra, Danny

    1995-05-01

    The Advanced Photon Source (APS), under construction at Argonne National Laboratory (ANL), requires precise alignment of several large magnets. Submicron vibratory displacements of the magnets can degrade the performance of this important facility. Viscoelastic materials (VEM) have been shown to be effective in the control of the vibration of these magnets. Damping pads, placed under the magnet support structures in the APS storage ring, use thin layers of VEM. These soft VEM layers are subject to both high-energy radiation environment and continuous through-the-thickness compressive loads. Material experiments were conducted to answer concerns over the long term effects of the radiation environment and creep in the viscoelastic damping layers. The effects of exposure to radiation as high as 108 rad on the complex modulus were measured. Through-the-thickness creep displacements of VEM thin layers subjected to static loads of 50 psi were measured. Creep tests were conducted at elevated temperatures. Time-temperature equivalence principles were used to project creep displacements at room temperatures over several years. These damping material measurements should be of interest to vibration control engineers working with a variety of applications of fields ranging from aerospace to industrial machinery.

  14. Creep Strength of Stabilized Wrought-aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Muller, W

    1940-01-01

    Rohn-type equipment has been mounted on rubber blocks, for the purpose of damping the vibrations of the ground and of rendering the plastic yielding of the test bars less subject to outside interferences. New equipment also included three shockproof creep-testing machines with the Martens mirror instruments for recording the strain curve of the fatigue-tested specimens.

  15. On The Creep Behavior Of Niobium-Modified Zirconium Alloys

    SciTech Connect

    Charit, I.; Murty, K.L.

    2006-07-01

    Zr alloys remain the main cladding materials in most water reactors. Historically, a series of Zircaloys were developed, and two versions, Zircaloy-2 and -4, are still employed in many reactors. The recent trend is to use the Nb-modified zirconium alloys where it has been shown that Nb addition improves cladding performance in various ways, most significant being superior long-term corrosion resistance. Hence, new alloys with Nb additions have recently been developed, such as Zirlo{sup TM(i)} and M5TM{sup (ii)}. Although it is known that creep properties improve, there have been very few data available to precisely evaluate the creep characteristics of new commercial alloys. However, the creep behavior of many Nb-modified zirconium alloys has been studied in several occasions. In this study, we have collected the creep data of these Nb-modified alloys from the open literature as well as our own study over a wide range of stresses and temperatures. The data have been compared with those of conventional Zr and Zircaloys to determine the exact role Nb plays. It has been argued that Nb-modified zirconium alloys would behave as a Class-A alloy (stress exponent of 3) with the Nb atoms forming solute atmospheres around dislocations and thus, impeding dislocation glide under suitable conditions. On the other hand, zirconium and Zircaloys behave as Class-M alloys with a stress exponent of {>=} 4, attesting to the dislocation climb-controlled deformation mode. (authors)

  16. CREEP MODELING FOR INJECTION-MOLDED LONG-FIBER THERMOPLASTICS

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2008-06-30

    This paper proposes a model to predict the creep response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the nonlinear viscoelastic behavior described by the Schapery’s model. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber length and orientation distributions were measured and used in the analysis that applies the Eshelby’s equivalent inclusion method, the Mori-Tanaka assumption (termed as the Eshelby-Mori-Tanaka approach) and the fiber orientation averaging technique to compute the overall strain increment resulting from an overall constant applied stress during a given time increment. The creep model for LFTs has been implemented in the ABAQUS finite element code via user-subroutines and has been validated against the experimental creep data obtained for long-glass-fiber/polypropylene specimens. The effects of fiber orientation and length distributions on the composite creep response are determined and discussed.

  17. Effect of solutes in binary columbium /Nb/ alloys on creep strength

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400 F for solute concentrations to 20 at.%, using a new method of creep-strength measurement. The technique permits rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase the creep strength of columbium except tantalum. This element did not strengthen columbium until the concentration exceeded 10 at.%. Hafnium, zirconium, and vanadium strengthed columbium most at low temperatures and concentrations, whereas tungsten, molybdenum, and rhenium contributed more to creep strength at high temperatures and concentrations.

  18. Creep Mechanisms of a Ni-Co-Based-Wrought Superalloy with Low Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Tian, Chenggang; Xu, Ling; Cui, Chuanyong; Sun, Xiaofeng

    2015-10-01

    In order to study the influences of stress and temperature on the creep deformation mechanisms of a newly developed Ni-Co-based superalloy with low stacking fault energy, creep experiments were carried out under a stress range of 345 to 840 MPa and a temperature range of 923 K to 1088 K (650 °C to 815 °C). The mechanisms operated under the various creep conditions were identified and the reasons for their transformation were well discussed. A deformation mechanism map under different creep conditions was summarized, which provides a qualitative representation of the operative creep mechanisms as a function of stress and temperature.

  19. "Cost creep due to age creep" phenomenon: pattern analyses of in-patient hospitalization costs for various age brackets in the United States.

    PubMed

    Chinta, Ravi; Burns, David J; Manolis, Chris; Nighswander, Tristan

    2013-01-01

    The expectation that aging leads to a progressive deterioration of biological functions leading to higher healthcare costs is known as the healthcare cost creep due to age creep phenomenon. The authors empirically test the validity of this phenomenon in the context of hospitalization costs based on more than 8 million hospital inpatient records from 1,056 hospitals in the United States. The results question the existence of cost creep due to age creep after the age of 65 years as far as average hospitalization costs are concerned. The authors discuss implications for potential knowledge transfer for cost minimization and medical tourism.

  20. Characterization of pore evolution in ceramics during creep failure and densification. Final report, April 15, 1984--April 14, 1995

    SciTech Connect

    Page, R.A.; Chan, K.S.

    1995-04-01

    This research program was divided into two phases, one involving creep cavitation, the other cavity evolution during sintering. In the former, work was aimed at determining the effect of microstructure and stress state upon creep cavitation, while in the latter, the principal objective was the characterization of pore evolution during sintering. In order to meet these objectives, the creep cavitation portion of the program was centered around small-angle neutron scattering, supplemented by electron microscopy and precision density measurements. The neutron scattering measurements yielded cavity nucleation and growth rates, and average pore, size, distribution, and morphology. These data were used to evaluate current cavitation models, and to implement improved modelling efforts. Additionally, stereoimaging analysis was used to determine grain boundary sliding displacements, which appear to be the critical driving force responsible for cavity nucleation and early growth. Effort in the pore sintering phase focussed on characterization of pore evolution during intermediate and final stage sintering of alumina using both single and multiple scattering techniques. Electron microscopy, density measurements, and mercury intrusion porosimetry measurements complemented the scattering results. The effects of sintering trajectory, green state, powder morphology, and additives were evaluated. These results were compared to current sintering models.