Science.gov

Sample records for creeping wave sizing

  1. Ultrasonic Phased Array Implementation of the Inside Diameter Creeping Wave Sizing Method

    SciTech Connect

    Timothy R. McJunkin; J. Mark Davis; Dennis C. Kunerth; Arthur D. Watkins

    2006-05-01

    This paper describes a technique for implementing the ultrasonic inside diameter (ID) creeping wave technique for detection and sizing ID connected defects using a phased array ultrasonic system. The technique uses multiple focal laws to produce the examination modes. The first focal law is designed to create a shear wave nominally at the critical angle for mode conversion to a longitudinal wave at the ID of a part, thus creating a creeping wave. This focal law is focused at the ID to improve sensitivity. The rest of the laws are designed to create tandem sound paths that progress up a vertical surface directly above the focal point of the creeping wave generation point. When a defect on the inner surface is detected with the creeping wave, the height of the defect can be measured from the response of a set of tandem laws without readjusting the position of the probe. Results from standard one-inch long notches of varying depths are presented.

  2. Creep events and creep noise in gravitational-wave interferometers: Basic formalism and stationary limit

    NASA Astrophysics Data System (ADS)

    Levin, Yuri

    2012-12-01

    In gravitational-wave interferometers, test masses are suspended on thin fibers which experience considerable tension stress. Sudden microscopic stress release in a suspension fiber, which I call a “creep event,” would excite motion of the test mass that would be coupled to the interferometer’s readout. The random test-mass motion due to a time sequence of creep events is referred to as “creep noise.” In this paper I present an elastodynamic calculation for the test-mass motion due to a creep event. I show that within a simple suspension model, the main coupling to the optical readout occurs via a combination of a “dc” horizontal displacement of the test mass and excitation of the violin and pendulum modes, and not, as was thought previously, via lengthening of the fiber. When the creep events occur sufficiently frequently and their statistics is time independent, the creep noise can be well approximated by a stationary Gaussian random process. I derive the functional form of the creep noise spectral density in this limit, with the restrictive assumption that the creep events are statistically independent from each other.

  3. Grain size-sensitive creep in ice II

    USGS Publications Warehouse

    Kubo, T.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2006-01-01

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  4. Grain size-sensitive creep in ice II.

    PubMed

    Kubo, Tomoaki; Durham, William B; Stern, Laura A; Kirby, Stephen H

    2006-03-01

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system. PMID:16513977

  5. Grain size-sensitive creep in ice II.

    PubMed

    Kubo, Tomoaki; Durham, William B; Stern, Laura A; Kirby, Stephen H

    2006-03-01

    Rheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers. The grain size-sensitive creep of ice II demonstrated here plausibly dominates plastic strain at the low-stress conditions in the interior of medium- to large-sized icy moons of the outer solar system.

  6. Creep of sound paths in consolidated granular material detected through coda wave interferometry.

    PubMed

    Espíndola, David; Galaz, Belfor; Melo, Francisco

    2016-07-01

    The time evolution of the contact force structure of a consolidated granular material subjected to a constant stress is monitored using the coda wave interferometry method. In addition, the nature of the aging and rejuvenation processes are investigated. These processes are interpreted in terms of affine and nonaffine structural path deformations. During the later stages of creep, the rearrangements of subgrains are so small that they only produce affine deformations in the contact paths, without any significant changes in the structural configuration. As a result, the strain path distribution follows the macroscopic strain. Conversely, in the presence of ultrasonic perturbations, the nonaffine grain buckling mechanism dominates, producing relatively drastic changes in the structural configuration accompanied by path deformations of the order of the grain size. This plastic mechanism induces material rejuvenation that is observed macroscopically as an ultrasonically accelerated creep. PMID:27575200

  7. Creep of sound paths in consolidated granular material detected through coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Espíndola, David; Galaz, Belfor; Melo, Francisco

    2016-07-01

    The time evolution of the contact force structure of a consolidated granular material subjected to a constant stress is monitored using the coda wave interferometry method. In addition, the nature of the aging and rejuvenation processes are investigated. These processes are interpreted in terms of affine and nonaffine structural path deformations. During the later stages of creep, the rearrangements of subgrains are so small that they only produce affine deformations in the contact paths, without any significant changes in the structural configuration. As a result, the strain path distribution follows the macroscopic strain. Conversely, in the presence of ultrasonic perturbations, the nonaffine grain buckling mechanism dominates, producing relatively drastic changes in the structural configuration accompanied by path deformations of the order of the grain size. This plastic mechanism induces material rejuvenation that is observed macroscopically as an ultrasonically accelerated creep.

  8. Creep of sound paths in consolidated granular material detected through coda wave interferometry.

    PubMed

    Espíndola, David; Galaz, Belfor; Melo, Francisco

    2016-07-01

    The time evolution of the contact force structure of a consolidated granular material subjected to a constant stress is monitored using the coda wave interferometry method. In addition, the nature of the aging and rejuvenation processes are investigated. These processes are interpreted in terms of affine and nonaffine structural path deformations. During the later stages of creep, the rearrangements of subgrains are so small that they only produce affine deformations in the contact paths, without any significant changes in the structural configuration. As a result, the strain path distribution follows the macroscopic strain. Conversely, in the presence of ultrasonic perturbations, the nonaffine grain buckling mechanism dominates, producing relatively drastic changes in the structural configuration accompanied by path deformations of the order of the grain size. This plastic mechanism induces material rejuvenation that is observed macroscopically as an ultrasonically accelerated creep.

  9. Specimen Size Effect on the Creep of Si3N4

    SciTech Connect

    Barnes, A.S.; Ferber, M.K.; Kirkland, T.P.; Wereszczak, A.A.

    1999-01-25

    The effect of specimen size on the measured tensile creep behavior of a commercially available gas pressure sintered Si3N4 was examined. Button-head tensile test specimens were used for the testing, and were machined to a variety of different gage section diameters (ranging from 2.5 to 6.35 mm) or different surface-area-to-volume ratios. The specimens were then creep tested at 1350 Degrees C and 200 MPa with tensile creep strain continuously measured as a function of time. The steady-state creep rate increased and the lifetime decreased with an increase in diameter (or decrease in the ratio of gage section surface area to volume). The time and specimen size dependence of transformation of a secondary phase correlated with the observed creep rate and lifetime dependence.

  10. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system

    NASA Astrophysics Data System (ADS)

    Vorobieva, Inessa; Shebalin, Peter; Narteau, Clément

    2016-07-01

    Crustal faults accommodate slip either by a succession of earthquakes or continuous slip, and in most instances, both these seismic and aseismic processes coexist. Recorded seismicity and geodetic measurements are therefore two complementary data sets that together document ongoing deformation along active tectonic structures. Here we study the influence of stable sliding on earthquake statistics. We show that creep along the San Andreas Fault is responsible for a break of slope in the earthquake size distribution. This slope increases with an increasing creep rate for larger magnitude ranges, whereas it shows no systematic dependence on creep rate for smaller magnitude ranges. This is interpreted as a deficit of large events under conditions of faster creep where seismic ruptures are less likely to propagate. These results suggest that the earthquake size distribution does not only depend on the level of stress but also on the type of deformation.

  11. Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces.

    PubMed

    Chen, Xi; He, Si-Yuan; Yu, Ding-Feng; Yin, Hong-Cheng; Hu, Wei-Dong; Zhu, Guo-Qiang

    2013-04-01

    An accurate creeping ray-tracing algorithm is presented in this paper to determine the tracks of creeping waves (or creeping rays) on arbitrarily shaped free-form parametric surfaces [nonuniform rational B-splines (NURBS) surfaces]. The main challenge in calculating the surface diffracted fields on NURBS surfaces is due to the difficulty in determining the geodesic paths along which the creeping rays propagate. On one single parametric surface patch, the geodesic paths need to be computed by solving the geodesic equations numerically. Furthermore, realistic objects are generally modeled as the union of several connected NURBS patches. Due to the discontinuity of the parameter between the patches, it is more complicated to compute geodesic paths on several connected patches than on one single patch. Thus, a creeping ray-tracing algorithm is presented in this paper to compute the geodesic paths of creeping rays on the complex objects that are modeled as the combination of several NURBS surface patches. In the algorithm, the creeping ray tracing on each surface patch is performed by solving the geodesic equations with a Runge-Kutta method. When the creeping ray propagates from one patch to another, a transition method is developed to handle the transition of the creeping ray tracing across the border between the patches. This creeping ray-tracing algorithm can meet practical requirements because it can be applied to the objects with complex shapes. The algorithm can also extend the applicability of NURBS for electromagnetic and optical applications. The validity and usefulness of the algorithm can be verified from the numerical results.

  12. Can grain size sensitive creep lubricate faults during earthquake propagation?

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Holdsworth, R.; Viti, C.; Collettini, C.; Bullock, R. J.; Faoro, I.

    2014-12-01

    In the shallow portion of crustal fault zones, fracturing and cataclasis are thought to be the dominant processes during earthquake propagation. In the lower crust/upper mantle, viscous flow is inferred to facilitate aseismic creep along shear zones. Recent studies show that slip zones (SZs), in natural and experimental carbonate seismic faults, are made of nanograins with a polygonal texture, a microstructure consistent with deformation by grain boundary sliding (GBS) mechanisms. Friction experiments performed on calcite fine-grained gouges, at speed v = 1 ms-1, normal stress sn = 18 MPa, displacements d = 0.009-1.46 m, and room temperature and humidity, show a four stage-evolution of the fault strength: SI) attainment of initial value, f = 0.67; SII) increase up to peak value f = 0.82; SIII) sudden decrease to low steady-state value, f = 0.18; and SIV) sudden increase to final value, f = 0.44, during sample deceleration. Samples recovered at the end of each displacement-controlled experiments (Stages I-IV) show the following microstructures evolution of the SZ material, which is: SI) poorly consolidated, and made of fine-grained (1 < D < 5 microns), angular clasts formed by brittle fracturing and cataclasis; SII) cohesive, and made of larger clasts of calcite (D ≈ 1 microns), exhibiting a high density of free dislocations and hosting subgrains (D ≤ 200 nm), dispersed within calcite nanograins. SIII) made of nanograin aggregates exhibiting polygonal grain boundaries, and 120° triple junctions between equiaxial grains. The grains display no preferred elongation, no crystal preferred orientation and low free dislocation densities, possibly due to high temperature (> 900 C) GBS creep deformation. Our microstructural observations suggest that GBS mechanisms can operate in geological materials deformed at high strain rates along frictionally heated seismogenic slip surfaces. The observed microstructures in experimental slip zones are strikingly similar to those

  13. Evolutionary models of the Earth with a grain size-dependent rheology: diffusion versus dislocation creep

    NASA Astrophysics Data System (ADS)

    Rozel, Antoine; Golabek, Gregor; Thielmann, Marcel; Schierjott, Jana; Tackley, Paul

    2016-04-01

    We present a set of 2D numerical simulations of mantle convection considering grain size evolution and a composite visco-plastic rheology including diffusion and dislocation creep. A 1D parameterization allows us to anticipate the stress conditions for the present-day temperature profile in a convection cell. We are therefore able to obtain self-consistent 2D convecion models together with non-equilibrium grain size for present-day conditions, controlling the partitioning between diffusion and dislocation creep. However, the internal temperature of the mantle is thought to have significantly evolved throughout the history of the Earth. Using a higher internal temperature is usually believed to decrease both viscosity and internal stresses. In our case, a high temperature potentially increases the grain size, which tends to increase the viscosity: the temperature and grain size-dependence of the viscosity are in competition. We study the evolution of the diffusion-dislocation partitioning throughout the history of the Earth. We report the evolution of grain size and stress over time in our simulations. Several complex processes are included in our models. Grain size evolution is a sum of grain growth and dynamic recrystallization. All our simulations consider thermochemical convection in a compressible mantle with melting producting basaltic crust and depleted mantle. Close to the surface, melting produces basaltic material which is erupted or intruded at the base of the crust. Phase transitions reset the grain size to a low value, which influences the whole dynamics of the mantle.

  14. Grain-size-sensitive creep and its relationship to grain-size-insensitive attenuation in ice-I

    NASA Astrophysics Data System (ADS)

    Caswell, T. E.; Cooper, R. F.; Goldsby, D. L.

    2014-12-01

    Tidal dissipation in the ice shell of, e.g., Europa, occurs in the context of a periodic strain amplitude ɛa ~10-5 imposed upon a material with a deformation-effected microstructure related to tectonic activity. Tidal flexing "samples" this microstructure; the microstructure's anelastic (attenuation, Q-1) response effects dissipation. Experiments combining steady-state creep of polycrystalline ice-I with superposed sinusoidal loading demonstrated an attenuation response that is (a) an order of magnitude more attenuating than predicted by the Maxwell Solid model, (b) similar in form to the Andrade Solid model, which at high-temperature and/or low-frequency conditions is approximated by a power law, (c) modestly non-linear (i.e., Q-1 is a function of the periodic strain amplitude) and (d) insensitive to grain size [1]. The grain-size insensitivity is profound, as steady-state creep of the specimens occurred by the geologically relevant mechanism of grain boundary sliding accommodated by basal dislocation glide (GBS)—a grain-size-sensitive rheology [2]. Here GBS involves emission, motion and interaction of lattice dislocations, and dislocation structures (e.g., subgrain boundaries and secondary grain boundary dislocations) are part of the microstructure sampled by the periodic stress. Transient creep responses sample the aspects of creep microstructure that effect attenuation. In our experiments, polycrystalline ice-I specimens are crept to steady state in the GBS regime (σ = 0.5-5.0 MPa, T = 243K, d = 30-150µm) and subjected to instantaneous drops in differential stress: initial strain-rate recovery is related to the creep microstructure of the previous, higher stress. Our results map-out in stress-strain rate space a "hardness" curve consistent with dislocation microstructure self-similarity - a requirement for grain size-insensitive attenuation. Cryogenic electron backscatter diffraction (EBSD) characterizes the associated microstructure. We have not observed

  15. Compaction creep of sands due to time-dependent grain failure: Effects of chemical environment, applied stress, and grain size

    NASA Astrophysics Data System (ADS)

    Brzesowsky, R. H.; Hangx, S. J. T.; Brantut, N.; Spiers, C. J.

    2014-10-01

    Time-dependent brittle creep plays a role in controlling compaction of sands and sandstones under upper crustal conditions, influencing phenomena such as production-induced reservoir compaction, surface subsidence, and induced seismicity. Brittle creep also plays a role in determining the mechanical behavior of gouge-rich faults. We performed uniaxial creep experiments on sand to investigate the effects of chemical environment (dry versus solution flooded), grain size (d = 196-378 µm), and applied effective stress (σa up to 30 MPa), at room temperature conditions favoring grain-scale brittle processes. Creep measurements were complemented with acoustic emission (AE) detection and microstructural analysis to characterize the main creep mechanism. Wet samples showed much higher creep strains than dry-tested samples. AE event counts showed a direct relation between grain failure and creep strain, with higher AE rates occurring in the wet samples. Therefore, we inferred that time-dependent deformation was dominated by subcritical crack growth, resulting in grain failure accompanied by intergranular sliding rearrangements, and that crack growth in the presence of chemically active fluids was controlled by stress corrosion. The sensitivity of the compaction rate of the sands to d and σa can be expressed as ɛ˙∝diσaj where i ≈ 6 and j ≈ 21 under dry conditions and i ≈ 9 and j ≈ 15 under wet conditions. Our results were compared to a simple model based on Hertzian contact theory, linear elastic fracture mechanics, and subcritical crack growth. This model showed agreement between the observed stress and grain size sensitivities of creep, within a factor of 2.

  16. Composite grain size sensitive and grain size insensitive creep of bischofite, carnallite and mixed bischofite-carnallite-halite salt rock

    NASA Astrophysics Data System (ADS)

    Muhammad, Nawaz; de Bresser, Hans; Peach, Colin; Spiers, Chris

    2016-04-01

    mechanism with decreasing strain rate for both bischofite and carnallite, from grain size insensitive (GSI) dislocation creep at the higher strain rates to grain size sensitive (GSS, i.e. pressure solution) creep at slow strain rate. We can speculate about the composite GSI-GSS nature of the constitutive laws describing the creep of the salt materials.

  17. Long‐term creep rates on the Hayward Fault: evidence for controls on the size and frequency of large earthquakes

    USGS Publications Warehouse

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Bilham, Roger; Ponce, David A.; Boatwright, John; Caskey, S. John

    2012-01-01

    The Hayward fault (HF) in California exhibits large (Mw 6.5–7.1) earthquakes with short recurrence times (161±65 yr), probably kept short by a 26%–78% aseismic release rate (including postseismic). Its interseismic release rate varies locally over time, as we infer from many decades of surface creep data. Earliest estimates of creep rate, primarily from infrequent surveys of offset cultural features, revealed distinct spatial variation in rates along the fault, but no detectable temporal variation. Since the 1989 Mw 6.9 Loma Prieta earthquake (LPE), monitoring on 32 alinement arrays and 5 creepmeters has greatly improved the spatial and temporal resolution of creep rate. We now identify significant temporal variations, mostly associated with local and regional earthquakes. The largest rate change was a 6‐yr cessation of creep along a 5‐km length near the south end of the HF, attributed to a regional stress drop from the LPE, ending in 1996 with a 2‐cm creep event. North of there near Union City starting in 1991, rates apparently increased by 25% above pre‐LPE levels on a 16‐km‐long reach of the fault. Near Oakland in 2007 an Mw 4.2 earthquake initiated a 1–2 cm creep event extending 10–15 km along the fault. Using new better‐constrained long‐term creep rates, we updated earlier estimates of depth to locking along the HF. The locking depths outline a single, ∼50‐km‐long locked or retarded patch with the potential for an Mw∼6.8 event equaling the 1868 HF earthquake. We propose that this inferred patch regulates the size and frequency of large earthquakes on HF.

  18. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions.

    PubMed

    Taneike, Masaki; Abe, Fujio; Sawada, Kota

    2003-07-17

    Creep is a time-dependent mechanism of plastic deformation, which takes place in a range of materials under low stress-that is, under stresses lower than the yield stress. Metals and alloys can be designed to withstand creep at high temperatures, usually by a process called dispersion strengthening, in which fine particles are evenly distributed throughout the matrix. For example, high-temperature creep-resistant ferritic steels achieve optimal creep strength (at 923 K) through the dispersion of yttrium oxide nanoparticles. However, the oxide particles are introduced by complicated mechanical alloying techniques and, as a result, the production of large-scale industrial components is economically unfeasible. Here we report the production of a 9 per cent Cr martensitic steel dispersed with nanometre-scale carbonitride particles using conventional processing techniques. At 923 K, our dispersion-strengthened material exhibits a time-to-rupture that is increased by two orders of magnitude relative to the current strongest creep-resistant steels. This improvement in creep resistance is attributed to a mechanism of boundary pinning by the thermally stable carbonitride precipitates. The material also demonstrates enough fracture toughness. Our results should lead to improved grades of creep-resistant steels and to the economical manufacture of large-scale steel components for high-temperature applications. PMID:12867976

  19. Influence of Mineral Fraction on the Rheological Properties of Forsterite + Enstatite during Grain Size Sensitive Creep

    NASA Astrophysics Data System (ADS)

    Tasaka, M.; Hiraga, T.

    2014-12-01

    Since the majority of crustal and mantle rocks are polymineralic, it is important to consider the effects of secondary mineral phases on their rheological properties. To examine these effects, we have conducted grain growth and deformation experiments on samples composed of different volumetric fractions of forsterite (Fo) and enstatite (En) at 1 atmosphere and temperatures from 1260 to 1360°C. The results of our grain growth experiments indicate that the grain size ratios of Fo and En in annealed (reference) and deformed samples follow a Zener relationship with dI/dII = b/fIIz, where dI/dII is the grain size of the primary or secondary phase, b and z are the Zener parameters relating grain boundary energies and location of secondary phase, and fII is the volume fraction of the associated phase. Grain growth in the reference samples conforms to the relationship ds 4-d04 = kt, where ds is the grain size under static conditions, d0 is the initial grain size, k is the grain growth coefficient, and t is time. The growth coefficient of Fo decrease with increasing En volume fraction (fEn), and is consistent with theoretical predictions of Ardell's grain growth model that incorporates physical parameters such as diffusivity and interfacial energy of the mineral phases. The results of our deformation experiments at constant temperature and strain rate indicate that the flow stress decreases with increasing fEn, for samples with 0 < fEn < 0.5, and increases with increasing fEn, for samples with 0.5 < fEn < 1. The values of the pre-exponential term, stress and grain size exponents, and activation energy in the constitutive equation for a wide range of fEn were determined. The majority of samples exhibited diffusion accommodated grain boundary sliding creep (i.e., stress exponent = 1). The viscosity measured for all samples is fit well by a model that takes into account (1) grain size calculated from grain growth laws established in our experiments and (2) the flow laws for

  20. Effect of particle size and temperature on rheology and creep behavior of barley β-d-glucan concentrate dough.

    PubMed

    Ahmed, Jasim

    2014-10-13

    Concentrated β-D-glucan has been added in the formulation of food products development that attributing human health. The purpose of this study is to assess the role of particle size (74, 105, 149, 297 and 595 μm) of barley β-D-glucan concentrate (BGC) on two fundamental rheological properties namely oscillatory rheology and creep in a dough system (sample to water = 1:2). The water holding capacity, sediment volume fraction and protein content increased with an increase in particle size from 74 μm to 595 μm, which directly influences the mechanical strength and visco-elasticity of the dough. The dough exhibited predominating solid-like behavior (elastic modulus, G'>viscous modulus, G"). The G' decreased systematically with increasing temperature from 25 to 85 °C at the frequency range of 0.1-10 Hz except for the dough having particle size of 105 μm, which could be associated with increase in protein content in the fraction. A discrete retardation spectrum is employed to the creep data to obtain retardation time and compliance parameters which varied significantly with particle size and the process temperature. All those information could be helpful to identify the particle size range of BGC that could be useful to produce a β-D-glucan enriched designed food.

  1. Effect of volume fraction and size of fine-gamma prime particles on raising the creep strength of a DS nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Lin, D. L.; Yao, D. L.; Lin, X. J.; Sun, C. Q.

    1986-01-01

    The creep behavior of a directionally solidifified nickel-base superalloy, DKS3, has been investigated as a function of the volume fraction and size of the gamma-prime phase at 760 and 950 C. The dislocation structure and morphology of gamma-prime was examined by transmission electron microscopy at the primary, secondary and tertiary creep stages at 73.8 kgf/sq mm. Experimental results are described in terms of a high temperature creep model in the range of temperatures and applied stresses where shearing of the gamma-prime phase does not control the straining process.

  2. Creep of porous rocks and measurements of elastic wave velocities under different hydrous conditions

    NASA Astrophysics Data System (ADS)

    Eslami, J.; Grgic, D.; Hoxha, D.

    2009-04-01

    of strains on a same sample, under uniaxial compression. Different hydrous conditions (saturated or partially saturated) are tested in all creep tests. In this paper, we focus on the time-dependent behavior and short-term mechanical behavior of iron ore and limestone in saturated and partially saturated domains. The main outcomes of these experiments are: (i) identification of the apparent dynamic stiffness tensor from elastic wave velocity measurements; (ii) assessment of velocity anisotropy, and its evolution under uniaxial loading. This last step allows for the quantification of the intrinsic and stress-induced anisotropies, leading eventually to an estimation of the microcracks density and distribution evolutions in the rock sample under loading.

  3. Effects of grain size on high temperature creep of fine grained, solution and dispersion hardened V -1.6Y -8W -0.8TiC

    NASA Astrophysics Data System (ADS)

    Furuno, T.; Kurishita, H.; Nagasaka, T.; Nishimura, A.; Muroga, T.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Matsuo, S.; Arakawa, H.

    2011-10-01

    Creep resistance is the major concern of vanadium and its alloys for fusion reactor structural applications. In order to elucidate the effects of grain size on the creep behavior of solution and dispersion strengthened vanadium alloys, V-1.6Y-8W-0.8TiC specimens with fine grain sizes from 0.58 to 1.45 μm were prepared by mechanical alloying and HIP without any plastic working and tested at 1073 K and 250 MPa in vacuum. It is shown that the creep resistance of V-1.6Y-8W-0.8TiC depends strongly on grain size and increases with increasing grain size: The creep life for the grain size of 1.45 μm is almost one order longer than that of 0.58 μm, and about two orders longer than that of V-4Cr-4Ti (NIFS-Heat 2) although the grain size of V-4Cr-4Ti is as large as 17.8 μm. The observed creep behavior is discussed in terms of grain size effects on dislocation glide and grain boundary sliding.

  4. Structure and Composition of Nanometer-Sized Nitrides in a Creep-Resistant Cast Austenitic Alloy

    NASA Astrophysics Data System (ADS)

    Evans, Neal D.; Maziasz, Philip J.; Shingledecker, John P.; Pollard, Michael J.

    2010-12-01

    The microstructure of a new and improved high-temperature creep-resistant cast austenitic alloy, CF8C-Plus, was characterized after creep-rupture testing at 1023 K (750 °C) and 100 MPa. Microstructures were investigated by detailed scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy (EDS). Principal component analysis of EDS spectrum images was used to examine the complex precipitate morphology. Thermodynamic modeling was performed to predict equilibrium phases in this alloy as well as the compositions of these phases at relevant temperatures. The improved high-temperature creep strength of CF8C-Plus over its predecessor CF8C is suggested to be due to the modified microstructure and phase stability in the alloy, including the absence of δ-ferrite in the as-cast condition and the development of a stable, slow-growing precipitation hardening nitride phase—the tetragonal Z-phase—which has not been observed before in cast austenitic stainless steels.

  5. Structure and composition of nanometer-sized nitrides in a creep resistant cast austenitic alloy

    SciTech Connect

    Evans, Neal D; Maziasz, Philip J; Shingledecker, John P.; Pollard, Michael J

    2010-01-01

    The microstructure of a new and improved high-temperature creep-resistant cast austenitic alloy, CF8C-Plus, was characterized after creep-rupture testing at 1023 K (750 C) and 100 MPa. Microstructures were investigated by detailed scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy (EDS). Principal component analysis of EDS spectrum images was used to examine the complex precipitate morphology. Thermodynamic modeling was performed to predict equilibrium phases in this alloy as well as the compositions of these phases at relevant temperatures. The improved high-temperature creep strength of CF8C-Plus over its predecessor CF8C is suggested to be due to the modified microstructure and phase stability in the alloy, including the absence of {delta}-ferrite in the as-cast condition and the development of a stable, slow-growing precipitation hardening nitride phase - the tetragonal Z-phase - which has not been observed before in cast austenitic stainless steels.

  6. The stress dependence of olivine creep rate: Implications for extrapolation of lab data and interpretation of recrystallized grain size

    NASA Astrophysics Data System (ADS)

    Hirth, G.; Kohlstedt, D. L.

    2015-05-01

    Based on measured values for the stress exponent, n ≈ 3.5, combined with the empirically determined relationship between dislocation density and stress (ρ ∝σ1.37) and an analysis of diffusion kinetics in olivine, we conclude that silicon pipe diffusion limits strain rate in the dislocation creep regime. Furthermore, assuming that steady state recrystallized grain size is set by a dynamic balance between strain energy density (associated with dislocations) and surface energy density (associated with grain boundaries), the resulting dependence of recrystallized grain size on stress accurately describes experimental observations when the empirical dislocation density versus stress relationship is accounted for (d ∝ 1 /σ1.37). The improved physical understanding of the stress dependence of creep rate provides justification for incorporation of experimentally derived flow laws into models of geodynamical process and grain size evolution. These lab constraints combined with independent analyses of the stress dependence of mantle viscosity based on geophysical data provide bounds on rheological properties such as the yield stress of the lithosphere.

  7. Attenuation and Shock Waves in Linear Hereditary Viscoelastic Media; Strick-Mainardi, Jeffreys-Lomnitz-Strick and Andrade Creep Compliances

    NASA Astrophysics Data System (ADS)

    Hanyga, Andrzej

    2014-09-01

    Dispersion, attenuation and wavefronts in a class of linear viscoelastic media proposed by Strick and Mainardi (Geophys J R Astr Soc 69:415-429, 1982) and a related class of models due to Lomnitz, Jeffreys and Strick are studied by a new method due to the author. Unlike the previously studied explicit models of relaxation modulus or creep compliance, these two classes support propagation of discontinuities. Due to an extension made by Strick, either of these two classes of models comprise both viscoelastic solids and fluids. We also discuss the Andrade viscoelastic media. The Andrade media do not support discontinuity waves and exhibit the pedestal effect.

  8. Characterization of C/Enhanced SiC Composite During Creep-Rupture Tests Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.

    2004-01-01

    An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.

  9. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate

    USGS Publications Warehouse

    Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.

    2013-01-01

    The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.

  10. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 3, phase 3: Full size heat shield data correlation and design criteria. [reentry

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    Analysis methods for predicting cyclic creep deflection in stiffened metal panel structures, were applied to full size panels. Results were compared with measured deflections from cyclic tests of thin gage L605, Rene' 41, and TDNiCr full size corrugation stiffened panels. A design criteria was then formulated for metallic thermal protection panels subjected to creep. A computer program was developed to calculate creep deflections.

  11. Order and creep in flux lattices and charge density wave pinned by planar defects.

    PubMed

    Petković, Aleksandra; Nattermann, Thomas

    2008-12-31

    The influence of randomly distributed point impurities and planar defects on the order and transport in type-II superconductors and related systems is considered theoretical. For random planar defects of identical orientation, the flux line lattice exhibits a new glassy phase with diverging shear and tilt modulus, a transverse Meissner effect, large sample to sample fluctuations of the susceptibility, and an exponential decay of translational long range order. The flux creep resistivity for currents J parallel to the defects is p(J) to approximately exp-(J0/J)mu with mu = 3/2. Strong disorder enforces an array of dislocations to relax shear

  12. Size and thickness effect on creep behavior in conventional and vitamin E-diffused highly crosslinked polyethylene for total hip arthroplasty.

    PubMed

    Takahashi, Yasuhito; Tateiwa, Toshiyuki; Shishido, Takaaki; Masaoka, Toshinori; Kubo, Kosuke; Yamamoto, Kengo

    2016-09-01

    Since the early 2000s, the use of large femoral heads is becoming increasingly popular in total hip arthroplasty (THA), which provides an improved range of motion and joint stability. Large femoral heads commonly necessitate to be coupled with thinner acetabular liners than the conventionally used because of the limited sizes of outer shells (especially for patients with small pelvic size). However, the influence of the liner thinning on the mechanical performance is still not clearly understood. The objective of this study was to experimentally clarify the size and thickness effect on the rates of compressive creep strain in conventional (virgin low-crosslinked) and vitamin E-diffused highly crosslinked, ultra-high molecular weight polyethylene (UHMWPE) acetabular liners. We applied uniaxial compression to these liners of various internal diameters (28, 32 and 36mm) and thicknesses (4.8, 6.8 and 8.9mm) up to 4320min under the constant load of 3000N. Vitamin E-diffused highly crosslinked UHMWPE components showed significantly greater creep resistance than the conventional ones. In the both types of UHMWPE, the rates of creep strain significantly decreased by increasing the internal diameter and thickness. Varying the component thickness contributed more largely to the creep behavior rather than the internal diameter. Our results suggest the positive mechanical advantage of using large femoral heads, but at the same time, a considerable liner thinning is not recommended for minimizing creep strain. Therefore, the further in-vitro as well as in-vivo research are necessary to conclude the optimal balance of head diameter and liner thickness within the limited sizes of outer shells. PMID:27261923

  13. Chaotic cross-waves in tanks of finite sizes

    NASA Astrophysics Data System (ADS)

    Krasnopolskaya, Tatyana; Pechuk, Evgeniy; Spektor, Viacheslav

    2014-11-01

    The phenomenon of chaotic cross-waves generation in fluid free surface in two finite size containers is studied. The waves may be excited by harmonic axisymmetric deformations of the inner shell in the volume between two cylinders and in a rectangular tank when one wall is a flap wavemaker. The existence of chaotic attractors was established for the dynamical system presenting cross-waves and forced waves interaction at fluid free-surface in a volume between two cylinders of finite length. In the case of one cross-wave in a rectangular tank no chaotic regimes were found.

  14. Spatial manipulation of nanoacoustic waves with nanoscale spot sizes.

    PubMed

    Lin, Kung-Hsuan; Lai, Chih-Ming; Pan, Chang-Chi; Chyi, Jen-Inn; Shi, Jin-Wei; Sun, Shih-Ze; Chang, Chieh-Feng; Sun, Chi-Kuang

    2007-11-01

    Coherent acoustic phonons are generated at terahertz frequencies when semiconductor quantum-well nanostructures are illuminated by femtosecond laser pulses. These phonons-also known as nanoacoustic waves-typically have wavelengths of tens of nanometres, which could prove useful in applications such as non-invasive ultrasonic imaging and sound amplification by the stimulated emission of radiation. However, optical diffraction effects mean that the nanoacoustic waves are produced with spot sizes on the micrometre scale. Near-field optical techniques can produce waves with smaller spot sizes, but they only work near surfaces. Here, we show that a far-field optical technique--which suffers no such restrictions--can be used to spatially manipulate the phonon generation process so that nanoacoustic waves are emitted with lateral dimensions that are much smaller than the laser wavelength. We demonstrate that nanoacoustic waves with wavelengths and spot sizes of the order of 10 nm and 100 nm, respectively, can be generated and detected.

  15. Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain-size-sensitive creep: 1. Grain size and grain growth laws

    NASA Astrophysics Data System (ADS)

    Tasaka, Miki; Hiraga, Takehiko

    2013-08-01

    conducted grain growth and creep experiments on forsterite (Fo) plus enstatite (En) aggregates at 1 atmosphere pressure and temperatures of 1260 - 1360°C, with variable volumetric fractions of the two minerals, forsterite and enstatite (Fo1.00 to Fo0.03 En0.97). The grain size ratios of forsterite and enstatite in annealed (reference) and deformed samples follow the Zener relationship of dI/dII = β/fIIz, where d is the grain size, and the subscripts I and II indicate the primary and secondary phases, respectively. When fEn < 0.5, I is forsterite, II is enstatite, then β = 0.67, and z = 0.52; for samples where fEn > 0.5, I is enstatite, II is forsterite, then β = 0.73, and z = 0.53. Grain growth in reference samples conforms to the relationship ds4 - d04 = kt, where ds is the grain size under static conditions, d0 is the initial grain size, k is the grain growth coefficient, and t is time. The observed growth coefficient for the primary phase (kI) becomes smaller with increasing fII, which is consistent with the theoretical prediction. Overall, our results are consistent with previously proposed grain growth models for static conditions that use mineral physical parameters such as diffusivity (DiGB) and interfacial energy (γ). We discuss grain size variations in the mantle, with compositions ranging from dunite to pyroxenite, and we go on to present a method that predicts the grain sizes of different mantle lithologies, provided that the diffusivity and interfacial energy of the constituent minerals are known.

  16. Oscillatory rheology and creep behavior of barley β-D-glucan concentrate dough: effect of particle size, temperature, and water content.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Al-Attar, Hasan

    2015-01-01

    Small amplitude oscillatory rheology and creep behavior of β-glucan concentrate (BGC) dough were studied as function of particle size (74, 105, 149, 297, and 595 μm), BGC particle-to-water ratio (1:4, 1:5, and 1:6), and temperature (25, 40, 55, 70, and 85 °C). The color intensity and protein content increased with decreasing particle size by creating more surface areas. The water holding capacity (WHC) and sediment volume fraction increased with increasing particle size from 74 to 595 μm, which directly influences the mechanical rigidity and viscoelasticity of the dough. The dough exhibited predominating solid-like behavior (elastic modulus, G' > viscous modulus, G″). A discrete retardation spectrum is employed to the creep data to obtain retardation time and compliance parameters, which varied significantly with particle size and the process temperature. Creep tests exhibited more pronounced effect on dough behavior compared to oscillatory measurement. The protein denaturation temperature was insignificantly increased with particle fractions from 107 to 110 °C. All those information could be helpful to identify the particle size range and WHC of BGC that could be useful to produce a β-d-glucan enriched designed food.

  17. The effects of mineral fraction on the rheological properties of forsterite-enstatite rocks during grain size sensitive creep

    NASA Astrophysics Data System (ADS)

    Tasaka, M.; Hiraga, T.

    2012-12-01

    Since the majority of crustal and mantle rocks are polymineralic, it is important to consider the effects of secondary mineral phases on their rheological properties. To examine these effects, we have conducted grain growth and deformation experiments on samples composed of different volumetric fractions of forsterite (Fo) and enstatite (En) at 1 atmosphere and temperatures of 1260, 1310 and 1360 C. The results of our grain growth experiments indicate that the grain size ratios of Fo and En in annealed (reference) and deformed samples follow a Zener relationship with d1/d2 = b/f2z, where di is the grain size of the primary or secondary phase, b and z are the Zener parameters relating grain boundary energies, and f is the volume fraction of the associated phase. Grain growth in the reference samples conforms to the relationship d4-d04 = kt, where d is the grain size under static conditions, d0 is the initial grain size, k is the grain growth coefficient, and t is time. The growth coefficient of Fo decrease with increasing En volume fraction (fEn), and is consistent with theoretical predictions of Ardell's grain growth model that incorporates physical parameters such as diffusivity and interfacial energy of the mineral phases. The results of our deformation experiments at constant temperature and strain rate indicate that the flow stress decreases with increasing fEn, for samples with 0 < fEn < 0.5, and increases with increasing fEn, for samples with 0.5 < fEn < 1. The values of the pre-exponential term, stress and grain size exponents, and activation energy in the constitutive equation for a wide range of fEn were determined. The majority of samples exhibited diffusion accommodated grain boundary sliding creep (i.e., stress exponent = 1). The viscosity measured for all samples is fit well by a model that takes into account (1) grain size calculated from grain growth laws established in our experiments and (2) the flow laws for monomineralic systems of forsterite and

  18. Semi analytical model for the effective grain size profile in the mantle of the Earth: partitioning between diffusion and dislocation creep through the Earth's history

    NASA Astrophysics Data System (ADS)

    Rozel, A. B.; Golabek, G.; Thielmann, M.; Tackley, P.

    2015-12-01

    We present a semi analytical model of mantle convection able to predict the grain size profile of the present day Earth. Grain size evolution has been studied with increasing interest over the last decades but its behavior in both mantle and lithosphere remains largely misunderstood due to its non-linearity. Several recent studies suggest that it might play a fundamental role in localization of deformation in the lithosphere but we focus here on the mantle in which we also observe important processes.We propose a 1D compressible thermal convection model based on the equality of advective heat flux and the integral of viscous dissipation in the whole domain. Imposing mass conservation, our model is able to predict all rheological parameters able to produce both present day average surface velocity and lower mantle viscosity. Composite rheologies involving dislocation creep and grain size dependent diffusion creep are considered. The effect of phase transitions on the grain size is also explicitely taken into account. We present the family of solutions for the activation volume and the viscosity jump at the 660 discontinuity according to any initial choice of activation energy. The scaling laws for rheological parameters obtained are compared to self-consistent evolutionary simulations of mantle convection in 2D spherical annulus geometry considering composite rheologies. The transition between diffusion and dislocation creep due to the cooling of the Earth is illustrated in a set of numerical simulations starting from the physical conditions of the Archean.

  19. Increasing lengths of aftershock zones with depths of moderate-size earthquakes on the San Jacinto Fault suggests triggering of deep creep in the middle crust

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Peng, Zhigang

    2016-01-01

    Recent geodetic studies along the San Jacinto Fault (SJF) in southern California revealed a shallower locking depth than the seismogenic depth outlined by microseismicity. This disagreement leads to speculations that creeping episodes drive seismicity in the lower part of the seismogenic zone. Whether deep creep occurs along the SJF holds key information on how fault slips during earthquake cycle and potential seismic hazard imposed to southern California. Here we apply a matched filter technique to 10 M > 4 earthquake sequences along the SJF since 2000 and obtain more complete earthquake catalogues. We then systematic investigate spatio-temporal evolutions of these aftershock sequences. We find anomalously large aftershock zones for earthquakes occurred below the geodetically inferred locking depth (i.e. 11-12 km), while aftershock zones of shallower main shocks are close to expectations from standard scaling relationships. Although we do not observe clear migration of aftershocks, most aftershock zones do expand systematically with logarithmic time since the main shock. All the evidences suggest that aftershocks near or below the locking depth are likely driven by deep creep following the main shock. The presence of a creeping zone below 11-12 km may have significant implications on the maximum sizes of events in this region.

  20. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  1. High-temperature fracturing and subsequent grain-size-sensitive creep in lower crustal gabbros: Evidence for coseismic loading followed by creep during decaying stress in the lower crust?

    NASA Astrophysics Data System (ADS)

    Okudaira, Takamoto; Jeřábek, Petr; Stünitz, Holger; Fusseis, Florian

    2015-05-01

    The mechanism of shear zone formation in lower crustal, relatively "dry" rocks is still poorly understood. We have studied the high-temperature deformation of the Hasvik gabbro (northern Norway) which commences by fracturing. The 10-20 µm wide fractures show little displacement. The fine-grained plagioclase and orthopyroxene in the fractures lack a crystallographic preferred orientation (CPO) or a systematic crystallographic orientation with respect to the host grains. Fractures grade into narrow shear zones, which are composed of fine (10-20 µm), equant grains of recrystallized plagioclase, amphibole, and pyroxene. Recrystallized plagioclase and pyroxene have compositions different from the magmatic grains, suggesting that they have formed by nucleation and growth. Based on conventional plagioclase-amphibole thermobarometry, the shear zones have formed at temperatures and pressures of 700-750°C and 0.5-0.6 GPa. The observed primary minerals cut by fractures suggest high-temperature fracturing in the absence of high pore pressures, which implies a high strength of the lower crustal gabbros and high stresses at fracturing. The shear zones are characterized by the lack of CPO and a small grain size, suggesting that the mechanism of deformation of the fine-grained plagioclase and orthopyroxene has been grain boundary sliding accommodated by diffusive mass transfer. The amphibole grains have strong CPOs, which most likely result from oriented growth and/or rigid body rotations during deformation. The process that initiated the fracturing and subsequent viscous creep in the Hasvik gabbro may have resulted from a process of coseismic loading followed by creep during decaying stress in the lower crust.

  2. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  3. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  4. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  5. Confining capillary waves to control aerosol droplet size from surface acoustic wave nebulisation

    NASA Astrophysics Data System (ADS)

    Nazarzadeh, Elijah; Reboud, Julien; Wilson, Rab; Cooper, Jonathan M.

    Aerosols play a significant role in targeted delivery of medication through inhalation of drugs in a droplet form to the lungs. Delivery and targeting efficiencies are mainly linked to the droplet size, leading to a high demand for devices that can produce aerosols with controlled sizes in the range of 1 to 5 μm. Here we focus on enabling the control of the droplet size of a liquid sample nebulised using surface acoustic wave (SAW) generated by interdigitated transducers on a piezoelectric substrate (lithium niobate). The formation of droplets was monitored through a high-speed camera (600,000 fps) and the sizes measured using laser diffraction (Spraytec, Malvern Ltd). Results show a wide droplet size distribution (between 0.8 and 400 μm), while visual observation (at fast frame rates) revealed that the large droplets (>100 μm) are ejected due to large capillary waves (80 to 300 μm) formed at the free surface of liquid due to leakage of acoustic radiation of the SAWs, as discussed in previous literature (Qi et al. Phys Fluids, 2008). To negate this effect, we show that a modulated structure, specifically with feature sizes, typically 200 μm, prevents formation of large capillary waves by reducing the degrees of freedom of the system, enabling us to obtain a mean droplet size within the optimum range for drug delivery (<10 μm). This work was supported by an EPSRC grant (EP/K027611/1) and an ERC Advanced Investigator Award (340117-Biophononics).

  6. Creep Deformation of B2 Alumindes

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1991-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  7. Effect of a RF Wave on Ion Cyclotron Instability in Size Distributed Impurities Containing Plasmas

    SciTech Connect

    Sharma, A. K.; Tripathi, V. K.; Annou, R.

    2008-09-07

    The effect of a large amplitude lower hybrid wave on current driven ion cyclotron waves in a dusty plasma where dust grains are size distributed is examined. The influence of the lower hybrid wave on the stabilization of the instability is studied. The efficacy of rf is dust density dependent.

  8. Effect of water on the dislocation creep microstructure and flow stress of quartz and implications for the recrystallized grain size piezometer

    NASA Astrophysics Data System (ADS)

    Stipp, Michael; Tullis, Jan; Behrens, Harald

    2006-04-01

    Deformation experiments on Black Hills quartzite with three different initial water contents (as-is, water-added, and vacuum-dried) were carried out in the dislocation creep regime in order to evaluate the effect of water on the recrystallized grain size/flow stress piezometer. Samples were deformed in axial compression at temperatures of 750°-1100°C, strain rates between 2 × 10-7 s-1 and 2 × 10-4 s-1 and strains up to 46% using a molten salt assembly in a Griggs apparatus. An increase of the initial water content at otherwise constant deformation conditions caused a decrease in flow stress, an effect known as hydrolytic weakening. The total water content of the starting material was analyzed by Karl Fischer titration (KFT) and Fourier transform infrared (IR) spectroscopy, and quenched samples were analyzed microstructurally and by IR. Changes in the dynamic recrystallization microstructure correlate with changes in flow stress, but there is no independent effect of temperature, strain rate or water content. IR absorption spectra of the deformed spectra indicate that different water contents were maintained in the three sample sets throughout the experiments. However, the amounts of water measured within the vacuum-dried (˜260 ± 40 ppm H2O), the as-is (˜340 ± 50 ppm H2O), and the water-added (˜430 ± 110 ppm H2O) samples are significantly smaller than the initial content of the quartzite (˜640 ± 50 ppm H2O). Water from the inclusions in the starting material adds to the free fluid phase along the grain boundaries, which probably controls the water fugacity and the flow strength, but this water is largely lost during IR sample preparation. Vacuum-dried as well as water-added samples have the same recrystallized grain size/flow stress relationship as the piezometer determined for as-is samples. No independent effect of water on the piezometric relationship has been detected.

  9. Creep of plasma sprayed zirconia

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.

    1982-01-01

    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding.

  10. Dislocation Creep in Magnesium Calcite

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, X.; Evans, B. J.

    2003-12-01

    To investigate the effect of dissolved Mg on plastic deformation of calcite, we performed triaxial deformation experiments on synthetic calcite with varying amount of Mg content. Mixtures of powders of calcite and dolomite were isostatically hot pressed (HIP) at 850° C and 300 MPa confining pressure for different intervals (2 to 20hrs) resulting in homogeneous aggregates of high-magnesium calcite; Mg content varied from 0.07 to 0.17 mol%. Creep tests were performed at differential stresses from 20 to 160 MPa at 700 to 800° C. Grain sizes before and after deformation were determined from the images obtained from scanning electron microscope (SEM) and optical microscope. Grain sizes are in the range of 5 to 20 microns depending on the HIP time, and decrease with increasing magnesium content. Both BSE images and chemical analysis suggest that all dolomite are dissolved and the Mg distribution is homogeneous through the sample, after 2 hrs HIP. At stresses below 40 MPa, the samples deformed in diffusion region (Coble creep), as described previously by Herwegh. The strength decreases with increasing magnesium content, owing to the difference of grain size. At stresses above 80 MPa, the stress exponent is greater than 3, indicating an increased contribution of dislocation creep. The transition between diffusion to dislocation creep occurs at higher stresses for the samples with higher magnesium content and smaller grain size. Preliminary data suggests a slight increase in strength with increasing magnesium content, but more tests are needed to verify this effect. In a few samples, some strain weakening may have been evident. The activation energy in the transition region (at 80 MPa) is ˜200 KJ/mol with no dependence on magnesium content, agreeing with previous measurements of diffusion creep in natural and synthetic marbles.

  11. Probing the size of extra dimensions with gravitational wave astronomy

    SciTech Connect

    Yagi, Kent; Tanahashi, Norihiro; Tanaka, Takahiro

    2011-04-15

    In the Randall-Sundrum II braneworld model, it has been conjectured, according to the AdS/CFT correspondence, that a brane-localized black hole (BH) larger than the bulk AdS curvature scale l cannot be static, and it is dual to a four-dimensional BH emitting Hawking radiation through some quantum fields. In this scenario, the number of the quantum field species is so large that this radiation changes the orbital evolution of a BH binary. We derived the correction to the gravitational waveform phase due to this effect and estimated the upper bounds on l by performing Fisher analyses. We found that the Deci-Hertz Interferometer Gravitational Wave Observatory and the Big Bang Observatory (DECIGO/BBO) can give a stronger constraint than the current tabletop result by detecting gravitational waves from small mass BH/BH and BH/neutron star (NS) binaries. Furthermore, DECIGO/BBO is expected to detect 10{sup 5} BH/NS binaries per year. Taking this advantage, we find that DECIGO/BBO can actually measure l down to l=0.33 {mu}m for a 5 yr observation if we know that binaries are circular a priori. This is about 40 times smaller than the upper bound obtained from the tabletop experiment. On the other hand, when we take eccentricities into binary parameters, the detection limit weakens to l=1.5 {mu}m due to strong degeneracies between l and eccentricities. We also derived the upper bound on l from the expected detection number of extreme mass ratio inspirals with LISA and BH/NS binaries with DECIGO/BBO, extending the discussion made recently by McWilliams [Phys. Rev. Lett. 104, 141601 (2010)]. We found that these less robust constraints are weaker than the ones from phase differences.

  12. A probabilistic crack size quantification method using in-situ Lamb wave test and Bayesian updating

    NASA Astrophysics Data System (ADS)

    Yang, Jinsong; He, Jingjing; Guan, Xuefei; Wang, Dengjiang; Chen, Huipeng; Zhang, Weifang; Liu, Yongming

    2016-10-01

    This paper presents a new crack size quantification method based on in-situ Lamb wave testing and Bayesian method. The proposed method uses coupon test to develop a baseline quantification model between the crack size and damage sensitive features. In-situ Lamb wave testing data on actual structures are used to update the baseline model parameters using Bayesian method to achieve more accurate crack size predictions. To demonstrate the proposed method, Lamb wave testing on simple plates with artificial cracks of different sizes is performed using surface-bonded piezoelectric wafers, and the data are used to obtain the baseline model. Two damage sensitive features, namely, the phase change and normalized amplitude are identified using signal processing techniques and used in the model. To validate the effectiveness of the method, the damage data from an in-situ fatigue testing on a realistic lap-joint component are used to update the baseline model using Bayesian method.

  13. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  14. Variation of particle size distribution in Saturn's rings and search for density waves in Uranus rings

    SciTech Connect

    Yanamandra-Fisher, P.A.

    1988-01-01

    A bimodal size distribution for particles in Saturn's rings has been determined via an analysis of PPS, UVS and RSS occultation data. The variation of the size distribution in featureless regions indicates that the dust variation is nearly constant in the Saturn's rings and exhibits a slight anti-correlation with 1 cm sized particles. Sub-centimeter sized particles increase outward in the rings, with a maximum in the B ring, similar to the variation of 1 cm sized particles. However, the ratio of subcentimeter sized particles to 1 cm sized particles does not vary significantly in the rings. Janus 5:4 density wave differs significantly from the featureless regions. The amount of dust is greater by a factor of about 2. Both dust and sub-centimeter sized particles are strongly anti-correlated with 1 cm sized particles. Partial formation of gaps is evident for both sub- and supra-centimeter sized particles, consistent with the predictions of Goldreich and Tremaine (1978). Dust is insensitive to the gravitational torque associated with the resonance. The results are also consistent with Dones (1987). In wave regions, large particles collide and produce dust and do not break up into smaller particles. The author searched the Uranian rings, via time series analysis methods, to identify periodic phenomena in the rings. A possible wave-like feature has been identified in both the {epsilon} and the {delta} rings of Uranus. A density wave has been identified in the inner half of the {delta} ring. It implies the existence of a moonlet between the {gamma} and {delta} rings and a possible shepherd for the outer edge of the {gamma} ring and an inner shepherd for the {delta} ring. Comparison of density waves in the two ring systems are similar, indicating the similarity of the local ring environments.

  15. Endochronic theory of transient creep and creep recovery

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Chen, L.

    1979-01-01

    Short time creep and creep recovery were investigated by means of the endochronic theory of viscoplasticity. It is shown that the constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation can all ber derived from the general constitutive equation by imposing appropriate constraints. In this unified approach, the effect of strain-hardening is naturally accounted for when describing creep and creep recovery. The theory predicts with reasonable accuracy the creep and creep recovery behaviors for Aluminum 1100-0 at 150 C. It was found that the strain-rate history at prestraining stage affects the subsequent creep. A critical stress was also established for creep recovery. The theory predicts a forward creep for creep recovery stress greater than the critical stress. For creep recovery stress less than the critical stress, the theory then predicts a normal strain recovery.

  16. Creep deformation at crack tips in elastic-viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Riedel, H.

    1981-02-01

    THE EVALUATION of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C∗h, can be defined which correlates the near-tip field to the applied load. It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K 1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C∗h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C∗ is the relevant load parameter for predominantly secondary creep of the whole specimen.

  17. Ferromagnetic Resonance of Micro- and Nano-sized Hexagonal Ferrite Powders at Millimeter Waves

    SciTech Connect

    Korolev, Konstantin A.; McCloy, John S.; Afsar, Mohammed N.

    2012-02-22

    Complex magnetic permeability and dielectric permittivity of micro- and nano-sized powdered barium (BaFe{sub 12}O{sub 19}) and strontium (SrFe{sub 12}O{sub 19}) hexaferrites have been studied in a broadband millimeter wave frequency range (30-120 GHz). Transmittance measurements have been performed using a free space quasi-optical millimeter wave spectrometer, equipped with a set of high power backward wave oscillators. Real and imaginary parts of dielectric permittivity for both types of micro- and nanoferrites have been calculated using analysis of recorded high precision transmittance spectra. Frequency dependences of the magnetic permeability have been obtained from Schloemann's equation for partially magnetized ferrites. These materials show promise as tunable millimeter wave absorber, based on their size-dependent absorption.

  18. Spin wave excitation in yttrium iron garnet films with micron-sized antennas

    SciTech Connect

    Khivintsev, Y. V. Filimonov, Y. A.; Nikitov, S. A.

    2015-02-02

    In this paper, we explore spin waves excitation in monolithic structures based on yttrium iron garnet (YIG) films with micro-sized antennas. Samples based on plain and patterned YIG film were fabricated and tested for tangential bias field geometries. We observed spin wave excitation and propagation with wave numbers up to 3.5 × 10{sup 4} rad/cm. The corresponding wavelength is thus shorter more than by one order of magnitude compared to previous experiments with such films. For the sample with a periodic array of nanotrenches, we observed the effect of the shape anisotropy resulting in the shift of the spin wave propagation band in comparison to the unpatterned YIG film. Our results are very promising for the exploitation of short spin waves in YIG and provide great opportunity for significant miniaturization of YIG film based microwave devices.

  19. Mechanical behavior of low porosity carbonate rock: from brittle creep to ductile creep

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2013-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this experimental study, we focus on the mechanical behavior of a low porosity (9%) white Tavel (France) carbonate rock (>98% calcite) at P-Q conditions beyond the elastic domain. It has been shown that in sandstones composed of quartz, cracks are developing under these conditions. However, in carbonates, calcite minerals can meanwhile also exhibit microplasticity. The samples were deformed in the triaxial cell of the Ecole Normale Superieure de Paris at effective confining pressures ranging from 35 MPa to 85 MPa and room temperature. Experiments were carried on dry and water saturated samples to explore the role played by the pore fluids. Time dependency was investigated by a creep steps methodology: at each step, differential stress was increased rapidly and kept constant for at least 24h. During these steps elastic wave velocities (P and S) and permeability were measured continuously. Our results show two different creep behaviors: (1) brittle creep is observed at low confining pressures, whereas (2) ductile creep is observed at higher confining pressures. These two creep behaviors have a different signature in term of elastic wave velocities and permeability changes. Indeed, in the brittle domain, the primary creep is associated with a decrease of elastic wave velocities and an increase of permeability, and no secondary creep is observed. In the ductile domain, the primary creep

  20. Porosity and grain size dependence of the longitudinal wave velocity of water-saturated beach sand

    NASA Astrophysics Data System (ADS)

    Kimura, Masao; Noguchi, Masahiro

    2003-04-01

    The longitudinal wave velocity of water-saturated sand is dependent on the porosity. The data which show the relationship between the velocity and the porosity are dispersed [E. L. Hamilton and R. T. Bachman, J. Acoust. Soc. Am. 72, 1891-1904 (1982)]. It seems that this dispersion is due to the grain size, the standard deviation of the grain size, and the grain shape. In this study, to investigate the dispersion, the longitudinal wave velocities, the porosities, and the grain sizes of many kinds of water-saturated beach sands are measured. The relationships between the velocity, the porosity, and the grain size are obtained. From these results, it is seen that the velocity of the water-saturated beach sand with the same porosity varies with the grain size. That is, the velocity of the water-saturated beach sand with the same porosity increases, as the grain size increases. It is considered that the frame bulk modulus of the water-saturated beach sand with the same porosity varies with the grain size.

  1. Creep behavior of tantalum alloy T-222 at 1365 to 1700 K

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1974-01-01

    High vacuum creep tests on the tantalum T-222 alloy at 0.42 to 0.52 T sub m show that the major portion of the creep curves, up to at least 1 percent strain, can be best described by an increasing creep rate, with strain varying linearly with time. Correlation and extrapolation of the creep curves on the basis of increasing creep rates results in more accurate engineering design data than would use of approximated linear rates. Based on increasing creep rates, the stress for 1 percent strain in 10,000 hours for T-222 is about four times greater than for the Ta-10W alloy. Increasing the grain size results in increased creep strength. Thermal aging prior to testing caused precipitation of the hexagonal close packed (Hf,Ta) sub 2 C, which initially increased creep strength. However, this dimetal carbide was converted during creep testing to face-centered cubic (Hf,Ta)C.

  2. Ventricular size and isotope cisternography in patients with acute transient rises of intracranial pressure (plateau waves)

    SciTech Connect

    Hayashi, M.; Kobayashi, H.; Fujii, H.; Yamamoto, S.

    1982-12-01

    The size of the ventricular system and cerebrospinal fluid (CSF) flow were determined in 17 patients with plateau waves, using computerized tomography (CT) and isotope cisternography. Some patients had increased intracranial pressure (ICP) resulting from space-occupying lesions and other causes, and some had normal ICP observed in normal-pressure hydrocephalus. The size and shape of the ventricular system during plateau wave phases as ascertained by CT showed little or no change as compared with its size and shape during the interval phases between two waves. It was also noticed that, in patients with supratentorial masses, the midline shift showed no difference in degree between the two phases. These findings suggest that there is little change in the intracranial CSF volume between the two phases, that is, there is little compensatory outflow of the intracranial CSF for the ICP variations. These results may also support the assumption that the plateau waves are not caused by an intermittent obstruction of the CSF pathways. Isotope cisternography showed a marked delay of clearance of radioactivity from the intracranial CSF in 15 patients. The cisternographic pattern in patients with increased ICP and the absence of ventricular dilatation demonstrated an abnormally large accumulation of radioactivity over the cerebral convexities, and the pattern in patients with normal-pressure hydrocephalus showed complete obstruction of the subarachnoid space over both cerebral convexities. These observations suggest that, in patients with plateau waves, there is a marked delay in CSF absorption. The authors postulate that the reduction of CSF absorption may create a critically tight condition within the cranial cavity and act as a contributory factor in the development of the plateau waves.

  3. The effect of dust size distribution on quantum dust acoustic wave

    SciTech Connect

    El-Labany, S. K.; El-Taibany, W. F.; Behery, E. E.; El-Siragy, N. M.

    2009-09-15

    Based on the quantum hydrodynamics theory, a proposed model for quantum dust acoustic waves (QDAWs) is presented including the dust size distribution (DSD) effect. A quantum version of Zakharov-Kuznetsov equation is derived adequate for describing QDAWs. Two different DSD functions are applied. The relevance of the wave velocity, amplitude, and width to the DSD is investigated numerically. The quantum effect changes only the soliton width. A brief conclusion is presented to the current findings and their relevance to astrophysics data is also discussed.

  4. Importance of Sample Size for the Estimation of Repeater F Waves in Amyotrophic Lateral Sclerosis

    PubMed Central

    Fang, Jia; Liu, Ming-Sheng; Guan, Yu-Zhou; Cui, Bo; Cui, Li-Ying

    2015-01-01

    Background: In amyotrophic lateral sclerosis (ALS), repeater F waves are increased. Accurate assessment of repeater F waves requires an adequate sample size. Methods: We studied the F waves of left ulnar nerves in ALS patients. Based on the presence or absence of pyramidal signs in the left upper limb, the ALS patients were divided into two groups: One group with pyramidal signs designated as P group and the other without pyramidal signs designated as NP group. The Index repeating neurons (RN) and Index repeater F waves (Freps) were compared among the P, NP and control groups following 20 and 100 stimuli respectively. For each group, the Index RN and Index Freps obtained from 20 and 100 stimuli were compared. Results: In the P group, the Index RN (P = 0.004) and Index Freps (P = 0.001) obtained from 100 stimuli were significantly higher than from 20 stimuli. For F waves obtained from 20 stimuli, no significant differences were identified between the P and NP groups for Index RN (P = 0.052) and Index Freps (P = 0.079); The Index RN (P < 0.001) and Index Freps (P < 0.001) of the P group were significantly higher than the control group; The Index RN (P = 0.002) of the NP group was significantly higher than the control group. For F waves obtained from 100 stimuli, the Index RN (P < 0.001) and Index Freps (P < 0.001) of the P group were significantly higher than the NP group; The Index RN (P < 0.001) and Index Freps (P < 0.001) of the P and NP groups were significantly higher than the control group. Conclusions: Increased repeater F waves reflect increased excitability of motor neuron pool and indicate upper motor neuron dysfunction in ALS. For an accurate evaluation of repeater F waves in ALS patients especially those with moderate to severe muscle atrophy, 100 stimuli would be required. PMID:25673456

  5. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    NASA Technical Reports Server (NTRS)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  6. Irradiation Induced Creep of Graphite

    SciTech Connect

    Burchell, Timothy D; Murty, Prof K.L.; Eapen, Dr. Jacob

    2010-01-01

    The current status of graphite irradiation induced creep strain prediction is reviewed and the major creep models are described. The ability of the models to quantitatively predict the irradiation induced creep strain of graphite is reported. Potential mechanisms of in-crystal creep are reviewed as are mechanisms of pore generation under stress. The case for further experimental work is made and the need for improved creep models across multi-scales is highlighted.

  7. Creep and tensile properties of several oxide dispersion strengthened nickel base alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The creep properties at 1365 K of several oxide dispersion strengthened (ODS) alloys were studied, where the creep exposures involved low strains, on the order of 1% or less, after nominally 100 hours of testing. It was found that ODS alloys possess threshold stresses for creep. Creep in polycrystalline ODS alloys is an inhomogeneous process. The threshold stresses in large grain size ODS Ni-20Cr and Ni-16Cr-4/5Al type alloys are dependent on the grain aspect ratio.

  8. Biaxial Creep Specimen Fabrication

    SciTech Connect

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  9. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  10. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  11. Contribution of recovery mechanisms of microstructure during long-term creep of Gr.91 steels

    NASA Astrophysics Data System (ADS)

    Ghassemi-Armaki, H.; Chen, R. P.; Maruyama, K.; Igarashi, M.

    2013-02-01

    Creep rupture life and microstructural degradation have been studied in two heats of Gr.91 steels. The coarsening of subgrains and precipitates, mainly M23C6 and MX, has been evaluated during static aging and creep. Hardness of head (static aging) and gauge (creep) portions of crept samples were measured to know their relation with microstructural degradation during long-term exposure. The correlation between subgrain size and spacing of precipitates and hardness has been equated. As an example, there is a close correlation between hardness value and inverse subgrains size in Gr.91 steels, regardless of aging or creep conditions. The appearance of three recovery mechanisms was found during long-term creep, namely: strain-induced recovery, pure static recovery and strain-assisted static recovery. By equated correlations between subgrain size, precipitates and hardness, the contribution of three recovery mechanisms to subgrain coarsening and hardness drop were calculated for two creep conditions at 700 °C in long-term creep region, where breakdown of creep strength has happen. The calculated data accord well with experimental data obtained from aged and crept samples. The contribution of static recovery to the subgrain coarsening and consequent hardness drop during long-term creep increases with increasing creep time. The significant contribution of both static recovery mechanisms can result in the breakdown of creep strength in long-term creep region.

  12. Hayward fault: Large earthquakes versus surface creep

    USGS Publications Warehouse

    Lienkaemper, James J.; Borchardt, Glenn; Borchardt, Glenn; Hirschfeld, Sue E.; Lienkaemper, James J.; McClellan, Patrick H.; Williams, Patrick L.; Wong, Ivan G.

    1992-01-01

    The Hayward fault, thought a likely source of large earthquakes in the next few decades, has generated two large historic earthquakes (about magnitude 7), one in 1836 and another in 1868. We know little about the 1836 event, but the 1868 event had a surface rupture extending 41 km along the southern Hayward fault. Right-lateral surface slip occurred in 1868, but was not well measured. Witness accounts suggest coseismic right slip and afterslip of under a meter. We measured the spatial variation of the historic creep rate along the Hayward fault, deriving rates mainly from surveys of offset cultural features, (curbs, fences, and buildings). Creep occurs along at least 69 km of the fault's 82-km length (13 km is underwater). Creep rate seems nearly constant over many decades with short-term variations. The creep rate mostly ranges from 3.5 to 6.5 mm/yr, varying systemically along strike. The fastest creep is along a 4-km section near the south end. Here creep has been about 9mm/yr since 1921, and possibly since the 1868 event as indicated by offset railroad track rebuilt in 1869. This 9mm/yr slip rate may approach the long-term or deep slip rate related to the strain buildup that produces large earthquakes, a hypothesis supported by geoloic studies (Lienkaemper and Borchardt, 1992). If so, the potential for slip in large earthquakes which originate below the surficial creeping zone, may now be 1/1m along the southern (1868) segment and ≥1.4m along the northern (1836?) segment. Substracting surface creep rates from a long-term slip rate of 9mm/yr gives present potential for surface slip in large earthquakes of up to 0.8m. Our earthquake potential model which accounts for historic creep rate, microseismicity distribution, and geodetic data, suggests that enough strain may now be available for large magnitude earthquakes (magnitude 6.8 in the northern (1836?) segment, 6.7 in the southern (1868) segment, and 7.0 for both). Thus despite surficial creep, the fault may be

  13. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Powers, L. M.; Jadaan, O. M.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilized commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the CARES/CREEP (Ceramics Analysis and Reliability Evaluation of Structures/CREEP) integrated design programs, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benechmark problems and engine components are included.

  14. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Powers, L. M.; Jadaan, O. M.; Gyekenyesi, J. P.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural application such as in advanced turbine engine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilizes commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life, of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the Ceramics Analysis and Reliability Evaluation of Structures/CREEP (CARES/CREEP) integrated design program, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benchmark problems and engine components are included.

  15. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    SciTech Connect

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-08-15

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form.

  16. Micron-Sized Particles Detected in the Vicinity of Jupiter by the Voyager Plasma Wave Instruments

    NASA Technical Reports Server (NTRS)

    Tsintikidis, D.; Gurnett, D. A.; Kurth, W. S.; Granroth, L. J.

    1996-01-01

    Wideband waveform data obtained by the plasma wave instruments onboard the Voyager 1 and 2 spacecraft have been used to study micron-sized dust particles in the vicinity of Jupiter. The technique used was developed during the flybys of Saturn, Uranus, and Neptune, and makes use of the fact that a particle striking the spacecraft at 10-20 km/s causes a voltage pulse in the plasma wave receiver. The waveform of the voltage pulse is much different than the waveform of plasma waves and provides a highly reliable method of detecting micron-sized dust particles. Although the dust impact rate observed in the vicinity of Jupiter is much lower than the rates at Saturn, Uranus, and Neptune, the particles are easily detectable. Approximately 1200 48-second frames of wideband waveform data were examined in the vicinity of Jupiter. Dust impact signatures were found in approximately 20% of these frames. The peak impact rates are about 1 impact per second, and the peak number densities are about 10(exp -5) m(exp -3). Most of the impacts occurred near the equatorial plane at radial distances less than about 35 R(sub j) from Jupiter. Analysis of the detection threshold indicates that the particles have masses greater than 10(exp -11) g, which corresponds to particles with diameters of a few micrometers or larger.

  17. Tensile creep of dental amalgam.

    PubMed

    Greener, E H; Szurgot, K; Lautenschlager, E P

    1982-04-01

    Rather than the usual compressive dental creep, various types of one week old dental amalgams were continuously monitored in tensile creep. Testing was done at 37, 45 and 50 degrees C, in a specially designed apparatus capable of 0 to 60 degrees C while maintaining a constant true tensile stress of 17 MPa. For the first time, the classical four stages of creep were observed at elevated temperatures in the low Cu amalgams, including creep rupture. The high Cu systems displayed only transient creep up to 50 degrees C and no rupture. Approximately one half the stress was needed in tension to provide the equivalent creep in compression. PMID:7082735

  18. Size-Controllable Synthesis of Fe3O4 Nanospheres for Electromagnetic Wave Absorber

    NASA Astrophysics Data System (ADS)

    Wang, Yanping; Sun, Danping; Liu, Gongzong; Wang, Yujiao; Jiang, Wei

    2015-07-01

    We present a hydrothermal method to control the size of Fe3O4 nanospheres by adjusting the concentration of FeCl3·6H2O in ethylene glycol/diethylene glycol binary solvent mixtures. The electromagnetic wave absorption properties of Fe3O4 nanospheres of different diameters have been investigated using a vector network analyzer. The reflection loss of Fe3O4 nanospheres/paraffin wax composite can reach as high as -30.00 dB at 17.50 GHz and -37.95 dB at 7.67 GHz for Fe3O4 nanospheres with diameter of about 120 nm and 170 nm, respectively. The absorption bandwidth with reflection loss below -10 dB is up to 7.01 GHz when the Fe3O4 diameter is about 220 nm. In contrast, the bandwidth decreased to 4.28 GHz when the size shrank to 70 nm. Therefore, our method can be utilized to precisely control the size of Fe3O4 nanospheres in order to manipulate their electromagnetic wave absorption properties.

  19. Oil Droplet Size Distribution and Optical Properties During Wave Tank Simulated Oil Spills

    NASA Astrophysics Data System (ADS)

    Conmy, R. N.; Venosa, A.; Courtenay, S.; King, T.; Robinson, B.; Ryan, S.

    2013-12-01

    Fate and transport of spilled petroleum oils in aquatic environments is highly dependent upon oil droplet behavior which is a function of chemical composition, dispersibility (natural and chemically-enhanced) and droplet size distribution (DSD) of the oil. DSD is influenced by mixing energy, temperature, salinity, pressure, presence of dissolved and particulate materials, flow rate of release, and application of dispersants. To better understand DSD and droplet behavior under varying physical conditions, flask-scale experiments are often insufficient. Rather, wave tank simulations allow for scaling to field conditions. Presented here are experiment results from the Bedford Institute of Oceanography wave tank facility, where chemically-dispersed (Corexit 9500; DOR = 1:20) Louisiana Sweet crude, IFO-120 and ANS crude oil were exposed to mixing energies to achieve dispersant effectiveness observed in the field. Oil plumes were simulated, both surface and subsea releases with varying water temperature and flow rate. Fluorometers (Chelsea Technologies Group AQUATracka, Turner Designs Cyclops, WET Labs Inc ECO) and particle size analyzers (Sequoia LISST) were used to track the dispersed plumes in the tank and characterize oil droplets. Sensors were validated with known oil volumes (down to 300 ppb) and measured Total Petroleum Hydrocarbons (TPH) and Benzene-Toluene-Ethylbenzene-Xylene (BTEX) values. This work has large implications for tracking surface and deep sea oil plumes with fluorescence and particle size analyzers, improved weathering and biodegradation estimates, and understanding the fate and transport of spill oil.

  20. ORNL irradiation creep facility

    SciTech Connect

    Reiley, T.C.; Auble, R.L.; Beckers, R.M.; Bloom, E.E.; Duncan, M.G.; Saltmarsh, M.J.; Shannon, R.H.

    1980-09-01

    A machine was developed at ORNL to measure the rates of elongation observed under irradiation in stressed materials. The source of radiation is a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). This choice allows experiments to be performed which simulate the effects of fast neutrons. A brief review of irradiation creep and experimental constraints associated with each measurement technique is given. Factors are presented which lead to the experimental choices made for the Irradiation Creep Facility (ICF). The ICF consists of a helium-filled chamber which houses a high-precision mechanical testing device. The specimen to be tested must be thermally stabilized with respect to the temperature fluctuations imposed by the particle beam which passes through the specimen. Electrical resistance of the specimen is the temperature control parameter chosen. Very high precision in length measurement and temperature control are required to detect the small elongation rates relevant to irradiation creep in the test periods available (approx. 1 day). The apparatus components and features required for the above are presented in some detail, along with the experimental procedures. The damage processes associated with light ions are discussed and displacement rates are calculated. Recent irradiation creep results are given, demonstrating the suitability of the apparatus for high resolution experiments. Also discussed is the suitability of the ICF for making high precision thermal creep measurements.

  1. Structural-phase state and creep of mixed nitride fuel

    NASA Astrophysics Data System (ADS)

    Konovalov, I. I.; Tarasov, B. A.; Glagovsky, E. M.

    2016-04-01

    By the analysis of thermal creep data in conjunction with structural-phase state the most likely mechanisms of UN creep are considered. An equation relating the thermal and radiation creep of nitride fuel with such important parameters as plutonium content, porosity, grain size, the content of impurities of transition metals and oxygen, the carbon content has been suggested. At stationary operating parameters in reactor the creep of nitride fuel with technical purity is defined by the thermal component at mechanism of intergranular slip and by the radiation component, which plays a significant role at temperatures below 1100°C. Both types of creep in a first approximation have a linear dependence on the stress.

  2. Laser backscattered from partially convex targets of large sizes in random media for E-wave polarization.

    PubMed

    El-Ocla, Hosam

    2006-08-01

    The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.

  3. Particle sizing in highly turbid dispersions by Photon Density Wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Bressel, L.; Hass, R.; Reich, O.

    2013-09-01

    Photon Density Wave (PDW) spectroscopy is presented as a fascinating technology for the independent determination of scattering (μ‧s) and absorption (μa) properties of highly turbid liquid dispersions. The theory is reviewed introducing new expressions for the PDW coefficients kI and kΦ. Furthermore, two models for dependent scattering, namely the hard sphere model in the Percus-Yevick Approximation (HSPYA) and the Yukawa model in the Mean Spherical Approximation (YMSA), are experimentally examined. On the basis of the HSPYA particle sizing is feasible in dispersions of high ionic strength. It is furthermore shown that in dialyzed dispersions or in technical copolymers with high particle charge only the YMSA allows for correct dilution-free particle sizing.

  4. Industrial applications of photon density wave spectroscopy for in-line particle sizing [Invited].

    PubMed

    Hass, Roland; Münzberg, Marvin; Bressel, Lena; Reich, Oliver

    2013-03-01

    Optical spectroscopy in highly turbid liquid material is often restricted by simultaneous occurrence of absorption and scattering of light. Photon Density Wave (PDW) spectroscopy is one of the very few, yet widely unknown, technologies for the independent quantification of these two optical processes. Here, a concise overview about modern PDW spectroscopy is given, including all necessary equations concerning the optical description of the investigated material, dependent light scattering, particle sizing, and PDW spectroscopy itself. Additionally, it is shown how the ambiguity in particle sizing, arising from Mie theory, can be correctly solved. Due to its high temporal resolution, its applicability to highest particle concentrations, and its purely fiber-optical probe, PDW spectroscopy possesses all fundamental characteristics for optical in-line process analysis. Several application examples from the chemical industry are presented.

  5. Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the

  6. Creep degradation in oxide-dispersion-strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    Oxide dispersion strengthened Ni-base alloys in wrought bar form are studied for creep degradation effects similar to those found in thin gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and three types of advanced ODS-NiCrAl alloys. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, the appearance of dispersoid-free bands, grain boundary cavitation, and internal oxidation in the microstructure were interpreted as creep degradation effects. This work showed that many ODS alloys are subject to creep damage. Degradation of tensile properties occurred after very small amounts of creep strain, ductility being the most sensitive property. All the ODS alloys which were creep damaged possessed a large grain size. Creep damage appears to have been due to diffusional creep which produced dispersoid-free bands around boundaries acting as vacancy sources. Low angle and possibly twin boundaries acted as vacancy sources.

  7. Flaw Sizing in Pipes Using Long-Range Guided Wave Testing

    NASA Astrophysics Data System (ADS)

    Sanderson, R. M.; Catton, P. P.

    2011-06-01

    The absence of adequate inspection data from difficult-to-access areas on pipelines, such as cased-road crossings, makes determination of fitness for continued service and compliance with increasingly stringent regulatory requirements problematic. Screening for corrosion using long-range guided wave testing is a relatively new inspection technique. The complexity of the possible modes of vibration means the technique can be difficult to implement effectively but this also means that it has great potential for both detecting and characterizing flaws. The ability to determine flaw size would enable the direct application of standard procedures for determining fitness-for-service, such as ASME B31G, RSTRENG, or equivalent for tens of metres of pipeline from a single inspection location. This paper presents a new technique for flaw sizing using guided wave inspection data. The technique has been developed using finite element models and experimentally validated on 6″ Schedule 40 steel pipe. Some basic fitness-for-service assessments have been carried out using the measured values and the maximum allowable operating pressure was accurately determined.

  8. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    PubMed

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. PMID:27309129

  9. Measurement bias in evanescent wave nano-velocimetry due to tracer size variations

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Guasto, Jeffrey S.; Huang, Peter

    2011-12-01

    Evanescent wave nano-velocimetry is an imaging tool for studying biophysical transport and nano-scale fluid mechanics via tracking the 2D or 3D motion of fluorescent nanoparticles within several hundred nanometers of a fluid--solid interface. Because the information on the third dimension is encoded in the tracer intensity, variation in the tracer size, which is proportional to the particle intensity, can lead to significant measurement uncertainty. In this work, we consider the measurement bias introduced by tracer size polydispersity on the fluid velocimetry measurements. We present a general theoretical model to account for tracer size variation, interaction potentials between tracers and the solid substrate (e.g., electrostatic, van der Waals forces) and analysis of image data. Computational results are provided for typical experimental conditions, and the implications for nano-velocimetry accuracy are discussed. We find that increased tracer particle size variation and the detectability limit of tracer intensity increase measurement bias by up to 10%, which should be accounted for in experimental measurements.

  10. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    PubMed

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications.

  11. Droplet Size Distributions Resulting form Entrainment of Surface Oil Slick by Breaking Waves

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Katz, Joseph

    2015-11-01

    A spectrum of droplet sizes, ranging from submicron to several millimeters, is generated by breaking waves impinging on an oil slick. Their size distribution is crucial for modeling the fate of oil spill, and understanding the underlying flow physics. Digital holography microscopy (DHM) is used for measuring the droplet size distributions at high resolution (1.1 μm/pixel), and at varying temporal scale, from the initial plunging phase (seconds) to long term (hours). The time-resolved DHM data is acquired simultaneously with high speed visualizations of the breakup and large scale features of the entrainment process. Experimental conditions include: (i) plunging and spilling breakers with wave heights of 28.8, 24.9, 22.28 cm; (ii) crude oil (MC252 surrogate), and oil premixed with dispersants (Corexit-9500A) giving two order of magnitude range of water-oil interfacial tension; (iii) Crude, fish, and motor oils with viscosity of 9.4, 63.1 and 306.5 cst, respectively. Shortly after entrainment of crude oil, the droplet radius distribution is bimodal, with a primary peak in the 0-25 μm range, and a secondary peak at 200-250 μm. Adding dispersants reduces the latter to 150 μm. The drastic reduction in interfacial tension upon introduction of dispersants increases the primary peak, and causes short term micro threading. The Secondary peaks dampen within seconds, as the larger droplets rise, whereas the primary peaks are sustained for longer periods. Supported by Gulf of Mexico Research Initiative (GoMRI).

  12. Avoiding Project Creep.

    ERIC Educational Resources Information Center

    Kennerknecht, Norbert J.; Scarnati, James T.

    1998-01-01

    Discusses how to keep school district capital-improvement projects within budget. Examines areas where runaway costs creep into a project and ways of cutting or lessening these costs, such as using standard agreements, controlling architect's expense reimbursements, developing a quality-control process, and reducing document duplication. (GR)

  13. Triggered dynamics in a model of different fault creep regimes

    PubMed Central

    Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina

    2014-01-01

    The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397

  14. A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick

    2010-01-01

    The goal of non-destructive testing (NDT) is to determine the position and size of structural defects, in order to measure the quality and evaluate the safety of building materials. Most NDT techniques are rather complex, however, requiring specialized knowledge. In this article, we introduce an experimental method for crack detection that uses Surface Acoustic Waves (SAWs) and optical measurements. The method is tested on a steel beam engraved with slots of known depth. A simple model to determine the cracks size is also proposed. At the end of the article, we describe a possible application: fatigue crack sizing on a damaged slat track. This technique represents a first step toward a better understanding of the crack growth, especially in its early stages (preferably when the cracks can still be repaired) and when it is possible to assume a linear propagation of the crack front. The ultimate goal of this research program is to develop a useful method of monitoring aircraft components during fatigue testing. PMID:19732928

  15. A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick

    2010-01-01

    The goal of non-destructive testing (NDT) is to determine the position and size of structural defects, in order to measure the quality and evaluate the safety of building materials. Most NDT techniques are rather complex, however, requiring specialized knowledge. In this article, we introduce an experimental method for crack detection that uses Surface Acoustic Waves (SAWs) and optical measurements. The method is tested on a steel beam engraved with slots of known depth. A simple model to determine the cracks size is also proposed. At the end of the article, we describe a possible application: fatigue crack sizing on a damaged slat track. This technique represents a first step toward a better understanding of the crack growth, especially in its early stages (preferably when the cracks can still be repaired) and when it is possible to assume a linear propagation of the crack front. The ultimate goal of this research program is to develop a useful method of monitoring aircraft components during fatigue testing.

  16. Creep behaviour and creep mechanisms of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep

  17. Transition between dislocation creep and diffusion creep in upper greenschist- to lower amphibolite-facies metacherts

    NASA Astrophysics Data System (ADS)

    Okudaira, T.; Ogawa, D.; Miyazaki, T.; Michibayashi, K.

    2009-12-01

    To clarify the dominant deformation mechanism in continental middle crust at an arc-trench system, we used an SEM-EBSD system to measure the lattice-preferred orientations of quartz grains in fine-grained (~10 μm) metachert from the low-grade (chlorite and chlorite-biotite zones) part of the Ryoke metamorphic belt, SW Japan. The metacherts are composed mainly by quartz (> 94 vol.%), with small amounts of chlorite, muscovite and biotite. Quartz grain-sizes vary from 9 to 20 μm in diameter; grain sizes of quartz are weakly related to quartz modal abundances. Quartz c-axis fabrics do not exhibit distinct patterns that could be formed by dislocation creep. Fabric intensities are calculated: values of fabric intensity index proposed by Lisle (1985) and those of by Skemer et al. (2005), that is 'M-index', are 0.060-0.074 and 0.027-0.073, respectively. These values are very small, indicating that the quartz c-axis fabric patterns are comparable with a random distribution. In these samples, there are deformed radiolarian fossils and they are used as strain marker to analyze strain geometry and magnitude of the metacherts. According to the results of strain analysis using Rφ-f method, k-value and strain magnitude are 0.4-1.0 and 0.6-0.7, respectively. The strain magnitude is enough to form distinct fabric patterns, when dislocation creep is a dominant deformation mechanism. Therefore, in the metachert samples studied here, it suggests that dominant deformation mechanism is not dislocation creep, but diffusion creep. Although, when the grain size of quartz is ~10 mm, shear stress is ~several tens megapascal and upper greenschist- to lower amphibolite-facies condition (~500°C at 200-300 MPa), it has been considered that high-strained natural quartzose rocks, e.g., quartz-rich layers in banded ultramylonites, deformed by dislocation creep, the very-fine grained metacherts from the Ryoke metamorphic belt formed under the upper greenschist- to lower amphibolite

  18. Effects of exciting frequencies, grain sizes, and damage upon P-wave velocity for ultrasonic NDT of concrete

    NASA Astrophysics Data System (ADS)

    Ju, Jiann W.; Weng, Lisheng

    2000-05-01

    This paper focuses on the experimental study of the effects of exciting frequencies, grain (aggregate) sizes, and damage upon the ultrasonic P-wave velocity when performing the ultrasonic nondestructive testing (NDT) for concrete specimens. Two batches of concrete and mortar specimens were prepared in the laboratory for the investigation of the effects from the stated factors upon the P-wave velocity. Damage here mostly refers to microcracks and microvoids in concrete. Five different aggregate sizes, 0' (mortar), 3/8', 1/2', 3/4', and 1', were selected to demonstrate the grain (aggregate) size effect. Exciting frequencies of the ultrasonic wave were set to range from 100 kHz to 1,000 kHz, with increment of 50 kHz, to demonstrate the frequency effect. Styrofoam particles were mixed into the comparison concrete and mortar specimens to simulate the distributed microvoids (damage). Different volume fractions of styrofoam particles were mixed into the mortar specimens in order to study the effect of different porosities (damage) upon the P-wave velocity. The experimental observations show that, for mortar and concrete specimens with aggregate sizes from 0 to 1 inch, the P-wave velocity would not be affected significantly within the tested frequency range (100 - 1000 kHz). The normalized P-wave velocity exhibits almost identical pattern upon the exciting frequencies for all specimens.

  19. Synchronization of finite-size particles by a traveling wave in a cylindrical flow

    NASA Astrophysics Data System (ADS)

    Melnikov, D. E.; Pushkin, D. O.; Shevtsova, V. M.

    2013-09-01

    Motion of small finite-size particles suspended in a cylindrical thermocapillary flow with an azimuthally traveling wave is studied experimentally and numerically. At certain flow regimes the particles spontaneously align in dynamic accumulation structures (PAS) of spiral shape. We find that long-time trajectories of individual particles in this flow fall into three basic categories that can be described, borrowing the dynamical systems terminology, as the stable periodic, the quasiperiodic, and the quasistable periodic orbits. Besides these basic types of orbits, we observe the "doubled" periodic orbits and shuttle-like particle trajectories. We find that ensembles of particles having periodic orbits give rise to one-dimensional spiral PAS, while ensembles of particles having quasiperiodic orbits form two-dimensional PAS of toroidal shape. We expound the reasons why these types of orbits and the emergence of the corresponding accumulation structures should naturally be anticipated based on the phase locking theory of PAS formation. We give a further discussion of PAS features, such as the finite thickness of PAS spirals and the probable scenarios of the spiral PAS destruction. Finally, in numerical simulations of inertial particles we observe formation of the spiral structures corresponding to the 3:1 "resonance" between the particle turnover frequency and the wave oscillations frequency, thus confirming another prediction of the phase locking theory. In view of the generality of the arguments involved, we expect the importance of this structure-forming mechanism to go far beyond the realm of the laboratory-friendly thermocapillary flows.

  20. First principles model of carbonate compaction creep

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Dysthe, Dag Kristian; Jamtveit, Bjørn

    2016-05-01

    Rocks under compressional stress conditions are subject to long-term creep deformation. From first principles we develop a simple micromechanical model of creep in rocks under compressional stress that combines microscopic fracturing and pressure solution. This model was then upscaled by a statistical mechanical approach to predict strain rate at core and reservoir scale. The model uses no fitting parameter and has few input parameters: effective stress, temperature, water saturation porosity, and material parameters. Material parameters are porosity, pore size distribution, Young's modulus, interfacial energy of wet calcite, the dissolution, and precipitation rates of calcite, and the diffusion rate of calcium carbonate, all of which are independently measurable without performing any type of deformation or creep test. Existing long-term creep experiments were used to test the model which successfully predicts the magnitude of the resulting strain rate under very different effective stress, temperature, and water saturation conditions. The model was used to predict the observed compaction of a producing chalk reservoir.

  1. Creep and creep-rupture behavior of Alloy 718

    SciTech Connect

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760{degree}C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs.

  2. New X-wave solutions of free-space scalar wave equation and their finite size realization.

    PubMed

    Sushilov, N V; Tavakkoli, J; Cobbold, R S

    2001-01-01

    Based on the method proposed by Donnelly and Ziolkowski [1], [2], a new general solution has been obtained for the isotropic/homogeneous scalar wave equation in cylindrical coordinates. It is shown that well-known limited diffraction beams such as Durnin's Bessel beams [4], Lu and Greenleaf's X-wave [15], localized waves of Donnelly and Ziolkowski [1], [2], and limited-diffraction, band-limited waves of Li and Bharath [19], [20] can be obtained from this generic solution as particular cases. In addition, we have obtained new X-wave solutions and have calculated the field characteristics for one of them using a finite aperture realization. It is shown that with a proper choice of the free parameter values, well-behaved X-waves with narrow beamwidths and large depths of field can be achieved. For similar source spectra, the results are compared with Lu and Greenleaf's zeroth-order X-wave, and it is shown that the depth of field and beamwidth are very comparable.

  3. Costs of storing colour and complex shape in visual working memory: Insights from pupil size and slow waves.

    PubMed

    Kursawe, Michael A; Zimmer, Hubert D

    2015-06-01

    We investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp. 2). Task difficulty was manipulated by presenting different set sizes (1, 2, 4 items) and by making different features (colour, shape, or both) task-relevant. Memory performance in the colour condition was better than in the shape and both condition which did not differ. Pupil dilation and the posterior N1 increased with set size independent of type of feature. In contrast, slow waves and a posterior P2 component showed set size effects but only if shape was task-relevant. In the colour condition slow waves did not vary with set size. We suggest that pupil size and N1 indicates different states of attentional effort corresponding to the number of presented items. In contrast, slow waves reflect processes related to encoding and maintenance strategies. The observation that their potentials vary with the type of feature (simple colour versus complex shape) indicates that perceptual complexity already influences encoding and storage and not only comparison of targets with memory entries at the moment of testing.

  4. The effect of dissolved magnesium on creep of calcite II: transition from diffusion creep to dislocation creep

    NASA Astrophysics Data System (ADS)

    Xu, Lili; Renner, Jörg; Herwegh, Marco; Evans, Brian

    2009-03-01

    We extended a previous study on the influence of Mg solute impurity on diffusion creep in calcite to include deformation under a broader range of stress conditions and over a wider range of Mg contents. Synthetic marbles were produced by hot isostatic pressing (HIP) mixtures of calcite and dolomite powders for different intervals (2-30 h) at 850°C and 300 MPa confining pressure. The HIP treatment resulted in high-magnesian calcite aggregates with Mg content ranging from 0.5 to 17 mol%. Both back-scattered electron images and chemical analysis suggested that the dolomite phase was completely dissolved, and that Mg distribution was homogeneous throughout the samples at the scale of about two micrometers. The grain size after HIP varied from 8 to 31 μm, increased with time at temperature, and decreased with increasing Mg content (>3.0 mol%). Grain size and time were consistent with a normal grain growth equation, with exponents from 2.4 to 4.7, for samples containing 0.5-17.0 mol% Mg, respectively. We deformed samples after HIP at the same confining pressure with differential stresses between 20 and 200 MPa using either constant strain rate or stepping intervals of loading at constant stresses in a Paterson gas-medium deformation apparatus. The deformation tests took place at between 700 and 800°C and at strain rates between 10-6 and 10-3 s-1. After deformation to strains of about 25%, a bimodal distribution of large protoblasts and small recrystallized neoblasts coexisted in some samples loaded at higher stresses. The deformation data indicated a transition in mechanism from diffusion creep to dislocation creep. At stresses below 40 MPa, the strength was directly proportional to grain size and decreased with increasing Mg content due to the reductions in grain size. At about 40 MPa, the sensitivity of log strain rate to log stress, ( n), became greater than 1 and eventually exceeded 3 for stresses above 80 MPa. At a given strain rate and temperature, the stress at

  5. Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size

    NASA Astrophysics Data System (ADS)

    Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig

    2016-08-01

    Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 1300-2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  6. Soil creep as factor of landscape change

    NASA Astrophysics Data System (ADS)

    Lucke, Bernhard

    2016-04-01

    Many erosion models assume that soils are transported grain-by-grain, and thus calculate loss and deposition according to parameters such as bulk density and average grain size. However, there are indications that clay-rich soils, such as the widespread Red Mediterranean Soils or Terrae Rossae, behave differently. This is illustrated by a case study of historic landscape changes in Jordan, where evidence for soil creep as main process of soil movement was found in the context of ancient cemeteries. Due to a dominance of smectites, the Red Mediterranean Soils in this area shrink and form cracks during the dry period. Because of the cracks and underlying limestone karst, they can swallow strong rains without high erosion risk. However, when water-saturated, these soils expand and can start creeping. Buried geoarchaeological features like small water channels on formerly cleared rocks suggest that soils can move a few cm uplslope when wet, and buried graves illustrate that soil creep can create new level surfaces, sealing cavities but not completely filling them. Such processes seem associated with slumping and earth flows as instable rocks might collapse under the weight of a creeping soil. While it is very difficult to measure such processes, landscape archaeology offers at least an indirect approach that could be suited to estimate the scale and impact of soil creep. Analogies with modern rainfalls, including record levels of precipitation during the winter 1991/1992, indicate that similar levels of soil moisture have not been reached during times of modern instrumental rainfall monitoring. This suggests that very strong deluges must have occurred during historical periods, that could potentially cause tremendous damage to modern infrastructure if happening again.

  7. A coin size, 40mW, 20 grams sensor node for guided waves detection

    NASA Astrophysics Data System (ADS)

    Testoni, N.; De Marchi, L.; Ferraro, A.; Marzani, A.

    2015-03-01

    In this work, a small footprint, low power, and light weight sensor node for guided wave detection on laminate composite and metallic structures is presented. This device is meant as a basic building block for smart structure passive sensor networks development. It draws power from a two-wires data-over-power (DoP) network communication interface, which is also used for half-duplex data handling at 200kbps. Each node is roughly 20x24mm, consumes less than 40mW, and weights less than 20 grams, making it attractive for aerospace systems where size, power and weight reduction are crucial. Elastic waves generated from impacts and propagating on the structure are recorded by an innovative, patent-pending, dual-element piezoelectric transducer and processed by an embedded low-voltage 8-bit PIC. A 1Mbit SPI serial SRAM is used for data storage while program instruction are stored in the PIC embedded 7 KB ash. A low-voltage, high-speed, half-duplex RS485 transceiver with an internal, programmable termination resistance is used to interface the PIC to the bus through a filtering mesh of passive components. This mesh also connects to a low-dropout voltage regulator, allowing it to draw power from the DoP bus without interfering with data transmission. A separate gateway device has also been developed: it is capable to simultaneously interface and feed the DoP bus by drawing power either from the USB or from an external power supply. A network counting up to 256 nodes can be implemented and interfaced to a PC for real-time impact detection applications.

  8. Irradiation creep of candidate materials for advanced nuclear plants

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Hoffelner, W.

    2013-10-01

    In the present paper, irradiation creep results of an intermetallic TiAl alloy and two ferritic oxide dispersion strengthened (ODS) steels are summarized. In situ irradiation creep measurements were performed using homogeneous implantation with α- and p-particles to maximum doses of 0.8 dpa at displacement damage rates of 2-8 × 10-6 dpa/s. The strains of miniaturized flat dog-bone specimens were monitored under uniaxial tensile stresses ranging from 20 to 400 MPa at temperatures of 573, 673 and 773 K, respectively. The effects of material composition, ODS particle size, and bombarding particle on the irradiation creep compliance was studied and results are compared to literature data. Evolution of microstructure during helium implantation was investigated in detail by TEM and is discussed with respect to irradiation creep models.

  9. Finite Element Analysis of Plastic Deformation During Impression Creep

    NASA Astrophysics Data System (ADS)

    Naveena; Ganesh Kumar, J.; Mathew, M. D.

    2015-04-01

    Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.

  10. Exact off-resonance near fields of small-size extended hemielliptic 2-D lenses illuminated by plane waves.

    PubMed

    Boriskin, Artem V; Sauleau, Ronan; Nosich, Alexander I

    2009-02-01

    The near fields of small-size extended hemielliptic lenses made of rexolite and isotropic quartz and illuminated by E- and H-polarized plane waves are studied. Variations in the focal domain size, shape, and location are reported versus the angle of incidence of the incoming wave. The problem is solved numerically in a two-dimensional formulation. The accuracy of results is guaranteed by using a highly efficient numerical algorithm based on the combination of the Muller boundary integral equations, the method of analytical regularization, and the trigonometric Galerkin discretization scheme. The analysis fully accounts for the finite size of the lens as well as its curvature and thus can be considered as a reference solution for other electromagnetic solvers. Moreover, the trusted description of the focusing ability of a finite-size hemielliptic lens can be useful in the design of antenna receivers.

  11. Long-time creep behavior of the niobium alloy C-103

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Klopp, W. D.

    1980-01-01

    The creep behavior of C-103 was studied as a function of stress, temperature, and grain size for test times to 19000 hr. Over the temperature range 827 to 1204 C and the stress range 6.89 to 138 MPa, only tertiary (accelerating) creep was observed. The creep strain epsilon can be related to time t by an exponential relation epsilon = epsilon(0) + K e raised to power (st) - 1), where epsilon (0) is initial creep strain, K is the tertiary creep strain parameter, and s is the tertiary creep rate parameter. The observed stress exponent 2.87 is similar to the three power law generally observed for secondary (linear) creep of Class I solid solutions. The apparent activation energy 374 kj/g mol is close to that observed for self diffusion of pure niobium. The initial tertiary creep rate was slightly faster for fine grained than for coarse-grained material. The strain parameter K can be expressed as a combination of power functions of stress and grain size and an exponential function of temperature. Strain time curves generated by using calculated values for K and s showed reasonable agreement with observed curves to strains of at least 4 percent. The time to 1 percent strain was related to stress, temperature, and grain size in a similar manner as the initial tertiary creep rate.

  12. Creep Measurement Video Extensometer

    NASA Technical Reports Server (NTRS)

    Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John

    2011-01-01

    Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.

  13. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    NASA Astrophysics Data System (ADS)

    Saliba, J.; Loukili, A.; Grondin, F.

    2010-06-01

    effect on concrete, probably because of the consolidation of the hardened cement paste. The influence of creep on fracture energy, fracture toughness, and characteristic length of concrete is also studied. The fracture energy and the characteristic length of concrete increases slightly when creep occurs prior to failure and the size of the fracture process zone increases too. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases with beams subjected to creep. Relatively more ductile fracture behavior was observed with beams subjected to creep. The contribution of non-destructive and instrumental investigation methods is currently exploited to check and measure the evolution of some negative structural phenomena, such as micro-and macro-cracking, finally resulting in a creep-like behaviour. Among these methods, the non-destructive technique based on acoustic Emission proves to be very effective, especially to check and measure micro-cracking that takes place inside a structure under mechanical loading. Thus as a part of the investigation quantitative acoustic emission techniques were applied to investigate microcracking and damage localization in concrete beams. The AE signals were captured with the AE WIN software and further analyzed with Noesis software analysis of acoustic emission data. AE waveforms were generated as elastic waves in concrete due to crack nucleation. And a multichannel data acquisition system was used to record the AE waveforms. During the three point bending tests, quantitative acoustic emission (AE) techniques were used to monitor crack growth and to deduce micro fracture mechanics in concrete beams before and after creep. Several specimens are experimented in order to match each cluster with corresponding damage mechanism of the material under loading. At the same time acoustic emission was used to

  14. Creep-Fatigue Interaction Testing

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.

  15. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  16. Rationalization of Creep Data of Creep-Resistant Steels on the Basis of the New Power Law Creep Equation

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Yang, M.; Song, X. L.; Jia, J.; Xiang, Z. D.

    2016-07-01

    The conventional power law creep equation (Norton equation) relating the minimum creep rate to creep stress and temperature cannot be used to predict the long-term creep strengths of creep-resistant steels if its parameters are determined only from short-term measurements. This is because the stress exponent and activation energy of creep determined on the basis of this equation depend on creep temperature and stress and these dependences cannot be predicted using this equation. In this work, it is shown that these problems associated with the conventional power law creep equation can be resolved if the new power law equation is used to rationalize the creep data. The new power law creep equation takes a form similar to the conventional power law creep equation but has a radically different capability not only in rationalizing creep data but also in predicting the long-term creep strengths from short-term test data. These capabilities of the new power law creep equation are demonstrated using the tensile strength and creep test data measured for both pipe and tube grades of the creep-resistant steel 9Cr-1.8W-0.5Mo-V-Nb-B (P92 and T92).

  17. Creep and fracture of dispersion-strengthened materials

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    1991-01-01

    The creep and fracture of dispersion strengthened materials is reviewed. A compilation of creep data on several alloys showed that the reported values of the stress exponent for creep varied between 3.5 and 100. The activation energy for creep exceeded that for lattice self diffusion in the matrix in the case of some materials and a threshold stress behavior was generally reported in these instances. The threshold stress is shown to be dependent on the interparticle spacing and it is significantly affected by the initial microstructure. The effect of particle size and the nature of the dispersoid on the threshold stress is not well understood at the present time. In general, most studies indicate that the microstructure after creep is similar to that before testing and very few dislocations are usually observed. It is shown that the stress acting on a dispersoid due to a rapidly moving dislocation can exceed the particle yield strength of the G sub p/1000, where G sub p is the shear modulus of the dispersoid. The case when the particle deforms is examined and it is suggested that the dislocation creep threshold stress of the alloy is equal to the yield strength of the dispersoid under these conditions. These results indicate that the possibility that the dispersoid creep threshold stress is determined by either the particle yield strength or the stress required to detach a dislocation from the dispersoid matrix interface. The conditions under which the threshold stress is influenced by one or the other mechanism are discussed and it is shown that the particle yield strength is important until the extent of dislocation core relaxation at the dispersoid matrix interface exceeds about 25 pct. depending on the nature of the particle matrix combination. Finally, the effect of grain boundaries and grain morphology on the creep and fracture behavior of dispersoid strengthened alloys is examined.

  18. Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures

    SciTech Connect

    J.K. Benz; L.J. Carroll; J.K. Wright; R.N. Wright; T. Lillo

    2014-06-01

    Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 °C to 1000 °C). Creep at 1023 K (750 °C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent y' precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 °C) and is verified to be near zero at 1173 K (900 °C)—temperatures directly correlating to the formation and dissolution of y' precipitates, respectively. The y' precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 °C) to various strains, and modeling of stresses necessary for y' precipitate dislocation bypass, suggests that the climb of dislocations around the y' precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the y' precipitates.

  19. Investigation of the effect of aggregates' morphology on concrete creep properties by numerical simulations

    SciTech Connect

    Lavergne, F.; Sab, K.; Sanahuja, J.; Bornert, M.; Toulemonde, C.

    2015-05-15

    Prestress losses due to creep of concrete is a matter of interest for long-term operations of nuclear power plants containment buildings. Experimental studies by Granger (1995) have shown that concretes with similar formulations have different creep behaviors. The aim of this paper is to numerically investigate the effect of size distribution and shape of elastic inclusions on the long-term creep of concrete. Several microstructures with prescribed size distribution and spherical or polyhedral shape of inclusions are generated. By using the 3D numerical homogenization procedure for viscoelastic microstructures proposed by Šmilauer and Bažant (2010), it is shown that the size distribution and shape of inclusions have no measurable influence on the overall creep behavior. Moreover, a mean-field estimate provides close predictions. An Interfacial Transition Zone was introduced according to the model of Nadeau (2003). It is shown that this feature of concrete's microstructure can explain differences between creep behaviors.

  20. Satellites of the Saturnian system with clear signatures of the wave warpings producing alignments of "craters" of predictable sizes

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    At previous COSPAR Scientific Assembly Paris 2004 we stated that numerous traces of wave warpings will be detected by Cassini on surfaces of the Saturnian satellites 1 Now it is clear that all icy satellites notwithstanding their sizes and orbits are affected by warping action of inertia-gravity waves due to their movement in elliptical orbits more pronounced in the past with periodically changing accelerations The warping is detected in 3-4 directions ortho- and diagonal producing at intersections chains grids of even-sized craters and separating them mounds granules The crater sizes or granulations are not random but depend on orbital frequencies of satellites 2 higher frequency -- smaller relative size Earlier for terrestrial planets was demonstrated that their tectonic granules sizes are strictly inverse to their orbital frequencies Mercury pi R 16 Venus pi R 6 Earth pi R 4 Mars pi R 2 asteroids pi R 1 R-a body radius The Earth s frequency 1 1 year and granule size pi R 4 or sim 5000 km serve as a scale for comparison and calculating granule crater sizes on other bodies surfaces Satellites have two orbital frequencies in the Solar system around a planet and Sun Thus to 2 main frequencies and corresponding to them granule sizes should be added at least 2 modulated side frequencies and corresponding to them granule sizes The modulation is a division and multiplication of the higher frequency by the lower one Some examples 1 Entire surface of Hyperion is peppered with even-sized craters

  1. Lattice continuum and diffusional creep

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  2. Creep in electronic ceramics

    SciTech Connect

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  3. Driven Interfaces: From Flow to Creep Through Model Reduction

    NASA Astrophysics Data System (ADS)

    Agoritsas, Elisabeth; García-García, Reinaldo; Lecomte, Vivien; Truskinovsky, Lev; Vandembroucq, Damien

    2016-08-01

    The response of spatially extended systems to a force leading their steady state out of equilibrium is strongly affected by the presence of disorder. We focus on the mean velocity induced by a constant force applied on one-dimensional interfaces. In the absence of disorder, the velocity is linear in the force. In the presence of disorder, it is widely admitted, as well as experimentally and numerically verified, that the velocity presents a stretched exponential dependence in the force (the so-called `creep law'), which is out of reach of linear response, or more generically of direct perturbative expansions at small force. In dimension one, there is no exact analytical derivation of such a law, even from a theoretical physical point of view. We propose an effective model with two degrees of freedom, constructed from the full spatially extended model, that captures many aspects of the creep phenomenology. It provides a justification of the creep law form of the velocity-force characteristics, in a quasistatic approximation. It allows, moreover, to capture the non-trivial effects of short-range correlations in the disorder, which govern the low-temperature asymptotics. It enables us to establish a phase diagram where the creep law manifests itself in the vicinity of the origin in the force-system-size-temperature coordinates. Conjointly, we characterise the crossover between the creep regime and a linear-response regime that arises due to finite system size.

  4. Driven Interfaces: From Flow to Creep Through Model Reduction

    NASA Astrophysics Data System (ADS)

    Agoritsas, Elisabeth; García-García, Reinaldo; Lecomte, Vivien; Truskinovsky, Lev; Vandembroucq, Damien

    2016-09-01

    The response of spatially extended systems to a force leading their steady state out of equilibrium is strongly affected by the presence of disorder. We focus on the mean velocity induced by a constant force applied on one-dimensional interfaces. In the absence of disorder, the velocity is linear in the force. In the presence of disorder, it is widely admitted, as well as experimentally and numerically verified, that the velocity presents a stretched exponential dependence in the force (the so-called `creep law'), which is out of reach of linear response, or more generically of direct perturbative expansions at small force. In dimension one, there is no exact analytical derivation of such a law, even from a theoretical physical point of view. We propose an effective model with two degrees of freedom, constructed from the full spatially extended model, that captures many aspects of the creep phenomenology. It provides a justification of the creep law form of the velocity-force characteristics, in a quasistatic approximation. It allows, moreover, to capture the non-trivial effects of short-range correlations in the disorder, which govern the low-temperature asymptotics. It enables us to establish a phase diagram where the creep law manifests itself in the vicinity of the origin in the force-system-size-temperature coordinates. Conjointly, we characterise the crossover between the creep regime and a linear-response regime that arises due to finite system size.

  5. Extending the size-parameter range for plane-wave light scattering from infinite homogeneous circular cylinders

    SciTech Connect

    Hau-Riege, S

    2005-04-12

    We have developed an algorithm that extends the possible size-parameter range for the calculation of plane-wave light scattering from infinite homogeneous circular cylinders using a Mie-type analysis. Our algorithm is based on the calculation of the ratios of Bessel functions instead of calculating the Bessel functions or their logarithmic derivatives directly. We have found that this algorithm agrees with existing methods (when those methods converge). We have also found that our algorithm converges in cases of very large size parameters, in which case other algorithms often do not.

  6. Creep of posterior dental composites.

    PubMed

    Papadogianis, Y; Boyer, D B; Lakes, R S

    1985-01-01

    The creep of microspecimens of posterior dental composites was studied using a torsional creep apparatus. Shear stresses were maintained for 3 h and recovery was followed for 50 h. Creep curves were obtained at 21, 37, and 50 degrees C and four torque levels. The effect of conditioning the specimens in water up to 8 weeks was studied. The posterior composites exhibited linear viscoelastic behavior at low deformations. They had higher shear moduli and greater resistance to creep than conventional and microfilled composites. In aging experiments, maximum shear moduli occurred when specimens were 48 h to 1 week old. Subsequent softening was attributed to water absorption. Residual strain was highest when the composites were stressed within 24 h of initiating polymerization. Residual strain was very low in specimens 48 h to 8 weeks of age.

  7. Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2002-01-01

    New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.

  8. Saturn's infrared spots at the southern and northern polar regions and calculation of their sizes by a wave modulation procedure

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    Two recently acquired IR images of two polar regions of Saturn (credit: NASA/JPL/University of Arizona) show unusually large hurricane (8000 km across, PIA08333) centered on the south pole and a huge hexagon (25000 km across, PIA09186) centered on the north pole. The hexagon feature at least is rather stable as it was observed also by Voyagers about 30 years ago. Fascinated by these tremendous and regular features scientists paid less attention to regularly disposed non-overlapping dark spots (small hurricanes) separated by lighter areas making a kind of background to these features (though at the south pole this combination was nicknamed "leopard skin" [1]). This spotted background presenting a regular combination of dark and light areas in IR radiation is interpreted as an alternation of wave produced denser and less dense gaseous blocks permitting escape more or less intensive heat radiation. Movement down squeezes gas, movement up expands it. On an average dark spots measure 450 (300-600 km) in the south and 580 (400-800 km) in the north. What kind of interfering waves makes this pattern? The wave planetology [1, 2, 3 & others] main position is: "Orbits make structures". Movements in elliptical orbits with periodically changing accelerations means a warping of a body in 4 interfering directions (as every body rotates this warping go in ortho- and diagonal directions) by inertia-gravity waves. The theorem 3 of the wave planetology states: "Celestial bodies are granular". The higher orbital frequency the smaller tectonic granule. Starting from the Sun's photosphere one has the following row of granule sizes (a half wavelength) inversely proportional to orbital frequencies: photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1, Jupiter 3πR, Saturn 7.5πR and so on. . . Before asteroids tectonic grains are detected inside bodies and well known (e.g., Sun's supergranulation). In asteroids wave 1 makes their oblong and convexo

  9. Saturn's infrared spots at the southern and northern polar regions and calculation of their sizes by a wave modulation procedure

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    Two recently acquired IR images of two polar regions of Saturn (credit: NASA/JPL/University of Arizona) show unusually large hurricane (8000 km across, PIA08333) centered on the south pole and a huge hexagon (25000 km across, PIA09186) centered on the north pole. The hexagon feature at least is rather stable as it was observed also by Voyagers about 30 years ago. Fascinated by these tremendous and regular features scientists paid less attention to regularly disposed non-overlapping dark spots (small hurricanes) separated by lighter areas making a kind of background to these features (though at the south pole this combination was nicknamed "leopard skin" [1]). This spotted background presenting a regular combination of dark and light areas in IR radiation is interpreted as an alternation of wave produced denser and less dense gaseous blocks permitting escape more or less intensive heat radiation. Movement down squeezes gas, movement up expands it. On an average dark spots measure 450 (300-600 km) in the south and 580 (400-800 km) in the north. What kind of interfering waves makes this pattern? The wave planetology [1, 2, 3 & others] main position is: "Orbits make structures". Movements in elliptical orbits with periodically changing accelerations means a warping of a body in 4 interfering directions (as every body rotates this warping go in ortho- and diagonal directions) by inertia-gravity waves. The theorem 3 of the wave planetology states: "Celestial bodies are granular". The higher orbital frequency the smaller tectonic granule. Starting from the Sun's photosphere one has the following row of granule sizes (a half wavelength) inversely proportional to orbital frequencies: photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1, Jupiter 3πR, Saturn 7.5πR and so on. . . Before asteroids tectonic grains are detected inside bodies and well known (e.g., Sun's supergranulation). In asteroids wave 1 makes their oblong and convexo

  10. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-01-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  11. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  12. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-09-14

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  13. (Irradiation creep of graphite)

    SciTech Connect

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  14. Mechanical response of ceramics to creep loading

    SciTech Connect

    Blumenthal, W.R.

    1983-08-01

    The mechanical response of small, semi-elliptical, identification-induced surface cracks in fine-grain alumina was studied. The deformation behavior of the crack tip region was monitored using crack opening and surface displacements. Results indicate values of the secondary creep exponent, n, between 1.5 and 2 with a temperature dependence consistent with secondary creep data from the same material. Crack growth was measured at 1300 and 1400/sup 0/C and a narrow power-law growth regime was revealed. Again the power-law exponent and activation energy were very close to creep values. Asymptotic behavior was exhibited near both K/sub Ic/ and K/sub th/, the crack growth threshold. The threshold occurred near 0.4 K/sub Ic/, independent of temperature. Crack tip damage in the form of grain boundary cavities growing by diffusion was responsible for crack extension. The damage also exerts a strong influence on the displacement field as predicted by recent theories. The crack growth threshold is preceded by a transition in the size and distribution of damage. At K/sub I/ near K/sub Ic/ the damage is restricted to a few facets directly ahead of the crack tip. Near K/sub th/ damage concentrates in side-lobes far ahead of the crack tip and at angles between 20/sup 0/ to 60/sup 0/ from the plane of the crack. The transition between frontal and side-lobe damage is anticipated to be moderately dependent on grain size. 34 figures.

  15. Tensile and creep data on type 316 stainless steel

    SciTech Connect

    Sikka, V. K.; Booker, B. L.P.; Booker, M. K.; McEnerney, J. W.

    1980-01-01

    This report summarizes tensile and creep data on 13 heats of type 316 stainless steel. It includes ten different product forms (three plates, four pipes, and three bars) of the reference heat tested at ORNL. Tensile data are presented in tabular form and analyzed as a function of temperature by the heat centering method. This method yielded a measure of variations within a single heat as well as among different heats. The upper and lower scatter bands developed by this method were wider at the lower temperatures than at the high temperatures (for strength properties), a trend reflected by the experimental data. The creep data on both unaged and aged specimens are presented in tabular form along with creep curves for each test. The rupture time data are compared with the ASME Code Case minimum curve at each test temperature in the range from 538 to 704{sup 0}C. The experimental rupture time data are also compared with the values predicted by using the rupture model based on elevated-temperature ultimate tensile strength. A creep ductility trend curve was developed on the basis of the reference heat data and those published in the literature on nitrogen effects. To characterize the data fully, information was also supplied on vendor, product form, fabrication method, material condition (mill-annealed vs laboratory annealed and aged), grain size, and chemical composition for various heats. Test procedures used for tensile and creep results are also discussed.

  16. Propagation of electro-kinetic waves in magnetized GaN semiconductor with nano-sized ion colloids

    SciTech Connect

    Saxena, Ajay; Sharma, Giriraj; Jat, K. L.; Rishi, M. P.

    2015-07-31

    Based on hydrodynamic model of multi-component plasma, an analytical study on propagation of longitudinal electro-kinetic (LEK) waves in wurtzite and zincblende structures of GaN is carried out. Nano-sized ion colloids (NICs) are embedded in the sample by the technique of ion-implantation. The implanted NICs are considered massive by an order as compared to the host lattice points and do not participate in Based LEK perturbations. Though, the NICs are continuously bombarded by the electrons as well as the holes yet, the former acquires a net negative charge owing to relatively higher mobility of electrons and consequently results into depletion of electron density in the medium. It i s found that the presence of charged NICs significantly modifies the dispersion and amplification characteristics of LEK waves in magnetized GaN semiconductor plasma and their role becomes increasingly effective as the fraction of charge on them increases.

  17. Remaining Creep Life Assessment Techniques Based on Creep Cavitation Modeling

    NASA Astrophysics Data System (ADS)

    Ankit, Kumar

    2009-05-01

    The boiler and its components are built with assumed nominal design and reasonable life of operation about two to three decades (one or two hundred thousand hours). These units are generally replaced or life is extended at the end of this period. Under normal operating conditions, after the initial period of teething troubles, the reliability of these units remains fairly constant up to about two decades of normal operation. The failure rate then increases as a result of their time-dependent material damage. Further running of these units may become uneconomical and dangerous in some cases. In the following article, step-by-step methodology to quantify creep cavitation based on statistical probability analysis and continuum damage mechanics has been described. The concepts of creep cavity nucleation have also been discussed with a special emphasis on the need for development of a model based on creep cavity growth kinetics.

  18. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    SciTech Connect

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  19. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and

  20. Beam-loaded frequency shift study in an over-sized backward wave oscillator

    SciTech Connect

    Li, Zhenghong; Zhou, Zhigang; Qiu, Rong

    2014-10-15

    The oversized backward wave oscillator (BWO) can significantly decreases the internal rf electric field in the device. The beam-loaded effect is obvious in such devices and its performance is also significantly affected. Based on the characteristics of the oversized BWO, a self-consistent equation is developed to study its beam-loaded frequency shift together with particle in cell (PIC) simulations. The mechanism whereby the output rf frequency is affected by the beam's parameters and the device's structure is theoretically studied. The frequency's dependence on the drift tube length between the reflector and SWS (slow wave structures) in the device is deduced in the paper and the theoretical results agree with those obtained in PIC simulations.

  1. Self-similar micron-size and nanosize drops of liquid generated by surface acoustic waves.

    PubMed

    Taller, Daniel; Go, David B; Chang, Hsueh-Chia

    2012-11-30

    A planar surface acoustic wave on a solid substrate and its radiated sound into a static liquid drop produce time-averaged, exponentially decaying acoustic and electric Maxwell pressures near the contact line. These localized contact-line pressures are shown to generate two sequences of hemispherical satellite droplets at the tens of microns and submicron scales, both obeying self-similar exponential scaling but with distinct exponents that correspond to viscous dissipation and field leakage length scales, respectively. The acoustic pressure becomes dominant when the film thickness exceeds (1/4π) of the surface acoustic wave wavelength and it affects the shape and stability of the mother drop. The Maxwell pressure of the nanodrops, which exceeds ten atmospheres, is sensitive to the contact angle. PMID:23368125

  2. Creep of laminated aluminum composites

    NASA Astrophysics Data System (ADS)

    Moore, W.; Davies, T. J.

    1980-08-01

    The creep behavior of a laminate system consisting of alternate layers of pure aluminum and SAP (sintered aluminum powder) sheet has been examined in the temperature range 323 to 473 K and in the stress range 35 to 68 MN m-2. It was observed that secondary creep strain in the laminates was greater than in elemental SAP; the secondary creep strain rate in laminates was lower than that in pure aluminum and the creep rate decreased with increasing fracture of SAP. A stress exponent ( n) value of ˜20 was observed for most of the laminates and was reasonably constant for 3, 5, 7, and 9 ply laminates and volume fractions V f ) in the range 0.3 < V f < 0.65. For higher volume fractions of SAP the mechanical behavior of the laminates was similar to that of SAP. The experimental activation energy for creep of 30.5 ± 5 Kcal mol-1 correlates well with that for self-diffusion in aluminum. Laminating induced appreciable ductility to the SAP.

  3. The effect of dust size distribution on the damping of the solitary waves in a dusty plasma

    SciTech Connect

    Yang, Xue; Xu, Yan-Xia; Qi, Xin; Wang, Cang-Long; Duan, Wen-Shan; Yang, Lei

    2013-05-15

    The effect of the dust size distribution on the damping rate of the solitary wave in a dusty plasma is investigated in the present paper. It is found that the damping rate increases as either the mean radius of dust grains increases or as the total number density of the dust grains increases. The damping rate is less for usual dusty plasma (about which the number density of the smaller dust grains is larger than that of the larger dust grains) than that of the unusual dusty plasma (about which the number density of the larger dust grains is larger than that of the smaller dust grains)

  4. Ice Crystal Size Retrivals using High Spectral Resolution Lidar and Millimeter Wave Radar Data.

    NASA Astrophysics Data System (ADS)

    Eloranta, E.

    2006-12-01

    The University of Wisconsin Arctic High Spectral Resolution Lidar(AHSRL) and the NOAA 8.6 mm radar(MMCR) are collecting data in the high Arctic at Eureka, Canada (79.94N, 85.56W). They have been deployed as part of the NOAA SEARCH program since August of 2005. AHSRL and MMCR data are distributed at http://lidar.ssec.wisc.edu. This web site allows visual scans of available data, composition of custom images and downloading of data in netCDF format. NetCDF files are prepared on demand with user specified time and altitude limits along with user specified altitude and time averaging. The ratio of the lidar and radar cross sections data can be used to measure the size of cloud and precipitation particles. Unfortunately, attenuation and multiple scattering make it difficult to measure the lidar scattering cross section. Standard lidar data does not contain sufficient information to correct for attenuation without the use of poorly supported assumptions. The multiply scattered signal is dependent on particle size and is often comparable in magnitude to the singly scattered signal. As a result, past lidar-radar particle size measurements have required use of complicated iterative solutions (Donovan and Lammeren, JGR, 106, Nov 16, 2001, pp 27425). These problems are avoided when using AHSRL data. It provides robustly calibrated measurements of the backscatter cross section. Furthermore, the lidar receiver accepts light from a very small angular field-of- view greatly limiting multiply scattered signals. Lidar-radar size retrievals provide the effective diameter prime. This quantity is proportional to the mass of the average particle squared divided by the projected area of the average particle. Conversion of effective diameter prime to commonly derived size measures such as effective diameter, mean diameter, median mass diameter, or mean mass of the ice particles requires knowledge of the ice crystal shape. Mitchell(J. Atmos. Sci V29 p153-163) and others have presented

  5. Fluid Creep and Over-resuscitation.

    PubMed

    Saffle, Jeffrey R

    2016-10-01

    Fluid creep is the term applied to a burn resuscitation, which requires more fluid than predicted by standard formulas. Fluid creep is common today and is linked to several serious edema-related complications. Increased fluid requirements may accompany the appropriate resuscitation of massive injuries but dangerous fluid creep is also caused by overly permissive fluid infusion and the lack of colloid supplementation. Several strategies for recognizing and treating fluid creep are presented. PMID:27600130

  6. Size dependence of spin-wave modes in Ni{sub 80}Fe{sub 20} nanodisks

    SciTech Connect

    Lupo, P.; Kumar, D.; Adeyeye, A. O.

    2015-07-15

    We investigate the radial and azimuthal spin-wave (SW) resonance modes in permalloy (Py: Ni{sub 80}Fe{sub 20}) disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size). Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.

  7. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    SciTech Connect

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  8. Characterisation of Laves phase precipitation and its correlation to creep rupture strength of ferritic steels

    SciTech Connect

    Zhu, S.; Yang, M.; Song, X.L.; Tang, S.; Xiang, Z.D.

    2014-12-15

    The Laves phase precipitation process was characterised by means of field emission scanning electron microscopy to demonstrate its effect on creep rupture strength of steels with a fully ferritic matrix. To eliminate the effects of carbide and carbonitride precipitations so that the creep rupture data can be analysed exclusively in relation to the Laves phase precipitation process, an alloy Fe–9Cr–3Co–3W (wt.%) without C and N additions was used for the study. Creep rupture strengths were measured and volume fraction and particle size of Laves phase precipitates in the ruptured specimens were analysed. It was found that the creep rupture strength started to collapse (or decrease more rapidly) long before the Laves phase precipitation reached equilibrium fraction. This was related to the onset of the coarsening of Laves phase particles, which precipitated only on grain boundaries and hence contributed little to precipitation strengthening. Creep deformation had no effect either on the precipitation kinetics or on the growth kinetics of Laves phase particles. - Highlights: • Laves phase precipitation at 650 °C was characterised for Fe–9Cr–3W–3Co alloy. • Laves phase precipitated predominantly on grain boundaries. • Creep deformation had no effect on Laves phase precipitation and growth kinetics. • Creep strength started to collapse long before Laves phase precipitation is ended. • Collapse of creep strength was attributed to the coarsening of Laves phase particles.

  9. Creep of quartz by dislocation and grain boundary processes

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    Wet polycrystalline quartz aggregates deformed at temperatures T of 600°-900°C and strain rates of 10-4-10-6 s-1 at a confining pressure Pc of 1.5 GPa exhibit plasticity at low T, governed by dislocation glide and limited recovery, and grain size-sensitive creep at high T, governed by diffusion and sliding at grain boundaries. Quartz aggregates were HIP-synthesized, subjecting natural milky quartz powder to T=900°C and Pc=1.5 GPa, and grain sizes (2 to 25 mm) were varied by annealing at these conditions for up to 10 days. Infrared absorption spectra exhibit a broad OH band at 3400 cm-1 due to molecular water inclusions with a calculated OH content (~4000 ppm, H/106Si) that is unchanged by deformation. Rate-stepping experiments reveal different stress-strain rate functions at different temperatures and grain sizes, which correspond to differing stress-temperature sensitivities. At 600-700°C and grain sizes of 5-10 mm, flow law parameters compare favorably with those for basal plasticity and dislocation creep of wet quartzites (effective stress exponents n of 3 to 6 and activation enthalpy H* ~150 kJ/mol). Deformed samples show undulatory extinction, limited recrystallization, and c-axis maxima parallel to the shortening direction. Similarly fine-grained samples deformed at 800°-900°C exhibit flow parameters n=1.3-2.0 and H*=135-200 kJ/mol corresponding to grain size-sensitive Newtonian creep. Deformed samples show some undulatory extinction and grain sizes change by recrystallization; however, grain boundary deformation processes are indicated by the low value of n. Our experimental results for grain size-sensitive creep can be compared with models of grain boundary diffusion and grain boundary sliding using measured rates of silicon grain boundary diffusion. While many quartz mylonites show microstructural and textural evidence for dislocation creep, results for grain size-sensitive creep may apply to very fine-grained (<10 mm) quartz mylonites.

  10. Enhanced Removal of Hydrophobic Gas by Aerial Ultrasonic Waves and Two Kinds of Water Mists of Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Matsumoto, Keisuke; Miura, Hikaru

    2012-07-01

    Air pollutants can cause health problems, such as bronchitis and cancer, and are now recognized as a social problem. Hence, a method is proposed for the collection and removal of gaseous air pollutants by aerial ultrasonic waves and water mist. Typically, gas removal effects are studied using lemon oil vapor (“lemon gas”), which is a hydrophobic gas. Previous experiments using lemon gas have shown that a removal rate of up to 40% can be achieved in an intense standing wave at 20 kHz, for an amount of water mist of 1.39 cm3/s and an electrical input power of 50 W. Increasing the surface area of the water mist leads to greater removal of hydrophobic gas. In this study, the effects of gas removal are examined by conducting experiments using intense aerial ultrasonic waves to disperse two kinds of water mists, each composed of particles of different sizes: small particles (diameter: ≈3 µm) and conventional large particles (diameter: ≈60 µm).

  11. Creep and Creep-Fatigue of Alloy 617 Weldments

    SciTech Connect

    Wright, Jill K.; Carroll, Laura J.; Wright, Richard N.

    2014-08-01

    Alloy 617 is the primary candidate material for the heat exchanger of a very high temperature gas cooled reactor intended to operate up to 950°C. While this alloy is currently qualified in the ASME Boiler and Pressure Vessel Code for non-nuclear construction, it is not currently allowed for use in nuclear designs. A draft Code Case to qualify Alloy 617 for nuclear pressure boundary applications was submitted in 1992, but was withdrawn prior to approval. Prior to withdrawal of the draft, comments were received indicating that there was insufficient knowledge of the creep and creep-fatigue behavior of Alloy 617 welds. In this report the results of recent experiments and analysis of the creep-rupture behavior of Alloy 617 welds prepared using the gas tungsten arc process with Alloy 617 filler wire. Low cycle fatigue and creep-fatigue properties of weldments are also discussed. The experiments cover a range of temperatures from 750 to 1000°C to support development of a new Code Case to qualify the material for elevated temperature nuclear design. Properties of the welded material are compared to results of extensive characterization of solution annealed plate base metal.

  12. Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Wen, Xingshuo

    The Very High Temperature Reactor (VHTR) is one of the leading concepts of the Generation IV nuclear reactor development, which is the core component of Next Generation Nuclear Plant (NGNP). The major challenge in the research and development of NGNP is the performance and reliability of structure materials at high temperature. Alloy 617, with an exceptional combination of high temperature strength and oxidation resistance, has been selected as a primary candidate material for structural use, particularly in Intermediate Heat Exchanger (IHX) which has an outlet temperature in the range of 850 to 950°C and an inner pressure from 5 to 20MPa. In order to qualify the material to be used at the operation condition for a designed service life of 60 years, a comprehensive scientific understanding of creep behavior at high temperature and low stress regime is necessary. In addition, the creep mechanism and the impact factors such as precipitates, grain size, and grain boundary characters need to be evaluated for the purpose of alloy design and development. In this study, thermomechanically processed specimens of alloy 617 with different grain sizes were fabricated, and creep tests with a systematic test matrix covering the temperatures of 850 to 1050°C and stress levels from 5 to 100MPa were conducted. Creep data was analyzed, and the creep curves were found to be unconventional without a well-defined steady-state creep. Very good linear relationships were determined for minimum creep rate versus stress levels with the stress exponents determined around 3-5 depending on the grain size and test condition. Activation energies were also calculated for different stress levels, and the values are close to 400kJ/mol, which is higher than that for self-diffusion in nickel. Power law dislocation climb-glide mechanism was proposed as the dominant creep mechanism in the test condition regime. Dynamic recrystallization happening at high strain range enhanced dislocation climb and

  13. Wind and wave influences on sea ice floe size and leads in the Beaufort and Chukchi Seas during the summer-fall transition 2014

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Holt, Benjamin; Erick Rogers, W.; Thomson, Jim; Shen, Hayley H.

    2016-02-01

    Sea ice floe size distribution and lead properties in the Beaufort and Chukchi Seas are studied in the summer-fall transition 2014 to examine the impact on the sea ice cover from storms and surface waves. Floe size distributions are analyzed from MEDEA, Landsat8, and RADARSAT-2 imagery, with a resolution span of 1-100 m. Landsat8 imagery is also used to identify the orientation and spacing of leads. The study period centers around three large wave events during August-September 2014 identified by SWIFT buoys and WAVEWATCH III® model data. The range of floe sizes from different resolutions provides the overall distribution across a wide range of ice properties and estimated thickness. All cumulative floe size distribution curves show a gradual bending toward shallower slopes for smaller floe sizes. The overall slopes in the cumulative floe size distribution curves from Landsat8 images are lower than, while those from RADARSAT-2 are similar to, previously reported results in the same region and seasonal period. The MEDEA floe size distributions appeared to be sensitive to the passage of storms. Lead orientations, regardless of length, correlate slightly better with the peak wave direction than with the mean wave direction. Their correlation with the geostrophic wind is stronger than with the surface wind. The spacing between shorter leads correlates well with the local incoming surface wavelengths, obtained from the model peak wave frequency. The information derived shows promise for a coordinated multisensor study of storm effects in the Arctic marginal ice zone.

  14. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  15. Life at Mission Creep U

    ERIC Educational Resources Information Center

    Dubrow, Greg; Moseley, Bryan; Dustin, Daniel

    2006-01-01

    The term "mission creep" was originally coined nearly a hundred years ago to describe the gradual process by which a military mission's stated methods and goals change, and recently the term has been applied to incremental organizational changes. In this article, the term is used to describe what happens when a teaching-oriented college or…

  16. Creep Deformation of Allvac 718Plus

    SciTech Connect

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  17. Creep Deformation of Allvac 718Plus

    DOE PAGESBeta

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics aremore » common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.« less

  18. SANS and TEM studies of carbide precipitation and creep damage in type 304 stainless steel

    SciTech Connect

    Yoo, M.H.; Ogle, J.C.; Schneibel, J.H.; Swindeman, R.W.

    1984-01-01

    Small-angle neutron scattering (SANS) and transmission electron microscopy (TEM) studies were performed to characterize the carbide (M/sub 23/C/sub 6/) precipitation and creep damage induced in type 304 stainless steel in the primary creep stage. The size distribution of matrix carbides evaluated from SANS analyses was consistent with TEM data, and the expected accelerated kinetics of precipitation under applied stress was confirmed. Additional SANS measurements after the postcreep solution annealing were made in order to differentiate cavities from the carbides. Potential advantages and difficulties associated with characterization of creep-induced cavitation by the SANS techniques are discussed.

  19. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  20. Measurement of acute Q-wave myocardial infarct size with single photon emission computed tomography imaging of indium-111 antimyosin

    SciTech Connect

    Antunes, M.L.; Seldin, D.W.; Wall, R.M.; Johnson, L.L.

    1989-04-01

    Myocardial infarct size was measured by single photon emission computed tomography (SPECT) following injection of indium-111 antimyosin in 27 patients (18 male and 9 female; mean age 57.4 +/- 10.5 years, range 37 to 75) who had acute transmural myocardial infarction (MI). These 27 patients represent 27 of 35 (77%) consecutive patients with acute Q-wave infarctions who were injected with indium-111 antimyosin. In the remaining 8 patients either tracer uptake was too faint or the scans were technically inadequate to permit infarct sizing from SPECT reconstructions. In the 27 patients studied, infarct location by electrocardiogram was anterior in 15 and inferoposterior in 12. Nine patients had a history of prior infarction. Each patient received 2 mCi of indium-111 antimyosin followed by SPECT imaging 48 hours later. Infarct mass was determined from coronal slices using a threshold value obtained from a human torso/cardiac phantom. Infarct size ranged from 11 to 87 g mean (48.5 +/- 24). Anterior infarcts were significantly (p less than 0.01) larger (60 +/- 20 g) than inferoposterior infarcts (34 +/- 21 g). For patients without prior MI, there were significant inverse correlations between infarct size and ejection fraction (r = 0.71, p less than 0.01) and wall motion score (r = 0.58, p less than 0.01) obtained from predischarge gated blood pool scans. Peak creatine kinase-MB correlated significantly with infarct size for patients without either reperfusion or right ventricular infarction (r = 0.66). Seven patients without prior infarcts had additional simultaneous indium-111/thallium-201 SPECT studies using dual energy windows.

  1. A modified size-dependent core-shell model and its application in the wave propagation of square cellular networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Jian; Wang, Ya-Chuan; Wang, Bo; Zhang, Kai

    2016-06-01

    We propose a modified core-shell model to depict the size-dependent elastic properties of materials with several different cross-sections. By using the Young-Laplace equation, a modified Euler-Bernoulli equation, which has taken a power-law relation between the bulk and surface moduli into account, is derived. A finite element method of the modified Euler-Bernoulli equation is formulated, and assembled to investigate the dispersion relations of the infinite two-dimensional periodic square cellular networks. The effectiveness of the proposed core-shell model is verified by comparing with results of the experiments and the molecular dynamics simulations available in the literature. Numerical results show that surface effects play an important role on the cellular networks with small diameters, large aspect ratios and high wave frequencies. Meanwhile, the analytical expressions for the size-dependent elastic modulus may be useful for the study of the size-dependent elasticity of materials and structures at small length scales.

  2. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  3. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrasonic particle manipulation

    PubMed Central

    2013-01-01

    Background For the design and characterization of ultrasonic particle manipulation devices the pressure field in the fluid cavity is of great interest. The schlieren method provides an optical tool for the visualization of such pressure fields. Due to its purely optical nature this experimental method has got some unique advantages compared to methods like particle tracking. Results A vertical schlieren setup and an investigation with the same of a mm-sized chamber used to agglomerate particles are presented here. The schlieren images show a two-dimensional representation of the whole pressure distribution recorded simultaneously with a good resolution in time. The gained description of the pressure field is shown to be in agreement with a numerical simulation. Thermal effects as well as streaming effects are shown. Conclusions The results show the great potential of schlieren visualization to investigate ultrasonic particle manipulation devices. Visualized are pressure fields, acoustic streaming, temperature effects and effects caused by fluid volumes of different density. PMID:23842114

  4. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy

    SciTech Connect

    Wang, L. Wang, D.; Liu, T.; Li, X.W.; Jiang, W.G.; Zhang, G.; Lou, L.H.

    2015-06-15

    Different amounts of carbon were added to a single-crystal nickel-based superalloy. The microstructural evolution of these alloys before and after high-temperature creep tests was investigated by employing scanning electron microscopy and transmission electron microscopy. Upon increasing the carbon contents, the volume fraction and diameter of the carbides increased gradually: however, the creep lives of the alloys increased slightly at first and subsequently decreased. The formation of second-phase particles, such as the nano-sized M{sub 23}C{sub 6}, blocky and needle-shaped μ phase, was observed in the creep samples, which was closely related to the high-temperature creep behaviors. - Highlights: • Creep behaviors of alloys with different amounts of carbon were investigated. • The creep rupture lives increased and later decreased with more carbon. • Second-phase particles were responsible for the different creep behaviors.

  5. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    SciTech Connect

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  6. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    NASA Astrophysics Data System (ADS)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  7. Study of radial growth rate and size control of silicon nanocrystals in square-wave-modulated silane plasmas

    SciTech Connect

    Nguyen-Tran, Th.; Roca i Cabarrocas, P.; Patriarche, G.

    2007-09-10

    The growth of silicon nanocrystals in high pressure and high dilution silane plasmas is investigated by using the temporal evolution of the self-bias on the radio frequency electrode and transmission electron microscopy. A square-wave-modulated plasma was used in order to control the growth of monodispersed nanoparticles with sizes smaller than 12 nm. To this end, the plasma on time was kept below 1 s. The radial growth rate of nanoparticles was varied in the range from 7.5 to 75 nm/s by changing silane partial pressure. Nanoparticles grown in silane-helium discharges have been found amorphous while they are crystalline in silane-hydrogen-argon discharges. Surprisingly, the crystallization in the gaseous phase does not depend on how slow or fast the particles grow but on the presence of atomic hydrogen.

  8. Influence of waves and horseshoe crab spawning on beach morphology and sediment grain-size characteristics on a sandy estuarine beach

    USGS Publications Warehouse

    Jackson, N.L.; Nordstrom, K.F.; Smith, D.R.

    2005-01-01

    The effects of wave action and horseshoe crab spawning on the topography and grain-size characteristics on the foreshore of an estuarine sand beach in Delaware Bay, New Jersey, USA were evaluated using data collected over six consecutive high tides. Data were gathered inside and outside a 25 m long exclosure constructed to create a control area free of disturbance by crabs. The density of crabs in the swash zone outside the exclosure was 8??1 organisms m-2. The maximum depth of sediment activation on the upper foreshore where spawning occurred was 0??103 m during periods characterized by low significant wave heights: < 0??08 m. This depth is greater than the depth of activation by waves alone during moderate significant wave heights of 0??16 - 0??18 m but less than the maximum depth (0??127 m) recorded when spawning occurred during periods of moderate wave heights. Spawning, combined with moderate wave heights, creates a concave upper foreshore that is similar to the type of profile change that occurs during storms, thus lowering the wave-energy threshold for morphological response. Spawning during low wave heights increases the mean grain size and sorting of surface sediments caused by the addition of gravel to the swash. Sedimentological differences are most pronounced on the upper foreshore, and data from this location may be most useful when using grain-size characteristics to interpret the effect of spawning in the sedimentary record. Depths of sediment reworking by horseshoe crabs can be greater than those by subsequent storm waves, so evidence of spawning can be preserved on non-eroding beaches. Greater depth of activation by horseshoe crab spawning than by waves alone, even during moderate-energy conditions, reveals the importance of crab burrowing in releasing eggs to the water column and making them available for shore birds. ?? 2005 International Association of Sedimentologists.

  9. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  10. MOLECULAR DYNAMICS STUDY OF DIFFUSIONAL CREEP IN NANOCRYSTALLINE UO2

    SciTech Connect

    Tapan G. Desai; Paul C. Millett; Dieter Wolf

    2008-09-01

    We present the results of molecular dynamics (MD) simulations to study hightemperature deformation of nanocrystalline UO2. In qualitative agreement with experimental observations, the oxygen sub-lattice undergoes a structural transition at a temperature of about 2200 K (i.e., well below the melting point of 3450 K of our model system), whereas the uranium sub-lattice remains unchanged all the way up to melting. At temperatures well above this structural transition, columnar nanocrystalline model microstructures with a uniform grain size and grain shape were subjected to constantstress loading at levels low enough to avoid microcracking and dislocation nucleation from the GBs. Our simulations reveal that in the absence of grain growth, the material deforms via GB diffusion creep (also known as Coble creep). Analysis of the underlying self-diffusion behavior in undeformed nanocrystalline UO2 reveals that, on our MD time scale, the uranium ions diffuse only via the grain boundaries (GBs) whereas the much faster moving oxygen ions diffuse through both the lattice and the GBs. As expected for the Coble-creep mechanism, the creep activation energy agrees well with that for GB diffusion of the slowest moving species, i.e., of the uranium ions.

  11. Field theory and diffusion creep predictions in polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Villani, A.; Busso, E. P.; Forest, S.

    2015-07-01

    In polycrystals, stress-driven vacancy diffusion at high homologous temperatures leads to inelastic deformation. In this work, a novel continuum mechanics framework is proposed to describe the strain fields resulting from such a diffusion-driven process in a polycrystalline aggregate where grains and grain boundaries are explicitly considered. The choice of an anisotropic eigenstrain in the grain boundary region provides the driving force for the diffusive creep processes. The corresponding inelastic strain rate is shown to be related to the gradient of the vacancy flux. Dislocation driven deformation is then introduced as an additional mechanism, through standard crystal plasticity constitutive equations. The fully coupled diffusion-mechanical model is implemented into the finite element method and then used to describe the biaxial creep behaviour of FCC polycrystalline aggregates. The corresponding results revealed for the first time that such a coupled diffusion-stress approach, involving the gradient of the vacancy flux, can accurately predict the well-known macroscopic strain rate dependency on stress and grain size in the diffusion creep regime. They also predict strongly heterogeneous viscoplastic strain fields, especially close to grain boundaries triple junctions. Finally, a smooth transition from Herring and Coble to dislocation creep behaviour is predicted and compared to experimental results for copper.

  12. Size effects on the wave propagation and deformation pattern in copper nanobars under symmetric longitudinal impact loading

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Chen, Zhen; Gan, Yong; Oloriegbe, Suleiman Y.; Sewell, Thomas D.; Thompson, Donald L.

    2012-11-01

    Molecular dynamics simulations were performed to study the influence of system size on wave propagation and deformation patterns in <1 0 0>/{1 0 0} copper nanobars with square cross-section under symmetric longitudinal impact loading. Nanobars of longitudinal length 100a with cross-sectional edge lengths h = 10a, 20a, and 40a were impacted on both ends by flyers of size 20a × h × h, where a is the Cu unit cell length, and impact speed 500 m s-1. For reference, quasi-infinite slab samples with periodic cross-sectional edge lengths 10a and 40a were also studied. It was found that the wave propagation speed increases with increasing cross-sectional area and eventually approaches the value obtained for a quasi-infinite sample. Extensive plasticity occurs across the entire length of the nanobars, whereas the quasi-infinite samples remain in the elastic regime and exhibit a vibrating (ringing) behaviour. The deformation pattern in the nanobars is strongly dependent on the cross-sectional area. For the nanobar with h = 10a the material fully reorients from <1 0 0>/{1 0 0} to <1 1 0>/{1 1 1} with few stacking faults and twins. Material in the nanobar with h = 20a does not reorient completely; the local crystal deformation is mediated mainly by a partial dislocation activity leading to predominantly non-intersecting stacking faults and twins. Nanobars with h = 40a exhibit behaviour similar to that for the h = 20a case but with greater propensity for intersecting stacking faults.

  13. Analysis of steady state creep of southeastern New Mexico bedded salt

    SciTech Connect

    Herrmann, W.; Wawersik, W.R.; Lauson, H.S.

    1980-03-01

    Steady state creep rates have been obtained from a large suite of existing experimental creep data relating to bedded rock salt from the Salado formation of S.E. New Mexico. Experimental conditions covered an intermediate temperature range from 22/sup 0/C to 200/sup 0/C, and shear stresses from 1000 psi (7 MPa) to 6000 psi (31 MPa). An expression, based on a single diffusion controlled dislocation climb mechanism, has been found to fit the observed dependence of steady state creep rate on shear stress and temperature, yielding an activation energy of 12 kcal/mole (50 kJ/mole) and a stress exponent of 4.9. Multiple regression analysis revealed a dependence on stratigraphy, but no statistically significant dependence on pressure of specimen size. No consistent dilatancy or compaction associated with steady state creep was found, although some individual specimens dilated or compacted during creep. The steady state creep data were found to agree very well with creep data for both bedded and dome salt from a variety of other locations.

  14. Creep rupture of materials: Insights from a fiber bundle model with relaxation

    NASA Astrophysics Data System (ADS)

    Jagla, E. A.

    2011-04-01

    I adapted a model recently introduced in the context of seismic phenomena to study creep rupture of materials. It consists of linear elastic fibers that interact in an equal load sharing scheme, complemented with a local viscoelastic relaxation mechanism. The model correctly describes the three stages of the creep process; namely, an initial Andrade regime of creep relaxation, an intermediate regime of rather constant creep rate, and a tertiary regime of accelerated creep toward final failure of the sample. In the tertiary regime, creep rate follows the experimentally observed creep rate over time-to-failure dependence. The time of minimum strain rate is systematically observed to be about 60%-65 % of the time to failure, in accordance with experimental observations. In addition, burst size statistics of breaking events display a -3/2 power law for events close to the time of failure and a steeper decay for the all-time distribution. Statistics of interevent times shows a tendency of the events to cluster temporarily. This behavior should be observable in acoustic emission experiments.

  15. Proton Irradiation Creep in Pyrocarbon

    SciTech Connect

    Was, Gary S.; Campbell, Anne

    2011-10-01

    This project aims to understand irradiation creep in pyrocarbon using proton irradiation under controlled stresses and temperatures. Experiments will be conducted over a range of temperatures and stresses per the proposal submitted. The work scope will include the preparation of samples, measurement of deposition thickness, thickness uniformity, and anisotropy. The samples produced will be made in strips, which will be used for the creep experiments. Materials used will include pyrolytic carbon (PyC), Highly Oriented Pyrolytic Graphite (HOPG), or graphite strip samples in that order depending upon success. Temperatures tested under will range from 800°C to 1200°C, and stresses from 6MPa to 20.7MPa. Optional testing may occur at 900°C and 1100°C and stresses from 6MPa to 20.7MPa if funding is available.

  16. Creep of Structural Nuclear Composites

    SciTech Connect

    Will Windes; R.W. Lloyd

    2005-09-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor (VHTR) design. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. One of the primary degradation mechanisms anticipated for these core components is high temperature thermal and irradiation enhanced creep. As a consequence, high temperature test equipment, testing methodologies, and test samples for very high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Actual testing of both tubular and flat, "dog-bone"-shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures are currently being established from these high temperature mechanical tests.

  17. Creep dynamics in soft matter

    NASA Astrophysics Data System (ADS)

    Cabriolu, Raffaela

    Detecting any precursors of failure in Soft Matter Systems (SMS) is an inter-disciplinary topic with important applications (e.g. prediction of failure in engineering processes). Further, it provides an ideal benchmark to understand how mechanical stress and failure impacts the flow properties of amorphous condensed matter. Furthermore, some SMS are viscoelastic, flowing like viscous liquids or deforming like a solid according to applied forces. Often SMS are fragile and local rearrangements trigger catastrophic macroscopic failure. Despite the importance of the topic little is known on the local creep dynamics before the occurrence of such catastrophic events. To study creep and failure at an atomic/molecular level and at time scales that are not easily accessible by experiments we chose to carry out microscopic simulations. In this work we present the response of a colloidal system to uniaxial tensile stress applied and we compare our results to experimental works [8].

  18. The influence of body size to the parameters of gastric slow wave: studied with an assembled electrogastrography.

    PubMed

    Chang, F Y; Lee, C T; Lee, S D; Jang, H C; Tsai, D S; Fu, S E

    1994-01-01

    An electrogastrographic (EGG) device has been assembled, it consisted of the following main components: amplifiers, band-pass filter, analog/digital converter, low band-pass digital filters which could pick up signals between 0.02 Hz (1.2 cpm) and 0.1 Hz (6 cpm), and a personal computer. The analysis softwares employed autoregressive moving average modelling to compute frequency of slow wave, and overlapping Welch periodogram of fast Fourier transform for power computation. In order to study the influence of body size to the EGG parameters, 28 healthy males (age: 18-45 years) without any gastric dysmotor disorders were enrolled to record fasting EGG. Another 28 age-matched females were enrolled to record and to compare the EGG parameters. Of the EGG frequencies, both males and females were approximate to 0.05 Hz (NS). However, the EGG power values were markedly different between the male and female measurements (Mean +/- SD: 57.3 +/- 16.6 dB vs. 46.8 +/- 14.7 dB, p < 0.01). Correction with body mass index eliminated this difference. Of all measured EGG power values, a positive correlation with body mass index was seen (r = 0.39, p < 0.005). We conclude that a different EGG power value exists between the male and female subjects, body size is probable an important factor to elicit this difference. PMID:7796638

  19. Compression creep of filamentary composites

    NASA Technical Reports Server (NTRS)

    Graesser, D. L.; Tuttle, M. E.

    1988-01-01

    Axial and transverse strain fields induced in composite laminates subjected to compressive creep loading were compared for several types of laminate layups. Unidirectional graphite/epoxy as well as multi-directional graphite/epoxy and graphite/PEEK layups were studied. Specimens with and without holes were tested. The specimens were subjected to compressive creep loading for a 10-hour period. In-plane displacements were measured using moire interferometry. A computer based data reduction scheme was developed which reduces the whole-field displacement fields obtained using moire to whole-field strain contour maps. Only slight viscoelastic response was observed in matrix-dominated laminates, except for one test in which catastrophic specimen failure occurred after a 16-hour period. In this case the specimen response was a complex combination of both viscoelastic and fracture mechanisms. No viscoelastic effects were observed for fiber-dominated laminates over the 10-hour creep time used. The experimental results for specimens with holes were compared with results obtained using a finite-element analysis. The comparison between experiment and theory was generally good. Overall strain distributions were very well predicted. The finite element analysis typically predicted slightly higher strain values at the edge of the hole, and slightly lower strain values at positions removed from the hole, than were observed experimentally. It is hypothesized that these discrepancies are due to nonlinear material behavior at the hole edge, which were not accounted for during the finite-element analysis.

  20. Postseismic relaxation and transient creep

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Yu, S.-B.

    2005-01-01

    Postseismic deformation has been observed in the epicentral area following the 1992 Landers (M = 7.3), 1999 Chi-Chi (M = 7.6), 1999 Hector Mine (M = 7.1), 2002 Denali (M = 7.9), 2003 San Simeon (M = 6.5), and 2004 Parkfield (M = 6.0) earthquakes. The observations consist of repeated GPS measurements of the position of one monument relative to another (separation ???100 km). The early observations (t < 0.1 year) are well fit by the function a' + c'log(t), where t is the time after the earthquake and a' and c' are constants chosen to fit the data. Because a log(t) time dependence is characteristic of transient (primary) creep, the early postseismic response may be governed by transient creep as Benioff proposed in 1951. That inference is provisional as the stress conditions prevailing in postseismic relaxation are not identical to the constant stress condition in creep experiments. The observed logarithmic time dependence includes no characteristic time that might aid in identifying the micromechanical cause.

  1. Determining the TNT equivalence of gram-sized explosive charges using shock-wave shadowgraphy and high-speed video recording

    NASA Astrophysics Data System (ADS)

    Hargather, Michael

    2005-11-01

    Explosive materials are routinely characterized by their TNT equivalence. This can be determined by chemical composition calculations, measurements of shock wave overpressure, or measurements of the shock wave position vs. time. However, TNT equivalence is an imperfect criterion because it is only valid at a given radius from the explosion center (H. Kleine et al., Shock Waves 13(2):123-138, 2003). Here we use a large retroreflective shadowgraph system and a high-speed digital video camera to image the shock wave and record its location vs. time. Optical data obtained from different explosions can be combined to determine a characteristic shock wave x-t diagram, from which the overpressure and the TNT equivalent are determined at any radius. This method is applied to gram-sized triacetone triperoxide (TATP) charges. Such small charges can be used inexpensively and safely for explosives research.

  2. Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.

    2013-01-01

    Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.

  3. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  4. Empirical law for fault-creep events

    USGS Publications Warehouse

    Crough, S.T.; Burford, R.O.

    1977-01-01

    Fault-creep events measured on the San Andreas and related faults near Hollister, California, can be described by a rheological model consisting of a spring, power-law dashpotand sliding block connected in series. An empirical creep-event law, derived from many creep-event records analyzed within the constraints of the model, provides a remarkably simple and accurate representation of creep-event behavior. The empirical creep law is expressed by the equation: D(t)= Df [1-1/{ct(n-1)Dfn-1+1}/(n-1)] where D is the value of displacement at time t following the onset of an event, Df is the final equilibrium value of the event displacementand C is a proportionality constant. This discovery should help determine whether the time-displacement character of creep events is controlled by the material properties of fault gouge, or by other parameters. ?? 1977.

  5. Factors which influence directional coarsening of Gamma prime during creep in nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1984-01-01

    Changes in the morphology of the gamma prime precipitate were examined as a function of time during creep at 982 C in 001 oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80 pct., the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The effects of initial microstructure and alloy composition of raft development and creep properties were investigated. Directional coarsening of gamma prime begins during primary creep and continues well after the onset of second state creep. The thickness of the rafts remains constant up through the onset of tertiary creep a clear indication of the stability of the finely-spaced gamma/gamma prime lamellar structure. The thickness of the rafts which formed was equal to the initial gamma prime size which was present prior to testing. The single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma/gamma prime interfaces per unit volume of material. Reducing the Mo content by only 0.73 wt. pct. increased the creep life by a factor of three, because the precipitation of a third phase was eliminated.

  6. Factors which influence directional coarsening of gamma-prime during creep in nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1984-01-01

    Changes in the morphology of the gamma prime precipitate were examined as a function of the time during creep at 982 C in 001 oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80 pct., the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The effects of initial microstructure and alloy composition of raft development and creep properties were investigated. Directional coarsening of gamma prime begins during primary creep and continues well after the onset of second state creep. The thickness of the rafts remains constant up through the onset of tertiary creep, a clear indication of the stability of the finely-spaced gamma/gamma prime lamellar structure. The thickness of the rafts which formed was equal to the initial gamma prime size which was present prior to testing. The single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma/gamma prime interfaces per unit volume of material. Reducing the Mo content by only 0.73 wt. pct. increased the creep life by a factor of three, because the precipitation of a third phase was eliminated.

  7. Cumulative creep damage for polycarbonate and polysulfone

    NASA Technical Reports Server (NTRS)

    Zhang, M.; Brinson, H. F.

    1985-01-01

    The literature for creep to failure cumulative damage laws are reviewed. Creep to failure tests performed on polycarbonate and polysulfone under single and two step loadings are discussed. A cumulative damage law or modified time fraction rule is developed using a power law for transient creep response as the starting point. Experimental results are approximated well by the new rule. Damage and failure mechanisms associated with the two materials are suggested.

  8. Interface Evolution During Transient Pressure Solution Creep

    NASA Astrophysics Data System (ADS)

    Dysthe, D. K.; Podladchikov, Y. Y.; Renard, F.; Jamtveit, B.; Feder, J.

    When aggregates of small grains are pressed together in the presence of small amounts of solvent the aggregate compacts and the grains tend to stick together. This hap- pens to salt and sugar in humid air, and to sediments when buried in the Earths crust. Stress concentration at the grain contacts cause local dissolution, diffusion of the dissolved material out of the interface and deposition on the less stressed faces of the grains{1}. This process, in geology known as pressure solution, plays a cen- tral role during compaction of sedimentary basins{1,2}, during tectonic deformation of the Earth's crust{3}, and in strengthening of active fault gouges following earth- quakes{4,5}. Experimental data on pressure solution has so far not been sufficiently accurate to understand the transient processes at the grain scale. Here we present ex- perimental evidence that pressure solution creep does not establish a steady state inter- face microstructure as previously thought. Conversely, cumulative creep strain and the characteristic size of interface microstructures grow as the cubic root of time. A sim- ilar transient phenomenon is known in metallurgy (Andrade creep) and is explained here using an analogy with spinodal dewetting. 1 Weyl, P. K., Pressure solution and the force of crystallization - a phenomenological theory. J. Geophys. Res., 64, 2001-2025 (1959). 2 Heald, M. T., Cementation of Simpson and St. Peter Sandstones in parts of Okla- homa, Arkansas and Missouri, J. Geol. Chicago, 14, 16-30 (1956). 3 Schwartz, S., Stöckert, B., Pressure solution in siliciclastic HP-LT metamorphic rocks constraints on the state of stress in deep levels of accretionary complexes. Tectonophysics, 255, 203-209 (1996). 4 Renard, F., Gratier, J.P., Jamtveit, B., Kinetics of crack-sealing, intergranular pres- sure solution, and compaction around active faults. J. Struct. Geol., 22, 1395-1407, (2000). 5 Miller, S. A., BenZion, Y., Burg, J. P.,A three-dimensional fluid-controlled earth

  9. Electrochemical control of creep in nanoporous gold

    SciTech Connect

    Ye, Xing-Long; Jin, Hai-Jun

    2013-11-11

    We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.

  10. Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.

    1977-01-01

    The tensile properties at room temperature and at 1365 K and the tensile creep properties at low strain rates at 1365 K were measured for several oxide-dispersion-strengthened (ODS) alloys. The alloys examined included ODS Ni, ODS Ni-20Cr, and ODS Ni-16Cr-Al. Metallography of creep tested, large grain size ODS alloys indicated that creep of these alloys is an inhomogeneous process. All alloys appear to possess a threshold stress for creep. This threshold stress is believed to be associated with diffusional creep in the large grain size ODS alloys and normal dislocation motion in perfect single crystal (without transverse low angle boundaries) ODS alloys. Threshold stresses for large grain size ODS Ni-20Cr and Ni-16Cr-Al type alloys are dependent on the grain aspect ratio. Because of the deleterious effect of prior creep on room temperature mechanical properties of large grain size ODS alloys, it is speculated that the threshold stress may be the design limiting creep strength property.

  11. A revised analysis of micron-sized particles detected near Saturn by the Voyager 2 plasma wave instrument

    NASA Technical Reports Server (NTRS)

    Tsintikidis, D.; Gurnett, D.; Granroth, L. J.; Allendorf, S. C.; Kurth, W. S.

    1994-01-01

    The impulsive noise that the plasma wave and radio astronomy instruments detected during the Voyager 2 swing by Saturn was attributed to dust grains striking the spacecraft. This report presents a reanalysis of the dust impacts recorded by the plasma wave instrument using an improved model for the response of the electric antenna to dust impacts. The fundamental assumption used in this analysis is that the voltage induced on the antenna is proportional to the mass of the impacting grain. Using the above assumption and the antenna response constants used at Uranus and Neptune, the following conclusions can be reached. The primary dust distribution consists of a 'disk' of particles that coincides with the equator plane and has a north-south thickness of 2-Delta zeta = 962 km. A less dense 'halo' with a north-south thickness of 2-Delta zeta = 3376 km surrounds the primary distribution. The dust particle sizes are of the order of 10 microns, assuming a mass density of 1 g/cu cm. The corresponding particle masses are of the order of 10(exp -9) g, and maximum number densities are of the order of 10(exp -2)/cu m. Most likely, the G ring is the dominate source since the particles were observed very close to that ring, namely at 2.86 R(sub S). Other sources, like nearby moons, are not ruled out especially when perturbations due to electromagnetic forces are included. The calculated optical depth differs by about a factor of 2 from photometric studies. The current particle masses, radii, and the effective north-south thickness of the particle distribution are larger than what Gurnett et al. (1983) reported by about 2, 1, and 1 orders of magnitude, respectively. This is attributed to the fact that the collection coefficient used in this study is smaller than what was used in Gurnett et al.'s earlier publication.

  12. Effect of Mg on the Grain Growth and Dislocation Creep of Calcite

    NASA Astrophysics Data System (ADS)

    Xu, L.

    2004-12-01

    We tested the effect of variations in the amount of the solute impurity (Mg) on grain growth and strength of calcite aggregate. Synthetic marbles were produced by hot isostatic pressing mixtures of powders of calcite and dolomite at 850° C and 300 MPa confining pressure for different intervals (2 to 30 hrs). The HIP treatment resulted in homogeneous aggregates of calcite with Mg content from 0.5 to 17 mol%. Stress stepping tests and constant strain rate tests were used to examine the effect of Mg content on the dislocation creep of calcite. The grain growth rate under static conditions was decreased with Mg content from 7 to 17 mol%, indicating perhaps that grain boundary mobility is suppressed by the solute drag effect. In the diffusion creep at stresses below 40 Mpa, the strength of calcite decreases with increasing Mg content owing to the difference in grain size at 800° C and 300 MPa confining pressure. The contribution of dislocation creep increases with increasing stress, and the transition between diffusion and dislocation creep occurs at higher stresses for the samples with higher magnesium content and smaller grain size. The creep data were fit assuming a composite flow law consisting of a linear combination of diffusion and dislocation creep and a single-valued grain size. The best agreement was obtained by using a dislocation creep law with exponential dependence of strain rate on stress (e.g. Peierls law). More evidence from microstructure is needed to identify the dominant deformation mechanism conclusively. Most of the samples were compressed up to strains of 0.25; small recrystallized grains are formed resulting in a bimodal grain size distribution in some of the deformed samples. Preliminary data shows that the recrystallized grain sizes are smaller for Mg-calcite compared with that of pure calcite. This study will help to understand the effect of impurities on grain-growth kinetics and strain weakening in localized shear zones.

  13. Model for transient creep of southeastern New Mexico rock salt

    SciTech Connect

    Herrmann, W; Wawersik, W R; Lauson, H S

    1980-11-01

    In a previous analysis, existing experimental data pertaining to creep tests on rock salt from the Salado formation of S.E. New Mexico were fitted to an exponential transient creep law. While very early time portions of creep strain histories were not fitted very well for tests at low temperatures and stresses, initial creep rates in particular generally being underestimated, the exponential creep law has the property that the transient creep strain approaches a finite limit with time, and is therefore desirable from a creep modelling point of view. In this report, an analysis of transient creep is made. It is found that exponential transient creep can be related to steady-state creep through a universal creep curve. The resultant description is convenient for creep analyses where very early time behavior is not important.

  14. Deformation Mechanism and Microstructure Evolution of T92/S30432 Dissimilar Welded Joint During Creep

    NASA Astrophysics Data System (ADS)

    Xu, Lianyong; Wang, Yongfa; Jing, Hongyang; Zhao, Lei; Han, Yongdian

    2016-09-01

    The cross dissimilar welds between T92 martensitic steel and S30432 austenitic steel were crept at 625 °C with different applied stresses, and the creep deformation and microstructure behaviors were characterized. The results revealed that the creep deformation behavior of dissimilar weld joint was controlled by its martensitic T92 part due to the Ni-based filler metal employed. The fracture positions of crept dissimilar welded joints were located in base metal of T92 steel as the applied stress over than 140 MPa. The fracture type was mainly caused by plastic deformation and characterized by dimples and surface necking. In contrast, as applied stress was <140 MPa, fractured location was transferred into the fine-grained heat-affected zone of T92 part identified to be the intergranular brittle fracture. This phenomenon was controlled by creep deformation and related to undissolved carbides, fine grain size and constraint effect induced by creep deformation inconsistent in this zone.

  15. Effect of Tungsten on Primary Creep Deformation and Minimum Creep Rate of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar; Mathew, M. D.

    2014-10-01

    Effect of tungsten on transient creep deformation and minimum creep rate of reduced activation ferritic-martensitic (RAFM) steel has been assessed. Tungsten content in the 9Cr-RAFM steel has been varied between 1 and 2 wt pct, and creep tests were carried out over the stress range of 180 and 260 MPa at 823 K (550 °C). The tempered martensitic steel exhibited primary creep followed by tertiary stage of creep deformation with a minimum in creep deformation rate. The primary creep behavior has been assessed based on the Garofalo relationship, , considering minimum creep rate instead of steady-state creep rate . The relationships between (i) rate of exhaustion of transient creep r' with minimum creep rate, (ii) rate of exhaustion of transient creep r' with time to reach minimum creep rate, and (iii) initial creep rate with minimum creep rate revealed that the first-order reaction-rate theory has prevailed throughout the transient region of the RAFM steel having different tungsten contents. The rate of exhaustion of transient creep r' and minimum creep rate decreased, whereas the transient strain ɛ T increased with increase in tungsten content. A master transient creep curve of the steels has been developed considering the variation of with . The effect of tungsten on the variation of minimum creep rate with applied stress has been rationalized by invoking the back-stress concept.

  16. Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes

    USGS Publications Warehouse

    Shelly, D.R.; Peng, Z.; Hill, D.P.; Aiken, C.

    2011-01-01

    The passage of radiating seismic waves generates transient stresses in the Earth's crust that can trigger slip on faults far away from the original earthquake source. The triggered fault slip is detectable in the form of earthquakes and seismic tremor. However, the significance of these triggered events remains controversial, in part because they often occur with some delay, long after the triggering stress has passed. Here we scrutinize the location and timing of tremor on the San Andreas fault between 2001 and 2010 in relation to distant earthquakes. We observe tremor on the San Andreas fault that is initiated by passing seismic waves, yet migrates along the fault at a much slower velocity than the radiating seismic waves. We suggest that the migrating tremor records triggered slow slip of the San Andreas fault as a propagating creep event. We find that the triggered tremor and fault creep can be initiated by distant earthquakes as small as magnitude 5.4 and can persist for several days after the seismic waves have passed. Our observations of prolonged tremor activity provide a clear example of the delayed dynamic triggering of seismic events. Fault creep has been shown to trigger earthquakes, and we therefore suggest that the dynamic triggering of prolonged fault creep could provide a mechanism for the delayed triggering of earthquakes. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  17. A quantitative method for evaluating numerical simulation accuracy of time-transient Lamb wave propagation with its applications to selecting appropriate element size and time step.

    PubMed

    Wan, Xiang; Xu, Guanghua; Zhang, Qing; Tse, Peter W; Tan, Haihui

    2016-01-01

    Lamb wave technique has been widely used in non-destructive evaluation (NDE) and structural health monitoring (SHM). However, due to the multi-mode characteristics and dispersive nature, Lamb wave propagation behavior is much more complex than that of bulk waves. Numerous numerical simulations on Lamb wave propagation have been conducted to study its physical principles. However, few quantitative studies on evaluating the accuracy of these numerical simulations were reported. In this paper, a method based on cross correlation analysis for quantitatively evaluating the simulation accuracy of time-transient Lamb waves propagation is proposed. Two kinds of error, affecting the position and shape accuracies are firstly identified. Consequently, two quantitative indices, i.e., the GVE (group velocity error) and MACCC (maximum absolute value of cross correlation coefficient) derived from cross correlation analysis between a simulated signal and a reference waveform, are proposed to assess the position and shape errors of the simulated signal. In this way, the simulation accuracy on the position and shape is quantitatively evaluated. In order to apply this proposed method to select appropriate element size and time step, a specialized 2D-FEM program combined with the proposed method is developed. Then, the proper element size considering different element types and time step considering different time integration schemes are selected. These results proved that the proposed method is feasible and effective, and can be used as an efficient tool for quantitatively evaluating and verifying the simulation accuracy of time-transient Lamb wave propagation. PMID:26315506

  18. Giant repeater F-wave in patients with anterior horn cell disorders. Role of motor unit size.

    PubMed

    Ibrahim, I K; el-Abd, M A

    1997-01-01

    Conventional F-wave responses as well as single motor unit F-wave responses together with the volitionally recruited motor unit action potentials (MUAP) were studied in hand and feet muscles of 10 healthy subjects and 32 patients with anterior horn cell disorders. The amplitude of the largest F-wave (Fl) was significantly greater in the affected patients compared with healthy subjects. Giant repeater F-wave responses "up to 4 mV" were recorded in muscles having volitionally recruited giant MUAPs. Although, the group mean percentage of motor unit F-wave responses per stimulation in all tested orthodromic MUAPs was significantly decreased in amyotrophic lateral sclerosis patients, the group mean percentage of motor unit F-wave responses per stimulation in all tested orthodromic MUAPs that gave motor unit F-wave response was significantly increased compared with healthy subjects. The responding orthodromic MUAP gave identical motor unit F-wave response, even for complex polyphasic units. Enhanced monosynaptic (H-) reflex, proximal axon reflex (A-wave), and repetitive muscle response as possible explanations for the giant F-wave responses could be discounted. The electrophysiologic behavior of the giant late responses described here fits well with the criteria of F-waves modulated by newly formed distal (and or proximal) axonal branching.

  19. The success of shock wave lithotripsy (SWL) in treating moderate-sized (10-20 mm) renal stones.

    PubMed

    Chung, Vera Y; Turney, Benjamin W

    2016-10-01

    Many centres favour endourological management over shock wave lithotripsy (SWL) in the management of moderate-sized (10-20 mm) renal stones. International guidelines support all available modalities for the treatment of these stones. The aim of this study was to evaluate the efficacy of SWL in the treatment of 10- to 20-mm renal stones. From January 2013 to October 2014, all patients with a renal stone measuring between 10 and 20 mm in maximum diameter on CT scan that were eligible for lithotripsy were included. 130 consecutive patients were evaluated. Demographics, location of stone within the kidney, number of SWL sessions and treatment outcomes were analysed. Treatment success was classified into complete stone clearance and the presence of clinically insignificant residual fragments <4 mm (CIRF). 119 patients (92 %) completed treatment and radiological follow-up. Eleven patients were excluded due to incomplete follow-up data. The mean age was 56.8 (23-88). Male to female ratio was 1.9:1 (78:41) and the mean BMI was 28.4 (17.9-58). The mean stone size was 12.8 mm (10-14 mm: n = 87; 15-20 mm: n = 32). The mean number of treatments was 2.14 and 2.82 for stones 10-14 and 15-20 mm, respectively. Overall treatment success was 66.4 % (combined complete stone clearance and CIRFs). Subdivided by stone size <15 mm and ≥15 mm, the success rate was 70.4 and 53.1 %, respectively. The treatment success by stone location was 65, 64 and 70 % for upper, middle and lower pole stones, respectively and 67 % for PUJ stones. For those who failed SWL treatment, the majority 50 % (n = 20) were managed expectantly, 42.5 % (n = 17) required URS, and 7.5 % (n = 3) required PNL. This study suggests that SWL has an efficacy for treating larger renal stones (10-20 mm) that is equivalent to success rates for smaller stones in other series. As a low-risk and non-invasive procedure SWL should be considered a first-line treatment for these stones. PMID:26743071

  20. Cumulative creep damage for polycarbonate and polysulfone

    NASA Technical Reports Server (NTRS)

    Zhang, M. J.; Straight, M. R.; Brinson, H. F.

    1985-01-01

    Creep to failure tests performed on polycarbonate and polysulfone under single and two step loadings are discussed. A cumulative damage law or modified time fraction rule is developed using a power law for transient creep response as the starting point. Experimental results are approximated well by the new rule. Damage and failure mechanisms associated with the two materials are suggested.

  1. Creep resistant high temperature martensitic steel

    SciTech Connect

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  2. Irradiation creep of vanadium-base alloys

    SciTech Connect

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  3. Creep and relaxation behavior of Inconel-617

    SciTech Connect

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-08-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation.

  4. Principles and practices of irradiation creep experiment using pressurized mini-bellows

    SciTech Connect

    Byun, Thak Sang; Li, Meimei; Snead, Lance Lewis; Katoh, Yutai; Burchell, Timothy D; McDuffee, Joel Lee

    2013-01-01

    This article is to describe the key design principles and application practices of the newly developed in-reactor irradiation creep testing technology using pressurized mini-bellows. Miniature creep test frames were designed to fit into the high flux isotope reactor (HFIR) rabbit capsule whose internal diameter is slightly less than 10 mm. The most important consideration for this in-reactor creep testing technology was the ability of the small pressurized metallic bellows to survive irradiation at elevated temperatures while maintaining applied load to the specimen. Conceptual designs have been developed for inducing tension and compression stresses in specimens. Both the theoretical model and the in-furnace test confirmed that a gas-pressurized bellows can produce high enough stress to induce irradiation creep in subsize specimens. Discussion focuses on the possible stress range in specimens induced by the miniature gas-pressurized bellows and the limitations imposed by the size and structure of thin-walled bellows. A brief introduction to the in-reactor creep experiment for graphite is provided to connect to the companion paper describing the application practices and irradiation creep data. An experimental and calculation procedure to obtain in-situ applied stress values from post irradiation in-furnace force measurements is also presented.

  5. An Evaluation of Creep Behaviour in Friction Stir Welded MA754 Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jiye; Yuan, Wei; Mishra, Rajiv S.; Charit, Indrajit

    2014-09-01

    Effect of friction stir welding (FSW) on microstructure and creep properties of oxide dispersion strengthened (ODS) alloy MA754 were investigated. Fine-grained microstructure developed in the weld zone. TEM results showed some degree of particle agglomeration as a result of intense material flow. Creep tests of the FSW material were carried out at 973 and 1073 K. Power law creep behaviour was observed with stress exponent values of 6.9 and 6.3 at 973 and 1073 K, respectively. The results were compared to those of the as-received material. Creep resistance of FSW material was lower than that of as-received material associated with significantly reduced threshold stress. Post-weld annealing was carried out at 1598 K for 1 h. The heat treatment resulted in a coarse-grained microstructure and enhanced the creep resistance of the welded material. The creep data were compared with those of ODS Ni-Cr alloys in literature. The analysis shows the threshold stress of ODS alloys to be grain size- and temperature-dependent.

  6. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2013-12-01

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive

  7. Tidal dissipation in creeping ice and the thermal evolution of Europa

    NASA Astrophysics Data System (ADS)

    McCarthy, Christine; Cooper, Reid F.

    2016-06-01

    The thermal and mechanical evolution of Europa and comparable icy satellites-the physics behind creating and sustaining a subsurface water ocean-depends almost entirely on the mechanical dissipation of tidal energy in ice to produce heat, the mechanism(s) of which remain poorly understood. In deformation experiments, we combine steady-state creep and low-frequency, small-strain periodic loading, similar conditions in which tectonics and tidal flexing are occurring simultaneously. The data reveal that the relevant, power-law attenuation in ice (i) is non-linear, depending on strain amplitude, (ii) is independent of grain size, and (iii) exceeds in absorption the prediction of the Maxwell solid model by an order of magnitude. The Maxwell solid model is widely used to model the dynamics of planetary ice shells, so this discrepancy is important. The prevalent understanding of damping in the geophysical context is that it is controlled by chemical diffusion on grain boundaries, which renders attenuation strongly dependent on grain size. In sharp contrast, our results indicate instead the importance of intracrystalline dislocations and their spatial interactions as the critical structural variable affecting dissipation. These dislocation structures are controlled by stress and realized by accumulated plastic strain. Thus, tectonics and attenuation are coupled, which, beyond the icy satellite/subsurface ocean problem, has implications also for understanding the attenuation of seismic waves in deforming regions of the Earth's upper mantle.

  8. Ismetpasa and Destek regions; Creeping or accumulating strain

    NASA Astrophysics Data System (ADS)

    Yavasoglu, Hakan; Alkan, M. Nurullah; Aladogan, Kayhan; Ozulu, I. Murat; Ilci, Veli; Sahin, Murat; Tombus, F. Engin; Tiryakioglu, Ibrahim

    2016-04-01

    The North Anatolian Fault (NAF) is one of the most destructive fault system all over the world. In the last century, many devastating seismic event happened on it and its shear zone (NAFZ). Especially, after the 1999 Izmit and Duzce earthquakes, the earth science studies increase to save human life. To better understand the mechanism of the active fault system, tectonic stress and strain are important phenomena. According to elastic rebound theory, the locked active faults release the accumulated strain abruptly in four periods; interseismic, preseismic, coseismic and postseismic. In the literature, this phase is called the earthquake cycle. On the other hand, there is another scenario (aseismic deformation or creep) to release the strain without any remarkable seismic event. For the creep procedure, the important subject is threshold of the aseismic slip rate. If it is equal or larger than long-term slip rate, the destructive earthquakes will not occur along the fault which has aseismic slip rate. On the contrary, if the creep motion is lower than long-term slip rate along the fault, the fault has potential to produce moderate-to-large size earthquakes. In this study, the regions, Ismetpasa and Destek, have been studied to determine the aseismic deformation using GPS data. The first and second GPS campaigns have been evaluated with GAMIT/GLOBK software. Preliminary results of the project (slip-rate along the NAF in this region and aseismic deformation) will be presented.

  9. Irradiation creep of dispersion strengthened copper alloy

    SciTech Connect

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  10. Kinematic hardening in creep of Zircaloy

    NASA Astrophysics Data System (ADS)

    Sedláček, Radan; Deuble, Dietmar

    2016-10-01

    Results of biaxial creep tests with stress changes on Zircaloy-2 tube samples are presented. A Hollomon-type viscoplastic strain hardening model is extended by the Armstrong-Frederic nonlinear kinematic hardening law, resulting in a mixed (i.e. isotropic and kinematic) strain hardening model. The creep tests with stress changes and similar tests published in the literature are simulated by the models. It is shown that introduction of the kinematic strain hardening in the viscoplastic strain hardening model is sufficient to describe the creep transients following stress drops, stress reversals and stress removals.

  11. Prediction of creep of polymer concrete

    SciTech Connect

    Khristova, Yu.; Aniskevich, K.

    1995-11-01

    We studied the applicability of the phenomenological approach to the prediction of long-time creep of polymer concrete consisting of polyester binder with diabase filler and diabase aggregate. We discovered that the principles of temperature-time analogy, of moisture-time analogy, and of temperature-moisture-time analogy are applicable to the description of the diagrams of short-time creep and to the prediction of long-time creep of polymer concrete at different temperatures and constant moisture content of the material.

  12. Thermodynamic approach to creep and plasticity

    SciTech Connect

    Loefstedt, R.

    1997-06-01

    A solid subjected to a small load distorts rapidly in the manner predicted by elasticity theory. On a much longer time scale, the solid will creep. This dissipative motion is an important consideration in the engineering design of, for example, aircraft engines, but the macroscopic equations of motion describing this deformation are based on empirical observations. The principles of thermodynamics specify the dissipative fluxes appropriate to the classical equations of elasticity, which include one, unique to solids, which describes creep. The thermodynamic theory is presented, and the insights into the underlying microscopic mechanisms of creep, gleaned from the macroscopic formalism, are also discussed. {copyright} {ital 1997} {ital The American Physical Society}

  13. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    NASA Technical Reports Server (NTRS)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  14. Creep substructure formation in sodium chloride single crystals in the power law and exponential creep regimes

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Pharr, G. M.

    1989-01-01

    Creep tests conducted on NaCl single crystals in the temperature range from 373 to 1023 K show that true steady state creep is obtained only above 873 K when the ratio of the applied stress to the shear modulus is less than or equal to 0.0001. Under other stress and temperature conditions, corresponding to both power law and exponential creep, the creep rate decreases monotonically with increasing strain. The transition from power law to exponential creep is shown to be associated with increases in the dislocation density, the cell boundary width, and the aspect ratio of the subgrains along the primary slip planes. The relation between dislocation structure and creep behavior is also assessed.

  15. Limit case analysis of the "stable indenter velocity" method for obtaining creep stress exponents from constant load indentation creep tests

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Dean, J.; Clyne, T. W.

    2016-06-01

    This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.

  16. Scattering of obliquely incident shear waves from a cylindrical cavity.

    PubMed

    Aldrin, John C; Blodgett, Mark P; Lindgren, Eric A; Steffes, Gary J; Knopp, Jeremy S

    2011-06-01

    Prior work has proposed the use of ultrasonic angle-beam shear wave techniques to detect cracks of varying angular location around fastener sites by generating and detecting creeping waves. To better understand the nature of the scattering problem and quantify the role of creeping waves in fastener site inspections, a 3D analytical model was developed for the propagation and scattering of an obliquely incident plane shear wave from a cylindrical cavity with arbitrary shear wave polarization. The generation and decay of the spiral creeping waves was found to be dependent on both the angle of incidence and polarization of the plane shear wave. A difference between the angle of displacement in 3D and the direction of propagation for the spiral creeping wave was observed and attributed to differences in the curvature of the cavity surface for the tangential and vertical (z) directions. Using the model, practical insight was presented on measuring the displacement response in the far-field from the hole. Both analytical and experimental results highlighted the value of the diffracted and leaky spiral creeping wave signals for nondestructive evaluation of a crack located on the cavity. Last, array and signal processing methods are discussed to improve the resolution of the weaker creeping wave signals in the presence of noise.

  17. Creep of plain weave polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  18. The dead zone size limits in a proto-stellar accretion disc model heated by the damping of Alfvén waves

    NASA Astrophysics Data System (ADS)

    Jatenco-Pereira, V.

    2015-05-01

    Heating of proto-stellar accretion discs has been studied by several authors. Jatenco-Pereira (Mon. Not. R. Astron. Soc. 431:3150, 2013) proposed a disc model with two heating mechanisms: the "anomalous" viscosity considered in terms of the α-prescription and the damping of Alfvén waves. As the discs are composed of dust, it was considered that when charged dust particles acquire the same (cyclotron) frequency as the waves, a resonance occurs that leads to the damping of the waves. Here we show that the increase in the temperature of the disc midplane implies in the reduction of the size of the quiescent region in proto-stellar discs and compare it with the actual position of the solar system planets.

  19. Creep Behavior and Degradation of Subgrain Structures Pinned by Nanoscale Precipitates in Strength-Enhanced 5 to 12 Pct Cr Ferritic Steels

    NASA Astrophysics Data System (ADS)

    Ghassemi Armaki, Hassan; Chen, Ruiping; Maruyama, Kouichi; Igarashi, Masaaki

    2011-10-01

    Creep behavior and degradation of subgrain structures and precipitates of Gr. 122 type xCr-2W-0.4Mo-1Cu-VNb ( x = 5, 7, 9, 10.5, and 12 pct) steels were evaluated during short-term and long-term static aging and creep with regard to the Cr content of steel. Creep rupture life increased from 5 to 12 pct Cr in the short-term creep region, whereas in the long-term creep region, it increased up to 9 pct Cr and then decreased with the addition of Cr from 9 to 12 pct. Behavior of creep rupture life was attributed to the size of elongated subgrains. In the short-term creep region, subgrain size decreased from 5 to 12 pct Cr, corresponding to the longer creep strength. However, in the long-term creep region after 104 hours, subgrain size increased up to 9 pct Cr and then decreased from 9 to 12 pct, corresponding to the behavior of creep rupture life. M23C6 and MX precipitates had the highest number fraction among all of the precipitates present in the studied steels. Cr concentration dependence of spacing of M23C6 and MX precipitates exhibited a V-like shape during short-term as well as long-term aging at 923 K (650 °C), and the minimum spacing of precipitates belonged to 9 pct Cr steel, corresponding to the lowest recovery speed of subgrain structures. In the short-term creep region, subgrain coarsening during creep was controlled by strain and proceeded slower with the addition of Cr, whereas in long-term creep region, subgrain coarsening was controlled by the stability of precipitates rather than due to the creep plastic deformation and took place faster from 9 to 12 pct and 9 to 5 pct Cr. However, M23C6 precipitates played a more important role than MX precipitates in the control of subgrain coarsening, and there was a closer correlation between spacing of M23C6 precipitates and subgrain size during static aging and long-term creep region.

  20. Creep relaxation and fully reversible creep of foam core sandwich composites in seawater

    NASA Astrophysics Data System (ADS)

    de la Paz, Ismael; Shafiq, Basir

    2015-12-01

    Foam core sandwich composites were subjected to (i) creep to failure, (ii) cyclic creep-relaxation and (iii) fully reversible cyclic creep loading in seawater in order to mimic an actual ship hull's service lifetime scenario. The results indicate a strong dependence of lifetime on the mode of loading. A significant reduction in the overall life was observed under cyclic creep as compared with the conventional creep to failure. Creep relaxation (R=1) tests were performed at loading-relaxation periods of 24/24, 24/12, 24/6, 12/12 and 6/6 h, while the fully reversible (R=-1) creep tests were conducted at loading-reversed loading times of 36/36, 24/24, 12/12, 6/6, and 3/3 h. The results suggest that creep-relaxation lifetime characteristics depend predominantly on the relaxation time as opposed to loading times, i.e. longer relaxation periods lead to shorter life. Whereas, fully reversible creep appears to be dependent upon the number of reversals whereby, life is observed to reduce as the number of reversals increase. These significant observations are explained in terms of various possible paths to interface cell wall collapse. Modes of failure were predominantly indentation and core compression in the vicinity of the loading site.

  1. Long-Term Creep and Creep Rupture Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Rahman, M.; Mach, A.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)

    2001-01-01

    Tensile creep behavior of SiC/SiNC ceramic matrix composites at elevated temperatures and at various stress levels have been investigated for turbine engine applications. The objective of this research is to present creep behavior of SiC/SiCN composites at stress levels above and below the monotonic proportional limit strength and predict the life at creep rupture conditions. Tensile creep-rupture tests were performed on an Instron 8502 servohydraulic testing machine at constant load conditions up to a temperature limit of 1000 C. Individual creep curves indicate three stages such as primary, secondary, and tertiary. The creep rate increased linearly at an early stage and then gradually became exponential at higher strains. The stress exponent and activation energy were also obtained at 700 and 1000 C. The specimen lifetime was observed to be 55 hrs at 121 MPa and at 700 C. The life span reduced to 35 hrs at 143 MPa and at 1000 C. Scanning electron microscopy observations revealed significant changes in the crystalline phases and creep damage development. Creep failures were accompanied by extensive fiber pullout, matrix cracking, and debonding along with fiber fracture. The creep data was applied to Time-Temperature-Stress superposition model and the Manson-Haferd parametric model for long-time life prediction.

  2. Is diffusion creep the cause for the inverse Hall-Petch effect in nanocrystalline materials?

    SciTech Connect

    T. G. Desai; P. Millett; D. Wolf

    2008-10-01

    It has previously been demonstrated by means of molecular-dynamics (MD) simulation that for the very smallest grain sizes (typically below 20-30 nm), nanocrystalline fcc metals deform via grain-boundary diffusion creep, provided the applied stress is low enough to avoid microcracking and dislocation nucleation from the grain boundaries. Experimentally, however, the nature of the deformation process in this “inverse Hall-Petch” regime (in which the yield stress decreases with decreasing grain size) remains controversial. Here we illustrate by MD simulation that in the absence of grain growth a nanocrystalline model bcc metal, Mo, and a model metal oxide, UO2, also deform via diffusion creep. However, in the case of Mo both grain-boundary and lattice diffusion are observed to contribute to the creep rate; i.e., the deformation mechanism involves a combination of Coble and Nabarro-Herring creep. While our results on Mo and UO2 are still preliminary, they lend further support to the observation of diffusion creep previously documented in fcc metals and in covalently bonded Si.

  3. Effects of processing history on the creep strength of Nb-1Zr

    SciTech Connect

    Horak, J.A.; Egner, L.K.

    1993-06-01

    Power systems that are used to provide electrical power in space are designed to optimize conversion of thermal energy to electrical energy and to minimize the mass and volume that must be launched. Only refractory metals and their alloys have sufficient long-term strength for several years of uninterrupted operation at the temperatures required (e.g., >1200 K). The high power densities and temperatures at which these reactors must operate require the use of liquid-metal coolants. The alloy Nb-1 wt % (Nb-1Zr), which exhibits excellent corrosion resistance to alkali liquid-metals at high temperatures, is being considered for the fuel cladding, reactor structural, and heat transport systems for current space exploration missions. Useful lifetimes of these power systems are limited by creep deformation in the reactor core. Nb-1Zr sheet procured to American Society for Testing and Materials (ASTM) specifications for rector grade and commercial grade has been processed by several different cold work and annealing treatments to attempt to produce the grain structure (size, shape, and distribution of sizes) that provides the maximum creep strength of this alloy at temperatures from 1250 to 1450 K. The effects of grain size, differences in oxygen concentrations, tungsten concentrations, and electron beam and gas tungsten arc weldments on creep strength were studied. Grain size has a large effect on creep strength at 1450 K but much less of an effect at 1350 K. Differences in oxygen or tungsten concentrations did not affect creep strength, and the creep strengths of weldments were equal to, or greater than, those for base metal.

  4. Tensile creep and creep-recovery behavior of a SiC-fiber-Si3N4-matrix composite

    NASA Technical Reports Server (NTRS)

    Holmes, John W.; Park, Yong H.; Jones, J. W.

    1993-01-01

    The tensile creep and creep-recovery behavior of a hot-pressed unidirectional SiC-fiber/Si3N4-matrix composite was investigated at 1200 C in air, in order to determine how various sustained and cyclic creep loading histories would influence the creep rate, accumulated creep strain, and the amount of strain recovered upon specimen unloading. The data accumulated indicate that the fundamental damage mode for sustained tensile creep at stresses of 200 and 250 MPa was periodic fiber fracture and that the creep life and the failure mode at 250 MPa were strongly influenced by the rate at which the initial creep stress was applied. Cyclic loading significantly lowered the duration of primary creep and the overall creep-strain accumulation. The implications of the results for microstructural and component design are discussed.

  5. Creep behavior of niobium alloy PWC-11

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1987-01-01

    The high vacuum creep and creep-rupture behavior of a Nb-1Zr-.1C alloy (PWC 11) was investigated at 1350 and 1400 K with an applied stress of 40 MPa. The material was tested in the following four conditions: annealed (1 hr 1755 K/2 hr 1475 K); annealed plus EB welded; annealed plus aged for 1000 hr at 1350 or 1400 K; and annealed, welded, and aged. It was found that the material in the annealed state was the most creep-resistant condition tested, and that aging the alloy for 1000 hr without an applied stress greatly reduced that strength; however, it was still approximately three times as creep resistant as Nb-1Zr. Additionally, the EB weld region was stronger than the base metal in each condition tested, and phase extraction of the dispersed precipitate revealed the presence of a 70%ZrC-30%NbC cubic monocarbide phase.

  6. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  7. Spatial fluctuations in transient creep deformation

    NASA Astrophysics Data System (ADS)

    Laurson, Lasse; Rosti, Jari; Koivisto, Juha; Miksic, Amandine; Alava, Mikko J.

    2011-07-01

    We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by digital image correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases—the spatially averaged creep rate obeys the Andrade law epsilont ~ t - 0.7, while the time dependence of the spatial fluctuations of the local creep rates is given by Δepsilont ~ t - 0.5. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2d linear interface model or the quenched Edwards-Wilkinson equation.

  8. Micromechanics of brittle creep in rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Baud, P.; Heap, M. J.; Meredith, P. G.

    2012-08-01

    In the upper crust, the chemical influence of pore water promotes time dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail at stresses well below their short-term failure strength, and even at constant applied stress (“brittle creep”). Here we provide a micromechanical model describing time dependent brittle creep of water-saturated rocks under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of cracks in compression are derived from the sliding wing crack model of Ashby and Sammis (1990), and the crack length evolution is computed from Charles' law. The macroscopic strains and strain rates computed from the model are non linear, and compare well with experimental results obtained on granite, low porosity sandstone and basalt rock samples. Primary creep (decelerating strain) corresponds to decelerating crack growth, due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as an inflexion between those two end-member phases. The minimum strain rate at the inflexion point can be estimated analytically as a function of model parameters, effective confining pressure and temperature, which provides an approximate creep law for the process. The creep law is used to infer the long term strain rate as a function of depth in the upper crust due to the action of the applied stresses: in this way, sub-critical cracking reduces the failure stress in a manner equivalent to a decrease in cohesion. We also investigate the competition with pressure solution in porous rocks, and show that the transition from sub

  9. Review of recent irradiation-creep results

    SciTech Connect

    Coghlan, W.A.

    1982-05-01

    Materials deform faster under stress in the presence of irradiation by a process known as irradiation creep. This phenomenon is important to reactor design and has been the subject of a large number of experimental and theoretical investigations. The purpose of this work is to review the recent experimental results to obtain a summary of these results and to determine those research areas that require additional information. The investigations have been classified into four subgroups based on the different experimental methods used. These four are: (1) irradiation creep using stress relaxation methods, (2) creep measurements using pressurized tubes, (3) irradiation creep from constant applied load, and (4) irradiation creep experiments using accelerated particles. The similarity and the differences of the results from these methods are discussed and a summary of important results and suggested areas for research is presented. In brief, the important results relate to the dependence of creep on swelling, temperature, stress state and alloying additions. In each of these areas new results have been presented and new questions have arisen which require further research to answer. 65 references.

  10. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    SciTech Connect

    Liaw, Peter

    2014-12-31

    -principles calculations, providing deep insight of creep mechanisms of the creep-resistant ferritic superalloys. With the above investigations, the HPSFA has been proved with superior creep resistance, and its microstructure, creep mechanism, and thermal/mechanical properties have been well studied and understood. In the future, HPSFAs with different additions and sizes of precipitates will be investigated and developed to further enhance the creep resistance of the ferritic superalloys and provide promising applications of the fossil-energy power plants.

  11. Optimization of High Temperature Hoop Creep Response in ODS-Fe3Al Tubes

    SciTech Connect

    Kad, B.K.; Heatherington, J.H.; McKamey, C.; Wright, I.; Sikka, V.; Judkins, R.

    2003-04-22

    Oxide dispersion strengthened (ODS) Fe3Al alloys are currently being developed for heat-exchanger tubes for eventual use at operating temperatures of up to 1100 C in the power generation industry. The development challenges include (a) efforts to produce thin walled ODS-Fe3Al tubes, employing powder extrusion methodologies, with (b) adequate increased strength for service at operating temperatures to (c) mitigate creep failures by enhancing the as-processed grain size. A detailed and comprehensive research and development methodology is prescribed to produce ODS-Fe3Al thin walled tubes. Current single step extrusion consolidation methodologies typically yield 8ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness ODS-Fe3Al tubes. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Recrystallization treatments at 1200 C produce elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long. The dispersion distribution is unaltered on a micro scale by recrystallization, but the high aspect ratio grain shape typically obtained limits grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloys requires an understanding and manipulating the factors that control grain alignment and recrystallization behavior. Current efforts are focused on examining the processing dependent longitudinal vs. transverse creep anisotropy, and exploring post-extrusion methods to improve hoop creep response in ODS-Fe3Al alloy tubes. In this report we examine the mechanisms of hoop creep failure and describe our efforts to improve creep performance via variations in thermal-mechanical treatments.

  12. Creep cavitation bands control porosity and fluid flow in lower crustal shear zones

    SciTech Connect

    Menegon, Luca; Fusseis, Florian; Stunitz, Holger; Xiao, Xianghui

    2015-03-01

    Shear zones channelize fluid flow in Earth’s crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700–730 °C, pressure = 0.65–0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in both domains is <25 mm. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistent with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size–sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites.

  13. Impression Creep Behavior of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Naveena; Vijayanand, D.

    2013-02-01

    Impression creep tests have been carried out at 923 K on 316LN SS containing 0.07, 0.14, and 0.22 wt.% nitrogen, under different applied stress levels. It was observed that the impression creep depth versus time curves were similar to the creep curves obtained from conventional uniaxial creep tests. The impression creep curves were characterized by a loading strain and primary and secondary creep stages similar to uniaxial creep curves. The tertiary stage observed in uniaxial creep curves was absent. The steady-state impression velocity was found to increase with increasing applied stress. The equivalent steady-state creep rates calculated from impression velocities were found to be in good agreement with the steady-state creep rates obtained from conventional uniaxial creep tests. Equivalence between applied stress and steady-state impression velocity with uniaxial creep stress and steady-state creep rate, respectively, has been established based on the laws of mechanics for time-dependent plasticity. It was found that impression velocity was sensitive to the variation in nitrogen content in the steel; impression velocity decreased with increasing nitrogen content, and the results obtained in this study were in agreement with those obtained from uniaxial creep tests.

  14. Time-dependent model of creep on the Hayward fault from joint inversion of 18 years of InSAR and surface creep data

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.; Bürgmann, R.

    2013-04-01

    Spatial and temporal variations of aseismic fault creep influence the size and timing of large earthquakes along partially coupled faults. To solve for a time-dependent model of creep on the Hayward fault, we invert 18 years of surface deformation data (1992-2010), obtained by interferometric processing of 52 and 50 SAR images acquired by the ERS1/2 and Envisat satellites, respectively, and surface creep data obtained at 19 alinement and 4 creepmeter stations. For multi-temporal analysis of the SAR data we developed a method for identifying stable pixels using wavelet multi-resolution analysis. We also implement a variety of wavelet-based filters for reducing the effects of environmental artifacts. Using a reweighted least squares approach, we inverted the interferometric data to generate a time series of surface deformation over the San Francisco Bay Area with a precision of better than a few millimeters. To jointly invert the InSAR displacement time series and the surface creep data for a time-dependent model of fault creep, we use a robust inversion approach combined with a Kalman filter. The time-dependent model constrains a zone of high slip deficit that may represent the locked rupture asperity of past and future M≈7 earthquakes. We identify several additional temporal variations in creep rate along the Hayward fault, the most important one being a zone of accelerating slip just northwest of the major locked zone. We estimate that a slip-rate deficit equivalent to Mw 6.3-6.8 has accumulated on the fault, since the last event in 1868.

  15. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  16. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Hochella, W. A.; Lytton, J. L.

    1973-01-01

    The techniques of electron microscopy were used to examine the microstructural changes which occur during primary creep for two important types of engineering alloys: (1) alloys strengthened by solid-solution additions, and (2) dispersion-strengthened alloys. The metals chosen for study are unalloyed titanium, Ti-6Al-4V, and the cobalt-base alloy, Haynes 188. Results to date on NGR 47-004-108 show that development of prior dislocation substructure in Haynes 188 by 10% prestrain and annealing for one hour at 1800 F increases the time to reach 0.5% creep strain at 1600 F by more than an order of magnitude for creep stresses from 3 to 20 ksi. For creep at 1800 F, similar results were obtaind for stresses above 7 ksi, but the prior substructure decreases creep resistance below 7 ksi. This effect appears to be related to instability of grain structure at 1800 F in prestrained material.

  17. Tensile creep and creep fracture of a fiber-reinforced SiC/SiC composite

    SciTech Connect

    Wilshire, B.; Carreno, F.; Percival, M.J.L.

    1998-08-11

    Several studies have been completed on silicon carbide fiber-reinforced silicon carbide (SiC{sub f}/SiC) composites produced with carbon-coated fibres having a 0/90{degree} architecture. Yet, while mechanical property measurements have been made at temperatures up to 1,473K in air and argon high-temperature creep tests have been carried out only under protective atmospheres. To clarify the creep behavior patterns displayed by continuous-fiber-reinforced CMCs, while simultaneously providing information relevant to aeroengine turbine design, the tensile creep and creep fracture properties of a 0/90{degree} SiC{sub f}/SiC composite have been determined over a stress range giving creep rupture lives up to approximately 2,000 hours in air at 1,573K.

  18. Small Punch Creep Studies for Optimization of Nitrogen Content in 316LN SS for Enhanced Creep Resistance

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Ganesh Kumar, J.; Ganesan, V.; Laha, K.

    2014-02-01

    Small punch creep (SPC) studies have been carried out to evaluate the creep properties of 316LN stainless steel (SS) at 923 K (650 °C) at various stress levels. The results have been compared with uniaxial creep rupture data obtained from conventional creep tests. The minimum deflection rate was found to obey Norton power law. SPC rupture life was correlated with uniaxial creep rupture life. The influence of nitrogen content on the creep rupture properties of 316LN SS was investigated in the range of 0.07 to 0.14 wt pct. SPC rupture life increased and the minimum deflection rate decreased with the increase in nitrogen content. The trends were found to be in agreement with the results obtained from uniaxial creep rupture tests. These studies have established that SPC is a fast and reliable technique to screen creep properties of different experimental heats of materials for optimizing the chemical composition for developing creep-resistant materials.

  19. Effect of solute interactions in columbium /Nb/ on creep strength

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The creep strength of 17 ternary columbium (Nb)-base alloys was determined using an abbreviated measuring technique, and the results were analyzed to identify the contributions of solute interactions to creep strength. Isostrength creep diagrams and an interaction strengthening parameter, ST, were used to present and analyze data. It was shown that the isostrength creep diagram can be used to estimate the creep strength of untested alloys and to identify compositions with the most economical use of alloy elements. Positive values of ST were found for most alloys, showing that interaction strengthening makes an important contribution to the creep strength of these ternary alloys.

  20. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  1. Effect of Nb and Cu on the high temperature creep properties of a high Mn–N austenitic stainless steel

    SciTech Connect

    Lee, Kyu-Ho; Suh, Jin-Yoo; Huh, Joo-Youl; Park, Dae-Bum; Hong, Sung-Min; Shim, Jae-Hyeok; Jung, Woo-Sang

    2013-09-15

    The effect of Nb and Cu addition on the creep properties of a high Mn–N austenitic stainless steel was investigated at 600 and 650 °C. In the original high Mn–N steel, which was initially precipitate-free, the precipitation of M{sub 23}C{sub 6} (M = Cr, Fe) and Cr{sub 2}N took place mostly on grain boudaries during creep deformation. On the other hand, the minor addition of Nb resulted in high number density of Z-phases (CrNbN) and MX (M = Nb; X = C, N) carbonitrides inside grains by combining with a high content of N, while suppressing the formation of Cr{sub 2}N. The addition of Cu gave rise to the independent precipitation of nanometer-sized metallic Cu particles. The combination of the different precipitate-forming mechanisms associated with Z-phase, MX and Cu-rich precipitates turned out to improve the creep-resistance significantly. The thermodynamics and kinetics of the precipitation were discussed using thermo-kinetic simulations. - Highlights: • The creep rupture life was improved by Nb and Cu addition. • The creep resistance of the steel A2 in this study was comparable to that of TP347HFG. • The size of Z-phase and MX carbonitride did not change significantly after creep test. • The nanometer sized Cu-rich precipitate was observed after creep. • The predicted size of precipitates by MatCalc agreed well with measured size.

  2. Effect of interstitials on tensile strength and creep in nanostructured Ni

    SciTech Connect

    Yin, W.M.; Whang, S.H. . E-mail: swhang@poly.edu; Mirshams, R.A.

    2005-01-10

    The tensile, creep and anelastic behavior of nanostructured nickel doped and un-doped with boron was investigated. Specimen material with an average grain size of around 30 nm produced by the pulse electrodeposition method contains impurities such as carbon, sulfur and boron. The interstitials content does not have notable impact on the tensile strength at room temperature and 373 K. But, at 473 K, the minor change in sulfur content from 0.03 to 0.061 at.% raises the ultimate strength by 150 MPa while the boron doping further improves the tensile strength. On the other hand, with increasing sulfur content in nanostructured Ni, the ductility decreases. All the specimens exhibit significant anelastic relaxation from room temperature to 473 K. The creep test results show that both minimum creep rate and creep strain significantly decrease with increasing sulfur or by doping boron in nanostructured nickel. The stress exponent in the expression of Coble-type creep increases to around five at 373 and 473 K from two at room temperature. A model for grain boundary sliding, in which grain boundary dislocations and back stress are introduced, has successfully explained the large stress exponents. The calculated back stress indicates that the interstitials in grain boundaries effectively retard the sliding of grain boundary dislocations.

  3. The strainrange conversion principle for treating cumulative fatigue damage in the creep range

    NASA Technical Reports Server (NTRS)

    Manson, S. S.

    1983-01-01

    A formula is derived for combining effects of successive hysteresis loops in the creep range of materials when one loop has excess tensile creep, while the other contains excess compressive creep. The resultant effect resembles single loops involving balanced tensile and compressive creep. The attempt to use the Interaction Damage Rule as a tool in combining loops of non-equal size and complex strainrange content has led to important new concepts useful in future studies of creep-fatigue. It turns out that the Interaction Damage Rule is basically an expression of how a set of hysteresis loops involving only single generic strains can combine to produce the same micromechanistic damage as the loop containing the combined strainranges which it analyzes. Making use of the underlying concept of Strainrange Partitioning that only the strainrange content of a hysteresis loop governs fatigue life, not order of introducing strainranges, a rational derivation of the Interaction Damage Rule is provided, showing also how it can effectively be used to synthesize independent loops and determine both damaging and healing effects.

  4. Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C

    NASA Astrophysics Data System (ADS)

    Fedoseeva, A. E.; Kozlov, P. A.; Dudko, V. A.; Skorobogatykh, V. N.; Shchenkova, I. A.; Kaibyshev, R. O.

    2015-10-01

    In this work, we have investigated microstructural changes in steel 10Kh9V2MFBR (analog of P02 steel) after long-term creep tests at a temperature of 600°C under an initial stress of 137 MPa. Time to rupture was found to be more than 40000 h. It has been established that, in the zone of grips and in the neck region of the sample, the size of the particles of the M 23C6 carbides increases from 85 nm to 152 nm and 182 nm, respectively. In addition, large particles of the Laves phase with an average size of 295 nm are separated. The particles of these phases are located along high-angle boundaries. During prolonged aging and creep, the transformation of the M(C,N) particles enriched in V into the Z phase occurs. The average size of particles of the Z phase after prolonged ageing was 48 nm; after creep, it reached 97 nm. The size of M(C,N) particles enriched by Nb increases from 26 nm after tempering to 55 nm after prolonged aging and creep. It has been established that, in spite of an increase in the transverse size of the laths of tempered martensite from 0.4 to 0.9 µm in the neck of the sample, the misorientation of the lath boundaries does not increase. No recrystallization processes were found to develop in the steel during creep.

  5. Continuum modeling of mechanically-induced creep using the nonlocal fluidity model

    NASA Astrophysics Data System (ADS)

    Henann, David; Kamrin, Ken

    2014-03-01

    Recently, the nonlocal fluidity model applied to granular materials has successfully been used to predict the size of flow features in a wide variety of flow configurations, including all variations of the split-bottom cell as well as other geometries. A related problem in granular flow is that of mechanically-induced creep, in which shear deformation in one region of a granular medium fluidizes quiescent regions far from the sheared zone. This enables creep deformation when a force is applied in the quiescent region through an intruder such as a cylindrical or spherical probe. In this talk, we show that the nonlocal fluidity model is capable of describing this phenomenology. Specifically, we explore the creep of a rod in an annular Couette cell and show that the model captures all salient features observed in experiments.

  6. Effects of variable dust size, charge and mass on the characteristics of dust acoustic solitary waves in a magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Niloufar; Dorranian, Davoud

    2014-06-01

    The effect of dust size, mass and charge distributions on the characteristics of nonlinear dust acoustic solitary waves (DASW) in a two-temperature ion dusty plasma has been studied analytically. The mass and electrical charge of dust particles are assumed to be proportional with their size. Plasma is embedded in an external magnetic field with variable direction. Using a reductive perturbation method, the Zakharov-Kuznetsov (ZK) equation is derived and its solitary answers are extracted. The coefficients of the nonlinear term of the ZK equation are affected strongly by the size of dust particles when the relative size (the ratio of the largest dust radius to smallest dust radius) is less than 2. Both the width and amplitude of DASW increase with increasing relative size. The cyclotron frequency of the dust changes with the relative size of the dust particles. DASW width is influenced by the magnitude as well as direction of the external magnetic field, while its amplitude is independent of the magnitude of the external magnetic field. At each strength of the external magnetic field, there is an optimum magnitude for its direction at which the width of DASW is maximum.

  7. Granular controls of hillslope deformation and creep

    NASA Astrophysics Data System (ADS)

    Ferdowsi, B.; Jerolmack, D. J.; Ortiz, C. P.

    2015-12-01

    Sediment transport on hillslopes has been described as "creep", and has been modeled as a "diffusive" process by invoking random disturbance of soil in the presence of a gradient. In this framework, physical and biological agents are envisioned to cause dilation of the soil that is greatest at the surface and decays with depth. Thus, there is a kind of internal energy of the sediment that allows flow, even below the angle of repose. This transport has not yet been connected, however, to the more general phenomenon of creep in disordered, particulate systems. Work in such "soft matter" materials has shown that disordered solids are fragile, and may deform slowly by localized particle rearrangement under static loads much smaller than the yield stress at which fluid-like flow occurs. The transition from creep to granular flow has not been thoroughly examined. Here we use particle dynamics simulations to examine creep and granular flow dynamics and the transition between them, and to test the ability of a granular physics model to describe observations of hillslope soil creep. We employ a well-developed discrete element model, with frictional and over-damped interactions among grains to approximate the conditions of earth hillslopes. Transient and equilibrium particle dynamics are described for a range of inclination angles that transit the angle of repose. We verify that sub-threshold creep occurs, even in the absence of internal energy, and describe its dynamic signature. Moreover, simulations show that the transition from creeping to a sustained granular flow is continuous as the angle of repose is crossed. We then perturb the granular system with acoustic vibrations, to directly compare the model with previously-reported laboratory experiments of acoustically-driven hillslope transport. We test the ability of the model to reproduce the heuristic nonlinear hillslope flux law. Results reveal that the bulk movement of hillslope sediment over long timescales may be

  8. Various sizes of sliding event bursts in the plastic flow of metallic glasses based on a spatiotemporal dynamic model

    SciTech Connect

    Ren, Jingli E-mail: g.wang@shu.edu.cn; Chen, Cun; Wang, Gang E-mail: g.wang@shu.edu.cn; Cheung, Wing-Sum; Sun, Baoan; Mattern, Norbert; Siegmund, Stefan; Eckert, Jürgen

    2014-07-21

    This paper presents a spatiotemporal dynamic model based on the interaction between multiple shear bands in the plastic flow of metallic glasses during compressive deformation. Various sizes of sliding events burst in the plastic deformation as the generation of different scales of shear branches occurred; microscopic creep events and delocalized sliding events were analyzed based on the established model. This paper discusses the spatially uniform solutions and traveling wave solution. The phase space of the spatially uniform system applied in this study reflected the chaotic state of the system at a lower strain rate. Moreover, numerical simulation showed that the microscopic creep events were manifested at a lower strain rate, whereas the delocalized sliding events were manifested at a higher strain rate.

  9. A Unified View of Engineering Creep Parameters

    SciTech Connect

    Eno, Daniel R.; Young, George A.; Sham, Sam

    2008-01-01

    Creep data are often analyzed using derived engineering parameters to correlate creep life (either time to rupture, or time to a specified strain) to applied stress and temperature. Commonly used formulations include Larson-Miller, Orr-Sherby-Dorn, Manson-Haferd, and Manson-Succop parameterizations. In this paper, it is shown that these parameterizations are all special cases of a common general framework based on a linear statistical model. Recognition of this fact allows for statistically efficient estimation of material model parameters and quantitative statistical comparisons among the various parameterizations in terms of their ability to fit a material database, including assessment of a stress-temperature interaction in creep behavior. This provides a rational basis for choosing the best parameterization to describe a particular material. Furthermore, using the technique of maximum likelihood estimation to estimate model parameters allows for a statistically proper treatment of runouts in a test database via censored data analysis methods, and for construction of probabilistically interpretable upper and lower bounds on creep rate. A generalized Larson-Miller formulation is developed, which is comparable in complexity to the Manson-Haferd parameter, but utilizes a reciprocal temperature dependence. The general framework for analysis of creep data is illustrated with analysis of Alloy 617 and Alloy 230 test data.

  10. Unified creep-plasticity model for halite

    SciTech Connect

    Krieg, R. D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior.

  11. Sources of Variation in Creep Testing

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  12. Creep Function of a Single Living Cell

    PubMed Central

    Desprat, Nicolas; Richert, Alain; Simeon, Jacqueline; Asnacios, Atef

    2005-01-01

    We used a novel uniaxial stretching rheometer to measure the creep function J(t) of an isolated living cell. We show, for the first time at the scale of the whole cell, that J(t) behaves as a power-law J(t) = Atα. For N = 43 mice myoblasts (C2-7), we find α = 0.24 ± 0.01 and A = (2.4 ± 0.3) 10−3 Pa−1 s−α. Using Laplace Transforms, we compare A and α to the parameters G0 and β of the complex modulus G*(ω) = G0ωβ measured by other authors using magnetic twisting cytometry and atomic force microscopy. Excellent agreement between A and G0 on the one hand, and between α and β on the other hand, indicated that the power-law is an intrinsic feature of cell mechanics and not the signature of a particular technique. Moreover, the agreement between measurements at very different size scales, going from a few tens of nanometers to the scale of the whole cell, suggests that self-similarity could be a central feature of cell mechanical structure. Finally, we show that the power-law behavior could explain previous results first interpreted as instantaneous elasticity. Thus, we think that the living cell must definitely be thought of as a material with a large and continuous distribution of relaxation time constants which cannot be described by models with a finite number of springs and dash-pots. PMID:15596508

  13. A Phenomenological Description of Primary Creep in Class M Materials

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Freed, A. D.

    1999-01-01

    Observations of creep microstructures in the primary creep region in class M materials show a remarkable similarity with those formed in the exponential creep regime. As a result, it is proposed that the constitutive creep law for normal primary creep is similar to that for the exponential creep regime. A phenomenological description is discussed to rationalize these microstructural observations in terms of a normalized strain rate vs. stress plot. The implications of this plot in describing different testing procedures, steady-state flow, and on the observed deviations from the universal creep law are discussed. The plot is also extended to explain the observed similarities in the transient creep behavior in pre-strained materials and in stress change experiments.

  14. Creep on a composite resin in water.

    PubMed

    Hirano, S; Hirasawa, T

    1989-06-01

    The compressive creep test of a composite resin (0-3.5 kg/mm2 stress levels) was conducted in water for 500 h. Linear regressions were obtained between the creep strains and the compressive stress levels at various hours. It is possible to predict the creep strain of the composite from the regression when it reaches water absorbed equilibrium after 500 h. The stress of the hygroscopic expansion was calculated from the linear regressions. The maximum stress due to the hygroscopic examination of the composite was 0.74 kg/mm2 at equilibrium of the water absorbed of the composite. The linear regressions at several compressive stress levels were obtained within 30-50 hr in the strain-log time diagrams. PMID:2638964

  15. Fluctuations and Scaling in Creep Deformation

    NASA Astrophysics Data System (ADS)

    Rosti, Jari; Koivisto, Juha; Laurson, Lasse; Alava, Mikko J.

    2010-09-01

    The spatial fluctuations of deformation are studied in the creep in Andrade’s power law and the logarithmic phases, using paper samples. Measurements by the digital image correlation technique show that the relative strength of the strain rate fluctuations increases with time, in both creep regimes. In the Andrade creep phase characterized by a power-law decay of the strain rate γt˜t-θ, with θ≈0.7, the fluctuations obey Δγt˜t-γ, with γ≈0.5. The local deformation follows a data collapse appropriate for a phase transition. Similar behavior is found in a crystal plasticity model, with a jamming or yielding transition.

  16. Creep on a composite resin in water.

    PubMed

    Hirano, S; Hirasawa, T

    1989-06-01

    The compressive creep test of a composite resin (0-3.5 kg/mm2 stress levels) was conducted in water for 500 h. Linear regressions were obtained between the creep strains and the compressive stress levels at various hours. It is possible to predict the creep strain of the composite from the regression when it reaches water absorbed equilibrium after 500 h. The stress of the hygroscopic expansion was calculated from the linear regressions. The maximum stress due to the hygroscopic examination of the composite was 0.74 kg/mm2 at equilibrium of the water absorbed of the composite. The linear regressions at several compressive stress levels were obtained within 30-50 hr in the strain-log time diagrams.

  17. Creep turns linear in narrow ferromagnetic nanostrips

    PubMed Central

    Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; Van Waeyenberge, Bartel

    2016-01-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media. PMID:26843125

  18. Simultaneous Modeling of Transient Creep and Grain Boundary Sliding

    NASA Astrophysics Data System (ADS)

    Cooper, R. F.; Sundberg, M.

    2009-12-01

    Grain boundary sliding (GBS) has been identified as an important contributor to the plastic deformation of polycrystalline solids. This phenomenon, whether accommodated by grain boundary diffusion or dislocation slip, has implications for rheological behavior and microstructural evolution during creep. Because GBS is not an independent deformation mechanism, but rather acts in kinetic series with some other (typically) rate-limiting process, direct investigation of the precise sliding mechanism(s) is difficult during conventional large-strain creep testing. Direct observations of grain boundary sliding can be obtained, however, by: (1) observing the mechanical response of a polycrystalline solid to an oscillating load as a function of frequency using the internal friction technique, and (2) studying the short duration transient response of a polycrystalline solid to a step-function change in stress. To this end, we have conducted an experimental study of low-frequency (10-2.25wave attenuation in peridotite. These tests have been complemented by a series of small-stress microcreep tests in order to characterize the transient and steady-state creep responses of the material. Experiments were conducted in an ambient pressure, reciprocating torsion apparatus using a maximum shear stress of ~90 kPa on a very fine grained (d~5μm) aggregate of olivine and orthopyroxene (39 vol%). The attenuation spectra reveal “high-temperature background” behavior at low to moderate frequencies where attenuation diminishes smoothly and mildly with increasing frequency (QG-1 ~ f -0.3). At higher frequencies (f >10-0.5 Hz), the attenuation spectra reveal the onset of an apparent Debye peak in the attenuation spectra, likely due to elastically-accommodated GBS (GBS being rate-limiting). Previous experimental studies have demonstrated that the Andrade viscoelastic model can accurately predict both the transient creep response and

  19. Porosity evolution in a creeping single crystal

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Needleman, A.

    2012-04-01

    Experimental observations on tensile specimens in Srivastava et al (2012 in preparation) indicated that the growth of initially present processing induced voids in a nickel-based single crystal superalloy played a significant role in limiting creep life. Also, creep tests on single crystal superalloy specimens typically show greater creep strain rates and/or reduced creep life for thinner specimens than predicted by current theories. In order to quantify the role of void growth in single crystals in creep loading, we have carried out three-dimensional finite deformation finite element analyses of unit cells containing a single initially spherical void. The materials are characterized by a rate-dependent crystal plasticity constitutive relation accounting for primary and secondary creep. Two types of imposed loading are considered: an applied true stress (force/unit current area) that is time independent; and an applied nominal stress (force/unit initial area) that is time independent. Isothermal conditions are assumed. The evolution of porosity is calculated for various values of stress triaxiality and of the Lode parameter. The evolution of porosity with time is sensitive to whether constant true stress or constant nominal stress loading is applied. However, the evolution of porosity with the overall unit cell strain is insensitive to the mode of loading. At high values of stress triaxiality, the response is essentially independent of the value of the Lode parameter. At sufficiently low values of the stress triaxiality, the porosity evolution depends on the value of the Lode parameter and void collapse can occur. Also, rather large stress concentrations can develop which could play a role in the observed thickness dependence.

  20. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle

    USGS Publications Warehouse

    Kirby, S.H.; Raleigh, C.B.

    1973-01-01

    The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.

  1. Quantum Creep and Quantum-Creep Transitions in 1D Sine-Gordon Chains.

    PubMed

    Krajewski, Florian R; Müser, Martin H

    2004-01-23

    Discrete sine-Gordon (SG) chains are studied with path-integral molecular dynamics. Chains commensurate with the substrate show the transition from pinning to quantum creep at bead masses slightly larger than in the continuous SG model. Within the creep regime, a field-driven transition from creep to complete depinning is identified. The effects of disorder on the chain's dynamics depend on the potential's roughness exponent H. For example, quantum fluctuations are generally too small to depin the chain if H=1/2, while an H=0 chain can be pinned or unpinned depending on the bead masses. Thermal fluctuations always depin the chain. PMID:14753858

  2. Field study and numerical modeling of wind and surface waves at the middle-sized water body

    NASA Astrophysics Data System (ADS)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2015-04-01

    This paper presents the results of field experiments on studying the wind and waves over inland waters, which were carried out at the Gorky Reservoir in 2011-2014. The sensors were positioned at the oceanographic Froude buoy including five two-component ultrasonic sensors WindSonic by Gill Instruments at different levels (0.1, 0.85, 1.3, 2.27, 5.26 meters above the mean water surface level), one water and three air temperature sensors, and three-channel wire wave gauge. From the measured profiles of wind speed, we calculated basic parameters of the atmospheric boundary layer: the friction velocity u*, the wind speed at the standard height of 10 m U10 and the drag coefficient CD. Parameters were obtained in the range of wind speeds of 1-10 m/s. For wind speeds stronger than 3 m/s CD values were lower than those obtained before (see eg. [1,2]) and those predicted by the bulk parameterization. In the range of wind speeds of 3-5 m/s CD values are even lower than the corresponding smooth flow. However, for weak winds (less than 2.5 m/s) CD values considerably higher than expected ones. The main peculiarity of our measurements is very low location of the lowest sensor: 0.1 m against 0.89 m in [1] and 0.5 m in [2]. Moreover, the lowest sensor was not fixed on the mast, but was located on the float and followed the water surface. Analysis shows that the obtained parameters of profile are almost independent on the number of approximated wind speed levels if they include the lowest sensor. But excluding the lowest sensor gave larger values of CD similar to [1] and [2]. These results demonstrate importance of wind speed measuring close to the water surface. The new parameterization of surface drag coefficient was proposed on the basis of the obtained data. The new surface drag parameterization was used in WAVEWATCH III model applied for modeling waves at the reservoir. 1-D spectra of the field experiment were compared with those obtained in the numerical experiments with

  3. Evolution of microstructure after irradiation creep in several austenitic steels irradiated up to 120 dpa at 320 °C

    NASA Astrophysics Data System (ADS)

    Renault-Laborne, A.; Garnier, J.; Malaplate, J.; Gavoille, P.; Sefta, F.; Tanguy, B.

    2016-07-01

    Irradiation creep was investigated in different austenitic steels. Pressurized tubes with stresses of 127-220 MPa were irradiated in BOR-60 at 320 °C to 120 dpa. Creep behavior was dependent on both chemical composition and metallurgical state of steels. Different steels irradiated with and without stress were examined by TEM. Without stress, the irradiation produced high densities of dislocation lines and Frank loops and, depending on the type of steels, precipitates. Stress induced an increase of the precipitate mean size and density and, for some grades, an increase of the mean loop size and a decrease of their density. An anisotropy of Frank loop density or size induced by stress was not observed systematically. Dislocation line microstructure seems not to be different between the stressed and unstressed specimens. No cavities were detectable in these specimens. By comparing with the data from this work, the main irradiation creep models are discussed.

  4. Acceleration Measurements During Landings of a 1/5.5-Size Dynamic Model of the Columbia XJL-1 Amphibian in Smooth Water and in Waves: Langley Tank Model 208M, TED No. NACA 2336

    NASA Technical Reports Server (NTRS)

    Clement, Eugene P.; Havens, Robert F.

    1947-01-01

    A 1/5.5-size powered dynamic model of the Columbia XJL-1 amphibian was landed in Langley tank no. 1 in smooth water and in oncoming waves of heights from 2.1 feet to 6.4 feet (full-size) and lengths from 50 feet to 264 feet (full-size). The motions and the vertical accelerations of the model were continuously recorded. The greatest vertical acceleration measured during the smooth-water landings was 3.1g. During landings in rough water the greatest vertical acceleration measured was 15.4g, for a landing in 6.4-foot by 165-foot waves. The impact accelerations increased with increase in wave height and, in general, decreased with increase in wave length. During the landings in waves the model bounced into the air at stalled attitudes at speeds below flying speed. The model trimmed up to the mechanical trim stop (20 deg) during landings in waves of heights greater than 2.0 feet. Solid water came over the bow and damaged the propeller during one landing in 6.4-foot waves. The vertical acceleration coefficients at first impact from the tank tests of a 1/5.5-size model were in fair agreement with data obtained at the Langley impact basin during tests of a 1/2-size model of the hull.

  5. Algorithms for elasto-plastic-creep postbuckling

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1984-01-01

    This paper considers the development of an improved constrained time stepping scheme which can efficiently and stably handle the pre-post-buckling behavior of general structure subject to high temperature environments. Due to the generality of the scheme, the combined influence of elastic-plastic behavior can be handled in addition to time dependent creep effects. This includes structural problems exhibiting indefinite tangent properties. To illustrate the capability of the procedure, several benchmark problems employing finite element analyses are presented. These demonstrate the numerical efficiency and stability of the scheme. Additionally, the potential influence of complex creep histories on the buckling characteristics is considered.

  6. On the creep deformation mechanisms of an advanced disk nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Unocic, Raymond R.

    activated climb/bypass mechanism of a/2<110> dislocations were found to be the dominant deformation mechanism. In this mechanism, the gamma' precipitates were not sheared but instead were bypassed by a/2<110> matrix dislocations. In addition to the identification of creep deformation mechanisms as a function of stress and temperature, characterization of the post creep gamma' precipitate microstructure revealed that microstructural evolution of the gamma' precipitates has occurred during creep at the higher test temperatures where the secondary gamma' precipitates have coarsened and the tertiary gamma' precipitates have dissolved. In combination with creep at low stress and high temperature, the microstructural evolution may have contributed to the transition from one deformation mode to another. In an attempt to link the influence of microstructure (gamma' precipitate size scale, distribution, volume fraction, and gamma channel width spacing) on creep deformation behavior and creep deformation mechanisms, specimens with different size scaled microstructural features were crept at the same temperature and stress (677°C and 724MPa) in order to provide a direct comparison between differences in microstructure. It was found that a microstructure consisting of a bimodal distribution of gamma' precipitates with coarse secondary gamma' precipitates, a high volume fraction of tertiary gamma' precipitates and a wide gamma channel width spacing results in a less creep resistance microstructure that deformed primary by a/2<110> dislocation activity in the gamma matrix at small strain and secondary gamma' shearing via superlattice intrinsic stacking faults at higher strains. The more creep resistant microstructure consisted of a bimodal distribution of gamma' precipitates with a finer secondary gamma' precipitate size, low volume fraction of gamma' and narrow gamma channel width spacing. The combination of these microstructural features promoted a/2<110> dislocation dissociation and

  7. High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wilson, Jeffrey D.; Force, Dale A.

    2008-01-01

    Recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented in this paper. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT has improved by a factor of ten over the previous generation Ka-Band devices.

  8. Creep rupture as a non-homogeneous Poissonian process

    PubMed Central

    Danku, Zsuzsa; Kun, Ferenc

    2013-01-01

    Creep rupture of heterogeneous materials occurring under constant sub-critical external loads is responsible for the collapse of engineering constructions and for natural catastrophes. Acoustic monitoring of crackling bursts provides microscopic insight into the failure process. Based on a fiber bundle model, we show that the accelerating bursting activity when approaching failure can be described by the Omori law. For long range load redistribution the time series of bursts proved to be a non-homogeneous Poissonian process with power law distributed burst sizes and waiting times. We demonstrate that limitations of experiments such as finite detection threshold and time resolution have striking effects on the characteristic exponents, which have to be taken into account when comparing model calculations with experiments. Recording events solely within the Omori time to failure the size distribution of bursts has a crossover to a lower exponent which is promising for forecasting the imminent catastrophic failure. PMID:24045539

  9. Micron-Sized Dust Particles Detected in the Outer Solar System by the Voyager 1 and 2 Plasma Wave Instruments

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Ansher, J. A.; Kurth, W. S.; Granroth, L. J.

    1997-01-01

    During the Voyager 1 and 2 flybys of the outer planets it has been demonstrated that the plasma wave instrument can detect small dust particles striking the spacecraft. In this paper, we examine the Voyager plasma wave data for dust impacts in the interplanetary medium at heliocentric radial distances ranging from 6 to 60 astronomical units (AU). The results show that a small but persistent level of dust impacts exists out to at least 30 to 50 AU. The average number density of these particles is about 2 x 10(exp -8)/cu m, and the average mass of the impacting particles is believed to be a few times 10(exp -11) g, which corresponds to particle diameters in the micron range. Possible sources of these particles are planets, moons, asteroids, comets, and the interstellar medium. Of these, comets appear to be the most likely source. The number densities are only weakly dependent on ecliptic latitude, which indicates that the particles probably do not originate from planets, moons, or asteroids. Comparisons with interstellar dust fluxes measured in the inner regions of the solar system by the Ulysses spacecraft indicate that the particles are not of interstellar origin.

  10. Micron-Sized Dust Particles Detected in the Outer Solar System by the Voyager 1 and 2 Plasma Wave Instruments

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Ansher, J. A.; Kurth, W. S.; Granroth, L. J.

    1997-01-01

    During the Voyager 1 and 2 flybys of the outer planets it has been demonstrated that the plasma wave instrument can detect small dust particles striking the spacecraft. In this paper, we examine the Voyager plasma wave data for dust impacts in the interplanetary medium at heliocentric radial distances ranging from 6 to 60 astronomical units (AU). The results show that a small but persistent level of dust impacts exists out to at least 30 to 50 AU. The average number density of these particles is about 2 x 10(exp -8)/cu m, and the average mass of the impacting particles is believed to be a few times 10(exp -11) g, which corresponds to particle diameters in the micron range. Possible sources of these particles are planets, moons, asteroids, comets, and the interstellar medium. Of these, comets appear to be the most likely source. ne number densities are only weakly dependent on ecliptic latitude, which indicates that the particles probably do not originate from planets, moons, or asteroids. Comparisons with interstellar dust fluxes measured in the inner regions of the solar system by the Ulysses spacecraft indicate that the particles are not of interstellar origin.

  11. Low Size, Weight and Power Concept for Mid-Wave Infrared Optical Communication Transceivers Based on Quantum Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Luzhanskiy, Edward; Choa, Fow-Sen; Merritt, Scott; Yu, Anthony; Krainak, Michael

    2015-01-01

    The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept presented, realized and tested in the laboratory environment. Resilience to atmospheric impairments analyzed with simulated turbulence. Performance compared to typical telecom based Short Wavelength Infra-Red transceiver.

  12. Similarity and scaling in creep and load relaxation of single-crystal halite (NaCl)

    NASA Astrophysics Data System (ADS)

    Stone, Donald S.; Plookphol, Thawatchai; Cooper, Reid F.

    2004-12-01

    This work explores the physical basis for Hart's mechanical equation of state in high-temperature plasticity. The experiments seek to identify a possible microstructural basis for the "hardness" parameters associated with load relaxation curves. The experiments also seek to examine the microstructural basis for scaling in load relaxation data and to explore the relationship between creep and load relaxation. Constant stress creep and load relaxation tests were conducted on [100] oriented single crystals of halite at 700°C and stresses between 0.6 and 3 MPa. Load relaxation tests were performed at 400°C up to a stress level of 13 MPa. After testing, specimens were sectioned, and dislocation densities and subgrain size distributions were measured. Results at 700°C reveal that distributions of subgrain size in crystals crept at different stress levels are similar to each other; that is, they have the same shape but different average subgrain sizes depending on stress level. Hardness curves obtained from load relaxation experiments at different levels of work hardening were found to correspond to different average subgrain size. Load relaxation data from 700°C and 400°C belong to a single-parameter family of curves, with hardness curves translating onto each other with a scaling slope m = 0.33 ± 0.05. Subgrain size distributions generated in creep are statistically identical to those from load relaxation. The hardness parameter, σ*, specified as the (apparent) high-strain rate limit of stress in the load relaxation data, is approximately 50Gb/DI, where G is the shear modulus, b is the Burgers vector, and DI is the mean intercept subgrain diameter. During creep under constant stress the subgrain size evolves until a steady value is approached. The experimental data lend credence to Hart's interpretation that load relaxation data represent (nearly) constant "structure" with subgrain size playing the role of the structural variable.

  13. Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Rottler, Jörg; Sinclair, Chad W.; Provatas, Nikolas

    2015-10-01

    The nonequilibrium dynamics of diffusion-mediated plasticity and creep in materials subjected to constant load at high homologous temperatures is studied atomistically using phase field crystal (PFC) methods. Creep stress and grain size exponents obtained for nanopolycrystalline systems, m ≃1.02 and p ≃1.98 , respectively, closely match those expected for idealized diffusional Nabarro-Herring creep. These exponents are observed in the presence of significant stress-assisted diffusive grain boundary migration, indicating that Nabarro-Herring creep and stress-assisted boundary migration contribute in the same manner to the macroscopic constitutive relation. When plastic response is dislocation-mediated, power-law stress exponents inferred from dislocation climb rates are found to increase monotonically from m ≃3 , as expected for generic climb-mediated natural creep, to m ≃5.8 as the dislocation density ρd is increased beyond typical experimental values. Stress exponents m ≳3 directly measured from simulations that include dislocation nucleation, climb, glide, and annihilation are attributed primarily to these large ρd effects. Extrapolation to lower ρd suggests that m ≃4 -4.5 should be obtained from our PFC description at typical experimental ρd values, which is consistent with expectations for power-law creep via mixed climb and glide. The anomalously large stress exponents observed in our atomistic simulations at large ρd may nonetheless be relevant to systems in which comparable densities are obtained locally within heterogeneous defect domains such as dislocation cell walls or tangles.

  14. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  15. Stress relaxation and creep of high-temperature gas-cooled reactor core support ceramic materials: a literature search

    SciTech Connect

    Selle, J.E.; Tennery, V.J.

    1980-05-01

    Creep and stress relaxation in structural ceramics are important properties to the high-temperature design and safety analysis of the core support structure of the HTGR. The ability of the support structure to function for the lifetime of the reactor is directly related to the allowable creep strain and the ability of the structure to withstand thermal transients. The thermal-mechanical response of the core support pads to steady-state stresses and potential thermal transients depends on variables, including the ability of the ceramics to undergo some stress relaxation in relatively short times. Creep and stress relaxation phenomena in structural ceramics of interest were examined. Of the materials considered (fused silica, alumina, silicon nitride, and silicon carbide), alumina has been more extensively investigated in creep. Activation energies reported varied between 482 and 837 kJ/mole, and consequently, variations in the assigned mechanisms were noted. Nabarro-Herring creep is considered as the primary creep mechanism and no definite grain size dependence has been identified. Results for silicon nitride are in better agreement with reported activation energies. No creep data were found for fused silica or silicon carbide and no stress relaxation data were found for any of the candidate materials. While creep and stress relaxation are similar and it is theoretically possible to derive the value of one property when the other is known, no explicit demonstrated relationship exists between the two. For a given structural ceramic material, both properties must be experimentally determined to obtain the information necessary for use in high-temperature design and safety analyses.

  16. Analysis of available creep and creep-rupture data for commercially heat-treated alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    The Ni-Cr-Fe-Nb alloy 718 is a widely used material in elevated- temperature applications. Currently, it is approved by the American Society of Mechanical Engineers ASME Boiler and Pressure Vessel Code only as a bolting material for elevated-temperature nuclear service. This report presents analyses of available creep and creep-rupture data for commercially heat-treated alloy 718 toward the development of allowable stress levels for this material in general elevated-temperature nuclear service. Available data came from 14 heats of bar, plate, and forging material over the temperature range from 538 to 704{degrees}C. The longest rupture time encompassed by the data was almost 87,000 h. Generalized regression analyses were performed to yield an analytical expression for rupture life as a function of stress and temperature. Heat-to-heat variations were accounted for by lot-centering'' the data. Effects of different solution heat treatment temperatures (T{sub s}) were accounted for by normalizing the creep stresses to the data for T{sub s} = 954{degrees}C. Thus, the results are strictly applicable only for material with this solution treatment. Time and strain to tertiary creep were predicted as functions of rupture life. Creep strain-time data were represented by normalization to the time and strain to tertiary creep and development of master creep curves.'' The results allow estimation of time-dependent allowable stress per American Society of Mechanical Engineers Code Class N-47, and the creep strain-time relationships can be used to develop isochronous stress-strain curves. 29 refs., 44 figs., 14 tabs.

  17. Cell structure in cold worked and creep deformed phosphorus alloyed copper

    SciTech Connect

    Wu, Rui; Pettersson, Niklas; Martinsson, Åsa; Sandström, Rolf

    2014-04-01

    Transmission electron microscopy (TEM) examinations on as-received, cold worked, as well as cold worked and creep tested phosphorus-alloyed oxygen-free copper (Cu-OFP) have been carried out to study the role of the cell structure. The cell size decreased linearly with increasing plastic deformation in tension. The flow stress in the tests could also be correlated to the cell size. The observed relation between the flow stress and the cell size was in excellent agreement with previously published results. The dense dislocation walls that appeared after cold work in tension is likely to be the main reason for the dramatic increase in creep strength. The dense dislocation walls act as barriers against dislocation motion and their presence also reduces the recovery rate due to an unbalanced dislocation content.

  18. Experimental pressure solution creep of polymineralic aggregates

    NASA Astrophysics Data System (ADS)

    Zoubtsov, S.; Renard, F.; Gratier, J.-P.; Guiguet, R.; Dysthe, D. K.; Traskine, V.

    2003-04-01

    Unexpected creep behavior is obtained when experimentally compacting an aggregate containing two different minerals. Sieved mixtures of calcite and halite grains are experimentally compacted in pressure cells in the presence of a saturated aqueous solution. The individual halite grains deform easily by pressure solution creep whereas calcite grains act as hard objects and resist compaction. The fastest rate of compaction of the mixed aggregates is not obtained for a 100% halite aggregate but for a content of halite grains between 45% and 75%. This unusual creep behavior reflects the competition between two mechanisms at the grain scale: intergranular pressure solution at grain contacts and grain boundary healing between halite grains that prevent further compaction. Our experimental data can be used to estimate the relative rates of pressure solution and contact healing on halite crystals. Moreover, we can describe this effect with a single unknown parameter that represents surface effects of pressure solution at various contacts. This behaviour has fundamental implications for the rheological properties of rocks of the earth's crust which can be monomineralic or which can be the result of a mixing of different minerals, as in the case of a fault gouge for example. Key words: compaction, diagenesis, pressure solution, creep

  19. Estimation of long-term creep behavior of salt

    SciTech Connect

    Chun, R.C.

    1980-08-01

    A computer routine for both primary and secondary creep laws has been developed using a modified strain hardening law. The computations reveal that results from Heard's steady-state creep law and Lomenick and Bradshaw's primary creep law can differ from each other by a factor of thirty after about 6 hours of creep deformation, but the difference diminishes as time becomes large. The belief that these two creep laws may yield long-term results that are orders of magnitude apart is shown to be unfounded.

  20. The creep behavior of gamma alloy Ti-46.5Al-3Nb-2Cr-0.2W (alloy K5) in two microstructural conditions

    SciTech Connect

    Schwenker, S.W.; Kim, Y.W.

    1995-12-31

    The creep behavior of a wrought gamma alloy Ti-46.5Al-3Nb-2Cr-0.2W (Alloy K5) has been investigated in both a fine-grained duplex ({approximately}10 {micro}m grain size) and a refined fully-lamellar (RFL) microstructural condition (average lamellar grain size of {approximately} 300 {micro}m). Creep tests were conducted in laboratory air under constant tensile load at temperatures between 676 and 870 C and stresses between 69 and 242 MPa. The results show that the RFL condition exhibits creep resistance significantly improved over the duplex microstructure. At 800 C and 138 MPa the RFL material exhibited a secondary or minimum creep rate of 3.8 {times} 10{sup {minus}5} h{sup {minus}1} which is nearly two orders of magnitude slower than for the fine duplex. Activation energies and stress exponents for power law creep were measured and found to be similar for the two microstructures over the range of conditions investigated. Microstructural studies conducted on crept RFL specimens showed evidence of bulk deformation within the lamellar grains which lead to break up or spheroidization of the {alpha}{sub 2} laths at high creep strains. Creep failure occurred by intergranular cracking and cavity formation along grain boundaries in the material.

  1. Creep and Environmental Effects on High Temperature Creep-Fatigue Behavior of Alloy 617

    SciTech Connect

    L. J. Carroll; C. Cabet; R. Madland; R. Wright

    2011-06-01

    Alloy 617 is the leading candidate material for Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR), expected to have an outlet temperature as high as 950 C. System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior in both air and impure helium, representative of the VHTR primary coolant. Strain controlled LCF tests including hold times at maximum tensile strain were conducted at total strain range of 0.3% in air at 950 C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The fatigue resistance decreased when a hold time was added at peak tensile stress, consistent with the observed change in fracture mode from transgranular to intergranular with introduction of a tensile hold. Increases in the tensile hold time, beyond 180 sec, was not detrimental to the creep-fatigue resistance. Grain boundary damage in the form of grain boundary cracking was present in the bulk of the creep-fatigue specimens. This bulk cracking was quantified and found to be similar for hold times of up to 1800 sec consistent with the saturation in failure lives and rapid stress relaxation observed during the creep portion of the creep-fatigue cycle.

  2. Effect of H-wave polarization on laser radar detection of partially convex targets in random media.

    PubMed

    El-Ocla, Hosam

    2010-07-01

    A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.

  3. The effect of sheet processing on the microstructure, tensile, and creep behavior of INCONEL alloy 718

    NASA Astrophysics Data System (ADS)

    Boehlert, C. J.; Dickmann, D. S.; Eisinger, Ny. N. C.

    2006-01-01

    The grain size, grain boundary character distribution (GBCD), creep, and tensile behavior of INCONEL alloy 718 (IN 718) were characterized to identify processing-microstructure-property relationships. The alloy was sequentially cold rolled (CR) to 0, 10, 20, 30, 40, 60, and 80 pct followed by annealing at temperatures between 954 °C and 1050 °C and the traditional aging schedule used for this alloy. In addition, this alloy can be superplastically formed (IN 718SPF) to a significantly finer grain size and the corresponding microstructure and mechanical behavior were evaluated. The creep behavior was evaluated in the applied stress (σ a ) range of 300 to 758 MPa and the temperature range of 638 °C to 670 °C. Constant-load tensile creep experiments were used to measure the values of the steady-state creep rate and the consecutive load reduction method was used to determine the values of backstress (σ0). The values for the effective stress exponent and activation energy suggested that the transition between the rate-controlling creep mechanisms was dependent on effective stresses (σ e =σ a σ0) and the transition occurred at σ e ≅ 135 MPa. The 10 to 40 pct CR samples exhibited the greatest 650 °C strength, while IN 718SPF exhibited the greatest room-temperature (RT) tensile strength (>1550 MPa) and ductility (ɛ f >16 pct). After the 954 °C annealing treatment, the 20 pct CR and 30 pct CR microstructures exhibited the most attractive combination of elevated-temperature tensile and creep strength, while the most severely cold-rolled materials exhibited the poorest elevated-temperature properties. After the 1050 °C annealing treatment, the IN 718SPF material exhibited the greatest backstress and best creep resistance. Electron backscattered diffraction was performed to identify the GBCD as a function of CR and annealing. The data indicated that annealing above 1010 °C increased the grain size and resulted in a greater fraction of twin boundaries, which in

  4. Creep deformation mechanism mapping in nickel base disk superalloys

    DOE PAGESBeta

    Smith, Timothy M.; Unocic, Raymond R.; Deutchman, Hallee; Mills, Michael J.

    2016-05-10

    We investigated the creep deformation mechanisms at intermediate temperature in ME3, a modern Ni-based disk superalloy, using diffraction contrast imaging. Both conventional transmission electron microscopy (TEM) and scanning TEM were utilised. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815 °C and at stresses ranging from 274 to 724 MPa. Both polycrystalline and single-crystal creep tests were conducted. The single-crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760 °C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsicmore » stacking faults. In contrast, these faulting modes occurred much less frequently during creep at 815 °C under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behaviour and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760 °C and above, where the secondary coarsened and the tertiary precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasising the influence of stress and temperature on the underlying creep mechanisms.« less

  5. Tensile Creep of Polycrystalline Near-Stoichiometric NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2002-01-01

    Long term tensile creep studies were conducted on binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed depending on stress and temperature. It was concluded that the creep of NiAl is limited by dislocation mobility. The stress exponent for creep, n, increased from 5.5 at 1200 K to 13.9 at 700 K. The true activation energy for creep, Qc, was constant and equal to about 400 kJ per mole between 20 and 50 MPa but decreased to a constant value of 250 kJ per mole between 50 and 110 MPa. The activation energy was observed to be stress dependent above 110 MPa. The tensile creep results reported in this investigation were compared with compression creep data reported in the literature. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable nature of the atom vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  6. Nonlinear creep damage constitutive model for soft rocks

    NASA Astrophysics Data System (ADS)

    Liu, H. Z.; Xie, H. Q.; He, J. D.; Xiao, M. L.; Zhuo, L.

    2016-06-01

    In some existing nonlinear creep damage models, it may be less rigorous to directly introduce a damage variable into the creep equation when the damage variable of the viscous component is a function of time or strain. In this paper, we adopt the Kachanov creep damage rate and introduce a damage variable into a rheological differential constitutive equation to derive an analytical integral solution for the creep damage equation of the Bingham model. We also propose a new nonlinear viscous component which reflects nonlinear properties related to the axial stress of soft rock in the steady-state creep stage. Furthermore, we build an improved Nishihara model by using this new component in series with the correctional Nishihara damage model that describes the accelerating creep, and deduce the rheological constitutive relation of the improved model. Based on superposition principle, we obtain the damage creep equation for conditions of both uniaxial and triaxial compression stress, and study the method for determining the model parameters. Finally, this paper presents the laboratory test results performed on mica-quartz schist in parallel with, or vertical to the schistosity direction, and applies the improved Nishihara model to the parameter identification of mica-quartz schist. Using a comparative analysis with test data, results show that the improved model has a superior ability to reflect the creep properties of soft rock in the decelerating creep stage, the steady-state creep stage, and particularly within the accelerating creep stage, in comparison with the traditional Nishihara model.

  7. Retardations in fault creep rates before local moderate earthquakes along the San Andreas fault system, central California

    USGS Publications Warehouse

    Burford, R.O.

    1988-01-01

    the past 5 years. Retardations with durations of 21 and 19 months also occurred at Shore Road before the 1974 and 1984 earthquakes of ML=5.2 and ML=6.2, respectively. Although creep retardation remains poorly understood, several possible explanations have been discussed previously. (1) Certain onsets of apparent creep retardation may be explained as abrupt terminations of afterslip generated from previous moderate-mainshock sequences. (2) Retardations may be related to significant decreases in the rate of seismic and/or aseismic slip occurring within or beneath the underlying seismogenic zone. Such decreases may be caused by changes in local conditions related to growth of asperities, strain hardening, or dilatancy, or perhaps by passage of stress-waves or other fluctuations in driving stresses. (3) Finally, creep rates may be lowered (or increased) by stresses imposed on the fault by seismic or aseismic slip on neighboring faults. In addition to causing creep-rate increases or retardations, such fault interactions occasionally may trigger earthquakes. Regardless of the actual mechanisms involved and the current lack of understanding of creep retardation, it appears that shallow fault creep is sensitive to local and regional effects that promote or accompany intermediate-term preparation stages leading to moderate earthquakes. A strategy for more complete monitoring of fault creep, wherever it is known to occur, therefore should be assigned a higher priority in our continuing efforts to test various hypotheses concerning the mechanical relations between seismic and aseismic slip. ?? 1988 Birkha??user Verlag.

  8. Transient creep, aseismic damage and slow failure in Carrara marble deformed across the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Walker, E.; Thompson, B. D.; Fortin, J.; Guéguen, Y.; Young, R. P.

    2006-09-01

    Two triaxial compression experiments were performed on Carrara marble at high confining pressure, in creep conditions across the brittle-ductile transition. During cataclastic deformation, elastic wave velocity decrease demonstrated damage accumulation (microcracks). Keeping differential stress constant and reducing normal stress induced transient creep events (i.e., fast accelerations in strain) due to the sudden increase of microcrack growth. Tertiary creep and brittle failure followed as damage came close to criticality. Coalescence and rupture propagation were slow (60-200 seconds with ~150 MPa stress drops and millimetric slips) and radiated little energy in the experimental frequency range (0.1-1 MHz). Microstructural analysis pointed out strong interactions between intra-crystalline plastic deformation (twinning and dislocation glide) and brittle deformation (microcracking) at the macroscopic level. Our observations highlight the dependence of acoustic efficiency on the material's rheology, at least in the ultrasonic frequency range, and the role played by pore fluid diffusion as an incubation process for delayed failure triggering.

  9. Impression creep characterization of TiAl weldments

    SciTech Connect

    Gibbs, W.S.; Aikin, R.M. Sr.; Martin, P.L.; Patterson, R.A.

    1990-01-01

    The Impression Creep technique has been applied to XD{trademark} TiAl weldments to evaluate the local creep resistance of the fusion zone and the heat affected zone. The material used in this study was TiAl produced by Martin Marietta Research Laboratories, using their patented ingot processing which incorporates 1 to 10 {mu}m diameter particles of carbide, nitride or boride compounds. The impression creep technique uses a small indenter to locally evaluate the creep resistance of the heterogeneous microstructure developed during the welding process. The indenters used in this investigation were 1 mm in diameter. Results obtained from the impression creep tests are compared to results obtained from constant stress tensile creep tests on the base material. Creep resistance of the heat affected zone and the fusion zone are compared to and contrasted with the base material strength. 19 refs., 2 figs., 2 tabs.

  10. Gamma Prime Precipitation, Dislocation Densities, and TiN in Creep-Exposed Inconel 617 Alloy

    NASA Astrophysics Data System (ADS)

    Krishna, Ram; Atkinson, Helen V.; Hainsworth, Sarah V.; Gill, Simon P.

    2016-01-01

    Inconel 617 is a solid-solution-strengthened Ni-based superalloy with a small amount of gamma prime (γ') present. Here, samples are examined in the as-received condition and after creep exposure at 923 K (650 °C) for 574 hours and 45,000 hours and at 973 K (700 °C) for 4000 hours. The stress levels are intermediate (estimated, respectively, as of the order of 350, 275, and 200 MPa) and at levels of interest for the future operation of power plant. The hardness of the specimens has been measured in the gage length and the head. TEM thin foils have been obtained to quantify dislocation densities (3.5 × 1013 for the as-received, 5.0 × 1014, 5.9 × 1014, and 3.5 × 1014 lines/m2 for the creep-exposed specimens, respectively). There are no previous data in the literature for dislocation densities in this alloy after creep exposure. There is some evidence from the dislocation densities that for the creep-exposed samples, the higher hardness in the gage length in comparison with the creep test specimen head is due to work hardening rather than any other effect. Carbon replicas have been used to extract gamma prime precipitates. The morphology of γ' precipitates in the `as-received' condition was spheroidal with an average diameter of 18 nm. The morphology of these particles does not change with creep exposure but the size increases to 30 nm after 574 hours at 923 K (650 °C) but with little coarsening in 45,000 hours. At 973 K (700 °C) 4000 hours, the average gamma prime size is 32 nm. In the TEM images of the replicas, the particles overlap, and therefore, a methodology has been developed to estimate the volume fraction of gamma prime in the alloy given the carbon replica film thickness. The results are 5.8 vol pct in the as-received and then 2.9, 3.2, and 3.4 vol pct, respectively, for the creep-exposed specimens. The results are compared with predictions from thermodynamic analysis given the alloy compositions. Thermodynamic prediction shows that nitrogen

  11. Detection of aqueous glucose based on a cavity size- and optical-wavelength-independent continuous-wave photoacoustic technique.

    PubMed

    Camou, S; Haga, T; Tajima, T; Tamechika, E

    2012-06-01

    Toward the achievement of noninvasive and continuous monitoring of blood glucose level, we developed a new measurement method based on the continuous-wave photoacoustic (CW-PA) technique and performed the first validation in vitro with calibrated aqueous glucose solutions. The PA technique has been studied in the past but exclusively based on the pulse setup since the CW one exhibits dependence on the cavity dimensions, which is not compatible with the final application requirements. This paper describes a new strategy relying on the monitoring of the resonant-frequency relative shift induced by the change of glucose concentrations rather than amplitude signal levels at a fixed frequency. From in vitro results, we demonstrate a stable and reproducible response to glucose at various cavity dimensions and optical wavelengths, with a slope of 0.19 ±0.01%/g/dL. From theoretical considerations, this method is consistent with a relative acoustic velocity measurement, which also explains the aforementioned stability. The proposed method then resolves most of the issues usually associated with the CW-PA technique and makes it a potential alternative for the noninvasive and continuous monitoring of glycemia levels. However, experimental determination of sensor responses to albumin and temperature as two potential interferents shows similar levels, which points to the selectivity to glucose as a major issue we should deal with in future development.

  12. Performance of computer-designed small-size multistage depressed collectors for a high-perveance traveling wave tube

    NASA Technical Reports Server (NTRS)

    Ramins, P.

    1984-01-01

    Computer designed axisymmetric 2.4-cm-diameter three-, four-, and five-stage depressed collectors were evaluated in conjunction with an octave bandwidth, high-perveance, and high-electronic-efficiency, griddled-gun traveling wave tube (TWT). Spent-beam refocusing was used to condition the beam for optimum entry into the depressed collectors. Both the TWT and multistage depressed collector (MDC) efficiencies were measured, as well as the MDC current, dissipated thermal power, and DC input power distributions, for the TWT operating both at saturation over its bandwidth and over its full dynamic range. Relatively high collector efficiencies were obtained, leading to a very substantial improvement in the overall TWT efficiency. In spite of large fixed TWT body losses (due largely to the 6 to 8 percent beam interception), average overall efficiencies of 45 to 47 percent (for three to five collector stages) were obtained at saturation across the 2.5-, to 5.5-GHz operating band. For operation below saturation the collector efficiencies improved steadily, leading to reasonable ( 20 percent) overall efficiencies as far as 6 dB below saturation.

  13. On the variational computation of a large number of vibrational energy levels and wave functions for medium-sized molecules

    NASA Astrophysics Data System (ADS)

    Mátyus, Edit; Šimunek, Ján; Császár, Attila G.

    2009-08-01

    In a recent publication [J. Chem. Phys. 127, 084102 (2007)], the nearly variational DEWE approach (DEWE denotes Discrete variable representation of the Watson Hamiltonian using the Eckart frame and an Exact inclusion of a potential energy surface expressed in arbitrarily chosen coordinates) was developed to compute a large number of (ro)vibrational eigenpairs for medium-sized semirigid molecules having a single well-defined minimum. In this publication, memory, CPU, and hard disk usage requirements of DEWE, and thus of any DEWE-type approach, are carefully considered, analyzed, and optimized. Particular attention is paid to the sparse matrix-vector multiplication, the most expensive part of the computation, and to rate-determining steps in the iterative Lanczos eigensolver, including spectral transformation, reorthogonalization, and restart of the iteration. Algorithmic improvements are discussed in considerable detail. Numerical results are presented for the vibrational band origins of the C12H4 and C12H2D2 isotopologues of the methane molecule. The largest matrix handled on a personal computer during these computations is of the size of (4•108)×(4•108). The best strategy for determining vibrational eigenpairs depends largely on the actual details of the required computation. Nevertheless, for a usual scenario requiring a large number of the lowest eigenpairs of the Hamiltonian matrix the combination of the thick-restart Lanczos method, shift-fold filtering, and periodic reorthogonalization appears to result in the computationally most feasible approach.

  14. Investigation of Uncertainty from Creep and Creep Recovery of Force Calibration Result in Accordance with ISO 376:2011

    NASA Astrophysics Data System (ADS)

    Chaemthet, Kittipong; Amornsakun, Chanchai; Sumyong, Noppadon; Changpan, Tawat; Heamawatanachai, Sumet

    This paper presents an investigation of the uncertainties from creep and creep recovery of force proving instruments calibrated at NIMT in year 2012 and 2013. In this study, the NIMT's 100kN deadweight force standard machine was used as a standard to calibrate force proving instruments (from various manufacturers and models) in accordance with ISO 376:2011. The comparison of creep uncertainties calculated from creep measured at maximum load (Cmax), creep recovery measured at zero load (Czero) and reversibility errors were also investigated. The results of this study show that, for most of the calibration results (>60%), the maximum value between WCmax/WCzero and WCzero/WCmax were larger than 2. Indicating that, WCmax and WCzero could not assume to be equal. For the comparison between creep uncertainties calculated from creep error and reversibility error, more than 80% of the calibration results, the creep uncertainties calculated from reversibility were larger than 3 time of the calculated values form creep measurement. These gave conclusion that, for the unknown history of creep and reversibility characteristic of instruments, it is more appropriate to estimate the uncertainty of creep from reversibility error.

  15. Tensile creep and creep rupture behavior of monolithic and SiC-whisker-reinforced silicon nitride ceramics

    SciTech Connect

    Ohji, Tatsuki; Yamauchi, Yukihiko )

    1993-12-01

    The tensile creep and creep rupture behavior of silicon nitride was investigated at 1,200 to 1,350 C using hot-pressed materials with and without SiC whiskers. Stable steady-state creep was observed under low applied stresses at 1,200 C. Accelerated creep regimes, which were absent below 1,300 C, were identified above that temperature. The appearance of accelerated creep at the higher temperatures attributable to formation of microcracks throughout a specimen. The whisker-reinforced material exhibited better creep resistance than the monolith at 1,200 C. Considerably high values 3 to 5, were obtained for the creep exponent in the overall temperature range. The exponent tended to decrease with decreasing applied stress at 1,200 C. The primary creep mechanism was considered cavitation-enhanced creep. Specimen lifetimes followed the Monkman-Grant relationship except for fractures with large accelerated creep regimes. The creep rupture behavior is discussed in association with cavity formation and crack adolescence.

  16. Micro-computed tomographic assessment of quality of obturation in the apical third with continuous wave vertical compaction and single match taper sized cone obturation techniques.

    PubMed

    Alshehri, Mohammed; Alamri, Hadi M; Alshwaimi, Emad; Kujan, Omar

    2016-07-01

    The aim of the present micro-computed tomography (Micro-CT) analysis was to compare the quality of obturation in the apical third of the root with the warm vertical compaction (WVC) and single matching taper sized cone (SMTSC) techniques. Mesial roots of 16 freshly extracted mandibular first molar teeth (with a total of 32 canals) were used. Canals in each mesial root were shaped to a size F3 Protaper and were randomly assigned to either continuous wave vertical compaction or single match tapered size cone technique. Volume of voids and gaps in the obturated roots were measured using micro-CT scanning at 1, 3, and 5 mm from the apex of the root. There was no statistically significant difference in the volume of voids measured at 1 mm (p > 0.05), 3 mm (p > 0.05) and 5 mm (p > 0.05) filled with either WVC and SMTSC techniques. The quality of obturation in the apical third of the root with the WVC and SMTSC techniques is comparable. SCANNING 38:352-356, 2016. © 2015 Wiley Periodicals, Inc.

  17. Numerical modeling and validation of wave heights and directionality in the ice using WAVEWATCH III

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Dumont, Dany; Accensi, Mickael; Sevigny, Caroline; Boutin, Guillaume; Rogers, Erick

    2016-04-01

    The poorly understood attenuation of waves, the key dynamic effect that defines the width of the Marginal Ice Zone, has been attributed to the combined effect of wave scattering and wave dissipation. Because scattering and dissipation have very different effects on the directional distribution of wave energy, it is possible to better understand the balance between scattering and dissipation by an analysis of the width of the directional wave spectrum. We have thus introduced dissipation and scattering terms in the spectral wave model WAVEWATCH III, and an estimation of the maximum ice floe size. Academic and realistic simulations show that the energy level and directional spreading far into the Arctic pack ice (Wadhams and Doble 2009) can be well explained by dissipative processes without the need for scattering. The same is true of observed swells in the Southern Ocean (Ardhuin et al. 2015). However, the dissipation level required to explain the observed wave height goes from 2 in the southern ocean to 12 times the viscous dissipation under a smooth ice plate. This and other data suggest that broken ice causes less dissipation than a continuous ice cover, possibly due to the dissipation by creep inside the ice when it is not broken and bends. Work is under way to parameterize that effect using the estimated maximum ice floe size.

  18. Creeping hair: an isolated hair burrowing in the uppermost dermis resembling larva migrans.

    PubMed

    Sakai, Rie; Higashi, Kushio; Ohta, Miyuki; Sugimoto, Yasushi; Ikoma, Yukiko; Horiguchi, Yuji

    2006-01-01

    A 55-year-old Japanese male presented with a slowly moving linear erythema that looked like an eruption of creeping disease, or cutaneous larva migrans. The eruption extended linearly along Langer's line of the lateral side of the abdomen to the lower back, leaving wave-like erythema. In the top third of the erythematous eruption, close examination demonstrated a black thin line, which was revealed to be a hair shaft by a shallow incision of the skin. After removal of the hair, the eruption diminished immediately, leaving a slight pigmentation. An ingrown pubic hair seemed to have migrated with the lower end forward along Langer's line, because of the arrangement of hair cuticle and the force of body motion. Linearly moving erythematous eruptions that look like that of larva migrans should be differentiated from creeping hair by close examination detecting burrowing hair. PMID:17033177

  19. Effect of HIP Temperature on Microstructure and Creep Property of FGH95 Alloy

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Tian, Su-Gui; Zhou, Xiao-Ming

    2012-02-01

    By means of hot isostatic pressing (HIP) treatment, microstructure observation and creep properties measurement, the effects of the HIP temperatures on the microstructure and creep properties of FGH95 nickel-base superalloy are investigated. The results show that, when the HIP temperature is lower than solubility of γ' phase, the coarser γ' phase is precipitated in the previous particle boundary (PPB) regions, and the quantity and size of the coarser γ' phase which is distributed in the regions decrease as the HIP temperature increases. No feature of the grain growing up is detected after the alloy is solution treated at 1140 °C. Moreover, there are a few of carbide particles distributing along the grain boundary and in the grain. After HIP treated at 1180 °C and fully heat treated, coarser γ' phase is dissolved in the alloy, and the depleted zone of the fine γ' phase has disappeared. In addition, the grains grow up obviously in the alloy, and the γ' phase and fine carbide particles are dispersedly precipitated in the grains and along boundaries, which can enhance the creep resistance of the alloy. The deformation mechanisms of the alloy are that the dislocations slip in the matrix or shear into γ' phase during creep.

  20. ATOMISTIC SIMULATIONS OF DIFFUSIONAL CREEP IN A NANOCRYSTALLINE BODY-CENTERED CUBIC MATERIAL

    SciTech Connect

    Paul C. Millett; Tapan Desai; Vesselin Yamakov; Dieter Wolf

    2008-08-01

    Molecular dynamics (MD) simulations are used to study diffusion-accommodated creep deformation in nanocrystalline molybdenum, a body-centered cubic metal. In our simulations, the microstructures are subjected to constant-stress loading at levels below the dislocation nucleation threshold and at high temperatures (i.e., T > 0.75Tmelt), thereby ensuring that the overall deformation is indeed attributable to atomic self-diffusion. The initial microstructures were designed to consist of hexagonally shaped columnar grains bounded by high-energy asymmetric tilt grain boundaries (GBs). Remarkably the creep rates, which exhibit a double-exponential dependence on temperature and a double power-law dependence on grain size, indicate that both GB diffusion in the form of Coble creep and lattice diffusion in the form of Nabarro–Herring creep contribute to the overall deformation. For the first time in an MD simulation, we observe the formation and emission of vacancies from high-angle GBs into the grain interiors, thus enabling bulk diffusion.

  1. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    NASA Astrophysics Data System (ADS)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  2. Microstructures of beta silicon carbide after irradiation creep deformation at elevated temperatures

    SciTech Connect

    Katoh, Yutai; Kondo, Sosuke; Snead, Lance Lewis

    2008-01-01

    Microstructures of silicon carbide were examined by transmission electron microscopy (TEM) after creep deformation under neutron irradiation. Thin strip specimens of polycrystalline and monocrystalline, chemically vapor-deposited, beta-phase silicon carbide were irradiated in the high flux isotope reactor to 0.7-4.2 dpa at nominal temperatures of 640-1080 C in an elastically pre-strained bend stress relaxation configuration with the initial stress of {approx}100 MPa. Irradiation creep caused permanent strains of 0.6 to 2.3 x 10{sup -4}. Tensile-loaded near-surface portions of the crept specimens were examined by TEM. The main microstructural features observed were dislocation loops in all samples, and appeared similar to those observed in samples irradiated in non-stressed conditions. Slight but statistically significant anisotropy in dislocation loop microstructure was observed in one irradiation condition, and accounted for at least a fraction of the creep strain derived from the stress relaxation. The estimated total volume of loops accounted for 10-45% of the estimated total swelling. The results imply that the early irradiation creep deformation of SiC observed in this work was driven by anisotropic evolutions of extrinsic dislocation loops and matrix defects with undetectable sizes.

  3. Axial creep-rupture time of boron-aluminum composites

    SciTech Connect

    Goda, Koichi; Hamada, Jun`ichi

    1995-11-01

    Axial creep tests of a 10vol% boron-aluminum hotpressed monolayer composite were carried out under several constant loads at 300 C in air. The composite behaved with slight primary creep, but did not show appreciable secondary creep. Several specimens encountered a momentary increase of strain during the creep test which separated the creep curve into two regions, because of the individual fiber breaks in the composite. And then, almost all the specimens suddenly fractured without tertiary creep. From the viewpoint of reliability engineering the statistical properties of the creep-rupture time were investigated. The average creep-rupture time decreased with an increase in the applied stress, and the relatively large coefficient of variation was estimated in every case, being around 1,000%. However, these scatters were estimated to be smaller than the scatter of creep-rupture time in the boron fiber itself. That means, the reliability of the fiber`s creep-rupture time is improved by compositing with matrix material.

  4. Creep contributes to the fatigue behavior of bovine trabecular bone.

    PubMed

    Bowman, S M; Guo, X E; Cheng, D W; Keaveny, T M; Gibson, L J; Hayes, W C; McMahon, T A

    1998-10-01

    Repetitive, low-intensity loading from normal daily activities can generate fatigue damage in trabecular bone, a potential cause of spontaneous fractures of the hip and spine. Finite element models of trabecular bone (Guo et al., 1994) suggest that both creep and slow crack growth contribute to fatigue failure. In an effort to characterize these damage mechanisms experimentally, we conducted fatigue and creep tests on 85 waisted specimens of trabecular bone obtained from 76 bovine proximal tibiae. All applied stresses were normalized by the previously measured specimen modulus. Fatigue tests were conducted at room temperature; creep tests were conducted at 4, 15, 25, 37, 45, and 53 degrees C in a custom-designed apparatus. The fatigue behavior was characterized by decreasing modulus and increasing hysteresis prior to failure. The hysteresis loops progressively displaced along the strain axis, indicating that creep was also involved in the fatigue process. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates. Strong and highly significant power-law relationships were found between cycles-to-failure, time-to-failure, steady-state creep rate, and the applied loads. Creep analyses of the fatigue hysteresis loops also generated strong and highly significant power law relationships for time-to-failure and steady-state creep rate. Lastly, the products of creep rate and time-to-failure were constant for both the fatigue and creep tests and were equal to the measured failure strains, suggesting that creep plays a fundamental role in the fatigue behavior of trabecular bone. Additional analysis of the fatigue strain data suggests that creep and slow crack growth are not separate processes that dominate at high and low loads, respectively, but are present throughout all stages of fatigue.

  5. Compression and Tensile Creep of Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2005-01-01

    Compression creep and long term tensile creep studies were conducted on cast and extruded binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed in both compression and tension creep depending on stress and temperature although an asymmetrical response was observed under these two stress states. It was concluded that the primary creep of NiAl is limited by dislocation mobility. The stress exponents, n, for compression and tensile creep were similar varying between about 5 and 14. However, there were significant differences in the stress dependence of the activation energies for compression and tensile creep. The true activation energy for tensile creep, Q(sub c), was constant and equal to about 400 kJ/mol between 20 and 50 MPa but decreased to a constant value of 250 kJ/mol between 50 and 110 MPa. The activation energy was observed to be inversely stress dependent above 110 MPa. In contrast, Q(sub c) = 300 kJ/mol for compression creep was constant between 25 and 70 MPa and inversely dependent on the true stress above 70 MPa. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable natures of the atom-vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  6. Micromechanics effects in creep of metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1995-12-01

    The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewski et al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law.

  7. Towards a more robust description of transient creep

    NASA Astrophysics Data System (ADS)

    Evans, J. B.

    2015-12-01

    Strain localization is common within crustal orogenic belts, and shear displacements of kilometers can be accommodated within zones less than ten meters wide. Strain localization is accompanied by major changes in grain size, lattice preferred orientation, major and accessory phase chemistry, pore geometry, phase dispersion, dislocation density, and twin geometry, suggesting that transients in strength have also occurred. High-strain experiments where creep dominates often show hardening up to strains of 1.0, followed by strength drops of 30-50%. In contrast with such observations, creep is often described by steady-state flow laws relying on simple descriptions of defect generation and motion. Most often, it is assumed that the kinetics of a single mechanism control deformation rate, or that the relative partitioning of strain amongst several mechanisms remains constant. But, when two or more mechanisms operate concurrently, an accurate flow law must account for kinetic interactions and changes in strain partitioning caused by the evolution of structure or changes in thermodynamic conditions. Data now at hand, strongly suggest that the evolution of structure variables including dislocation patterning, twin-boundary geometry, grain size, and LPO are coupled. The relative strain partitioning between mechanisms and the accumulation of damage leading to localization or failure is probably affected by changes in temperature, strain rate, stress, and chemical fugacity. Thus, better descriptions of strength transients will require improved theoretical and experimental constraints on the kinetics of the individual mechanisms. Importantly, whether load drops, instabilities, or seismicity are produced also depends on many additional parameters, including changes in loading conditions, the state of pore fluids, geometry of deformation, and temperature.

  8. An experimental and theoretical investigation of the low temperature creep deformation behavior of single phase titanium alloys

    NASA Astrophysics Data System (ADS)

    Oberson, P. Gregory

    Titanium alloys are used for many applications due to their desirable properties, including its high strength-to-weight ratio, corrosion resistance, and biocompatibility. Titanium alloys are used extensively for aerospace, chemical, nuclear, industrial, biomedical, and consumer applications. In many applications, titanium components may be subject to stresses for extended periods of time. It has long been known that single-phase hexagonally close-packed (HCP) alpha and body-centered cubic (BCC) beta titanium alloys deform over time, or creep, at low temperatures (<0.25*Tm). As such, creep is an important factor to consider when assessing the structural reliability of titanium components. However, the factors that affect creep behavior such as grain size and alloy chemistry and the deformation mechanisms associated with creep such as slip and twinning are not well understood. The aim of this investigation is to experimentally and theoretically study the creep deformation behavior of single-phase alpha and beta titanium alloys. The first part of the investigation concerns alpha-Ti alloys. The low temperature creep behavior was studied experimentally, using alpha-Ti-1.6wt.%V as the model alloy. Creep testing was performed at a range of temperatures and slip and twinning were identified as creep deformation mechanisms by optical, SEM and TEM microscopy. The activation energy for creep was measured for the first time for an alpha-Ti than deforms by twinning. The activation energy was found to increase as a function of creep strain, suggesting that there is a change in the predominant deformation mechanism from slip at low strain to twinning at high strain. The reason for this change is explained by a model for twin nucleation caused by dislocation pileups. The theoretical aspect of the study of alpha-Ti, concerns the phenomenon of slow twin growth (time-dependent twinning) during low temperature creep. This phenomenon is unusual and poorly understood as twins in bulk

  9. Stable creeping fault segments can become destructive as a result of dynamic weakening.

    PubMed

    Noda, Hiroyuki; Lapusta, Nadia

    2013-01-24

    Faults in Earth's crust accommodate slow relative motion between tectonic plates through either similarly slow slip or fast, seismic-wave-producing rupture events perceived as earthquakes. These types of behaviour are often assumed to be separated in space and to occur on two different types of fault segment: one with stable, rate-strengthening friction and the other with rate-weakening friction that leads to stick-slip. The 2011 Tohoku-Oki earthquake with moment magnitude M(w) = 9.0 challenged such assumptions by accumulating its largest seismic slip in the area that had been assumed to be creeping. Here we propose a model in which stable, rate-strengthening behaviour at low slip rates is combined with coseismic weakening due to rapid shear heating of pore fluids, allowing unstable slip to occur in segments that can creep between events. The model parameters are based on laboratory measurements on samples from the fault of the M(w) 7.6 1999 Chi-Chi earthquake. The long-term slip behaviour of the model, which we examine using a unique numerical approach that includes all wave effects, reproduces and explains a number of both long-term and coseismic observations-some of them seemingly contradictory-about the faults at which the Tohoku-Oki and Chi-Chi earthquakes occurred, including there being more high-frequency radiation from areas of lower slip, the largest seismic slip in the Tohoku-Oki earthquake having occurred in a potentially creeping segment, the overall pattern of previous events in the area and the complexity of the Tohoku-Oki rupture. The implication that earthquake rupture may break through large portions of creeping segments, which are at present considered to be barriers, requires a re-evaluation of seismic hazard in many areas. PMID:23302798

  10. The Creep of Laminated Synthetic Resin Plastics

    NASA Technical Reports Server (NTRS)

    Perkuhn, H

    1941-01-01

    The long-time loading strength of a number of laminated synthetic resin plastics was ascertained and the effect of molding pressure and resin content determined. The best value was observed with a 30 to 40 percent resin content. The long-time loading strength also increases with increasing molding pressure up to 250 kg/cm(exp 2); a further rise in pressure affords no further substantial improvement. The creep strength is defined as the load which in the hundredth hour of loading produces a rate of elongation of 5 X 10(exp -4) percent per hour. The creep strength values of different materials were determined and tabulated. The effect of humidity during long-term tests is pointed out.

  11. A universal function of creep rate

    NASA Astrophysics Data System (ADS)

    Li, Jing-Tian; Rong, Xi-Ming; Wang, Jian-Lu; Zhang, Bang-Qiang; Ning, Xi-Jing

    2015-09-01

    In this paper, we derive a universal function from a model based on statistical mechanics developed recently, and show that the function is well fitted to all the available experimental data which cannot be described by any function previously established. With the function predicting creep rate, it is unnecessary to consider which creep mechanism dominates the process, but only perform several experiments to determine the three constants in the function. It is expected that the new function would be widely used in industry in the future. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274073 and 51071048), the Shanghai Leading Academic Discipline Project, China (Grant No. B107), and the Key Discipline Innovative Training Program of Fudan University, China.

  12. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  13. Creep, compressibility differences emerging in geothermal studies

    SciTech Connect

    Not Available

    1983-11-01

    This article discusses geopressured formations situated at depths of 12,000 to 15,000 feet and below. The trapped formations, in which enormous pressure and heat have built up, consist mainly of sandstones containing salty water and dissolved methane gas. Studies of geopressured rocks have revealed nonlinear variations in compressibility, creep, permeability, resistivity, and other factors related to flow rates and reservoir characterization. Compressibility and creep are tested by placing salt water and a sample of sandstone in a pressure vessel that simulates geopressured conditions. Rock compaction studies are being conducted at elevated temperatures (385/sup 0/F) in order to determine how compressibility and other rock behavior are affected by geopressured temperature. It is suggested that the geopressuredgeothermal formations that lie along the curve of the US Gulf Coast could provide a new source of energy.

  14. An automated system for creep testing

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier; Weigman, Bernard J.

    1992-01-01

    A completely automated data collection system was devised to measure, analyze, and graph creep versus time using a PC, a 16 channel multiplexed analog to digital converter, and low friction potentiometers to measure length. The sampling rate for each experiment can be adjusted in the software to meet the needs of the material tested. Data is collected and stored on a diskette for permanent record and also for later data analysis on a different machine.

  15. Magnetic field annealing for improved creep resistance

    DOEpatents

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  16. Synthesis of Creep Measurements from Strainmeters and Creepmeters along the San Andreas Fault: Implications for Seismic vs. Aseismic Partitioning

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Gottlieb, M. H.; Hodgkinson, K. M.; Bilham, R. G.; Mattioli, G. S.; Johnson, W.; Van Boskirk, E.; Meertens, C. M.

    2015-12-01

    Strainmeters and creepmeters have been operated along the San Andreas Fault, observing creep events for decades. In particular, the EarthScope Plate Boundary Observatory (PBO) has added a significant number of borehole strainmeters along the San Andreas Fault (SAF) over the last decade. The geodetic data cover a significant temporal portion of the inferred earthquake cycle along this portion of the SAF. Creepmeters measure the surface displacement over time (creep) with short apertures and have the ability to capture slow slip, coseismic rupture, and afterslip. Modern creepmeters deployed by the authors have a resolution of 5 µm over a range of 10 mm and a dynamic sensor with a resolution 25 µm over a range 2.2 m. Borehole strainmeters measure local deformation some distance from the fault with a broader aperture. Borehole tensor strainmeters principally deployed as part of the PBO, measure the horizontal strain tensor at a depth of 100-200 m with a resolution of 10-11 strain and are located 4 - 10 km from the fault with the ability to image a 1 mm creep event acting on an area of ~500 m2 from over 4 km away (fault perpendicular). A single borehole tensor strainmeter is capable of providing broad constraints on the creep event asperity size, location, direction and depth of a single creep event. The synthesis of these data from all the available geodetic instruments proximal to the SAF presents a unique opportunity to constrain the partitioning between aseismic and seismic slip on the central SAF. We show that simple elastic half-space models allow us to loosely constrain the location and depth of any individual creep event on the fault, even with a single instrument, and to image the accumulation of creep with time.

  17. Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes

    NASA Astrophysics Data System (ADS)

    Wu, Yanhui; Han, Mangui; Liu, Tao; Deng, Longjiang

    2015-07-01

    The effective permittivity of composites containing Fe-Cu-Nb-Si-B nanocrystalline micro flakes has been studied within 0.5-10 GHz. Obvious differences in microwave permittivity have been observed for composites consisting of large flakes (size range: 23-111 μm, average thickness: 4.5 μm) and small flakes (size range: 3-21 μm, average thickness: 1.3 μm). Both the real part and imaginary part of permittivity of large flake composite are much larger than these small one in a given frequency. And faster decrease of permittivity with the increasing frequency can be observed for large flake composite than that of small one. These differences in permittivity spectra of different flakes have been explained from the perspective of interfacial polarization and ac conductivity. The assumption that more extensive ohmic contact interface between large flakes and matrix has been validated by the fittings and the calculated percolation threshold. Meanwhile, the permeability spectra of both composites also have been studied by Lorentzian dispersion law. The broadened spectra can be attributed to the distribution of magnetic anisotropy fields of two kinds of ferromagnetic phases in the particles. Finally, the composite containing the small flakes exhibits better electromagnetic wave absorption properties.

  18. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  19. The role of creep in high temperature low cycle fatigue.

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Spera, D. A.

    1971-01-01

    The significance of the role that creep can play in governing high-temperature, low-cycle fatigue resistance is investigated by conducting strain cycling tests on two high-temperature stainless steel alloys and making concurrent measurements of stress, temperature, and strain at various frequencies. The results are then analyzed in terms of damage imposed by creep and fatigue components. It is shown that creep can play an important and sometimes dominant role in low cycle fatigue at high temperatures. The results of the study include the findings that: (1) the simple life-fraction theory described is adequate for calculating creep damage when the cyclic creep rupture curve is used as a basis for analysis; (2) a method of universal slopes originally developed for room temperature use is sufficiently accurate at high temperature to be used to calculate pure fatigue damage; and (3) a linear creep-fatigue damage rule can explain the transitions observed from one failure mode to another.

  20. Effects of damage location and size on sparse representation of guided-waves for damage diagnosis of pipelines under varying temperature

    NASA Astrophysics Data System (ADS)

    Eybpoosh, Matineh; Berges, Mario; Noh, Hae Young

    2015-04-01

    In spite of their many advantages, real-world application of guided-waves for structural health monitoring (SHM) of pipelines is still quite limited. The challenges can be discussed under three headings: (1) Multiple modes, (2) Multipath reflections, and (3) Sensitivity to environmental and operational conditions (EOCs). These challenges are reviewed in the authors' previous work. This paper is part of a study whose objective is to overcome these challenges for damage diagnosis of pipes, while addressing the limitations of the current approaches. That is, develop methods that simplify signal while retaining damage information, perform well as EOCs vary, and minimize the use of transducers. In this paper, a supervised method is proposed to extract a sparse subset of the ultrasonic guided-wave signals that contain optimal damage information for detection purposes. That is, a discriminant vector is calculated so that the projections of undamaged and damaged pipes on this vector is separated. In the training stage, data is recorded from intact pipe, and from a pipe with an artificial structural abnormality (to simulate any variation from intact condition). During the monitoring stage, test signals are projected on the discriminant vector, and these projections are used as damage-sensitive features for detection purposes. Being a supervised method, factors such as EOC variations, and difference in the characteristics of the structural abnormality in training and test data, may affect the detection performance. This paper reports the experiments investigating the extent to which the differences in damage size and damage location, as well as temperatures, can influence the discriminatory power of the extracted damage-sensitive features. The results suggest that, for practical ranges of monitoring and damage sizes of interest, the proposed method has low sensitivity to such training factors. High detection performances are obtained for temperature differences up to 14

  1. Speedy standing wave design of size-exclusion simulated moving bed: Solvent consumption and sorbent productivity related to material properties and design parameters.

    PubMed

    Weeden, George S; Wang, Nien-Hwa Linda

    2015-10-30

    Size-exclusion simulated moving beds (SEC-SMB) have been used for large-scale separations of linear alkanes from branched alkanes. While SEC-SMBs are orders of magnitude more efficient than batch chromatography, they are not widely used. One key barrier is the complexity in design and optimization. A four-zone SEC-SMB for a binary separation has seven material properties and 14 design parameters (two yields, five operating parameters, and seven equipment parameters). Previous optimization studies using numerical methods do not guarantee global optima or explicitly express solvent consumption (D/F) or sorbent productivity (PR) as functions of the material properties and design parameters. The standing wave concept is used to develop analytical expressions for D/F and PR as functions of 14 dimensionless groups, which consist of 21 material and design parameters. The resulting speedy standing wave design (SSWD) solutions are simplified for two limiting cases: diffusion or dispersion controlled. An example of SEC-SMB for insulin purification is used to illustrate how D/F and PR change with the dimensionless groups. The results show that maximum PR for both diffusion and dispersion controlled systems is mainly determined by yields, equipment parameters, material properties, and two key dimensionless groups: (1) the ratio of step time to diffusion time and (2) the ratio of diffusion time to pressure-limited convection time. A sharp trade off of D/F and PR occurs when the yield is greater than 99%. The column configuration for maximum PR is analytically related to the diffusivity ratio and the selectivity. To achieve maximum sorbent productivity, one should match step time, diffusion time, and pressure-limited convection time for diffusion controlled systems. For dispersion controlled systems, the axial dispersion time should be about 10 times the step time and about 50 times the pressure-limited convection time. Its value can be estimated from given yields, material

  2. Flux Creep and Giant Flux Creep in High Tc Hg,Pb-based Superconductors

    NASA Astrophysics Data System (ADS)

    Kirven, Douglas; Owens, Frank; Iqbal, Z.; Bleiweiss, M.; Lungu, A.; Datta, T.

    1996-03-01

    Dynamic behavior of the trapped flux in fields of up to 17.5 T was studied in a set of Hg-Pb based superconductors with a Tc in excess of 130 K. Depending on the experimental conditions, both creep and giant flux creep dynamics were observed. Results were analyzed using to standard models such as Anderson-Kim and giant-flux creep models (GFC). The plots of relaxation rate of remnant magnetization versus temperature show a peak below Tc. These results were compared with other Cu-O compounds. A distribution of activation energies was found from the magnetization rate. The activation energy distribution shows a peak around 50 K. The peak determines the temperature where the flux flow rate is a maximum. A universal relation of the resistive behavior was also found as a function of temperature and field. The zero-field/field-cooled results gave a reversibility curve that also obeyed a universal power relation.

  3. Irradiation creep and swelling of various austenitic alloys irradiated in PFR and FFTF

    SciTech Connect

    Garner, F.A.; Toloczko, M.B.

    1996-10-01

    In order to use data from surrogate neutron spectra for fusion applications, it is necessary to analyze the impact of environmental differences on property development. This is of particular importance in the study of irradiation creep and its interactions with void swelling, especially with respect to the difficulty of separation of creep strains from various non-creep strains. As part of an on-going creep data rescue and analysis effort, the current study focuses on comparative irradiations conducted on identical gas-pressurized tubes produced and constructed in the United States from austenitic steels (20% CW 316 and 20% CW D9), but irradiated in either the Prototype Fast Reactor (PFR) in the United Kingdom or the Fast Flux Test Facility in the United States. In PFR, Demountable Subassemblies (DMSA) serving as heat pipes were used without active temperature control. In FFTF the specimens were irradiated with active ({+-}{degrees}5C) temperature control. Whereas the FFTF irradiations involved a series of successive side-by-side irradiation, measurement and reinsertion of the same series of tubes, the PFR experiment utilized simultaneous irradiation at two axial positions in the heat pipe to achieve different fluences at different flux levels. The smaller size of the DMSA also necessitated a separation of the tubes at a given flux level into two groups (low-stress and high-stress) at slightly different axial positions, where the flux between the two groups varied {le}10%. Of particular interest in this study was the potential impact of the two types of separation on the derivation of creep coefficients.

  4. Creep behaviour of Cu-30 percent Zn at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1991-01-01

    The present, intermediate-temperature (573-823 K) range investigation of creep properties for single-phase Cu-30 percent Zn alpha-brass observed inverse, linear, and sigmoidal primary-creep transients above 573 K under stresses that yield minimum creep rates in the 10 to the -7th to 2 x 10 to the -4th range; normal primary creep occurred in all other conditions. In conjunction with a review of the pertinent literature, a detailed analysis of these data suggests that no clearly defined, classes M-to-A-to-M transition exists in this alloy notwithstanding the presence of both classes' characteristics under nominally similar stresses and temperatures.

  5. Creep behavior of Utah oil shale subject to uniaxial loading

    SciTech Connect

    Chong, K.P.; Dana, G.F.; Chen, J.L.

    1982-06-01

    This paper presents results of a study on the creep behavior of Utah oil shale. A Conbel Model 355 pneumatic driven testing machine is used. The set of duplicate test specimens required for creep testing were cut from a single oil shale layer using a wire saw to avoid any surface damage. A rheological model was developed for creep behavior of oil shale as a function of stress level and organic content. Data from creep testing and Fischer assay analyses were used to demonstrate correlation between various stress levels and organic contents for samples taken from the Mahogany Zone of the Parachute Creek Member in Utah's Cowboy Canyon.

  6. Contribution to irradiation creep arising from gas-driven bubbles

    SciTech Connect

    Woo, C.H.; Garner, F.A.

    1998-03-01

    In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantial creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.

  7. Creep-fatigue strength of long-term post-service 2 ter dot 1/4 Cr-1 ter dot Mo steel and remaining life estimation

    SciTech Connect

    Okazaki, M.; Hashimoto, M.; Mochizuki, T. )

    1991-11-01

    This paper reports on creep-fatigue strength of post-service 2 {center dot} 1/4 Cr-1 {center dot} Mo steel used for about one hundred-thousand hours in a fossil fuel power plant. The creep-fatigue strength of the post-service material was lower than that of the virgin material, whereas it was comparable to that of thermally aged material, which was artificially exposed at high temperature for a long time so that it had an equivalent value of the Larson-Miller parameter to the post-service material. The nondestructive detection of the long-term degradation damage due to long-term thermal aging, as well as due to creep-fatigue, was also investigated by applying an ultrasonic technique. It was found that the energy attenuation coefficient, {alpha}, which is defined by the ratio of input to output energies of a longitudinal ultrasonic wave, had a good correlation with creep-fatigue damage in the virgin, aged and post-service materials; and hence, {alpha} was a successful parameter to detect creep-fatigue damage. Based on the results thus obtained, a new remaining life estimation method for creep-fatigue of in-service high-temperature materials was proposed. The application of the method to the post-service material tested gave good predicted results.

  8. Brittle and semibrittle creep in a low porosity carbonate rock

    NASA Astrophysics Data System (ADS)

    Nicolas, Aurélien; Fortin, Jérôme; Regnet, Jean-Baptiste; Dimanov, Alexandre; Guéguen, Yves

    2016-04-01

    The mechanical behavior of limestones at room temperature is brittle at low confining pressure and becomes semi-brittle with the increase of the confining pressure. The brittle behavior is characterized by a macroscopic dilatancy due to crack propagation, leading to a stress drop when cracks coalesce at failure. The semi-brittle behavior is characterized by diffuse deformation due to intra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aim of this work is to examine the influence of pore fluid and time on the mechanical behavior. Constant strain rate triaxial deformation experiments and stress-stepping creep experiments were performed on white Tavel limestone (porosity 14.7%). Elastic wave velocity evolutions were recorded during each experiment and inverted to crack densities. Constant strain rate triaxial experiments were performed for confining pressure in the range of 5-90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. In this regime, water-saturation decreases the differential stress at the onset of crack propagation and enhances macroscopic dilatancy. For Pc≥70 MPa, the behavior is semi-brittle. Inelastic compaction is due to intra-crystalline plasticity and micro-cracking. However, in this regime, our results show that water-saturation has no clear effect at the onset of inelastic compaction. Stress stepping creep experiments were performed in a range of confining pressures crossing the brittle-ductile transition. In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack propagation and/or nucleation. In the semi-brittle regime, the first steps are inelastic compactant because of plastic pore collapse. But, following stress steps are dilatant because of crack nucleation and/or propagation. However, our results show that the axial strain rate is always controlled by plastic phenomena, until the last

  9. Experimental and computational simulation studies on creep deformation mechanisms of a novel nanostructured Cu and Cu-10%Sn Alloy

    NASA Astrophysics Data System (ADS)

    Abo-Elsoud, Mohamed A.

    2015-04-01

    This work presents experimental and computational simulation studies on creep deformation mechanisms of a novel nanostructured Cu and Cu-10%Sn alloy that prepared by mechanical alloying (MA) copper with elemental Tin. Mechanical Newtonian creep model is employed for computational simulation of creep deformation mechanism under low stress-high temperature and to justify the experimental findings. The observed behaviors are discussed and compared with the predications of the Nabarro-Herring (N-H) theory of directional diffusion. A simple theory based on the climb controlled generation of dislocations from a fixed density of sources is developed to explain the observed behavior. TEM and SEM investigations are convenient and powerful techniques for characterization of phases and a novel nano-grain structured of the resulting materials. The reduction of grain size to the nanometer scale improves their mechanical properties.

  10. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    SciTech Connect

    Tai Asayama; Yukio Tachibana

    2007-09-30

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  11. Surface Creep Along the East Anatolian Fault (Turkey) Revealed by InSAR Time Series: Implications for Seismic Hazard and Mechanism of Creep

    NASA Astrophysics Data System (ADS)

    Senturk, S.; Cakir, Z.; Ergintav, S.; Dogan, U.; Cetin, S.; Akoglu, A. M.; Meghraoui, M.; Karabulut, H.

    2015-12-01

    Forming the boundary between the Anatolian and Arabian plates in Turkey, the East Anatolian Fault (EAF) is a major tectonic structure in the Eastern Mediterranean region. Together with its conjugate, the North Anatolian Fault (NAF), it accommodates the westward motion of the Anatolian plate with respect to Eurasia. Although it has been associated only with small-to-moderate sized earthquakes in the instrumental period and relatively quiet compared to the North Anatolian Fault, the EAF produced devastating large (M > 7) earthquakes in the historical time (Ambraseys et al., 1998). Analysis of historical seismicity (Nalbant et al., 2001) suggests that a seismic gap exists between the Lake of Hazar and Bingöl, referred here as to Palu seismic gap (PSG) We estimate the interseismic velocity field along the BSG using the Persistent Scatterer InSAR technique (Hooper, 2008). ENVISAT ASAR data acquired between 2003 and 2010 on three adjacent descending and overlapping tracks (T035, T264 and T493) are use to map the interseismic strain accumulation. The results reveal that the 100-km-long section of the Palu segment is exhibiting aseismic creep at the surface. The creep rate varies along the fault reaching, at some places, to the far field GPS-based plate velocity (i.e., 10 ± 0.3 mm/y; Reilinger et al., 2006), implying that significant portion of the elastic strain has been released aseismically. Preliminary modelling with elastic dislocations suggests that some sections of the fault may be creeping from surface down to the entire seismogenic crust. Geology of the fault zone is dominated by ophiolitic and volcanic rocks characterized by weak phyllosilicate minerals, suggesting that aseismic slip is promoted by minerals with low frictional properties. Furthermore, to monitor the surface creep, a GPS network has been established along the Palu segment. One survey has so far been realized and we expect the reliable results in 2 years (supported by TUBITAK no: 114Y250 project).

  12. Assessment of Creep Events as Potential Earthquake Precursors: Application to the Creeping Section of the San Andreas Fault, California

    NASA Astrophysics Data System (ADS)

    Thurber, C.; Sessions, R.

    We report the analysis of over 16 years of fault creep and seismicity data from part of the creeping section of the San Andreas fault to examine and assess the temporal association between creep events and subsequent earthquakes. The goal is to make a long-term evaluation of creep events as a potential earthquake precursor. We constructed a catalog of creep events from available digital creepmeter data and compared it to a declustered seismicity catalog for the area between San Juan Bautista and San Benito, California, for 1980 to 1996. For magnitude thresholds of 3.8 and above and time windows of 5 to 10 days, we find relatively high success rates (40% to 55% 'hits') but also very high false alarm rates (generally above 90%). These success rates are statistically significant (0.0007 < P < 0.04). We also tested the actual creep event catalog against two different types of synthetic seismicity catalogs, and found that creep events are followed closely in time by earthquakes from the real catalog far more frequently than the average for the synthetic catalogs, generally by more than two standard deviations. We find no identifiable spatial pattern between the creep events and earthquakes that are hit or missed. We conclude that there is a significant temporal correlation between creep events and subsequent small to moderate earthquakes, however that additional information (such as from other potential precursory phenomena) is required to reduce the false alarm rate to an acceptable level.

  13. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    SciTech Connect

    Ren, W.; Brinkman, C.R.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  14. Theoretical study of the light pressure force acting on a spherical dielectric particle of an arbitrary size in the interference field of two plane monochromatic electromagnetic waves

    SciTech Connect

    Guzatov, D V; Gaida, L S; Afanas'ev, Anatolii A

    2008-12-31

    The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves. (light pressure)

  15. Variations in creep rate along the Hayward Fault, California, interpreted as changes in depth of creep

    USGS Publications Warehouse

    Simpson, R.W.; Lienkaemper, J.J.; Galehouse, J.S.

    2001-01-01

    Variations ill surface creep rate along the Hayward fault are modeled as changes in locking depth using 3D boundary elements. Model creep is driven by screw dislocations at 12 km depth under the Hayward and other regional faults. Inferred depth to locking varies along strike from 4-12 km. (12 km implies no locking.) Our models require locked patches under the central Hayward fault, consistent with a M6.8 earthquake in 1868, but the geometry and extent of locking under the north and south ends depend critically on assumptions regarding continuity and creep behavior of the fault at its ends. For the northern onshore part of the fault, our models contain 1.4-1.7 times more stored moment than the model of Bu??rgmann et al. [2000]; 45-57% of this stored moment resides in creeping areas. It is important for seismic hazard estimation to know how much of this moment is released coseismically or as aseismic afterslip.

  16. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Sommers, B. R.; Lytton, J. L.

    1977-01-01

    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.

  17. Substrate Creep on The Fatigue Life of A Model Dental Multilayer Structure

    SciTech Connect

    Zhou, J; Huang, M; Niu, X; soboyejo, W

    2006-10-09

    In this paper, we investigated the effects of substrate creep on the fatigue behavior of a model dental multilayer structure, in which a top glass layer was bonded to a polycarbonate substrate through a dental adhesive. The top glass layers were ground using 120 grit or 600 grit sand papers before bonding to create different sub-surface crack sizes and morphologies. The multilayer structures were tested under cyclic Hertzian contact loading to study crack growth and obtain fatigue life curves. The experiment results showed that the fatigue lives of the multilayer structures were impaired by increasing crack sizes in the sub-surfaces. They were also significantly reduced by the substrate creep when tested at relatively low load levels i.e. P{sub m} < 60 N (Pm is the maximum magnitude of cyclic load). But at relatively high load levels i.e. P{sub m} > 65 N, slow crack growth (SCG) was the major failure mechanisms. A modeling study was then carried out to explore the possible failure mechanisms over a range of load levels. It is found that fatigue life at relatively low load levels can be better estimated by considering the substrate creep effect (SCE).

  18. Effect of temperature and microstructure on tensile and tensile creep properties of titanium silicon carbide in air

    NASA Astrophysics Data System (ADS)

    Radovic, Miladin

    The ternary carbide, Ti3SiC2, combines some of the best attributes of ceramics and metals. It is stable in inert atmospheres to temperatures above 2200°C, stiff and yet is readily machinable, oxidation, fatigue and thermal shock resistant and damage tolerant. Thus, Ti3SiC 2 is good candidate material for high temperature structural application. The aim of this work was to characterize its tensile and tensile creep properties. The mechanical behavior of Ti3SiC2 is characterized by a brittle-to-ductile (BTD) transition that is a function of strain rate. Its high strain rate sensitivity (≈0.50--0.6) is in the range that is more typical for superplastic materials, although it does not exhibit other attributes of superplasticity. Polycrystalline samples do not exhibit linear elastic behavior in tension even at room temperature. Room temperature loading-unloading tests result in closed hysteresis loops when the stress exceeds ≈120 MPa, suggesting that the mechanical response can be described as anelastic (viscoelastic). At high temperatures (1200°C) intense stress relaxation takes place; cycling loading-unloading tests at high temperature and low strain rates, demonstrate that the samples continue to elongate even during unloading, suggesting that Ti3SiC2 deforms viscoplastically. Tensile creep curves exhibit primary, steady state and tertiary regimes. The minimum creep rate can be represented by power law equation with a stress exponent of 1.5 for fine-grained (3--5 mum) samples, and 2 for coarse-grained (100--300 mum) ones. For both microstructures the activation energy for creep is ≈450 kJ/mol. The dependence on grain size is quite weak, implying that diffusion creep and/or creep mechanisms based on grain boundary sliding do not play a central role. Results of strain transient dip tests suggest that large internal stresses are developed during creep. Those internal stresses are believed to result in recoverable (anelastic) strains during unloading. The

  19. Study of irradiation creep of vanadium alloys

    SciTech Connect

    Tsai, H.; Strain, R.V.; Smith, D.L.

    1997-08-01

    Thin-wall tubing was produced from the 832665 (500 kg) heat of V-4 wt.% Cr-4 wt.% Ti to study its irradiation creep behavior. The specimens, in the form of pressurized capsules, were irradiated in Advanced Test Reactor and High Flux Isotope Reactor experiments (ATR-A1 and HFIR RB-12J, respectively). The ATR-A1 irradiation has been completed and specimens from it will soon be available for postirradiation examination. The RB-12J irradiation is not yet complete.

  20. An efficient model to predict guided wave radiation by finite-sized sources in multilayered anisotropic plates with account of caustics

    NASA Astrophysics Data System (ADS)

    Stévenin, M.; Lhémery, A.; Grondel, S.

    2016-01-01

    Elastic guided waves (GW) are used in various non-destructive testing (NDT) methods to inspect plate-like structures, generated by finite-sized transducers. Thanks to GW long range propagation, using a few transducers at permanent positions can provide a full coverage of the plate. Transducer diffraction effects take place, leading to complex radiated fields. Optimizing transducers positioning makes it necessary to accurately predict the GW field radiated by a transducer. Fraunhofer-like approximations applied to GW in isotropic homogeneous plates lead to fast and accurate field computation but can fail when applied to multi-layered anisotropic composite plates, as shown by some examples given. Here, a model is proposed for composite plates, based on the computation of the approximate Green's tensor describing modal propagation from a source point, with account of caustics typically seen when strong anisotropy is concerned. Modal solutions are otherwise obtained by the Semi-Analytic Finite Element method. Transducer diffraction effects are accounted for by means of an angular integration over the transducer surface as seen from the calculation point, that is, over energy paths involved, which are mode-dependent. The model is validated by comparing its predictions with those computed by means of a full convolution integration of the Green's tensor with the source over transducer surface. Examples given concern disk and rectangular shaped transducers commonly used in NDT.

  1. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  2. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  3. Effect of unloading time on interrupted creep in copper

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1994-06-01

    The effect of unloading time on the interrupted creep behavior of polycrystalline copper specimens was investigated over the temperature range 298--773 K. Up to 553 K, cyclic creep acceleration could be explained in terms of deformation and hardening using a dislocation glide model with recovery during unloading being due to dislocation climb. At higher temperatures, recrystallization effects probably influence behavior.

  4. The search for creep on the faults of northern California

    NASA Astrophysics Data System (ADS)

    Funning, Gareth; Jin, Lizhen

    2013-04-01

    Shallow aseismic fault creep is a behaviour exhibited by very few faults in the world. Instead of the stick-slip frictional regime that most faults follow, creeping faults move, steadily or episodically, throughout the interseismic period of the earthquake cycle. Creep effectively reduces the fault surface area capable of rupture in earthquakes, and thus knowledge of its extent is critical for the correct assessment of seismic hazard. In addition, by comparing the geographical locations of creeping fault areas with mapped lithologies, we may be able to better understand the underlying causes or mechanisms. We present here the results of our ongoing research into the distribution of creeping fault areas in northern California, where the majority of reported cases are located. We map the surface deformation field of the plate boundary system south and north of the San Francisco Bay Area using persistent scatterer InSAR, which provides a dense spatial coverage of surface deformation measurements across the region, and 'ground truth' these, where possible, with additional surface deformation measurements from GPS. In so doing, we identify deformation consistent with right-lateral shallow creep on sections of five major faults (the Hayward, Calaveras, San Andreas, Rodgers Creek and Concord faults). On the Hayward fault, we are able to map both the extent and distribution of creep rates at depth, constraining the location of a locked zone that is presumably the source of major earthquakes on the fault. We are not able to identify a consistent lithological control for the creep behaviour.

  5. Accelerated characterization for long-term creep behavior of polymer

    NASA Astrophysics Data System (ADS)

    Zhao, Rongguo; Chen, Chaozhong; Li, Qifu; Luo, Xiyan

    2008-11-01

    Based on the observation that high stress results in increasing creep rate of polymeric material, which is analogous to the time-temperature equivalence, where high temperature accelerates the process of creep or relaxation of polymer, the time-stress equivalence is investigated. The changes of intrinsic time in polymer induced by temperature and stress are studied using the free volume theory, and a clock model based on the time-temperature and time-stress equivalence is constructed to predict the long-term creep behavior of polymer. Polypropylene is used for this work. The specimens with shape of dumbbell are formed via injection molding. The short-term creep tests under various stress levels are carried out at ambient temperature. The creep strains of specimens are modeled according to the concept of time-stress equivalence, and the corresponding stress shift factors are calculated. A master creep curve is built by the clock model. The result indicates that the time-stress superposition principle provides an accelerated characterization method in the laboratory. Finally, the time-dependent axial elongations at sustained stress levels, whose values are close to the tensile strength of polypropylene, are measured. The three phases of creep, i.e., the transient, steady state and accelerated creep phases, are studied, and the application and limitation of the time-stress superposition principle are discussed.

  6. Temperature, Thermal Stress, And Creep In A Structure

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1991-01-01

    Report presents comparison of predicted and measured temperatures, thermal stresses, and residual creep stresses in heated and loaded titanium structure. Study part of continuing effort to develop design capability to predict and reduce deleterious effects of creep, which include excessive deformations, residual stresses, and failure.

  7. Potential for Time Compression in Creep-Fatigue Property Evaluation

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    This paper presents several engineering techniques for shorter time to characterize creep fatigue resistance. The topics include: 1) Classification of 100 Existing Creep-Fatigue Models; 2) Strainrange Partitioning (SRP) Approach; 3) Inelastic Strainrange SRP-Life Extrapolation Approaches; and 4) Total Strain Version of SRP. This paper is presented in viewgraph form.

  8. Creep behavior of abaca fibre reinforced composite material

    SciTech Connect

    Tobias, B.C.; Lieng, V.T.

    1996-12-31

    This study investigates the creep behavior of abaca fibre reinforced composite lamina. The optimum proportions of constituents and loading conditions, temperature and stresses, are investigated in terms of creep properties. Lamina with abaca fibre volume fractions of 60, 70 and 80 percent, embedded in polyester resin were fabricated. Creep tests in tension at three temperature levels 20{degrees}C, 100{degrees}C and 120{degrees}C and three constant stress levels of 0. 1 MPa, 0. 13 Mpa and 0. 198 MPa using a Dynamic Mechanical Analyzer (DMA) were performed. The creep curves show standard regions of an ideal creep curve such as primary and secondary creep stage. The results also show that the minimum creep rate of abaca fibre reinforced composite increases with the increase of temperature and applied stress. Plotting the minimum creep rate against stress, depicts the variations of stress exponents which vary from 1.6194 at 20{degrees}C to 0.4576 at 120{degrees}C.

  9. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  10. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  11. Out-of-pile creep behavior of uranium carbide

    NASA Technical Reports Server (NTRS)

    Wright, T. R.; Seltzer, M. S.

    1974-01-01

    Compression creep tests were investigated on various UC-based fuel materials having a variation in both density and composition. Specimens were prepared by casting and by hot pressing. Steady-state creep rates were measured under vacuum at 1400 to 1800 C in the stress range 500-4000 psi.

  12. The role of cobalt on the creep of Waspaloy

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  13. Effect of temperature on the formation of creep substructure in sodium chloride single crystals

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Pharr, George M.

    1992-01-01

    The effect of temperature on the substructure morphology and the cell and subgrain size was investigated experimentally in NaCl single crystals under creep in the temperature range 573-873 K. It is found that the effect of temperature on the cell and subgrain sizes is weak in comparison with the effect of stress. However, there was a qualitative change in the substructure morphology with temperature, with the cells and subgrains better defined at higher temperatures. The volume fraction of the cell boundaries decreased with increasing temperature, thereby indicating a refinement of the microstructure at higher temperatures.

  14. Continuous creep measurements on the North Anatolian Fault at Ismetpasa

    NASA Astrophysics Data System (ADS)

    Ozener, Haluk; Aytun, Alkut; Aktug, Bahadir; Dogru, Asli; Mencin, David; Ergintav, Semih; Bilham, Roger

    2016-04-01

    A graphite creep-meter was installed across the North Anatolian fault near a wall at Ismetpasa, Turkey, that has been offset by fault creep processes more than 51 cm since its construction in 1957. The creep-meter is 40-cm-deep, 16.5-m-long and crosses the fault at 30 degrees within a 2 cm diameter telescopic PVC conduit. The SW end of the 6-mm-diameter graphite rod is fastened to a buried stainless steel tripod, and motion of its free end relative to a similar tripod at its NE end is monitored by two sensors: an LVDT with 6 μm resolution and 13 mm range, and a Hall-effect rotary transducer with 30 μm resolution and 1.5 m range. The two sensors track each other to better than 1%. Data are sampled every 30 minutes and are publically available via the Iridium satellite with a delay of less than 1 hour. Since May 2014, for periods of months the surface fault has been inactive, followed by several weeks or months of slow slip at rates of ≈3 mm/yr and with cumulative slip amplitude less than 1 mm, terminated by a pair of distinct creep events with durations of up to 8 days and amplitudes of up to 2.3 mm, after which slip ceases until the next episode. Maximum slip rates on the surface fault are 0.54 mm/hour at the onset of a creep event. The decay time constant of the two pairs of creep events we have observed varies from 3 to 5 hours, similar to those observed by Altay and Sav, (1982) who operated a creepmeter here from 1980-1989. The decadal creep rate observed by these authors was 7.35±0.9 mm/yr, whereas our currently observed least-squares creep-rate is 5.4±1 mm/yr based on 19 months of data. Since most of the annual of the creep occurs in large creep events (80%), we anticipate that our rate will change with elapsed time, and our uncertainty will decrease accordingly. As expected, the 2014-2016 observed creep rate is somewhat lower than the regional creep on the fault deduced from Insar analysis and GPS observations (≈7-8 mm/yr), but both the amplitude of

  15. Evolution of microstructure after irradiation creep in several austenitic steels irradiated up to 120 dpa at 320 °C

    NASA Astrophysics Data System (ADS)

    Renault-Laborne, A.; Garnier, J.; Malaplate, J.; Gavoille, P.; Sefta, F.; Tanguy, B.

    2016-07-01

    Irradiation creep was investigated in different austenitic steels. Pressurized tubes with stresses of 127-220 MPa were irradiated in BOR-60 at 320 °C to 120 dpa. Creep behavior was dependent on both chemical composition and metallurgical state of steels. Different steels irradiated with and without stress were examined by TEM. Without stress, the irradiation produced high densities of dislocation lines and Frank loops and, depending on the type of steels, precipitates. Stress induced an increase of the precipitate mean size and density and, for some grades, an increase of the mean loop size and a decrease of their density. An anisotropy of Frank loop density or size induced by stress was not observed systematically. Dislocation line microstructure seems not to be different between the stressed and unstressed specimens. No cavities were detectable in these specimens. By comparing with the data from this work, the main irradiation creep models are discussed.

  16. Strong ground motions generated by earthquakes on creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.; Abrahamson, Norman A.

    2014-01-01

    A tenet of earthquake science is that faults are locked in position until they abruptly slip during the sudden strain-relieving events that are earthquakes. Whereas it is expected that locked faults when they finally do slip will produce noticeable ground shaking, what is uncertain is how the ground shakes during earthquakes on creeping faults. Creeping faults are rare throughout much of the Earth's continental crust, but there is a group of them in the San Andreas fault system. Here we evaluate the strongest ground motions from the largest well-recorded earthquakes on creeping faults. We find that the peak ground motions generated by the creeping fault earthquakes are similar to the peak ground motions generated by earthquakes on locked faults. Our findings imply that buildings near creeping faults need to be designed to withstand the same level of shaking as those constructed near locked faults.

  17. Predicting sample lifetimes in creep fracture of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Koivisto, Juha; Ovaska, Markus; Miksic, Amandine; Laurson, Lasse; Alava, Mikko J.

    2016-08-01

    Materials flow—under creep or constant loads—and, finally, fail. The prediction of sample lifetimes is an important and highly challenging problem because of the inherently heterogeneous nature of most materials that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual samples by exploiting the "universal" features in the sample-inherent creep curves, particularly the passage to an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation localization controls the shape of the creep curve and thus the degree of lifetime predictability.

  18. Predicting sample lifetimes in creep fracture of heterogeneous materials.

    PubMed

    Koivisto, Juha; Ovaska, Markus; Miksic, Amandine; Laurson, Lasse; Alava, Mikko J

    2016-08-01

    Materials flow-under creep or constant loads-and, finally, fail. The prediction of sample lifetimes is an important and highly challenging problem because of the inherently heterogeneous nature of most materials that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual samples by exploiting the "universal" features in the sample-inherent creep curves, particularly the passage to an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation localization controls the shape of the creep curve and thus the degree of lifetime predictability. PMID:27627383

  19. Application Of Shakedown Analysis To Cyclic Creep Damage Limits

    SciTech Connect

    Carter, Peter; Jetter, Robert I; Sham, Sam

    2012-01-01

    Shakedown analysis may be used to provide a conservative estimate of local rupture and hence cyclic creep damage for use in a creep-fatigue assessment. The shakedown analysis is based on an elastic-perfectly plastic material with a temperature-dependent pseudo yield stress defined to guarantee that a shakedown solution exists which does not exceed rupture stress and temperature for a defined life. The ratio of design life to the estimated maximum cyclic life is the shakedown creep damage. The methodology does not require stress classification and is also applicable to cycles over the full range of temperature above and below the creep regime. Full cyclic creep and damage analysis is the alternative when shakedown analysis appears to be excessively conservative.

  20. Potential drop monitoring of creep damage at a weld

    NASA Astrophysics Data System (ADS)

    Corcoran, Joseph; Nagy, Peter B.; Cawley, Peter

    2016-02-01

    Creep failure at welds will often be the life limiting factor for pressurised power station components, offering a site for local damage accumulation. Monitoring the creep state of welds will be of great value to power station management and potential drop monitoring may provide a useful tool. This paper provides a preliminary study of potential drop monitoring of creep damage at a weldment, suggesting a measurement arrangement for a previously documented quasi-DC technique that is well suited to the application. The industrial context of the problem of creep damage at a weldment is explored, together with a numerical simulation of the effect of cracking, finally, a cross-weld accelerated creep test demonstrating the promise of the technique is presented.

  1. Effect of misalignment on mechanical behavior of metals in creep. [computer programs

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1979-01-01

    Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.

  2. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    NASA Astrophysics Data System (ADS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  3. Testing Protocol for Module Encapsulant Creep (Presentation)

    SciTech Connect

    Kempe, M. D.; Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.; Moseley, J. M.; Shah, Q.; Tamizhmani, G.; Sakurai, K.; Inoue, M.; Doi, T.; Masuda, A.

    2012-02-01

    Recently there has been an interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically crosslinked materials, e.g., ethylene-vinyl acetate. The related motivations include the desire to: reduce lamination time or temperature; use less moisture-permeable materials; or use materials with better corrosion characteristics. However, the use of any thermoplastic material in a high-temperature environment raises safety and performance concerns, as the standardized tests currently do not expose the modules to temperatures in excess of 85C, yet modules may experience temperatures above 100C in operation. Here we constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass mock modules using different encapsulation materials of which only two were designed to chemically crosslink. One module set was exposed outdoors with insulation on the back side in Arizona in the summer, and an identical set was exposed in environmental chambers. High precision creep measurements and performance measurements indicate that despite many of these polymeric materials being in the melt state at some of the highest outdoor temperatures achievable, very little creep was seen because of their high viscosity, temperature heterogeneity across the modules, and in the case of the crystalline-silicon modules, the physical restraint of the backsheet. These findings have very important implications for the development of IEC and UL qualification and safety standards, and in regards to the necessary level of cure during the processing of crosslinking encapsulants.

  4. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  5. Analysis of Multistage and Other Creep Data for Domal Salts

    SciTech Connect

    Munson, D.E.

    1998-10-01

    There have existed for some time relatively sparse creep databases for a number of domal salts. Although all of these data were analyzed at the time they were reported, to date there has not been a comprehensive, overall evaluation within the same analysis framework. Such an evaluation may prove of value. The analysis methodology is based on the Multimechanism Deformation (M-D) description of salt creep and the corresponding model parameters determined from conventional creep tests. The constitutive model of creep wss formulated through application of principles involved in micromechanical modeling. It was possible, at minimum, to obtain the steady state parameters of the creep model from the data on the domal salts. When this was done, the creep of the domal salts, as compared to the well-defined Waste Isolation Pilot Plant (WIPP) bedded clean salt, was either essentially identical to, or significantly harder (more creep resistant) than WIPP salt. Interestingly, the domal salts form two distinct groups, either sofl or hard, where the difference is roughly a factor often in creep rate between the twcl groups. As might be expected, this classification corresponds quite well to the differences in magnitude of effective creep volume losses of the Strategic Petroleum Reserve (SPR) caverns as determined by the CAVEMAN cavern pressure history analysis, depending upon the specific dome or region within the dome. Creep response shoulcl also correlate to interior cavern conditions that produce salt falls. WMle, in general, the caverns in hard sah have a noticeably greater propensity for salt falls, a smaller number of similar events are exhibited even in the caverns in soft salt.

  6. Relating fault geometry and aseismic slip along the Haiyuan fault creeping segment

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Candela, T.; Lasserre, C.; Renard, F.; Doin, M.; Klinger, Y.

    2012-12-01

    the atmospheric phase screen from the stratified troposphere. We then apply a smoothed time series analysis method to derive maps of the ground deformation. Finally, we measure in details, using fault perpendicular profiles, the along strike shallow creep distribution and its evolution over the 6 years observation period. Following roughness analysis studies along strike-slip faults, we compare the surface fault trace roughness with the surface creep distribution roughness, revealing a similar self-affine distribution of both slip and geometric asperities. Both are made of large scale, low amplitude, asperities, combined with small scale, high amplitude asperities. Furthermore, first order, km-scale, slip asperities are coincident with the km-scale geometric segments along the fault. We therefore relate the fault geometry with the spatial distribution of the creep. We show that their relationship does not depend on time, revealing no smoothing of the geometric asperities, at least during the period of observation. We then explore the temporal behavior of slip, assessing for the dynamics of slip bursts. Our results reveal a power-law distribution of the size of the slip bursts and highlight local interactions between slip bursts, suggesting an avalanche-like behavior of the creep along the studied segment.

  7. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700°C

    NASA Astrophysics Data System (ADS)

    Sordi, V. L.; Bueno, L. O.

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700°C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300°C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation dot epsilon = A.σn and the Monkman-Grant relation dot epsilon.tmR = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  8. Propagation of Crack in Glasses under Creep Conditions

    NASA Astrophysics Data System (ADS)

    Mallet, C.; Fortin, J.; Guéguen, Y.; Schubnel, A.

    2012-04-01

    The context of our study is the observation of the mechanical behaviour of glass used for the storage of radioactive wastes. This implies to measure the crack propagation characteristics in glass. Results on the investigation of the micromechanics of creep under triaxial loading conditions are presented in the framework of this study. We performed the experiments in a triaxial cell, with pore fluid pressure, on boro-silicate glass. The chemical composition of the investigated glass is very close to the composition of waste vitrified packages. The matrix of the original glass (OG) is perfectly amorphous, without porosity. A few isolated air bubbles are trapped during the glass flow. Cracks are introduced in the OG through thermal shocks. The evolution of deformation (axial and radial strain) is measured using strain gages. The elastic P and S wave velocities and the acoustic emissions (AE) are also recorded. An experiment in dry conditions was performed (the pore fluid was argon gas) with a confining pressure fixed at 15 MPa. Stress step tests were performed in order to get creep data. A similar experiment was performed in water saturated conditions. Crack-closure is first observed at very low strains. Then elastic deformation is observed up to a stress level where elastic anisotropy develops. This can be clearly detected from ɛ Thomsen parameter increase. At last, at a deviatoric stress of 175 MPa (in dry conditions), we observe dilatancy. This behaviour has never been observed in original glass. Indeed, the OG behaviour is perfectly elastic and brittle. In addition, the constant stress tests show that dilatancy develops during a time constant that depends on the stress level. It can be inferred that crack propagation takes place during the constant stress steps. This behaviour is under investigation. We are also quantifying the velocity of the crack propagation by modelling this phenomenon. Indeed, the crack density can be expressed as a volumic strain, ɛv =

  9. Creep Behaviour of Bischofite, Carnallite and Mixed Bischofite-Carnallite Salt Rock

    NASA Astrophysics Data System (ADS)

    De Bresser, J. H. P.; Muhammad, N.; Spiers, C. J.; Peach, C. J.

    2014-12-01

    Some salt deposits contain the valuable magnesium and potassium salts bischofite and carnallite, as well as halite, in the form of pure and mixed layers. During extraction of such salts from the subsurface by solution mining, the material in the undissolved walls will flow into the caverns. In order to accurately predict the flow of wall rock material, feasible production rates and related subsidence, a good understanding of the creep behaviour of bischofite, carnallite and mixed salt rocks under in situ conditions is required. We have conducted conventional triaxial compression tests on polycrystalline bischofite, carnallite and mixed bischofite-carnallite-halite rock samples machined from natural cores. The experiments were carried out at true in situ P-T conditions of 70°C and 40 MPa confining pressure. All experiments consisted of strain rate stepping runs, applying strain rates in the range 10-5 to 10-8 s-1, reaching 2-4% axial strain per step, with individual steps being followed by stress relaxation down to strain rates ~10-9 s-1. Both bischofite and carnallite reached near steady state creep behaviour within each constant strain rate step. Carnallite was found to be 4-5 times stronger than bischofite. For bischofite as well as carnallite, we observed that during stress relaxation, the conventional power law stress exponent n changed from ~5 at 10-5 to ~1 at 10-9 s-1. The absolute strength of both materials remained higher if the relaxation started at a higher stress, i.e. at a faster rate. We interpret this as indicating a difference in microstructure at the initiation of the relaxation, notably a smaller grain size related to dynamical recrystallization during the constant strain rate step. The data thus suggest that there is gradual change in mechanism with decreasing strain rate, from grain size insensitive dislocation creep to grain size sensitive (pressure solution) creep. The mixed bischofite-carnallite-halite salt rock did not approach steady state

  10. Effects of boron and phosphorus on creep properties of a ferritic/martensitic steel for fast reactor cladding applications

    SciTech Connect

    Not Available

    1994-10-01

    The thermal efficiencies of both conventional and supercritical fossil-fueled power plants can be improved by increasing the operating temperatures and pressures. Increased thermal efficiency would also result in significant fuel cost savings, as well as reduced environmental emissions per megawatt generated. Creep properties of materials currently used as tubes in the hottest areas of the boiler, the superheater and reheater sections, limit the operating temperature. As such, steels with improved creep strength compared to these conventional alloys are needed to increase the operational efficiencies of thermal-electric generating stations. A new class of creep-resistant, 10%Cr martensitic steel has been developed for use as high temperature components, especially in the electric utility, petrochemical & chemical industries. The steel differs from other 9-12%Cr steels in two important ways: It is strengthened by a uniform dispersion of very fine, coarsening-resistant TiC particles rather than chromium-rich, M{sub 23}C{sub 6} precipitates; and the TiC particles are precipitated in austenite prior to the martensitic transformation, not during tempering. By carefully controlling the thermo-mechanical treatment, three TiC sizes were incorporated into the matrix: 4, 12 and 25 nm; grain size and precipitate volume fraction (0.005) were kept constant. Creep tests on these three specimen types were done at 550{degrees}C, 600{degrees}C and 650{degrees}C. Results indicate that reducing the average particle size from 25 to 4 nm (thereby also reducing the average inter-particle spacing) decreases the steady-state creep rate by more than four orders of magnitude. The prototype steel`s composition must now be optimized, and in doing so the effects of boron and phosphorus are investigated.

  11. Characterization and impression creep testing of silicon aluminum oxynitride ceramics

    NASA Astrophysics Data System (ADS)

    Fox, Kevin M.

    2005-11-01

    Three Yb-containing SiAlON materials were studied for potential use as hot section components in advanced microturbine engines. Two of the materials consisted of equiaxed alpha-SiAlON grains, elongated beta-SiAlON grains, and an amorphous intergranular phase containing a relatively large amount of Yb. The third material consisted of alpha- and beta-SiAlON grains with equiaxed morphologies and virtually no intergranular phase. An instrument was designed and constructed for impression creep testing of the YbSiAlON materials. Uniaxial compression creep experiments were also performed for comparison. In compression creep, the SiAlON materials exhibited activation energies that were similar to those of other SiAlONs reports in the literature, and stress exponents that were approximately 1. In impression creep, the SiAlONs tested exhibited activation energies similar to those reported in the literature for SiAlONs tested in uniaxial compression and tension. However, the SiAlON composition with equiaxed beta-SiAlON grains showed an exaggerated activation energy due to a change in creep mechanism above 1340°C. The measured stress exponents in impression creep were approximately 2. The stress state present below the punch in impression creep caused dilation to occur in the grain structure. The dilation results in an increase in the volume of the multi-grain junctions, and an increased dependence of strain rate on stress. The enlarged multi-grain junctions can become filled with the intergranular glassy phase. These large pockets of the glassy phase can enable an additional creep mechanism whereby the equiaxed grains slide past each other viscously. All of the SiAlONs developed an additional volume of the intergranular glassy phase during creep testing. A microstructure containing elongated beta-SiAlON grains is most effective in enhancing creep performance of the Yb-SiAlON materials tested. The impression creep data for the Yb-SiAlON materials can be related to the

  12. Precipitate Evolution and Creep Behavior of a W-Free Co-based Superalloy

    NASA Astrophysics Data System (ADS)

    Liu, Qinyuan; Coakley, James; Seidman, David N.; Dunand, David C.

    2016-09-01

    The morphological and temporal evolution of γ ^' } (L1_2 )-precipitates is studied in a polycrystalline Co-based superalloy (Co-30Ni-9.9Al-5.1Mo-1.9Nb at. pct) free of tungsten, aged at 1173 K (900 °C). Over a 1000 {{{hours}}} heat-treatment, the γ ^' } morphology evolves due to precipitate coalescence. The particles grow in size and the volume fraction decreases, while there is no significant change in the microhardness value. Compressional creep tests at 1123 K (850 °C) on a specimen aged at 1173 K (900 °C) demonstrate that the creep resistance is comparable to the original, W-containing, higher-density Co-based superalloy (Co-9Al-9.8W at. pct). This represents the first creep study of the Co-Al-Mo-Nb-based superalloy system. The W-free alloy exhibits directional coarsening of the γ ^' } precipitates in the direction perpendicular to the applied compressive stress, which indicates a positive misfit. This is consistent with neutron diffraction results.

  13. Experimental validation of a combined electromagnetic and thermal model for a microwave drying of capillary porous materials inside a rectangular wave guide (effects of irradiation time, particle sizes and initial moisture content).

    PubMed

    Ratanadecho, P; Aoki, K; Akahori, M

    2002-01-01

    In this paper, the experimental validation of a combined electromagnetic and thermal model for a microwave drying of capillary porous materials inside a rectangular wave guide is presented. The effects of the irradiation time, particle sizes and the variation of initial moisture content on the microwave drying kinetics are clarified in detail, considering the interference between incident and reflected waves in the capillary porous materials. The established model has allowed us to determine the space-time evolution of electric field, temperature and moisture content within capillary porous materials during microwave drying process.

  14. Long-term monitoring of creep rate along the Hayward fault and evidence for a lasting creep response to 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Lienkaemper, J.J.; Galehouse, J.S.; Simpson, R.W.

    2001-01-01

    We present results from over 30 yr of precise surveys of creep along the Hayward fault. Along most of the fault, spatial variability in long-term creep rates is well determined by these data and can help constrain 3D-models of the depth of the creeping zone. However, creep at the south end of the fault stopped completely for more than 6 years after the M7 1989 Loma Prieta Earthquake (LPEQ), perhaps delayed by stress drop imposed by this event. With a decade of detailed data before LPEQ and a decade after it, we report that creep response to that event does indeed indicate the expected deficit in creep.

  15. Creep deformation mechanisms in modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna; Basirat, Mehdi; Charit, Indrajit; Potirniche, Gabriel P.; Rink, Karl K.; Sahaym, Uttara

    2012-04-01

    Modified 9Cr-1Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR). The tensile creep behavior of modified 9Cr-1Mo steel (Grade 91) was studied in the temperature range of 873-1023 K and stresses between 35 MPa and 350 MPa. Analysis of creep results yielded stress exponents of ∼9-11 in the higher stress regime and ∼1 in the lower stress regime. The high stress exponent in the power-law creep regime was rationalized by invoking the concept of threshold stress, which represents the lattice diffusion controlled dislocation climb process. Without threshold stress compensation, the activation energy was 510 ± 51 kJ/mol, while after correcting for the threshold stress, the activation energy decreased to 225 ± 24 kJ/mol. This value is close to the activation energy for lattice self-diffusion in α-Fe. Threshold stress calculations were performed for the high stress regime at all test temperatures. The calculated threshold stress showed a strong dependence on temperature. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep.

  16. Proton irradiation creep of FM steel T91

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Was, Gary S.

    2015-04-01

    Ferritic-martensitic (FM) steel T91 was subjected to irradiation with 3 MeV protons while under load at stresses of 100-200 MPa, temperatures between 400 °C and 500 °C, and dose rates between 1.4 × 10-6 dpa/s and 5 × 10-6 dpa/s to a total dose of less than 1 dpa. Creep behavior was analyzed for parametric dependencies. The temperature dependence was found to be negligible between 400 °C and 500 °C, and the dose rate dependence was observed to be linear. Creep rate was proportional to stress at low stress values and varied with stress to the power 14 above 160 MPa. The large stress exponent of the proton irradiation creep experiments under high stress suggested that dislocation glide was driving both thermal and irradiation creep. Microstructure observations of anisotropic dislocation loops also contributed to the total creep strain. After subtracting the power law creep and anisotropic dislocation loop contributions, the remaining creep strain was accounted for by dislocation climb enabled by stress induced preferential absorption (SIPA) and preferential dislocation glide (PAG).

  17. Cyclic creep and anelastic relaxation analysis of an ODS superalloy

    NASA Astrophysics Data System (ADS)

    Nardone, Vincent C.; Kimmerle, William L.; Tien, John K.

    1986-09-01

    This paper documents the effect of stress and temperature on the cyclic minimum strain rate at two different loading frequencies for the oxide dispersion strengthened (ODS) superalloy, INCONEL* MA 6000. The apparent stress exponent and activation energy for cyclic creep at both frequencies studied are shown to be greater than values observed for static creep. The large values of the stress exponent and activation energy for cyclic creep are proposed to result from anelastic strain storage delaying nonrecoverable creep during the on-load portion of the cyclic creep loading, such that the “effective stress” driving nonrecoverable creep is only a small fraction of the applied stress. In addition, the temperature dependence of the anelastic relaxation that occurs during the off-load portion of the cyclic creep loading is determined. The activation energy found for the relaxation process is equal to about one-half that for self-diffusion in nickel. A mechanism of localized climb of dislocations over the oxide dispersoids present in INCONEL MA 6000 is postulated to account for the observed activation energy of the relaxation process.

  18. Creep failure analysis for ceramic composites containing viscous interfaces

    SciTech Connect

    Beyerlein, I.J.; An, L.; Raj, R.

    1998-09-01

    This paper describes an experimental and theoretical study of the creep fracture of advanced ceramic composites under steady axial tension. Such composites consist of a high fraction of elongated ceramic grains, varying substantially in aspect ratio and embedded in a glassy matrix phase. For creep testing, a model test system was prepared, which consisted of well-aligned elongated mica platelets ({approximately} 60 vol%) and residual glass phase ({approximately} 40 vol%) in its final heat-treatment stage. The creep curves of several specimens under various applied loads and at a temperature (800 C) higher than the T{sub g} of the glass matrix ({approximately} 650 C) were obtained up to creep fracture. Micrographs of the creep fracture surfaces revealed substantial grain pull-out and cavitation in the matrix phase with virtually no transgranular fracture. The objective of this work is to simulate the creep response and fracture based on the accumulation of localized void growth and microstructural parameters, using a computational mechanics technique, called viscous break interaction (VBI), developed to compute stress fields around strongly interacting fractures or voids in composites with fibrous microstructures. To simulate the creep process up to fracture, a Monte Carlo model is developed which couples VBI with a statistical description of grain length. Both the experimental and simulation results show that random lengths and random overlap of the aligned grains naturally lead to (i) local and microstructure-sensitive damage evolution up to ultimate failure and (ii) substantial variation in failure times of seemingly identical specimens.

  19. Creep in solid 4He at temperatures below 1 K

    NASA Astrophysics Data System (ADS)

    Zhuchkov, V. A.; Lisunov, A. A.; Maidanov, V. A.; Neoneta, A. S.; Rubanskyi, V. Yu.; Rubets, S. P.; Rudavskii, E. Ya.; Smirnov, S. N.

    2015-03-01

    Creep in solid 4He at temperatures of ˜100-1000 mK is studied experimentally by detecting the flow of helium through a frozen porous membrane under a constant external force. Creep curves are measured for different temperatures and mechanical stresses. This method has made it possible to detect low creep rates in helium down to the lowest temperatures in these experiments. It is found that throughout this temperature range, creep is thermally activated and the activation energy decreases with falling temperature and increasing mechanical stress. An analysis shows that for temperatures above ≈500 mK, Nabarro-Herring diffusive creep takes place in solid helium with mass transfer by self diffusion of atoms and a counterflow of vacancies. The experimental data have been used to obtain the self-diffusion coefficient as a function of temperature for different stresses. At temperatures below ≈500 mK creep takes place at a very low flow rate (˜10-13 cm/s) and a very low activation energy (˜0.5-0.7 K), while the creep mechanism remains unclear.

  20. Silicon Nitride Creep Under Various Specimen-Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Holland, Frederic A.

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC 132) was performed at 1300 C in air using five different specimen-loading configurations: (1) pure tension, (2) pure compression, (3) four-point uniaxial flexure, (4) ball-on-ring biaxial flexure, and (5) ring-on-ring biaxial flexure. This paper reports experimental results as well as test techniques developed in this work. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compression loading, nominal creep strain generally decreased with time, resulting in a less-defined steady-state condition. Of the four creep formulations-power-law, hyperbolic sine, step, and redistribution--the conventional power-law formulation still provides the most convenient and reasonable estimation of the creep parameters of the NC 132 material. The data base to be obtained will be used to validate the NASA Glenn-developed design code CARES/Creep (ceramics analysis and reliability evaluation of structures and creep).

  1. Solder creep-fatigue interactions with flexible leaded parts

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Wen, L. C.; Mon, G. R.; Jetter, E.

    1992-01-01

    With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.

  2. The effect of annealing on the creep of plasma sprayed ceramics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.; Mullen, R. L.

    1983-01-01

    The creep of plasma sprayed ZrO2-8Y2O3 was measured at temperatues from 98 to 1250 C (180 to 220 F), and compared to creep of identical samples after annealing at temperatures from 98 to 1316 C (1800 to 2400 F). Loads and temperatures which produced significant creep of as sprayed ceramics produced no creep after annealing.

  3. Creep-fatigue modelling in structural steels using empirical and constitutive creep methods implemented in a strip-yield model

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for

  4. Tremor evidence for dynamically triggered creep events on the deep San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Shelly, D. R.; Hill, D. P.; Aiken, C.

    2010-12-01

    Deep tectonic tremor has been observed along major subduction zones and the San Andreas fault (SAF) in central and southern California. It appears to reflect deep fault slip, and it is often seen to be triggered by small stresses, including passing seismic waves from large regional and teleseismic earthquakes. Here we examine tremor activity along the Parkfield-Cholame section of the SAF from mid-2001 to early 2010, scrutinizing its relationship with regional and teleseismic earthquakes. Based on similarities in the shape and timing of seismic waveforms, we conclude that triggered and ambient tremor share common sources and a common physical mechanism. Utilizing this similarity in waveforms, we detect tremor triggered by numerous large events, including previously unreported triggering from the recent 2009 Mw7.3 Honduras, 2009 Mw8.1 Samoa, and 2010 Mw8.8 Chile earthquakes at teleseismic distances, and the relatively small 2007 Mw5.4 Alum Rock and 2008 Mw5.4 Chino Hills earthquakes at regional distances. We also find multiple examples of systematic migration in triggered tremor, similar to ambient tremor migration episodes observed at other times. Because these episodes propagate much more slowly than the triggering waves, the migration likely reflects a small, triggered creep event. As with ambient tremor bursts, triggered tremor at times persists for multiple days, probably indicating a somewhat larger creep event. This activity provides a clear example of delayed dynamic triggering, with a mechanism perhaps also relevant for triggering of regular earthquakes.

  5. Interfacial Control of Creep Deformation in Ultrafine Lamellar TiAl

    SciTech Connect

    Hsiung, L M

    2002-11-26

    Solute effect on the creep resistance of two-phase lamellar TiAl with an ultrafine microstructure creep-deformed in a low-stress (LS) creep regime [where a linear creep behavior was observed] has been investigated. The resulted deformation substructure and in-situ TEM experiment revealed that interface sliding by the motion of pre-existing interfacial dislocations is the predominant deformation mechanism in LS creep regime. Solute segregation at lamellar interfaces and interfacial precipitation caused by the solute segregation result in a beneficial effect on the creep resistance of ultrafine lamellar TiAl in LS creep regime.

  6. High temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, Philip J.; Swindeman, Robert W.; Goodwin, Gene M.

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  7. Improved high temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  8. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.

    PubMed

    Taffetani, M; Gottardi, R; Gastaldi, D; Raiteri, R; Vena, P

    2014-07-01

    Nanoindentation is an experimental technique which is attracting increasing interests for the mechanical characterization of articular cartilage. In particular, time dependent mechanical responses due to fluid flow through the porous matrix can be quantitatively investigated by nanoindentation experiments at different penetration depths and/or by using different probe sizes. The aim of this paper is to provide a framework for the quantitative interpretation of the poroelastic response of articular cartilage subjected to creep nanoindentation tests. To this purpose, multiload creep tests using spherical indenters have been carried out on saturated samples of mature bovine articular cartilage achieving two main quantitative results. First, the dependence of indentation modulus in the drained state (at equilibrium) on the tip radius: a value of 500 kPa has been found using the large tip (400 μm radius) and of 1.7 MPa using the smaller one (25 μm). Secon, the permeability at microscopic scale was estimated at values ranging from 4.5×10(-16) m(4)/N s to 0.1×10(-16) m(4)/N s, from low to high equivalent deformation. Consistently with a poroelastic behavior, the size-dependent response of the indenter displacement disappears when characteristic size and permeability are accounted for. For comparison purposes, the same protocol was applied to intrinsically viscoelastic homogeneous samples of polydimethylsiloxane (PDMS): both indentation modulus and time response have been found size-independent. PMID:24814573

  9. Heat-to-Heat Variation in Creep Life and Fundamental Creep Rupture Strength of 18Cr-8Ni, 18Cr-12Ni-Mo, 18Cr-10Ni-Ti, and 18Cr-12Ni-Nb Stainless Steels

    NASA Astrophysics Data System (ADS)

    Abe, Fujio

    2016-09-01

    Metallurgical factors causing the heat-to-heat variation in time to rupture have been investigated for 300 series stainless steels for boiler and heat exchanger seamless tubes, 18Cr-8Ni (JIS SUS 304HTB), 18Cr-12Ni-Mo (JIS SUS 316HTB), 18Cr-10Ni-Ti (JIS SUS321 HTB), and 18Cr-12Ni-Nb (JIS SUS 347HTB), at 873 K to 1023 K (600 °C to 750 °C) using creep rupture data for nine heats of the respective steels in the NIMS Creep Data Sheets. The maximum time to rupture was 222,705.3 hours. The heat-to-heat variation in time to rupture of the 304HTB and 316HTB becomes more significant with longer test durations at times above ~10,000 hours at 973 K (700 °C) and reaches to about an order of magnitude difference between the strongest and weakest heats at 100,000 hours, whereas that of the 321HTB and 347HTB is very large of about an order of magnitude difference from a short time of ~100 hours to long times exceeding 100,000 hours at 873 K to 973 K (600 °C to 700 °C). The heat-to-heat variation in time to rupture is mainly explained by the effect of impurities: Al and Ti for the 304HTB and 316HTB, which reduces the concentration of dissolved nitrogen available for the creep strength by the formation of AlN and TiN during creep, and boron for the 347HTB, which enhances fine distributions of M23C6 carbides along grain boundaries. The heat-to-heat variation in time to rupture of the 321HTB is caused by the heat-to-heat variation in grain size, which is inversely proportional to the concentration of Ti. The fundamental creep rupture strength not influenced by impurities is estimated for the steels. The 100,000 hours-fundamental creep rupture strength of the 347HTB steel is lower than that of 304HTB and 316HTB at 873 K and 923 K (600 °C and 650 °C) because the slope of stress vs time to rupture curves is steeper in the 347HTB than in the 304HTB and 316HTB. The 100,000 hours-fundamental creep rupture strength of the 321HTB exhibits large variation depending on grain size.

  10. Note: Creep character of piezoelectric actuator under switched capacitor charge pump control

    NASA Astrophysics Data System (ADS)

    Ma, Yu Ting; Huang, Liang; Liu, Yong Bin; Feng, Zhi Hua

    2011-04-01

    A major deficiency in piezoelectric actuator performance is caused by hysteresis and creep effects. Switched capacitor charge pump control was previously proved to be an effective way to reduce hysteresis. In this work, creep character of a piezoelectric stack under charge pump control is investigated and modeled. Experiments show that the creep can be reduced by about 77% compared with the one under voltage control. The creep factor denoting the degree of creep shows hysteresis loops similar to displacement outputs under voltage control.

  11. Creep of water ices at planetary conditions: A compilation

    USGS Publications Warehouse

    Durham, W.B.; Kirby, S.H.; Stern, L.A.

    1997-01-01

    Many constitutive laws for the flow of ice have been published since the advent of the Voyager explorations of the outer solar system. Conflicting data have occasionally come from different laboratories, and refinement of experimental techniques has led to the publication of laws that supersede earlier ones. In addition, there are unpublished data from ongoing research that also amend the constitutive laws. Here we compile the most current laboratory-derived flow laws for water ice phases I, II, III, V, and VI, and ice I mixtures with hard particulates. The rheology of interest is mainly that of steady state, and the conditions reviewed are the pressures and temperatures applicable to the surfaces and interiors of icy moons of the outer solar system. Advances in grain-size-dependent creep in ices I and II as well as in phase transformations and metastability under differential stress are also included in this compilation. At laboratory strain rates the several ice polymorphs are rheologically distinct in terms of their stress, temperature, and pressure dependencies but, with the exception of ice III, have fairly similar strengths. Hard particulates strengthen ice I significantly only at high particulate volume fractions. Ice III has the potential for significantly affecting mantle dynamics because it is much weaker than the other polymorphs and its region of stability, which may extend metastably well into what is nominally the ice II field, is located near likely geotherms of large icy moons. Copyright 1997 by the American Geophysical Union.

  12. In-situ Creep Testing Capability Development for Advanced Test Reactor

    SciTech Connect

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  13. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    SciTech Connect

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.

    1998-10-12

    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production.

  14. Creep of Mg-PSZ at room temperature

    SciTech Connect

    Finlayson, T.R. . Dept. of Physics); Gross, A.K. . Dept. of Materials Engineering); Griffiths, J.R. . Div. of Manufacturing Technology); Kisi, E.H. . Faculty of Science and Technology)

    1994-03-01

    Transient [beta], or Andrade, creep occurs when magnesia-partially-stabilized zirconia is loaded in tension at room temperature. The equation relating the longitudinal or tensile creep strain [var epsilon][sub l][sup c] to the tensile stress, [sigma], and to the time, t, has been determined to be [var epsilon][sub l][sup c] = A[sigma][sup m]t[sup n] in which the constants A, m, and n depend on the phase content of the zirconia. Observations are reported of the tetragonal-to-monoclinic and tetragonal-to-orthorhombic phase transformations which occur during creep: there is also a progressive development of microcracking. It is shown that a combination of these phenomena can account for the observed creep behavior.

  15. Creep Behavior of a New Cast Austenitic Alloy

    SciTech Connect

    Shingledecker, John P; Maziasz, Philip J; Evans, Neal D; Pollard, Michael J

    2007-01-01

    A new cast austenitic alloy, CF8C-Plus, has been developed by Oak Ridge National Laboratory (ORNL) and Caterpillar for a wide range of high temperature applications including diesel exhaust components and turbine casings. The creep strength of the CF8C-Plus steel is much greater than that of the standard cast CF8C stainless steel and is comparable to the highest strength wrought commercial austenitic stainless steels and alloys, such as NF709. The creep properties of CF8C-Plus are discussed in terms of the alloy design methodology and the evaluation of some long-term creep tested specimens (over 20,000 hours). Microcharacterization shows that the excellent creep strength is due mainly to the precipitation of very fine nano-scale and stable MC carbides, without the formation of deleterious intermetallic phases.

  16. Tantalum alloys resist creep deformation at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1966-01-01

    Dispersion-strengthened tantalum-base alloys possess high strength and good resistance to creep deformation at elevated temperatures in high vacuum environments. They also have ease of fabrication, good weldability, and corrosion resistance to molten alkali metals.

  17. Creep-fatigue analysis by strain-range partitioning.

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Hirschberg, M. H.

    1971-01-01

    The framework of a new method is outlined for treating creep-fatigue behavior of metals. Inelastic strain-ranges are partitioned into the components of (1) completely reversed plasticity, (2) tensile plasticity reversed by compressive creep, or tensile creep reversed by compressive plasticity, and (3) completely reversed creep. Each of these components is shown to be related to cyclic life by a Manson-Coffin type power-law equation. A linear life fraction rule is used to combine the damaging effects of the individual components enabling the prediction of life. Test results are presented for a 2.25 Cr-1 Mo steel as well as limited information for a Type 316 stainless steel.

  18. An Improved Correlation between Impression and Uniaxial Creep

    SciTech Connect

    Hsueh, Chun-Hway; Miranda, Pedro; Becher, Paul F

    2006-01-01

    A semiempirical correlation between impression and uniaxial creep has been established by Hyde et al. [Int. J. Mech. Sci. 35, 451 (1993) ] using finite element results for materials exhibiting general power-law creep with the stress exponent n in the range 2 {<=} n {<=} 15. Here, we derive the closed-form solution for a special case of viscoelastic materials, i.e., n = 1, subjected to impression creep and obtain the exact correlation between impression and uniaxial creep. This analytical solution serves as a checkpoint for the finite element results. We then perform finite element analyses for the general case to derive a semiempirical correlation, which agrees well with both analytical viscoelastic results and the existing experimental data. Our improved correlation agrees with the correlation of Hyde et al. for n {>=} 4, and the difference increases with decreasing n for n<4.

  19. Diffusion-controlled creep in mixed-conducting oxides

    SciTech Connect

    Routbort, J.L.; Goretta, K.C.; Cook, R.E.; Wolfenstine, J.; Armstrong, T.R.; Clauss, C.; Dominguez-Rodriguez, A.

    1996-06-01

    Steady-state creep rate of the mixed conducting oxides La{sub 1-x}Sr{sub x}MnO{sub 3} (x=0.1, 0.15, 0.25) and La{sub 0.7}Ca{sub 0.3}MnO{sub 3} has been investigated between 1150 and 1300 C. Creep parameters and TEM indicate that deformation is controlled by lattice diffusion of one of the cations. Dependence of creep rate on Sr concentration, combined with a point-defect model, confirms this hypothesis; however the oxygen partial pressure dependence of creep (from 10{sup -1} to 2x10{sup 4} Pa) cannot be accounted for within the framework of a simple point-defect model.

  20. The role of professional societies in limiting indication creep.

    PubMed

    Riggs, Kevin R; Ubel, Peter A

    2015-02-01

    New technology is a major driver of health care inflation. One contributor to this inflation is indication creep, the diffusion of interventions that have been proven beneficial in specific patient populations into untested broader populations who may be less likely to benefit. Professional societies sometimes promote indication creep, as we illustrate with the case of therapeutic hypothermia after cardiac arrest. Professional societies are in a unique position to limit indication creep. We propose that, at a minimum, professional societies should refrain from recommending new diagnostic and therapeutic technologies in their guidelines until they have been proven beneficial in the targeted populations. In some circumstances, professional societies could be more active in combatting indication creep, either recommending against expanded use of clinical interventions when evidence is lacking, or coordinating efforts to collect data in these broader populations.

  1. Creep behavior of 6 micrometer linear low density polyethylene film

    NASA Technical Reports Server (NTRS)

    Simpson, J. M.; Schur, W. W.

    1993-01-01

    Creep tests were performed to provide material characteristics for a 6.4-micron polyethylene film used to construct high altitude balloons. Results suggest simple power law relationships are adequate for stresses below about 4.83 MPa.

  2. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  3. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  4. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  5. Irradiation creep properties of a near-isotropic graphite

    NASA Astrophysics Data System (ADS)

    Oku, T.; Fujisaki, K.; Eto, M.

    1988-05-01

    Two irradiation creep tests on near-isotropic graphite (SM1-24) for HTGRs were performed at around 900 °C in the JMTR. Neutron fluences ranged from 5.50 × 10 24 n/m 2 (E> 29 fJ) to 12.4 × 10 24 n/m 2 (E> 29 fJ) , depending on the position of the specimen. Irradiation creep strain (ɛ 0) was obtained from the equation ɛ c = (σ/E 0)[1-exp(-bΦ)] + KσΦ , by measuring dimensional changes in unloaded and loaded tensile specimens before and after irradiation, where E 0 is the Young's modulus before irradiation, K the creep coefficient, and b a constant. The value of K was estimated assuming that 1-exp(-bΦ) ˜-1 over the range of neutron fluence tested here. Mercury porosimetry was employed to add consideration to the mechanism of irradiation creep using unloaded and loaded specimens. The irradiation creep strain is proportional to stress and to neutron fluence for larger fluences. The irradiation creep coefficient is in inverse proportion to Young's modulus before irradiation, KE 0 = 0.247 . From the values of the average Young's moduli before irradiation for two irradiation creep tests, the creep coefficient was estimated to be 3.03 × 10 -29 (MPa/m 2) -1 and 3.18 × 10 -29(MPa/m 2) -1, respectively. The mercury pore diameter distribution changes upon irradiation, that is pores smaller than 10 μm disappear partly, the total porosity decreases, and the stress tends to facilitate disappearance of the pores. The Young's modulus increases as a result of irradiation. The increase in Young's modulus after a creep tests is smaller than that after irradiation only. The experimental result obtained here is consistent with the explanation for the mechanism of irradiation creep in which two to six interstitial clusters as a pinning point to basal slip disappear during the irradiation creep test.

  6. Magnetic measurement of creep damage: modeling and measurement

    NASA Astrophysics Data System (ADS)

    Sablik, Martin J.; Jiles, David C.

    1996-11-01

    Results of inspection of creep damage by magnetic hysteresis measurements on Cr-Mo steel are presented. It is shown that structure-sensitive parameters such as coercivity, remanence and hysteresis loss are sensitive to creep damage. Previous metallurgical studies have shown that creep changes the microstructure of he material by introducing voids, dislocations, and grain boundary cavities. As cavities develop, dislocations and voids move out to grain boundaries; therefore, the total pinning sources for domain wall motion are reduced.This, together with the introduction of a demagnetizing field due to the cavities, results in the decrease of both coercivity, remanence and hence, concomitantly, hysteresis loss. Incorporating these structural effects into a magnetomechanical hysteresis model developed previously by us produces numerical variations of coercivity, remanence and hysteresis loss consistent with what is measured. The magnetic model has therefore been used to obtain appropriately modified magnetization curves for each element of creep-damaged material in a finite element (FE) calculation. The FE calculation has been used to simulate magnetic detection of non-uniform creep damage around a seam weld in a 2.25 Cr 1Mo steam pipe. In particular, in the simulation, a magnetic C-core with primary and secondary coils was placed with its pole pieces flush against the specimen in the vicinity of the weld. The secondary emf was shown to be reduced when creep damage was present inside the pipe wall at the cusp of the weld and in the vicinity of the cusp. The calculation showed that the C- core detected creep damage best if it spanned the weld seam width and if the current in the primary was such that the C- core was not magnetically saturated. Experimental measurements also exhibited the dip predicted in emf, but the measurements are not yet conclusive because the effects of magnetic property changes of weld materials, heat- affected material, and base material have

  7. The high temperature creep behavior of oxides and oxide fibers

    NASA Technical Reports Server (NTRS)

    Jones, Linda E.; Tressler, Richard E.

    1991-01-01

    A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.

  8. Theory of collective flux creep. [in high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Feigel'man, M. V.; Geshkenbein, V. B.; Larkin, A. I.; Vinokur, V. M.

    1989-01-01

    The nature of flux-creep phenomena in the case of collective pinning by weak disorder is discussed. The Anderson concept of flux bundle is explored and developed. The dependence of the bundle activation barrier U on current j is studied and is shown to be of power-law type: U(j) is proportional to j exp -alpha. The values of exponent alpha for the different regimes of collective creep are found.

  9. An Evaluation for Creep of 3013 Inner Can Lids

    SciTech Connect

    DAUGHERTY, W. L.; GIBBS, K. M.; LOUTHAN JR., M. R.; DUNN, K. A.

    2005-09-01

    The deflection of Type 304L austenitic stainless steel can lids on inner 3013 containers is monitored to identify any buildup of pressure within the container. This paper provides the technical basis to conclude that creep-induced deformation of these lids will be insignificant unless the temperature of storage exceeds 400 C. This conclusion is based on experimental literature data for Types 304 and 316 stainless steel and on a phenomenological evaluation of potential creep processes.

  10. Models of Anisotropic Creep in Integral Wing Panel Forming Processes

    NASA Astrophysics Data System (ADS)

    Oleinikov, A. I.; Oleinikov, A. A.

    2016-08-01

    For a sufficiently wide range of stresses the titanic and aluminummagnesium alloys, as a rule, strained differently in the process of creep under tension and compression along a fixed direction. There are suggested constitutive relations for the description of the steady-state creep of transversely isotropic materials with different tension and compression characteristics. Experimental justification is given to the proposed constitutive equations. Modeling of forming of wing panels of the aircraft are considered.

  11. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  12. Transient creep and semibrittle behavior of crystalline rocks

    USGS Publications Warehouse

    Carter, N.L.; Kirby, S.H.

    1978-01-01

    We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.

  13. Verification of creep performance of a ceramic gas turbine blade

    SciTech Connect

    Lin, H.T.; Becher, P.F.; Ferber, M.K.; Parthasarathy, V.

    1998-03-01

    Tensile creep tests were carried out on a Norton NT164 silicon nitride ceramic turbine blade containing 4 wt. % Y{sub 2}O{sub 3} sintering additive at 1,370 C in air under selected stress levels. The objective of this study was to measure the creep properties of test specimens extracted from a complex shaped ceramic gas turbine blade to verify the response of actual components. The creep results indicated that specimens from both the airfoil and dovetail sections exhibited creep rates that were about 4 to 100 times higher than those obtained from both the buttonhead and dogbone creep specimens machined from the developmental billets fabricated with the same composition and processing procedures. Electron microscopy analyses suggested that high creep rates and short lifetimes observed in specimens extracted from the turbine blade resulted from a higher glassy phase(s) content and smaller number density of elongated grain microstructure. Silicon nitride ceramics with an in-situ reinforced elongated microstructure have been the primary candidates for both advanced automotive and land-based gas turbine engine applications.

  14. Cumulative creep fatigue damage in 316 stainless steel

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1989-01-01

    The cumulative creep-fatigue damage behavior of 316 stainless steel at 1500 F was experimentally established for the two-level loading cases of fatigue followed by fatigue, creep fatigue followed by fatigue, and fatigue followed by creep fatigue. The two-level loadings were conducted such that the lower life (high strain) cycling was applied first for a controlled number of cycles and the higher life (low strain) cycling was conducted as the second level to failure. The target life levels in this study were 100 cycles to failure for both the fatigue and creep-fatigue lowlife loading, 5000 cycles to failure for the higher life fatigue loading and 10,000 cycles to failure for the higher life creep-fatigue loading. The failed specimens are being examined both fractographically and metallographically to ascertain the nature of the damaging mechanisms that produced failure. Models of creep-fatigue damage accumulation are being evaluated and knowledge of the various damaging mechanisms is necessary to ensure that predictive capability is instilled in the final failure model.

  15. Permeability Evolution of Granite Gneiss During Triaxial Creep Tests

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, W. Y.; Wang, H. L.; Wang, W.; Wang, R. B.

    2016-09-01

    Permeability is an important factor for seepage analysis of rock material, and a key factor in ensuring the safety of underground works. In this study, the permeability evolution of granite gneiss during triaxial creep tests was investigated. In the context of an underground oil storage cavern in China, a series of hydro-mechanical coupling creep tests were conducted on rock cores of granite gneiss at three different pore pressures to reveal the effect of pore pressure on the permeability evolution and to investigate the correlation between the permeability and volumetric strain during the creep process. During the creep tests, the permeability decreases in the initial loading phase. At all deviatoric stress levels, the permeability remains stable in the steady creep stage and increases rapidly in the accelerated creep stage. Based on the test data, the initial permeability, steady permeability and peak permeability at various stress levels are defined. The effect of pore pressure on the permeability is captured by a linear model. In addition, the relationship between permeability and volumetric strain can be described as a process divided into three phases, with different functions in each phase.

  16. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  17. Micromechanics of Brittle Creep Under Triaxial Loading Conditions

    NASA Astrophysics Data System (ADS)

    Meredith, P. G.; Brantut, N.; Baud, P.; Heap, M. J.

    2011-12-01

    In the upper crust, the chemical influence of pore water promotes time-dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail (i) at stresses far below their short-term failure strength, and (ii) even at constant applied stress ("brittle creep"). Here we provide a micromechanical model and experimental results describing time-dependent brittle creep of water-saturated granite under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of microcracks in compression are derived from the sliding wing-crack model of Ashby and Sammis (1990). Crack length evolution is computed from Charles' law. The macroscopic strain and strain rates are then computed from the change in energy potential due to microcrack growth. They are non-linear, and compare well with complementary experimental results obtained on granite samples. Primary creep (decelerating strain) corresponds to decreasing crack growth rate , due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as merely an inflexion between the two end-member phases.

  18. Creep properties of Pb-free solder joints

    SciTech Connect

    Song, H.G.; Morris Jr., J.W.; Hua, F.

    2002-04-01

    Describes the creep behavior of three Sn-rich solders that have become candidates for use in Pb-free solder joints: Sn-3.5Ag, Sn-3Ag-0.5Cu and Sn-0.7Cu. The three solders show the same general behavior when tested in thin joints between Cu and Ni/Au metallized pads at temperatures between 60 and 130 C. Their steady-state creep rates are separated into two regimes with different stress exponents(n). The low-stress exponents range from {approx}3-6, while the high-stress exponents are anomalously high (7-12). Strikingly, the high-stress exponent has a strong temperature dependence near room temperature, increasing significantly as the temperature drops from 95 to 60 C. The anomalous creep behavior of the solders appears to be due to the dominant Sn constituent. Joints of pure Sn have stress exponents, n, that change with stress and temperature almost exactly like those of the Sn-rich solder joints. Research on creep in bulk samples of pure Sn suggests that the anomalous temperature dependence of the stress exponent may show a change in the dominant mechanism of creep. Whatever its source, it has the consequence that conventional constitutive relations for steady-state creep must be used with caution in treating Sn-rich solder joints, and qualification tests that are intended to verify performance should be carefully designed.

  19. The activation energy for creep of columbium /niobium/.

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulden, M. E.

    1973-01-01

    The activation energy for creep of nominally pure columbium (niobium) was determined in the temperature range from 0.4 to 0.75 T sub M by measuring strain rate changes induced by temperature shifts at constant stress. A peak in the activation energy vs temperature curve was found with a maximum value of 160 kcal/mole. A pretest heat treatment of 3000 F for 30 min resulted in even higher values of activation energy (greater than 600 kcal/mole) in this temperature range. The activation energy for the heat-treated columbium (Nb) could not be determined near 0.5 T sub M because of unusual creep curves involving negligible steady-state creep rates and failure at less than 5% creep strain. It is suggested that the anomalous activation energy values and the unusual creep behavior in this temperature range are caused by dynamic strain aging involving substitutional atom impurities and that this type of strain aging may be in part responsible for the scatter in previously reported values of activation energy for creep of columbium (Nb) near 0.5 T sub M.

  20. Influence of cold work level on the irradiation creep and creep rupture of titanium-modified austenitic stainless steels

    SciTech Connect

    Garner, F.A.; Hamilton, M.L. ); Eiholzer, C.R. ); Toloczko, M.B. ); Kumar, A.S. )

    1992-06-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% form the conventional 20% level was detrimental to its performance, especially for applications above 550{degrees}C. The 20% cold work level is preferable to the 10% level, in terms of both in- reactor creep rapture response and initial strength.

  1. Irradiation creep and creep rupture of titanium-modified austenitic stainless steels and their dependence on cold work level

    SciTech Connect

    Garner, F.A.; Hamilton, M.L.; Eiholzer, C.R.; Toloczko, M.B.; Kumar, A.S.

    1991-11-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% from the conventional 20% level was detrimental to its performance, especially for applications above 550{degrees}c. The 20% cold work level is preferable to the 10% level, in terms of both in-reactor creep rupture response and initial strength.

  2. Stochastic modeling of crack initiation and short-crack growth under creep and creep-fatigue conditions

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ghosn, Louis J.; Ohtani, Ryuichi

    1992-01-01

    A simplified stochastic model is proposed for crack initiation and short-crack growth under creep and creep-fatigue conditions. Material inhomogeneity provides the random nature of crack initiation and early growth. In the model, the influence of microstructure is introduced by the variability of: (1) damage accumulation along grain boundaries, (2) critical damage required for crack initiation or growth, and (3) the grain-boundary length. The probabilities of crack initiation and growth are derived by using convolution integrals. The model is calibrated and used to predict the crack density and crack-growth rate of short cracks of 304 stainless steel under creep and creep-fatigue conditions. The mean-crack initiation lives are predicted to be within an average deviation of about 10 percent from the experimental results. The predicted comulative distributions of crack-growth rate follow the experimental data closely. The applicability of the simplified stochastic model is discussed and the future research direction is outlined.

  3. Stochastic modeling of crack initiation and short-crack growth under creep and creep-fatigue conditions

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ghosn, Louis J.; Ohtani, Ryuichi

    1989-01-01

    A simplified stochastic model is proposed for crack initiation and short-crack growth under creep and creep-fatigue conditions. Material inhomogeneity provides the random nature of crack initiation and early growth. In the model, the influence of microstructure is introduced by the variability of: (1) damage accumulation along grain boundaries, (2) critical damage required for crack initiation or growth, and (3) the grain-boundary length. The probabilities of crack initiation and growth are derived by using convolution integrals. The model is calibrated and used to predict the crack density and crack-growth rate of short cracks of 304 stainless steel under creep and creep-fatigue conditions. The mean-crack initiation lives are predicted to be within an average deviation of about 10 percent from the experimental results. The predicted cumulative distributions of crack-growth rate follow the experimental data closely. The applicability of the simplified stochastic model is discussed and the future research direction is outlined.

  4. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  5. A Statistical Test for Identifying the Number of Creep Regimes When Using the Wilshire Equations for Creep Property Predictions

    NASA Astrophysics Data System (ADS)

    Evans, Mark

    2016-10-01

    A new parametric approach, termed the Wilshire equations, offers the realistic potential of being able to accurately lift materials operating at in-service conditions from accelerated test results lasting no more than 5000 hours. The success of this approach can be attributed to a well-defined linear relationship that appears to exist between various creep properties and a log transformation of the normalized stress. However, these linear trends are subject to discontinuities, the number of which appears to differ from material to material. These discontinuities have until now been (1) treated as abrupt in nature and (2) identified by eye from an inspection of simple graphical plots of the data. This article puts forward a statistical test for determining the correct number of discontinuities present within a creep data set and a method for allowing these discontinuities to occur more gradually, so that the methodology is more in line with the accepted view as to how creep mechanisms evolve with changing test conditions. These two developments are fully illustrated using creep data sets on two steel alloys. When these new procedures are applied to these steel alloys, not only do they produce more accurate and realistic looking long-term predictions of the minimum creep rate, but they also lead to different conclusions about the mechanisms determining the rates of creep from those originally put forward by Wilshire.

  6. Porous Compaction in Transient Creep Regime and Implications for Melt and Petroleum Extraction

    NASA Astrophysics Data System (ADS)

    Chauveau, B.; Kaminski, E.

    2007-12-01

    Liquid segregation through a porous medium depends on the ability of the matrix to deform and compact. The key question of the rheological behavior of the porous matrix has been mainly investigated for Newtonian and simple visco-elastic Maxwell-like rheologies. Earth's materials have a more complex rheological behavior, in which the balance between the elastic and viscous contribution to the deformation is time-dependent. In this paper, we propose a Burger-type model to investigate the implications of transient rheology for viscous compaction of a porous material. The model is characterized by three dimensionless parameters: (1) the Deborah number, De, defined as the ratio of an elastic time scale over the compaction time scale, (2) the ratio of the transient and steady viscosities, λμ, and (3) the ratio of the transient and steady rigidity moduli, λG. We perform 1-D numerical experiments to illustrate the general behavior of compaction in a transient creep regime as a function of the model parameters. For small De (De< 10-2) the compaction occurs in the classical viscous mode and solitary waves (magmons) are generated. For larger De, the compaction mechanism is mainly controlled by λμ. For small transient viscosity (λμ → 0), compaction occurs in an elastic mode and shock waves are generated. For increasing λμ, two new regimes are observed, first "shaggy" shock waves and then "polytons". The threshold value of λμ that defines the two regimes is a decreasing function of De. Shaggy shock waves are characterized by the presence of secondary peaks at the wave propagation front. The length-scale of the peaks is a decreasing function of λG and their amplitude decreases along the propagation. In the polytons regime, the peaks tend to detach and mimic the behavior of solitary waves. Based on a discussion of the likely values of the model parameters for the Earth, we conclude that the influence of transient creep should not be neglected. Polytons and shaggy

  7. Comprehensive Creep and Thermophysical Performance of Refractory Materials

    SciTech Connect

    Ferber, M.K.; Wereszczak, A.; Hemrick, J.A.

    2006-06-29

    Furnace designers and refractory engineers recognize that optimized furnace superstructure design and refractory selection are needed as glass production furnaces are continually striving toward greater output and efficiencies. Harsher operating conditions test refractories to the limit, while changing production technology (such as the conversion to oxy-fuel from traditional air-fuel firing) can alter the way the materials perform [1-3]. Refractories for both oxy- and air-fuel fired furnace superstructures (see Fig. 1) are subjected to high temperatures that may cause them to creep excessively or subside during service if the refractory material is not creep resistant, or if it is subjected to high stress, or both. Furnace designers can ensure that superstructure structural integrity is maintained if the creep behavior of the refractory material is well understood and well represented by appropriate engineering creep models. Several issues limit the abilities of furnace designers to (1) choose the optimum refractory for their applications, (2) optimize the engineering design, or (3) predict the service mechanical integrity of their furnace superstructures. Published engineering creep data are essentially nonexistent for almost all commercially available refractories used for glass furnace superstructures. The limited data that do exist are supplied by the various refractory suppliers. Unfortunately, the suppliers generally have different ways of conducting their mechanical testing, and they interpret and report their data differently. This inconsistency makes it hard for furnace designers to draw fair comparisons between competing grades of candidate refractories. Furthermore, the refractory suppliers' data are often not available in a form that can be readily used for furnace design or for the prediction and design of long-term structural integrity of furnace superstructures. As a consequence, the U.S. Department of Energy (DOE) Industrial Technology Program (ITP

  8. Creep healing of fractures in rock salt

    SciTech Connect

    Costin, L. S.; Wawersik, W. R.

    1980-08-01

    Fracture and healing experiments were performed on specimens of bedded salt from the Salado formation, southeastern New Mexico. Short rod specimens (100 mm in diameter) were loaded to failure in tension. During each test, a crack was initiated along the axis of the specimen. The fracture toughness of the salt was determined from the resulting load-crack opening displacement record. After the test, each specimen was pieced back together, jacketed and placed in a pressure vessel under hydrostatic pressure for several days. The confining pressure (10 to 35 MPa), temperature (22 to 100/sup 0/C) and healing time (4 to 8 days) were varied to determine the effect of each on the healing process. Upon removal from the pressure vessel, each sample was retested and the toughness of the healed fracture was determined. Results show that the salt specimens regained 70 to 80% of their original strength under all conditions except at the lowest temperature and pressure where specimens regained only 20 to 30% of their original strength. It is suspected that the primary mechanism involved is creep of asperities along the fracture surface which forms an interlocking network. Thus, the healing pressure is probably the most significant variable.

  9. Creep and fracture of a model yoghurt

    NASA Astrophysics Data System (ADS)

    Manneville, Sebastien; Leocmach, Mathieu; Perge, Christophe; Divoux, Thibaut

    2014-11-01

    Biomaterials such as protein or polysaccharide gels are known to behave qualitatively as soft solids and to rupture under an external load. Combining optical and ultrasonic imaging to shear rheology we show that the failure scenario of a model yoghurt, namely a casein gel, is reminiscent of brittle solids: after a primary creep regime characterized by a macroscopically homogeneous deformation and a power-law behavior which exponent is fully accounted for by linear viscoelasticity, fractures nucleate and grow logarithmically perpendicularly to shear, up to the sudden rupture of the gel. A single equation accounting for those two successive processes nicely captures the full rheological response. The failure time follows a decreasing power-law with the applied shear stress, similar to the Basquin law of fatigue for solids. These results are in excellent agreement with recent fiber-bundle models that include damage accumulation on elastic fibers and exemplify protein gels as model, brittle-like soft solids. Work funded by the European Research Council under Grant Agreement No. 258803.

  10. Field and experimental evidence for coseismic ruptures along shallow creeping faults in forearc sediments of the Crotone Basin, South Italy

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Aldega, Luca; De Paola, Nicola; Faoro, Igor; Storti, Fabrizio

    2014-05-01

    Large seismic slip occurring along shallow creeping faults in tectonically active areas represents an unsolved paradox, which is largely due to our poor understanding of the mechanics governing creeping faults, and to the lack of documented geological evidence showing how coseismic rupturing overprints creep in near-surface conditions. In this contribution we integrate field, petrophysical, mineralogical and friction data to characterize the signature of coseismic ruptures propagating along shallow creeping faults affecting unconsolidated forearc sediments of the seismically active Crotone Basin, in South Italy. Field observations of fault zones show widespread foliated cataclasites in fault cores, locally overprinted by sharp slip surfaces decorated by thin (0.5-1.5 cm) black gouge layers. Compared to foliated cataclasites, black gouges have much lower grain size, porosity and permeability, which may have facilitated slip weakening by thermal fluid pressurization. Moreover, black gouges are characterized by distinct mineralogical assemblages compatible with high temperatures (180-200°C) due to frictional heating during seismic slip. Foliated cataclasites and black gouges were also produced by laboratory friction experiments performed on host sediments at sub-seismic (≤ 0.1 m/s) and seismic (1 m/s) slip rates, respectively. Black gouges display low friction coefficients (0.3) and velocity-weakening behaviours, as opposed to high friction coefficients (0.65) and velocity-strengthening behaviours shown by the foliated cataclasites. Our results show that narrow black gouges developed within foliated cataclasites represent a potential diagnostic marker for episodic seismic activity in shallow creeping faults. These findings can help understanding the time-space partitioning between aseismic and seismic slip of faults at shallow crustal levels, impacting on seismic hazard evaluation of subduction zones and forearc regions affected by destructive earthquakes and

  11. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    NASA Astrophysics Data System (ADS)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-06-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{{s}} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  12. A new characterization approach for studying relationships between microstructure and creep damage mechanisms of uranium dioxide

    NASA Astrophysics Data System (ADS)

    Iltis, X.; Ben Saada, M.; Mansour, H.; Gey, N.; Hazotte, A.; Maloufi, N.

    2016-06-01

    Four batches of UO2 pellets were studied comparatively, before and after creep tests, to evaluate a characterization methodology aimed to determine the links between microstructure and damage mechanisms induced by compressive creep of uranium dioxide at 1500 °C. They were observed by means of scanning electron microscopy (SEM) coupled with image analysis, to quantify their fabrication porosity and the occurrence of inter-granular cavities after creep, and electron back scattered diffraction (EBSD), especially to characterize sub-structures development associated with plastic deformation. Electron channeling contrast imaging (ECCI) was also applied to evidence dislocations, at an exploratory stage, on one of the deformed pellets. This approach helped to identify and quantify microstructural differences between batches. Their as-fabricated microstructures differed in terms of grain size and fabrication porosity distribution. The pellets which had the lowest strain rates were those with the largest number of intra-granular pores, regardless of their grain size. They also exhibited less numerous sub-boundaries within the grains. These first results clearly illustrate the benefit of systematic examinations of crept UO2 pellets at a mesoscopic scale, by SEM and EBSD, to study their deformation process. In addition, ECCI appears as a powerful tool to evidence local dislocations arrangements, in bulk samples. Even if the sampling was limited, the results of this study also tend to indicate that the intra-granular pores population, resulting from the manufacturing of the samples by powder metallurgy, could have a significant influence on the UO2 viscoplastic deformation mechanisms.

  13. Adaptive re-tracking algorithm for retrieval of water level variations and wave heights from satellite altimetry data for middle-sized inland water bodies

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey

    by the improved threshold algorithm. The possibility of determination of significant wave height (SWH) in the lakes through a two-step adaptive retracking is also studied. Calculation of the parameter SWH for Gorky Reservoir from May 2010 to March 2014 showed the anomalously high values of SWH, derived from altimetry data [15], which means that the calibration of this SWH for inland waters is required. Calibration ground measurements were performed at Gorky reservoir in 2011-2013, when wave height, wind speed and air temperature were collected by equipment placed on a buoy [15] collocated with Jason-1 and Jason-2 altimetry data acquisition. The results obtained on the basis of standard algorithm and method for adaptive re-tracking at Rybinsk , Gorky , Kuibyshev , Saratov and Volgograd reservoirs and middle-sized lakes of Russia: Chany, Segozero, Hanko, Oneko, Beloye, water areas of which are intersected by the Jason-1,2 tracks, were compared and their correlation with the observed data of hydrological stations in reservoirs and lakes was investigated. It was noted that the Volgograd reservoir regional re-tracking to determine the water level , while the standard GDR data are practically absent. REFERENCES [1] AVISO/Altimetry. User Handbook. Merged TOPEX/ POSEIDON Products. Edition 3.0. AVISO. Toulouse., 1996. [2] C.M. Birkett et al., “Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry,” J. Geophys. Res., vol. 107, pp. 8059, 2002. [3] G. Brown, “The average impulse response of a rough surface and its applications,” IEEE Trans. Antennas Propagat., vol. 25, pp. 67-74, 1977. [4] I.O. Campos et al., “Temporal variations of river basin waters from Topex/Poseidon satellite altimetry. Application to the Amazon basin,” Earth and Planetary Sciences, vol. 333, pp. 633-643, 2001. [5] A.V. Kouraev et al., “Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992-2002),” Rem. Sens. Environ., vol. 93, pp. 238-245, 2004

  14. Does light attract piglets to the creep area?

    PubMed

    Larsen, M L V; Pedersen, L J

    2015-06-01

    Hypothermia, experienced by piglets, has been related to piglet deaths and high and early use of a heated creep area is considered important to prevent hypothermia. The aims of the present study were to investigate how a newly invented radiant heat source, eHeat, would affect piglets' use of the creep area and whether light in the creep area works as an attractant on piglets. A total of 39 sows, divided between two batches, were randomly distributed to three heat source treatments: (1) standard infrared heat lamp (CONT, n=19), (2) eHeat with light (EL, n=10) and (3) eHeat without light (ENL, n=10). Recordings of piglets' use of the creep area were made as scan sampling every 10 min for 3 h during two periods, one in daylight (0900 to 1200 h) and one in darkness (2100 to 2400 h), on day 1, 2, 3, 7, 14 and 21 postpartum. On the same days, piglets were weighted. Results showed an interaction between treatment and observation period (P<0.05) with a lower use of the creep area during darkness compared with daylight for CONT and EL litters, but not for ENL litters. Piglets average daily weight gain was not affected by treatment, but was positively correlated with piglets' birth weight and was lower in batch 1 compared with batch 2. Seen from the present results, neither eHeat nor light worked as an attractant on piglets; in contrast, piglets preferred to sleep in the dark and it would therefore be recommended to turn off the light in the creep area during darkness. Heating up the creep area without light can be accomplished by using a radiant heat source such as eHeat in contrast to the normally used light-emitting infrared heat lamp.

  15. Development of improved low-strain creep strength in Cabot alloy R-41 sheet. [nickel base sheet alloy for reentry shielding

    NASA Technical Reports Server (NTRS)

    Rothman, M. F.

    1984-01-01

    The feasibility of improving the low-strain creep properties of a thin gauge nickel base sheet alloy through modified heat treatment or through development of a preferred crystal-lographic texture was investigated. The basic approach taken to improve the creep strength of the material by heat treatment was to increase grain size by raising the solution treatment temperature for the alloy to the range of 1420 K to 1475 K (2100 F to 2200 F). The key technical issue involved was maintenance of adequate tensile ductility following the solutioning of M6C primary carbides during the higher temperature solution treatment. The approach to improve creep properties by developing a sheet texture involved varying both annealing temperatures and the amount of prior cold work. Results identified a heat treatment for alloy R-14 sheet which yields a substantial creep-life advantage at temperatures above 1090 K (1500 F) when compared with material given the standard heat treatment. At the same time, this treatment provides reasonable tensile ductility over the entire temperature range of interest. The mechanical properties of the material given the new heat treatment are compared with those for material given the standard heat treatment. Attempts to improve creep strength by developing a sheet texture were unsuccessful.

  16. Creep Properties of NiAl-1Hf Single Crystals Re-Investigated

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Locci, Ivan E.; Darolia, Ram; Bowman, Randy R.

    2000-01-01

    ingots were subjected to several heat treatment schedules, examined by transmission electron microscopy, and tested in both compression and tension. An example of the microstructure found in a [001]-oriented NiAl-1Hf specimen after a solution treatment at 1317 C for 50 hr followed by air cooling is illustrated in the image on the left, where the NiAl matrix contains a uniform distribution of nanometer-scale Gphase (Ni16Hf6Si7) precipitates. Other heat treating schedules produced microstructures with nanometer-sized G-phase cubes and plates or, in an extreme case, produced a microstructure with all the G-phase converted to Heusler (Ni2AlHf) particles. The results of 1027 C creep strength and strain rate testing are illustrated which summarizes data from tensile and compressive testing of samples cut from all four NiAl-1Hf ingots and subjected to a variety of heat treatment schedules. With one exception, all the strength values lie in a narrow band that spans six orders of magnitude in strain rate. The only factor that produced results outside of this band was the heat treatment schedule that dissolved all the G-phase and replaced it with Heusler precipitates. The results portrayed in this figure lead to the important practical conclusion that the elevated-temperature creep properties of NiAl-1Hf single crystals are reproducible and are not affected by small variations in alloy chemistry from ingot to ingot or by different initial distributions of G-phase in the heat-treated alloy. The only variable in this study that produced a significant and delerious effect on mechanical strength was a post-solution heat treatment that lead to the complete disappearance of the G-phase in favor of Heusler precipitates.

  17. Improved Creep Behavior of a High Nitrogen Nb-Stabilized 15Cr-15Ni Austenitic Stainless Steel Strengthened by Multiple Nanoprecipitates

    NASA Astrophysics Data System (ADS)

    Ha, Vu The; Jung, Woo Sang; Suh, Jin Yoo

    2011-11-01

    Austenitic stainless steels are expected to be a major material for boiler tubes and steam turbines in future ultra-supercritical (USC) fossil power plants. It is of great interest to maximize the creep strength of the materials without increasing the cost. Precipitation strengthening was found to be the best and cheapest way for increasing the creep strength of such steels. This study is concerned with improving creep properties of a high nitrogen Nb-stabilized 15Cr-15Ni austenitic alloy through introducing a high number of nanosized particles into the austenitic matrix. The addition of around 4 wt pct Mn and 0.236 wt pct N into the 15Cr-15Ni-0.46Si-0.7Nb-1.25Mo-3Cu-Al-B-C matrix in combination with a special multicycled aging-quenching heat treatment resulted in the fine dispersion of abundant quantities of thermally stable (Nb,Cr,Fe)(C,N) precipitates with sizes of 10 to 20 nm. Apart from the carbonitrides, it was found that a high number of coherent copper precipitates with size 40 to 60 nm exist in the microstructure. Results of creep tests at 973 K and 1023 K (700 °C and 750 °C) showed that the creep properties of the investigated steel are superior compared to that of the commercial NF709 alloy. The improved creep properties are attributed to the improved morphology and thermal stability of the carbonitrides as well as to the presence of the coherent copper precipitates inside the austenitic matrix.

  18. Recent progress in the modeling of high-temperature creep and its application to alloy development

    NASA Astrophysics Data System (ADS)

    Shi, L.; Northwood, D. O.

    1995-04-01

    Recent progress in the understanding of high-temperature creep of alloys is discussed in the context of theoretical modeling and its application to alloy development. Emphasis is placed upon those engineering alloys specifically designed for high-temperature applications, such as precipitation and dispersion-strengthened (DS) alloys and metal-matrix composites (MMCs). Currently, these theoretical models use one of two different approaches, (a) a phenomenological approach, which is used in such models as those based on the internal stress concept, and those based on empirical creep equations; and (b) micromechanical models that are based on dislocation mechanisms and the interactions of dislocations with solute atoms, second-phase particles, and other reinforcements such as fibers. All these theoretical models have a common goal, namely, the understanding of high-temperature strengthening mechanisms and the relationship between high-temperature strength and the micromechanical mechanisms during high-temperature plastic deformation of the alloys. These theoretical studies can provide information that is useful in alloy design and processing, such as the selection of alloy chemistry, and the optimization of phase microstructural features (e.g., reinforcement amount, shape, size, and distribution; matrix grain size; and matrix and reinforcement interfaces) by optimization of processing methods.

  19. Microstructure of a Creep-Resistant 10 Pct Chromium Steel Containing 250 ppm Boron

    NASA Astrophysics Data System (ADS)

    Golpayegani, Ardeshir; Liu, Fang; Svensson, Henrik; Andersson, Marcus; Andrén, Hans-Olof

    2011-04-01

    The microstructure of a trial martensitic chromium steel containing a high content of boron (250 ppm) was characterized in detail in the as-tempered and aged conditions. This steel has a similar composition and heat treatment as the TAF steel that still is unsurpassed in creep strength among all 9 to 12 pct chromium steels. Characterization was performed by using scanning electron microscopy, energy-filtered transmission electron microscopy, secondary ion mass spectroscopy, and atom probe tomography. Focus was placed on investigating different types of precipitates that play a key role in improving the creep resistance of these steels. The low tempering temperature of 963 K (690 °C) is enough for the precipitation of the full volume fraction of both MX and M23C6. A high boron content, more than 1 at. pct, was found in M23C6 precipitates and they grow slowly during aging. The high boron level in the steel results in metal borides rather than BN with the approximate formula (Mo0.66Cr0.34)2(Fe0.75V0.25)B2. Two families of MX precipitates were found, one at lath boundaries about 35 nm in size and one dense inside the laths, only 5 to 15 nm in size.

  20. Experimental investigations of creep in gold RF-MEMS microstructures

    NASA Astrophysics Data System (ADS)

    Somà, Aurelio; De Pasquale, Giorgio; Saleem, Muhammad Mubasher

    2015-05-01

    Lifetime prediction and reliability evaluation of micro-electro-mechanical systems (MEMS) are influenced by permanent deformations caused by plastic strain induced by creep. Creep in microstructures becomes critical in those applications where permanent loads persist for long times and thermal heating induces temperature increasing respect to the ambient. Main goal of this paper is to investigate the creep mechanism in RF-MEMS microstructures by means of experiments. This is done firstly through the detection of permanent deformation of specimens and, then, by measuring the variation of electro-mechanical parameters (resonance frequency, pull-in voltage) that provide indirect evaluation of mechanical stiffness alteration from creep. To prevent the errors caused be cumulative heating of samples and dimensional tolerances, three specimens with the same nominal geometry have been tested per each combination of actuation voltage and temperature. Results demonstrated the presence of plastic deformation due to creep, combined with a component of reversible strain linked to the viscoelastic behavior of the material.

  1. Irradiation creep relaxation of void swelling-driven stresses

    NASA Astrophysics Data System (ADS)

    Hall, M. M.

    2013-01-01

    Swelling-driven-creep test specimens are used to measure the compressive stresses that develop due to constraint of irradiation void swelling. These specimens use a previously non-irradiated 20% CW Type 316 stainless steel holder to axially restrain two Type 304 stainless steel tubular specimens that were previously irradiated in the US Experimental Breeder Reactor (EBR-II) at 490 °C. One specimen was previously irradiated to fluence levels in the void nucleation regime (9 dpa) and the other in the quasi-steady void growth regime (28 dpa). A lift-off compliance measurement technique was used post-irradiation to determine compressive stresses developed during reirradiation of the two specimen assemblies in Row 7 of EBR-II at temperatures of 547 °C and 504 °C, respectively, to additional damage levels each of about 5 dpa. Results obtained on the higher fluence swelling-driven-creep specimen show that compressive stress due to constraint of swelling retards void swelling to a degree that is consistent with active load uniaxial compression specimens that were irradiated as part of a previously reported multiaxial in-reactor creep experiment. Swelling results obtained on the lower fluence swelling-driven creep specimen show a much larger effect of compressive stress in reducing swelling, demonstrating that the larger effect of stress on swelling is on void nucleation as compared to void growth. Test results are analyzed using a recently proposed multiaxial creep-swelling model.

  2. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    PubMed

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  3. The fabrication and creep properties of superalloy-zirconia composites

    NASA Astrophysics Data System (ADS)

    Oruganti, R. K.; Ghosh, A. K.

    2003-01-01

    Many high-temperature structural materials applications require mismatch strain compatibility that can be provided by graded composites. Applications such as ceramic thermal-barrier coatings on superalloy substrates require compatibility to minimize interfacial stresses and degradation effects. The interfaces in such cases could be metal-matrix composites containing a graded distribution of the ceramic phase within the superalloy matrix whose creep properties during elevated temperature service are unknown. This article reviews creep properties of a typical superalloy, René95, containing partially stabilized zirconia. These composites were prepared via powder metallurgy, during which zirconia was found to react with γ' (Ni3Al) to form Al2O3, resulting in the depletion of γ' from the superalloy matrix. Due to the combined effects of chemical changes and grain refinement, considerable creep strengthening was achieved at low creep rates, but weakening was observed at higher creep rates. A composite load transfer model is used to isolate the effect of particles on strengthening.

  4. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  5. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGESBeta

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; et al

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  6. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    SciTech Connect

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.

  7. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    NASA Astrophysics Data System (ADS)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  8. Mapping microscale strain heterogeneity during creep deformation

    NASA Astrophysics Data System (ADS)

    Quintanilla Terminel, A.; Evans, J.

    2013-12-01

    We use a new technique combining microfabrication technology and compression tests to map the strain field at a micrometric scale in polycrystalline materials. This technique allows us to map local strain while measuring macroscopic strain and rheological properties, and provides insight into the relative contribution of various plasticity mechanisms under varying creep conditions. The micro-strain mapping technique was applied to Carrara Marble under different deformation regimes, at 300 MPa and temperatures ranging from 200 to 700 °C. At 600 °C, strain of 10%, and strain rate of 3e-5s-1, the local strain at twin and grain boundaries is up to 5 times greater than the average sample strain. At these conditions, strains averaged across a particular grain may vary by as much as 100%, but the strain field becomes more homogeneous with increasing strain. For example, for the analyzed experiments, the average wavelength of the strain heterogeneity is 70 micrometers at 10% strain, but increases to 110 micrometers at 20%. For a strain of 10%, heterogeneity is increased at slower strain rate (at 1e-5s-1). This increase seems to be associated with a more important role of twin boundary and grain boundary migration. As expected, twin densities are markedly greater at the lower temperature, though it is still unclear whether the relative twin volume is greater. However, twin strains are still important at 600 °C and accommodate an average of 14 % of the total strain at 10% deformation and a strain rate of 3e-5s-1.

  9. Fragility and hysteretic creep in frictional granular jamming

    NASA Astrophysics Data System (ADS)

    Bandi, M. M.; Rivera, M. K.; Krzakala, F.; Ecke, R. E.

    2013-04-01

    The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bidispersed disks subject to quasistatic, uniaxial compression without vibrational disturbances (zero granular temperature). Three primary results are presented in this experimental study. First, using disks with different static friction coefficients (μ), we experimentally verify numerical results that predict jamming onset at progressively lower packing fractions with increasing friction. Second, we show that the first compression cycle measurably differs from subsequent cycles. The first cycle is fragile—a metastable configuration with simultaneous jammed and unjammed clusters—over a small packing fraction interval (ϕ1<ϕ<ϕ2) and exhibits simultaneous exponential rise in pressure and exponential decrease in disk displacements over the same packing fraction interval. This fragile behavior is explained through a percolation mechanism of stressed contacts where cluster growth exhibits spatial correlation with disk displacements and contributes to recent results emphasizing fragility in frictional jamming. Control experiments show that the fragile state results from the experimental incompatibility between the requirements for zero friction and zero granular temperature. Measurements with several disk materials of varying elastic moduli E and friction coefficients μ show that friction directly controls the start of the fragile state but indirectly controls the exponential pressure rise. Finally, under repetitive loading (compression) and unloading (decompression), we find the system exhibits pressure hysteresis, and the critical packing fraction ϕc increases slowly with repetition number. This friction-induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend on the quasistatic step size Δϕ, which provides the only perturbative mechanism in the

  10. Alignment of olivine crystals during diffusion creep in oceanic peridotite mylonites

    NASA Astrophysics Data System (ADS)

    Deems, N. J.; Warren, J. M.; Wolfson-Schwehr, M.

    2014-12-01

    At small grain sizes (<10 µm), olivine is expected to deform by diffusion creep at lithospheric conditions. Microstructural analysis by electron backscatter diffraction of 13 peridotite mylonites from St. Paul's Rocks (SPR) indicates that olivine has a pronounced axial-[010] lattice preferred orientation (i.e. [010] clusters perpendicular to foliation, while [100] and [001] are dispersed in the foliation plane) and a mean grain size of ~7µm. Holtzman et al. (2003) has observed similar LPOs in partially molten samples experimentally deformed under simple shear at lithospheric conditions. The occurrence of a lattice preferred orientation (LPO) is typically interpreted as indicating deformation by dislocation creep. In addition, compositional maps of the samples show that amphibole (pargasite) is ubiquitous. As the presence of pargasite in peridotites is controlled in part by the activity of plagioclase and water at high temperatures (Lynkins and Jenkins, 1992), we infer this as evidence for the presence of pre- to syn-tectonic trapped melt. In order to explain the observed LPO in SPR mylonites, we evaluate the hypothesis that alignment occurred during diffusion creep, such as observed in experiments by Sundberg and Cooper (2008) and Miyazaki et al., (2013). To explore this hypothesis, we conducted analyses of low angle (2-10°) rotation axis inverse pole figures (IPFs), which can often provide insight into the operative slip system(s). Analyses of low angle IPFs from SPR, however, showed no definitive correlation to any one particular slip system. On the other hand, high angle IPFs showed intense clustering of rotational axes at 75-90° about [010], indicating that [100] and [001] align nearly perpendicular to [010]. Based on the IPF analysis and evidence of pre- to syn-tectonic melt, we conclude that the presence of melt lubricated grain boundaries, which resulted in rigid rotation of grains and alignment of the [010] axes controlled by the orthorhombic crystal

  11. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  12. Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9 pct Cr Heat Resistant Steel During Creep

    NASA Astrophysics Data System (ADS)

    Dudko, Valeriy; Belyakov, Andrey; Molodov, Dmitri; Kaibyshev, Rustam

    2013-01-01

    Structural changes in a 9 pct Cr martensitic steel during a creep test at 923 K (720 °C) under the applied stress of 118 MPa were examined. The tempered martensite lath structure (TMLS) was characterized by M23C6-type carbide particles with an average size of about 110 nm and MX-type carbonitrides with a size of 40 nm. The M23C6 particles were located on the packet/block/lath boundaries, whereas the MX precipitates were distributed homogeneously throughout TMLS. TMLS in the grip portion of the crept specimen changed scarcely during the tests. In contrast, the structural changes in the gauge section of the samples were characterized by the evolution of relatively large subgrains with remarkably lowered density of interior dislocations within former martensite laths. The formation of a well-defined subgrain structure in the gauge section was accompanied by the coarsening of M23C6 carbides and precipitations of Laves phase during creep. The most pronounced structural changes occurred just at the beginning of the tertiary creep regime, which was interpreted as a result of the change in the mechanism of grain boundary pinning by precipitates.

  13. Microstructure and creep characteristics of dissimilar T91/TP316H martensitic/austenitic welded joint with Ni-based weld metal

    SciTech Connect

    Falat, Ladislav; Svoboda, Milan; Vyrostkova, Anna; Petryshynets, Ivan; Sopko, Martin

    2012-10-15

    This paper deals with characterization of microstructure and creep behavior of dissimilar weldment between the tempered martensitic steel T91 and the non-stabilized austenitic steel TP316H with Ni-based weld metal (Ni WM). Microstructure analyses were performed using light microscopy, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. The martensitic part of the welded joint exhibited a wide heat-affected zone (HAZ) with typical microstructural gradient from its coarse-grained to the fine-grained/intercritical region. In contrast, the HAZ of austenitic steel was limited to only a narrow region with coarsened polygonal grains. The microstructure of Ni WM was found to be very heterogeneous with respect to the size, morphology and distribution of grain boundaries and MC-type precipitates as a result of strong weld metal dilution effects and fast non-equilibrium solidification. Cross-weld creep tests were carried out in a temperature range from 600 to 650 Degree-Sign C at applied stresses from 60 to 140 MPa. The obtained values of apparent stress exponents and creep activation energies indicate thermally activated dislocation glide to be the governing creep deformation mechanism within the range of used testing conditions. The creep samples ruptured in the T91 intercritical HAZ region by the 'type IV cracking' failure mode and the creep fracture mechanism was identified to be the intergranular dimple tearing by microvoid coalescence at grain boundaries. The TEM observations revealed pronounced microstructural differences between the critical HAZ region and the T91 base material before as well as after the creep exposure. - Highlights: Black-Right-Pointing-Pointer Phase transformations affect the microstructures of T91 and TP316H HAZ regions. Black-Right-Pointing-Pointer High weld metal dilution results in heterogeneous microstructure with MC carbides. Black-Right-Pointing-Pointer Creep behavior of the studied weldment is controlled

  14. Scaling behaviors and novel creep motion of ac-driven flux lines in type II superconductor with random point pins

    NASA Astrophysics Data System (ADS)

    Cao, Wei-Ping; Luo, Meng-Bo; Hu, Xiao

    2012-01-01

    We performed Langevin dynamics simulations for the ac-driven flux lines in a type II superconductor with random point-like pinning centers. Scaling properties of flux-line velocity with respect to an instantaneous driving force of small frequency and around the critical dc depinning force are revealed successfully, which provides precise estimates on dynamic critical exponents. From the scaling function, we derive a creep law associated with activation by regular shaking. The effective energy barrier vanishes at the critical dc depinning point in a square-root way when the instantaneous driving force increases. The frequency plays a similar role to temperature in conventional creep motions, but in a nontrivial way governed by the critical exponents. We have also performed systematic finite-size scaling analysis for flux-line velocity in transient processes with dc driving, which provide estimates on critical exponents in good agreement with those derived with ac driving. The scaling law is checked successfully.

  15. The dependence of irradiation creep in austenitic alloys on displacement rate and helium to dpa ratio

    SciTech Connect

    Garner, F.A.; Toloczko, M.B.; Grossbeck, M.L.

    1998-03-01

    Before the parametric dependencies of irradiation creep can be confidently determined, analysis of creep data requires that the various creep and non-creep strains be separated, as well as separating the transient, steady-state, and swelling-driven components of creep. When such separation is attained, it appears that the steady-state creep compliance, B{sub o}, is not a function of displacement rate, as has been previously assumed. It also appears that the formation and growth of helium bubbles under high helium generation conditions can lead to a significant enhancement of the irradiation creep coefficient. This is a transient influence that disappears as void swelling begins to dominate the total strain, but this transient can increase the apparent creep compliance by 100--200% at relatively low ({le}20) dpa levels.

  16. Room-temperature transverse compressive creep of thick Kevlar fabric/ epoxy laminates

    SciTech Connect

    Ericksen, R.H.; Guess, T.R.

    1980-01-01

    Creep and recovery of thick Kevlar 49/epoxy composites were investigated in transverse compressive loading at room temperature. Cylindrical samples with void contents of 4 and 14 percent were tested along with those of unreinforced resin. The composites exhibited logarithmic creep. Creep rates were 2 times higher over the entire stress range for the high porosity composites. At a stress of 87 MPa the resin creep curve was similar to that of the composites. At higher stresses, the resin crept faster and exhibited more strain. It is proposed that axial compressive creep of the cylindrical composite specimens is governed by Poisson induced strains leading to tensile loading of the reinforcing fibers. Axial initial strain and creep rate data for the composite were converted to radial data using measured values of Poisson ratio. These values of composite specimen radial creep rate were in good agreement with tensile creep data of Kevlar 49 fibers.

  17. Primary and secondary creep in aluminum alloys as a solid state transformation

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2016-08-01

    Despite the massive literature and the efforts devoted to understand the creep behavior of aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters and experimental conditions is, at present, still missing. The analysis of creep is typically carried out in terms of the so-called steady or secondary creep regime. The present work offers an alternative view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers primary and secondary creep together as solid state isothermal transformations, similar to recrystallization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-Kolmogorov equation, typically used to analyze these transformations, can also be employed to explain creep deformation. The description is fully compatible with present (empirical) models of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at different temperatures and stresses to validate the proposed model.

  18. Creep Life Prediction of Ceramic Components Using the Finite Element Based Integrated Design Program (CARES/Creep)

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1997-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. Such long life requirements necessitate subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this work is to present a design methodology for predicting the lifetimes of structural components subjected to multiaxial creep loading. This methodology utilizes commercially available finite element packages and takes into account the time varying creep stress distributions (stress relaxation). In this methodology, the creep life of a component is divided into short time steps, during which, the stress and strain distributions are assumed constant. The damage, D, is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. For components subjected to predominantly tensile loading, failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity.

  19. Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2014-01-01

    Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatigue tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.

  20. Constitutive Modeling of High Temperature Uniaxial Creep-Fatigue and Creep-Ratcheting Responses of Alloy 617

    SciTech Connect

    P.G. Pritchard; L.J. Carroll; T. Hassan

    2013-07-01

    Inconel Alloy 617 is a high temperature creep and corrosion resistant alloy and is a leading candidate for use in Intermediate Heat Exchangers (IHX) of the Next Generation Nuclear Plants (NGNP). The IHX of the NGNP is expected to experience operating temperatures in the range of 800 degrees - 950 degrees C, which is in the creep regime of Alloy 617. A broad set of uniaxial, low-cycle fatigue, fatigue-creep, ratcheting, and ratcheting-creep experiments are conducted in order to study the fatigue and ratcheting responses, and their interactions with the creep response at high temperatures. A unified constitutive model developed at North Carolina State University is used to simulate these experimental responses. The model is developed based on the Chaboche viscoplastic model framework. It includes cyclic hardening/softening, strain rate dependence, strain range dependence, static and dynamic recovery modeling features. For simulation of the alloy 617 responses, new techniques of model parameter determination are developed for optimized simulations. This paper compares the experimental responses and model simulations for demonstrating the strengths and shortcomings of the model.

  1. Creep Burst Testing of a Woven Inflatable Module

    NASA Technical Reports Server (NTRS)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  2. Treatment of material creep and nonlinearities in flexible mulitbody dynamics

    SciTech Connect

    Xie, M.; Amirouche, F.M.L.

    1994-01-01

    This paper addresses the modeling of the generalized active forces resulting from deformable bodies when subjected to high temperature conditions, elastic-plastic deformations, creep effects, and material nonlinearities. The effects of elastic-plastic deformations are studied making use of the nonlinear stress-strain relationship and the geometrical stiffness concepts. Creep conditions resulting from high temperature are studied through several proposed models. Materials nonlinearities for isotropic and composites are accounted for by their tangential elasticity matrix. A general procedure used in the study of multibody systems dynamics with elastic-plastic bodies depicting the characteristics mentioned is developed. This includes an explicit formulation of the equations of motion using Kane`s equations, finite element method, continuum mechanics, and modal coordinate reduction techniques. A numerical simulation of a flexible robotic arm with a prescribed angular velocity subject to high temperature conditions is analyzed. The effects of creep are discussed.

  3. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  4. NEGLIGIBLE CREEP CONDITIONS FOR MOD 9 CR 1 MO STEEL

    SciTech Connect

    Ren, Weiju; Riou, Bernard; Escaravage, Claude; Swindeman, Robert W; Cabrillat, Marie-Th�r�se; Allais, Lucien

    2006-01-01

    Mod 9 Cr 1 Mo Steel (grade 91) is one of the materials envisaged for the Reactor Pressure Vessel of Very High Temperature Reactors. To avoid the implementation of a surveillance program covering the monitoring of the creep damage throughout the whole life of the reactor, it is recommended to operate the Reactor Pressure Vessel in the negligible creep regime. In this paper, the background of negligible creep criteria available in nuclear Codes is first recalled and their limitations were analyzed. Then, guidance for deriving criteria more appropriate for mod 9 Cr 1 Mo steel is provided. Finally, R&D actions in the U. S. and France to support the new approaches are discussed and recommended.

  5. Power-law creep and residual stresses in carbopol microgels

    NASA Astrophysics Data System (ADS)

    Lidon, Pierre; Manneville, Sebastien

    We report on the interplay between creep and residual stresses in carbopol microgels. When a constant shear stress σ is applied below the yield stress σc, the strain is shown to increase as a power law of time, γ (t) =γ0 +(t / τ) α , with and exponent α ~= 0 . 38 that is strongly reminiscent of Andrade creep in hard solids. For applied shear stresses lower than some characteristic value of about σc / 10 , the microgels experience a more complex creep behavior that we link to the existence of residual stresses and to weak aging of the system after preshear. The influence of the preshear protocol, of boundary conditions and of microgel concentration on residual stresses is investigated. We discuss our results in light of previous works on colloidal glasses and other soft glassy systems.

  6. Creep behavior of epoxy resin during irradiation at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Nishiura, Tetsuya; Nishijima, Shigehiro; Okada, Toichi

    1999-11-01

    Creep tests of an epoxy resin during bending and irradiation have been carried out to investigate the synergistic effects of radiation and stress on mechanical properties of the resin. Simultaneous application of stress and irradiation on the epoxy resin enhanced creep rates in comparison with the application of stress on an irradiated sample. In order to clarify the mechanism of the radiation-induced creep, measurements of solvent swelling of specimens have been performed. The swelling increased with the dose and the increase of the swelling corresponds to the increase of the chain scission. The mechanism of increased deformation of the resin during irradiation is proposed to be caused by increased chain scission following the release of the local strain energy.

  7. Creep and recovery behavior analysis of space mesh structures

    NASA Astrophysics Data System (ADS)

    Tang, Yaqiong; Li, Tuanjie; Ma, Xiaofei

    2016-11-01

    The Schapery's nonlinear viscoelastic theory and nonlinear force-density method have been investigated to analyze the creep and recovery behaviors of space deployable mesh reflectors in this paper. Based on Schapery's nonlinear viscoelastic theory, we establish the creep and recovery constitutive model for cables whose pretensions were applied stepwise in time. This constitutive model has been further used for adjustment of cables' elongation rigidity. In addition, the time-dependent tangent stiffness matrix is calculated by the partial differentiation of the corresponding load vector with respect to the nodal coordinate vector obtained by the nonlinear force-density method. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the time-dependent nonlinear statics equations. Finally, a hoop truss reflector antenna is presented as a numerical example to illustrate the efficiency of the proposed method for the creep and recovery behavior analysis of space deployable mesh structures.

  8. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1985-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  9. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  10. Deformation and crack growth response under cyclic creep conditions

    SciTech Connect

    Brust, F.W. Jr.

    1995-12-31

    To increase energy efficiency, new plants must operate at higher and higher temperatures. Moreover, power generation equipment continues to age and is being used far beyond its intended original design life. Some recent failures which unfortunately occurred with serious consequences have clearly illustrated that current methods for insuring safety and reliability of high temperature equipment is inadequate. Because of these concerns, an understanding of the high-temperature crack growth process is very important and has led to the following studies of the high temperature failure process. This effort summarizes the results of some recent studies which investigate the phenomenon of high temperature creep fatigue crack growth. Experimental results which detail the process of creep fatigue, analytical studies which investigate why current methods are ineffective, and finally, a new approach which is based on the T{sup *}-integral and its ability to characterize the creep-fatigue crack growth process are discussed. The potential validity of this new predictive methodology is illustrated.

  11. Vortex creep in TFA-YBCO nanocomposite films

    NASA Astrophysics Data System (ADS)

    Rouco, V.; Bartolomé, E.; Maiorov, B.; Palau, A.; Civale, L.; Obradors, X.; Puig, T.

    2014-11-01

    Vortex creep in YBa2Cu3O7 - x (YBCO) films grown from the trifluoracetate (TFA) chemical route with BaZrO3 and Ba2YTaO6 second-phase nanoparticles (NPs) has been investigated by magnetic relaxation measurements. We observe that in YBCO nanocomposites the phenomenological crossover line from the elastic to the plastic creep regime is shifted to higher magnetic fields and temperatures. The origin of this shift lies on the new isotropic-strong vortex pinning contribution appearing in these nanocomposites, induced by local lattice distortions. As a consequence, we demonstrate that the addition of non-coherent NPs produces a decrease in the creep rate S in most of the phase diagram, particularly, in the range of fields and temperatures (T\\gt 60 K, {{μ }0}H\\gt 0.5 T) relevant for large scale applications.

  12. Peristaltic Creeping Flow of Power Law Physiological Fluids through a Nonuniform Channel with Slip Effect

    PubMed Central

    Chaube, M. K.; Tripathi, D.; Bég, O. Anwar; Sharma, Shashi; Pandey, V. S.

    2015-01-01

    A mathematical study on creeping flow of non-Newtonian fluids (power law model) through a nonuniform peristaltic channel, in which amplitude is varying across axial displacement, is presented, with slip effects included. The governing equations are simplified by employing the long wavelength and low Reynolds number approximations. The expressions for axial velocity, stream function, pressure gradient, and pressure difference are obtained. Computational and numerical results for velocity profile, pressure gradient, and trapping under the effects of slip parameter, fluid behavior index, angle between the walls, and wave number are discussed with the help of Mathematica graphs. The present model is applicable to study the behavior of intestinal flow (chyme movement from small intestine to large intestine). It is also relevant to simulations of biomimetic pumps conveying hazardous materials, polymers, and so forth. PMID:27057132

  13. Grain size evolution in the mantle and its effect on geodynamics and seismic observables

    NASA Astrophysics Data System (ADS)

    Myhill, R.; Dannberg, J.; Eilon, Z.; Gassmoeller, R.; Moulik, P.; Faul, U.; Asimow, P. D.

    2014-12-01

    Dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity and a limited treatment of variations associated with changes in mineral assemblage. These simplifications greatly reduce computational requirements but preclude effects such as shear localisation and transient changes in rheology associated with phase transitions, which have the potential to fundamentally change flow patterns in the mantle. Here we use the finite-element code ASPECT (Bangerth et al., 2013) to model grain size evolution and the interplay between grain size, stress and strain rate in the convecting mantle. We include the simultaneous and competing effects of dynamic recrystallisation resulting from work done by dislocation creep, grain growth and recrystallisation at phase transitions. Further expressions account for slow growth in multiphase assemblages resulting from pinning. Grain size variations also affect seismic properties of mantle materials. We use several formulations from the literature to relate intrinsic variables (P, T, and grain size) from our numerical models to seismic velocity (Vs) and attenuation (Q). Our calculations use thermodynamically self-consistent anharmonic elastic moduli determined for the mineral assemblages in the mantle using HeFESTo (Stixrude and Lithgow-Bertelloni, 2013). We investigate the effect of realistically heterogeneous grain sizes by computing seismic observables such as body wave travel times, ray paths, and attenuation (t*) as well as mode eigenfrequencies and quality factors at different frequencies. We highlight the frequency-dependent sensitivity of seismic waves to grain size, which is important when interpreting Vs and Q observations in terms of mineral assemblage and temperature. This work is based on a project started at the CIDER 2014 summer program. References: Bangerth, W. et al., 2014, ASPECT: Advanced Solver for Problems in Earth's ConvecTion. Computational

  14. The effect of annealing on the creep of plasma-sprayed ceramics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.; Mullen, R. L.

    1983-01-01

    The creep of plasma sprayed ZrO2-8Y2O3 was measured at temperatures from 98 to 1250 C (180 to 220 F), and compared to creep of identical samples after annealing at temperatures from 98 to 1316 C (1800 to 2400 F). Loads and temperatures which produced significant creep of as sprayed ceramics produced no creep after annealing. Previously announced in STAR as N83-24799

  15. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  16. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  17. Creep failure of cracking heater at a petrochemical plant

    SciTech Connect

    El-Batahgy, A. . E-mail: elbatahgy@yahoo.com; Zaghloul, B.

    2005-03-15

    After two and half years of operation, a bend tube in a cracking heater at an ethylene plant failed due to creep cracking. Creep damage occurred as a result of metallurgical instability including coarsening of carbides that caused softening and initiation of voids or wedge-type intergranular cracks. This was accelerated due to increasing inner surface temperature during decoking process. Thermal fatigue contributed to the failure as a result of temperature variations due to several shutdown-startup operations. To minimize such failure in futures, periodic inspection to monitor crack formation was scheduled. Nondestructive tests including dye penetrant test for surface cracking and radiographic test for internal crack were implemented.

  18. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1987-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena modern engines utilize single-crystal, nickel-based superalloys as the material of choice in critical applications. Recent research activities at Lewis on single-crystal blading material as well as future research initiatives on metal matrix composites related to creep and fatigue are discussed. The goal of these research efforts is improving the understanding of microstructure-property relationships and thereby guide material development.

  19. Creep and fatigue research efforts on advanced materials

    NASA Technical Reports Server (NTRS)

    Gayda, John

    1990-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena, modern engines utilize single-crystal, nickel-base superalloys as the material of choice in critical applications. This paper will present recent research activities at NASA's Lewis Research Center on single-crystal blading material, related to creep and fatique. The goal of these research efforts is to improve the understanding of microstructure-property relationships and thereby guide material development.

  20. Transient creep and convective instability of the lithosphere

    NASA Astrophysics Data System (ADS)

    Birger, Boris I.

    2012-12-01

    Laboratory experiments with rock samples show that transient creep, at which strain grows with time and strain rate decrease at constant stress, occurs while creep strains are sufficiently small. The transient creep at high temperatures is described by the Andrade rheological model. Since plate tectonics allows only small deformations in lithospheric plates, creep of the lithosphere plates is transient whereas steady-state creep, described by non-Newtonian power-law rheological model, takes place in the underlying mantle. At the transient creep, the effective viscosity, found in the study of postglacial flows, differs significantly from the effective viscosity, which characterizes convective flow, since timescales of these flows are very different. Besides, the transient creep changes the elastic crust thickness estimated within the power-law rheology of the lithosphere. Two problems of convective stability for the lithosphere with the Andrade rheology are solved. The solution of the first problem shows that the state, in which large-scale convective flow in the mantle occurs under lithospheric plates, is unstable and must bifurcate into another more stable state at which the lithospheric plates become mobile and plunge into the mantle at subduction zones. If the lithosphere had the power-law fluid rheology, the effective viscosity of the stagnant lithospheric plates would be extremely high and the state, in which large-scale convection occurs under the stagnant plates, would be stable that contradicts plate tectonics. The mantle convection forms mobile lithospheric plates if the effective viscosity of the plate is not too much higher than the effective viscosity of the underlying mantle. The Andrade rheology lowers the plate effective viscosity corresponding to the power-law fluid rheology and, thus, leads to instability of the state in which the plates are stagnant. The solution of the second stability problem shows that the state, in which the lithospheric plate

  1. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  2. Activation volume for creep in the upper mantle.

    PubMed

    Ross, J V; Ave'lallemant, H G; Carter, N L

    1979-01-19

    The activation volume for creep, V*, of olivine-rich rocks has been determined in pressure-differential creep experiments on dunite at temperatures from 1100 degrees to 1350 degrees C and confining pressures from 5 to 15 kilobars. Values of V* range from 10.6 to 15.4 cubic centimeters per mole with a mean value of 13.4 cubic centimeters per mole, near that expected for oxygen ion self-diffusion. The quantity V* is incorporated into existing flow equations; in combination with observations on naturally deformed mantle xenoliths, estimates are given of the variation with depth of stress, strain rate, and viscosity. PMID:17738997

  3. Postcrack creep of polymeric fiber-reinforced concrete in flexure

    SciTech Connect

    Kurtz, S.; Balaguru, P.

    2000-02-01

    Results of an experimental investigation of the creep-time behavior of polypropylene and nylon fiber-reinforced concrete (FRC) are presented. Gravity loads were applied in flexure to precracked low volume fraction (0.1%) polypropylene and nylon FRC beams. Beams were tested at a range of stress levels to produce three outcomes: load sustained indefinitely (low stress), creep failure (intermediate stress), and rapid failure (high stress). Emphasis was placed on determining the maximum flexural stress that is sustainable indefinitely. The results indicate that polypropylene FRC has higher initial strength but nylon FRC can sustain a higher stress level. For both groups the sustainable stress is much lower than the postcrack strength.

  4. Treatment of multiaxial creep-fatigue by strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.

    1976-01-01

    Strainrange partitioning is a recently developed method for treating creep-fatigue interaction at elevated temperature. Most of the work to date has been on uniaxially loaded specimens, where as practical applications often involve load multiaxiality. It is shown how the method can be extended to treat multiaxiality through a set of rules for combining the strain components in the three principal directions. Closed hysteresis loops, as well as plastic and creep strain ratcheting are included. An application to hold-time tests in torsion will be used to illustrate the approach.

  5. In-pile and post-irradiation creep of type 304 stainless steel under different neutron spectra

    NASA Astrophysics Data System (ADS)

    Kurata, Y.; Itabashi, Y.; Mimura, H.; Kikuchi, T.; Amezawa, H.; Shimakawa, S.; Tsuji, H.; Shindo, M.

    2000-12-01

    In addition to post-irradiation creep tests, in-pile creep tests were performed using newly developed technology with in situ measurement under different neutron spectra. The in-pile creep properties of type 304 stainless steel at 550°C appear to depend on neutron spectrum, but a spectral effect on post-irradiation creep properties is not clearly seen. The rupture time of in-pile creep under a high thermal neutron flux condition is the shortest. The order of the rupture time following the high thermal flux condition is post-irradiation creep, in-pile creep with a thermal neutron shield condition and finally creep of unirradiated material, all in increasing order. It is suggested that the acceleration of creep deformation and fracture observed in irradiation creep tests may be related to enhancement of thermal creep in terms of FMD increased under a high thermal neutron flux in addition to increased helium embrittlement.

  6. Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

    SciTech Connect

    K. Linga Murty

    2008-08-11

    Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep

  7. Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Griffith, W. I.; Morris, D. H.

    1980-01-01

    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.

  8. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    SciTech Connect

    Banerjee, Gadadhar; Maitra, Sarit

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  9. High Precision Measurements of Temperature Dependence of Creep Rate of Polycrystalline Forsterite

    NASA Astrophysics Data System (ADS)

    Nakakoji, T.; Hiraga, T.

    2014-12-01

    Obtaining temperature dependence of creep rate, that is, activation energy for the creep is critical in geophysics, since its value can indicate deformation mechanism and also allows to extrapolate the creep rate measured in the room experiments to geological conditions when the creep mechanism is identical in both cases. Although numerous experimental results have been obtained so far, the obtained activation energy often contains error range of >50 kJ/mol, which often causes large uncertainties in strain rate at applied geological conditions. To minimize this error, it is important to collect strain rates at many different temperatures with high accuracy. We conducted high temperature compression experiments on synthetic forsterite (90%vol) and enstatite (10vol %) aggregates under increasing and decreasing temperatures. We applied a constant load of ~20 MPa using uniaxial testing machine (Shimadzu AG-X 50kN). The temperature was changed from 1360°C to 1240°C by furnace attached to the machine. Prior to the applying the load to the samples the grain size was saturated at 1360°C for 24 hours to minimize grain growth during the test. Decreasing-rate of temperature was 0.11min/°C and 0.02min/°C at temperature ranges of 1360 to 1300 and 1300 to 1240 respectively. The increasing-rate of the temperature was the same as the decreasing-rate. Strain rates from every 1 degree were obtained successfully. After the experiment, we analyzed the microstructure of the sample with scanning electron microscopy to measure the grain diameter. Arrhenius plots of strain rate demonstrate very linear distribution at > 1300 °C giving an activation energy of 649 ± 14 kJ/mol, whereas weak transition to lower activation energy 550 ± 23 kJ/mol below 1300°C was observed. Tasaka et al. (2013) obtained the activation energy of 370 ± 50 kJ/mol from similar temperature ranges used in our study but finer-grained samples. Combining these results, we interpret our results of high activation

  10. Creep and creep rupture of laminated graphite/epoxy composites. Ph.D. Thesis. Final Report, 1 Oct. 1979 - 30 Sep. 1980

    NASA Technical Reports Server (NTRS)

    Dillard, D. A.; Morris, D. H.; Brinson, H. F.

    1981-01-01

    An incremental numerical procedure based on lamination theory is developed to predict creep and creep rupture of general laminates. Existing unidirectional creep compliance and delayed failure data is used to develop analytical models for lamina response. The compliance model is based on a procedure proposed by Findley which incorporates the power law for creep into a nonlinear constitutive relationship. The matrix octahedral shear stress is assumed to control the stress interaction effect. A modified superposition principle is used to account for the varying stress level effect on the creep strain. The lamina failure model is based on a modification of the Tsai-Hill theory which includes the time dependent creep rupture strength. A linear cumulative damage law is used to monitor the remaining lifetime in each ply.

  11. Material gauge factor of directional electric potential drop sensors for creep monitoring

    SciTech Connect

    Madhi, E.; Nagy, P. B.

    2011-06-23

    Directional electric potential drop measurements can be exploited for in-situ monitoring of creep in metals. The sensor monitors the variation in the ratio of the resistances measured simultaneously in the axial and lateral directions using a square-electrode configuration. This method can efficiently separate the mostly isotropic common part of the resistivity variation caused by reversible temperature variations from the mostly anisotropic differential part caused by direct geometrical (size and shape) and indirect material (resistivity) effects of creep. Similarly to ordinary strain gauges, the relative sensitivity of the sensor is defined as a gauge factor that can be approximated as the sum of geometrical and material parts. Initially, subtle material changes produce weak electric anisotropy via reversible and irreversible piezoresistivity due to elastic and plastic strains, respectively. At high temperature, much stronger irreversible resistivity changes also occur due to preferentially aligned clusters of cavities developing along grain boundaries approximately perpendicular to the applied stress and subsequent cracks forming between these cavities. The ensuing electric anisotropy is detected by the directional sensor. Although the material effects remain smaller than the geometrical ones up to the initiation of preferentially oriented cracks, later the material gauge factor sharply increases and close to rupture can reach a value of more than 10.

  12. Influence of impurities on the creep of salt from the Palo Duro Basin

    SciTech Connect

    Hansen, F.D.; Senseny, P.E.; Pfeifle, T.W.; Vogt, T.J.

    1987-05-01

    Twelve triaxial compression creep tests were performed on salt specimens from the Woods-Holtzclaw well in the Palo Duro Basin to assess the influence of impurities on creep deformation. Four nominal impurity levels were initially selected for investigation: pure salt, salt containing 10% anhydrite, salt containing 10% mud, and salt containing 20% mud. Subsequent petrological measurements show these idealized categories do not exist. Composition of the samples was measured by methods of wet chemistry coupled with ethylene diaminetetraacetic acid (EDTA) digestion and point counting on full-size polished sections. Overall, the 12 specimens comprise 71.6--96.6% halite, 2.4--7.5% anhydrite, and 0.2--24.7% clay. Nine of the 12 specimens are similar to many other tested specimens from the Lower San Andres Unit 5. They range from 90--97% halite and average 94% with a standard deviation of 2%. The remaining 6% impurities are disseminated clay and anhydrite. The other three specimens from the Lower San Andres Unit 4 contain large amounts (average 20%) of uniformly distributed clays and average only 75% halite. 11 refs., 21 figs., 5 tabs.

  13. Irradiation creep and microstructural changes in an advanced ODS ferritic steel during helium implantation under stress

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pouchon, M. A.; Kimura, A.; Jung, P.; Hoffelner, W.

    2009-04-01

    An advanced oxide dispersion strengthened (ODS) ferritic steel with very fine oxide particles has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to a maximum dose of about 0.38 dpa (1650 appm-He) with displacement damage rates of 4.4 × 10 -6 dpa/s at temperatures of 573 and 773 K. The samples were in the form of miniaturized dog-bones, where during the helium implantation the straining and the electrical resistance were monitored simultaneously. Creep compliances were measured to be 4.0 × 10 -6 and 11 × 10 -6 dpa -1 MPa -1 at 573 and 773 K, respectively. The resistivity of ODS steel samples decreased with dose, indicating segregation and/or precipitation. Evolution of microstructure during helium implantation was studied in detail by TEM. The effects of ODS particle size on irradiation creep and microstructural changes was investigated by comparing the results from the present advanced ODS (K1) to a commercial ODS ferritic steels (PM2000) with much bigger oxide particles.

  14. LONG DISTANCE POLLEN-MEDIATED GENE FLOW FROM CREEPING BENTGRASS

    EPA Science Inventory

    Researchers from USEPA WED have measured gene flow from experimental fields of Roundup? herbicide resistant genetically modified (GM) creeping bentgrass a grass used primarily on golf courses, to compatible non-crop relatives. Using a sampling design based on the estimated time ...

  15. Mission Creep and Teaching at the Master's University

    ERIC Educational Resources Information Center

    Henderson, Bruce B.

    2009-01-01

    The accusation of mission creep at master's institutions is not erroneous. It has been occurring for decades. The imitation of the research universities by other institutions is not good for the institutions, for their faculty members, or for the cause of college teaching. Research and scholarship need to be differentiated so that scholarliness,…

  16. Mission Creep: The Federal Government and America's Schools

    ERIC Educational Resources Information Center

    Bryant, James A., Jr.

    2006-01-01

    "Mission Creep: The Federal Government and America's Schools" is a historical overview of the progressive encroachment if the United States' federal government into the area of education. This involvement began as a way to compete with the Soviet Union in the areas of science and technology but has since morphed into virtually all areas…

  17. Physical simulations of cavity closure in a creeping material

    SciTech Connect

    Sutherland, H.J.; Preece, D.S.

    1985-09-01

    The finite element method has been used extensively to predict the creep closure of underground petroleum storage cavities in rock salt. Even though the numerical modeling requires many simplifying assumptions, the predictions have generally correlated with field data from instrumented wellheads, however, the field data are rather limited. To gain an insight into the behavior of three-dimensional arrays of cavities and to obtain a larger data base for the verification of analytical simulations of creep closure, a series of six centrifuge simulation experiments were performed using a cylindrical block of modeling clay, a creeping material. Three of the simulations were conducted with single, centerline cavities, and three were conducted with a symmetric array of three cavities surrounding a central cavity. The models were subjected to body force loading using a centrifuge. For the single cavity experiments, the models were tested at accelerations of 100, 125 and 150 g's for 2 hours. For the multi-cavity experiments, the simulations were conducted at 100 g's for 3.25 hours. The results are analyzed using dimensional analyses. The analyses illustrate that the centrifuge simulations yield self-consistent simulations of the creep closure of fluid-filled cavities and that the interaction of three-dimensional cavity layouts can be investigated using this technique.

  18. Creep anomaly in electrospun fibers made of globular proteins

    NASA Astrophysics Data System (ADS)

    Regev, Omri; Arinstein, Arkadii; Zussman, Eyal

    2013-12-01

    The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force.

  19. Non-Contact Measurements of Creep Properties of Refractory Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  20. Influence of particle surface roughness on creeping granular motion.

    PubMed

    Sheng, Li-Tsung; Chang, Wei-Ching; Hsiau, Shu-San

    2016-07-01

    A core is formed at the center of a quasi-two-dimensional rotating drum filled more than half with granular material. The core rotates slightly faster than the drum (precession) and decreases in radius over time (erosion) due to the granular creeping motion that occurs below the freely flowing layer. This paper focuses on the effect of the surface roughness of particles on core dynamics, core precession, and core erosion. Two different surface roughness of glass particles having the same diameter were used in the experiments. The surface structures of the particles were quantitatively compared by measuring the coefficients of friction and using a simple image contrast method. The experiments were performed with five different filling levels in a 50-cm-diameter rotating drum. According to the results, core precession and core erosion are both dependent on the particle surface roughness. Core precession becomes weaker and erosion becomes stronger when using particles having a rough surface in the experiments. To explain the physics of core dynamics, the particles' surface roughness effect on the freely flowing layer and the creeping motion region were also investigated. The granular bed velocity field, maximum flowing layer depth δ, shear rate in the flowing layer γ[over ̇], and the creeping region decay constant y_{0} were also calculated in this paper. The effect of the particles' surface roughness on these physical variables well illustrates the physics of core dynamics and creeping granular motion.