Orbiter Crew Compartment Integration-Stowage
NASA Technical Reports Server (NTRS)
Morgan, L. Gary
2007-01-01
This viewgraph presentation describes the Orbiter Crew Compartment Integration (CCI) stowage. The evolution of orbiter crew compartment stowage volume is also described, along with photographs presented of the on-orbit volume stowage capacity.
Contamination control of the space shuttle Orbiter crew compartment
NASA Technical Reports Server (NTRS)
Bartelson, Donald W.
1986-01-01
Effective contamination control as applied to manned space flight environments is a discipline characterized and controlled by many parameters. An introduction is given to issues involving Orbiter crew compartment contamination control. An effective ground processing contamination control program is an essential building block to a successful shuttle mission. Personnel are required to don cleanroom-grade clothing ensembles before entering the crew compartment and follow cleanroom rules and regulations. Prior to crew compartment entry, materials and equipment must be checked by an orbiter integrity clerk stationed outside the white-room entrance for compliance to program requirements. Analysis and source identification of crew compartment debris studies have been going on for two years. The objective of these studies is to determine and identify particulate generating materials and activities in the crew compartment. Results show a wide spectrum of many different types of materials. When source identification is made, corrective action is implemented to minimize or curtail further contaminate generation.
14 CFR 23.853 - Passenger and crew compartment interiors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... constructed of at least fire resistant materials and must contain fires likely to occur in it under normal use... Design and Construction Fire Protection § 23.853 Passenger and crew compartment interiors. For each compartment to be used by the crew or passengers: (a) The materials must be at least flame-resistant; (b...
14 CFR 121.576 - Retention of items of mass in passenger and crew compartments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Retention of items of mass in passenger and crew compartments. 121.576 Section 121.576 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.576 Retention of items of mass in passenger and crew compartments. The certificate holder must...
14 CFR 121.576 - Retention of items of mass in passenger and crew compartments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Retention of items of mass in passenger and crew compartments. 121.576 Section 121.576 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.576 Retention of items of mass in passenger and crew compartments. The certificate holder must...
Design/Development of Spacecraft and Module Crew Compartments
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.
2010-01-01
This slide presentation reviews the design and development of crew compartments for spacecraft and for modules. The Crew Compartment or Crew Station is defined as the spacecraft interior and all other areas the crewman interfaces inside the cabin, or may potentially interface.It uses examples from all of the human rated spacecraft. It includes information about the process, significant drivers for the design, habitability, definitions of models, mockups, prototypes and trainers, including pictures of each stage in the development from Apollo, pictures of the space shuttle trainers, and International Space Station trainers. It further reviews the size and shape of the Space Shuttle orbiter crew compartment, and the Apollo command module and the lunar module. It also has a chart which reviews the International Space Station (ISS) internal volume by stage. The placement and use of windows is also discussed. Interestingly according to the table presented, the number 1 rated piece of equipment for recreation was viewing windows. The design of crew positions and restraints, crew translation aids and hardware restraints is shown with views of the restraints and handholds used from the Apollo program through the ISS.
Compartment A123 crews WC (head) looking aft; to forward; note ...
Compartment A-123 crews WC (head) looking aft; to forward; note wire lockers for transient stowage of clothing while showering. (026) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
Condensation on crew compartment aft flight deck window W10
1982-03-30
STS003-24-211 (22-30 March 1982) --- Crew compartment aft flight deck viewing window W10 fogged with condensation. The condensation is a result of the spacecraft's position in relation to the sun. Photo credit: NASA
Space Shuttle crew compartment debris-contamination
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.; Villarreal, Leopoldo J.
1992-01-01
Remedial actions undertaken to reduce debris during manned flights and ground turnaround operations at Kennedy Space Center and Palmdale are addressed. They include redesign of selected ground support equipment and Orbiter hardware to reduce particularization/debris generation; development of new detachable filters for air-cooled avionics boxes; application of tape-on screens to filter debris; and implementation of new Orbiter maintenance and turnaround procedures to clean filters and the crew compartment. Most of these steps were implemented before the return-to-flight of STS-26 in September 1988 which resulted in improved crew compartment habitability and less potential for equipment malfunction.
STS-26 crew stowage review in Bldg 9A crew compartment trainer (CCT)
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers rehearse for their upcoming mission in the crew compartment trainer (CCT) located in the JSC Mockup and Integration Laboratory Bldg 9A. Standing on the CCT middeck, Pilot Richard O. Covey hands a snack package to Mission Specialist (MS) John M. Lounge (back to the camera). Covey selected the snack from the meal tray assemblies (foodtrays) mounted on the forward middeck lockers.
76 FR 10476 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Crew-Rest Compartment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
...\\ in interior volume, the design must ensure the ability to contain a fire likely to occur within the... or unusual design features associated with installation of an overhead crew-rest (OCR) compartment... this design feature. These special conditions contain the additional safety standards that the...
STS-26 crew stowage review in Bldg 9A crew compartment trainer (CCT)
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers rehearse for their upcoming mission in the crew compartment trainer (CCT) located in the JSC Mockup and Integration Laboratory Bldg 9A. Standing on the CCT middeck, the crewmembers have just selected a snack from the meal tray assembly (foodtray) mounted on the forward middeck lockers. Left to right are Mission Specialist (MS) John M. Lounge, Commander Frederick H. Hauck, and MS George D. Nelson.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
... significantly delay issuance of the design approval and thus delivery of the affected aircraft. In addition, the... specific portion of the special conditions, explain the reason for any recommended change, and include... compartment configuration that affect crew member emergency egress or any other procedures affecting the...
2004-02-18
KENNEDY SPACE CENTER, FLA. - A rescue team carries an “injured” astronaut toward the helicopter for transportation to a local hospital. They are all taking part in a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
14 CFR 25.789 - Retention of items of mass in passenger and crew compartments and galleys.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Retention of items of mass in passenger and... Design and Construction Personnel and Cargo Accommodations § 25.789 Retention of items of mass in passenger and crew compartments and galleys. (a) Means must be provided to prevent each item of mass (that...
STS-43 MS Adamson checks OCTW experiment on OV-104's aft flight deck
1991-08-11
STS043-04-038 (2-11 Aug 1991) --- Astronaut James C. Adamson, STS-43 mission specialist, checks on an experiment on Atlantis? flight deck. Part of the experiment, Optical Communications Through the Shuttle Window (OCTW), can be seen mounted in upper right. The OCTW system consists of two modules, one inside the orbiter crew cabin (as pictured here) and one in the payload bay. The crew compartment version houses an optoelectronic transmitter/receiver pair for video and digital subsystems, test circuitry and interface circuitry. The payload bay module serves as a repeater station. During operation a signal is transmitted through the shuttle window to a bundle of optical fiber cables mounted in the payload bay near an aft window. The cables carry optical signals from the crew compartment equipment to the OCTW payload bay module. The signals are returned via optical fiber cable to the aft flight deck window, retransmitted through the window, and received by the crew compartment equipment.
Return to Flight: Crew Activities Resource Reel 1 of 2
NASA Technical Reports Server (NTRS)
2005-01-01
The crew of the STS-114 Discovery Mission is seen in various aspects of training for space flight. The crew activities include: 1) STS-114 Return to Flight Crew Photo Session; 2) Tile Repair Training on Precision Air Bearing Floor; 3) SAFER Tile Inspection Training in Virtual Reality Laboratory; 4) Guidance and Navigation Simulator Tile Survey Training; 5) Crew Inspects Orbital Boom and Sensor System (OBSS); 6) Bailout Training-Crew Compartment; 7) Emergency Egress Training-Crew Compartment Trainer (CCT); 8) Water Survival Training-Neutral Buoyancy Lab (NBL); 9) Ascent Training-Shuttle Motion Simulator; 10) External Tank Photo Training-Full Fuselage Trainer; 11) Rendezvous and Docking Training-Shuttle Engineering Simulator (SES) Dome; 12) Shuttle Robot Arm Training-SES Dome; 13) EVA Training Virtual Reality Lab; 14) EVA Training Neutral Buoyancy Lab; 15) EVA-2 Training-NBL; 16) EVA Tool Training-Partial Gravity Simulator; 17) Cure in Place Ablator Applicator (CIPAA) Training Glove Vacuum Chamber; 16) Crew Visit to Merritt Island Launch Area (MILA); 17) Crew Inspection-Space Shuttle Discovery; and 18) Crew Inspection-External Tank and Orbital Boom and Sensor System (OBSS). The crew are then seen answering questions from the media at the Space Shuttle Landing Facility.
View forward from bulkhead no. 38 of compartment B126 crew ...
View forward from bulkhead no. 38 of compartment B-126 crew space. Note stop valves on bulkhead at right side of photograph; these steam control valves allowed remote activation of the main, auxiliary and safety valves for the port engine in the event that the engine room valves were disabled or unreachable. (044) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members return to the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside the mock-up compartment. Rescuers have had to remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A rescue team carries an injured astronaut toward the helicopter for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock- up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
14 CFR 23.853 - Passenger and crew compartment interiors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... allowed— (1) There must be an adequate number of self-contained, removable ashtrays; and (2) Where the... the entry door and self-contained, removable ashtrays located conspicuously on or near the entry side... stowage compartments and compartments for stowing small items such as magazines and maps) must be self...
14 CFR 91.513 - Emergency equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Must clearly indicate its method of operation; and (4) When carried in a compartment or container, must have that compartment or container marked as to contents and date of last inspection. (c) Hand fire extinguishers must be provided for use in crew, passenger, and cargo compartments in accordance with the...
14 CFR 91.513 - Emergency equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Must clearly indicate its method of operation; and (4) When carried in a compartment or container, must have that compartment or container marked as to contents and date of last inspection. (c) Hand fire extinguishers must be provided for use in crew, passenger, and cargo compartments in accordance with the...
14 CFR 91.513 - Emergency equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Must clearly indicate its method of operation; and (4) When carried in a compartment or container, must have that compartment or container marked as to contents and date of last inspection. (c) Hand fire extinguishers must be provided for use in crew, passenger, and cargo compartments in accordance with the...
14 CFR 91.513 - Emergency equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Must clearly indicate its method of operation; and (4) When carried in a compartment or container, must have that compartment or container marked as to contents and date of last inspection. (c) Hand fire extinguishers must be provided for use in crew, passenger, and cargo compartments in accordance with the...
2013-06-01
representative of those used in particular armoured military vehicles, were considered in this study: a top zone propelling charge module (TCM), an...representative of that used in the trial The layout of the hull of a representative armoured vehicle that was simulated in the trial is depicted in...AFESS) are almost universally employed in armoured vehicle crew compartments. Typically the fire suppressant used is a fluorocarbon- based chemical. As
Closeup view of the reflective insulation protecting the Crew Compartment ...
Close-up view of the reflective insulation protecting the Crew Compartment bulkhead, orbiter structure and landing gear housing in the void created by the removal of the Forward Reaction Control System Module from the forward section of the Orbiter Discovery. This image was taken from the service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Closeup view if the starboard side of the crew compartment ...
Close-up view if the starboard side of the crew compartment mid-deck of the Orbiter Discovery. This is a close up view of the galley for meal preparations. In the center right of the image is stowage lockers that are designated to store meals for the mission. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
14 CFR 29.855 - Cargo and baggage compartments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... will not create a fire hazard. (c) The design and sealing of inaccessible compartments must be adequate...) Required crew emergency exits must be accessible under all cargo loading conditions. (3) Sources of heat...
14 CFR 29.855 - Cargo and baggage compartments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... will not create a fire hazard. (c) The design and sealing of inaccessible compartments must be adequate...) Required crew emergency exits must be accessible under all cargo loading conditions. (3) Sources of heat...
NASA Technical Reports Server (NTRS)
2002-01-01
The STS-111 Crew is in training for space flight. The crew consists of Commander Ken Cockrell, Pilot Paul Lockhart, Mission Specialists Franklin Chang-Diaz and Philippe Perrin. The crew training begins with Post Insertion Operations with the Full Fuselage Trainer (FFT). Franklin Chang-Diaz, Philippe Perrin and Paul Lockhart are shown in training for airlock and Neutral Buoyancy Lab (NBL) activities. Bailout in Crew Compartment Training (CCT) with Expedition Five is also shown. The crew also gets experience with photography, television, and habitation equipment.
HL-20 structural design comparison - Conformal shell versus cylindrical crew compartment
NASA Technical Reports Server (NTRS)
Bush, Lance B.; Wahls, Deborah M.; Robinson, James C.
1993-01-01
Extensive studies have been performed at NASA Langley Research Center (LaRC) on personnel launch systems (PLS) concepts. The primary mission of a PLS is the transport of Space Station crew members from Earth to the Space Station and return. The NASA LaRC PLS studies have led to the design of a lifting body configuration named the HL-20. In this study, two different HL-20 structural configurations are evaluated. The two configurations are deemed the conformal shell and the cylindrical crew compartment. The configurations are based on two different concerns for maintenance and operations. One configuration allows for access to subsystems while on-orbit from the interior, while the other allows for easy access to the subsystems during ground maintenance and operations. For each concept, the total structural weight required to sustain the applied loads is quantified through a structural evaluation. Structural weight for both configurations is compared along with the particular attributes of each. Analyses of both configurations indicate no appreciable weight or load relief advantage of one concept over the other. Maintainability and operability, therefore become the primary discriminator, leading to a choice of a crew compartment configuration.
2011-06-29
JSC2011-E-060138 (29 June 2011) --- NASA astronaut Chris Ferguson crawls out of the Crew Compartment Trainer (CCT-2) as the crew of STS-135 trains at NASA?s Johnson Space Center June 29, 2011. The training marked the crew's final scheduled session in the Space Vehicle Mock-up Facility. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
Apollo 9 - Prime Crew - Apollo Command Module (CM)-103 - Post-Test
1968-07-19
S68-42164 (19 July 1968) --- The prime crew of the third manned Apollo space mission stands in front of the Apollo Command Module 103 after egress during crew compartment fit and function test activity. Left to right are astronauts Russell L. Schweickart, David R. Scott, and James A. McDivitt.
Crew quarters for Space Station
NASA Technical Reports Server (NTRS)
Mount, F. E.
1989-01-01
The only long-term U.S. manned space mission completed has been Skylab, which has similarities as well as differences to the proposed Space Station. With the exception of Skylab missions, there has been a dearth of experience on which to base the design of the individual Space Station Freedom crew quarters. Shuttle missions commonly do not have sleep compartments, only 'sleeping arrangements'. There are provisions made for each crewmember to have a sleep restraint and a sleep liner, which are attached to a bulkhead or a locker. When the Shuttle flights began to have more than one working shift, crew quarters became necessary due to noise and other disturbances caused by crew task-related activities. Shuttle missions that have planned work shifts have incorporated sleep compartments. To assist in gaining more information and insight for the design of the crew quarters for the Space Station Freedom, a survey was given to current crewmembers with flight experience. The results from this survey were compiled and integrated with information from the literature covering space experience, privacy, and human-factors issues.
Barratt inside new crew quarters in Kibo
2009-09-02
ISS020-E-037855 (2 Sept. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, works inside a newly installed crew quarters compartment in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-128) remains docked with the station.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members assess medical needs on “injured” astronauts removed from the orbiter crew compartment mock-up during a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
CEV Seat Attenuation System System Design Tasks
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.; McMichael, James H.
2007-01-01
The Apollo crew / couch restraint system was designed to support and restrain three crew members during all phases of the mission from launch to landing. The crew couch used supported the crew for launch, landing and in-flight operations, and was foldable and removable for EVA ingress/egress through side hatch access and for in-flight access under the seat and in other areas of the crew compartment. The couch and the seat attenuation system was designed to control the impact loads imposed on the crew during landing and to remain non-functional during all other flight phases.
Compartment A125, view of forward side of anchor windlass and ...
Compartment A-125, view of forward side of anchor windlass and ditty box stowage shelves. Ditty boxes were small portable lockers used for storage of crew's personal items. (029) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
2003-03-31
KENNEDY SPACE CENTER, FLA. - Dr. Richard Arkin records data as the hazardous gas detection system AVEMS is used to analyze the toxic gases produced by active vents, called fumaroles, in the Turrialba volcano in Costa Rica. He is using the Aircraft-based Volcanic Emission Mass Spectrometer (AVEMS) that determines the presence and concentration of various chemicals. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttle’s aft compartment and the crew compartment.
NASA Astrophysics Data System (ADS)
Verhagen, T. L. A.; Vandekasteele, R. M.
1992-08-01
Within the framework of the research into the vulnerability of ships, an experimental investigation took place in 1989 aboard the frigate 'Wolf.' The recordings of an instrumented experiment in the crew aft sleeping compartment are presented. During this experiment, a nonfragmenting charge of 5.5 kg TNT was initiated. Preceding the 5.5 kg TNT experiment, a 2 kg TNT experiment was performed on the same day. Later that day the 15 kg TNT experiment took place. Reparation/modification of the instrumentation was not possible. The settings of the instrumentation equipment were based on the expected extreme responses of the 15 kg TNT experiment later that day which had, however, an influence on the signal to noise ratio. The blast measurements seem to have recorded correctly. The quasi static pressure in the experiment compartment as well as in the adjacent compartments showed classical behavior. The strain measurements seemed to be good, although some of them malfunctioned after a period of time.
Astronaut Scott Parazynski in hatch of CCT during training
1994-06-23
S94-36628 (23 June 1994) --- Astronaut Scott E. Parazynski poses at the hatch of the crew compartment trainer prior to a rehearsal of launch and entry procedures for a November 1994 flight aboard the Space Shuttle Atlantis. Four other NASA astronauts and a European mission specialist joined the mission specialist for this training exercise in the crew compartment trainer at the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory and will join him aboard Atlantis in November. The flight is manifest to support the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
2011-06-29
JSC2011-E-060135 (29 June 2011) --- The crew of STS-135, from left, Chris Ferguson, Rex Walheim, Doug Hurley and Sandy Magnus, review procedures on the middeck of the Crew Compartment Trainer (CCT) mock-up as they train at NASA?s Johnson Space Center in Houston on June 29, 2011. The training marked the crew's final scheduled session in the Space Vehicle Mock-up Facility. Photo credit: NASA photo/Houston Chronicle, Smiley N. Pool
2004-02-18
KENNEDY SPACE CENTER, FLA. - A helicopter approaches an orbiter crew compartment mock-up as part of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer “astronauts” simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members lower a volunteer “astronaut” from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer “astronauts” who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Release mechanism for releasing and reattaching experiments on the Space Shuttle
NASA Technical Reports Server (NTRS)
Clark, A. V.
1980-01-01
The release mechanism (REM) unlatches an experiment so that it can be moved about inside and outside the shuttle bay by the remote manipulator system (RMS), and then reattaches it to the REM base. Operated from the crew compartment after the RMS has been attached to the experiment, the REM releases the experiment by an electric motor driving a gear train and linkage which extracts four pins from holes in four plates. Electrical connectors on the REM are disengaged by the mechanical action of the structural pins retracting from the plates. When the REM releases the experiment, an unlatched indicator is actuated in the crew compartment, and then the experiment can be moved by using the RMS. To reattach the experiment to the REM, the RMS places the experiment with REM attachment angles against the flat, smooth surface of the REM; then the RMS moves the experiment into position for latchup. Actuation of an electric motor drives the four pins into the four holes in the plates. When fully latched, a switch actuated by the motion of the linkage, shuts the electric motor off and gives an indication to the crew compartment that the REM is latched.
14 CFR 25.791 - Passenger information signs and placards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and Cargo Accommodations § 25.791 Passenger information signs and placards. (a) If smoking is to be.... If smoking is to be allowed, and if the crew compartment is separated from the passenger compartment, there must be at least one sign notifying when smoking is prohibited. Signs which notify when smoking is...
14 CFR 25.791 - Passenger information signs and placards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and Cargo Accommodations § 25.791 Passenger information signs and placards. (a) If smoking is to be.... If smoking is to be allowed, and if the crew compartment is separated from the passenger compartment, there must be at least one sign notifying when smoking is prohibited. Signs which notify when smoking is...
14 CFR 25.791 - Passenger information signs and placards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and Cargo Accommodations § 25.791 Passenger information signs and placards. (a) If smoking is to be.... If smoking is to be allowed, and if the crew compartment is separated from the passenger compartment, there must be at least one sign notifying when smoking is prohibited. Signs which notify when smoking is...
14 CFR 25.791 - Passenger information signs and placards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and Cargo Accommodations § 25.791 Passenger information signs and placards. (a) If smoking is to be.... If smoking is to be allowed, and if the crew compartment is separated from the passenger compartment, there must be at least one sign notifying when smoking is prohibited. Signs which notify when smoking is...
14 CFR 25.791 - Passenger information signs and placards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and Cargo Accommodations § 25.791 Passenger information signs and placards. (a) If smoking is to be.... If smoking is to be allowed, and if the crew compartment is separated from the passenger compartment, there must be at least one sign notifying when smoking is prohibited. Signs which notify when smoking is...
75 FR 75 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Crew Rest Compartment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
..., explain the reason for any recommended change, and include supporting data. We ask that you send us two...-site operational evaluation. Any changes to the approved OCR compartment configuration that affect crewmember emergency egress or any other procedures affecting safety of the occupying crewmembers or related...
Shuttle crew escape systems test conducted in JSC Bldg 9A CCT
1987-03-20
Shuttle crew escape systems test is conducted by astronauts Steven R. Nagel (left) and Manley L. (Sonny) Carter in JSC One Gravity Mockup and Training Facilities Bldg 9A crew compartment trainer (CCT). Nagel and Carter are evaluating methods for crew escape during Space Shuttle controlled gliding flight. JSC test was done in advance of tests scheduled for facilities in California and Utah. Here, Carter serves as test subject evaluating egress positioning for the tractor rocket escape method - one of the two systems currently being closely studied by NASA.
STS-62 crew prepare for emergency egress training
1993-11-05
S93-48458 (5 Nov. 1993) --- In the Johnson Space Center's (JSC) Shuttle mockup and integration laboratory, the five crew members training for NASA's next mission are assisted in donning their partial pressure launch and entry suits. From left to right are astronaut John H. Casper, Andrew M. Allen, Pierre J. Thuot, Charles D. (Sam) Gemar and Marsha S. Ivins. Minutes later the crew was in the crew compartment trainer (CCT) rehearsing their scheduled March 1994 mission aboard the Space Shuttle Columbia. Launch, landing and emergency egress procedures were covered in the training session.
STS-117 Crew Training during suited PI/DO Prep in CCT-II mockup
2006-08-03
JSC2006-E-32665 (3 Aug. 2006) --- Astronaut Steven R. Swanson, STS-117 mission specialist, participates in a training session in the crew compartment trainer (CCT-2) in the Space Vehicle Mockup Facility at Johnson Space Center. Swanson is wearing a training version of his shuttle launch and landing suit.
14 CFR 23.853 - Passenger and crew compartment interiors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ventilation expected in service must be demonstrated by test. A placard containing the legible words “No... side of each lavatory door served. The placards must have red letters at least 1/2 inch high on a white... crew or passengers must meet the following test criteria as applicable: (i) Interior ceiling panels...
46 CFR 111.75-15 - Lighting requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... spaces. (1) Each space used by passengers or crew must be fitted with lighting that provides for a safe... provide for safe egress from each space. (d) Berth lights. Each crew berth must have a fixed berth light... passageways, public spaces, and berthing compartments. The supply to lights in each passageway, public space...
1967-01-27
S67-23078 (27 Jan. 1967) --- Three astronauts (later to be named the Apollo 9 prime crew) in Apollo spacecraft 101 Command module during Apollo crew compartment fit and function test. Left to right are astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members on the ground take hold of a volunteer “astronaut” lowered from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members help a volunteer “astronaut” onto the ground after being lowered from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
STS-47 Astronaut Crew Training Clip
NASA Technical Reports Server (NTRS)
1992-01-01
The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri, is seen during various parts of their training, including SAREX training in the Full Fuselage Trainer (FFT), firefighting training. A familiarization flight in the KC-135, a food tasting, photo training in the Crew Compartment Trainer, and bailout training in the Weightless Environment Training Facility (WETF) are also shown.
View port to starboard of a portion of compartment A126 ...
View port to starboard of a portion of compartment A-126 fitted out to represent a WW I canteen. This may have been location for ship's store where crew could buy tobacco and sundries. Note wood conduit on overhead which served as a chase for wiring. (036) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
2003-03-31
KENNEDY SPACE CENTER, FLA. - Arturo Ramierez, Charles Curley and Duke Follistein, KSC and Costa Rican researchers, carry the hazardous gas detection system AVEMS to the central of the Turrialba volcano. The Aircraft-based Volcanic Emission Mass Spectrometer determines the presence and concentration of various chemicals. It is being tested in flights over the Turrialba volcano and in the crater, sampling and analyzing fresh volcanic gases in their natural chemical state. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttle’s aft compartment and the crew compartment.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Volunteers from the KSC Fire-Rescue team dressed in launch and entry suits settle into seats in an orbiter crew compartment mock-up under the guidance of George Brittingham, USA suit technician on the Closeout Crew. Brittingham is helping Catherine Di Biase, a nurse with Bionetics Life Sciences. They are all taking part in a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer “astronauts” simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
STS-62 Preflight training in Crew Compartment Trainer (CCT) in bldg 9A
1993-11-01
S93-48462 (5 Nov. 1993) --- Astronaut Charles D. (Sam) Gemar, wearing a partial pressure launch and entry suit (LES), takes a break during a training exercise at the Johnson Space Center (JSC). The mission specialist and four crew mates rehearsed emergency egress procedures using the escape pole device in the trainer's hatchway (near right center frame).
Astronaut Scott Parazynski in hatch of CCT during training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Scott E. Parazynski, STS-66 mission specialist, poses near the hatchway of the crew compartment trainer (CCT) (out of frame) in JSC's Shuttle mockup and integration laboratory. Crew members were about to begin a rehearsal of procedures to be followed during the launch and entry phases of their flight. That rehearsal was followed by a training session on emergency egress procedures.
STS-117 Crew Training during suited PI/DO Prep in CCT-II mockup
2006-08-03
JSC2006-E-32656 (3 Aug. 2006) --- While seated at the pilot's station, astronaut Lee J. Archambault, STS-117 pilot, participates in a training session in the crew compartment trainer (CCT-2) in the Space Vehicle Mockup Facility at Johnson Space Center. Archambault is wearing a training version of his shuttle launch and landing suit.
STS-117 Crew Training during suited PI/DO Prep in CCT-II mockup
2006-08-03
JSC2006-E-32653 (3 Aug. 2006) --- While seated at the pilot's station, astronaut Lee J. Archambault, STS-117 pilot, participates in a training session in the crew compartment trainer (CCT-2) in the Space Vehicle Mockup Facility at Johnson Space Center. Archambault is wearing a training version of his shuttle launch and landing suit.
STS-117 Crew Training during suited PI/DO Prep in CCT-II mockup
2006-08-03
JSC2006-E-32647 (3 Aug. 2006) --- While seated at the commander's station, astronaut Frederick W. (Rick) Sturckow, STS-117 commander, participates in a training session in the crew compartment trainer (CCT-2) in the Space Vehicle Mockup Facility at Johnson Space Center. Sturckow is wearing a training version of his shuttle launch and landing suit.
2004-02-18
KENNEDY SPACE CENTER, FLA. - An “injured” rescue worker is lifted into an M-113 armored personnel carrier provided for transportation during a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
View of the Pirs Docking Compartment approaching the ISS during Expedition Three
2001-09-17
ISS003-E-5677 (16 September 2001) --- The Russian Docking Compartment, named Pirs, the Russian word for pier, approaches the International Space Station (ISS). One of the Expedition Three crew members, using a digital still camera with a 180mm lens, recorded the image from onboard the orbital outpost. The vehicle was launched on September 14, 2001 and docking occurred on September 16.
View of the Pirs Docking Compartment approaching the ISS during Expedition Three
2001-09-17
ISS003-E-5678 (16 September 2001) --- The Russian Docking Compartment, named Pirs, the Russian word for pier, approaches the International Space Station (ISS). One of the Expedition Three crew members, using a digital still camera with a 180mm lens, recorded the image from onboard the orbital outpost. The vehicle was launched on September 14, 2001 and docking occurred on September 16.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In a Mode VII emergency landing simulation at Kennedy Space Center, a helicopter crew helps rescued astronauts. The purpose of Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside an orbiter crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Habitability study shuttle orbiter
NASA Technical Reports Server (NTRS)
1972-01-01
Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.
STS-117 Crew Training during suited PI/DO Prep in CCT-II mockup
2006-08-03
JSC2006-E-32666 (3 Aug. 2006) --- Attired in training versions of their shuttle launch and landing suits, astronauts James F. Reilly II (left) and John D. (Danny) Olivas, both STS-117 mission specialists, participate in a training session on the middeck of the crew compartment trainer (CCT-2) in the Space Vehicle Mockup Facility at Johnson Space Center.
External Survey from Windows in Mini-Research Modules and Pirs Docking Compartment
2013-04-03
ISS035-E-013901 (3 April 2013) --- This close-up picture of a Zvezda Service Module array, reflecting bright rays of the sun, thus creating an artistic scene, was photographed on April 3 by one of the Expedition 35 crew members as part of an External Survey from International Space Station windows that was recently added to the crew's task list.
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18547 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox, STS-82 mission commander, chats with a crewmate (out of frame) prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the middeck.
2003-03-31
KENNEDY SPACE CENTER, FLA. - Reporters at the dedication ceremony of a NASA hangar at the San Jose, Costa Rica, airport observe the WB-57f takeoff for its sixth Costa Rican flight. KSC and NASA researchers are testing the Aircraft-based Volcanic Emission Mass Spectrometer (AVEMS) that determines the presence and concentration of various chemicals. It is being tested in flights over the Turrialba volcano in Costa Rica, and in the crater, sampling and analyzing fresh volcanic gases in their natural chemical state. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttle’s aft compartment and the crew compartment.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members rescue an astronaut from inside the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members rescue an injured astronaut from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members assess medical needs on injured astronauts removed from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members transport an injured astronaut during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help an injured astronaut after removing him from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help an injured astronaut who was removed from the orbiter crew compartment mock- up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crews leave the scene after a helicopter removed rescued astronauts from the scene. They are taking part in a Mode VII emergency landing simulation at Kennedy Space Center, in order to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside an orbiter crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help an injured astronaut from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. Another is on the ground. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members rescue an injured astronaut from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Dummy left behind by Skylab 3 crew for the Skylab 4 crew
1973-08-16
SL3-113-1586 (July-September 1973) --- This photograph is an illustration of the humorous side of the Skylab 3 crew. This dummy was left behind in the Skylab space station by the Skylab 3 crew to be found by the Skylab 4 crew. The dummy is dressed in a flight suit and placed in the Lower Body Negative Pressure Device. The name tag indicates that it represents Gerald P. Carr, Skylab 4 commander, in the background is a partial view of the dummy for William R. Pogue, Skylab 4 pilot, propped upon the bicycle ergometer. The dummy representing Edward G. Gibson, Skylab science pilot, was left in the waste compartment. Astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma were the Skylab 3 crewmen. Photo credit: NASA
Dummy left behind by Skylab 3 crew for the Skylab 4 crew
1973-08-16
SL3-113-1587 (July-September 1973) --- This photograph is an illustration of the humorous side of the Skylab 3 crew. This dummy was left behind in the Skylab space station by the Skylab 3 crew to be found by the Skylab 4 crew. The dummy is dressed in a flight suit and propped upon the bicycle ergometer. The name tag indicated that it represents William R. Pogue, Skylab pilot. The dummy for Gerald P. Carr, Skylab 4 commander, was placed in the Lower Body Negative Pressure Device. The dummy representing Edward G. Gibson was left in the waste compartment. Astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma were the Skylab 3 crewmen. Gibson is the Skylab 4 science pilot. Photo credit: NASA
International Space Station USOS Waste and Hygiene Compartment Development
NASA Technical Reports Server (NTRS)
Link, Dwight E., Jr.; Broyan, James Lee, Jr.; Gelmis, Karen; Philistine, Cynthia; Balistreri, Steven
2007-01-01
The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. Additional hardware is planned for the United States Operational Segment (USOS) to support expansion of the crew to six person capability. The additional hardware will be integrated in an ISS standard equipment rack structure that was planned to be installed in the Node 3 element; however, the ISS Program Office recently directed implementation of the rack, or Waste and Hygiene Compartment (WHC), into the U.S. Laboratory element to provide early operational capability. In this configuration, preserved urine from the WHC waste collection system can be processed by the Urine Processor Assembly (UPA) in either the U.S. Lab or Node 3 to recover water for crew consumption or oxygen production. The human waste collection hardware is derived from the Service Module system and is provided by RSC-Energia. This paper describes the concepts, design, and integration of the WHC waste collection hardware into the USOS including integration with U.S. Lab and Node 3 systems.
Commander Lousma works with EEVT experiment and cryogenic tube on aft middeck
1982-03-31
Commander Jack Lousma works with Electrophoresis Equipment Verification Test (EEVT) electrophoresis unit, cryogenic freezer and tube, and stowage locker equipment located on crew compartment middeck aft bulkhead.
NASA Astrophysics Data System (ADS)
Gusev, Sergey A.; Nikolaev, Vladimir N.
2018-01-01
The method for determination of an aircraft compartment thermal condition, based on a mathematical model of a compartment thermal condition was developed. Development of solution techniques for solving heat exchange direct and inverse problems and for determining confidence intervals of parametric identification estimations was carried out. The required performance of air-conditioning, ventilation systems and heat insulation depth of crew and passenger cabins were received.
View of the Pirs Docking Compartment approaching the ISS during Expedition Three
2001-09-17
ISS003-E-5620 (16 September 2001) --- The Russian Docking Compartment, named Pirs (the Russian word for pier), is only seconds away from docking with the International Space Station (ISS). One of the Expedition Three crew members, using a digital still camera with a 35mm lens, recorded the image from onboard the orbital outpost. The vehicle was launched on September 14, 2001 and docking occurred on September 16.
View of the Pirs Docking Compartment approaching the ISS during Expedition Three
2001-09-17
ISS003-E-5615 (16 September 2001) --- Appearing almost as a silhouette against Earth, the Russian Docking Compartment, named Pirs (the Russian word for pier), approaches the International Space Station (ISS). One of the Expedition Three crew members, using a digital still camera with a 70mm lens, recorded the image from onboard the orbital outpost. The vehicle was launched on September 14, 2001 and docking occurred on September 16.
NASA Technical Reports Server (NTRS)
Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)
1991-01-01
A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.
NASA Technical Reports Server (NTRS)
2001-01-01
The crewmembers of STS-104, Commander Steven Lindsey, Pilot Charles Hobaugh, and Mission Specialists Michael Gernhardt, James Reilly, and Janet Kavandi, are seen during various stages of their training. Footage shows the following: (1) Water Survival Training at the Neutral Buoyancy Laboratory (NBL); (2) Rendezvous and Docking Training in the Shuttle Mission Simulator; (3) Training in the Space Station Airlock; (4) Training in the Virtual Reality Lab; (5) Post-insertion Operations in the Fixed Base Simulator; (6) Extravehicular Activity Training at the NBL; (7) Crew Stowage Training in the Space Station Mock-up Training Facility; and (8) Water Transfer Training in the Crew Compartment Trainer.
STS-47 Payload Specialist Mohri at side hatch during JSC egress exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri, wearing launch and entry suit (LES), prepares to enter the Crew Compartment Trainer (CCT) side hatch during launch emergency egress (bailout) in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Mohri's right hand rests on the extended crew escape system (CES) pole which will be used in the exercise. Mohri represents Japan's National Development Space Agency (NASDA).
NASA Technical Reports Server (NTRS)
1999-01-01
Live footage of the STS-93 crewmembers shows Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, Mission Specialists Steven A. Hawley, Catherine G. Coleman, and Michel Tognini going through various training activities. These activities include Bail Out Training NBL, Emergency Egress Training, Earth Observations Classroom Training, Simulator Training, T-38 Departure from Ellington Field, Chandra Deploy Training, SAREX Shuttle Amateur Radio Experiment, CCT Bail Out Crew Compartment Training, and Southwest Research Ultraviolet Imaging System (SWUIS) Training.
2004-02-18
KENNEDY SPACE CENTER, FLA. - In the Launch Control Center, officials monitor the “Mode VII” emergency landing simulation being conducted at Kennedy Space Center and managed and directed from the LCC. From left are Dr. Luis Moreno and Dr. David Reed, with Bionetics Life Sciences, and Dr. Philip Scarpa, with the KSC Safety, Occupational Health and Environment Division. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer “astronauts” who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Orbiter fire rescue and crew escape training for EVA crew systems support
1993-01-28
Photos of orbiter fire rescue and crew escape training for extravehicular activity (EVA) crew systems support conducted in Bldg 9A Crew Compartment Trainer (CCT) and Fuel Fuselage Trainer (FFT) include views of CCT interior of middeck starboard fuselage showing middeck forward (MF) locker and COAS assembly filter, artiflex film and camcorder bag (26834); launch/entry suit (LES) helmet assembly, neckring and helmet hold-down assembly (26835-26836); middeck aft (MA) lockers (26837); area of middeck airlock and crew escape pole (26838); connectors of crew escape pole in the middeck (268390); three test subjects in LES in the flight deck (26840); emergency side hatch slide before inflated stowage (26841); area of below adjacent to floor panel MD23R (26842); a test subject in LES in the flight deck (26843); control board and also showing sign of "orbital maneuvering system (OMS) secure and OMS TK" (26844); test subject in the flight deck also showing chart of "ascent/abort summary" (26845).
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members prepare to rescue another astronaut from inside the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members on the ground take hold of a volunteer astronaut lowered from the top of the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members prepare to rescue another astronaut from inside the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help a volunteer astronaut onto the ground after being lowered from the top of the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members lower a volunteer astronaut from the top of the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
SPACECRAFT (S/C)-012 - COMMAND MODULE (CM) - HEAT SHIELD INSTALLATION
1966-04-18
S66-41851 (1966) --- High angle view of Spacecraft 012 Command Module, looking toward -Z axis, during preparation for installation of the crew compartment heat shield, showing mechanics working on aft bay.
View of the Pirs Docking Compartment approaching the ISS during Expedition Three
2001-09-17
ISS003-E-5617 (16 September 2001) --- Appearing almost as a silhouette backdropped against Earth's horizon, the Russian Docking Compartment, named Pirs (the Russian word for pier), approaches the International Space Station (ISS). One of the Expedition Three crew members, using a digital still camera with a 70mm lens, recorded the image from onboard the orbital outpost. The vehicle was launched on September 14, 2001 and docking occurred on September 16.
STS-47 MS Jemison extends side hatch mockup CES pole during JSC training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison extends crew escape system (CES) pole through a side hatch mockup during launch emergency egress (bailout) training in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. MS Jerome Apt (right) looks on. The crewmembers practiced extending the CES pole prior to donning their launch and entry suits (LESs) and conducting the simulation in the Crew Compartment Trainer (CCT).
STS-38 MS Springer climbs through CCT side hatch prior to egress training
1990-03-05
STS-38 Mission Specialist (MS) Robert C. Springer, wearing launch and entry suit (LES), climbs through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Springer will practice emergency egress through the side hatch using the crew escape system (CES) pole (at Springer's left). The inflated safety cushion under Springer will break his fall as he rolls out of the side hatch.
STS-38 MS Springer climbs through CCT side hatch prior to egress training
NASA Technical Reports Server (NTRS)
1990-01-01
STS-38 Mission Specialist (MS) Robert C. Springer, wearing launch and entry suit (LES), climbs through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Springer will practice emergency egress through the side hatch using the crew escape system (CES) pole (at Springer's left). The inflated safety cushion under Springer will break his fall as he rolls out of the side hatch.
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18552 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox (left), STS-82 mission commander, chats with astronaut Scott J. Horowitz prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter approaches an orbiter crew compartment mock-up as part of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews will respond to the volunteer astronauts simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
1972-01-01
This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.
Skylab Orbiter Workshop Illustration
NASA Technical Reports Server (NTRS)
1972-01-01
This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.
Cutaway View of Skylab Orbital Workshop
NASA Technical Reports Server (NTRS)
1972-01-01
This illustration is a cutaway view of the Orbital Workshop (OWS) showing details of the living and working quarters. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment . The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.
Tour by Saudi prince Salman Abdelazize Al-Saud prior to mission
NASA Technical Reports Server (NTRS)
1985-01-01
Tour by Saudi prince Salman Abdelazize Al-Saud, payload specialists for STS 51-G mission, prior to mission. Al-Saud and Abdulmohsen Hamad Al-Bassam, the backup payload specialist, man the controls on the flight deck of the crew compartment trainer in the Shuttle mockup and integration laboratory (29788); the Saudi payload specialists share the hatch of the crew compartment trainer (29789); Portrait view of Abdulmohsen Hamad Al-Bassam during a visit to the Shuttle mockup and integraion laboratory (29790); Don Sirroco, left, explains the middeck facilities in the Shuttle mockup and integration laboratory (29791); Portrait view of Sultan Salman Abdelazize Al-Saud in the Shuttle Mockup and Integration laboratory (29792); The Saudi payload specialists witness a space food demonstration in the life sciences laboratory at JSC. Al-Saud (left) and Al-Bassam (second left) listen as Rita M. Rapp, food specialist, discusses three preparations of re-hydratable food for space travelers. Lynn S. Coll
1998-10-03
KENNEDY SPACE CENTER, FLA. -- Inside the payload bay of Space Shuttle orbiter Endeavour, workers and STS-88 crew members on a movable work platform or bucket move closer to the rear of the orbiter's crew compartment. While Endeavour is being prepared for flight inside Orbiter Processing Facility Bay 1, the STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. A KSC worker (left) maneuvers the platform to give Mission Specialists Jerry L. Ross and James H. Newman (right) a closer look. Looking on is Wayne Wedlake of United Space Alliance at Johnson Space Center. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability
STS-35 crewmembers in sleep station compartments on OV-102's middeck
1990-12-11
Though they are not actually asleep, three STS-35 crewmembers demonstrate the bunk-style sleep compartments onboard Columbia's, Orbiter Vehicle (OV) 102's, middeck. From top to bottom are Payload Specialist Samuel T. Durrance, Mission Specialist (MS) Jeffrey A. Hoffman, and MS John M. Lounge. At the left is the shuttle amateur radio experiment (SAREX). The crew escape pole (CES) is visible overhead and the open airlock hatch in the foreground. The sleep station is located against the middeck starboard wall.
STS-114: Crew Training Clip from JSC
NASA Technical Reports Server (NTRS)
2003-01-01
STS-114 Discovery crew is shown in various training exercises at Johnson Space Center. The crew consists of Eileen Collins, Commander; James Kelley, Pilot; Charles Camarda, Mission Specialist; Wendy Lawrence, Mission Specialist; Soichi Noguchi, Mission Specialist; Steve Robinson, Mission Specialist; and Andy Thomas, Mission Specialist. The exercises include: 1) EVA training in the VR lab; 2) Neutral Buoyancy Laboratory (NBL) EVA Training; 3) Walk to Motion Base Simulator; 4) EVA Preparations in ISS Airlock; and 7) Emergency Egress from Crew Compartment Trainer (CCT). A crew photo session is also presented. Footage of The Space Shuttle Atlantis inside the Kennedy Space Center Vehicle Assembly Building (VAB) after its demating from the Solid Rocket Booster and External Tank is shown. The video ends with techniques for inspecting and repairing Thermal Protection System tiles, a video of external tank production at the Michoud Assembly Facility (MAF) and redesign of the foam from the bipod ramp at Michoud Assembly Facility (MAF).
2002-11-10
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour stands ready for launch on mission STS-113. . The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.
Locomotive cab design development. Volume 4 : recommended design
DOT National Transportation Integrated Search
1978-11-01
This report presents a synopsis of the background analyses leading : to the design of a line haul locomotive crew compartment. The : design was incorporated into a full scale mockup which was : evaluated by a nationwide representation of locomotive e...
STS-38 Pilot Culbertson rolls through CCT side hatch during egress training
NASA Technical Reports Server (NTRS)
1990-01-01
STS-38 Pilot Frank L. Culbertson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), rolls through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Assisted by technicians, Culbertson practices emergency egress through the side hatch using the crew escape system (CES) pole which extends out the side hatch. The inflated safety cushion breaks Culbertson's fall as he rolls out of the side hatch.
STS-47 Commander Gibson and Pilot Brown at CCT side hatch during JSC training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Spacelab Japan (SLJ) Commander Robert L. Gibson (right) and Pilot Curtis L. Brown, Jr, wearing launch and entry suits (LESs), pose in front of the Crew Compartment Trainer (CCT) mockup side hatch during post landing emergency egress procedures held at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note that the crew escape system (CES) pole is in position at side hatch but is not extended.
STS-38 Pilot Culbertson rolls through CCT side hatch during egress training
1990-03-05
STS-38 Pilot Frank L. Culbertson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), rolls through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Assisted by technicians, Culbertson practices emergency egress through the side hatch using the crew escape system (CES) pole which extends out the side hatch. The inflated safety cushion breaks Culbertson's fall as he rolls out of the side hatch.
Astronaut William McArthur prepares for a training exercise
1993-07-20
S93-38686 (20 July 1993) --- Wearing a training version of the partial pressure launch and entry garment, astronaut William S. McArthur prepares to rehearse emergency egress procedures for the STS-58 mission. McArthur, along with the five other NASA astronauts and a visiting payload specialist assigned to the seven-member crew, later simulated contingency evacuation procedures. Most of the training session took place in the crew compartment and full fuselage trainers of the Space Shuttle mockup and integration laboratory.
Astronaut William McArthur prepares for a training exercise
1993-07-20
S93-38679 (20 July 1993) --- Wearing a training version of the partial pressure launch and entry garment, astronaut William S. McArthur listens to a briefing on emergency egress procedures for the STS-58 mission. McArthur, along with five other NASA astronauts and a visiting payload specialist assigned to the seven member crew, later rehearsed contingency evacuation procedures. Most of the training session took place in the crew compartment and full fuselage trainers of the Space Shuttle mockup and integration laboratory.
Astronauts Allen and Gemar during Extravehicular activity training in CCT
1993-10-13
Astronauts Charles D. (Sam) Gemar, and Andrew M. Allen participate in a training exercise at JSC's Crew Compartment Trainer (CCT), located in the Shuttle mockup and integration laboratory. Gemar sits inside the airlock as Allen reviews procedures for EVA.
Astronauts Allen and Gemar during extravehicular activity (EVA) training in CCT
NASA Technical Reports Server (NTRS)
1994-01-01
Astronauts Charles D. (Sam) Gemar, and Andrew M. Allen participate in a training exercise at JSC's Crew Compartment Trainer (CCT), located in the Space Vehicle Mockup Facility. Gemar sits inside the airlock as Allen reviews procedures for EVA.
2009-05-03
ISS019-E-013266 (3 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, trims his hair in a crew compartment on the International Space Station, using hair clippers fashioned with a vacuum device to garner freshly cut hair.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ventilation. 125.117 Section 125.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....117 Ventilation. Each passenger or crew compartment must be suitably ventilated. Carbon monoxide...
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter is landing near rescue team members taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside an orbiter crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
1998-10-21
KENNEDY SPACE CENTER, Fla. -- In the cloud-dimmed light of early morning, Space Shuttle Endeavour sits in place at Launch Pad 39A , atop the mobile launcher platform and crawler transporter, after rollout from the Vehicle Assembly Building. At its left are the Rotating Service Structure and Fixed Service Structure with the orbiter access arm extended. The access arm swings out to the orbiter crew compartment hatch to allow personnel to enter the crew compartment. At its outer end is the white room, an environmental chamber, that mates with the orbiter. While at the pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the STS-88 launch targeted for Dec. 3, 1998. Mission STS-88 is the first U.S. flight for the assembly of the International Space Station and will carry the Unity connecting module. While on orbit, the flight crew will deploy Unity from the payload bay and connect it to the Russian-built Zarya control module which will be in orbit at that time. Unity will be the main connecting point for later U.S. station modules and components. More than 40 launches are planned over five years involving the resources and expertise of 16 cooperating nations. Comprising the STS-88 crew are Commander Robert D. Cabana, Pilot Frederick W. "Rick" Sturckow, Mission Specialists Nancy J. Currie, Jerry L. Ross, James H. Newman and Russian cosmonaut Sergei Konstantinovich Krikalev. Ross and Newman will make three spacewalks to connect power, data and utility lines and install exterior equipment
Power considerations for an early manned Mars mission utilizing the space station
NASA Technical Reports Server (NTRS)
Valgora, Martin E.
1987-01-01
Power requirements and candidate electrical power sources were examined for the supporting space infrastructure for an early (2004) manned Mars mission. This two-year mission (60-day stay time) assumed a single six crew piloted vehicle with a Mars lander for four of the crew. The transportation vehicle was assumed to be a hydrogen/oxygen propulsion design with or without large aerobrakes and assembled and checked out on the LEO Space Station. The long transit time necessitated artificial gravity of the crew by rotating the crew compartments. This rotation complicates power source selection. Candidate power sources were examined for the Lander, Mars Orbiter, supporting Space Station, co-orbiting Propellant Storage Depot, and alternatively, a co-orbiting Propellant Generation (water electrolysis) Depot. Candidates considered were photovoltaics with regenerative fuel cells or batteries, solar dynamics, isotope dynamics, and nuclear power.
LC-39A RSS Rollback before launch of STS-113
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour stands ready for launch on mission STS-113. . The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.
The Incidence and Fate of Volatile Methyl Siloxanes in a Crewed Spacecraft Cabin
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Kayatin, Matthew J.
2017-01-01
Volatile methyl siloxanes (VMS) arise from diverse, pervasive sources aboard crewed spacecraft ranging from materials offgassing to volatilization from personal care products. These sources lead to a persistent VMS compound presence in the cabin environment that must be considered for robust life support system design. Volatile methyl siloxane compound stability in the cabin environment presents an additional technical issue because degradation products such as dimethylsilanediol (DMSD) are highly soluble in water leading to a unique load challenge for water purification processes. The incidence and fate of VMS compounds as observed in the terrestrial atmosphere, water, and surface (soil) environmental compartments have been evaluated as an analogy for a crewed cabin environment. Volatile methyl siloxane removal pathways aboard crewed spacecraft are discussed and a material balance accounting for a DMSD production mechanism consistent with in-flight observations is presented.
Expedition One crew in Russian with Service Module
2000-07-14
JSC2000-E-18630 (June 2000) --- A wide shot of the Zvezda Service Module trainer/mockup, with the transfer compartment in the foreground, displays the site of a great deal of training activity by astronauts and cosmonauts in training for ISS expeditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ventilation. 121.219 Section 121.219 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... passenger or crew compartment must be suitably ventilated. Carbon monoxide concentration may not be more...
2006-11-09
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Discovery and the mobile launcher platform sit on Launch Pad 39B for mission STS-116. The shuttle's external tank is capped by the oxygen vent hood (at top). Below it is the orbiter access arm which swings out from the fixed service structure to the orbiter crew compartment hatch to allow personnel to enter the crew compartment. The outer end of the access arm ends in an environmental chamber (white room) that mates with the orbiter and holds six persons. The arm remains in the extended position until seven minutes 24 seconds before launch to provide emergency egress for the flight crew. At right, the U.S. flag flies at half-staff in accordance with special Presidential Proclamation No. 3044, due to the death of Senior Border Patrol Agent David N. Webb. The rollout of Discovery from the Vehicle Assembly Building began at 12:29 a.m. The shuttle was harddown on the pad at 9:03 a.m. The mission is No. 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. The launch window for mission STS-116 opens Dec. 7. Photo credit: NASA/George Shelton
STS 51-G crewmembers participate in training in crew compartment trainer
1985-05-07
S85-31933 (17 May 1985) --- Four members of the STS 51-G crew participate in a training exercise in the shuttle mission simulation and training facility at the Johnson Space Center. Steven R. Nagel, left foreground, is a mission specialist for the flight, while Sultan Salman Abdelazize Al-Saud (right foreground) is a payload specialist. In the background are astronauts Daniel C. Brandenstein (left) in the commander's station and John O. Creighton in the pilot's position. Photo credit: NASA/ Otis Imboden of National Geographic
Astronaut Tamara Jernigan in the CCT during a training session
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Tamara E. Jernigan, STS-67 payload commander, is shown here in the Shuttle Training Facility at JSC participating in a training session. Jernigan is training with the RMS controls in the Crew Compartment Trainer (CCT) of JSC's Shuttle mockup and integration laboratory.
Astronaut Wendy Lawrence participates in training session in the CCT
NASA Technical Reports Server (NTRS)
1994-01-01
Seated in the pilot's seat of a JSC Shuttle trainer, astronaut Wendy B. Lawrence, STS-67 flight engineer, participates in a training session. The 1992 astronaut class graduate is in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory.
Sen. Jake Garn and payload specialist Charles Waler in middeck simulation
NASA Technical Reports Server (NTRS)
1985-01-01
Two payload specialists for the STS 51-D mission get in some training time in the crew compartment trainerat JSC. Charles D. Walker, left, rehearses photography of U.S. Senator E.J. (Jake) Garn in the middeck section of the trainer.
Sen. Jake Garn and payload specialist Charles Waler in middeck simulation
1985-04-12
Two payload specialists for the STS 51-D mission get in some training time in the crew compartment trainerat JSC. Charles D. Walker, left, rehearses photography of U.S. Senator E.J. (Jake) Garn in the middeck section of the trainer.
Crew around hatch leading into the Soyuz spacecraft
2006-09-28
ISS014-E-05015 (28 Sept. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, photographed near a docking port in the Pirs Docking Compartment of the International Space Station. A probe-and-cone docking mechanism is visible in the port.
Tour by Saudi prince Salman Abdelazize Al-Saud prior to mission
1985-04-04
S85-29788 (May 1985) --- Sultan Salman Abdelazize Al-Saud and Abdulmohsen Hamad Al-Bassam man the controls on the flight deck of the crew compartment trainer (CCT) in the Shuttle mockup and integration laboratory at the Johnson Space Center (JSC).
Usachev typing while in sleep station in the Service Module
2001-03-23
ISS002-E-5730 (23 March 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander, works at a laptop computer in his crew compartment in the Zvezda Service Module aboard the International Space Station (ISS). The image was recorded with a digital still camera.
FE Yurchikhin poses for a photo with SonoCard
2010-06-25
ISS024-E-006664 (25 June 2010) --- With most of his body tucked away in a sleeping bag, Russian cosmonaut Fyodor Yurchikhin, Expedition 24 flight engineer, is pictured in his crew quarters compartment in the Zvezda Service Module of the International Space Station.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Emergency Landing Conditions § 29.561 General... wheels are retracted (where applicable); and (3) Each occupant and each item of mass inside the cabin... paragraph, any item of mass above and/or behind the crew and passenger compartment that could injure an...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Emergency Landing Conditions § 27.561 General... wheels are retracted (where applicable); and (3) Each occupant and each item of mass inside the cabin... paragraph, any item of mass above and/or behind the crew and passenger compartment that could injure an...
Cutaway View of the Skylab Orbital Workshop
NASA Technical Reports Server (NTRS)
1973-01-01
This illustration is a cutaway view of a half of the Skylab Orbital Workshop (OWS) showing details of the living and working quarters. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.
Toxicological safeguards in the manned Mars missions
NASA Technical Reports Server (NTRS)
Coleman, Martin E.
1986-01-01
Safeguards against toxic chemical exposures during manned Mars missions (MMMs) will be important for the maintenance of crew health and the accomplishment of mission objectives. Potential sources include offgassing, thermodegradation or combustion of materials, metabolic products of crew members, and escape of chemical from containment. Spacecraft maximum allowable concentration (SMAC) limits will have to be established for potential contaminants during the MMMs. The following factors will be used in establishing these limits: duration of mission, simultaneous exposure to other contaminants, deconditioning of crew members after long periods of reduced gravity, and simultaneous exposure to ionizing radiation. Atmospheric contaminant levels in all compartments of the transit spacecraft and Manned Mars Station (MMS) will be monitored at frequent intervals with a real time analyzer. This analyzer will be highly automated, requiring minimal crew time and expertise. The atmospheric analyzer will find other usages during the MMMs such as analyzing Martian atmospheres and soils, exhaled breath and body fluids of crew members, and reaction products in chemical processing facilities.
Air blast injuries killed the crew of the submarine H.L. Hunley.
Lance, Rachel M; Stalcup, Lucas; Wojtylak, Brad; Bass, Cameron R
2017-01-01
The submarine H.L. Hunley was the first submarine to sink an enemy ship during combat; however, the cause of its sinking has been a mystery for over 150 years. The Hunley set off a 61.2 kg (135 lb) black powder torpedo at a distance less than 5 m (16 ft) off its bow. Scaled experiments were performed that measured black powder and shock tube explosions underwater and propagation of blasts through a model ship hull. This propagation data was used in combination with archival experimental data to evaluate the risk to the crew from their own torpedo. The blast produced likely caused flexion of the ship hull to transmit the blast wave; the secondary wave transmitted inside the crew compartment was of sufficient magnitude that the calculated chances of survival were less than 16% for each crew member. The submarine drifted to its resting place after the crew died of air blast trauma within the hull.
Air blast injuries killed the crew of the submarine H.L. Hunley
Stalcup, Lucas; Wojtylak, Brad; Bass, Cameron R.
2017-01-01
The submarine H.L. Hunley was the first submarine to sink an enemy ship during combat; however, the cause of its sinking has been a mystery for over 150 years. The Hunley set off a 61.2 kg (135 lb) black powder torpedo at a distance less than 5 m (16 ft) off its bow. Scaled experiments were performed that measured black powder and shock tube explosions underwater and propagation of blasts through a model ship hull. This propagation data was used in combination with archival experimental data to evaluate the risk to the crew from their own torpedo. The blast produced likely caused flexion of the ship hull to transmit the blast wave; the secondary wave transmitted inside the crew compartment was of sufficient magnitude that the calculated chances of survival were less than 16% for each crew member. The submarine drifted to its resting place after the crew died of air blast trauma within the hull. PMID:28832592
NASA Astrophysics Data System (ADS)
Ransom, Stephen; Böttcher, Jörg; Steinsiek, Frank
The Astrium Space Infrastructure Division has begun an in-house research activity of an Earth-based simulation facility supporting future manned missions to Mars. This research unit will help to prepare and support planned missions in the following ways: 1) to enable the investigation and analysis of contamination issues in advance of a human visit to Mars; 2) as a design tool to investigate and simulate crew operations; 3) to simulate crew operation during an actual mission; 4) to enable on-surface scientific operations without leaving the shirt-sleeve habitation environment ("glove box principle"). The MESA module is a surface EVA facility attached to the main habitation or laboratory module, or mobile pressurized rover. It will be sealed, but not pressurized, and provide protection against the harsh Martian environment. This module will include a second crew airlock for safety reasons. The compartment can also be used to provide an external working bench and experiment area for the crew. A simpler MESA concept provides only an open shelter against wind and dust. This concept does not incorporate working and experimental areas. The principle idea behind the MESA concept is to tackle the issue of contamination by minimizing the decontamination processes needed to clean surface equipment and crew suit surfaces after an EVA excursion prior to the astronaut re-entering the habitable area. The technical solution envisages the use of a dedicated crew suit airlock. This airlock uses an EVA suit which is externally attached by its back-pack to the EVA compartment area facing the Martian environment. The crew donns the suit from inside the habitable volume through the airlock on the back of the suit. The surface EVA can be accomplished after closing the back-pack and detaching the suit. A special technical design concept foresees an extendable suit back-pack, so that the astronaut can operate outside and in the vincinity of the module. The key driver in the investigation is the problem of contamination of the habitable volume by EVA and sampling activities and the transport of Earth-generated contaminants to Mars.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An injured rescue worker is lifted into an M-113 armored personnel carrier provided for transportation during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter rescue team prepares another injured astronaut for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter rescue team prepares another injured astronaut for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2008-10-17
CAPE CANAVERAL, Fla. – This photo shows the waste and hygiene compartment that will be delivered to the International Space Station aboard space shuttle Endeavour on the STS-126 mission. The Russian-built toilet system provides the crew with a second facility on the station, located in the Destiny lab. The unit separately channels liquid and solid waste. While the solid waste goes to a holding tank, a new pair of processing units that Endeavour also will deliver on this mission are set to begin a unique recycling program -- turning crew members’ urine into potable water. Space shuttle Endeavour and its crew of seven are scheduled to lift off at 7:55 p.m. Nov. 14 for the 15-day STS-126 mission. Photo credit: NASA
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Volunteers from the KSC Fire-Rescue team dressed in launch and entry suits settle into seats in an orbiter crew compartment mock-up under the guidance of George Brittingham, USA suit technician on the Closeout Crew. Brittingham is helping Catherine Di Biase, a nurse with Bionetics Life Sciences. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer astronauts simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
The International Space Station Habitat
NASA Technical Reports Server (NTRS)
Watson, Patricia Mendoza; Engle, Mike
2003-01-01
The International Space Station (ISS) is an engineering project unlike any other. The vehicle is inhabited and operational as construction goes on. The habitability resources available to the crew are the crew sleep quarters, the galley, the waste and hygiene compartment, and exercise equipment. These items are mainly in the Russian Service Module and their placement is awkward for the crew to deal with ISS assembly will continue with the truss build and the addition of International Partner Laboratories. Also, Node 2 and 3 will be added. The Node 2 module will provide additional stowage volume and room for more crew sleep quarters. The Node 3 module will provide additional Environmental Control and Life Support Capability. The purpose of the ISS is to perform research and a major area of emphasis is the effects of long duration space flight on humans, a result of this research they will determine what are the habitability requirements for long duration space flight.
76 FR 19518 - Safety Advisory 2011-01
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... Jersey, when a conventional two-person switching crew was shoving rolling equipment into an industrial facility. The locomotive engineer was in the locomotive control compartment and the conductor was..., engineer, and a conductor-in-training was switching cars on a switching lead track and using various other...
14 CFR 21.3 - Reporting of failures, malfunctions, and defects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... crew compartment or passenger cabin. (4) A malfunction, failure, or defect of a propeller control... structural or flight control system malfunction, defect, or failure which causes an interference with normal control of the aircraft for which derogates the flying qualities. (12) A complete loss of more than one...
14 CFR 21.3 - Reporting of failures, malfunctions, and defects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... crew compartment or passenger cabin. (4) A malfunction, failure, or defect of a propeller control... structural or flight control system malfunction, defect, or failure which causes an interference with normal control of the aircraft for which derogates the flying qualities. (12) A complete loss of more than one...
14 CFR 21.3 - Reporting of failures, malfunctions, and defects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... crew compartment or passenger cabin. (4) A malfunction, failure, or defect of a propeller control... structural or flight control system malfunction, defect, or failure which causes an interference with normal control of the aircraft for which derogates the flying qualities. (12) A complete loss of more than one...
Variable gravity research facility
NASA Technical Reports Server (NTRS)
Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd
1988-01-01
Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... certificate for a new Model LJ-200-1A10 airplane. This airplane is 68 feet long with a 65-foot wing span and..., without continuous attention on the part of the crew, in conditions from light misting precipitation to...
JSC Shuttle Mission Simulator (SMS) visual system payload bay video image
NASA Technical Reports Server (NTRS)
1981-01-01
This space shuttle orbiter payload bay (PLB) video image is used in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). The image is projected inside the FB-SMS crew compartment during mission simulation training. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.
Astronaut Scott Parazynski in hatch of CCT during training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Scott E. Parazynski, STS-66 mission specialist, poses at the hatch of the crew compartment trainer (CCT) prior to a rehearsal of launch and entry procedures for a November 1994 flight aboard the Space Shuttle Atlantis. Parazynski is wearing his launch and entry suit for this training session.
2016-07-29
iss048e045888 (07/29/2016) --- The visual scope looking down at the Pirs docking compartment on the Russian segment of the International Space Station. Currently seen docked to Pirs is the ISS Progress 64 cargo craft, which delivered over 3 tons of food, fuel and supplies to the crew of Expedition 48
The Shock and Vibration Bulletin. Part 3. Skylab, Vibration Testing and Analysis
1973-06-01
Zft- ,Instrument Unit - (Acoustic Test Only) -orward Compartment Crew Ouarters Meteoroid Shield IntertageTACS Spheres (Acoustic Tesi - Radiator...weighs more than the lower floor. You Mru ertes: You hadn’t flown this struc- might feel that since the analysis approach wasconfirmed on the upper floor
14 CFR 23.853 - Passenger and crew compartment interiors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... instruments in a common housing, seatbelts, shoulder harnesses, and cargo and baggage tiedown equipment... portions of appendix F of this part or by other approved equivalent methods. (v) Except for electrical wire cable insulation, and for small parts (such as knobs, handles, rollers, fasteners, clips, grommets, rub...
14 CFR 23.853 - Passenger and crew compartment interiors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... instruments in a common housing, seatbelts, shoulder harnesses, and cargo and baggage tiedown equipment... portions of appendix F of this part or by other approved equivalent methods. (v) Except for electrical wire cable insulation, and for small parts (such as knobs, handles, rollers, fasteners, clips, grommets, rub...
STS-36 Commander Creighton in LES outside CCT side hatch during JSC training
NASA Technical Reports Server (NTRS)
1989-01-01
Standing on an inflated cushion outside the side hatch of the crew compartment trainer (CCT), STS-36 Commander John O. Creighton, wearing launch and entry suit (LES), smiles before climbing into the shuttle mockup. The crew escape system (CES) pole extends beyond the side hatch opening. Mission Specialist (MS) Richard M. Mullane is seen at the lower corner of the frame rolling on the safety cushion. CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. The crewmembers are practicing egress procedures that might be necessary in the event of an emergency aboard the shuttle.
SKYLAB (SL)-2 PRIME CREW - BLDG. 5 - JSC
1973-03-20
S73-20713 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, wipes perspiration from his face following an exercise session on the bicycle ergometer during Skylab training at Johnson Space Center. Conrad is in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. In addition to being the prime exercise for the crewmen, the ergometer is also used for the vector-cardiogram test and the metabolic activity experiment. The bicycle ergometer produces measured workloads for use in determining man's metabolic effectiveness. Photo credit: NASA
Various views of STS-95 Senator John Glenn during training
1998-06-18
S98-08745 (May 1998) --- Four members of the STS-95 crew are briefed on flight hardware during a training session in the shuttle crew compartment trainer (CCT) at the Johnson Space Center (JSC). Donald C. Carico, an instructor, holds a loc-line bracket. Crewmembers, from the left, are Scott E. Parazynski and Pedro Duque, both mission specialists; Chiaki Mukai and U.S. Sen. John H. Glenn Jr., both payload specialists. Duque represents the European Space Agency (ESA) and Mukai, Japan's National Space Development Agency (NASDA). The photo was taken by Joe McNally, National Geographic, for NASA.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter rescue team carries another injured astronaut to a helicopter for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2003-03-31
KENNEDY SPACE CENTER, FLA. - At the airport in San Jose, Costa Rica, the NASA hangar is dedicated. The speaker is Hermann Faith, executive director, Costa Rica-USA (CRUSA) Foundation. At the table are (from left) Dr. Jorge Andres Diaz, head scientiest CARTA mission; Gary Shelton, NASA deployment manager; Dr. Pedro Leon, general director, National Center for Advanced Technology (CENAT); Dr. Rogelio Pardo, minister of science and tchnology; John Danilovioch, U.S. ambassador to Costa Rica; and Lic. Vilma Lopez, subdirector, Civil Aviation (DGAC). NASA KSC has been testing its Aircraft-based Volcanic Emission Mass Spectrometer (AVEMS) in flights over the Turrialba volcano and in the crater, sampling and analyzing fresh volcanic gases in their natural chemical state. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttle’s aft compartment and the crew compartment.
14 CFR 25.771 - Pilot compartment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the propellers so that no member of the minimum flight crew (established under § 25.1523), or part of the controls, lies in the region between the plane of rotation of any inboard propeller and the surface generated by a line passing through the center of the propeller hub making an angle of five...
14 CFR 25.771 - Pilot compartment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the propellers so that no member of the minimum flight crew (established under § 25.1523), or part of the controls, lies in the region between the plane of rotation of any inboard propeller and the surface generated by a line passing through the center of the propeller hub making an angle of five...
14 CFR 25.771 - Pilot compartment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the propellers so that no member of the minimum flight crew (established under § 25.1523), or part of the controls, lies in the region between the plane of rotation of any inboard propeller and the surface generated by a line passing through the center of the propeller hub making an angle of five...
14 CFR 25.771 - Pilot compartment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the propellers so that no member of the minimum flight crew (established under § 25.1523), or part of the controls, lies in the region between the plane of rotation of any inboard propeller and the surface generated by a line passing through the center of the propeller hub making an angle of five...
77 FR 19148 - Special Conditions: Airbus, A350-900 Series Airplane; Crew Rest Compartments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
...-900 series airplanes. These airplanes will have novel or unusual design features associated with two... standards for this design feature. These proposed special conditions contain the additional safety standards... for FAA type certification to June 28, 2009. The A350-900 series has a conventional layout with twin...
Astronaut Joseph Tanner checks gloves during during launch/entry training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Joseph R. Tanner, mission specialist, checks his gloves during a rehearsal for the launch and entry phases of the scheduled November 1994 flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.
14 CFR 125.113 - Cabin interiors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Cabin interiors. 125.113 Section 125.113....113 Cabin interiors. (a) Upon the first major overhaul of an airplane cabin or refurbishing of the cabin interior, all materials in each compartment used by the crew or passengers that do not meet the...
STS-135 Escape System Refresher training and Stowage Review Training
2011-06-29
JSC2011-E-060759 (29 June 2011) --- NASA astronaut Sandy Magnus, STS-135 mission specialist, participates in a training session in the crew compartment trainer (CCT-2) in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Here, she is being briefed on the escape pole. Photo credit: NASA
14 CFR 25.789 - Retention of items of mass in passenger and crew compartments and galleys.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Retention of items of mass in passenger and... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.789 Retention of items of mass in...
14 CFR 25.789 - Retention of items of mass in passenger and crew compartments and galleys.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Retention of items of mass in passenger and... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.789 Retention of items of mass in...
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Reporters at the dedication ceremony of a NASA hangar at the San Jose, Costa Rica, airport observe the WB-57f takeoff for its sixth Costa Rican flight. KSC and NASA researchers are testing the Aircraft-based Volcanic Emission Mass Spectrometer (AVEMS) that determines the presence and concentration of various chemicals. It is being tested in flights over the Turrialba volcano in Costa Rica, and in the crater, sampling and analyzing fresh volcanic gases in their natural chemical state. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttles aft compartment and the crew compartment.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Launch Control Center, Robert Holl (left), Landing Recovery directo, and Donald Hammel, from the Shuttle Project Office, are in contact with the leaders of the Mode VII emergency landing simulation at Kennedy Space Center. The simulation is being managed and directed from the LCC. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Operator Station Design System - A computer aided design approach to work station layout
NASA Technical Reports Server (NTRS)
Lewis, J. L.
1979-01-01
The Operator Station Design System is resident in NASA's Johnson Space Center Spacecraft Design Division Performance Laboratory. It includes stand-alone minicomputer hardware and Panel Layout Automated Interactive Design and Crew Station Assessment of Reach software. The data base consists of the Shuttle Transportation System Orbiter Crew Compartment (in part), the Orbiter payload bay and remote manipulator (in part), and various anthropometric populations. The system is utilized to provide panel layouts, assess reach and vision, determine interference and fit problems early in the design phase, study design applications as a function of anthropometric and mission requirements, and to accomplish conceptual design to support advanced study efforts.
STS-65 Japanese Payload Specialist Mukai at CCT side hatch during training
1993-11-22
STS-65 Japanese Payload Specialist Chiaki Mukai takes a break from training at the Johnson Space Center (JSC). Wearing a training version of the orange launch and entry suit (LES), Mukai stands at the crew compartment trainer (CCT) side hatch in the Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note the crew escape system (CES) pole device extending out the side hatch which would accommodate crewmembers in bailout from a troubled spacecraft. Mukai represents the National Space Development Agency (NASDA) of Japan and will serve as a payload specialist aboard Columbia, Orbiter Vehicle (OV) 102, during the STS-65 International Microgravity Laboratory 2 (IML-2) mission.
2002-04-03
KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Atlantis stands ready for launch on mission STS-110. The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-110 crew will enter Atlantis. The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure has access platforms at five levels to provide access to the payload bay. The FSS provides access to the orbiter and the RSS. . Mission STS-110 is scheduled to launch April 4 on its 11-day mission to the International Space Station
SKYLAB (SL) PRIME CREW - BLDG. 5 - JSC
1973-03-20
S73-20695 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at Johnson Space Center. Conrad is in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. The reference sphere with a magnetic rod is used by the astronaut to indicate body orientation non-visually. The litter chair in which he is seated can be rotated by a motor at its base or, when not being rotated, can tilt forward, backward or to either side. Photo credit: NASA
STS-65 Japanese Payload Specialist Mukai at CCT side hatch during training
NASA Technical Reports Server (NTRS)
1993-01-01
STS-65 Japanese Payload Specialist Chiaki Mukai takes a break from training at the Johnson Space Center (JSC). Wearing a training version of the orange launch and entry suit (LES), Mukai stands at the crew compartment trainer (CCT) side hatch in the Mockup and Integration Laboratory (MAIL) Bldg 9NE. Note the crew escape system (CES) pole device extending out the side hatch which would accommodate crewmembers in bailout from a troubled spacecraft. Mukai represents the National Space Development Agency (NASDA) of Japan and will serve as a payload specialist aboard Columbia, Orbiter Vehicle (OV) 102, during the STS-65 International Microgravity Laboratory 2 (IML-2) mission.
NASA Astrophysics Data System (ADS)
Halberg, Ephriam Etan
This study proposes that a Boeing X-37B space plane, its dimensions and performance characteristics estimated from publicly available documents, diagrams, and photographs, could be internally redesigned as a medical evacuation (ambulance) vehicle for the International Space Station. As of 2017, there is currently no spacecraft designed to accommodate a contingency medical evacuation wherein a crew member aboard the ISS is injured or ailing and must be returned to Earth for immediate medical attention. The X-37B is an unmanned vehicle with a history of success in both sub-orbital testing and all four of its long-duration orbital missions to date. Research conducted at UC Davis suggests that it is possible to retain the outer mold line of the X-37B while expanding the internal payload compartment to a volume sufficient for a crew of three--pilot, crew medical officer, and injured crew member--throughout ISS un-dock and atmospheric entry, descent, and landing. In addition to crew life support systems, this re-purposed X-37B, hereafter referred to as the X-37SA (Space Ambulance), includes medical equipment for stabilization of a patient in-transit. This study suggests an optimal, ergonomic crew configuration and berthing port location, procedures for microgravity ingress and 1G egress, a minimum medical equipment list and location within the crew cabin for the medical care and monitoring equipment. Conceptual crew configuration, ingress/egress procedures, and patient/equipment access are validated via physical simulation in a full-scale mockup of the proposed X-37SA crew cabin.
NASA Technical Reports Server (NTRS)
Lubey, Daniel P.; Thiele, Sara R.; Gruseck, Madelyn L.; Evans, Carol T.
2010-01-01
Though getting astronauts safely into orbit and beyond has long been one of NASA?s chief goals, their safe return has always been equally as important. The Crew Exploration Vehicle?s (CEV) Parachute Assembly System (CPAS) is designed to safely return astronauts to Earth on the next-generation manned spacecraft Orion. As one means for validating this system?s requirements and testing its functionality, a test article known as the Parachute Compartment Drop Test Vehicle (PC-DTV) will carry a fully-loaded yet truncated CPAS Parachute Compartment (PC) in a series of drop tests. Two aerodynamic profiles for the PC-DTV currently exist, though both share the same interior structure, and both have an Orion-representative weight of 20,800 lbf. Two extraction methods have been developed as well. The first (Cradle Monorail System 2 - CMS2) uses a sliding rail technique to release the PC-DTV midair, and the second (Modified DTV Sled; MDS) features a much less constrained separation method though slightly more complex. The decision as to which aerodynamic profile and extraction method to use is still not finalized. Additional CFD and stress analysis must be undertaken in order to determine the more desirable options, though at present the "boat tail" profile and the CMS2 extraction method seem to be the favored options in their respective categories. Fabrication of the PC-DTV and the selected extraction sled is set to begin in early October 2010 with an anticipated first drop test in mid-March 2011.
Astronaut Curtis Brown on flight deck mockup during training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Curtis L. Brown, STS-66 pilot, mans the pilot's station during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.
Astronaut Scott Parazynski during egress training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (foreground) during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.
46 CFR 92.20-25 - Washrooms and toilet rooms.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Where more than 1 toilet is located in a space or compartment, each toilet must be separated by... 46 Shipping 4 2013-10-01 2013-10-01 false Washrooms and toilet rooms. 92.20-25 Section 92.20-25... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-25 Washrooms and toilet rooms. (a...
46 CFR 72.20-25 - Washrooms and toilet rooms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... than 1 toilet is located in a space or compartment, each toilet must be separated by partitions. ... 46 Shipping 3 2013-10-01 2013-10-01 false Washrooms and toilet rooms. 72.20-25 Section 72.20-25... ARRANGEMENT Accommodations for Officers and Crew § 72.20-25 Washrooms and toilet rooms. (a) There must be at...
46 CFR 72.20-25 - Washrooms and toilet rooms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... than 1 toilet is located in a space or compartment, each toilet must be separated by partitions. ... 46 Shipping 3 2014-10-01 2014-10-01 false Washrooms and toilet rooms. 72.20-25 Section 72.20-25... ARRANGEMENT Accommodations for Officers and Crew § 72.20-25 Washrooms and toilet rooms. (a) There must be at...
46 CFR 72.20-25 - Washrooms and toilet rooms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... than 1 toilet is located in a space or compartment, each toilet must be separated by partitions. ... 46 Shipping 3 2011-10-01 2011-10-01 false Washrooms and toilet rooms. 72.20-25 Section 72.20-25... ARRANGEMENT Accommodations for Officers and Crew § 72.20-25 Washrooms and toilet rooms. (a) There must be at...
46 CFR 92.20-25 - Washrooms and toilet rooms.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Where more than 1 toilet is located in a space or compartment, each toilet must be separated by... 46 Shipping 4 2014-10-01 2014-10-01 false Washrooms and toilet rooms. 92.20-25 Section 92.20-25... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-25 Washrooms and toilet rooms. (a...
46 CFR 72.20-25 - Washrooms and toilet rooms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... than 1 toilet is located in a space or compartment, each toilet must be separated by partitions. ... 46 Shipping 3 2010-10-01 2010-10-01 false Washrooms and toilet rooms. 72.20-25 Section 72.20-25... ARRANGEMENT Accommodations for Officers and Crew § 72.20-25 Washrooms and toilet rooms. (a) There must be at...
46 CFR 72.20-25 - Washrooms and toilet rooms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... than 1 toilet is located in a space or compartment, each toilet must be separated by partitions. ... 46 Shipping 3 2012-10-01 2012-10-01 false Washrooms and toilet rooms. 72.20-25 Section 72.20-25... ARRANGEMENT Accommodations for Officers and Crew § 72.20-25 Washrooms and toilet rooms. (a) There must be at...
46 CFR 92.20-25 - Washrooms and toilet rooms.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Where more than 1 toilet is located in a space or compartment, each toilet must be separated by... 46 Shipping 4 2011-10-01 2011-10-01 false Washrooms and toilet rooms. 92.20-25 Section 92.20-25... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-25 Washrooms and toilet rooms. (a...
46 CFR 92.20-25 - Washrooms and toilet rooms.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Where more than 1 toilet is located in a space or compartment, each toilet must be separated by... 46 Shipping 4 2010-10-01 2010-10-01 false Washrooms and toilet rooms. 92.20-25 Section 92.20-25... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-25 Washrooms and toilet rooms. (a...
46 CFR 92.20-25 - Washrooms and toilet rooms.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Where more than 1 toilet is located in a space or compartment, each toilet must be separated by... 46 Shipping 4 2012-10-01 2012-10-01 false Washrooms and toilet rooms. 92.20-25 Section 92.20-25... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-25 Washrooms and toilet rooms. (a...
15. Photographic copy of photograph, n.d. (original photograph in STRATCOM ...
15. Photographic copy of photograph, n.d. (original photograph in STRATCOM Historian files, Offutt AFB, Bellevue, Nebraska). Interior view of crew members at work in battle staff compartment. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
Environmental Control and Life Support Integration Strategy for 6-Crew Operations Stephanie Duchesne
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie M.
2009-01-01
The International Space Station (ISS) crew compliment has increased in size from 3 to 6 crew members . In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station.
Environmental Control and Life Support Integration Strategy for 6-Crew Operations
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie M.; Tressler, Chad H.
2010-01-01
The International Space Station (ISS) crew complement has increased in size from 3 to 6 crew members. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System (OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the t OS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station
The development of the MELiSSA Pilot Plant Facility
NASA Astrophysics Data System (ADS)
Godia, Francesc; Dussap, Claude-Gilles; Dixon, Mike; Peiro, Enrique; Fossen, Arnaud; Lamaze, Brigitte; Brunet, Jean; Demey, Dries; Mas-Albaigès, Joan L.
MELiSSA (Micro-Ecological Life Support System Alternative) is a closed artificial ecosystem intended as a tool for the development of a bio-regenerative life support system for longterm manned missions. The MELiSSA loop is formed by five interconnected compartments, organized in three different loops (solid, liquid and gas). This compartments are microbial bioreactors and higher plant chambers. The MELiSSA Pilot Plant facility has been designed to achieve the preliminary terrestrial demonstration of the MELiSSA concept at pilot scale, using animals as a model for the crew compartent. The experience gained in the operation of such a facility will be highly relevant for planning future life support systems in Space. In this communication, the latests developments in the MELiSSA Pilot Plant will be reported. Particularly, the completion of the design phase and instalation of all the different compartments will be discussed in detail. Each of the compartments had to be designed and constructed according to very specific characteristics, associated to the biological systems to be cultured, as part of the complete MELiSSA loop (anerobic, oxygenic, thermophilic, heterotrophic, autotrophic, axenic, photosynthetic, etc.). Additionally, the sizing of each reactor (ranging from 8 to 100 Liters, depending of each particular compartment) should compile with the global integration scenario proposed, and with the final goal of connection of all compartments to provide a demonstration of the MELiSSA concept, and generate data for the design and operation of future biological life support systems.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Launch Control Center, officials monitor the Mode VII emergency landing simulation being conducted at Kennedy Space Center and managed and directed from the LCC. From left are Dr. Luis Moreno and Dr. David Reed, with Bionetics Life Sciences, and Dr. Philip Scarpa, with the KSC Safety, Occupational Health and Environment Division. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Astrophysics Data System (ADS)
Ronsse, Frederik; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Luther, Amanda; Rabaey, Korneel; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter; Brilman, Wim
2016-07-01
For long-term human spaceflight missions, one of the major requirements is the regenerative life support system which has to be capable of recycling carbon, nutrients and water from both solid and liquid wastes generated by the crew and by the local production of food through living organisms (higher plants, fungi, algae, bacteria, …). The European Space Agency's Life Support System, envisioned by the MELiSSA project, consists of a 5 compartment artificial ecosystem, in which the waste receiving compartment (so-called compartment I or briefly 'CI') is based on thermophilic fermentation. However, as the waste generated by the crew compartment and food production compartment contain typical plant fibres (lignin, cellulose and hemicellulose), these recalcitrant fibres end up largely unaffected in the digestate (sludge) generated in the C-I compartment. Therefore, the C-I compartment has to be supplemented with a so-called fibre degradation unit (in short, FDU) for further oxidation or degradation of said plant fibres. A potential solution to degrading these plant fibres and other recalcitrant organics is their oxidation, by means of subcritical or supercritical water, into reusable CO2 while retaining the nutrients in an organic-free liquid effluent. By taking advantage of the altered physicochemical properties of water above or near its critical point (647 K, 22.1 MPa) - including increased solubility of non-polar compounds and oxygen, ion product and diffusivity - process conditions can be created for rapid oxidation of C into CO2. In this research, the oxidizer is provided as a hydrogen peroxide solution which, at elevated temperature, will dissociated into O2. The purpose of this study is to identify ideal process conditions which (a) ensure complete oxidation of carbon, (b) retaining the nutrients other than C in the liquid effluent and (c) require as little oxidizer as possible. Experiments were conducted on a continuous, tubular heated reactor and on batch micro-autoclaves and the experimental variables considered where temperature (and corresponding saturated vapour pressure), residence time and oxidizer-to-feed ratio. The feed material was sludge from the C-I compartment treating MELiSSA model waste (vegetables, toilet paper, feces). The feed was diluted down to 1 wt% DM. Our experimental results show that, given sufficient residence time, complete or near-complete (>90%) oxidation of carbon at supercritical (in case 400°C) conditions can be attained. However, the most influencing parameter is the stoichiometric oxidizer-to-feed ratio. Below ratios of 1.5, incomplete oxidation occurred together with the formation of char or tar-like carbonaceous dispersion in the effluent. Gas phase chromatographic analysis confirmed the presence of significant quantities of O2, formed out of the hydrogen peroxide supplied and not having taking part in the oxidation reaction.
Astronaut Scott Parazynski during egress training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (partially visible in foreground) during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
... A330- 200 airplane. This airplane as modified by TTF Aerospace LLC will have a novel or unusual design... airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These... novel or unusual design feature, special conditions are prescribed under the provisions of Sec. 21.16...
STS-33 Discovery, OV-103, MLG touches down on EAFB concrete runway 04
NASA Technical Reports Server (NTRS)
1989-01-01
STS-33 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touchdown is documented at Edwards Air Force Base (EAFB), California, on concrete runway 04. Views look forward from the space shuttle main engines (SSMEs) to the crew compartment as OV-103 glides down the runway. The landing occurred at 16:31:02 pm Pacific Standard Time (PST).
46 CFR 32.40-25 - Washrooms and toilet rooms-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... rooms. (e) Where more than 1 toilet is located in a space or compartment, each toilet must be separated... 46 Shipping 1 2011-10-01 2011-10-01 false Washrooms and toilet rooms-T/ALL. 32.40-25 Section 32.40..., AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-25 Washrooms and toilet rooms—T/ALL...
46 CFR 32.40-25 - Washrooms and toilet rooms-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... rooms. (e) Where more than 1 toilet is located in a space or compartment, each toilet must be separated... 46 Shipping 1 2012-10-01 2012-10-01 false Washrooms and toilet rooms-T/ALL. 32.40-25 Section 32.40..., AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-25 Washrooms and toilet rooms—T/ALL...
46 CFR 32.40-25 - Washrooms and toilet rooms-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... rooms. (e) Where more than 1 toilet is located in a space or compartment, each toilet must be separated... 46 Shipping 1 2014-10-01 2014-10-01 false Washrooms and toilet rooms-T/ALL. 32.40-25 Section 32.40..., AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-25 Washrooms and toilet rooms—T/ALL...
46 CFR 32.40-25 - Washrooms and toilet rooms-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... rooms. (e) Where more than 1 toilet is located in a space or compartment, each toilet must be separated... 46 Shipping 1 2013-10-01 2013-10-01 false Washrooms and toilet rooms-T/ALL. 32.40-25 Section 32.40..., AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-25 Washrooms and toilet rooms—T/ALL...
46 CFR 32.40-25 - Washrooms and toilet rooms-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... rooms. (e) Where more than 1 toilet is located in a space or compartment, each toilet must be separated... 46 Shipping 1 2010-10-01 2010-10-01 false Washrooms and toilet rooms-T/ALL. 32.40-25 Section 32.40..., AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-25 Washrooms and toilet rooms—T/ALL...
18. Photographic copy of photograph, 1970 (original photograph in STRATCOM ...
18. Photographic copy of photograph, 1970 (original photograph in STRATCOM Historian files, Offutt AFB, Bellevue, Nebraska). Interior view of two crew members operating the data display system in the battle staff compartment. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
1971-12-01
Workmen at the Martin Marietta Corporation's Space Center facility in Denver, Colorado, lower the Skylab Multiple Docking Adapter (MDA) flight article into the horizontal rotation fixture in preparation for the crew compartment and function review. Designed and manufactured by the Marshall Space Flight Center and outfitted by Martin Marietta, the MDA housed a number of experiment control and stowage units and provided a docking port for the Apollo Command Module.
1972-09-01
This September 1972 photograph shows the internal configuration of Skylab's Multiple Docking Adapter (MDA) flight article as it appeared during the Crew Compartment and Function Review at the Martin-Marietta Corporation's Space Center facility in Denver, Colorado. Designed and manufactured by the Marshall Space Flight Center, the MDA housed a number of experiment control and stowage units and provided a docking port for the Apollo Command Module.
Skylab experiment M487 habitability/crew quarters
NASA Technical Reports Server (NTRS)
Johnson, C. C.
1975-01-01
Results of Skylab experiment M487 (habitability/crew quarters), which was designed to evaluate the habitability features of Skylab, were presented. General observations and conclusions drawn from the data obtained are presented in detail. The objectives of the experiment, the manner in which data was acquired, and the instruments used to support the experiments are described. Illustrations and photographs of the living and work areas of Skylab and some of the habitability features are provided. Samples of the subjective evaluation questionnaires used by the crewmen are included. Habitability-related documents, crewmen biographies, functional characteristics and photographs of the instruments used, and details of Skylab compartment sizes and color schemes are included as appendixes.
2009-12-06
CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the ExPRESS Logistics Carrier 3, or ELC-3, is removed from the cargo compartment of a U.S. Air Force C-5 aircraft. ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields. Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett
STS-65 PLC Hieb at mockup side hatch prepares to egress via an inflated slide
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Mission Specialist and Payload Commander (PLC) Richard J. Hieb, wearing launch and entry suit (LES) and launch and entry helmet (LEH), sits at the top of the inflated slide at the crew compartment trainer (CCT) side hatch and listens to a crew training staffer's instructions. Hieb practiced post landing emergency escape procedures along with his six STS-65 crewmates. The CCT is located in the Johnson Space Center's (JSC's) Mockup and Integration Laboratory (MAIL) Bldg 9NE. Hieb will join five NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzies, K.T.; Randel, M.A.; Quill, A.L.
1989-01-01
The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations.
2001-01-05
In the White Room, STS-98 Mission Specialist Thomas Jones gets help with his launch and entry suit before entering Atlantis for a simulated launch countdown. The White Room is an environmental chamber at the end of the orbiter access arm that mates with the orbiter to allow personnel to enter the orbiter’s crew compartment. The STS-98 crew is taking part in Terminal Countdown Demonstration Test activities, which also include emergency egress training at the pad. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST
2001-01-05
In the White Room, STS-98 Pilot Mark Polansky gets help with his launch and entry suit before entering Atlantis for a simulated launch countdown. The White Room is an environmental chamber at the end of the orbiter access arm that mates with the orbiter to allow personnel to enter the orbiter’s crew compartment. The STS-98 crew is taking part in Terminal Countdown Demonstration Test activities, which also include emergency egress training at the pad. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST
2001-01-05
In the White Room, STS-98 Mission Specialists Robert Curbeam and Marsha Ivins pose for a photo before entering Atlantis for a simulated launch countdown. The White Room is an environmental chamber at the end of the orbiter access arm that mates with the orbiter to allow personnel to enter the orbiter’s crew compartment. The STS-98 crew is taking part in Terminal Countdown Demonstration Test activities, which also include emergency egress training at the pad. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST
2002-11-10
KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Endeavour stands ready for launch on mission STS-113. Above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle. The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.
Earth Observations taken by Expedition 30 crewmember
2011-12-31
ISS030-E-038578 (31 Dec. 2011) --- Clouds form the backdrop for this scene photographed by one of the Expedition 30 crew members aboard the International Space Station, with two Russian spacecraft docked to the orbital outpost. A Soyuz (near foreground) is docked to Rassvet, also known as the Mini-Research Module 1 (MRM-1), and a Progress is linked to the Pirs Docking Compartment.
Ground Systems Integration Domain (GSID) Materials for Ground Platforms
2010-09-20
Vehicles • Heavy Brigade Combat Team • Strykers • MRAPs • Ground Combat Vehicles (Future) Tactical Vehicles • HMMWVs • Trailers • Heavy, Medium and...efficient structural material solutions • Signature management, electromagnetic shielding over potentially non-metallic surfaces • Diagnostics...Occupant-Centric Survivability Focused): 1. 4500 lbs + trailer towing capacity; 4-6 man crew compartmentPayload 2. 14,000 lb curb vehicle weightPerformance
A Study of Roadwheel Failures Magnitude - Nature - Causes and Testing of a Concept to Prevent Them
1975-07-01
at a point on the floor of the vehicle vertically below the center of gravity . Bags of lead shot were added to the crew compartment to increase the...24-inch O.D., and a 21.63-inch I.D., with a 2.88-inch flange. The meterial requirement ig for a SAE 1040 steel or equivalent. In our investigation
ISS Progress 68 Docking Coverage
2017-10-16
The unpiloted Russian ISS Progress 68 cargo craft arrived at the International Space Station Oct. 16 on a resupply mission following a two day journey following its launch from the Baikonur Cosmodrome in Kazakhstan. The Progress delivered almost three tons of food, fuel and supplies for the Expedition 53 crew. The Progress automatically linked up to the Pirs Docking Compartment, where it will remain until next March.
STS-58 crewmembers prepare for a training exercise
1993-07-20
S93-38672 (20 July 1993) --- Wearing training versions of the partial pressure launch and entry garment, the STS-58 crewmembers prepare for a training exercise. After being briefed by astronaut John E. Blaha (right), mission commander, the group rehearsed contingency evacuation procedures. Most of the training session took part in the crew compartment and full fuselage trainers in the Space Shuttle mockup and integration laboratory.
16. Photographic copy of photograph, 1973 (original photograph in 55th ...
16. Photographic copy of photograph, 1973 (original photograph in 55th Wing Historian files, Offutt AFB, Bellevue, Nebraska). Interior view showing Major General Jerry Johnson and crew at work in battle staff compartment. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
1971-12-01
This December 1971 photograph shows the internal configuration of Skylab's Multiple Docking Adapter (MDA) flight article (forward view) as it appeared during the crew compartment and function review at the Martin-Marietta Corporation's Space Center Facility in Denver, Colorado. Designed and manufactured by the Marshall Space Flight Center, the MDA housed a number of experiment control and stowage units as well as providing a docking port for the Apollo Command module.
Ultrafine and respirable particle exposure during vehicle fire suppression.
Evans, Douglas E; Fent, Kenneth W
2015-10-01
Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction and the relative position of the fire crew to the stationary burning vehicle played a primary role in fire crews' potential for exposure. We recommend that firefighters wear self-contained breathing apparatus during all phases of the vehicle fire response to significantly reduce their potential for particulate, vapor, and gaseous exposures.
Internal Arrangement of Skylab Workshop Crew Quarters
NASA Technical Reports Server (NTRS)
1972-01-01
This image depicts a layout of the Skylab workshop 1-G trainer crew quarters. At left, in the sleep compartment, astronauts slept strapped to the walls of cubicles and showered at the center. Next right was the waste management area where wastes were processed and disposed. Upper right was the wardroom where astronauts prepared their meals and foods were stored. In the experiment operation area, upper left, against the far wall, was the lower-body negative-pressure device (Skylab Experiment M092) and the Ergometer for the vectorcardiogram experiment (Skylab Experiment M063). The trainers and mockups were useful in the developmental phase, while engineers and astronauts were still working out optimum designs. They provided much data applicable to the manufacture of the flight articles.
Malenchenko and Lu in Pirs Docking Compartment (DC-1) module
2003-10-20
ISS007-E-17761 (20 October 2003) --- The Expedition 7 crewmembers, cosmonaut Yuri I. Malenchenko, mission commander representing Rosaviakosmos; and astronaut Edward T. Lu, NASA ISS science officer and flight engineer, pose for a photo by a camera triggered for a change by something other than auto-set or remote means. The photographer in this case was one of the newly arrived Expedition 8 crewmembers, astronaut C. Michael Foale, American commander and NASA ISS science officer and cosmonaut Alexander Kaleri, Russian flight engineer and Soyuz commander; or possibly European Space Agency astronaut Pedro Duque, who joined the Expedition 8 crew for the trip "up" and who will return to Earth on Oct. 28 with the Expedition 7 crew.
NASA Technical Reports Server (NTRS)
2009-01-01
Astronauts C.J. Sturckow (seated, left) and Pat Forrester (seated, right) sign autographs during their Oct. 7 visit to Stennis Space Center. The astronauts visited the rocket engine testing facility to thank Stennis employees for contributions to their recent STS-128 space shuttle mission. All three of the main engines used on the mission were tested at Stennis. Sturckow served as commander for the STS-128 flight; Forrester was a mission specialist. During a 14-day mission aboard space shuttle discovery, the STS-128 crew delivered equipment and supplies to the International Space Station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and an exercise treadmill. The mission featured three spacewalks to replace experiments and install new equipment at the space station.
Integrated NTP Vehicle Radiation Design
NASA Technical Reports Server (NTRS)
Caffrey, Jarvis A.; Rodriquez, Mitchell A.
2018-01-01
The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves.
STS-99 Mission Specialists Thiele and Mohri address media at SLF
NASA Technical Reports Server (NTRS)
2000-01-01
After landing at the Shuttle Landing Facility aboard T-38 jet aircraft, the STS-99 crew addresses the media. Mission Specialists Gerhard Thiele of Germany waits while Mamoru Mohri of Japan (right) responds to a question. The crew is ready to prepare for the second launch attempt of Endeavour Feb. 11 at 12:30 p.m. EST from Launch Pad 39A. The earlier launch scheduled for Jan. 31 was scrubbed due to poor weather and a faulty Enhanced Master Events Controller in the orbiter's aft compartment. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will produce unrivaled 3- D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Landing is expected at KSC on Feb. 22 at 4:36 p.m. EST.
Life support system definition for a low cost shuttle launched space station.
NASA Technical Reports Server (NTRS)
Nelson, W. G.; Cody, J.
1972-01-01
Discussion of the tradeoffs and EC/LS definition for a low cost shuttle launched space station to be launched in the late 1970s for use as a long-term manned scientific laboratory. The space station consists of 14-ft-diam modules, clustered together to support a six-man crew at the initial space station (ISS) level and a 12-man crew at the growth space station (GSS) level. Key design guidelines specify low initial cost and low total program cost and require two separate pressurized habitable compartments with independent lift support capability. The methodology used to select the EC/LS design consisted of systematically reducing quantitative parameters to a common denominator of cost. This approach eliminates many of the inconsistencies that can occur in such decision making. The EC/LS system selected is a partially closed system which recovers urine, condensate, and wash water and concentrates crew expired CO2 for use in a low thrust resistojet propulsion system.
Integrated NTP Vehicle Radiation Design
NASA Technical Reports Server (NTRS)
Caffrey, Jarvis; Rodriquez, Mitchell
2018-01-01
The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves
STS-49 MS Thuot, in LES, at CCT side hatch during JSC's egress exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Pierre J. Thuot, wearing launch and entry suit (LES), prepares to enter JSC's Crew Compartment Trainer (CCT) via the open side hatch as a technician looks on. Thuot along with the other STS-49 crewmembers is participating in a post-landing emergency egress exercise in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9.
Astronaut Jean-Francois Clervoy in middeck during launch/entry training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, sits securely on a collapsible seat on the middeck of a shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.
Astronaut Ellen Ochoa in middeck during launch/entry training
NASA Technical Reports Server (NTRS)
1994-01-01
Secured in a collapsible seat on the middeck of the Shuttle trainer, astronaut Ellen Ochoa, STS-66 payload commander, participates in a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.
General view of the flight deck of the Orbiter Discovery ...
General view of the flight deck of the Orbiter Discovery looking forward from behind the commander's seat looking towards the pilot's station. Note the numerous Velcro pads located throughout the crew compartment, used to secure frequently used items when in zero gravity. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2014-06-09
CAPE CANAVERAL, Fla. – The pressure vessel of The Boeing Company's CST-100 was displayed by the company during a ceremony inside Orbiter Processing Facility 3 at NASA's Kennedy Space Center in Florida. The pressure vessel is the shell of the finished spacecraft and encases the crew compartment and supplies on the inside. A heat shield and many other components are attached to the exterior to complete the spacecraft. Photo credit: NASA/Kim Shiflett
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18563 (30 Oct. 1996) --- Astronaut Steven L. Smith, mission specialist, participates in a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Smith and his crewmates simulated an emergency ejection, using the escape pole (left center in hatchway) on the mid deck, as well as other phases of their scheduled February mission.
1971-12-01
This December 1971 photograph shows the internal configuration of Skylab's Multiple Docking Adapter (MDA) as it appeared during the Crew Compartment and Function Review at the Martin-Marietta Corporation's Space Center facility in Denver, Colorado. At left is the control and display console for the Apollo Telescope Mount. Designed and manufactured by the Marshall Space Flight Center, the MDA housed a number of experiment control and stowage units and provided a docking port for the Apollo Command Module.
Environmental Control and Life Support Integration Strategy for 6-Crew Operations
NASA Technical Reports Server (NTRS)
2009-01-01
The International Space Station (ISS) crew compliment will be increasing in size from 3 to 6 crew members in the summer of 2009. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). A critical step in advancing to a 6Crew support capability on ISS is a full checkedout and verification of the Regenerative ECLS hardware. With a successful checkout, the ISS will achieve full redundancy in its onorbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offers additional challenges. These challenges create the need for a higher level of onorbit consumables reserve to ensure crewmember life support during a system failure. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6Crew on ISS, as well as the continued work which will be necessary to ensure the support of crew and ISS Program objectives through the life of station.
STS-96 crew members in the white room are prepared for entry into Discovery
NASA Technical Reports Server (NTRS)
1999-01-01
STS-96 Mission Specialist Ellen Ochoa chats with white room closeout crew members while being checked out for entry into the orbiter Discovery. At left are Mechanical Technicians Al Schmidt and Chris meinert; at right is Quality Assurance Specialist James Davis and Closeout Chief Travis Thompson. The white room is an environmental chamber at the end of the orbiter access arm that provides entry to the orbiter crew compartment. STS-96 is a 10- day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.
LC-39A RSS Rollback before launch of STS-113
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Endeavour stands ready for launch on mission STS-113. Above the golden external tank is the vent hood (known as the 'beanie cap') at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle. The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.
Conceptual design of a bioregenerative life support system containing crops and silkworms
NASA Astrophysics Data System (ADS)
Hu, Enzhu; Bartsev, Sergey I.; Liu, Hong
2010-04-01
This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments - higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.
Mitrikas, V G
2015-01-01
Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.
Investigation of Natural and Man-Made Radiation Effects on Crews on Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Bolch, Wesley E.; Parlos, Alexander
1996-01-01
Over the past several years, NASA has studied a variety of mission scenarios designed to establish a permanent human presence on the surface of Mars. Nuclear electric propulsion (NEP) is one of the possible elements in this program. During the initial stages of vehicle design work, careful consideration must be given to not only the shielding requirements of natural space radiation, but to the shielding and configuration requirements of the on-board reactors. In this work, the radiation transport code MCNP has been used to make initial estimates of crew exposures to reactor radiation fields for a specific manned NEP vehicle design. In this design, three 25 MW(sub th), scaled SP-100-class reactors are shielded by three identical shields. Each shield has layers of beryllium, tungsten, and lithium hydride between the reactor and the crew compartment. Separate calculations are made of both the exiting neutron and gamma fluxes from the reactors during beginning-of-life, full-power operation. This data is then used as the source terms for particle transport in MCNP. The total gamma and neutron fluxes exiting the reactor shields are recorded and separate transport calculations are then performed for a 10 g/sq cm crew compartment aluminum thickness. Estimates of crew exposures have been assessed for various thicknesses of the shield tungsten and lithium hydride layers. A minimal tungsten thickness of 20 cm is required to shield the reactor photons below the 0.05 Sv/y man-made radiation limit. In addition to a 20-cm thick tungsten layer, a 40-cm thick lithium hydride layer is required to shield the reactor neutrons below the annual limit. If the tungsten layer is 30-cm thick, the lithium hydride layer should be at least 30-cm thick. These estimates do not take into account the photons generated by neutron interactions inside the shield because the MCNP neutron cross sections did not allow reliable estimates of photon production in these materials. These results, along with natural space radiation shielding estimates calculated by NASA Langley Research Center, have been used to provide preliminary input data into a new Macintosh-based software tool. A skeletal version of this tool being developed will allow rapid radiation exposure and risk analyses to be performed on a variety of Lunar and Mars missions utilizing nuclear-powered vehicles.
Economic benefits of commercial space activities
NASA Technical Reports Server (NTRS)
Stone, Barbara A.
1988-01-01
This paper discusses the current and potential impact on the economy of selected private sector space activities including materials processing in space and satellite communications. Spacehab, a commercially developed and manufactured pressurized metal cylinder which fits in the Shuttle payload bay and connects to the crew compartment is examined along with potential uses of the Shuttle external tank. Private sector upper stage development, the privatization of expendable launch vehicles, and the transfer of NASA technology are discussed.
Astronauts McMonagle and Brown on flight deck mockup during training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronauts Donald R. McMonagle, STS-66 mission commander, left, and Curtis L. Brown, STS-66 pilot, man the commander's and pilot's stations, respectively, during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.
Closeup view of the payload bay side of the aft ...
Close-up view of the payload bay side of the aft crew compartment bulkhead of the Orbiter Discovery. Showing the airlock, the beam-truss attach structure supporting it and its attach points to the payload bay sill longerons. This photograph was taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
1970-01-01
This photograph was taken during assembly of the bottom and upper floors of the Skylab Orbital Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18557 (30 Oct. 1996) --- Astronauts Steven A. Hawley (left) and Gregory J. Harbaugh participate in a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, the two STS-82 mission specialists and their crewmates simulated an emergency ejection, using an escape pole on the mid deck, as well as other phases of their scheduled February mission.
Astronauts Conrad and Kerwin - Human Vestibular Function Experiment - JSC
1973-01-01
S73-20678 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at Johnson Space Center. Scientist-astronaut Joseph P. Kerwin, science pilot of the mission, goes over a checklist. The two men are in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. Photo credit: NASA
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. At the airport in San Jose, Costa Rica, the NASA hangar is dedicated. The speaker is Hermann Faith, executive director, Costa Rica-USA (CRUSA) Foundation. At the table are (from left) Dr. Jorge Andres Diaz, head scientiest CARTA mission; Gary Shelton, NASA deployment manager; Dr. Pedro Leon, general director, National Center for Advanced Technology (CENAT); Dr. Rogelio Pardo, minister of science and tchnology; John Danilovioch, U.S. ambassador to Costa Rica; and Lic. Vilma Lopez, subdirector, Civil Aviation (DGAC). NASA KSC has been testing its Aircraft-based Volcanic Emission Mass Spectrometer (AVEMS) in flights over the Turrialba volcano and in the crater, sampling and analyzing fresh volcanic gases in their natural chemical state. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttles aft compartment and the crew compartment.
STS-49 MS Thornton, in LES, at the CCT side hatch during JSC egress exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Kathryn C. Thornton, wearing launch and entry suit (LES) and with foot propped on open side hatch, prepares to enter JSC's Crew Compartment Trainer (CCT) located in the Mockup and Integration Laboratory (MAIL) Bldg 9. Thornton along with other STS-49 crewmembers is participating in post-landing emergency egress training. Photo taken by NASA JSC contract photographer Mark Sowa.
STS-56 Commander Cameron & Pilot Oswald at CCT hatch during JSC training
1992-12-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron (right) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs), stand at the side hatch of the crew compartment trainer (CCT), a shuttle mockup, prior to entering the mockup. Once inside the CCT, they will don their launch and entry helmets (LEHs) and participate in emergency egress (bailout) procedures. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
Soyuz Spacecraft docked to the Pirs DC during Expedition Five on the ISS
2002-11-04
ISS005-E-19567 (4 November 2002) --- A Soyuz spacecraft, which carried the Soyuz 5 taxi crew, is docked to the Pirs docking compartment on the International Space Station (ISS). The new Soyuz TMA-1 vehicle was designed to accommodate larger or smaller crewmembers, and is equipped with upgraded computers, a new cockpit control panel and improved avionics. The blackness of space and Earths horizon provide the backdrop for the scene.
General view of he forward wall of the mid deck ...
General view of he forward wall of the mid deck of the Orbiter Discovery. In this view a majority of wall panels have been removed to reveal the avionics bays in the interstitial space between the mid deck forward wall and the forward bulkhead of the pressurized crew compartment. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18556 (30 Oct. 1996) --- Astronauts Scott J. Horowitz (standing) and Kenneth D. Bowersox wind up suit donning for a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, the STS-82 pilot and mission commander joined their crewmates in simulating an emergency ejection, using an escape pole on the mid deck, as well as other phases of their scheduled February mission.
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18553 (30 Oct. 1996) --- Astronaut Scott J. Horowitz, pilot, gets help with his launch and entry suit prior to a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Horowitz and his crewmates went on to simulate an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.
Astronauts Ashby and Coleman practice with High Definition Video Camera
1999-04-21
S99-05085 (April 1999) --- In preparation for a STS-93 detailed test objective (DTO), astronauts Jeffrey S. Ashby, pilot, and Catherine G. (Cady) Coleman, mission specialist, train with a high-definition television camcorder. The camera will be carried onboard the Space Shuttle Columbia for their scheduled July mission. The rehearsal with the DTO 700-17A hardware took place in the Crew Compartment Trainer (CCT)in the Systems Integration Facility at the Johnson Space Center (JSC).
STS-88 Mission Highlights Resources Tape. Tape B
NASA Technical Reports Server (NTRS)
1999-01-01
The STS-88 flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev present a video overview of their space flight. Tape two of three includes the installation of an S-Band to help monitor the UNITY Connecting Module, the opening of UNITY's hatch, the opening of the main compartment hatch to ZARYA Control Module, and the repair of the inflight maintenance system.
2012-04-03
DELAMAR DRY LAKE BED, Nev. -- The Boeing Company's CST-100 boilerplate crew capsule floats toward a smooth landing beneath three main parachutes after being released from an Erickson Sky Crane helicopter at about 11,000 feet above Delamar Dry Lake Bed near Alamo, Nev. This is one of two tests that Boeing will perform for NASA's Commercial Crew Program CCP in order to validate the spacecraft's parachute system architecture and deployment scheme, characterize pyrotechnic shock loads, confirm parachute sizing and design, and identify potential forward compartment packaging and deployment issues. In 2011, NASA selected Boeing during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, Excalibur Almaz Inc., Blue Origin, Sierra Nevada, Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Boeing
STS-82 Crew members pose in from of Discovery after Landing
NASA Technical Reports Server (NTRS)
1997-01-01
The STS-82 crew stands in front of the Space Shuttle Discovery after landing at KSC's Shuttle Landing Facility on Runway 15 to conclude a 10-day mission to service the orbiting Hubble Space Telescope (HST). Crew members are (from left to right) Mission Specialist Steven A. Hawley, Mission Commander Kenneth D. Bowersox, Mission Specialist Joseph R. 'Joe' Tanner, Pilot Scott J. 'Doc' Horowitz, Mission Specialist Gregory J. Harbaugh, Payload Commander Mark C. Lee and Mission Specialist Steven L. Smith. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997.
STS-99 crew respond to media at SLF
NASA Technical Reports Server (NTRS)
2000-01-01
After landing at the Shuttle Landing Facility aboard T-38 jet aircraft, the STS-99 crew addresses the media. Standing, left to right, are Mission Specialists Gerhard Thiele of Germany and Mamoru Mohri of Japan, Commander Kevin Kregel (at the microphone), Mission Specialists Janice Voss and Janet Kavandi, and Pilot Dominic Gorie. They are ready to prepare for the second launch attempt of Endeavour Feb. 11 at 12:30 p.m. EST from Launch Pad 39A. The earlier launch scheduled for Jan. 31 was scrubbed due to poor weather and a faulty Enhanced Master Events Controller in the orbiter's aft compartment. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Landing is expected at KSC on Feb. 22 at 4:36 p.m. EST.
Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.;
2007-01-01
Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.
Expedition One crew in Russian with Service Module
2000-07-14
Photographic documentation of Expedition One crew in Russia with Service Module. Views include: The three crew members for ISS Expedition One train with computers on the trainer / mockup for the Zvezda Service Module. From the left are cosmonauts Yuri Gidzenko, Soyuz commander; and Sergei Krikalev, flight engineer; and astronaut William Shepherd, mission commander. The session took place at the Gagarin Cosmonaut Training Center in Russia (18628). View looking toward the hatch inside the Zvezda Service Module trainer / mockup at the Gagarin Cosmonaut Training Center in Russia (18629). A wide shot of the Zvezda Service Module trainer / mockup, with the transfer compartment in the foreground (18630). Side view of the Zvezda Service Module (18631). An interior shot of the Zarya / Functional Cargo Bay (FGB) trainer / mockup (18632). Astronaut Scott Kelly, director of operations - Russia, walks through a full scale trainer / mockup for the Zvezda Service Module at the Gagarin Cosmonaut Training Center in Russia (18633). Astronaut William Shepherd (right) mission commander for ISS Expedition One, and Sergei Krikalev, flight engineer, participate in a training session in a trainer / mockup of the Zvezda Service Module (18634).
Increasing the usefulness of Shuttle with SPACEHAB
NASA Astrophysics Data System (ADS)
Stone, Barbara A.; Rossi, David A.
1992-08-01
SPACEHAB is a pressurized laboratory, approximately 10 feet long and 13 feet in diameter, which fits in the forward position of the Shuttle payload bay and connects to the crew compartment through the Orbiter airlock. SPACEHAB modules may contain up to 61 standard middeck lockers, providing 1100 cubic feet of pressurized work space. SPACEHAB'S capacity offers crew-tended access to the microgravity environment for experimentation, technology development, and small-scale production. The modules are designed to facilitate the user's ability to quickly and inexpensively develop and integrate a microgravity payload. Payloads are typically integrated into the SPACEHAB module in standard SPACEHAB lockers or SPACEHAB racks. Lockers are designed to offer identical user interfaces as standard Space Shuttle middeck lockers. SPACEHAB racks are interchangeable with Space Station Freedom racks, allowing hardware to be qualified for early station use.
STS-93 M.S. Stephen Hawley in the White Room
NASA Technical Reports Server (NTRS)
1999-01-01
STS-93 Mission Specialist Stephen A. Hawley (Ph.D.) is checked out by white room closeout crew members before entering the orbiter Columbia. In the background is Mission Specialist Michel Tognini of France, waiting to enter Columbia. The white room is an environmental chamber at the end of the orbiter access arm that provides entry to the orbiter crew compartment. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. The target landing date is July 27 at 11:20 p.m. EDT.
Estimating Consequences of MMOD Penetrations on ISS
NASA Technical Reports Server (NTRS)
Evans, H.; Hyde, James; Christiansen, E.; Lear, D.
2017-01-01
The threat from micrometeoroid and orbital debris (MMOD) impacts on space vehicles is often quantified in terms of the probability of no penetration (PNP). However, for large spacecraft, especially those with multiple compartments, a penetration may have a number of possible outcomes. The extent of the damage (diameter of hole, crack length or penetration depth), the location of the damage relative to critical equipment or crew, crew response, and even the time of day of the penetration are among the many factors that can affect the outcome. For the International Space Station (ISS), a Monte-Carlo style software code called Manned Spacecraft Crew Survivability (MSCSurv) is used to predict the probability of several outcomes of an MMOD penetration-broadly classified as loss of crew (LOC), crew evacuation (Evac), loss of escape vehicle (LEV), and nominal end of mission (NEOM). By generating large numbers of MMOD impacts (typically in the billions) and tracking the consequences, MSCSurv allows for the inclusion of a large number of parameters and models as well as enabling the consideration of uncertainties in the models and parameters. MSCSurv builds upon the results from NASA's Bumper software (which provides the probability of penetration and critical input data to MSCSurv) to allow analysts to estimate the probability of LOC, Evac, LEV, and NEOM. This paper briefly describes the overall methodology used by NASA to quantify LOC, Evac, LEV, and NEOM with particular emphasis on describing in broad terms how MSCSurv works and its capabilities and most significant models.
Predicting the Consequences of MMOD Penetrations on the International Space Station
NASA Technical Reports Server (NTRS)
Hyde, James; Christiansen, E.; Lear, D.; Evans
2018-01-01
The threat from micrometeoroid and orbital debris (MMOD) impacts on space vehicles is often quantified in terms of the probability of no penetration (PNP). However, for large spacecraft, especially those with multiple compartments, a penetration may have a number of possible outcomes. The extent of the damage (diameter of hole, crack length or penetration depth), the location of the damage relative to critical equipment or crew, crew response, and even the time of day of the penetration are among the many factors that can affect the outcome. For the International Space Station (ISS), a Monte-Carlo style software code called Manned Spacecraft Crew Survivability (MSCSurv) is used to predict the probability of several outcomes of an MMOD penetration-broadly classified as loss of crew (LOC), crew evacuation (Evac), loss of escape vehicle (LEV), and nominal end of mission (NEOM). By generating large numbers of MMOD impacts (typically in the billions) and tracking the consequences, MSCSurv allows for the inclusion of a large number of parameters and models as well as enabling the consideration of uncertainties in the models and parameters. MSCSurv builds upon the results from NASA's Bumper software (which provides the probability of penetration and critical input data to MSCSurv) to allow analysts to estimate the probability of LOC, Evac, LEV, and NEOM. This paper briefly describes the overall methodology used by NASA to quantify LOC, Evac, LEV, and NEOM with particular emphasis on describing in broad terms how MSCSurv works and its capabilities and most significant models.
1981-05-01
an endorsement or rejection of these products by the Air Force, nor can it be used for advertising a product . SThis report has been reviewed by the... Fvii 41¢,I LIST OF TABLES TABLE TITLE PAGE 1 Baseline Data ............. ......................... .... 24 2 Post-Test Performance - Low Temperature...through its pyrolysis products , when used in the confined crew station or cargo areas of military aircraft. (b) The replacement agent should permit
STS-56 Commander Cameron and Pilot Oswald at CCT hatch during JSC training
NASA Technical Reports Server (NTRS)
1993-01-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron (right) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs), stand at the side hatch of the crew compartment trainer (CCT), a shuttle mockup, prior to entering the mockup. Once inside the CCT, they will don their launch and entry helmets (LEHs) and participate in emergency egress (bailout) procedures. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
Astronaut Jean-Francois Clervoy in middeck during launch/entry training
NASA Technical Reports Server (NTRS)
1994-01-01
Wearing a training version of a partial pressure suit, Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, secures himself on a collapsible seat on the middeck of a shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.
1976-10-01
should he made for either ixiternal storage or a means of voiding the urinal in a storage container in the compartment’. Development of-Adequate...upper temperature ranges fu- critical components of the M60 tank under desert storage and operational conditions. He found that the Wet Bulb Globe...five-gallon cans on the outside turret bustle racks. If buttoned-up operations for extended periods of time are envisioned, a built-in water storage
Closeup view of the reinforced carboncarbon nose of the Orbiter ...
Close-up view of the reinforced carbon-carbon nose of the Orbiter Discovery from the service platform in the Orbiter Processing Facility at Kennedy Space Center. Note the clear protective shield around the nose cap, and the reflective insulation protecting the Crew Compartment bulkhead and orbiter structure in the void created by the removal of the Forward Reaction Control Module. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2013-06-01
Weapons Propulsion Group where his work initially focussed on R&D relating to cast- composite rocket motors. The emphasis of his work then shifted to gun...Relative humidity RHS Rectangular Hollow Section t Time (s) T1 Ambient room temperature, ceiling-height (K) T2 Ambient room temperature...propellant and a centre- core igniter train. The BCM and UNCLASSIFIED DSTO-RR-0393 UNCLASSIFIED 2 TCM contain the same propellant formulation and
Space shuttle phase B extension, volume 2
NASA Technical Reports Server (NTRS)
1971-01-01
Space shuttle systems are defined using a low technology orbiter combined with either an F-1 flyback booster or a pressure-fed booster. The mission and system requirements are given, and orbiter and booster configuration concepts are evaluated. Systems analyses and trades are discussed for LO2-RP propellent, F-1 engine main propulsion system, winged flyback recovery booster and for the pressure-fed, ocean recoverable, refurbishable booster system. Trade studies are also made for aluminum versus titanium orbiter and for crew location and compartment size.
1970-01-01
This photograph was taken during installation of floor grids on the upper and lower floors inside the Skylab Orbital Workshop at the McDornell Douglas plant at Huntington Beach, California. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.
NASA Astrophysics Data System (ADS)
Kartashov, Dmitry; Shurshakov, Vyacheslav
2018-03-01
A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.
Shuttle freezer conceptual design
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Russell, D. J.
1975-01-01
A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzies, K.T.; Randel, M.A.; Quill, A.L.
1989-01-01
The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were: (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations. Auxiliary information concerning the specific munitionsmore » fired and the Training and Doctrine Command (TRADOC) or Forces Command (FORSCOM) firing scenarios was collected so that a comparison of pollutant concentrations generated by specific weapons both within vehicle types and between vehicle types could be made.« less
2002-04-03
KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Atlantis stands ready for launch on mission STS-110. The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-110 crew will enter Atlantis. Above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle. The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure has access platforms at five levels to provide access to the payload bay. The FSS provides access to the orbiter and the RSS. Mission STS-110 is scheduled to launch April 4 on its 11-day mission to the International Space Station
2009-10-22
CAPE CANAVERAL, Fla. – In the Training Auditorium at NASA's Kennedy Space Center in Florida, STS-128 Commander Rick Sturckow, with the microphone, presents a plaque commemorating the mission to Center Director Bob Cabana. The presentation followed a program for Kennedy employees in which the crew talked about their experiences on the mission. At left is Mission Specialist John "Danny" Olivas; at right is Pilot Kevin Ford. More than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station were delivered to the International Space Station on the STS-128 mission. The equipment included a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. The mission was the 128th in the Space Shuttle Program, the 37th flight of Discovery and the 30th station assembly flight. Launch was Aug. 28, 2009. Photo credit: NASA/Kim Shiflett
STS-103 MS Smith prepares to enter orbiter from White Room
NASA Technical Reports Server (NTRS)
1999-01-01
STS-103 Mission Specialist Steven L. Smith, in his orange launch and entry suit, waits for assistance from closeout crew members in the White Room before entering the orbiter. From left, they are NASA Quality Assurance Specialist Danny Wyatt, United Space Alliance (USA) Mechanical Technician Vinny Defranzo and USA Orbiter Vehicle Closeout Chief Travis Thompson. The White Room is an environmental chamber at the end of the orbiter access arm on the fixed service structure. It provides entry to the orbiter crew compartment. The mission, to service the Hubble Space Telescope, is scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST.
1999-12-19
KENNEDY SPACE CENTER, FLA. -- STS-103 Commander Curtis L. Brown Jr., in his orange launch and entry suit, enjoys a laugh with closeout crew members in the White Room before entering the orbiter. From left are United Space Alliance (USA) Mechanical Technician Rene Arriens, USA Orbiter Vehicle Closeout Chief Travis Thompson, and NASA Quality Assurance Specialist Danny Wyatt. The white room is an environmental chamber at the end of the orbiter access arm on the fixed service structure. It provides entry to the orbiter crew compartment. The mission, to service the Hubble Space Telescope, is scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST
Radiation shelter effectiveness beyond the earth magnetosphere
NASA Astrophysics Data System (ADS)
Shurshakov, V. A.; Benghin, V. V.; Kolomensky, A. V.; Petrov, V. M.
Solar energetic particles (SEP) and galactic cosmic rays are known to be the sources of radiation hazard for missions beyond the Earth magnetosphere. An additionally shielded compartment of the mission spacecraft, called usually the radiation shelter, is considered as an important part of the radiation safety system. The shielding of the radiation shelter must be at least a few times higher than that of the remaining compartments. The mission crewmembers are supposed to stay in the radiation shelter for relatively short time of less than a day or two during SEP events only. A job-oriented radiation monitoring system (RMS) should be used on board the Martian mission spacecraft to provide the crew with necessary prediction information concerning the onset of a large SEP event. The information should be obtained independently of the ground-based support services and, hence, should be derived from online measurements of the dynamics of soft X-rays and charged energetic particles using the RMS sensors. As a result, the signal for the spacecrew members to go to the shelter gets somewhat delayed with respect to the SEP event onset, so that they appear to stay outside the shelter for some time during the event. The dependence of the crew-received dose on the SEP event prediction lag has been analyzed in terms of the standard SEP dynamics model for a typical 500-day Martian mission scenario. The Martian mission dose simulations have demonstrated a high efficiency of the radiation shelter despite the unavoidable lag of the RMS prediction signal.
Microbial Air and Surface Monitoring Results from International Space Station Samples
NASA Technical Reports Server (NTRS)
Ott, C. Mark; Bruce, Rebekah J.; Castro, Victoria A.; Novikova, Natalia D.; Pierson, D. L.
2005-01-01
Over the course of long-duration spaceflight, spacecraft develop a microbial ecology that directly interacts with the crew of the vehicle. While most microorganisms are harmless or beneficial to the inhabitants of the vehicle, the presence of medically significant organisms appearing in this semi-closed environment could adversely affect crew health and performance. The risk of exposure of the crew to medically significant organisms during a mission is estimated using information gathered during nominal and contingency environmental monitoring. Analysis of the air and surface microbiota in the habitable compartments of the International Space Station (ISS) over the last four years indicate a high presence of Staphylococcus species reflecting the human inhabitants of the vehicle. Generally, air and surface microbial concentrations are below system design specifications, suggesting a lower risk of contact infection or biodegradation. An evaluation of sample frequency indicates a decrease in the identification of new species, suggesting a lower potential for unknown microorganisms to be identified. However, the opportunistic pathogen, Staphylococcus aureus, has been identified in 3 of the last 5 air samples and 5 of the last 9 surface samples. In addition, 47% of the coagulase negative Staphylococcus species that were isolated from the crew, ISS, and its hardware were found to be methicillin resistance. In combination, these observations suggest the potential of methicillin resistant infectious agents over time.
Flammability Configuration Analysis for Spacecraft Applications
NASA Technical Reports Server (NTRS)
Pedley, Michael D.
2014-01-01
Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.
2001-08-08
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery is bathed in light after rollback of the Rotating Service Structure in preparation for launch on mission STS-105. The Shuttle comprises the two solid rocket boosters, external tank and orbiter, all of which are secured on the mobile launcher platform beneath them. Extending toward Discovery from the fixed service structure at left is the orbiter access arm. At the end of the arm is the White Room, an environmental chamber that mates with the orbiter and allows personnel to enter the crew compartment. Below, on either side of the orbiter’s tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
1997-02-21
The STS-82 crew stands in front of the Space Shuttle Discovery after landing at KSC's Shuttle Landing Facility on Runway 15 to conclude a 10-day mission to service the orbiting Hubble Space Telescope (HST). Crew members are (from left to right) Mission Specialist Steven A. Hawley, Mission Commander Kenneth D. Bowersox, Mission Specialist Joseph R. "Joe" Tanner, Pilot Scott J. "Doc" Horowitz, Mission Specialist Gregory J. Harbaugh, Payload Commander Mark C. Lee and Mission Specialist Steven L. Smith. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
STS-100 crew in docking compartment after docking with ISS
2001-04-21
ISS002-311-032 (23 April 2001) --- The six astronauts and one cosmonaut comprising the STS-100 crew assemble in the Pressurized Mating Adapter (PMA-2) while waiting to visit the Expedition Two crew and the International Space Station (ISS). With his arm extended to left foreground is astronaut Kent V. Rominger, STS-100 mission commander. In the circular arrangement of crewmembers, clockwise from Rominger's position, are astronauts Umberto Guidoni, Scott E. Parazynski, Chris A. Hadfield, Jeffrey S. Ashby and John L. Phillips. Cosmonaut Yuri V. Lonchakov's head emerges at bottom center. On the other side of the glass were the Expedition Two crewmembers--cosmonaut Yury V. Usachev and astronauts James S. Voss and Susan J. Helms. Lonchakov and Usachev represent Rosaviakosmos; Hadfield is with the Canadian Space Agency (CSA) and Guidoni is associated with the European Space Agency (ESA). The ten were beginning a day that went on to see the first opening of hatches linking the two spacecraft, an impressive first step by the station's new Canadarm2 and the berthing to the station of Raffaello, the Italian-built logistics module. Hatch opening was set for 4 a.m. (CDT), April 23.
Earth Observations taken by Expedition 30 crewmember
2012-01-01
ISS030-E-038622 (1 Jan. 2012) --- Framed by a window of the Cupola on the International Space Station is a scene photographed by one of the Expedition 30 crew members aboard the orbital outpost showing two Russian spacecraft that are currently docked to it. A Soyuz (near foreground) is docked to Rassvet, also known as the Mini-Research Module 1 (MRM-1), and a Progress is linked to the Pirs Docking Compartment, just above center frame. Part of Earth, mostly clouds and water, can be seen running horizontally through the scene.
2004-10-12
KENNEDY SPACE CENTER, FLA. - In an installation demonstration in the Orbiter Processing Facility, a sensor is placed on the wing leading edge of orbiter Discovery. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.
2004-10-12
KENNEDY SPACE CENTER, FLA. - In an installation demonstration the Orbiter Processing Facility, a sensor is placed on the wing leading edge of orbiter Discovery. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.
STS-31 Hubble Space Telescope (HST) solar array (SA) deploy aboard OV-103
1990-04-25
During STS-31, the Hubble Space Telescope (HST) is held in appendage deploy position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS) above the payload bay (PLB) and crew compartment cabin. While in this position the solar array (SA) wing bistem cassette (HST center) is deployed from its stowed location along side the Support System Module (SSM) forward shell. A high gain antenna (HGA) remains stowed along the SSM. The Earth's surface and the Earth limb creates a dramatic backdrop.
NASA Technical Reports Server (NTRS)
Spangler, R. H.; Thornton, D. E.; Polek, T. E.
1974-01-01
Tests were conducted, from November 15 to December 4, 1973, to obtain surface pressure data on an 0.015-scale replica of the Space Shuttle Vehicle 4. Data were obtained at Mach numbers of 5.3, 7.4, and 10.3, to support the venting analysis for both launch and entry conditions. These tests were the final tests in a series covering a Mach number range from 0.6 to 10.3. The model was instrumented with pressure orifices in the vicinity of the cargo bay door hinge and parting lines, and on the side of the fuselage at the crew compartment, and below the orbital maneuvering system pods at the aft compartment. The model was tested at angles of attack and sideslip consistent with expected divergencies from the nominal trajectory.
NASA Technical Reports Server (NTRS)
Spangler, R. H.; Thornton, D. E.
1974-01-01
Tests were conducted in the NASA/ARC 6- by 6-foot transonic wind tunnel from September 12 to September 28, 1973 on an 0.015-scale model of the space shuttle configuration 140 A/B. Surface pressure data were obtained for the orbiter for both launch and entry configuration at Mach numbers from 0.6 to 2.0. The surface pressures were obtained in the vicinity of the cargo bay door hinge and parting lines, the side of the fuselage at the crew compartment and below the OMS pods at the aft compartment. Data were obtained at angles of attack and sideslip consistent with the expected divergencies along the nominal trajectory. These tests were first in a series of tests supporting the orbiter venting analysis. The series will include tests in three facilities covering a total Mach number range from 0.6 to 10.4.
Why Deep Space Habitats Should Be Different from the International Space Station
NASA Technical Reports Server (NTRS)
Griffin, Brand; Brown, MacAulay
2016-01-01
It is tempting to view the International Space Station (ISS) as a model for deep space habitats. This is not a good idea for many reasons. The ISS does not have a habitation module; instead the individual crew quarters are dispersed across several modules, the galley is in the US Laboratory and the waste hygiene compartment is in a Node. This distributed arrangement may be inconvenient but more important differences distinguish a deep space habitat from the ISS. First, the Space Shuttle launch system that shaped, sized, and delivered most ISS elements has been retired. Its replacement, the Space Launch System (SLS), is specifically designed for human exploration beyond low-Earth orbit and is capable of transporting more efficient, large diameter, heavy-lift payloads. Next, because of the Earth's protective geomagnetic field, ISS crews are naturally shielded from lethal radiation. Deep space habitat designs must include either a storm shelter or strategically positioned equipment and stowage for radiation protection. Another important difference is the increased transit time with no opportunity for an ISS-type emergency return. It takes 7 to 10 days to go between Earth and cis-lunar locations and 1000 days for the Mars habitat transit. This long commute calls for greater crew autonomy with habitats designed for the crew to fix their own problems. The ISS rack-enclosed, densely packaged subsystems are a product of the Shuttle era and not maintenance friendly. A solution better suited for deep space habitats spreads systems out allowing direct access to single-layer packaging and providing crew access to each component without having to remove another. Operational readiness is another important discriminator. The ISS required over 100 flights to build, resupply, and transport the crew, whereas SLS offers the capability to launch a fully provisioned habitat that is operational without additional outfitting or resupply flights.
Ultrafine and respirable particle exposure during vehicle fire suppression
Fent, Kenneth W.
2015-01-01
Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction and the relative position of the fire crew to the stationary burning vehicle played a primary role in fire crews’ potential for exposure. We recommend that firefighters wear self-contained breathing apparatus during all phases of the vehicle fire response to significantly reduce their potential for particulate, vapor, and gaseous exposures. PMID:26308547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzies, K.T.; Randel, M.A.; Quill, A.L.
1989-01-01
The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations. Auxiliary information concerning the specific munitionsmore » fired and the Training and Doctrine Command (TRADOC) or Forces Command (FORSCOM) firing scenarios was collected so that a comparison of pollutant concentrations generated by specific weapons both within vehicle types and between vehicle types could be made.« less
STS-103 MS Smith and MS Clervoy prepare to enter orbiter from White Room
NASA Technical Reports Server (NTRS)
1999-01-01
In the White Room, STS-103 Mission Specialists Steven L. Smith and Jean-Francois Clervoy, in their orange launch and entry suits, are getting ready to enter Space Shuttle Discovery. Assisting them are closeout crew members (from left) United Space Alliance (USA) Mechanical Technician Rene Arriens, NASA Quality Assurance Specialist Danny Wyatt, USA Orbiter Vehicle Closeout Chief Travis Thompson and USA Mechanical Technician Vinny Defranzo. The White Room is an environmental chamber at the end of the orbiter access arm on the fixed service structure. It provides entry to the orbiter crew compartment. The mission, to service the Hubble Space Telescope, is scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST.
Determination of Offgassed Products
NASA Technical Reports Server (NTRS)
1997-01-01
A technician at Marshall Space Flight Center's Materials Combustion Research Facility begins the Determination of Offgassed Products Test to determine the identity and quantity of volatile offgassed products from materials and assembled articles. Materials are measured, weighed, and loaded into a clean toxicity chamber (pictured). The chamber is purged with high-purity air and loaded into an oven where it will be held at 120 degrees Fahrenheit (48.9 degrees Celsius) for 72 hours. At the end of the 72-hour period, the chamber is removed and allowed to cool to room temperature. Gas samples are taken from the chamber and analyzed using gas chromatography and mass spectrometry. From this, the quantity of the material that may be used safely in habitable areas of spacecraft is determined. This test also determines whether a flight hardware item may be flown safely in a crew compartment. Everything going into space with the astronauts is tested prior to flight to ensure the health and safety of the crew members.
JSC Shuttle Mission Simulator (SMS) visual system payload bay video image
NASA Technical Reports Server (NTRS)
1981-01-01
This video image is of the STS-2 Columbia, Orbiter Vehicle (OV) 102, payload bay (PLB) showing the Office of Space Terrestrial Applications 1 (OSTA-1) pallet (Shuttle Imaging Radar A (SIR-A) antenna (left) and SIR-A recorder, Shuttle Multispectral Infrared Radiometer (SMIRR), Feature Identification Location Experiment (FILE), Measurement of Air Pollution for Satellites (MAPS) (right)). The image is used in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). It is projected inside the FB-SMS crew compartment during mission simulation training. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.
2009-07-08
into the crew compartment, the steel top of the frame was bolted to the top of the surrogate and the sling was anchored to the bottom steel plate of...subcutaneously from near the right scapula to the skull surface, where the ends of these leads were attached to the screws, the ends of which rested on...dis- sected near the right scapula , and the positive lead for channel 3 was advanced within this pocket under the skin around the left rib cage to a
Astronauts McMonagle and Brown on flight deck mockup during training
1994-06-23
S94-40090 (23 June 1994) --- Astronauts Donald R. McMonagle, left, and Curtis L. Brown man the commander's and pilot's stations, respectively, during a rehearsal of ascent and entry phases of their scheduled November 1994 flight aboard Atlantis. Three other NASA astronauts and a European mission specialist joined the two for this training exercise in the Crew Compartment Trainer (CCT) at the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory and will join them aboard the Space Shuttle Atlantis in November. The flight is manifest to support the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
2009-07-30
CAPE CANAVERAL, Fla. – The payload canister rolls onto Launch Pad 39A at NASA's Kennedy Space Center in Florida. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Jack Pfaller.
2009-07-30
CAPE CANAVERAL, Fla. – The payload canister rolls to Launch Pad 39A at NASA's Kennedy Space Center in Florida. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Jack Pfaller.
2009-07-30
CAPE CANAVERAL, Fla. – The payload canister rolls toward Launch Pad 39A at NASA's Kennedy Space Center in Florida. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Jack Pfaller.
Astronaut Joseph Tanner checks gloves during during launch/entry training
1994-06-23
S94-40082 (23 June 1994) --- Astronaut Joseph R. Tanner, mission specialist, checks his glove during a rehearsal for launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. In November, Tanner will join four other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
OV-104's RMS releases Gamma Ray Observatory (GRO) during STS-37 deployment
1991-04-07
Atlantis', Orbiter Vehicle (OV) 104's, remote manipulator system (RMS) releases Gamma Ray Observatory (GRO) during STS-37 deployment. Visible on the GRO as it drifts away from the RMS end effector are the four complement instruments: the Energetic Gamma Ray Experiment (bottom); Imaging Compton Telescope (COMPTEL) (center); Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (at four corners). GRO's solar array (SA) panels are extended and are in orbit configuration. View was taken through aft flight deck window which reflects some of the crew compartment interior.
NASA Astrophysics Data System (ADS)
Cruvellier, Nelly; Lasseur, Christophe; Poughon, Laurent; Creuly, Catherine; Dussap, Gilles
Nitrogen is a key element for the life and its balance on Earth is regulated by the nitrogen cycle. This loop includes several steps among which nitrification that permits the transformation of the ammonium into nitrate. The MELiSSA loop is an artificial ecosystem designed for life support systems (LSS). It is based on the carbon and nitrogen cycles and the recycling of the non-edible part of the higher plants and the waste produced by the crew. In this order, all the wastes are collected in the first compartment to degrade them into organic acids and CO2. These compounds are joining the second compartment which is a photoheterotrophic compartment where at the outlet an organic-free medium containing ammonium is produced. This solution will be the substrate of the third compartment where nitrification is done. This compartment has to oxidize the ammonium into nitrate, and this biological reaction needs two steps. In the MELiSSA loop, the nitrification is carried out by two bacteria: Nitrosomonas europaea ATCC® 19718™ which is oxidizing ammonia into nitrite and Nitrobacter winogradskyi ATCC® 25391™ which is producing nitrate from nitrite in the third compartment. These two bacteria are growing in axenic conditions on a fixed bed bioreactor filled with Biostyr® beads. The nitrogen compounds are controlled by Ionic Chromatography and colorimetric titration for each sample. The work presented here deals with the culture of both bacteria in pure cultures and mixed cultures in stirred and aerated bioreactors of different volumes. The first aim of our work is the characterization of the bacteria growth in bioreactors and in the nitrifying fixed-bed column. The experimental results confirm that the growth is slow; the maximal growth rate in suspended cultures is 0.054h-1 for Nitrosomonas europaea and 0.022h-1 for Nitrobacter winogradskyi. Mixed cultures are difficult to control and operate but one could be done for more than 500 hours. The characterization of the bacteria will be used to calibrate the nitrification model which will be the basis of the control model for managing the nitrification process in the MELiSSA loop. The experimental results highlighted the use of online measurement of base addition and oxygen consumption as possible parameters for the control of the nitrification process. Keywords: Nitrosomonas europaea, Nitrobacter winogradskyi, MELiSSA, bioreactor
NASA Astrophysics Data System (ADS)
Lobascio, Cesare; Paille, Christel; Lamantea, Matteo Maria; Boscheri, Giorgio; Rossetti, Vittorio
Extended human presence on an extraterrestrial planetary surface will be made possible by the development of life support systems affordable in the long term. The key elements to support the goal will be the maximization of closure of air and water cycles, as well as the development of cost-effective and reliable hardware, including a careful strategic effort toward reduction of spare parts and consumables. Regenerative life support systems likely represent the final step toward long term sustainability of a space crew, allowing in situ food production and regeneration of organic waste. Referring to the MELiSSA loop, a key element for food production is the Higher Plant Compartment. The paper focuses on the preliminary design of a Greenhouse at the lunar South Pole, as performed within the “Greenhouse Module for Space System” (GreenMOSS) study, under a contract from the European Space Agency. The greenhouse is in support to a relatively small crew for provision of an energetic food complement. Resources necessary for the greenhouse such as water, carbon dioxide and nitrogen are assumed available, as required. The relevant mass and energy balances for incoming resources should be part of future studies, and should help integrate this element with the interfacing MELISSA compartments. Net oxygen production and harvested crop biomass from the greenhouse system will be quantified. This work presents the results of the two major trade-offs performed as part of this study: artificial vs natural illumination and monocrop vs multicrop solutions. Comparisons among possible design solutions were driven by the ALiSSE metric as far as practicable within this preliminary stage, considering mass and power parameters. Finally, the paper presents the mission duration threshold for determining the convenience of the designed solution with respect to other resources provision strategies
STS-110 Crew Photographs Soyuz and Atlantis Docked to International Space Station (ISS)
NASA Technical Reports Server (NTRS)
2002-01-01
Docked to the International Space Station (ISS), a Soyuz vehicle (foreground) and the Space Shuttle Atlantis were photographed by a crew member in the Pirs docking compartment on the orbital outpost. Atlantis launched on April 8, 2002, carrying the the STS-110 mission which prepared the ISS for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's scapulas were based out of the Station's Quest Airlock.
Japanese supply ship delivers to space station on This Week @NASA – August 28, 2015
2015-08-28
It was a busy week for the crew aboard the International Space Station. The Japanese Aerospace Exploration Agency’s fifth H-II Transfer Vehicle, or HTV-5 arrived on Aug. 24 with more than 8,000 pounds of equipment, supplies and experiments in its pressurized cargo compartment. The delivery included an investigation that will search for signatures of dark matter, as well as enough additional food and supplies to last through 2015. Also, Soyuz relocated to Zvezda, Orion parachute drop test, Rising Seas, Hurricane Katrina remembrance, Tail first crash test, Webb telescope’s backplane arrives and Hubble’s double black hole!
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Wilson, Laura Labuda; Orozco, Nicole
2012-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2011, and describes the technical challenges encountered and lessons learned over the past year.
2004-10-12
KENNEDY SPACE CENTER, FLA. - This photo shows the size of the sensors being placed on the wing leading edge of orbiter Discovery. In her hand, United Space Alliance technician Lisa Campbell holds an accelerometer (left), which will eventually be installed on a mounting nut. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. This photo shows the size of the sensors being placed on the wing leading edge of orbiter Discovery. In her hand, United Space Alliance technician Lisa Campbell holds an accelerometer (left), which will eventually be installed on a mounting nut. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Bazley, Jesse; Gazda, Daniel; Schaezler, Ryan; Bankers, Lyndsey
2016-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2016 and describes the technical challenges encountered and lessons learned over the past year.
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Brown, Christopher; Orozco, Nicole
2014-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2013, and describes the technical challenges encountered and lessons learned over the past year.
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Tobias, Barry; Orozco, Nicole
2012-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2012, and describes the technical challenges encountered and lessons learned over the past year.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030552 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030578 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030563 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030460 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030445 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030584 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030444 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
Progress 37P on approach to the ISS
2010-05-01
ISS023-E-030528 (1 May 2010) --- An unpiloted ISS Progress resupply vehicle approaches the International Space Station, bringing 2.6 tons of food, fuel, oxygen, propellant and supplies for the Expedition 23 crew members aboard the station. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan. The docking was conducted by Russian cosmonaut Oleg Kotov, commander, in manual control through the TORU (telerobotically operated) rendezvous system due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system.
STS-36 Pilot Casper reaches for laptop computer on OV-104's flight deck
1990-03-03
STS036-03-027 (3 March 1990) --- STS-36 Pilot John H. Casper reaches for the shuttle portable onboard computer (SPOC), a laptop computer, while at the pilots station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Casper, seated in the pilot’s seat, lifts the SPOC from the forward window ledge. Appearing around him are forward crew compartment windows, the head up display (HUD), the flight mirror assembly, and a checklist attached to control panel O3. Casper and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for a Department of Defense (DOD) devoted mission.
John Glenn during preflight training for STS-95
1998-04-14
S98-06937 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crewmembers for procedures to follow in egressing a troubled shuttle on the ground. The full fuselage trainer (FFT) is at left, with the crew compartment trainer (CCT) at right. Photo Credit: Joe McNally, National Geographic, for NASA
John Glenn during preflight training for STS-95
1998-04-14
S98-06938 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crewmembers for procedures to follow in egressing a troubled shuttle on the ground. The full fuselage trainer (FFT) is at left, with the crew compartment trainer (CCT) at right. Photo Credit: Joe McNally, National Geographic, for NASA
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Takada, Kevin; Gazda, Daniel; Brown, Christopher; Bazley, Jesse; Schaezler, Ryan; Bankers, Lyndsey
2017-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2017 and describes the technical challenges encountered and lessons learned over the past year.
Astronaut Scott Parazynski during egress training
1994-06-23
S94-40083 (23 June 1994) --- Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (foreground) during a rehearsal of procedures to be followed during launch and entry phases of the their scheduled November flight. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. In November, Parazynski and Tanner will join three other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Schaezler, Ryan; Bankers, Lyndsey
2015-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2015 and describes the technical challenges encountered and lessons learned over the past two years.
Cluster Development Test 2: An Assessment of a Failed Test
NASA Technical Reports Server (NTRS)
Machin, Ricardo A.; Evans, Carol T.
2009-01-01
On 31 July 2008 the National Aeronautics and Space Administration Crew Exploration Vehicle Parachute Assembly System team conducted the final planned cluster test of the first generation parachute recovery system design. The two primary test objectives were to demonstrate the operation of the complete parachute system deployed from a full scale capsule simulator and to demonstrate the test technique of separating the capsule simulator from the Low Velocity Air Drop pallet used to extract the test article from a United States Air Force C-17 aircraft. The capsule simulator was the Parachute Test Vehicle with an accurate heat shield outer mold line and forward bay compartment of the Crew Exploration Vehicle Command Module. The Parachute Test Vehicle separated cleanly from the pallet following extraction, but failed to reach test conditions resulting in the failure of the test and the loss of the test assets. No personnel were injured. This paper will discuss the design of the test and the findings of the team that investigated the test, including a discussion of what were determined to be the root causes of the failure.
Fire hazard considerations for composites in vehicle design
NASA Technical Reports Server (NTRS)
Gordon, Rex B.
1994-01-01
Military ground vehicles fires are a significant cause of system loss, equipment damage, and crew injury in both combat and non-combat situations. During combat, the ability to successfully fight an internal fire, without losing fighting and mobility capabilities, is often the key to crew survival and mission success. In addition to enemy hits in combat, vehicle fires are initiated by electrical system failures, fuel line leaks, munitions mishaps and improper personnel actions. If not controlled, such fires can spread to other areas of the vehicle, causing extensive damage and the potential for personnel injury and death. The inherent fire safety characteristics (i.e. ignitability, compartments of these vehicles play a major roll in determining rather a newly started fire becomes a fizzle or a catastrophe. This paper addresses a systems approach to assuring optimum vehicle fire safety during the design phase of complex vehicle systems utilizing extensive uses of composites, plastic and related materials. It provides practical means for defining the potential fire hazard risks during a conceptual design phase, and criteria for the selection of composite materials based on its fire safety characteristics.
1972-01-01
This image depicts a layout of the Skylab workshop 1-G trainer crew quarters. At left, in the sleep compartment, astronauts slept strapped to the walls of cubicles and showered at the center. Next right was the waste management area where wastes were processed and disposed. Upper right was the wardroom where astronauts prepared their meals and foods were stored. In the experiment operation area, upper left, against the far wall, was the lower-body negative-pressure device (Skylab Experiment M092) and the Ergometer for the vectorcardiogram experiment (Skylab Experiment M063). The trainers and mockups were useful in the developmental phase, while engineers and astronauts were still working out optimum designs. They provided much data applicable to the manufacture of the flight articles.
Space Transportation System/Spacelab accommodations
NASA Technical Reports Server (NTRS)
De Sanctis, C. E.
1978-01-01
A description is provided of the capabilities offered by the Spacelab design for doing research in space. The Spacelab flight vehicle consists of two basic elements including the habitable pressurized compartments and the unpressurized equipment mounting platforms. Spacelab services to payloads are considered, taking into account payload mass, electrical power and energy, heat rejection for Spacelab and payload, aspects of Spacelab data handling, and the extended flight capability. Attention is also given to the Spacelab structure, crew station and habitability, the electrical power distribution subsystem, the command and data management subsystem, the experiment computer operating system, the environmental control subsystem, the experiment vent assembly, the common payload support equipment, the instrument pointing subsystem, and details concerning the utilization of Spacelab.
STS-52 PS MacLean, backup PS Tryggvason, and PI pose on JSC's CCT flight deck
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Canadian Payload Specialist (PS) Steven G. MacLean (left) and backup Payload Specialist Bjarni V. Tryggvason (right) take a break from a camera training session in JSC's Crew Compartment Trainer (CCT). The two Canadian Space Agency (CSA) representatives pose on the CCT's aft flight deck with Canadian scientist David Zimick, the principal investigator (PI) for the materials experiment in low earth orbit (MELEO). MELEO is a component of the CANEX-2 experiment package, manifest to fly on the scheduled October 1992 STS-52 mission. The CCT is part of the shuttle Mockup and Integration Laboratory (MAIL) Bldg 9NE.
2009-08-07
CAPE CANAVERAL, Fla. – STS-128 Mission Specialist Patrick Forrester is the White Room on NASA Kennedy Space Center's Launch Pad 39A getting ready to enter space shuttle Discovery. The White Room is at the end of the orbiter access arm and provides entry into the shuttle. Mission crew members are at Kennedy to take part in the terminal countdown demonstration test, or TCDT, which culminates in a simulated launch countdown inside the shuttle. On the STS-128 mission, Discovery will deliver 33,000 pounds of equipment to the station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch is targeted for late August. Photo credit: NASA/Jim Grossmann
2009-08-07
CAPE CANAVERAL, Fla. – STS-128 Pilot Kevin Ford is the White Room on NASA Kennedy Space Center's Launch Pad 39A getting ready to enter space shuttle Discovery. The White Room is at the end of the orbiter access arm and provides entry into the shuttle. Mission crew members are at Kennedy to take part in the terminal countdown demonstration test, or TCDT, which culminates in a simulated launch countdown inside the shuttle. On the STS-128 mission, Discovery will deliver 33,000 pounds of equipment to the station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch is targeted for late August. Photo credit: NASA/Jim Grossmann
2009-08-07
CAPE CANAVERAL, Fla. – In the White Room on NASA Kennedy Space Center's Launch Pad 39A, STS-128 Commander Rick Sturckow is helped with his harness before entering space shuttle Discovery. The White Room is at the end of the orbiter access arm and provides entry into the shuttle. The crew is at Kennedy to take part in the terminal countdown demonstration test, or TCDT, which includes equipment familiarization, emergency exit training and a simulated countdown. On the STS-128 mission, Discovery will deliver 33,000 pounds of equipment to the station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch is targeted for late August. Photo credit: NASA/Kim Shiflett
Astronaut Curtis Brown on flight deck mockup during training
1994-06-23
S94-40091 (23 June 1994) --- Astronaut Curtis L. Brown mans the pilot's station of a Shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. Making his second flight in space, Brown will join four other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
Astronaut Jean-Francois Clervoy in middeck during launch/entry training
1994-06-23
S94-40074 (23 June 1994) --- Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, sits securely on a collapsible seat on the middeck of a Shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of his scheduled November flight. This rehearsal, held in the crew compartment trainer of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. Clervoy, a European astronaut, will join five NASA astronauts for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
Astronaut Ellen Ochoa in middeck during launch/entry training
1994-06-23
S94-40061 (23 June 1994) --- Secured in a collapsible seat on the middeck of a Shuttle trainer, astronaut Ellen Ochoa, payload commander, participates in a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. In November Ochoa will join four other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
Astronaut Scott Parazynski during egress training
1994-06-23
S94-40079 (23 June 1994) --- Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (partially visible in foreground) during a rehearsal of procedures to be followed during launch and entry phases of the their scheduled November flight. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. In November, Parazynski and Tanner will join three other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
The investigation of a tuberculosis outbreak in the closed environment of a U.S. Navy ship, 1987.
DiStasio, A J; Trump, D H
1990-08-01
A sailor on a U.S. Navy ship had smear-positive, cavitary, pulmonary tuberculosis. Contact investigation of the entire ship's crew found 216 new reactors to tuberculin skin test (24.5%) among 881 previously tuberculin-negative sailors. The risk for new infection was highest among sailors in the patient's department (relative risk, 4.4; 95% confidence interval 3.7, 5.3); 95% (15/16) of sailors in his division were new reactors. While crewmembers in all departments were at risk for a new tuberculosis infection, working and berthing in compartments that were distant from those of the index case were protective. The ship's closed ventilation system contributed to the outbreak.
Recent Space Shuttle crew compartment design improvements
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.
1986-01-01
Significant design changes to the Space Shuttle waste management system (WMS) and its related personal hygiene support provisions (PHSP) have been made recently to improve overall operational performance and human factors interfaces. The WMS design improvements involve increased urinal flow, individual urinals, and provisions for manually compacting feces and cleanup materials to ensure adequate mission capacity. The basic arrangement and stowage of the PHSP used during waste management operations were extensively changed to better serve habitability concerns and operations needs, and to improve the hygiene of WMS operations. This paper describes these changes and the design, development, and flight test evaluation. In addition, provisions for an eighth crewmember and a new four-tier sleep station are described.
Space station wardroom habitability and equipment study
NASA Technical Reports Server (NTRS)
Nixon, David; Miller, Christopher; Fauquet, Regis
1989-01-01
Experimental designs in life-size mock-up form for the wardroom facility for the Space Station Habitability Module are explored and developed. In Phase 1, three preliminary concepts for the wardroom configuration are fabricated and evaluated. In Phase 2, the results of Phase 1 are combined with a specific range of program design requirements to provide the design criteria for the fabrication of an innovative medium-fidelity mock-up of a wardrobe configuration. The study also focuses on the design and preliminary prototyping of selected equipment items including crew exercise compartments, a meal/meeting table and a portable workstation. Design criteria and requirements are discussed and documented. Preliminary and final mock-ups and equipment prototypes are described and illustrated.
1998-10-03
KENNEDY SPACE CENTER, FLA. -- Inside the payload bay of Space Shuttle orbiter Endeavour in Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (crouching at left) and James H. Newman (far right) get a close look at equipment. Looking on is Wayne Wedlake (far left), with United Space Alliance at Johnson Space Center, and a KSC worker (behind Newman) who is operating the movable work platform or bucket. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability
Independent Orbiter Assessment (IOA): Analysis of the purge, vent and drain subsystem
NASA Technical Reports Server (NTRS)
Bynum, M. C., III
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter PV and D (Purge, Vent and Drain) Subsystem hardware. The PV and D Subsystem controls the environment of unpressurized compartments and window cavities, senses hazardous gases, and purges Orbiter/ET Disconnect. The subsystem is divided into six systems: Purge System (controls the environment of unpressurized structural compartments); Vent System (controls the pressure of unpressurized compartments); Drain System (removes water from unpressurized compartments); Hazardous Gas Detection System (HGDS) (monitors hazardous gas concentrations); Window Cavity Conditioning System (WCCS) (maintains clear windows and provides pressure control of the window cavities); and External Tank/Orbiter Disconnect Purge System (prevents cryo-pumping/icing of disconnect hardware). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Four of the sixty-two failure modes analyzed were determined as single failures which could result in the loss of crew or vehicle. A possible loss of mission could result if any of twelve single failures occurred. Two of the criticality 1/1 failures are in the Window Cavity Conditioning System (WCCS) outer window cavity, where leakage and/or restricted flow will cause failure to depressurize/repressurize the window cavity. Two criticality 1/1 failures represent leakage and/or restricted flow in the Orbiter/ET disconnect purge network which prevent cryopumping/icing of disconnect hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Microbial protein production: maximizing protein production efficiency in Space habitats
NASA Astrophysics Data System (ADS)
Clauwaert, Peter; Alloul, Abbas; Muys, Maarten; Sui, Yixing; Boon, Nico; Luther, Amanda; Christiaens, Marlies E. R.; Ilgrande, Chiara; Lindeboom, Ralph E. F.; Rabaey, Korneel; Vlaeminck, Siegfried
2016-07-01
On top of the goal of a closed material cycle for Space habitats or deep Space missions with food production, extreme requirements apply to such Life Support Systems (LSS) in terms of mass, volume, crew time, energy consumption and controllability. Although relatively high water recovery efficiencies (~70-90%) can be achieved, all Space missions until now have relied on terrestrial food resupply and thus no nutrient recovery has been achieved so far. Researchers and Space agencies have typically been focussing on the cultivation of higher plants to produce food for crew members for future Space LSS. It can be assumed that the required surface area (50-500 m2 per crew member), plant evaporation rates (~200 kg per crew member per day), power consumption (~65 kW per crew member) and the degree of controllability of a higher plant compartment will have a great impact on the feasibility of realizing a future closed loop LSS in Space for the first time. As the food production density is so critical in a LSS, a combination of higher plant cultivation and microbial protein production might increase the chances of success of future Space LSS's since the production densities are significantly higher. Higher plants in Space LSS's would typically have an average specific protein production rate in the order of 0-4 kg protein m-3 year-1 (calculated from Do, Owens et al. (2016)), whereas bacterial biomass can be produced continuously at a rate up to ~1000 kg protein m-3 year-1. Several routes for microbial food production will be discussed in this presentation, ranging from aerobic heterotrophic production with for instance Candida ingens (Strayer, Finger et al. 1997), photoheterotrophic production with PNSB such as Rhodospirillum rubrum (Hendrickx, De Wever et al. 2006) and hydrogenotrophic production with HOB such as Cupriavidus necator (Matassa, Boon et al. 2015)) and photoautotrophic production of oxygen and microbial food (e.g. Arthrospira sp. (Hendrickx, De Wever et al. 2006). Besides protein production, microbial food production units might provide additional services such as redox-balancing, controlling the CO2/O2 ration and biological nitrogen fixation, as N2-formation difficult to avoid completely in a LSS
Ground/bonding for Large Space System Technology (LSST). [of metallic and nonmetallic structures
NASA Technical Reports Server (NTRS)
Dunbar, W. G.
1980-01-01
The influence of the environment and extravehicular activity remote assembly operations on the grounding and bonding of metallic and nonmetallic structures is discussed. Grounding and bonding philosophy is outlined for the electrical systems and electronic compartments which contain high voltage, high power electrical and electronic equipment. The influence of plasma and particulate on the system was analyzed and the effects of static buildup on the spacecraft electrical system discussed. Conceptual grounding bonding designs are assessed for capability to withstand high current arcs to ground from a high voltage conductor and electromagnetic interference. Also shown were the extravehicular activities required of the space station and or supply spacecraft crew members to join and inspect the ground system using manual on remote assembly construction.
Cables and connectors for Large Space System Technology (LSST)
NASA Technical Reports Server (NTRS)
Dunbar, W. G.
1980-01-01
The effect of the environment and extravehicular activity/remote assembly operations on the cables and connectors for spacecraft with metallic and/or nonmetallic structures was examined. Cable and connector philosophy was outlined for the electrical systems and electronic compartments which contain high-voltage, high-power electrical and electronic equipment. The influence of plasma and particulates on the system is analyzed and the effect of static buildup on the spacecraft electrical system discussed. Conceptual cable and connector designs are assessed for capability to withstand high current and high voltage without danger of arcs and electromagnetic interference. The extravehicular activites required of the space station and/or supply spacecraft crew members to join and inspect the electrical system, using manual or remote assembly construction are also considered.
Precision pointing of scientific instruments on space station: The LFGGREC perspective
NASA Technical Reports Server (NTRS)
Blackwell, C. C.; Sirlin, S. W.; Laskin, R. A.
1988-01-01
An application of Lyapunov function-gradient-generated robustness-enhancing control (LFGGREC) is explored. The attention is directed to a reduced-complexity representation of the pointing problem presented by the system composed of the Space Infrared Telescope Facility gimbaled to a space station configuration. Uncertainties include disturbance forces applied in the crew compartment area and control moments applied to adjacent scientific payloads (modeled as disturbance moments). Also included are uncertainties in gimbal friction and in the structural component of the system, as reflected in the inertia matrix, the damping matrix, and the stiffness matrix, and the effect of the ignored vibrational dynamics of the structure. The emphasis is on the adaptation of LFGGREC to this particular configuration and on the robustness analysis.
Structural Design of Glass and Ceramic Components for Space System Safety
NASA Technical Reports Server (NTRS)
Bernstein, Karen S.
2007-01-01
Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.
Ground/bonding for Large Space System Technology (LSST)
NASA Astrophysics Data System (ADS)
Dunbar, W. G.
1980-04-01
The influence of the environment and extravehicular activity remote assembly operations on the grounding and bonding of metallic and nonmetallic structures is discussed. Grounding and bonding philosophy is outlined for the electrical systems and electronic compartments which contain high voltage, high power electrical and electronic equipment. The influence of plasma and particulate on the system was analyzed and the effects of static buildup on the spacecraft electrical system discussed. Conceptual grounding bonding designs are assessed for capability to withstand high current arcs to ground from a high voltage conductor and electromagnetic interference. Also shown were the extravehicular activities required of the space station and or supply spacecraft crew members to join and inspect the ground system using manual on remote assembly construction.
2009-07-31
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett
2009-07-31
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett
2009-07-31
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett
2009-07-31
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett
Astronaut Jean-Francois Clervoy in middeck during launch/entry training
1994-06-23
S94-40081 (23 June 1994) --- Wearing a training version of a partial pressure suit, Jean-Francois Clervoy, STS-66 international mission specialist, secures himself on a collapsible seat on the middeck of a Shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of his scheduled November flight. This rehearsal, held in the Crew Compartment Trainer (CCT) of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. Clervoy, a European astronaut, will join five NASA astronauts for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
1998-10-03
KENNEDY SPACE CENTER, FLA. -- As the bucket operator (left) lowers them into the open payload bay of the orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (second from left) and James H. Newman (second from right) do a sharp-edge inspection. At their right is Wayne Wedlake, with United Space Alliance at Johnson Space Center. Below them is the Orbiter Docking System, the remote manipulator system arm and a tunnel into the payload bay. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability
Development of an In-line Urine Monitoring System for the International Space Station
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Cibuzar, Branelle R.
2009-01-01
Exposure to microgravity during space flight causes bone loss when calcium and other metabolic by-products are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is thus essential in determining crew bone loss and the effectiveness of the countermeasures that are taken to minimize this loss. Earlier space shuttle Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to the cross-contamination that took place between users, as well as to fluid system instabilities. Crew urine voids are currently collected manually in a flexible plastic bag that contains a known tracer quantity. A crew member must completely mix the contents of this bag before withdrawing a representative syringe sample for later ground analysis. The existing bag system accuracy is therefore highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures void volume, and allows for syringe sampling. After the ISS UMS has been used by a crew member, it delivers urine to the WHC for normal processing. The UMS plumbing is then flushed with a small volume of water. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, consequently greatly reducing cross-contamination among urine voids (less than 0.5 mL urine) while also providing accurate volume measurements (less than 2 percent error for 100 to 1,000 mL void volumes). ISS UMS performance has been validated through extensive ground tests and reduced-gravity aircraft flights. The locker-sized ISS UMS is currently undergoing a design modification that will permit it to interface with the ISS Node 3 WHC Russian toilet (ACY) hardware. The operating principles, characteristics, and results of this design modification are outlined here.
1998-09-30
The open doors of the payload bay on Space Shuttle Discovery await the transfer of four of the payloads on mission STS-95: the SPACEHAB single module, Spartan, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). At the top of bay are the airlock (used for depressurization and repressurization during extravehicular activity and transfer to Mir) and the tunnel adapter (enables the flight crew members to transfer from the pressurized middeck crew compartment to Spacelab's pressurized shirt-sleeve environment). SPACEHAB involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Discovery is scheduled to launch on Oct. 29, 1998
2000-02-02
On the runway at the Shuttle Landing Facility, STS-99 crew members Pilot Dominic Gorie, Mission Specialist Janice Voss, Commander Kevin Kregel and Mission Specialist Gerhard Thiele discuss departure plans to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto latenext week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-02-02
On the runway at the Shuttle Landing Facility, STS-99 crew members Mission Specialists Gerhard Thiele and Janice Voss, Commander Kevin Kregel and Pilot Dominic Gorie briefly talk to the media about their imminent departure to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-02-02
On the runway at the Shuttle Landing Facility, STS-99 crew members Mission Specialists Gerhard Thiele and Janice Voss, Commander Kevin Kregel and Pilot Dominic Gorie briefly talk to the media about their imminent departure to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
2000-02-02
On the runway at the Shuttle Landing Facility, STS-99 crew members Pilot Dominic Gorie, Mission Specialist Janice Voss, Commander Kevin Kregel and Mission Specialist Gerhard Thiele discuss departure plans to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto latenext week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety
1997-02-21
KENNEDY SPACE CENTER, Fla. -- Under the cover of darkness, the Space Shuttle orbiter Discovery glides in for a landing on Runway 15 at KSC's Shuttle Landing Facility at the conclusion of a 10-day mission to service the orbiting Hubble Space Telescope (HST). New runway centerline lights provide an additional visual aid for the nighttime landings. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. Crew members are Mission Commander Kenneth D. Bowersox, Pilot Scott J. "Doc" Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. "Joe" Tanner and Steven A. Hawley. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
1997-02-21
Accompanied by former astronaut Michael J. McCulley, several members of the STS-82 crew look at thermal protection system tile under the Space Shuttle Discovery on the runway at the Shuttle Landing Facility shortly after the conclusion of a 10-day mission to service the orbiting Hubble Space Telescope (HST). From left to right, they are Mission Specialist Steven A. Hawley; Michael J. McCulley, currently vice president and associate program manager for ground operations for the United Space Alliance at KSC; Mission Specialists Joseph R. "Joe" Tanner and Steven L. Smith (back to camera); and Payload Commander Mark C. Lee. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
1997-02-21
KENNEDY SPACE CENTER, Fla. -- Under the cover of darkness, the Space Shuttle orbiter Discovery glides in for a landing on Runway 15 at KSC's Shuttle Landing Facility at the conclusion of a 10-day mission to service the orbiting Hubble Space Telescope (HST). New runway centerline lights provide an additional visual aid for the nighttime landings. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. Crew members are Mission Commander Kenneth D. Bowersox, Pilot Scott J. "Doc" Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. "Joe" Tanner and Steven A. Hawley. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
1997-02-21
KENNEDY SPACE CENTER, Fla. -- Under the cover of darkness, the Space Shuttle orbiter Discovery glides in for a landing on Runway 15 at KSC's Shuttle Landing Facility at the conclusion of a 10-day mission to service the orbiting Hubble Space Telescope (HST). New runway centerline lights provide an additional visual aid for the nighttime landings. STS-82 is the ninth Shuttle nighttime landing, and the fourth nighttime landing at KSC. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. Crew members are Mission Commander Kenneth D. Bowersox, Pilot Scott J. "Doc" Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. "Joe" Tanner and Steven A. Hawley. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
Hendrickx, Larissa; De Wever, Heleen; Hermans, Veronik; Mastroleo, Felice; Morin, Nicolas; Wilmotte, Annick; Janssen, Paul; Mergeay, Max
2006-01-01
MELiSSA is a bioregenerative life support system designed by the European Space Agency (ESA) for the complete recycling of gas, liquid and solid wastes during long distance space exploration. The system uses the combined activity of different living organisms: microbial cultures in bioreactors, a plant compartment and a human crew. In this minireview, the development of a short-cut ecological system for the biotransformation of organic waste is discussed from a microorganism's perspective. The artificial ecological model--still in full development--that is inspired by Earth's own geomicrobiological ecosystem serves as an ideal study object on microbial ecology and will become an indispensable travel companion in manned space exploration.
STS-54 Commander Casper at airlock hatch on CCT middeck during JSC training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-54 Endeavour, Orbiter Vehicle (OV) 105, Commander John H. Casper manipulates the airlock hatch and its equalization valves on the middeck of JSC's Crew Compartment Trainer (CCT). Casper is rehearsing the sequence of events necessary for extravehicular activity (EVA) egress for the upcoming STS-54 mission. Visible in the airlock is an extravehicular mobility unit (EMU). Two of the STS-54 crewmembers will don EMUs and egress through the EV hatch into the payload bay (PLB) after Casper closes the intravehicular (IV) hatch behind them. The EVA crewmembers will spend four-plus hours on a planned spacewalk to evaluate EVA techniques and gear for the Space Station Freedom (SSF). The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
Space Shuttle food galley design concept
NASA Technical Reports Server (NTRS)
Heidelbaugh, N. D.; Smith, M. C.; Fischer, R.; Cooper, B.
1974-01-01
A food galley has been designed for the crew compartment of the NASA Space Shuttle Orbiter. The rationale for the definition of this design was based upon assignment of priorities to each functional element of the total food system. Principle priority categories were assigned in the following order: food quality, nutrition, food packaging, menu acceptance, meal preparation efficiency, total system weight, total system volume, and total power requirements. Hence, the galley was designed using an 'inside-out' approach which first considered the food and related biological functions and subsequently proceeded 'outward' from the food to encompass supporting hardware. The resulting galley is an optimal design incorporating appropriate priorities for trade-offs between biological and engineering constraints. This design approach is offered as a model for the design of life support systems.
2009-08-04
CAPE CANAVERAL, Fla. –Space shuttle Discovery nears Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion out of the Vehicle Assembly Building was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. The 3.4-mile journey was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Dimitri Gerondidakis
Skylab food system laboratory support
NASA Technical Reports Server (NTRS)
Sanford, D.
1974-01-01
A summary of support activities performed to ensure the quality and reliability of the Skylab food system design is reported. The qualification test program was conducted to verify crew compartment compatibility, and to certify compliance of the food system with nutrition, preparation, and container requirements. Preflight storage requirements and handling procedures were also determined. Information on Skylab food items was compiled including matters pertaining to serving size, preparation information, and mineral, calorie, and protein content. Accessory hardware and the engraving of food utensils were also considered, and a stowage and orientation list was constructed which takes into account menu use sequences, menu items, and hardware stowage restrictions. A food inventory system was established and food thermal storage tests were conducted. Problems and comments pertaining to specific food items carried onboard the Skylab Workshop were compiled.
1998-10-03
KENNEDY SPACE CENTER, FLA. -- Lowered on a movable work platform or bucket inside the payload bay of orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (far right) and James H. Newman (second from right) get a close look at the Orbiter Docking System. At left is the bucket operator and Wayne Wedlake, with United Space Alliance at Johnson Space Center. The STS-88 crew members are in Orbiter Processing Facility Bay 1 to participate in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. While on orbit during STS-88, Unity will be latched atop the Orbiter Docking System in the forward section of Endeavour's payload bay for the mating of the two modules. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability
Preliminary study of the space adaptation of the MELiSSA life support system
NASA Astrophysics Data System (ADS)
Mas-Albaigès, Joan L.; Duatis, Jordi; Podhajsky, Sandra; Guirado, Víctor; Poughon, Laurent
MELiSSA (Micro-Ecological Life Support System Alternative) is an European Space Agency (ESA) project focused on the development of a closed regenerative life support system to aid the development of technologies for future life support systems for long term manned planetary missions, e.g. a lunar base or missions to Mars. In order to understand the potential evolution of the MELiSSA concept towards its future use in the referred manned planetary mission context the MELiSSA Space Adaptation (MSA) activity has been undertaken. MSA's main objective is to model the different MELiSSA compartments using EcosimPro R , a specialized simulation tool for life support applications, in order to define a preliminary MELiSSA implementation for service in a man-tended lunar base scenario, with a four-member crew rotating in six-month increments, and performing the basic LSS functions of air revitalization, food production, and waste and water recycling. The MELiSSA EcosimPro R Model features a dedicated library for the different MELiSSA elements (bioreactors, greenhouse, crew, interconnecting elements, etc.). It is used to dimension the MELiSSA system in terms of major parameters like mass, volume and energy needs, evaluate the accuracy of the results and define the strategy for a progressive loop closure from the initial required performance (approx.100 The MELiSSA configuration(s) obtained through the EcosimPro R simulation are further analysed using the Advanced Life Support System Evaluation (ALISSE) metric, relying on mass, energy, efficiency, human risk, system reliability and crew time, for trade-off and optimization of results. The outcome of the MSA activity is, thus, a potential Life Support System architecture description, based on combined MELiSSA and other physico-chemical technologies, defining its expected performance, associated operational conditions and logistic needs.
NASA Technical Reports Server (NTRS)
Reynolds, Thomas L.; Eklund, Thor I.; Haack, Gregory A.
2001-01-01
This purpose of this contract study task was to investigate the State of the Art in Gas Separation Technologies utilized for separating air into both nitrogen and oxygen gases for potential applications on commercial aircraft. The intended applications included: nitrogen gas for fuel tank inerting, cargo compartment fire protection, and emergency oxygen for passenger and crew use in the event of loss of cabin pressure. The approach was to investigate three principle methods of gas separation: Hollow Fiber Membrane (HFM), Ceramic Membrane (CM), and liquefaction: Total Atmospheric Liquefaction of Oxygen and Nitrogen (TALON). Additional data on the performance of molecular sieve pressure swing adsorption (PSA) systems was also collected and discussed. Performance comparisons of these technologies are contained in the body of the report.
2009-08-04
CAPE CANAVERAL, Fla. – Space shuttle Discovery is silhouetted against the dawn sky as it rolls out to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion out of the Vehicle Assembly Building was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. The 3.4-mile journey was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Dimitri Gerondidakis
2009-08-04
CAPE CANAVERAL, Fla. – A closeup of space shuttle Endeavour after its arrival on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Traveling from the Vehicle Assembly Building, the shuttle took nearly 12 hours on the journey as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
2009-08-04
CAPE CANAVERAL, Fla. –At NASA's Kennedy Space Center in Florida, a worker checks the tread on the crawler-transporter as it carries space shuttle Endeavour to Launch Pad 39A. The 3.4-mile journey was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the Vehicle Assembly Building was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Dimitri Gerondidakis
2009-08-04
CAPE CANAVERAL, Fla. – The morning sun highlights the back of space shuttle Discovery as it makes its way to Launch Pad 39A at NASA's Kennedy Space Center in Florida. The 3.4-mile journey was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the Vehicle Assembly Building was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Dimitri Gerondidakis
2009-08-04
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a worker walks alongside the crawler-transporter as it carries space shuttle Endeavour to Launch Pad 39A. The 3.4-mile journey was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the Vehicle Assembly Building was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Dimitri Gerondidakis
2009-08-04
CAPE CANAVERAL, Fla. – Space shuttle Discovery is silhouetted against the dawn sky as it rolls out to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion out of the Vehicle Assembly Building was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. The 3.4-mile journey was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Dimitri Gerondidakis
2009-08-04
CAPE CANAVERAL, Fla. –Sitting on top of the mobile launcher platform, space shuttle Discovery arrives on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Traveling from the Vehicle Assembly Building, the journey took nearly 12 hours as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
2009-08-24
CAPE CANAVERAL, Fla. – Xenon lights over Launch Pad 39A at NASA's Kennedy Space Center in Florida compete with the lightning strike seen to the left. Space shuttle Discovery is on the pad waiting for a scheduled liftoff on the STS-128 mission. Launch was scrubbed due to the weather conditions that violated the limitations for liftoff. Another launch attempt was scheduled for 1:10 a.m. Aug. 26. Discovery's 13-day mission will deliver more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. The equipment includes a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. The mission is the 128th in the Space Shuttle Program, the 37th flight of Discovery and the 30th station assembly flight. Photo credit: NASA/Ben Cooper
Lithium-ion Battery Charge Methodologies Observed with Portable Electronic Equipment
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith
2009-01-01
Commercial lithium-ion batteries in portable electronic equipment has been used by NASA for space applications since 1999. First battery that was certified for flight and flown for Shuttle use was the Canon BP 927 (2.7 Ah) battery pack. Since then, numerous portable equipment with li-ion batteries have been certified and flown and remain on-orbit for crew usage. Laptops (two generations with third one being worked on now) Camcorder Camera PDA 2 versions (second one being li-ion polymer cells) Satellite Phone Due to expense and time, certified batteries are used with different equipment with the help of adapters or by working with the manufacturer of the equipment to build the appropriate battery compartment and connector. Certified and dedicated chargers are available on Shuttle and on the ISS for safe charging.
Extended Duration Orbiter (EDO) Improved Waste Collection System (IWCS)
NASA Technical Reports Server (NTRS)
1992-01-01
This overall front view shows the Extended Duration Orbiter (EDO) Waste Collection System (WCS) scheduled to fly aboard NASA's Endeavour, Orbiter Vehicle (OV) 105, for the STS-54 mission. Detailed Test Objective 662, Extended duration orbiter WCS evaluation, will verify the design of the new EDO WCS under microgravity conditions for a prolonged period. OV-105 has been modified with additional structures in the waste management compartment (WMC) and additional avionics to support/restrain the EDO WCS. Among the advantages the new IWCS is hoped to have over the currect WCS are greater dependability, better hygiene, virtually unlimited capacity, and more efficient preparation between shuttle missions. Unlike the previous WCS, the improved version will not have to be removed from the spacecraft to be readied for the next flight. The WCS was documented in JSC's Crew Systems Laboratory Bldg 7.
STS-99 M.S. Thiele and Voss, Pilot Gorie and Commander Kregel before DEPARTure
NASA Technical Reports Server (NTRS)
2000-01-01
On the runway at the Shuttle Landing Facility, STS-99 crew members Pilot Dominic Gorie, Mission Specialist Janice Voss, Commander Kevin Kregel and Mission Specialist Gerhard Thiele discuss departure plans to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late- next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
STS-99 M.S. Thiele and Voss, Pilot Gorie and Commander Kregel before DEPARTure
NASA Technical Reports Server (NTRS)
2000-01-01
On the runway at the Shuttle Landing Facility, STS-99 crew members Mission Specialists Gerhard Thiele and Janice Voss, Commander Kevin Kregel and Pilot Dominic Gorie briefly talk to the media about their imminent departure to Houston. Kregel and Gorie will be piloting T-38 jets with Voss and Thiele as passengers. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
Astronauts Working in Spacelab
NASA Technical Reports Server (NTRS)
1999-01-01
This Quick Time movie captures astronaut Jan Davis and her fellow crew members working in the Spacelab, a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements can be combined to accommodate the many types of scientific research that can best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, antennas, and sensors, is mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.
International Space Station Urine Monitoring System Functional Integration and Science Testing
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle R.; Broyan, James Lee, Jr.
2011-01-01
Exposure to microgravity during human spaceflight needs to be better understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Measuring the calcium and other metabolic byproducts in a crew member s urine can evaluate the effectiveness of bone loss countermeasures. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross-contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross-contamination (<0.7 mL urine) and has volume accuracy of 2% between 100 to 1000 mL urine voids. Designed to provide a non-invasive means to collect urine samples from crew members, the ISS UMS operates in-line with the Node 3 Waste and Hygiene Compartment (WHC). The ISS UMS has undergone modifications required to interface with the WHC, including material changes, science algorithm improvements, and software platform revisions. Integrated functional testing was performed to determine the pressure drop, air flow rate, and the maximum amount of fluid capable of being discharged from the UMS to the WHC. This paper will detail the results of the science and the functional integration tests.
NASA Technical Reports Server (NTRS)
Schmidl, William; Mikatarian, Ron; Lam, Chiu-Wing; West, Bil; Buchanan, Vanessa; Dee, Louis; Baker, David; Koontz, Steve
2004-01-01
The Service Module (SM) is an element of the Russian Segment of the International Space Station (ISS). One of the functions of the SM is to provide attitude control for the ISS using thrusters when the U.S. Control Moment Gyros (CMG's) must be desaturated. Prior to an Extravehicular Activity (EVA) on the Russian Segment, the Docking Compartment (DC1) is depressurized, as it is used as an airlock. When the DC1 is depressurized, the CMG's margin of momentum is insufficient and the SM attitude control thrusters need to fire to desaturate the CMG's. SM roll thruster firings induce contamination onto adjacent surfaces with Fuel Oxidizer Reaction Products (FORP). FORP is composed of both volatile and non-volatile components. One of the components of FORP is the potent carcinogen N-nitrosdimethylamine (NDMA). Since the EVA crewmembers often enter the area surrounding the thrusters for tasks on the aft end of the SM and when translating to other areas of the Russian Segment, the presence of FORP is a concern. This paper will discuss FORP contamination of the SM surfaces, the release of NDMA in a humid environment from crew EVA suits, if they happen to be contaminated with FORP, and the toxicological risk associated with the NDMA release.
1997-02-21
KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Discovery touches down in darkness on Runway 15 of the KSC Shuttle Landing Facility, bringing to a close the 10-day STS-82 mission to service the Hubble Space Telescope (HST). Main gear touchdown was at 3:32:26 a.m. EST on February 21, 1997. It was the ninth nighttime landing in the history of the Shuttle program and the 35th landing at KSC. The first landing opportunity at KSC was waved off because of low clouds in the area. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. Crew members are Mission Commander Kenneth D. Bowersox, Pilot Scott J. "Doc" Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. "Joe" Tanner and Steven A. Hawley. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997
Space Shuttle Atlantis is on Launch Pad 39B
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis sits on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. To the left of the orbiter is the white environmental chamber (white room) that mates with the orbiter and holds six persons. It provides access to the orbiter crew compartment. In the background is the Atlantic Ocean. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11-day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.
NASA Astrophysics Data System (ADS)
Shurshakov, Vyacheslav; Nikolaev, Igor; Kartsev, Ivan; Tolochek, Raisa; Lyagushin, Vladimir
The tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS in Matroshka-R experiment for more than 10 years. Both passive and active space radiation detectors can be located inside the phantom and on its surface. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a human body. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2, and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 2000 days in 9 sessions of the space experiment. In the first phase of the experiment with the spherical phantom the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being usually observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. However, because of the ISS module shielding properties an inverse dose distribution in a human body can be observed when the dose rate maximum is closer to the geometrical center of the module. Maximum dose rate measured in the phantom is obviously due to the action of two radiation sources, namely, galactic cosmic rays (GCR) and Earth’ radiation belts. Minimum dose rate is produced mainly by the strongly penetrating GCR particles and is mostly observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the ISS compartments are also estimated with the spherical phantom data. The estimated effective dose rate is found to be from 10 % to 15 % lower than the averaged dose on the phantom surface as dependent on the attitude of the critical organs. If compared with the anthropomorphic phantom Rando used inside and outside the ISS earlier, the Matroshka-R space experiment spherical phantom has lower mass, smaller size, and requires less crew time for the detector installation/retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. New sessions with the two tissue-equivalent phantoms are of great interest. Development of modified passive and active detector sets is in progress for the future ISS expeditions. Both the spherical and Rando-type phantoms proved their effectiveness to measure the critical organ doses and effective doses in-flight and if supplied with modernized dosimeters can be recommended for future exploratory manned missions to monitor continuously the crew exposure to space radiation.
Orbit on demand - Will cost determine best design?
NASA Technical Reports Server (NTRS)
Macconochie, J. O.; Mackley, E. A.; Morris, S. J.; Phillips, W. P.; Breiner, C. A.; Scotti, S. J.
1985-01-01
Eleven design concepts for vertical (V) and horizontal (H) take-off launch-on-demand manned orbital vehicles are discussed. Attention is given to up to three stages, Mach numbers (sub-, 2, or 3), expendable boosters, drop tanks (DT), and storable (S) or cryogenic fuels. All the concepts feature lifting bodies with circular cross-section and most have a 7 ft diam, 15 ft long payload bay as well as a crew compartment. Expendable elements impose higher costs and in some cases reduce all-azimuth launch capabilities. Single-stage vehicles simplify the logistics whether in H or V configuration. A two-stage H vehicle offers launch offset for the desired orbital plane before firing the rocket engines after take-off and subsonic acceleration. A two-stage fully reusable V form has the second lowest weight of the vehicles studied and an all-azimuth launch capability. Better definition of the prospective mission requirements is needed before choosing among the alternatives.
Investigation of DMSD Trend in the ISS Water Processor Assembly
NASA Technical Reports Server (NTRS)
Carter, Layne; Bowman, Elizabeth; Wilson, Mark; Gentry, Greg; Rector, Tony
2013-01-01
The ISS Water Recovery System (WRS) is responsible for providing potable water to the crew, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. The WRS includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WPA processes condensate from the cabin air and distillate produced by the UPA. In 2010, an increasing trend in the Total Organic Carbon (TOC) in the potable water was ultimately identified as dimethylsilanediol (DMSD). The increasing trend was ultimately reversed after replacing the WPA's two multifiltration beds. However, the reason for the TOC trend and the subsequent recovery was not understood. A subsequent trend occurred in 2012. This paper summarizes the current understanding of the fate of DMSD in the WPA, how the increasing TOC trend occurred, and the plan for modifying the WPA to prevent recurrence.
NASA Technical Reports Server (NTRS)
Westrup, R. W.
1972-01-01
Investigations of fatigue life, and safe-life and fail-safe design concepts as applied to space shuttle structure are summarized. The results are evaluated to select recommended structural design criteria to provide assurance that premature failure due to propagation of undetected crack-like defects will not occur during shuttle operational service. The space shuttle booster, GDC configuration B-9U, is selected as the reference vehicle. Structural elements used as basis of detail analyses include wing spar caps, vertical stabilizer skins, crew compartment skin, orbiter support frame, and propellant tank shell structure. Fatigue life analyses of structural elements are performed to define potential problem areas and establish upper limits of operating stresses. Flaw growth analyses are summarized in parametric form over a range of initial flaw types and sizes, operating stresses and service life requirements. Service life of 100 to 500 missions is considered.
General view of the middeck looking aft and port. In ...
General view of the mid-deck looking aft and port. In this view you can clearly see the crew access hatch and the airlock hatch. The hose and ladder in the image are pieces of ground support equipment. The hose is part of the climate control apparatus used while orbiters are being processed. The ladder is used to access the inter-deck passage, leading to the flight deck, while the orbiter is in 1g (earth's gravity). A careful observer will notice a void in the wall near the base of the access ladder, this is the Waste Management Compartment with the Waste Management System, i.e. Space Potty, removed. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
Liu, A. F.
1974-01-01
A systematic approach for applying methods for fracture control in the structural components of space vehicles consists of four major steps. The first step is to define the primary load-carrying structural elements and the type of load, environment, and design stress levels acting upon them. The second step is to identify the potential fracture-critical parts by means of a selection logic flow diagram. The third step is to evaluate the safe-life and fail-safe capabilities of the specified part. The last step in the sequence is to apply the control procedures that will prevent damage to the fracture-critical parts. The fracture control methods discussed include fatigue design and analysis methods, methods for preventing crack-like defects, fracture mechanics analysis methods, and nondestructive evaluation methods. An example problem is presented for evaluation of the safe-crack-growth capability of the space shuttle crew compartment skin structure.
Gold, Kenneth; Cheng, Yung Sung; Holmes, Thomas D
2007-04-01
These tests were conducted to develop a database that could be used to assess risks to soldiers from exposure to aerosolized metallic particulates when the crew compartment of an Abrams tank is perforated by a kinetic energy penetrator. Quantitative data are reported for aerosols produced by kinetic energy penetrators containing tungsten, nickel, and cobalt. The following are addressed: (1) concentrations and rates of particle settling inside the vehicle, (2) particle size distribution, (3) inhalable and respirable particulates, (4) distribution of aerosol particles by mass, and (5) particle shapes. The scenario described in this report simulates a rare occurrence. The lessons learned, however, highlight a requirement for developing protocols for analyses of metals in body fluids and urine as soon as practical, and also for implementing targeted postdeployment medical surveillance programs that monitor both body burden for respired metals and pulmonary function.
2009-08-04
CAPE CANAVERAL, Fla. –Sitting on top of the mobile launcher platform and propelled by the crawler-transporter, space shuttle Discovery rolls up Launch Pad 39A at NASA's Kennedy Space Center in Florida after a nearly 12-hour journey from the Vehicle Assembly Building. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. The rollout was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
2009-08-04
CAPE CANAVERAL, Fla. – Sitting on top of the mobile launcher platform, space shuttle Discovery arrives on top of Launch Pad 39A at NASA's Kennedy Space Center in Florida. Traveling from the Vehicle Assembly Building, the shuttle took nearly 12 hours on the journey as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
2009-08-04
CAPE CANAVERAL, Fla. –Sitting on top of the mobile launcher platform and propelled by the crawler-transporter, space shuttle Discovery rolls up Launch Pad 39A at NASA's Kennedy Space Center in Florida after a nearly 12-hour journey from the Vehicle Assembly Building. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. The rollout was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
2009-08-04
CAPE CANAVERAL, Fla. –Sitting on top of the mobile launcher platform and propelled by the crawler-transporter, space shuttle Discovery rolls onto Launch Pad 39A at NASA's Kennedy Space Center in Florida after a nearly 12-hour journey from the Vehicle Assembly Building. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. The rollout was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
2009-08-04
CAPE CANAVERAL, Fla. – Cast in shadow by the external fuel tank blocking the morning sun, space shuttle Discovery makes its way to Launch Pad 39A at NASA's Kennedy Space Center in Florida. The 3.4-mile journey was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the Vehicle Assembly Building was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Dimitri Gerondidakis
A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.; Stnaley, Douglas O.
1991-01-01
A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.
Extended Duration Orbiter (EDO) Improved Waste Collection System (IWCS)
NASA Technical Reports Server (NTRS)
1992-01-01
This high angle overall view shows the top side components of the Extended Duration Orbiter (EDO) Waste Collection System (WCS) scheduled to fly aboard NASA's Endeavour, Orbiter Vehicle (OV) 105, for the STS-54 mission. Detailed Test Objective 662, Extended duration orbiter WCS evaluation, will verify the design of the new EDO WCS under microgravity conditions for a prolonged period. OV-105 has been modified with additional structures in the waste management compartment (WMC) and additional avionics to support/restrain the EDO WCS. Among the advantages the new IWCS is hoped to have over the currect WCS are greater dependability, better hygiene, virtually unlimited capacity, and more efficient preparation between shuttle missions. Unlike the previous WCS, the improved version will not have to be removed from the spacecraft to be readied for the next flight. The WCS was documented in JSC's Crew Systems Laboratory Bldg 7.
Spacecraft Maximum Allowable Concentrations (SMACs) for C3 to C8 Aliphatic Saturated Aldehydes
NASA Technical Reports Server (NTRS)
Langford, Shannon D.
2007-01-01
Spacecraft maximum allowable concentrations (SMACs) for C3 to C8, straight-chain, aliphatic aldehydes have been previously assessed and have been documented in volume 4 of Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants (James, 2000). These aldehydes as well as associated physical properties are shown in Table 1. The C3 to C8 aliphatic aldehydes can enter the habitable compartments and contaminate breathing air of spacecraft by several routes including incomplete oxidation of alcohols in the Environmental Control and Life Support System (ECLSS) air revitalization subsystem, as a byproduct of human metabolism, through materials off-gassing, or during food preparation. These aldehydes have been detected in the atmosphere of manned space vehicles in the past. Analysis performed by NASA of crew cabin air samples from the Russian Mir Space Station revealed the presence of C3 to C8 aldehydes at concentrations peaking at approximately 0.1 mg/cu m.
Preliminary investigations of the rhizosphere nature of hydroponically grown lettuces
NASA Astrophysics Data System (ADS)
Antunes, Inês; Paille, Christel; Lasseur, Christophe
Due to capabilities of current launchers, future manned exploration beyond the Earth orbit will imply long journeys and extended stays on planet surfaces. For this reason, it is of a great importance to develop a Regenerative Life Support System that enables the crew to be, to a very large extent, metabolic consumables self-sufficient. In this context, the European Space Agency, associated with a scientific and engineering con-sortium, initiated in 1989 the Micro-Ecological Life Support System Alternative (MELiSSA) project. This concept, inspired on a terrestrial ecosystem (i.e. a lake), comprises five intercon-nected compartments inhabited by micro-organisms and higher-plants aiming to produce food, fresh water, and oxygen from organic waste, carbon dioxide, and minerals. Given the important role of the higher-plant compartment for the consumption of carbon dioxide and the production of oxygen, potable water, and food, it was decided to study the microbial communities present in the root zone of the plants (i.e. the rhizosphere), and their synergistic and antagonistic influences in the plant growth. This understanding is important for later investigations concerning the technology involved in the higher plant compartment, since the final goal is to integrate this compartment inside the MELiSSA loop and to guarantee a healthy and controlled environment for the plants to grow under reduced-gravity conditions. To perform a preliminary assessment of the microbial populations of the root zone, lettuces were grown in a hydroponic system and their growth was characterized in terms of nutrient uptake, plant diameter, and plant wet and dry weights. In parallel, the microbial population, bacteria and fungi, present in the hydroponic medium and also inside and outside the roots were analyzed in terms of quantity and nature. The goal of this presentation is to give a preliminary review in the plant root zone of the micro-organisms communities and as well their proportions. The collected information will then be correlated to each phase of the growth of the lettuces and to the results for the corresponding growth parameters. This will enable characterization of the microbial communities in the rhizosphere and the understanding of how these populations influence each phase of the plant growth. Conclusions are proposed for further investigations.
Closed Environment Module - modularization and extension of the V-HAB
NASA Astrophysics Data System (ADS)
Plötner, Peter; Czupalla, M. Markus; Zhukov, Anton
2012-07-01
The `Virtual Habitat' (V-HAB), is a Life Support System (LSS) simulation, created to provide the possibility for dynamic simulation of LSS for future human spaceflight missions. V-HAB creates the option to optimize LSS during early design phases. Furthermore, it allows simulating e.g. worst case scenarios which cannot be tested in reality. In a nutshell the tool allows the testing of LSS robustness by means of computer simulations. V-HAB is a modular simulation consisting of a: Closed Environment Module (CEM) Crew Module Biological Module Physio-Chemical Module The focus of the paper will be the Closed Environment Module (CEM) which is the core of V-HAB. The main function of the CEM is the embedding of all modules in the entire simulation and the control of the LSS. The CEM includes the possibility to simulate an arbitrary number of compartments and tanks with the interaction between connected compartments. Furthermore, a control program to actuate the LSS Technologies was implemented in the CEM, and is also introduced. In this paper the capabilities of the CEM are introduced based on selected test cases. In particular the following capabilities are demonstrated: Supply Leakage ON/OFF controller Power management Un-/docking Controller for tanks with maximum filling degree The CEM of the V-HAB simulation was verified by simulating the Atmosphere Revitalization part of the ISS and comparing it to actual measurement data. The results of this analysis are also presented in the paper.
Space Shuttle Orbiter-Illustration
NASA Technical Reports Server (NTRS)
2001-01-01
This illustration is an orbiter cutaway view with callouts. The orbiter is both the brains and heart of the Space Transportation System (STS). About the same size and weight as a DC-9 aircraft, the orbiter contains the pressurized crew compartment (which can normally carry up to seven crew members), the huge cargo bay, and the three main engines mounted on its aft end. There are three levels to the crew cabin. Uppermost is the flight deck where the commander and the pilot control the mission. The middeck is where the gallery, toilet, sleep stations, and storage and experiment lockers are found for the basic needs of weightless daily living. Also located in the middeck is the airlock hatch into the cargo bay and space beyond. It is through this hatch and airlock that astronauts go to don their spacesuits and marned maneuvering units in preparation for extravehicular activities, more popularly known as spacewalks. The Space Shuttle's cargo bay is adaptable to hundreds of tasks. Large enough to accommodate a tour bus (60 x 15 feet or 18.3 x 4.6 meters), the cargo bay carries satellites, spacecraft, and spacelab scientific laboratories to and from Earth orbit. It is also a work station for astronauts to repair satellites, a foundation from which to erect space structures, and a hold for retrieved satellites to be returned to Earth. Thermal tile insulation and blankets (also known as the thermal protection system or TPS) cover the underbelly, bottom of the wings, and other heat-bearing surfaces of the orbiter to protect it during its fiery reentry into the Earth's atmosphere. The Shuttle's 24,000 individual tiles are made primarily of pure-sand silicate fibers, mixed with a ceramic binder. The solid rocket boosters (SRB's) are designed as an in-house Marshall Space Flight Center project, with United Space Boosters as the assembly and refurbishment contractor. The solid rocket motor (SRM) is provided by the Morton Thiokol Corporation.
2001-01-01
This illustration is an orbiter cutaway view with callouts. The orbiter is both the brains and heart of the Space Transportation System (STS). About the same size and weight as a DC-9 aircraft, the orbiter contains the pressurized crew compartment (which can normally carry up to seven crew members), the huge cargo bay, and the three main engines mounted on its aft end. There are three levels to the crew cabin. Uppermost is the flight deck where the commander and the pilot control the mission. The middeck is where the gallery, toilet, sleep stations, and storage and experiment lockers are found for the basic needs of weightless daily living. Also located in the middeck is the airlock hatch into the cargo bay and space beyond. It is through this hatch and airlock that astronauts go to don their spacesuits and marned maneuvering units in preparation for extravehicular activities, more popularly known as spacewalks. The Space Shuttle's cargo bay is adaptable to hundreds of tasks. Large enough to accommodate a tour bus (60 x 15 feet or 18.3 x 4.6 meters), the cargo bay carries satellites, spacecraft, and spacelab scientific laboratories to and from Earth orbit. It is also a work station for astronauts to repair satellites, a foundation from which to erect space structures, and a hold for retrieved satellites to be returned to Earth. Thermal tile insulation and blankets (also known as the thermal protection system or TPS) cover the underbelly, bottom of the wings, and other heat-bearing surfaces of the orbiter to protect it during its fiery reentry into the Earth's atmosphere. The Shuttle's 24,000 individual tiles are made primarily of pure-sand silicate fibers, mixed with a ceramic binder. The solid rocket boosters (SRB's) are designed as an in-house Marshall Space Flight Center project, with United Space Boosters as the assembly and refurbishment contractor. The solid rocket motor (SRM) is provided by the Morton Thiokol Corporation.
NASA Astrophysics Data System (ADS)
Abercromby, Andrew F. J.; Conkin, Johnny; Gernhardt, Michael L.
2015-04-01
NASA's plans for future human exploration missions utilize a new atmosphere of 56.5 kPa (8.2 psia), 34% O2, 66% N2 to enable rapid extravehicular activity (EVA) capability with minimal gas losses; however, existing EVA prebreathe protocols to mitigate risk of decompression sickness (DCS) are not applicable to the new exploration atmosphere. We provide preliminary analysis of a 15-min prebreathe protocol and examine the potential benefits of intermittent recompression (IR) and an abbreviated N2 purge on crew time and gas consumables usage. A probabilistic model of decompression stress based on an established biophysical model of DCS risk was developed, providing significant (p<0.0001) prediction and goodness-of-fit with 84 cases of DCS in 668 human altitude exposures including a variety of pressure profiles. DCS risk for a 15-min prebreathe protocol was then estimated under different exploration EVA scenarios. Estimated DCS risk for all EVA scenarios modeled using the 15-min prebreathe protocol ranged between 6.1% and 12.1%. Supersaturation in neurological tissues (5- and 10-min half-time compartments) is prevented and tissue tensions in faster half-time compartments (≤40 min), where the majority of whole-body N2 is located, are reduced to about the levels (30.0 vs. 27.6 kPa) achieved during a standard Shuttle prebreathe protocol. IR reduced estimated DCS risk from 9.7% to 7.9% (1.8% reduction) and from 8.4% to 6.1% (2.3% reduction) for the scenarios modeled; the penalty of N2 reuptake during IR may be outweighed by the benefit of decreased bubble size. Savings of 75% of purge gas and time (0.22 kg gas and 6 min of crew time per person per EVA) are achievable by abbreviating the EVA suit purge to 20% N2 vs. 5% N2 at the expense of an increase in estimated DCS risk from 9.7% to 12.1% (2.4% increase). A 15-min prebreathe protocol appears feasible using the new exploration atmosphere. IR between EVAs may enable reductions in suit purge and prebreathe requirements, decompression stress, and/or suit operating pressures. Ground trial validation is required before operational implementation.
NASA Astrophysics Data System (ADS)
Cassanto, J. M.; Ziserman, H. I.; Chapman, D. K.; Korszun, Z. R.; Todd, P.
Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 × g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 × g maximum in one case and 4 × g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the “Materials Dispersion Apparatus” of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load.
2009-08-28
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, space shuttle Discovery hurtles toward space on the STS-128 mission. Below the main engine nozzles are the blue mach diamonds, a formation of shock waves in the exhaust plume of an aerospace propulsion system Liftoff from Launch Pad 39A was on time at 11:59 p.m. EDT. The first launch attempt on Aug. 24 was postponed due to unfavorable weather conditions. The second attempt on Aug. 25 also was postponed due to an issue with a valve in space shuttle Discovery's main propulsion system. The STS-128 mission is the 30th International Space Station assembly flight and the 128th space shuttle flight. The 13-day mission will deliver more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. The equipment includes a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Photo credit: NASA/Tony Gray-Tom Farrar
NASA Technical Reports Server (NTRS)
Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)
2001-01-01
The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.
[Space experiments on the development of biological systems for the human life].
Sychev, V N
2013-01-01
Over the past 22 years, the Institute of Biomedical Problems has stubbornly continued the investigations with higher plants aimed at the development of cultivation technologies suitable for the conditions of space flight. Analysis of the results of 24 plant experiments performed aboard orbital complex MIR and the ISS Russian segment evidenced the ability of higher plants to grow, develop and reproduce inside spacecraft living compartments. Space crops were normal as compared with the laboratory controls. Microbial contamination of the plants was within the normal limits; no pathogen has been detected on plant surfaces. Plants did not change genetically, at least in four space generations. It should be noted that the presence of greenhouse on board the ISS also has a marked positive effect on wellbeing of people living in the close environment and isolation from Earth's biosphere. In the context of the above, the higher plants might become a secure and beneficial part of the life support system for crews on space exploration missions.
National Aero-Space Plane team selects design
NASA Astrophysics Data System (ADS)
Kandebo, Stanley W.
1990-10-01
The selection of a design configuration for the NASP currently favors a directionally stable lifting body that incorporates dual stabilizers, short wings, and a two-man, dorsal crew compartment. The X-30 is expected to be 150-200 ft long and to have a takeoff gross weight of 250,000-300,000 lb. Three to five scramjet engines and a single 50,000 to 70,000 lb thrust rocket integrated into the airframe are expected to power the vehicle. The rocket will provide the X-30 with the burst of energy it will require to obtain orbital velocity and also to maneuver the craft out of earth orbit. Continuing propulsion and technical advances that include materials, aerodynamics, and simulations areas are being developed by program researchers. One of the most important achievements has been the progress made in locating the boundary-layer transition point on the NASP; engine, airframe integration, and flight-test issues are being addressed in separate study programs.
Controlled Impact Demonstration
1984-12-01
The Controlled Impact Demonstration (or colloquially the Crash In the Desert) was a joint project between NASA and the Federal Aviation Administration (FAA) that intentionally crashed a remotely controlled Boeing 720 aircraft to acquire data and test new technologies that might help passengers and crew survive. The crash required more than four years of preparation by NASA Ames Research Center, Langley Research Center, Dryden Flight Research Center, the FAA, and General Electric. After numerous test runs, the plane was crashed on December 1, 1984. The test went generally according to plan, and produced a spectacular fireball that required more than an hour to extinguish. The FAA concluded that about one-quarter of the passengers would have survived, that the antimisting kerosene test fuel did not sufficiently reduce the risk of fire, and that several changes to equipment in the passenger compartment of aircraft were needed. NASA concluded that a head-up display and with microwave landing system would have helped the pilot more safely fly the aircraft.
2009-08-04
CAPE CANAVERAL, Fla. –At NASA's Kennedy Space Center in Florida, the crawler-transporter delivers space shuttle Discovery atop the mobile launcher platform onto Launch Pad 39A. The shuttle nears the flame trench, which channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Traveling from the Vehicle Assembly Building, the shuttle took nearly 12 hours on the journey as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
2009-08-04
CAPE CANAVERAL, Fla. –Sitting on top of the mobile launcher platform and propelled by the crawler-transporter, space shuttle Discovery rolls up Launch Pad 39A at NASA's Kennedy Space Center in Florida after a nearly 12-hour journey from the Vehicle Assembly Building. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. The rollout was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. The drying mud of the crawlerway is evident in the foreground. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
2009-08-04
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the crawler-transporter delivers space shuttle Discovery atop the mobile launcher platform onto Launch Pad 39A. The shuttle spans the flame trench, which channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Traveling from the Vehicle Assembly Building, the shuttle took nearly 12 hours on the journey as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
Development of an Inline Urine Monitoring System for the International Space Station
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Cibuzar, Banelle R.
2008-01-01
Human exposure to microgravity during spaceflight causes bone loss. Calcium and other metabolic byproducts are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is essential to determining crew bone loss and the effectiveness of countermeasures. Previous US Space Shuttle (SS) Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to cross contamination between users and fluid system instabilities. Currently, urine voids must be collected manually in a flexible plastic bag containing a known tracer quantity. The crew member must completely mix the bag then withdraw a representative syringe sample for later ground analysis. The current bag system accuracy is highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures the void volume, and allows for syringe sampling. After operations, the ISS UMS delivers the urine to the WHC for normal processing then flushes its plumbing with a small water volume. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, greatly reduces cross contamination between urine voids (< 0.5 ml urine), and provides accurate volume measurements (< +/- 2% error for 100 to 1000 ml void volumes). The system performance has been validated with extensive ground tests and reduced gravity aircraft flights. The lockersized ISS UMS is currently being modified to interface with the ISS Node 3 WHC Russian ACY hardware. The operation principles, characteristics, and results are outlined in the paper.
Combined effects of space flight factors and radiation on humans
NASA Technical Reports Server (NTRS)
Todd, P.; Pecaut, M. J.; Fleshner, M.; Clarkson, T. W. (Principal Investigator)
1999-01-01
The probability that a dose of ionizing radiation kills a cell is about 10,000 times the probability that the cell will be transformed to malignancy. On the other hand, the number of cells killed required to significantly impact health is about 10,000 times the number that must be transformed to cause a late malignancy. If these two risks, cell killing and malignant transformation, are about equal, then the risk that occurs during a mission is more significant than the risk that occurs after a mission. The latent period for acute irradiation effects (cell killing) is about 2-4 weeks; the latent period for malignancy is 10-20 years. If these statements are approximately true, then the impact of cell killing on health in the low-gravity environment of space flight should be examined to establish an estimate of risk. The objective of this study is to synthesize data and conclusions from three areas of space biology and environmental health to arrive at rational risk assessment for radiations received by spacecraft crews: (1) the increased physiological demands of the space flight environment; (2) the effects of the space flight environment on physiological systems; and (3) the effects of radiation on physiological systems. One physiological system has been chosen: the immune response and its components, consisting of myeloid and lymphoid proliferative cell compartments. Best-case and worst-case scenarios are considered. In the worst case, a doubling of immune-function demand, accompanied by a halving of immune capacity, would reduce the endangering dose to a crew member to around 1 Gy.
Seating Considerations for Spaceflight: The Human to Machine Interface
NASA Technical Reports Server (NTRS)
Gohmert, Dustin M.
2011-01-01
Seating is one of the most critical components to be considered during design of a spacecraft. Since seats are the final interface between the occupant and the vehicle wherein all launch and landing operations are performed, significant effort must be spent to ensure proper integration of the human to the spacecraft. The importance of seating can be divided into two categories: seat layout and seat design. The layout of the seats drives the overall cabin configuration - from displays and controls, to windows, to stowage, to egress paths. Since the layout of the seats is such a critical design parameter within the crew compartment, it is one of the first design challenges that must be completed in the critical path of the spacecraft design. In consideration of seat layout in the vehicle, it is important for the designers to account for often intangible factors such as safety, operability, contingency performance, crew rescue. Seat layout will lead to definition of the quantity, shape, and posture of the seats. The seats of the craft must restrain and protect the occupant in all seated phases of flight, while allowing for nominal mission performance. In design of a spacecraft seat, the general posture of the occupant and the landing loads to be encountered are the greatest drivers of overall design. Variances, such as upright versus recumbent postures will dictate fit of the seat to the occupant and drive the total envelope of the seat around the occupant. Seat design revolves around applying sound principles of seated occupant protection coupled with the unique environments driven by the seat layout, landing loads, and operational and emergency scenarios.
Murphy, George W.
1983-01-01
A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment.
Murphy, G.W.
1983-09-13
A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment. 3 figs.
NASA Astrophysics Data System (ADS)
Berkovich, Yu. A.; Smolyanina, S. O.; Krivobok, N. M.; Erokhin, A. N.; Agureev, A. N.; Shanturin, N. A.
2009-07-01
A Manned Mars Mission scenario had been developed in frame of the Project 1172 supported International Science & Technology Center in Moscow. The Mars transit vehicle (MTV) supposed to have a crew of 4-6 with Pilot Laboratory compartment volume of 185 m 3 and with inner diameter of 4.1 m. A vegetable production facility with power consumption up to 10 kW is being considered as a component of the life support system to supply crew members by fresh vegetables during the mission. Proposed design of conveyor-type plant growth facility (PGF) comprised of 4-modules. Each module has a cylindrical planting surface and spiral cylindrical LED assembly to provide a high specific productivity relative to utilized onboard resources. Each module has a growth chamber that will be from 0.7 m to 1.5 m in length, and a crop illuminated area from 1.7 m 2 to 4.0 m 2. Leafy crops (cabbage, lettuce, spinach, chard, etc.) have been selected for module 1, primarily because of the highest specific productivity per consumed resources. Dietitians have recommended also carrot crop for module 2, pepper for module 3 and tomato for module 4. The maximal total PGF light energy estimated as 1.16 kW and total power consumption as about 7 kW. The module 1 characteristics have been calculated using own experimental data, information from the best on ground plant growth experiments with artificial light were used to predict crop productivity and biomass composition in the another modules. 4-module PGF could produce nearly 0.32 kg per crew member per day of fresh edible biomass, which would be about 50% of recommended daily vegetable supplement. An average crop harvest index is estimated as 0.75. The MTV food system could be entirely closed in terms of vitamins C and A with help of the PGF. In addition the system could provide 10-25% of essential minerals and vitamins of group B, and about 20% of food fibers. The present state of plant growth technology allows formulating of requirements specification for the flight-qualified modules.
Adaptation of the Skeletal System during Long-duration Spaceflight
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Cavanagh, Peter R.; Lang, Thomas F.; LeBlanc, Adrian D.; Schneider, Victor S.; Shackelford, Linda C.; Smith, Scott M.; Vico, Laurence
2008-01-01
This review will highlight evidence from crew members flown on space missions greater than 90 days to suggest that the adaptations of the skeletal system to mechanical unloading may predispose crew members to an accelerated onset of osteoporosis after return to Earth. By definition, osteoporosis is a skeletal disorder - characterized by low bone mineral density and structural deterioration - that reduces the ability of bones to resist fracture under the loading of normal daily activities. Involutional or agerelated osteoporosis is readily recognized as a syndrome afflicting the elderly population because of the insipid and asymptomatic nature of bone loss that does not typically manifest as fractures until after age approximately 60. It is not the thesis of this review to suggest that spaceflight-induced bone loss is similar to bone loss induced by metabolic bone disease; rather this review draws parallels between the rapid and earlier loss in females that occurs with menopause and the rapid bone loss in middle-aged crew members that occurs with spaceflight unloading and how the cumulative effects of spaceflight and ageing could be detrimental, particularly if skeletal effects are totally or partially irreversible. In brief, this report will provide detailed evidence that long-duration crew members, exposed to the weightlessness of space for the typical long-duration (4-6 months) mission on Mir or the International Space Station -- 1. Display bone resorption that is aggressive, that targets normally weight-bearing skeletal sites, that is uncoupled to bone formation and that results in areal BMD deficits that can range between 6-20% of preflight BMD; 2. Display compartment-specific declines in volumetric BMD in the proximal femur (a skeletal site of clinical interest) that significantly reduces its compressive and bending strength and which may account for the loss in hip bone strength (i.e., force to failure); 3. Recover BMD over a post-flight time period that exceeds spaceflight exposure but for which the restoration of whole bone strength remains an open issue and may involve structural alteration; and 4. Display risk factors for bone loss -- such as the negative calcium balance and down-regulated calcium-regulating hormones in response to bone atrophy -- that can be compounded by the constraints of conducting mission operations (inability to provide essential nutrients and vitamins). The full characterization of the skeletal response to mechanical unloading in space is not complete. In particular, countermeasures used to date have been inadequate and it is not yet known whether more appropriate countermeasures can prevent the changes in bone that have been found in previous flights, knowledge gaps related to the effects of prolonged (greater than or equal to 6 months) space exposure and to partial gravity environments are substantial, and longitudinal measurements on crew members after spaceflight are required to assess the full impact on skeletal recovery.
NASA Technical Reports Server (NTRS)
Daugherty, Colin C.
2010-01-01
International Space Station (ISS) crew and flight controller training documentation is used to aid in training operations. The Generic Simulations References SharePoint (Gen Sim) site is a database used as an aid during flight simulations. The Gen Sim site is used to make individual mission segment timelines, data, and flight information easily accessible to instructors. The Waste and Hygiene Compartment (WHC) training schematic includes simple and complex fluid schematics, as well as overall hardware locations. It is used as a teaching aid during WHC lessons for both ISS crew and flight controllers. ISS flight control documentation is used to support all aspects of ISS mission operations. The Quick Look Database and Consolidated Tool Page are imagery-based references used in real-time to help the Operations Support Officer (OSO) find data faster and improve discussions with the Flight Director and Capsule Communicator (CAPCOM). A Quick Look page was created for the Permanent Multipurpose Module (PMM) by locating photos of the module interior, labeling specific hardware, and organizing them in schematic form to match the layout of the PMM interior. A Tool Page was created for the Maintenance Work Area (MWA) by gathering images, detailed drawings, safety information, procedures, certifications, demonstration videos, and general facts of each MWA component and displaying them in an easily accessible and consistent format. Participation in ISS mechanisms and maintenance lessons, mission simulation On-the-Job Training (OJT), and real-time flight OJT was used as an opportunity to train for day-to-day operations as an OSO, as well as learn how to effectively respond to failures and emergencies during mission simulations and real-time flight operations.
Seating Considerations for Spaceflight: The Human to Machine Interface
NASA Astrophysics Data System (ADS)
Gohmert, D. M.
2012-01-01
Seating is one of the most critical components to be considered during design of a spacecraft. Since seats are the final interface between the occupant and the vehicle wherein all launch and landing operations are performed, significant effort must be spent to ensure proper integration of the human to the spacecraft. The importance of seating can be divided into two categories: seat layout and seat design. The layout of the seats drives the overall cabin configuration - from displays and controls, to windows, to stowage, to egress paths. Since the layout of the seats is such a critical design parameter within the crew compartment, it is one of the first design challenges that must be completed in the critical path of the spacecraft design. In consideration of seat layout in the vehicle, it is important for the designers to account for often intangible factors such as safety, operability, contingency performance, and crew rescue. Seat layout will lead to definition of the quantity, shape, and posture of the seats. The seats of the craft must restrain and protect the occupant in all seated phases of flight, while allowing for nominal mission performance. In design of a spacecraft seat, the general posture of the occupant and the landing loads to be encountered are the greatest drivers of overall design. Variances, such as upright versus recumbent postures will dictate fit of the seat to the occupant and drive the total envelope of the seat around the occupant. Seat design revolves around applying sound principles of seated occupant protection coupled with the unique environments driven by the seat layout, landing loads, and operational and emergency scenarios.
Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator
Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT
2011-12-13
Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.
Carbon fuel cells with carbon corrosion suppression
Cooper, John F [Oakland, CA
2012-04-10
An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.
2009-08-28
CAPE CANAVERAL, Fla. – Space shuttle Discovery rises majestically from Launch Pad 39A at NASA's Kennedy Space Center in Florida as it heads for space on the STS-128 mission. Below the main engine nozzles are the blue mach diamonds, a formation of shock waves in the exhaust plume of an aerospace propulsion system. Liftoff from Launch Pad 39A was on time at 11:59 p.m. EDT. The first launch attempt on Aug. 24 was postponed due to unfavorable weather conditions. The second attempt on Aug. 25 also was postponed due to an issue with a valve in space shuttle Discovery's main propulsion system. The STS-128 mission is the 30th International Space Station assembly flight and the 128th space shuttle flight. The 13-day mission will deliver more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. The equipment includes a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Photo credit: NASA/Rusty Backer-George Roberts
Robotic vehicle mobility and task performance: A flexible control modality for manned systems
NASA Technical Reports Server (NTRS)
Eldredge, Frederick
1994-01-01
In the early 1980's, a number of concepts were developed for applying robotics to ground systems. The majority of these early application concepts envisioned robotics technology embedded in dedicated unmanned systems; i.e., unmanned systems with no provision for direct manned control of the platform. Although these concepts offered advantages peculiar to platforms designed from the outset exclusively for unmanned operation--i.e., no crew compartment--their findings would require costs and support for a new class of unmanned systems. The current era of reduced budgets and increasing focus on rapid force projection has created new opportunities to examine the value of an alternative concept: the use of existing manned platforms with an ability to quickly shift from normal manned operation to unmanned should a particularly harzardous situation arise. The author of this paper addresses the evolution of robotic vehicle concepts and technology testbeds from exclusively unmanned systems to a variety of 'optionally manned' systems which have been designed with minimum intrusion actuator and control equipment to minimize degradation of vehicle performance in manned modes of operation.
2009-08-04
CAPE CANAVERAL, Fla. –At NASA's Kennedy Space Center in Florida, the crawler-transporter delivers space shuttle Discovery atop the mobile launcher platform onto Launch Pad 39A. Traveling from the Vehicle Assembly Building, the shuttle took nearly 12 hours on the journey as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. In the background is the blue water of the Atlantic Ocean. At left is the White Room at the end of the orbiter access arm. When in place against shuttle, the White Room provides entry into the cockpit. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
1985-12-01
Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.
Neutral Buoyancy Simulator - Space Station
NASA Technical Reports Server (NTRS)
1985-01-01
Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.
2009-08-04
CAPE CANAVERAL, Fla. – Sitting on top of the mobile launcher platform, space shuttle Discovery arrives on top of Launch Pad 39A at NASA's Kennedy Space Center in Florida. Traveling from the Vehicle Assembly Building, the shuttle took nearly 12 hours on the journey as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. First motion out of the VAB was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. In the foreground next to Discovery's main engines is one of the two tail masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Troy Cryder
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyeong; Murugan, Muthuvel; Wereley, Norman M.
2013-04-01
This study investigates a lumped-parameter human body model which includes lower leg in seated posture within a quarter-car model for blast injury assessment simulation. To simulate the shock acceleration of the vehicle, mine blast analysis was conducted on a generic land vehicle crew compartment (sand box) structure. For the purpose of simulating human body dynamics with non-linear parameters, a physical model of a lumped-parameter human body within a quarter car model was implemented using multi-body dynamic simulation software. For implementing the control scheme, a skyhook algorithm was made to work with the multi-body dynamic model by running a co-simulation with the control scheme software plug-in. The injury criteria and tolerance levels for the biomechanical effects are discussed for each of the identified vulnerable body regions, such as the relative head displacement and the neck bending moment. The desired objective of this analytical model development is to study the performance of adaptive semi-active magnetorheological damper that can be used for vehicle-occupant protection technology enhancements to the seat design in a mine-resistant military vehicle.
Ultrasonic Apparatus and Method to Assess Compartment Syndrome
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Ueno, Toshiaki (Inventor); Hargens, Alan R. (Inventor)
2009-01-01
A process and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatible components on compartment dimensions and muscle tissue characteristics. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring pressure build-up in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the imparted ultrasonic waves, mathematically manipulating the captured ultrasonic waves and categorizing pressure build-up in the body compartment from the mathematical manipulations.
Method and apparatus to assess compartment syndrome
NASA Technical Reports Server (NTRS)
Hargens, Alan R. (Inventor); Yost, William T. (Inventor); Ueno, Toshiaki (Inventor)
2008-01-01
A method and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatile components on at least one compartment dimension. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring excess pressure in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the reflected imparted ultrasonic waves, and converting them to electrical signals, a pulsed phase-locked loop device for assessing a body compartment configuration and producing an output signal, and means for mathematically manipulating the output signal to thereby categorize pressure build-up in the body compartment from the mathematical manipulations.
Electromyographic cross-talk within a compartmentalized muscle of the cat.
English, A W; Weeks, O I
1989-01-01
1. Experiments were conducted to test the extent to which the electromyographic (EMG) activity generated by the activation of single motor units is conducted from one neuromuscular compartment of the cat lateral gastrocnemius (LG) muscle into adjacent compartments. 2. Potentials produced by stimulation of forty-five single motor units were monitored from bipolar fine-wire EMG electrodes which had been implanted either into the centres of each of the four neuromuscular compartments of LG or into regions of the muscle known to lie on the border of contiguous compartments. 3. In all cases single unit potentials could be recorded from the electrodes in the centre of the compartments which clearly identified the compartment of residence of the muscle unit. Regardless of unit type, the amplitude of the potential recorded from electrodes in one compartment was always greater than that recorded from any other compartment. 4. Smaller potentials could be recorded from electrodes in the centre of compartments adjacent to the compartment of residence of the muscle unit. For those motor units where the amplitude of the EMG potentials recorded from the compartment of residence was large, the amplitude of such 'cross-talk' could be greater than the amplitude of potentials recorded from the compartment of residence of smaller motor units. 5. In the case of electrodes placed at compartment boundaries, no clear compartment selectivity of recording of motor unit potentials was evident. 6. These results indicate that great care must be taken in choosing sites of EMG electrode placement when performing kinesiological studies, especially when the amplitude of the EMG activity recorded is of consideration. PMID:2558175
Apparatus and method for electrochemical modification of liquids
James, Patrick I
2015-04-21
An apparatus for electrochemical modification of liquid streams employing an electrolytic cell which includes an anode compartment defined by an anode structure where oxidation is effected, containing a liquid electrolyte anolyte, and a cathode compartment defined by a cathode structure where reduction is effected containing a liquid electrolyte catholyte. In addition, the electrolytic cell includes at least one additional compartment arranged at least partially between the anode compartment and the cathode compartment and separated from the anode compartment and the cathode compartment by a separator structure arranged to supports ionic conduction of current between the anode structure and the cathode structure.
Synchronous temperature rate control for refrigeration with reduced energy consumption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.
Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling themore » cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.« less
Synchronous temperature rate control for refrigeration with reduced energy consumption
Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian
2015-09-22
Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.
Efficacy of Antimicrobials on Bacteria Cultured in a Spaceflight Analogue
NASA Technical Reports Server (NTRS)
Nickerson, CA; Wotring, Virginia; Barrila, Jennifer; Crabbe, Aurelie; Castro, Sarah; Davis, Richard; Rideout, April; McCarthy, Breanne; Ott, C. Mark
2014-01-01
As humans travel in space, they will interact with microbial flora from themselves, other crewmembers, their food, and the environment. While evaluations of microbial ecology aboard the Mir and ISS suggest a predominance of common environmental flora, the presence of (and potential for) infectious agents has been well documented. Likewise, pathogens have been detected during preflight monitoring of spaceflight food, resulting in the disqualification of that production lot from flight. These environmental and food organisms range from the obligate pathogen, Salmonella enterica serovar Typhimurium (S. Typhimurium), which has been responsible for disqualification and removal of food destined for ISS and has previously been reported from Shuttle crew refuse, to the opportunistic pathogen Staphylococcus aureus, isolated numerous times from ISS habitable compartments and the crew. Infectious disease events have affected spaceflight missions, including an upper respiratory infection that delayed the launch of STS-36 and an incapacitating Pseudomonas aeruginosa urinary tract infection of a crewmember during Apollo 13. These observations indicate that the crew has the potential to be exposed to obligate and opportunistic pathogens. This risk of exposure is expected to increase with longer mission durations and increased use of regenerative life support systems. As antibiotics are the primary countermeasure after infection, determining if their efficacy during spaceflight missions is comparable to terrestrial application is of critical importance. The NASA Rotating Wall Vessel (RWV) culture system has been successfully used as a spaceflight culture analogue to identify potential alterations in several key microbial characteristics, such as virulence and gene regulation, in response to spaceflight culture. We hypothesized that bacteria cultured in the low fluid shear RWV environment would demonstrate changes in efficacy of antibiotics compared to higher fluid shear controls. This study investigated the response of three medically significant microorganisms grown in the RWV to antibiotics that could be used on spaceflight missions. Our findings suggest potential alterations in antibiotic efficacy during spaceflight and indicate that future studies on the antibiotic response require additional basic research using the RWV and/or true spaceflight. However, while this analogue has reinforced these potential alterations, the results suggest the best approach for applied forward work is evaluating an in vivo system during spaceflight, including human and rodent studies. The complex nature of the analysis for many antibiotics and organism suggests the best approach to determine in vivo responses during pharmaceutical treatment is evaluating an in vivo system during spaceflight.
Hydrophilic structures for condensation management in refrigerator appliances
Kuehl, Steven John; Vonderhaar, John J; Wu, Guolian; Wu, Mianxue
2014-10-21
A refrigerator appliance that includes a freezer compartment having a freezer compartment door, and a refrigeration compartment having at least one refrigeration compartment door. The appliance further includes a mullion with an exterior surface. The mullion divides the compartments and the exterior surface directs condensation toward a transfer point. The appliance may also include a cabinet that houses the compartments and has two sides, each with an exterior surface. Further, at least one exterior surface directs condensation toward a transfer point.
Chronic exertional compartment syndrome of the superficial posterior compartment: Soleus syndrome.
Gross, Christopher E; Parekh, Bela J; Adams, Samuel B; Parekh, Selene G
2015-01-01
Chronic exertional compartment syndrome (CECS) represents the second most-common cause of exertional leg pain with incidence of 27-33%. CECS of the superficial posterior compartment, or soleus syndrome, is rare and has only been discussed briefly in the literature. We discuss the management of two patients with bilateral soleus syndrome or CECS of the superficial posterior compartment.
Langenbucher, Frieder
2005-01-01
A linear system comprising n compartments is completely defined by the rate constants between any of the compartments and the initial condition in which compartment(s) the drug is present at the beginning. The generalized solution is the time profiles of drug amount in each compartment, described by polyexponential equations. Based on standard matrix operations, an Excel worksheet computes the rate constants and the coefficients, finally the full time profiles for a specified range of time values.
NASA Technical Reports Server (NTRS)
Ward, William Douglas (Inventor)
2014-01-01
The different advantageous embodiments provide for identifying gas leakage in a platform. A processor unit identifies a rate of the gas of the substance leaking from a container in a first compartment for a platform. The processor unit also identifies an amount of gas that has leaked from the container at a selected time based on the rate of the gas of the substance leaking from the container and a total time. The processor unit identifies an amount of the gas of the substance present in a number of compartments associated with the first compartment using the amount of gas leaked from the container in the first compartment and a pressure for each compartment in the number of compartments. The processor unit determines whether the amount of gas in at least one of the first compartment and the number of compartments is outside of a desired amount for the gas.
Compartments in a marine food web associated with phylogeny, body mass, and habitat structure.
Rezende, Enrico L; Albert, Eva M; Fortuna, Miguel A; Bascompte, Jordi
2009-08-01
A long-standing question in community ecology is whether food webs are organized in compartments, where species within the same compartment interact frequently among themselves, but show fewer interactions with species from other compartments. Finding evidence for this community organization is important since compartmentalization may strongly affect food web robustness to perturbation. However, few studies have found unequivocal evidence of compartments, and none has quantified the suite of mechanisms generating such a structure. Here, we combine computational tools from the physics of complex networks with phylogenetic statistical methods to show that a large marine food web is organized in compartments, and that body size, phylogeny, and spatial structure are jointly associated with such a compartmentalized structure. Sharks account for the majority of predatory interactions within their compartments. Phylogenetically closely related shark species tend to occupy different compartments and have divergent trophic levels, suggesting that competition may play an important role structuring some of these compartments. Current overfishing of sharks has the potential to change the structural properties, which might eventually affect the stability of the food web.
Wireless Crew Communication Feasibility Assessment
NASA Technical Reports Server (NTRS)
Archer, Ronald D.; Romero, Andy; Juge, David
2016-01-01
Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.
Potter, W R; Henderson, B W; Bellnier, D A; Pandey, R K; Vaughan, L A; Weishaupt, K R; Dougherty, T J
1999-11-01
An open three-compartment pharmacokinetic model was applied to the in vivo quantitative structure-activity relationship (QSAR) data of a homologous series of pyropheophorbide photosensitizers for photodynamic therapy (PDT). The physical model was a lipid compartment sandwiched between two identical aqueous compartments. The first compartment was assumed to clear irreversibly at a rate K0. The measured octanol-water partition coefficients, P(i) (where i is the number of carbons in the alkyl chain) and the clearance rate K0 determined the clearance kinetics of the drugs. Solving the coupled differential equations of the three-compartment model produced clearance kinetics for each of the sensitizers in each of the compartments. The third compartment was found to contain the target of PDT. This series of compounds is quite lipophilic. Therefore these drugs are found mainly in the second compartment. The drug level in the third compartment represents a small fraction of the tissue level and is thus not accessible to direct measurement by extraction. The second compartment of the model accurately predicted the clearance from the serum of mice of the hexyl ether of pyropheophorbide a, one member of this series of compounds. The diffusion and clearance rate constants were those found by fitting the pharmacokinetics of the third compartment to the QSAR data. This result validated the magnitude and mechanistic significance of the rate constants used to model the QSAR data. The PDT response to dose theory was applied to the kinetic behavior of the target compartment drug concentration. This produced a pharmacokinetic-based function connecting PDT response to dose as a function of time postinjection. This mechanistic dose-response function was fitted to published, single time point QSAR data for the pheophorbides. As a result, the PDT target threshold dose together with the predicted QSAR as a function of time postinjection was found.
14 CFR 25.787 - Stowage compartments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.787 Stowage compartments. (a) Each compartment for the stowage of cargo, baggage, carry-on articles, and... to compartments located below, or forward, of all occupants in the airplane. If the airplane has a...
Image-guided spatial localization of heterogeneous compartments for magnetic resonance
An, Li; Shen, Jun
2015-01-01
Purpose: Image-guided localization SPectral Localization Achieved by Sensitivity Heterogeneity (SPLASH) allows rapid measurement of signals from irregularly shaped anatomical compartments without using phase encoding gradients. Here, the authors propose a novel method to address the issue of heterogeneous signal distribution within the localized compartments. Methods: Each compartment was subdivided into multiple subcompartments and their spectra were solved by Tikhonov regularization to enforce smoothness within each compartment. The spectrum of a given compartment was generated by combining the spectra of the components of that compartment. The proposed method was first tested using Monte Carlo simulations and then applied to reconstructing in vivo spectra from irregularly shaped ischemic stroke and normal tissue compartments. Results: Monte Carlo simulations demonstrate that the proposed regularized SPLASH method significantly reduces localization and metabolite quantification errors. In vivo results show that the intracompartment regularization results in ∼40% reduction of error in metabolite quantification. Conclusions: The proposed method significantly reduces localization errors and metabolite quantification errors caused by intracompartment heterogeneous signal distribution. PMID:26328977
Gas permeable electrode for electrochemical system
Ludwig, Frank A.; Townsend, Carl W.
1989-01-01
An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.
[Progress of midfacial fat compartments and related clinical applications].
Wen, Lihong; Wang, Jinhuang; Li, Yang; Liu, Dalie
2018-02-01
To review the research progress of midfacial fat compartments, and to thoroughly understand its current state of the anatomy and the aging morphologic characters of midfacial fat compartments, as well as the current status of clinical applications. The recent literature concerning the midfacial fat compartments and related clinical applications were extensively reviewed and analyzed. Midfacial fat layer has been considered as a fusion and a continuous layer, experiencing a global atrophy when aging. As more anatomical researches have done, recent studies have shown that midfacial fat layer is broadly divided into superficial and deep layers, which are both divided into different fat compartments by fascia, ligaments, or muscles. Midfacial fat compartments tend to atrophy with age, specifically in the deep fat compartments while hypertrophy in the superficial fat compartments. Clinical applications show that fat volumetric restoration with deep medial cheek fat and Ristow's space can restore the appearance of midface effectively. In recent years, the researches of midfacial fat compartments have achieved obvious progress, which will provide new ideas and basis for fat volumetric restoration. Corresponding treatments are selected based on different sites and different layers with different aging changes, reshaping a more youthful midface.
14 CFR 29.773 - Pilot compartment view.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment view. 29.773 Section 29... Accommodations § 29.773 Pilot compartment view. (a) Nonprecipitation conditions. For nonprecipitation conditions, the following apply: (1) Each pilot compartment must be arranged to give the pilots a sufficiently...
14 CFR 29.773 - Pilot compartment view.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment view. 29.773 Section 29... Accommodations § 29.773 Pilot compartment view. (a) Nonprecipitation conditions. For nonprecipitation conditions, the following apply: (1) Each pilot compartment must be arranged to give the pilots a sufficiently...
14 CFR 25.773 - Pilot compartment view.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment view. 25.773 Section 25... § 25.773 Pilot compartment view. (a) Nonprecipitation conditions. For nonprecipitation conditions, the following apply: (1) Each pilot compartment must be arranged to give the pilots a sufficiently extensive...
14 CFR 25.773 - Pilot compartment view.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment view. 25.773 Section 25... § 25.773 Pilot compartment view. (a) Nonprecipitation conditions. For nonprecipitation conditions, the following apply: (1) Each pilot compartment must be arranged to give the pilots a sufficiently extensive...
Simulated countercurrent moving bed chromatographic reactor and method for use thereof
Carr, Robert W.; Tonkovich, Anna Lee Y.
2001-01-01
A method and apparatus for continuously reacting a feed gas to form a product and separating the product from unreacted feed gas is provided. The apparatus includes a plurality of compartments and means for connecting the compartments in a series, with the last compartment in the series being connected to the first compartment in the series to provide a closed loop. Each compartment may include an upstream reaction zone and a downstream separation zone.
Strick, David J.; Elferink, Lisa A.
2005-01-01
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways. PMID:16195351
Crew decision making under stress
NASA Technical Reports Server (NTRS)
Orasanu, J.
1992-01-01
Flight crews must make decisions and take action when systems fail or emergencies arise during flight. These situations may involve high stress. Full-missiion flight simulation studies have shown that crews differ in how effectively they cope in these circumstances, judged by operational errors and crew coordination. The present study analyzed the problem solving and decision making strategies used by crews led by captains fitting three different personality profiles. Our goal was to identify more and less effective strategies that could serve as the basis for crew selection or training. Methods: Twelve 3-member B-727 crews flew a 5-leg mission simulated flight over 1 1/2 days. Two legs included 4 abnormal events that required decisions during high workload periods. Transcripts of videotapes were analyzed to describe decision making strategies. Crew performance (errors and coordination) was judged on-line and from videotapes by check airmen. Results: Based on a median split of crew performance errors, analyses to date indicate a difference in general strategy between crews who make more or less errors. Higher performance crews showed greater situational awareness - they responded quickly to cues and interpreted them appropriately. They requested more decision relevant information and took into account more constraints. Lower performing crews showed poorer situational awareness, planning, constraint sensitivity, and coordination. The major difference between higher and lower performing crews was that poorer crews made quick decisions and then collected information to confirm their decision. Conclusion: Differences in overall crew performance were associated with differences in situational awareness, information management, and decision strategy. Captain personality profiles were associated with these differences, a finding with implications for crew selection and training.
Flight deck crew coordination indices of workload and situation awareness in terminal operations
NASA Astrophysics Data System (ADS)
Ellis, Kyle Kent Edward
Crew coordination in the context of aviation is a specifically choreographed set of tasks performed by each pilot, defined for each phase of flight. Based on the constructs of effective Crew Resource Management and SOPs for each phase of flight, a shared understanding of crew workload and task responsibility is considered representative of well-coordinated crews. Nominal behavior is therefore defined by SOPs and CRM theory, detectable through pilot eye-scan. This research investigates the relationship between the eye-scan exhibited by each pilot and the level of coordination between crewmembers. Crew coordination was evaluated based on each pilot's understanding of the other crewmember's workload. By contrasting each pilot's workload-understanding, crew coordination was measured as the summed absolute difference of each pilot's understanding of the other crewmember's reported workload, resulting in a crew coordination index. The crew coordination index rates crew coordination on a scale ranging across Excellent, Good, Fair and Poor. Eye-scan behavior metrics were found to reliably identify a reduction in crew coordination. Additionally, crew coordination was successfully characterized by eye-scan behavior data using machine learning classification methods. Identifying eye-scan behaviors on the flight deck indicative of reduced crew coordination can be used to inform training programs and design enhanced avionics that improve the overall coordination between the crewmembers and the flight deck interface. Additionally, characterization of crew coordination can be used to develop methods to increase shared situation awareness and crew coordination to reduce operational and flight technical errors. Ultimately, the ability to reduce operational and flight technical errors made by pilot crews improves the safety of aviation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, P.K.N.; Lam, P.K.S.; Ng, B.K.P.
The biokinetics of Cs in four compartments in the green-lipped mussel Perna viridis, namely, gill, viscera, adductor muscle, and foot, were studied. First-order linear differential equations were set up for these four compartments, and their solutions were used to fit the experimental data. The parameters governing the biokinetics, which depend on the elimination rate from each compartment and the transfer coefficient between compartments, were found. These are useful in understanding the physiology of Perna viridis, in predicting the activity of cesium in each compartment of Perna viridis from a contamination history, or in using Perna viridis as a sentinel organismmore » for surveying and monitoring radioactive contamination. The results showed that the viscera should be represented by more than one compartment. Concentration factors for the four compartments and for Perna viridis were also determined, and these agreed well with reported values in the literature.« less
Gemini 8 prime and backup crews during press conference
1966-02-26
S66-24380 (26 Feb. 1966) --- Gemini-8 prime and backup crews during press conference. Left to right are astronauts David R. Scott, prime crew pilot; Neil A. Armstrong, prime crew command pilot; Charles Conrad Jr., backup crew command pilot; and Richard F. Gordon Jr., backup crew pilot. Photo credit: NASA
Intramuscular pressures in antigravity muscles using gravity-independent, pneumatic hardware.
Macias, Brandon R; Minocha, Ranjeet; Cutuk, Adnan A; Hill, James; Shiau, Jonathon; Hargens, Alan R
2008-08-01
Resistive exercise helps prevent muscle atrophy in microgravity, but better exercise equipment is needed. Therefore, the purpose of this study was to determine if a pneumatic, gravity-independent leg-press device (LPD) provides sufficient force to leg musculature. We hypothesized that intramuscular pressure (IMP), a quantitative index of muscle force, is greater in the antigravity superficial posterior and deep posterior compartments than in the non-antigravity anterior compartment during bilateral leg-press exercise. Millar pressure transducers were inserted into the anterior, lateral, superficial posterior, and deep posterior muscle compartments of the left leg of eight healthy subjects (three women, five men). Subjects were supine on the Keiser SX-1, a pneumatic LPD. Then maximal voluntary contraction (MVC) was determined; each subject performed three consecutive voluntary contractions at approximately 18%, 50%, and 100% MVC while continuously measuring IMP. Repeated measures ANOVA were used to determine differences of IMPs between compartments and loads. The magnitudes of IMP (mean +/- SEM) at 18 - 3% (abbreviated approximately 18%), 50%, and 100% MVC in the superficial and deep posterior compartments were significantly greater than that in the anterior compartment during exercise (P < 0.05). Additionally, IMPs in all four compartments significantly rose as resistance increased at approximately 18%, 50%, and 100% MVC (P < 0.05). The LPD provides significantly increased resistance to all four compartments, but with greater loading of the antigravity compartments as compared to the non-antigravity compartment. Since antigravity muscles of the leg are contained primarily in the superficial and deep posterior compartments, the LPD may help prevent muscle atrophy associated with microgravity.
Are certain fractures at increased risk for compartment syndrome after civilian ballistic injury?
Meskey, Thomas; Hardcastle, John; O'Toole, Robert V
2011-11-01
Compartment syndrome after ballistic fracture is uncommon but potentially devastating. Few data are available to help guide clinicians regarding risk factors for developing compartment syndrome after ballistic fractures. Our primary hypothesis was that ballistic fractures of certain bones would be at higher risk for development of compartment syndrome. A retrospective review at a Level I trauma center from 2001 through 2007 yielded 650 patients with 938 fractures resulting from gunshots. We reviewed all operative notes, clinic notes, discharge summaries, and data from our prospective trauma database. Cases in which the attending orthopedic surgeon diagnosed compartment syndrome and performed fasciotomy were considered cases with compartment syndrome. We excluded all prophylactic fasciotomies. Univariate analyses were conducted to identify risk factors associated with development of compartment syndrome. Twenty-six (2.8%) of the 938 fractures were associated with compartment syndrome. Only fibular (11.6%) and tibial (11.4%) fractures had incidence significantly higher than baseline for all ballistic fractures (p < 0.001). Fractures of the proximal third of the fibula were more likely to result in compartment syndrome than fractures of the middle or distal third (p = 0.03), as were fractures of the proximal third of the tibia (p = 0.01). No other demographic or injury parameters were associated with compartment syndrome. Ballistic fractures of the fibula and tibia are at increased risk for development of compartment syndrome over other ballistic fractures. We recommend increased vigilance when treating these injuries, particularly if the fracture is in the proximal aspect of the bone or is associated with vascular injury.
Anatomical Study of Temporal Fat Compartments and its Clinical Application for Temporal Fat Grafting
Huang, Ru-Lin; Xie, Yun; Wang, Wenjin; Herrler, Tanja; Zhou, Jia; Zhao, Peijuan; Pu, Lee LQ; Li, Qingfeng
2017-01-01
Abstract Background Low satisfaction rates and severe complications are two major limitations for temporal hollowing augmentation using autologous fat grafting. Despite fat compartments in temporal region have been reported, its clinical applied anatomy for fat grafting have not been the subject of studies that show its benefits objectively and statistically. Objectives To investigate temporal fat compartments and relative neurovascular structures in cadavers, developing a safe and effective fat grafting technique for temporal hollowing augmentation. Methods The study was conducted on 8 cadavers (16 temples). The tissue layers, fat compartments, ligaments, and neurovascular structures in the temporal region were analysed. The variables were the number and location of sentinel veins, perforator vessels of the middle temporal vein. Measurements were taken with a digital calliper. Results Two separate fat compartments, the lateral temporal-cheek fat compartment and lateral orbital fat compartment, were found in the subcutaneous layer, and two separate septum compartments, the upper and lower temporal compartment, were found in the loose areolar tissue layer. One sentinel vein and 1 to 6 perforator vessels were found to travel through the subcutaneous tissue layer, traverse the overlapping tissue layers in the lower temporal septum region, and finally join in the middle temporal vein. Conclusions The four fat compartments in the temporal region are ideal receipt sites for fat grafting. The medial border of the junction of the hairline and temporal line is a safe and effective cannula entry site for temporal fat grafting. The anterior half of the lower temporal compartment is a “zone of caution” for temporal fat grafting. PMID:28520850
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-26
... baggage compartment rubber seals, and replacing the baggage compartment rubber seals manufactured by Gumiyan with seals manufactured by Rubbercraft. Since the proposed AD was issued, we have received new... manufacturer of the baggage compartment rubber seals, and replacing the baggage compartment rubber seals...
19 CFR 123.24 - Sealing of conveyances or compartments.
Code of Federal Regulations, 2011 CFR
2011-04-01
... in the same manner as less than load or compartment lots; (3) Live animals identifiable by specific... of the parties in interest, in unsealed conveyances or compartments. (b) Seals to be affixed. The carrier shall affix blue in-transit seals to all openings of conveyances and compartments containing in...
14 CFR 23.771 - Pilot compartment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment. 23.771 Section 23.771... Cargo Accommodations § 23.771 Pilot compartment. For each pilot compartment— (a) The compartment and its equipment must allow each pilot to perform his duties without unreasonable concentration or fatigue; (b...
14 CFR 29.771 - Pilot compartment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment. 29.771 Section 29.771... Pilot compartment. For each pilot compartment— (a) The compartment and its equipment must allow each pilot to perform his duties without unreasonable concentration or fatigue; (b) If there is provision for...
14 CFR 23.773 - Pilot compartment view.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment view. 23.773 Section 23... Personnel and Cargo Accommodations § 23.773 Pilot compartment view. (a) Each pilot compartment must be— (1) Arranged with sufficiently extensive, clear and undistorted view to enable the pilot to safely taxi...
14 CFR 29.771 - Pilot compartment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment. 29.771 Section 29.771... Pilot compartment. For each pilot compartment— (a) The compartment and its equipment must allow each pilot to perform his duties without unreasonable concentration or fatigue; (b) If there is provision for...
STS-99 Mission Specialist Mohri waves before DEPARTing from PAFB
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Mission Specialist Mamoru Mohri of Japan waves before his departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
STS-99 Mission Specialist Thiele and Commander Kregel DEPART from SLF
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Mission Specialist Gerhard Thiele (foreground) and Commander Kevin Kregel make their way to the runway at the Shuttle Landing Facility for a return flight to Houston. During the Jan. 31 launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch mid- to late next week pending availability of the Eastern Range. The postponed launch gives the crew an opportunity for more training and time with their families. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.
2000-02-02
STS-99 Mission Specialist Mamoru Mohri of Japan waves before his departure from Patrick Air Force Base and return to Houston. With the postponement of the launch of STS-99 on Jan. 31, the crew have an opportunity for more training and time with their families. During the launch countdown, Endeavour's enhanced master events controller (E-MEC) No. 2 failed a standard preflight test. Launch was postponed and Shuttle managers decided to replace the E-MEC located in the orbiter's aft compartment. Launch controllers will be in a position to begin the STS-99 countdown the morning of Feb. 6 and ready to support a launch midto late next week pending availability of the Eastern Range. Known as the Shuttle Radar Topography Mission, it will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety